PRO-ORAM: Practical Read-Only Oblivious RAM

Shruti Tople™ Yaoqi Jia Prateek Saxena
Microsoft Research Zilliga Research NUS
Abstract and user queries [25,27]. One line of research to stop such

Oblivious RAM is a well-known cryptographic primitive to
hide data access patterns. However, the best known ORAM
schemes require a logarithmic computation time in the general
case which makes it infeasible for use in real-world applica-
tions. In practice, hiding data access patterns should incur a
constant latency per access.

In this work, we present PRO-ORAM— an ORAM construc-
tion that achieves constant latencies per access in a large class
of applications. PRO-ORAM theoretically and empirically guar-
antees this for read-only data access patterns, wherein data is
written once followed by read requests. It makes hiding data
access pattern practical for read-only workloads, incurring
sub-second computational latencies per access for data blocks
of 256 KB, over large (gigabyte-sized) datasets. PRO-ORAM
supports throughputs of tens to hundreds of MBps for fetch-
ing blocks, which exceeds network bandwidth available to
average users today. Our experiments suggest that dominant
factor in latency offered by PRO-ORAM is the inherent network
throughput of transferring final blocks, rather than the com-
putational latencies of the protocol. At its heart, PRO-ORAM
utilizes key observations enabling an aggressively parallelized
algorithm of an ORAM construction and a permutation opera-
tion, as well as the use of trusted computing technique (SGX)
that not only provides safety but also offers the advantage of
lowering communication costs.

1 Introduction

Cloud storage services such as Dropbox [4], Google Drive [8],
Box [2] are becoming popular with millions of users upload-
ing Gigabytes of data everyday [6]. However, outsourcing data
to untrusted cloud storage poses several privacy and security
issues [5]. Although encryption of data on the cloud guar-
antees data confidentiality, it is not sufficient to protect user
privacy. Research has shown that access patterns on encrypted
data leak substantial private information such as secret keys

*Work done as a Ph.D student at National University of Singapore (NUS)

USENIX Association

inference is the use of Oblivious RAM (ORAM) [22]. ORAM
protocols continuously shuffle the encrypted data blocks to
avoid information leakage via the data access patterns.

Although a long line of research has improved the perfor-
mance overhead of ORAM solutions [20,32,37,40,42,43], it
is still considerably high for use in practice. Even the most
efficient ORAM solutions incur at least logarithmic latency
to hide read / write access patterns [20, 34,43], which is the
established lower bound for the general case. Ideally, hiding
access patterns should incur a constant access (communica-
tion) latency for the client, independent of the size of data
stored on the cloud server, and constant computation time per
access for the cloud server. To reduce the logarithmic access
time to a constant, we investigate the problem of designing
solutions to hide specific patterns instead of the general case.

We observe that a large number of cloud-based storage
services have a read-only model of data consumption. An
application can be categorized in this model when it offers
only read operations after the initial upload (write) of the
content to the cloud. For example, services hosting photos
(e.g., Flickr, Google Photos, Moments), music (e.g., [tunes,
Spotify), videos (e.g., NetFlix, Youtube) and PDF documents
(e.g., Dropbox, Google Drive) often exhibit such patterns. Re-
cently, Blass et al. have shown that designing an efficient
construction is possible for “write-only” patterns wherein the
read accesses are not observable to the adversary (e.g. in log-
ging or snapshot / sync cloud services) [18]. Inspired by such
specialized solutions, we ask whether it is possible to achieve
constant latency to hide read-only access patterns? As our
main contribution, we answer the above question affirmatively
for all cloud-based data hosting applications.

1.1 Approach

We propose PRO-ORAM— a practical ORAM construction for
cloud-based data hosting services offering constant latency for
read-only accesses. PRO-ORAM incurs a constant computation
and communication latency per access making it a promising

22nd International Symposium on Research in Attacks, Intrusions and Defenses 197

solution to use in a large class of real-world applications. The
key idea to achieve constant latencies is to decompose every
request to read a data block into two separate sub-tasks of
“access” and “shuffle” which can execute in parallel. How-
ever, simply parallelizing the access and shuffle operations is
not enough to achieve constant latencies. Previous work that
employs such parallelization for the general case would incur
a logarithmic slowdown even for read-only accesses due to
the inherent design of the underlying ORAM protocols [41].

In designing PRO-ORAM, we make two important observa-
tions that allow us to achieve constant latency. First, we ob-
serve that there exists a simple ORAM construction — the
square-root ORAM [22] — which can be coupled with a
secure permutation (or shuffle) [33] to achieve idealized effi-
ciency in the read-only model. A naive use of this ORAM con-
struction incurs a worst-case overhead of O(Nlog? N) to shuf-
fle the entire memory with N data blocks. The non-updatable
nature of read-only data allows us to parallelize the access
and shuffle operations on two separate copies of the data. This
results in a de-amortized O(+/N) latency per access.

Second, we design a secure method to distribute the work
done in each shuffle step among multiple computational units
without compromising the original security guarantees. Our
construction still performs O(v/N) work per access but it is
parallelized aggressively to execute in a constant time. As-
suming a sufficient number of cores, PRO-ORAM distributes
the total shuffling work among O(+/N) threads without leak-
ing any information. Although the total computation work
is the same as in the original shuffle algorithm, the latency
reduces to a constant for read streaks'. With these two ob-
servations, we eliminate the expensive O(N log’ N) operation
from stalling subsequent read access requests in PRO-ORAM.
Thus, we show that a basic ORAM construction is better for
hiding read data access patterns than a complex algorithm that
is optimized to handle the general case. Further, we present
a proof for the correctness and security of PRO-ORAM. Our
improved construction of the shuffle algorithm maybe of in-
dependent interest, as it is widely applicable beyond ORAM.

PRO-ORAM can be applied opportunistically for applications
that expect to perform long streaks of read accesses inter-
mixed with infrequent writes, incurring a non-constant cost
only on write requests. Therefore, PRO-ORAM extends obliv-
iousness to the case of arbitrary access patterns, providing
idealized efficiency for “read-heavy” access patterns (where
long streaks of reads dominate). To reduce trust on software,
PRO-ORAM assumes the presence of a trusted hardware (such
as Intel SGX [1], Sanctum [19]) or a trusted proxy as assumed
in previous work on ORAMs [16,28,41].

1.2 Results

We implement PRO-ORAM prototype in C/C++ using Intel SGX
Linux SDK v1.8 containing 4184 lines of code [9]. We eval-

! A read streak is a sequence of consecutive read operations.

198 22nd International Symposium on Research in Attacks, Intrusions and Defenses

uate PRO-ORAM using Intel SGX simulator for varying file
/ block sizes and total data sizes. Our experimental results
demonstrate that the latency per access observed by the user
is a constant of about 0.3 seconds to fetch a file (or block)
of size 256 KB. Our empirical results show that PRO-ORAM
is practical to use with a throughput ranging from 83 Mbps
for block size of 100 KB to 235 Mbps for block size of 10
MB. These results are achieved on a server with 40 cores.
In real cloud deployments, the cost of a deca-core server is
about a thousand dollars [10]; so, the one-time setup cost
of buying 40 cores worth of computation seems reasonable.
Thus, PRO-ORAM is ideal for sharing and accessing media files
(e.g., photos, videos, music) having sizes of few hundred KB
on today’s cloud platforms. PRO-ORAM’s throughput exceeds
the global average network bandwidth of 7 Mbps asserting
that the inherent network latency dominates the overall access
time rather than computation latencies in PRO-ORAM [7].

Contributions. We summarize our contributions below:

e Read-only ORAM. We present PRO-ORAM— a practical
and secure read-only ORAM design for cloud-based data
hosting services. PRO-ORAM’s design utilizes sufficient
computing units equipped with a trusted hardware prim-
itive.

e Security Proof. We provide a security proof to guarantee
that our PRO-ORAM construction provides obliviousness
in the read-only data model.

o [Efficiency Evaluation. PRO-ORAM is highly practical with
constant latency per access for fixed block sizes and
provides throughput ranging from 83 Mbps for a block
size of 100 KB to 235 Mbps for a block size of 10 MB.

2 Overview

Our main goal is to ensure two important characteristics: a)
hide read data access patterns on the cloud server; and b)
achieve constant time to access each block from the cloud.

2.1 Setting: Read-Only Cloud Services

Many applications offer data hosting services for images (e.g.,
Flickr, Google Photos, Moments), music (e.g., Itunes, Spotify),
videos (e.g., NetFlix, Youtube), and PDF documents (e.g.,
Dropbox, Google Drive). In these applications, either the
users (in the case of Dropbox) or the service providers (such
as NetFlix, Spotify) upload their data to the cloud server.
Note that the cloud provider can be different from the service
provider, for example, Netflix uses Amazon servers to host
their data. After the initial data is uploaded, users mainly
perform read requests to access the data from the cloud.

Let a data owner upload N files each having a file identifier
to the cloud. A file is divided into data blocks of size B

USENIX Association

A i‘
Untrusted Storage Compromised
Untrusted Softwa;e Stack
Server s
st Trusted
<IMIZHardware
(RN
A
Upload
Trusted P Read
Client 1][2][3][4 v
v >lJell7]8 |

Figure 1: Baseline setting: Cloud-provider with trusted hard-
ware and a compromised software stack. User uploads data
and makes read requests

and stored in an array on the untrusted storage at the server.
Each block is accessed using its corresponding address in
the storage array. To handle variable length files, one can
split large files into several data blocks and maintain a file
to blocks mapping table. However, for simplicity, we assume
each file maps to a single block and hence use the terms file
and block interchangeably in this paper. When a user requests
to fetch a file, the corresponding data block is read from the
storage array and is sent to the user. To ensure confidentiality
of the data, all the files are encrypted using a cryptographic
key. The data is decrypted only on the user machine using the
corresponding key.

2.2 Threat Model

Leakage of access patterns is a serious issue and has been
shown to leak critical private information in several settings
such as encrypted emails, databases and others [25,27]. In
our threat model, we consider that the adversary has complete
access to the encrypted storage on the cloud. An attacker can
exploit the vulnerabilities in the cloud software to gain access
to the cloud infrastructure including the storage system which
hosts encrypted content [5, 12]. Hence, we consider the cloud
provider to be untrusted with a compromised software stack.
The cloud provider can trace the requests or file access pat-
terns of all the users accessing the encrypted data. We restrict
each request to only read the data from the server. Essentially,
the adversary can observe the exact address accessed in the
storage array to serve each requested file. Along with access
to the storage system, the adversary can observe the network
traffic consisting of requested data blocks sent to each user.

Scope. Our main security goal is to guarantee obliviousness
i.e., hide read access patterns of users from the cloud provider.
Although we consider a compromised server, we do not de-
fend against a cloud provider refusing to relay the requests
to the user. Such denial of service attacks are not within the
scope of this work. We only focus on leakage through address
access patterns and do not block other channels of leakage

USENIX Association

such as timing or file length [44]. For example, an adversary
can observe the number of blocks fetched per request or the
frequency of requesting files to glean private information
about the user. However, our system can benefit from existing
solutions that thwart these channels using techniques such as
padding files with dummy blocks and allowing file requests
at fixed interval respectively [15].

2.3 Baseline: Trusted H/W in the Cloud

A well-known technique to hide data access patterns is us-
ing Oblivious RAM (ORAM) [22]. In ORAM protocols, the
encrypted data blocks are obliviously shuffled at random to
unlink subsequent accesses to the same data blocks. Standard
ORAM solutions guarantee obliviousness in a trusted client
and an untrusted server setting. It generally uses a private
memory called stash at the client-side to perform oblivious
shuffling and re-encryption of the encrypted data. In the best
case, this results in a logarithmic communication overhead be-
tween the client and the server [43]. To reduce this overhead,
previous work has proposed the use of a trusted hardware /
secure processor [16,28] in the cloud or a trusted proxy [41].
This allows us to establish the private stash and a small trusted
code base (TCB) to execute the ORAM protocol in the cloud.
That is, instead of the client, the trusted component on the
cloud shuffles the encrypted data, thereby reducing the com-
munication overhead to a constant. Further, the trusted compo-
nent can verify the integrity of the accessed data and protect
against a malicious cloud provider [41]. Figure | shows the
architecture for our baseline setting with a trusted hardware
and a compromised software stack on the cloud.

In this work, we consider the above cloud setup with a
trusted hardware as our baseline. Specifically, we assume the
cloud servers are equipped with Intel SGX-enabled CPUs.
SGX allows creating hardware-isolated memory region called
enclaves in presence of a compromised operating system.
With enclaves, we have a moderate size of private storage
inaccessible to the untrusted software on the cloud. Further,
we assume that the trusted hardware at the cloud provider
is untampered and all the guarantees of SGX are preserved.
We do not consider physical or side-channel attacks on the
trusted hardware [26,29,31,38,45]. Defending against these
attacks is out of scope but our system can leverage any security
enhancements available in the future implementation of SGX
CPUs [30]. In practice, SGX can be replaced with any other
trusted hardware primitive available in the next-generation
cloud servers.

2.4 Solution Overview

We present a construction called PRO-ORAM— a Practical
Read-Only ORAM scheme that achieves constant computa-
tion latencies for read streaks. PRO-ORAM is based on square-
root ORAM but can be extended by future work to other

22nd International Symposium on Research in Attacks, Intrusions and Defenses 199

ORAM approaches. It incurs default latency of the square-
root ORAM approach in case of write operations. Thus, one
can think of PRO-ORAM as a specialization for read streaks,
promising most efficiency in applications that are read-heavy,
but without losing compatibility in the general case.

Key Insight 1. The dominant cost in any ORAM scheme
comes from the shuffling step. In square-root ORAM, the
shuffling step is strictly performed after the access step [22].
This allows the shuffle step to consider any updates to the
blocks from write operations. Our main observation is that
for read-only applications, the algorithm need not wait for all
the accesses to finish before shuffling the entire dataset. The
key advantage in the read-only model is that the data is never
modified. Thus, we can decouple the shuffling step from the
logic to dispatch an access. This means the shuffle step can
execute in parallel without stalling the read accesses. We
give a proof for the correctness and security of PRO-ORAM in
Section 5. Although prior work has considered parallelizing
the access and shuffle step [41], our observations only apply to
the read-only setting, and our specific way achieves constant
latency which was not possible before.

Key Insight 2. Our second important observation allows us
to reach our goal of constant latency. We observe that the
Melbourne Shuffle algorithm performs O(v/N) computation
operations for each access where each operation can be exe-
cuted independently [33]. Hence, the O(+v/N) computations
can be performed in parallel (multi-threaded) without break-
ing any security or functionality of the original shuffle algo-
rithm. This final step provides us with a highly optimized
Melbourne Shuffle scheme which when coupled with square-
root ORAM incurs constant computation latency per access.
We further exploit the structure of the algorithm and propose
pipelining based optimizations to improve performance by
a constant factor (Section 4.4). We remark that our efficient
version of the shuffle algorithm maybe of independent interest
and useful in other applications [21,33].

Note that PRO-ORAM is compatible with data access pat-
terns that have writes after read streaks, since it can default to
running a synchronous (non-parallel) shuffle when a write is
encountered — just as in the original square-root ORAM. Of
course, the constant latency holds for read streaks and read-
heavy applications benefit from this specialized construction.

Comparison to Previous Work. The most closely related
work with respect to our trust assumptions and cloud infras-
tructure is ObliviStore [41]. This protocol has the fastest
performance among all other ORAM protocols when used
in the cloud setting [17]. Similar to PRO-ORAM, ObliviStore
parallelizes the access and shuffle operations using a trusted
proxy for cloud-based data storage services.

We investigate whether ObliviStore’s construction can at-
tain constant latency when adapted to the read-only model.
We highlight that although the high-level idea of paralleliz-
ing ORAM protocol is similar to ours, ObliviStore differs

200 22nd International Symposium on Research in Attacks, Intrusions and Defenses

from PRO-ORAM in various aspects. ObliviStore is designed
to hide arbitrary patterns in the general case and hence uses
a complex ORAM protocol that is optimized for bandwidth.
It uses a partition-based ORAM [42] where each partition is
itself a hierarchical ORAM [22]. This design takes O(log N)
time to access each block even if the protocol was restricted
to serve read-only requests. Hence, our observations in the
read-only model do not directly provide performance benefits
to ObliviStore’s construction. The key factor in PRO-ORAM is
that — “simple and specialized is better” — a simple ORAM
construction which is non-optimized for the general case, is
better suited for hiding read-only data access patterns.

3 Background

In designing an efficient PRO-ORAM scheme, we select square-
root ORAM as our underlying ORAM scheme as it allows
V/N accesses before the shuffling step. To obliviously shuf-
fle the data in parallel with the accesses, we select the Mel-
bourne shuffle scheme, that allows shuffling of data of O(N)
in O(v/N) steps. Further, we use Intel SGX-enabled CPU
present to create enclaves with O(y/N) private storage. We
provide a brief background on each of these building blocks.

3.1 Square-Root ORAM

We select the square-root ORAM scheme as the underlying
building block in PRO-ORAM. The square-root ORAM scheme,
as proposed by Goldreich and Ostrovsky [22], uses N + /N
permuted memory and a /N stash memory, both of them
are stored encrypted on the untrusted cloud storage. The per-
muted memory contains N real blocks and v/N dummy blocks
arranged according to a pseudo-random permutation .

To access a block, the protocol first scans the entire stash
deterministically for the block. If the requested block is found
in the stash then the protocol makes a fake access to a dummy
block in the permuted memory. Otherwise, it accesses the
real block from the permuted memory. The accessed block
is then written to the stash by re-encrypting the entire N
stash memory. The key trick here is that all accesses exhibit a
deterministic access order to the adversarial server, namely: a
deterministic scan of the stash elements, followed by an ac-
cess to a real or dummy block in permuted memory, followed
by a final re-encrypted write and update to the stash. After ev-
ery /N requests, the protocol updates the permuted memory
with the stash values and obliviously permutes (shuffles) it
randomly. This shuffling step incurs O(Nlog? N) overhead, re-
sulting in an amortized latency of O(v/Nlog®N) per request.

3.2 Intel SGX

Recently, Intel proposed support for a trusted hardware primi-
tive called Software Guard Extensions (SGX). With SGX, we
can create isolated memory regions called enclaves which are

USENIX Association

Shuffle Pass Il

dist_phasel

Shuffle Pass |

dist_phasel
dist_phase2 dist_phase2

cleanup_phase cleanup_phase

Figure 2: Overview of the Melbourne shuffle algorithm

inaccessible to the underlying operating system or any other
application. In PRO-ORAM, we use the following two important
features of Intel SGX. PRO-ORAM can be build using any other
trusted hardware that provides these specific features.

Enclaved Memory. SGX allows the creation of hardware-
isolated private memory region or enclaved memory. For SGX
CPUs, BIOS allocates a certain region for processor reserved
memory (PRM) at the time of boot up. The underlying CPU
reserves a part of this PRM to create enclaves. All the code
and data in the enclaved memory is inaccessible even to the
privileged software such as the OS. Thus, an adversary in our
threat model cannot access this protected memory. It guaran-
tees confidentiality of the private data within enclaves from
the adversary. At present, SGX supports 90 MB of enclaved
memory. This allows us to use a moderate amount of private
storage at the cloud provider. Further, we can create multiple
threads within an enclave [39].

Attestation. Along with enclaved execution, SGX-enabled
CPUs support remote attestation of the software executing
within an enclave. This security features enables a remote
party to verify the integrity of the software executing on an
untrusted platform such as the cloud. Further, it supports
local attestation between two enclaves executing on the same
machine. These enclaves can then establish a secure channel
and communicate with each other. One can perform such
attestation of an enclave program as described in the SGX
manual [1]. Thus, SGX-enabled CPUs at the cloud provider
allows executing trusted code base (TCB) with a small amount
of private storage at the cloud provider.

3.3 Melbourne Shuffle

Melbourne shuffle is a simple and efficient randomized obliv-
ious shuffle algorithm [33]. Using this algorithm, we can
obliviously shuffle N data blocks with O(N) external memory.
The data is stored at the server according to a pseudo-random
permutation. The encryption key and the permutation key 7
require constant storage and are stored in the private memory.
This algorithm uses private storage of the size O(v/N) and
incurs a communication and message complexity of O(v/N).
We use this algorithm in PRO-ORAM to shuffle the encrypted
data in parallel to accessing data blocks using enclave mem-
ory as the private storage.

USENIX Association

The algorithm works in two passes as shown in Figure 2. It
first shuffles the given input according to a random permuta-
tion Tenp and then shuffles the intermediate permutation to
the desired permutation of 7. Each pass of the shuffle algo-
rithm has three phases, two distribution and a cleanup phase.
The algorithm divides each N size array into buckets of size
V/N. Further, every v/N of these buckets are put together to
form a chunk. Thus, the N array is divided into total v/N
chunks. The first distribution phase (dist_phasel) simply
puts the data blocks into correct chunks based on the desired
permutation Teeyp in the first pass and 7 in the second pass.
The second distribution phase (dist_phase?) is responsible
for placing the data blocks into correct buckets within each
chunk. Finally, the clean up phase (cleanup_phase) arranges
the data blocks in each bucket and places them in their correct
positions based on the permutation key.

Choosing appropriate constants in the algorithm guarantees
oblivious shuffling of N data blocks for any chosen permu-
tation value 1 with a very high probability. The important
point is that each of these phases can be implemented to have
a “constant” depth and operate “independently” based only
on the pre-decided Tyenp and 7 values. This allows us to dis-
tribute the overall computation among multiple threads and
parallelize the algorithm. Although the total work done re-
mains the same, our design effectively reduces the overall
execution time to a constant. We refer readers to the original
paper for the detailed algorithm of each of these phases [33].

3.4 Encryption Algorithms

We use standard symmetric key and public key cryptographic
schemes as our building blocks in PRO-ORAM. We assume that
both these schemes guarantee IND-CPA security. The security
guarantees of PRO-ORAM depends on the assumption of using
secure underlying cryptographic schemes. We denote by SE =
(Gensg,Encsg,Decsg) a symmetric key encryption scheme
where Gengp algorithm generates a key which is used by
the Encgsg and Decgg algorithms to perform encryption and
decryption respectively. PKE = (Genpgg,Encpkg,Decpkr)
denotes a public key encryption scheme where the Genpgr
algorithm generates a public-private key pair (Pb, Pr). The
Encpgp algorithm takes the public key Pb as input and en-
crypts the data whereas the Decpkr takes the private key Pr
as input and decrypts the ciphertext.

4 PRO-ORAM Details

Today’s cloud platforms are equipped with a large amount
of storage and computing units. In PRO-ORAM, we leverage
these resources to achieve practical performance guarantees
for hiding access patterns to read-only data such as photos,
music, videos and so on.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 201

£ Compromised
4 : Untrusted Storage Software Stack
CLN/mV/L/l Shuffle Enclave O(IN)
UnStrusted /' $ 3 3 < threads
erver Active Arra
Access Enclave
________ Encrypted data________
Upload
Trusted P Read
Client 1][2||3]]4 A
v SiEigic

Figure 3: PRO-ORAM design overview with access and
shuffle enclaves operating in paralllel on active and next
array.

4.1 Design Overview

Similar to any cloud storage service, we have a setup phase
to establish user identities and upload initial data to the cloud.
We outline the setup phase for users that directly upload their
data to the cloud storage for e.g., Dropbox or Google Drive.
However, it can be modified to accommodate applications
such NetFlix, Spotify where the initial data is uploaded by
the service providers and not the users themselves.

Initialization. Each user registers with the cloud provider his
identity uid and a public key Pb,;4 mapped to their identity.
Let the data structure Pub_map store this mapping on the
server. The private key Pry;4 corresponding to the public
key is retained by the user. Each of these registered users
can upload their data to the server. To upload N data blocks
to the untrusted server, a data owner first encrypts the data
blocks with a symmetric key K and then sends them to the
server. The order of these blocks during the initial upload does
not affect the security guarantees of PRO-ORAM. On receiving
the encrypted data, the server instantiates an “access” and a
“shuffle” enclave. Next, the data owner attests the program
running within these enclaves and secretly provisions the
encryption key K to them on successful attestation.

System Overview. Figure 3 shows the overview of PRO-ORAM
design for the read-only model. PRO-ORAM executes two en-
claves called access and shuf f1e in parallel on the untrusted
server. Each access and shuffle enclave has O(v/N) pri-
vate storage and corresponds to a set of N data blocks. These
enclaves provide obliviousness guarantees to read from the N
data blocks uploaded on the server. The enclaves locally attest
each other and establish a secure channel between them [13].
They communicate over the secure channel to exchange se-
cret information such as encryption and permutation keys
(explained in detail in Section 4.2). The access enclave ex-
ecutes the square-root ORAM and the shuffle enclave per-
forms the Melbourne shuffle algorithm. However, PRO-ORAM
parallelizes the functioning of both these enclaves to achieve
constant latency per read request.

202 22nd International Symposium on Research in Attacks, Intrusions and Defenses

Algorithm 1: Pseudocode for each round of shuffle
enclave
Input: active_array: input data blocks ,
Kprev: previous key,
Kpew: new key,
7: desired permutation,
r_num: current round number
Output: next_array: output permuted blocks
Let Ty, T2, Otenp be temporary arrays;
Let T¢enp be a random permutation;
Let Ktenp be a encryption key;
if ¥ _num == 0 then
// Add dummy blocks
for j from N to N + /N do
d; < Encgg(Kprey, dummy);

BOW N -

active_array = active_array U d’;;
end
end
// Two pass call to shuffle algorithm
10 mel_shuffle(active_array, Ty, T2, Ttenp, Kprevs Ktenmps
Otemp);
11 mel_shuffle(O¢enp, T1, T2, T, Kiemp, Knew, next_array);

o w9 & W

PRO-ORAM algorithm consists of several rounds where each
round is made of total v/N requests from the users. In every
round, the access enclave strictly operates on the permuted
array of the uploaded data, which we refer as the act ive array.
On every request, the access enclave fetches the requested
data block either from the active array or the private stash
(similar to the square-root ORAM), re-encrypts the block and
sends it to the user. Simultaneously, the shuffle enclave
reads data blocks in a deterministic pattern from the active
array, performs the shuffle algorithm on them and outputs a
new permuted array, which we refer as the next array. The
shuffle enclave internally distributes the work using O(v/N)
separate threads. By the end of each round, i.e., after /N
requests, the active array is replaced with the next array.
Thus, for serving N data blocks, PRO-ORAM uses O(N) space
on the server to store the act ive and the next array.

Parallelizing the access and shuffle enclave enables
PRO-ORAM to create a new permuted array while serving re-
quests on the act ive array. This design is novel to PRO-ORAM
and differs from previous ways of parallelizing access and
shuffle operations [23,41]. The algorithms for both the access
and shuffle operations execute within SGX enclaves and are
oblivious to the server. We give a detailed proof in Section 5.

4.2 Shuffle Enclave

The shuffle enclave starts its execution one round before
the access enclave. We call this as the preparation round
or round 0. The shuffle enclave uses this round to per-

USENIX Association

Algorithm 2: Parallel pseudocode formel_shuffle
function
Input: I: input data blocks ,
Ty, T>: Temporary arrays,
Kprev: previous key,
Kpew: new key,
7: desired permutation,
Output: O: output permuted blocks
1 Let Ky, K5 be encryption keys;
// Place the blocks into correct chunks
2 dist_phasel(l, 7, Kprev, Ky, T1):: 0(\/]V) threads;
// Place the blocks in correct buckets
3 dist_phase2(Ty, &, Ky, Ko, T2):: O(v/N) threads;
// Arrange the blocks in each bucket
4 cleanup_phase(T, 7, Ky, Kyey):: 0(\/N) threads;

Active array Temp2 array

N blocks
I_‘_\

{11

Temp1 array
VN buckets

I—lﬁ
[11] [l

[(Peser [u —

(L [[T

Next array

Distribution
phase |

Figure 4: Multi-threaded Melbourne shuffle with constant
latency per access

mute the data which is uploaded by the user during the ini-
tialization phase. The enclave permutes N encrypted real
blocks (df, -+ ,dy) along with v/N dummy blocks and adds
them to the active array (as shown in lines 4-9 in Al-
gorithm 1). In each round, the enclave executes the Mel-
bourne shuffle algorithm with the active array as input
and the next array as output. It makes a two pass call to
the mel_shuffle function (lines 10 and 11). Internally,
the function performs the three phases of dist_phasel,
dist_phase2 and clean_up_phase (lines 2, 3, 4 in Algo-
rithm 2). Each phase performs VN steps, where each step
fetches v/N blocks of the input array, re-arranges and re-
encrypts them and writes to the output array.

In PRO-ORAM, we distribute this computation over O(W)
threads and thus parallelize the execution of each phase (as
shown in Figure 4). Carefully selecting the hidden constants
in O(v/N) allows us to securely distribute the work with-
out compromising on the security of the original algorithm
(see Lemma 5.1 in Section 5). Each thread re-encrypts and
re-arranges only a single block in every step of the phase
and writes them back in a deterministic manner. The oper-
ations on each block are independent of other blocks and

USENIX Association

Algorithm 3: Pseudocode for Read Algorithm

Input: d;: block identifier,
active_array: encrypted data blocks,
request: current request number
Output: d’: encrypted block

1 Lookup in the private stash;

2 if d; in stash then

// access dummy value

3 addr < (N +request);

d’ < active_array(addr) ;

// select value from stash

d’ < stash(d;);

S

else

addr + m(d;) ;

d’ < active_array(addr) ;
Write d’ to the stash;
end

return d’;

—
L — Y- T |

—

have a constant depth. The threads use the private mem-
ory within the enclave as a stash to obliviously shuffle the
blocks. However, each thread reads and writes to its corre-
sponding memory location during the shuffling step. We ex-
ploit this property and parallelize the computation on each of
these blocks. In PRO-ORAM, we implement this approach using
multi-threading with SGX enclaves. The shuffle enclave
starts O(y/N) threads in parallel to compute the re-encryption
and rearrangement of data blocks. This results in a constant
computation time per step. Thus, with parallelization imposed
in each step, the total computation time for shuffling N data
blocks is O(+/N). Hence, the amortized computation latency
per request over /N requests is reduced to O(1). PRO-ORAM
distributes the work in each shuffle step over O(v/N) threads.

After the shuffle is completed, the next_array is copied to
the active_array. The shuffle enclave sends the new keys
(Kyew) and permutation value () to the access enclave using
a secure channel established initially. The latter enclave uses
these keys to access the correct requested blocks from the
active_array in the next round.

4.3 Access Enclave

Unlike the shuffle enclave, the access enclave begins exe-
cution from round 1. Each round accepts /N read requests
from the users. Before the start of each round, the access
enclave gets the permutation 7 and encryption key K., from
the shuffle enclave. The active array corresponds to data
blocks shuffled and encrypted using the keys 7 and K,,,,. For
each request, the access enclave takes as input the block
identifier d; and the requesting user id uid. The enclave first
confirms that the requesting uid is a valid registered user and

22nd International Symposium on Research in Attacks, Intrusions and Defenses 203

Algorithm 4: Pseudocode for each round of access
enclave
Input: d;: request file identifier ,
Pub_map: User id and public key mapping table ,
uid: requesting user id,
Kjew: encryption key
T: permutation key
active_array: permuted array
Output: response_msg
for request from 1 to VN do
Pbyiq < Pub_map (uid);
d’ + Read (d;, active_array, request);
k’ + Gengg;
d” < Encsg(Decse(d’, Kpew), K*);
key_msg = Encpgg(Pbyiq, k");
response_msg = (d”, key_msg);

C-IENEN I L7 N SR

end

has a public key corresponding to the user. On confirmation,
the enclave invokes the read function in Algorithm 3.

The algorithm to read a block is same as the main logic of
square-root ORAM. Algorithm 3 provides the pseudocode for
reading a data block in PRO-ORAM. Note that, we do not store
the private stash on the untrusted cloud storage as proposed in
the original square-root ORAM approach. Instead, the stash is
maintained in the private memory within the access enclave.
The stash is indexed using a hash table and hence can be
looked up in a constant time. The read algorithm checks
if the requested data block is present in the private stash.
If present, the enclave accesses a dummy block from the
untrusted storage. Else, it gets the address for the requested
block d; using permutation 7 and fetches the real block from
the untrusted storage. The output of the read algorithm is an
encrypted block d’. The block is stored in the private stash.

After fetching the encrypted block d’, either from the pri-
vate stash or the active array, the access enclave decrypts
it using Koy, Algorithm 4 shows the pseudocode for this step.
It then selects a new key k" and encrypts the block. The output
message includes this re-encrypted block and the encryption
of k' under public key of the requesting user Pby;4. At the
end of each round i.e., after serving VN request, the access
enclave clears the private storage, permutation T and Kpey.
Note that unlike the original square-root ORAM, there is no
shuffling after /N requests. The permuted next array from
the shuffle enclave replaces the active array.

Performance Analysis. In PRO-ORAM, the access enclave
sends only the requested block to the user. This results in
a communication overhead of O(1) with respect to the re-
quested block size. Further, the access enclave computes i.e.,
re-encrypts only a single block for each request. Thus, the
computation on the server for the access enclave is O(1).
The shuffle enclave computes a permuted array in O(v/N)

204 22nd International Symposium on Research in Attacks, Intrusions and Defenses

steps. It fetches O(y/N) blocks for each request. Note that
the total computation performed at the server is still O(v/N)
for each request. However, in PRO-ORAM, we parallelize the
computation i.e, re-encryption on O(v/N) blocks in O(v/N)
threads. This reduces the computation time required for each
step to only a single block. Thus, the overall computation
latency for the shuffle enclave is O(1) per request.

4.4 Optimizations

We further propose optimizations to Melbourne shuffle algo-
rithm such that the performance can be improved by a constant
factor. Both these optimizations are possible by exploiting the
design structure of the algorithm.

Pipelining. We observe that in the existing algorithm (shown
in Algorithm 1) the three phases execute sequentially (see
Figure 4). Once the dist_phasel function generates the
templ array, it waits until the remaining phases complete. On
the other hand, the dist_phase2 and the cleanup_phase
functions have to wait for the previous phase to complete
before starting their execution. To eliminate this waiting time,
we separate the execution of these phases into different en-
claves and execute them in a pipeline. Thus, instead of waiting
for the entire shuffle algorithm to complete, dist_phasel
enclave generates a new temp array in every round to be
used as input by the dist_phase?2 enclave. Eventually, each
phase enclave outputs an array in every round to be used
by the next phase enclave, thereby pipelining the entire ex-
ecution. Note that this optimization is possible because the
input to the dist_phasel does not depend on any other phase.
dist_phasel enclave can continue to use the initial uploaded
data as input and generate different temp arrays based on a
new permutation value selected randomly in each round. This
allows us to continuously execute each of the phases in its
own enclave without becoming a bottleneck on any other
phase. Thus, the overall latency is reduced by a factor of 3.
This optimization increases the external storage requirement
by 2N to store the additional temp array.

Parallel Rounds using Multiple Enclaves. Another opti-
mization is to instantiate multiple (possibly O(v/N)) enclaves
and execute each of the O(v/N) rounds in parallel in these
enclaves. With this optimization, the latency for shuffling N
data blocks reduces from O(v/N) to O(1). This observation
is also discussed by Ohrimenko et al. [33]. However, the main
drawback in implementing this optimization is the blow-up
in the combined private storage. As each of O(v/N) enclaves
requires private memory of size O(v/N), the combined pri-
vate memory is linear in the total data size O(N). Such a huge
requirement of private storage may not be feasible even on
very high-end servers. In our work, to use this optimization
without requiring linear private storage, we propose using
only a constant number of enclaves, thereby improving the
performance by a constant factor.

USENIX Association

S Security Analysis

The observable access patterns in PRO-ORAM include accesses
made both from access and shuffle enclave. We first show
that the shuffle enclave executes an oblivious algorithm.

Lemma 5.1. Given N data blocks, Melbourne Shuffle is an
oblivious algorithm and generates a permuted array with very
high probability (1 —negl(N)) in O(v/N) steps, each exchang-
ing a message size of O(\/N) between a private memory of
O(v/N) and untrusted storage of size O(N).

This Lemma directly follows from Theorem 5.1 and 5.6
in [33]. In PRO-ORAM, the shuffle enclave executes the Mel-
bourne Shuffle algorithm using O(v/N) memory within an
enclave. Thus, from Lemma 5.1, we get the corollary below,

Corollary 5.1. The shuffle enclave generates a permuted
array of O(N) data blocks in O(\/N) steps and the access
patterns are oblivious to the server.

From Corollary 5.1, the access patterns of the shuffle en-
clave are oblivious and the output is indistinguishable from a
pseudo-random permutation (PRP) [33].

Further, the communication between access and shuffle
enclave happens over a secure channel. This preserves the
confidentiality of the permutation and encryption keys that
shuffle enclave sends to the access enclave at the end
of each round. Thus, no information is leaked due to the
interaction between these enclaves in PRO-ORAM. Now, to
prove that PRO-ORAM guarantees obliviousness for read access
patterns, we first show that a request to the access enclave is
indistinguishable from random for an adaptive adversary.

Let & = (Gen,Enc,Dec) be a IND-CPA secure encryp-
tion scheme where Gen generates a key which is used by
the Enc and Dec algorithms to perform encryption and de-
cryption respectively. Let A be the security parameter used in
&. Expg‘fd;?m refers to the instantiation of the experiment
with PRO-ORAM, & algorithms and adaptive adversary .<7,;.
This experiment captures our security definition for read-only
obliviousness. The experiment consists of:

o <, creates request r = (read,d;) and sends it to a chal-
lenger %

e The challenger selects b & {1,0}.

e If b =1, then ¥ outputs the address access patterns to
fetch d; i.e., A(d)) < access (d;) and encrypted output
O < d]

e If b = 0, then ¥ outputs a random address access
pattern i.e., A(dp) & {1,--,N++/N}and O & {0,1}*

e Adversary .7, has access to an oracle OFRO70RAM (hat
issues ¢ queries of type (read,d) both before and after

USENIX Association

executing the challenge query r. The oracle outputs ad-
dress access patterns to fetch d i.e., A(d) < access (d)

o 4 outputs b’ € {1,0}.

e The output of the experiment is 1 if b = b’ otherwise 0.
The adversary 7,4 wins if Exp?(A,b’) = 1.

Based on the experiment and its output, we define read-only
obliviousness as follows:

Definition 5.1. An algorithm satisfies read-only oblivious-
ness iff for all PPT adversaries 4, there exists a negligible
function negl such that:

Pr[Expg‘{ij;?AM(k, 1)=1] fPr[Expgfd;[gAM(X,O) =1]<negl
(L

Theorem 5.1. If shuffle enclave executes an oblivious al-
gorithm and & is a CPA-secure symmetric encryption then
PRO-ORAM guarantees read-only obliviousness as in Def. 5.1.

Proof. We present the proof in Appendix A

6 Implementation and Evaluation

Implementation. We have implemented our proposed
PRO-ORAM algorithm in C/C++ using Intel SGX Linux SDK
v1.8 [9]. For implementing symmetric and public key encryp-
tion schemes, we use AES with 128-bit keys and Elgamal
cryptosystem with 2048 bit key size respectively from the
OpenSSL library [39]. We use SHA256 as our hash function.
We implement the read logic of square-root ORAM and the
parallelized shuffle algorithm as explained in Section 4.2. We
use multi-threading with SGX enclaves to implement our par-
allel execution approach for each step. The prototype contains
total 4184 lines of code measured using CLOC tool [3].
Experimental Setup & Methodology. To evaluate
PRO-ORAM, we use SGX enclaves using the Intel SGX
simulator and perform experiments on a server running
Ubuntu 16.04 with Intel(R) Xeon(R) CPU E5-2640 v4
processors running at 2.4 GHz (40 cores) and 128 GB
of RAM. As PRO-ORAM’s design uses \/IV threads, our
experimental setup of 40 cores can execute a total of 80
threads using Intel’s support for Hyper-Threading, thereby
handling requests with block-size of 256 KB for around 1
GB of data. Operating with data of this size is not possible
with SGX in hardware mode available on laptops due to
their limited processing capacity (8 cores). However, for real
cloud deployments, the cost of a deca-core server is about
a thousand dollars [10]; so, the one-time cost of buying 40
cores worth of computation per GB seems reasonable. To
measure our results for gigabyte sized data, we chose to run
40 cores (80 threads) each with an SGX simulator.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 205

100

Amortized time for shuffling —%—

Client computation time —x—

Server computation time —&—
Total time for users

Amortized time for shuffling —%—

Client computation time ——

Server computation time —s—
Total time for users

Amortized time for shuffling —%—

Client computation time ——

Server computation time —s—
Total time for users

/’!

Time in seconds
Time in seconds

o

Time in seconds

001
— T

0.001

N

e

=
‘_—/‘

0.001

0.001

0.1 1 100

Storage size in GB
(a) Execution time is constant for fixed B =

256KB. 1GB.

1000

Block size in KB

(b) Execution increases with B for N.B =

10000 100

Block size in KB

(c) Execution time increases with B where
N = 4096.

Figure 5: Execution time for client, server, shuffle and total latency per access for a fixed block size (B), fixed total storage (N.B)

and a fixed no. of blocks (N)

1000

1000 1000
PRO-ORAM Throughput —»— PRO-ORAM Throughput —»— PRO-ORAM Throughput —»—
PathORAM + SGX Throughput —&— PathORAM + SGX Throughput —%— PathORAM + SGX Throughput —*—
Network bandwidth —s— Network bandwidth —&— Network bandwidth
& & /K/x—/“x @
2 2 2
5 5 5
s = /——x/ s X
< —x < <
£ 100 £ 100 £ 100
= = e = —
2 2 2
£ 2 2
5 5 5
S S S
2 2 2
= = =
= = =
P =
10 — 10 10
- — M

0.1 1 100

Total storage size in GB
(a) Throughput for varying N.B where B =

256KB. 1GB.

1000

Block size in KB

(b) Throughput for varying B where N.B =

10000 100 1000

Block size in KB

(c) Throughput for varying B where N =
4096.

Figure 6: Throughput of PRO-ORAM in Mbps for fixed block size (B), fixed total storage (N.B) and fixed number of blocks (V)

As a baseline for comparisons of communication and net-
work latencies, we take the bandwidth link of 7 Mbps as a
representative, which is the global average based on a recent
report from Akamai [7]. We perform our evaluation on vary-
ing data sizes such that the total data ranges from 20 MB to 2
GB with block sizes (B) varying from 4 KB to 10 MB. In our
experiments for parallelized shuffle, as shown in Algorithm 1,
we set temporary buffers as 21/N data blocks to ensure secu-
rity guarantees. To make full use of computation power, we
utilize all 40 cores for performing multi-threading for each
distribution phase and cleanup phase. All results are averaged
over 10 runs, reported on log-scale plots. We perform our
evaluation with the following goals:

To validate our theoretical claim of constant communi-
cation and computation latencies.

To confirm that execution time per access in PRO-ORAM
is dependent only on the block size.

To show that the final bottleneck is the network latency,
rather than computational latency.

To show the effective throughput of PRO-ORAM for differ-
ent blocks of practical data sizes.

206

22nd International Symposium on Research in Attacks, Intrusions and Defenses

6.1 Results: Latency

To measure the performance, we calculate the execution time
(latency) at the user, server (i.e., access enclave) and the
amortized shuffling time of the shuffle enclave for each
request. We point out that the client computational latency,
the amortized shuffle time, and the network latency are the
three factors that add up to the overall latency.

Impact on Latency with Increasing Storage. We measure
the execution time to access a block of fixed size B = 256KB,
while increasing the total storage size from 20 MB to 2GB.
The measurements are reported in Figure 5a. The dominant
cost, as expected, is from the server computation. The access
and shuffle enclave each incur a constant execution time of
around 0.016 seconds per access, irrespective of the data sizes.
The client computation time is constant at 0.002 seconds as
the user only decrypts a constant-size encrypted block. Over-
all, these results confirm our theoretical claims of constant
latency per request, and that the latency for large data size (in
GBs) is practical (under 1 sec for 256KB blocks).

Computational vs. network bottleneck. An important find-
ing from Figure 5a is that the latency per access observed
by the user is a constant at 0.3 seconds, within experimen-
tal error, irrespective of the total data size. Even though the
server computation cost is high, the final latency has primary

USENIX Association

"Amortized time for shuffling ——
Enc/Dec time —»—
Ecall/Ocall time —&—

0.1

Time is seconds

0.01

B/E-\\—E—E—E—E"‘E

0.001
0.1 1

Total storage size in GB

Figure 7: Overhead breakdown for shuffle step for fixed block-
size B =256

bottleneck as the network, not PRO-ORAM’s computation. In
Figure 5a, the latency of shuffle per requested block is lesser
than the network latency of sending a block from the server
to the client on a 7Mbps link. This finding suggests that even
for 256 KB block sizes, the network latency dominates the
overall latency observed by the user, and is likely to be the
bottleneck in an end application (e.g. streaming media) rather
than the cost of all the operations in PRO-ORAY, including
shuffling. This result suggests that PRO-ORAM is optimized
enough to compete with network latency, making it practical
to use in real applications.

Latency increase with block size. We perform three sets
of experiments keeping (a) block size constant (B), (b) total
storage size constant (N.B), and (c) number of blocks constant
(N), while varying the remaining two parameters respectively
in each experiment. The results in Figure 5b and 5c show
evidence that the computational latencies of server and client-
side cost in PRO-ORAM depend primarily on the block size
parameter, and is unaffected by the number of blocks or size
of data. This is mainly because the cost of encryption and
decryption per block increases these latencies.

6.2 Results: Throughput

We calculate throughput as the number of bits that PRO-ORAM
can serve per second. PRO-ORAM can serve maximum /N
blocks in the time the shuffle enclave completes permuta-
tion of N data blocks. Thus, to calculate throughput we use

V/N.B

total_shuffling time”

the following formula, Throughput =

Throughput increase with block size. We find that through-
put of PRO-ORAM increases with block size, ranging from 83
Mbps (for 100KB block size) to 235 Mbps (for 10MB block
size), as shown in Figure 6b. Our experiments show that
for data objects of the size larger than few hundred KB, the
throughput is almost 10x larger than the global average net-
work bandwidth (7Mbps). Such data object sizes are common
for media content (e.g photos, videos, music) and cache web

USENIX Association

page content [11]. Figure 6b and Figure 6¢ show the through-
put measurements for increasing block sizes, keeping the total
data size and the number of blocks fixed to 1 GB and 4096
respectively. We observe that the throughput increases with
the blocksize. If we keep the block size fixed, the throughput
is constant at almost 125 Mbps with the increase in the total
data size, as seen in Figure 6a. Our evaluation shows that
PRO-ORAM’s throughput exceeds reference throughput of 7
Mbps, re-confirming that network latency is likely to domi-
nate latencies than computational overheads of PRO-ORAM.

Comparison to Tree-based ORAM. We compare the
throughput of PRO-ORAM with the access overhead of using
the simplest and efficient PathORAM scheme with SGX [43].
The client side operations in the original PathORAM scheme
are executed within SGX. The throughput for Pat hORAM+SGX
scheme decreases and almost reaches the network latency
limit (7 Mbps) with increase in the number of blocks for fixed
blocksize of 256 KB. Thus, the server computation overhead
of O(log N) per access of PathORAM protocol becomes a bot-
tleneck for reasonably large data sizes (e.g., 2 GB as shown
in Figure 6a). Figure 6b shows that PathORAM’ s throughput
increases from 7 to 15 Mbps with a decrease in blocks.

6.3 Performance Breakdown

To understand the breakdown of the source of latency for
the shuffle step, we calculate the time to perform the cryp-
tographic operations and ECALLs/OCALLSs to copy data in
and out of memory. Such a breakdown allows us to better
understand the time consuming operations in our system. We
fix the block size to B = 256 KB and vary the total data size.
Figure 7 shows the amortized shuffling time, time to perform
encryption and decryption operations and the time to invoke
ECALLs/OCALLs per access in PRO-ORAM. We observe that
the dominant cost comes from the cryptographic operations
0.014 seconds out of the 0.016 seconds. Enclaves by design
cannot directly invoke system calls to access untrusted mem-
ory. Each call to the outside enclave performed using OCALL.
Similarly, a function within an enclave is invoked using an
ECALL. Thus, invocation of ECALLs/OCALLs is necessary to
perform multi-threading and for copying data in and out of
memory. To fetch v/N data blocks in parallel for each access,
we use asynchronous ECALLs/OCALLs in PRO-ORAM similar
to that proposed in a recent work [14]. These operations re-
quire 0.002 seconds (average) for a block of size 256 KB.

7 Related Work

First, we discuss ORAM constructions that guarantee constant
latency per access for write-only patterns. Next, we summa-
rize related work with similarities in our threat model.

Write-Only ORAMs. Recently, it is shown that constant
computation and communication latency can be achieved

22nd International Symposium on Research in Attacks, Intrusions and Defenses 207

for applications with restricted patterns. Blass et. al show
that some applications require hiding only write-patterns and
hence proposed Write-Only ORAM in the context of hid-
den volumes [18]. Their work achieves constant latencies
per write access to the data untrusted storage. Roche et al.
propose a stash-free version of this Write-Only ORAM [35].
Further, Flat ORAM improves over this solution using secure
processors to perform efficient memory management [24].
ObliviSync uses the write-only ORAM idea to support shar-
ing of files on a Dropbox-like storage server that support
auto-sync mechanisms [15]. These works that guarantee con-
stant overhead for hiding write-only access patterns inspire
our work. PRO-ORAM focuses on applications that exhibit read-
only patterns and achieves constant latencies for them.

Improvements to square-root ORAM. Although square-
root ORAM is known to have very high i.e., O(Nlog?N)
worst-case overhead, Goodrich et. al provide a construc-
tion that reduces the worst-case overhead to O(v/N log? N).
Instead of shuffling the entire memory at once taking
O(Nlog®N) computation time, their solution de-amortizes
the computation over y/N batches each taking O(v/Nlog®N)
time after every access step. This technique is similar to the
distribution of shuffle steps in PRO-ORAM. However, our obser-
vations for the read-only setting allows us to execute the ac-
cess and shuffle steps in parallel which is not possible in their
solution. Ohrimenko et. al show that use of Melbourne Shuffle
combined with square-root ORAM can reduce the worst-case
computation time to O(y/N) with the use of O(v/N) private
memory. In PRO-ORAM, we show that it is further possible to re-
duce the latency to a constant for applications with read-heavy
access patterns. Further, Zahur et al. have shown that although
square-root ORAM has asymptotically worse results than the
best known schemes, it can be modified to achieve efficient
performance in multi-party computation as compared to the
general optimized algorithms [46]. In PRO-ORAM, we have
a similar observation where square-root ORAM approach
performs better in the read-only setting.

Solutions using Trusted Proxy. ObliviStore [41] is the first
work that uses a trusted proxy to mediate asynchronous ac-
cesses to shared data blocks among multiple users, which
was later improved by TaoStore [36]. A major differentiating
point is that both ObliviStore [41] and TaoStore [36] assume
mutually trusting users that do not collude with the server,
thus operating in a weaker threat model than ours. The key
contribution in these works is towards improving efficiency
using a single ORAM over having separate ORAMs for each
user. ObliviStore improves the efficiency of the SSS ORAM
protocol [42] by making ORAM operations asynchronous and
parallel. Similar to this work, their key idea is to avoid block-
ing access requests on shuffle operations, thereby matching
the rate of access and shuffle operations using a trusted proxy.
However, their underlying approach to achieve such paral-
lelization largely differs from this work. Our observations

208 22nd International Symposium on Research in Attacks, Intrusions and Defenses

in designing PRO-ORAM are novel with respect to a read-only
data setting that allows us to reduce the computation latency
to a constant whereas ObliviStore has O(logN) computation
latency per (read/write) access. TaoStore [36] is a more recent
work that improves over ObliviStore using a trusted proxy
and Path-ORAM [43] as its building block. Similar to [41],
this approach has O(log N) computation latency per access.

Solutions using Trusted Hardware. An alternate line of
work has shown the use of trusted hardware or secure pro-
cessors with the goal to improve performance, as opposed to
our use to strengthen existing ORAM protocols in a stronger
threat model. Shroud uses trusted hardware to guarantee pri-
vate access to large-scale data in data center [28]. ObliviAd
is another system that makes use of trusted hardware to obliv-
iously access advertisements from the server [16]. However,
both these solutions do not optimize for read access patterns.

8 Conclusion

In this work, we provide a constant communication and com-
putation latency solution to hide read data access patterns
in a large class of cloud applications. PRO-ORAM guarantees
a practical performance of 0.3 seconds to access a block of
256 KB leveraging sufficient storage and compute units with
trusted hardware available on today’s cloud platform. Our
work demonstrates that simple ORAM solutions are better
suited to hide read data access patterns than complex algo-
rithms that are optimized for arbitrary read/write accesses.

Acknowledgments

We thank the anonymous reviewers for their feedback. This
research is supported in part by the National Research Foun-
dation, Prime Ministers Office, Singapore under its National
Cybersecurity R&D Program (TSUNAM I project, Award No.
NRF2014NCR-NCROO01-21).

References

[1] Software Guard Extensions Programming Reference.
software.intel.com/sites/default/files/
329298-001.pdf, Sept 2013.

[2] Box. https://www.box.com/home, Accessed: 2017.

[3] Cloc. http://cloc.sourceforge.net/, Accessed:
2017.

[4] Dropbox.
2017.

https://www.dropbox.com/, Accessed:

[5] Dropbox hacked. https://www.
theguardian.com/technology/2016/aug/31/
dropbox—-hack-passwords-68m-data-breach,
Accessed: 2017.

USENIX Association

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

USENIX Association

Dropbox usage statistics. http://
expandedramblings.com/index.php/
dropbox-statistics/, Accessed: 2017.
Global average connection speed increases
26 percent year over year, according to aka-

mai’s ’fourth quarter, 2016 state of the in-
ternet report’. https://www.akamai.com/
us/en/about/news/press/2017-press/
akamai-releases-fourth-quarter-2016-/
state-of-the-internet-connectivity-report.
jsp, Accessed: 2017.

Google drive. https://drive.google.com/drive/,
Accessed: 2017.

Intel sgx linux sdk. https://github.com/0lorg/
linux-sgx, Accessed: 2017.

Intel xeon processor pricing.
//ark.intel.com/products/92984/

https:

Intel-Xeon-Processor-E5-2640-v4-25M-Cache-2_

40-GHz, Accessed: 2017.

Web content statistics. http://httparchive.org/
trends.php, Accessed: 2017.

World’s biggest data breaches. http://www.
informationisbeautiful.net/visualizations/
worlds-biggest-data-breaches-hacks/
Internet_and_cloud_services_-_statistics_
on_the_use_by_individuals, Accessed: 2017.

Ittai Anati, Shay Gueron, Simon Johnson, and Vincent
Scarlata. Innovative technology for cpu based attestation
and sealing. In Proceedings of the 2nd international
workshop on hardware and architectural support for
security and privacy, volume 13, 2013.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Daniel O’Keeffe, Mark L Still-
well, et al. Scone: Secure linux containers with intel sgx.
In 12th USENIX Symp. Operating Systems Design and
Implementation, 2016.

Adam J Aviv, Seung Geol Choi, Travis Mayberry, and
Daniel S Roche. Oblivisync: Practical oblivious file
backup and synchronization. In NDSS, 2017.

Michael Backes, Aniket Kate, Matteo Maffei, and Kim
Pecina. Obliviad: Provably secure and practical online
behavioral advertising. In Security and Privacy (SP),
2012 IEEE Symposium on, pages 257-271. IEEE, 2012.

Vincent Bindschaedler, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, and Yan Huang. Practicing obliv-
ious access on cloud storage: the gap, the fallacy, and

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

22nd International Symposium on Research in Attacks, Intrusions and Defenses

the new way forward. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pages 837-849. ACM, 2015.

Erik-Oliver Blass, Travis Mayberry, Guevara Noubir,
and Kaan Onarlioglu. Toward robust hidden volumes
using write-only oblivious ram. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 203-214. ACM, 2014.

Victor Costan, Ilia A Lebedev, and Srinivas Devadas.
Sanctum: Minimal hardware extensions for strong soft-
ware isolation. In USENIX Security Symposium, pages
857-874, 2016.

Srinivas Devadas, Marten van Dijk, Christopher W
Fletcher, Ling Ren, Elaine Shi, and Daniel Wichs. Onion
oram: A constant bandwidth blowup oblivious ram. In
Theory of Cryptography Conference, pages 145-174.
Springer, 2016.

Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang,
Beng Chin Ooi, and Chunwang Zhang. M2r: Enabling
stronger privacy in mapreduce computation. In USENIX
Security, volume 15, pages 447-462, 2015.

Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. J. ACM, 1996.

Michael T Goodrich, Michael Mitzenmacher, Olga Ohri-
menko, and Roberto Tamassia. Oblivious ram simula-
tion with efficient worst-case access overhead. In Pro-
ceedings of the 3rd ACM workshop on Cloud computing
security workshop, pages 95-100. ACM, 2011.

Syed Kamran Haider and Marten van Dijk. Flat oram:
A simplified write-only oblivious ram construction for
secure processor architectures. arXiv preprint, 2016.

Mohammad Saiful Islam, Mehmet Kuzu, and Murat
Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In
NDSS, volume 20, page 12, 2012.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside sgx enclaves with branch
shadowing. arXiv preprint arXiv:1611.06952, 2016.

Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-an
Tan. Search pattern leakage in searchable encryption:
Attacks and new construction. Information Sciences,
265:176-188, 2014.

Jacob R Lorch, Bryan Parno, James W Mickens, Mari-
ana Raykova, and Joshua Schiffman. Shroud: ensuring
private access to large-scale data in the data center. In
FAST, volume 2013, pages 199-213, 2013.

209

[29] Sinisa Matetic, Kari Kostiainen, Aritra Dhar, David Som-
mer, Mansoor Ahmed, Arthur Gervais, Ari Juels, and
Srdjan Capkun. Rote: Rollback protection for trusted
execution. https://eprint.iacr.orqg/2017/
048. pdrf.

[30] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror
Caspi, Simon Johnson, Rebekah Leslie-Hurd, and Car-
los Rozas. Intel(®) software guard extensions (intel®
sgx) support for dynamic memory management inside
an enclave. In Proceedings of the Hardware and Archi-
tectural Support for Security and Privacy 2016, page 10.
ACM, 2016.

[31] Ming-Wei-Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-sgx: Eradicating controlled-channel attacks
against enclave programs. In NDSS 2017.

[32] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass.
Constant communication oram with small blocksize. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 862—
873. ACM, 2015.

[33] Olga Ohrimenko, Michael T Goodrich, Roberto Tamas-
sia, and Eli Upfal. The melbourne shuffle: Improving
oblivious storage in the cloud. In International Col-
loquium on Automata, Languages, and Programming,
pages 556-567. Springer, 2014.

[34] Ling Ren, Christopher W Fletcher, Albert Kwon, Emil
Stefanov, Elaine Shi, Marten Van Dijk, and Srinivas
Devadas. Constants count: Practical improvements to
oblivious ram. In USENIX Security Symposium, pages
415-430, 2015.

[35] Daniel S Roche, Adam Aviv, Seung Geol Choi, and
Travis Mayberry. Deterministic, stash-free write-only
oram. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
507-521. ACM, 2017.

[36] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia
Lin, and Stefano Tessaro. Taostore: Overcoming asyn-
chronicity in oblivious data storage. In Security and
Privacy (SP), 2016 IEEE Symposium on, pages 198-217.
IEEE, 2016.

[37] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and
Mingfei Li. Oblivious ram with o ((logn) 3) worst-case
cost. In Advances in Cryptology—-ASIACRYPT 2011.
2011.

[38] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan,
and Prateek Saxena. Preventing page faults from telling
your secrets. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security,
pages 317-328. ACM, 2016.

210 22nd International Symposium on Research in Attacks, Intrusions and Defenses

[39] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek
Saxena. Panoply: Low-tcb linux applications with sgx
enclaves. In 24th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2017, San Diego, Cali-
fornia, USA, February 26-March 1, 2017, 2017.

[40] Emil Stefanov and Elaine Shi. Multi-cloud oblivious
storage. In Proceedings of the 2013 ACM SIGSAC con-
ference on Computer & communications security, pages
247-258. ACM, 2013.

[41] Emil Stefanov and Elaine Shi. Oblivistore: High perfor-
mance oblivious cloud storage. In IEEE S&P, 2013.

[42] Emil Stefanov, Elaine Shi, and Dawn Song. Towards
practical oblivious ram. In NDSS’12, 2011.

[43] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path oram: an extremely simple oblivious ram protocol.
In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 299-310.
ACM, 2013.

[44] Shruti Tople and Prateek Saxena. On the trade-offs in
oblivious execution techniques. In International Con-
ference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017.

[45] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 640-656. IEEE,
2015.

[46] Samee Zahur, Xiao Wang, Mariana Raykova, Adria
Gascoén, Jack Doerner, David Evans, and Jonathan Katz.
Revisiting square-root oram: efficient random access in
multi-party computation. In Security and Privacy (SP),
2016 IEEE Symposium on, pages 218-234. IEEE, 2016.

A Security Analysis

Theorem A.l. If shuffle enclave executes an oblivious al-
gorithm and & is a CPA-secure symmetric encryption scheme
then PRO-ORAM guarantees read-only obliviousness as in Def-
inition 5.1.

Proof. From Lemma 5.1, the access pattern of shuffle
enclave are data-oblivious. To prove the theorem, we have to
show that access pattern from access enclave are indistin-
guishable to the adversary. We proceed with a succession of
games as follows:

e Game, is exactly the same as Expf%od;“;‘m(l,])

e Game; replaces the O{ in Gameo with a random string
while other parameters are the same

USENIX Association

e Game, is same as Game; except that A(d;) is selected
using a pseudorandom permutation m, : {0, 1} +N)

{0,1}W+VN) where s < {0,1}* and not from the
access enclave.

e Gamej; is same as Game, except that A(d;) is selected at
random from the entire data array.

From above description, we have

Pr(Game, = 1] = PrExpy," SM(A, 1) =1], (2

For Gamej, a distinguisher D reduces the security of & to
IND-CPA security such that:

Pr[Gameg = 1] — Pr[Game; = 1] < Advg\lu")éicm(7u)7 3)

For Game,, according to Corollary 5.1, the advantage of a
distinguisher Dy is such that:
Corollary 5.1
PriGame; = 1] — Pr[Game, = 1] < AdvDZf:hfgl; , @
This is because the access enclave uses the output of
shuffle enclave to fetch the data for each request. The
access enclave runs the square-root ORAM algorithm which
selects a random address in each request. Hence, the advan-
tage of the distinguisher D, depends on the correctness of the
permuted output array from shuffle enclave.

USENIX Association

For Gameg, a distinguisher D3 reduces the security of 7 to
PRP security such that:

Pr|Game, = 1] — Pr[Games = 1] < AdVERE (L), (5)

D3,m
Also, we have,

PriGamez = 1] = Pr[Expi?fd;?AM(k,O) =1], (6)
From 2, 3,4,5, 6 we get:

Pr[Expi?:d:?AM(k, 1)=1] —Pr[EXpi?fd;?AM(k,O) =1]<
(7

AdV () + Advp, ety +AdVERE (V)
The Advlc)z,r‘s’ffffrfl’;'] cannot be greater than negl as it
would break the security of the underlying Melbourne Shuffle
algorithm stated in Lemma 5.1. With this, we prove that
the advantage of an adaptive adversary in distinguishing
the access patterns induced by PRO-ORAM from random
is negligible. Therefore, PRO-ORAM guarantees read-only
obliviousness.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 211

