
HALucinator: Firmware Re-hosting Through Abstraction
Layer Emulation

Abraham Clements*, Eric Gustafson*, Tobias Scharnowski, Paul Grosen, David Fritz,
Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer

1Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525 SAND2020-7322 C

IoT and Operational Technology

2

Device Internals

3

Baremetal Firmware

4

Baremetal

Firmware ??

On-chip Hardware
(eg.., MMIO)

Off-chip Hardware
(e.g., sensors, radio, ...)

Raw hardware access

.text

.data

.bss

.plt

libc.so.6

Kernel abstractions used for
hardware interactions

main()

read()
send()

Linux ELF file

Hardware is Hard!

Debug access
○ Should be disabled
○ If present, very limited

Limits parallelism
Other limitations

○ Can be expensive ($100 - $10k)
○ Brittle - easily bricked

5

Re-hosting to the Rescue?

HALucinator’s Goal:
Enable scalable firmware testing without requiring specialized hardware

6

Emulator

Peripherals Prevent Re-hosting

On chip
CPU
AES Accelerator
Hash
Coprocessor
Timers
Counters
Flash Controller
Clock Config
IAP
DMA

Off chip
Ethernet
SD-MMC
GPIO
Camera
LCD
Touch Screen
Wireless
EEPROM
Serial
CAN
Analog IO
USB

7

Peripherals

Peripherals Prevent Re-hosting

On chip
CPU
AES Accelerator
Hash
Coprocessor
Timers
Counters
Flash Controller
Clock Config
IAP
DMA

Off chip
Ethernet
SD-MMC
GPIO
Camera
LCD
Touch Screen
Wireless
EEPROM
Serial
CAN
Analog IO
USB

Mouser Lists
44,520 Microcontrollers
3,502 Datasheets
26 Manufacturers

8

Peripherals

Peripherals Prevent Re-hosting

On chip
CPU
AES Accelerator
Hash
Coprocessor
Timers
Counters
Flash Controller
Clock Config
IAP
DMA

Off chip
Ethernet
SD-MMC
GPIO
Camera
LCD
Touch Screen
Wireless
EEPROM
Serial
CAN
Analog IO
USB

Mouser Lists
44,520 Microcontrollers
3,502 Datasheets
26 Manufactures

Without support for peripherals baremetal firmware will not run!
There are 10,000’s of peripherals and combinations there of!

9

Peripherals

Hardware Abstraction Libraries

10 Image credit: NXP

HALs are Everywhere

11

HALs are Everywhere

12

HALucinator
Enables replacing HALs and other libraries with high level

implementations. Transforming the re-hosting scaling problem from
supporting 10,000’s of devices to dozens of HALS

The Modern Firmware Stack

On-chip Hardware
(eg., MMIO)

Firmware

Off-chip Hardware
(e.g., sensors, radio, ...)

13

High Level Emulation

On-chip Hardware
(eg., MMIO)

Off-chip Hardware
(e.g., sensors, radio, ...)

Application Code

RTOS

Protocol
Stacks

(IP,
Zigbee)

Peripheral
Libraries
(sensors,

etc)

Vendor HAL, Platform HAL, etc

14

M
id

dl
ew

ar
e

H
A

L
H

ar
dw

ar
e

High Level Emulation

On-chip Hardware
(eg., MMIO)

Off-chip Hardware
(e.g., sensors, radio, ...)

Application Code

RTOS

Protocol
Stacks

(IP,
Zigbee)

Peripheral
Libraries
(sensors,

etc)

Vendor HAL, Platform HAL, etc

QEMU

Application Code

RTOS

Protocol
Stacks

(IP,
Zigbee)

Peripheral
Libraries
(sensors,

etc)

High Level Replacements
Re-Host!

15

M
id

dl
ew

ar
e

H
A

L
H

ar
dw

ar
e

High Level Emulation

On-chip Hardware
(eg., MMIO)

Off-chip Hardware
(e.g., sensors, radio, ...)

Application Code

RTOS

Protocol
Stacks

(IP,
Zigbee)

Peripheral
Libraries
(sensors,

etc)

Vendor HAL, Platform HAL, etc

QEMU

Application Code

RTOS

Protocol
Stacks
(e.g., IP
Zigbee,

…)

Peripheral
Libraries
(sensors,

etc)High Level Replacements

Re-Host!

16

M
id

dl
ew

ar
e

H
A

L
H

ar
dw

ar
e

HALucinator implementation

Firmware LibMatch

HAL Source

Func. Addrs

CPU Emulator
(QEMU)

UART
Handler

Peripheral Models

IO Server

HALucinator

Ethernet
Handler...

Our Contributions

17

FW

Handler Example

QEMU

Device-specific code

Libraries (HALs, libc)Python

def i2c_read_buf(uc):
 # i2c_read_buf(char* buf, int len);
 buf = uc.regs.r1 # arg 0: The buffer
 l = uc.regs.r2 # arg 1: Buffer length
 assert(buf != 0) # Crash on bad arguments
 assert(len > 0)
 data = I2CModel.rx('i2c', 0, len) # Get the data
 # from the virtual bus
 uc.mem[buf] = data # Store it in the emulator

18

LibMatch

19

LibMatch

libfoo.o

Step 1: Match library content
20

LibMatch

HAL_AssertFailHAL_DebugPrint

SystemClockConfig

HAL_UART_ReadHAL_ETH_Rx

21

LibMatch

HAL_AssertFail HAL_GetCharHAL_DebugPrint

SystemClockConfig

HAL_UART_Write HAL_UART_ReadHAL_ETH_Rx

HAL_PutChar

HAL_SPI_Write

22

LibMatch

HAL_AssertFail HAL_GetCharHAL_DebugPrint

SystemClockConfig

HAL_UART_Write HAL_UART_ReadHAL_ETH_Rx

HAL_PutChar

HAL_SPI_Write

libfoo.o

libbar.o

Step 2: Caller Context
23

LibMatch

HAL_AssertFail HAL_GetCharHAL_DebugPrint

SystemClockConfig

HAL_UART_Write HAL_UART_ReadHAL_ETH_Rx

HAL_PutChar

24

LibMatch

HAL_AssertFail HAL_GetCharHAL_DebugPrint

SystemClockConfig

HAL_UART_Write HAL_UART_ReadHAL_ETH_Rx

HAL_PutChar

Step 3: Callee Context
libfoo.o

libbar.o

25

LibMatch

HAL_AssertFail HAL_GetCharHAL_DebugPrint

SystemClockConfig

HAL_UART_Write HAL_UART_ReadHAL_ETH_Rx

26

LibMatch

HAL_AssertFail HAL_GetCharHAL_DebugPrint

SystemClockConfig

HAL_UART_Write

ETH_Rx_Callback

HAL_UART_ReadHAL_ETH_Rx

libfoo.o

libbar.o

27

LibMatch

HAL_AssertFail HAL_GetCharHAL_DebugPrint

SystemClockConfig

HAL_UART_Write

_flush ETH_Rx_Callback

HAL_UART_Read

malloc

HAL_ETH_Rx HAL_UART_Available

28

hal-fuzz

● Built on AFL-Unicorn
● Program exits when the input is exhausted
● Deterministic timers based on block counts
● Interrupt events also based on block counts
● Crashes detected via Unicorn’s own error

detector as well as handler assertions

29

16 Firmware Samples

● ATMEL ASF
○ USART
○ FAT32 on SD-Card
○ HTTP Server
○ 6LoWPAN Sender and Receiver

● STM32Cube
○ UART
○ FAT32 on SD-Card
○ UDP-Echo Server and Client
○ TCP-Echo Server and Client
○ PLC

● NXP -MCUXpresso
○ UART
○ UDP Echo Server
○ TCP Echo Server
○ HTTP Server

30

LibMatch Results

“Naïve” LibMatch
(Bindiff)

LibMatch
w/ context

Correct 74.5% 87.4%

Missing 5.0% 3.2%

Collisions 18.8% 8.5%

Incorrect 2.5% 0.9%

External -- 9.96%

% matches across 16 test binaries
31

Ease of Use

Three Handler categories:
● Trivial: Does nothing / returns a constant
● Translating: Collects arguments, interacts with

a Model, returns a result
● Internal Logic: Needs to re-implement

undocumented internal details

32

Ease of Use

● Over 85% of handlers require little effort
○ 44.5% (37) are “trivial”
○ 42.2% (35) are “translating”

● Remainder (11): “Internal logic”
○ HAL behavior doesn’t abstract hardware well enough
○ HAL behavior makes assumptions not in the docs (e.g.,

uses its own heap allocator)

33

Fuzzing!

34

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

AFL

01010101
01010100
10101000

Hundreds of millions of executions with
real parallel AFL

New crashes in:
● STM’s ST-PLC Kit
● Atmel’s HTTP Server

example
● Atmel’s Contiki 6LowPAN

examples

Multi-layer Fuzzing!

35

QEMU

HTTP Server

RTOS LwIP

High Level Replacements

QEMU

HTTP Server

RTOS

Protocol
Stacks
(e.g., IP
Zigbee,

…)

Peripheral
Libraries
(sensors,

etc)High Level Replacements

Info Leak!

Heap Corruption!

Atmel HTTP Server firmware sample

Discovered CVEs

36

● CVE-2019-8359: Remote code execution via
buffer overflow in packet reassembly of Contiki
OS

● CVE-2019-9183: Remote Denial-of-Service via
Integer underflow in packet reassembly of
Contiki OS

CSAW ESC 2019 results

● Re-hosted ARM portion of all challenge sets
● Solved 18/19 challenges
● Verified 17/18 solutions w/ just the emulator
● Solved 3 challenges automatically using fuzzing
● Won first place!

37

Conclusion

HALucinator eliminates implementing 10,000s of
peripherals by using HALs

CPU Emulator
(QEMU)

Uart
Handler

Peripheral Models

IO Server

Ethernet
Handler...

github.com/embedded-sec/halucinator
github.com/ucsb-seclab/hal-fuzz

38

FW

https://github.com/embedded-sec/halucinator
https://github.com/ucsb-seclab/hal-fuzz

