HALucinator: Firmware Re-hosting Through Abstraction Layer Emulation

Abraham Clements*, Eric Gustafson*, Tobias Scharnowski, Paul Grosen, David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer

IoT and Operational Technology 🤏 🔯

Device Internals

Baremetal Firmware

Baremetal

Raw hardware access

Linux ELF file

Kernel abstractions used for hardware interactions

Hardware is Hard!

Debug access

- Should be disabled
- If present, very limited

Limits parallelism

Other limitations

- Can be expensive (\$100 \$10k)
- Brittle easily bricked

Re-hosting to the Rescue?

HALucinator's Goal:

Enable scalable firmware testing without requiring specialized hardware

Peripherals Prevent Re-hosting

Peripherals

CPU AES Accelerator Hash Coprocessor Timers Counters Flash Controller Clock Config IAP DMA

On chip Off chip Ethernet SD-MMC **GPIO** Camera LCD Touch Screen Wireless **EEPROM** Serial CAN Analog IO USB

Peripherals Prevent Re-hosting

On chip Off chip
CPU Ethernet
AES Accelerator SD-MMC

Mouser Lists
44,520 Microcontrollers
3,502 Datasheets
26 Manufacturers

USB

Peripherals Prevent Re-hosting

Peripherals

On chip CPU AES Accelerator Off chip Ethernet SD-MMC

Without support for peripherals baremetal firmware will not run! There are 10,000's of peripherals and combinations there of!

USB

9

Hardware Abstraction Libraries 🔏 🌠

HALs are Everywhere

HALs are Everywhere

HALucinator

Enables replacing HALs and other libraries with high level implementations. Transforming the re-hosting scaling problem from supporting 10,000's of devices to dozens of HALS

Atme

The Modern Firmware Stack

Firmware

On-chip Hardware (eg., MMIO)

Off-chip Hardware (e.g., sensors, radio, ...)

High Level Emulation

High Level Emulation

High Level Emulation

HALucinator implementation

Handler Example


```
Device-specific code

Python
```

QEMU

Step 1: Match library content

hal-fuzz

- Built on AFL-Unicorn
- Program exits when the input is exhausted
- Deterministic timers based on block counts
- Interrupt events also based on block counts
- Crashes detected via Unicorn's own error detector as well as handler assertions

16 Firmware Samples

ATMEL ASF

- USART
- FAT32 on SD-Card
- o HTTP Server
- 6LoWPAN Sender and Receiver
- STM32Cube
 - UART
 - FAT32 on SD-Card
 - UDP-Echo Server and Client
 - TCP-Echo Server and Client
 - o PLC
- NXP -MCUXpresso
 - UART
 - o UDP Echo Server
 - TCP Echo Server
 - HTTP Server

MCUXpresso

LibMatch Results

	"Naïve" LibMatch (Bindiff)	LibMatch w/ context
Correct	74.5%	87.4%
Missing	5.0%	3.2%
Collisions	18.8%	8.5%
Incorrect	2.5%	0.9%
External		9.96%

% matches across 16 test binaries

Ease of Use

Three Handler categories:

- Trivial: Does nothing / returns a constant
- Translating: Collects arguments, interacts with a Model, returns a result
- Internal Logic: Needs to re-implement undocumented internal details

Ease of Use

- Over 85% of handlers require little effort
 - 44.5% (37) are "trivial"
 - 42.2% (35) are "translating"

- Remainder (11): "Internal logic"
 - HAL behavior doesn't abstract hardware well enough
 - HAL behavior makes assumptions not in the docs (e.g., uses its own heap allocator)

Fuzzing!

Hundreds of millions of executions with real parallel AFL

New crashes in:

- STM's ST-PLC Kit
- Atmel's HTTP Server example
- Atmel's Contiki 6LowPAN examples

Multi-layer Fuzzing!

Discovered CVEs

- CVE-2019-8359: Remote code execution via buffer overflow in packet reassembly of Contiki OS
- CVE-2019-9183: Remote Denial-of-Service via Integer underflow in packet reassembly of Contiki OS

CSAW ESC 2019 results

- Re-hosted ARM portion of all challenge sets
- Solved 18/19 challenges
- Verified 17/18 solutions w/ just the emulator
- Solved 3 challenges automatically using fuzzing
- Won first place!

Conclusion

HALucinator eliminates implementing 10,000s of peripherals by using HALs

