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Abstract
Within the realm of program analysis, dynamic analysis

approaches are at the foundation of many frameworks. In
the context of Android security, the vast majority of exist-
ing frameworks perform API-level tracing (i.e., they aim at
obtaining the trace of the APIs invoked by a given app), and
use this information to determine whether the app under anal-
ysis contains unwanted or malicious functionality. However,
previous works have shown that these API-level tracing and
instrumentation mechanisms can be easily evaded, regard-
less of their specific implementation details. An alternative
to API-level tracing is syscall-level tracing. This approach
works at a lower level and it extracts the sequence of syscalls
invoked by a given app: the advantage is that this approach
can be implemented in kernel space and, thus, it cannot be
evaded and it can be very challenging, if not outright impos-
sible, to be detected by code running in user space. How-
ever, while this approach offers more security guarantees, it
is affected by a significant limitation: most of the seman-
tics of the app’s behavior is lost. These syscalls are in fact
low-level and do not carry as much information as the highly
semantics-rich Android APIs. In other words, there is a sig-
nificant semantic gap.

This paper presents the first exploration of how much it
would take to bridge this gap and how challenging this en-
deavor would be. We propose an approach, an analysis
framework, and a pipeline to gain insights into the peculiar-
ities of this problem and we show that it is much more chal-
lenging than what previously thought.

1 Introduction

In the realm of malware analysis for Android apps, dynamic
analysis approaches and instrumentation techniques are at
the foundation of virtually all existing analysis frameworks,
developed by both academia and industry [2, 6, 10, 14, 17–
19, 21, 31, 34]. While dynamic analysis approaches can take
many forms, they all share one key aspect: given an applica-
tion, the goal is to “capture” all actions it performs during its

execution. To this end, these apps are run in an instrumented
environment, which records a trace of the app’s behavior.

API-level tracing. In Android, most of these approaches
aim at producing a list of high-level API calls performed
by the app under analysis. These high-level API calls are
Java methods exposed by the Android framework, a vast ex-
tension of the Java SDK. These methods include standard
Java methods (e.g., string operations, networking primitives),
as well as a large corpus of Android-specific methods, such
as APIs dealing with building Android user interfaces, inter-
app interactions, reading values from device’s sensors, send-
ing and receiving text messages. Having access to an accu-
rate trace of invoked APIs is of great importance. In fact,
these APIs capture the high-level, semantic-rich behavior of
an app and allow both human analysts and automated ap-
proaches to detect and characterize both malicious and un-
safe actions the app could perform.

These approaches work by heavily instrumenting the app
itself or the execution environment (e.g., by function hook-
ing). Unfortunately, to date, all current API-level instrumen-
tations can be easily detected and bypassed [8]. The key
problem is that these instrumentation mechanisms all intro-
duce visible instrumentation artifacts, which co-exist within
the same security boundary as the app itself. Acquiring
these high-level traces require heavy instrumentation, which
is hard to implement efficiently and it is trivially detectable
by malware, which could decide not to show any malice
when instrumentation is detected [33]. Android apps can
also contain components written in native code, whose be-
havior cannot be captured if the app’s instrumentation is only
performed at the Java API level. More importantly, previous
works have shown that the mere presence of native code can
make the results of the analysis of the Java layer not only de-
tectable and evadable, but even misleading [8]. In fact, since
native code components and Java code run within the same
security boundary, native components could surreptitiously
modify the intended functionality of Java components mak-
ing high-level recordings of an app’s behavior completely un-
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reliable. These issues severely affect the reliability of acquir-
ing high-level API-based traces.

Syscall-level tracing. A different approach consists in cap-
turing the actions performed by an app by recording its low-
level interactions with the operating system, specifically, by
recording the system calls (syscalls) it invokes [11,30]. This
approach is not affected by the limitations mentioned above.
In fact, regardless of the language used to implement the dif-
ferent app’s components, to interact with the operating sys-
tem, the app needs to eventually invoke a system call. More-
over, this kind of instrumentation is harder to detect, since it
can be easily implemented entirely by code running in kernel
mode, not visible to the analyzed malicious app.

Bridging the semantic gap. Given the security guarantees
that approaches based on syscall-level analysis would get us,
it is clear that, ideally, this approach should be preferred. In
practice, however, the information they extract is too low
level, making their results difficult to be interpreted. The
conceptual problem is that, in the general case, it is chal-
lenging to recover the high-level semantics of an app’s be-
havior solely starting from the list of recorded syscalls. For
instance, even a simple operation, such as instantiating an
SSL connection to a remote server, which an Android app
can perform by invoking a single high-level API, generates a
complex sequence of multiple syscalls, most of them seem-
ingly unrelated with the triggering of the high-level function-
ality. In this specific case, for instance, the complexity is
due to the fact that the analyzed app ultimately has to invoke
a series of syscalls belonging to different technical areas to
complete this task, including inter-process communication
with the system service that provides the trusted CA certifi-
cates, random-number generation for creating the nonce used
to setup the connection, and network-related syscalls to per-
form the handshake with the remote server. While there are
few works that reconstruct parts of this behavior (e.g., Cop-
perDroid [30] focuses on reconstructing the semantics of spe-
cific activities, including Binder-related operations), it is not
clear whether reconstructing this semantics gap is in fact pos-
sible or practical in the general case. In fact, even though it
may be practical to scan for specific patterns in a sequence
of syscalls, traces often contain thousands of syscalls that do
not seem to relate to any common pattern.

Goal of this work. To date, we are not aware of any work
that actually investigates the feasibility of reconstructing the
high-level semantics from generic low-level syscall traces.
The goal of this work is to fill this gap: this paper presents
the first systematic exploration of the challenges and feasi-
bility of bridging the gap from trustworthy system calls to
semantics-rich, but difficult-to-obtained high-level APIs.

To this end, we have built a new analysis framework aim-
ing at exploring the complexity of this research problem with
a data-driven approach. The first key challenge is the scale:
by dynamically analyzing 750 Android apps, we have col-

lected data on over 40 million API invocations, which in turn
generated over 13 milion syscalls invocation (interestingly,
many API invocations do not invoke any syscall). We then
process this low-level data to build a knowledge base of so-
called “models,” which aim at summarizing the big amount
of raw data that we have collected in the previous step, to
make it more viable for subsequent analysis. The complex-
ity of the Android framework, the high number of exposed
high-level APIs, the API’s non-deterministic behavior, and
the overlap generated by these APIs, make the analysis of
this dataset far from trivial. To the best of our knowledge,
this paper performs the first data-driven exploration of this
problem space, and it provides evidence that this is a very
difficult problem, significantly more challenging than what
previously thought.

In summary, this work brings the following contributions:

• We systematically explored the research problem of se-
mantically lifting a generic trace of performed system
calls to a trace of invoked high-level APIs, with a focus
on Android.

• We built a large-scale, annotated dataset that maps high-
level APIs to the various “representations” of low-level
syscall traces, and we provide an in-depth discussion of
patterns and other interesting aspects.

• We develop and test different approaches attempting to
perform the aforementioned semantic lift problem, and
we show that this is a much more difficult problem than
what previously thought.

• We provide recommendations and lessons learned that
future work needs to consider when tackling this prob-
lem.

In the spirit of open research, we make our instrumenta-
tion framework, the collected dataset, and the analysis results
publicly available at: https://github.com/eurecom-s3/
syscall2api .

2 Background on Dynamic Analysis

Android framework API. Programming languages are com-
monly divided in two categories, depending on whether they
provide a high- or a low-level abstraction over the computing
system. High-level programming languages provide to the
programmer a closer experience to a natural language and
they are designed to perform complex tasks in few lines of
code. On the other hand, low-level programming languages
allow the programmer to interact with those aspects of com-
putation that high-level programming takes for granted.
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High-level programming languages expose to program-
mers a set of functionalities, called Application Program-
ming Interface (API). In Android, these APIs are imple-
mented in the so-called Android Framework. Some of these
APIs are not implemented solely in Java, since their behav-
ior exceeds the expressiveness of this language. They rely
instead on the Java Native Interface (JNI), which provides a
bridge toward parts of the framework written in C or C++.
This is the case for some of the most complex and, arguably,
the most security relevant APIs, like those that handle the per-
sonal data of the user, interact with the broadband, access the
Internet, etc. Indeed, those functionalities require the inter-
vention of the operating system to be accomplished. Being
based on the Linux kernel, in the Android operating system a
user space application can take advantage of the services ex-
posed by the kernel by means of system calls (syscall from
now on).

Even though it is true that any security sensitive operation
is performed by means of syscalls, the contrary is not true. In
fact, a vast number of syscalls are actually invoked to imple-
ment behaviors that are not strictly security-sensitive, such as
user interaction, memory management, and thread synchro-
nization.

It is important to note that not only the framework, but
also apps can contain pieces of code written in low-level lan-
guages. Moreover, both the high- and low-level code run in
the same process and with the same privileges and there is no
security boundary between the two. This is a common mis-
conception, which led previous works to overlook the role of
native code in the realm of Android dynamic analysis [8].

Dynamic analysis. Understanding the behavior of a pro-
gram is an important step toward determining whether it is
malicious or not. Dynamic analysis aims to gather this in-
formation from running the program in a controlled environ-
ment, recording as much evidence of malicious activities as
possible.

Depending on the type of the controlled environment, the
collected information can vary. Execution traces are one
of the most common types of evidence collected during dy-
namic analysis and they describe a timeline of what was exe-
cuted in the context of the program under analysis. Different
granularities are possible, including API- and syscall-level
traces.

API tracing records all the high-level functions invoked
during the execution. Different mechanisms have been pro-
posed to obtain such traces, including framework modifica-
tion, run-time hooking and Ahead-of-Time (AOT) compila-
tion instrumentation. Unfortunately, all of them can be de-
tected and evaded by native code components.

Framework modifications, for example, can be identified
by a malicious application through memory introspection.
Moreover these techniques rely on the assumption that the
program uses the default run-time provided by the system,
but a malicious application could ship its own run-time li-

brary as a native library, avoiding completely the instrumen-
tation. Run-time hooking and AOT compilation instrumen-
tation suffer from similar problems. They both assume that
the malicious code is implemented by the app in the high
level language. However, the malicious behavior could be
perpetrated by the native code, for example by mimicking
the same syscalls that the framework would invoke to com-
plete the same task. More fundamentally, the fallacy of API
tracing mechanisms resides in that the instrumentation is in
the same security context of the program under analysis.

On the contrary, syscall traces can be obtained directly
from the kernel, in a transparent way from the program per-
spective. There are several techniques to acquire syscall
traces, the two most prominent being strace , a ptrace-based
mechanism, and SystemTap [12], which inserts probes in ker-
nel space and logs relevant information. The main drawback
of syscall tracing is that the information collected are diffi-
cult to interpret. Finding evidence of malicious activity from
a syscall trace alone can be a hard task.

3 Challenges

Reconstructing the semantic gap from a syscall trace is a task
made particularly difficult by several challenges, which this
section systematizes. We note that the discussion of these
challenges is “conceptual” — a priori, it was not known
whether these challenges would or would not actually pose
problems when dealt with in practice. To the best of our
knowledge, in fact, no previous work has ever explored the
actual practicality issues that these challenges create. One
of the contributions of this work is to fill this gap: as we
will present throughout the paper, our experiments provide
the first data-backed evidence that these challenges do cause
profound problems.

Multiple possible execution paths. The first challenge is
that different invocations of the same API could follow dif-
ferent execution paths. This could be the case for a number
of reasons. An API could behave differently depending on
the arguments with which it has been invoked. However, its
behavior could also differ depending on the execution envi-
ronment and context. Different execution paths of course
imply that the number and type of syscalls that are executed
upon API invocation can widely vary. For example, consider
an HTTP-related API: from the perspective of syscalls in-
vocations, the recorded trace can widely change depending
whether the API’s argument is a valid URL, or whether the
device has network connectivity. These aspects can clearly
influence whether we would see network-related activity in
the syscall traces.

Non-determinism. Another potential problem is non-
determinism. With this term, we refer to those cases for
which even if an API is invoked with the same arguments and
within a “similar” environmental context, the syscall traces
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could still differ due to inherent non-determinism of the sys-
tem or because of very subtle “internal” differences (e.g., the
current internal state of the memory allocator). Naturally,
one could argue that the lowest-level aspect of the system
could be considered as part of the “context” and that this
challenge is overlapping with the previous one. This would
be, of course, a valid argument. Nonetheless, we opted to
make this distinction explicit due to the different nature of
the source of potential divergent behaviors. As we will dis-
cuss throughout the paper, the different nature greatly influ-
ences the frequency with which such non-determinism arise
and how these problems should be tackled in practice.

Multiple layers of APIs. The Android framework is orga-
nized as a complex, multi-layer system of APIs: each API,
especially the ones “exposed” to third-party apps, are imple-
mented by invoking several others lower-level APIs. Indeed,
it is rare that a high-level API directly invokes syscalls. This
means that, when dealing with these higher-level APIs, every
potential behavioral difference and non-determinism that af-
fect lower-level APIs will be somehow combined—in a po-
tentially combinatorial way. This makes capturing all dif-
ferent behaviors of a non-trivial API very challenging in the
general case.

Inherent ambiguity of syscall traces. Different APIs of-
ten use the same syscalls to implement their behaviors. In
other words, a given sequence of syscalls can (and often
does) overlap across the execution of different APIs. From
the perspective of analyzing a syscall trace to then under-
stand which APIs have been actually invoked, this poses a
significant challenge: it is very complex to “go back” with
certainty as there are many different possibilities that may
explain a particular sequence of syscalls. We then say that
these syscall traces are ambiguous as it is often not possible
to determine which, across a number of potential candidates,
is the real API that has been actually invoked.

No clear boundaries. Given a syscall trace, it is challenging
to determine when the syscall sub-trace of a specific API is
starting or ending. In fact, there are no clear-cut markers
signaling these aspects, and traces of different APIs (or even
of the same one) may have different lengths. This aspect,
together with the other aspects and the combinatorial nature
of how low-level APIs are used to implement higher-level
APIs, makes associating a series of syscalls to a given API
much more challenging.

Event-based nature of Android apps. Android apps are
written following an event-driven paradigm, which implies
that apps often make use of callbacks. The classic example is
the definition of an onClick callback to define what should
happen when the user clicks on a specific button.

This pattern often causes several, nested control flow tran-
sitions from the Android framework to the Android app, and
vice versa. In fact, consider what happens in the scenario

where a user clicks on a button: 1) the control flow transi-
tions from the framework to the onClick callback method,
implemented in the app; 2) the onClick method may invoke
several Android APIs, which would cause the control flow to
transition back to the Android framework; 3) when the exe-
cution of these APIs is over, the control flow goes back to the
onClick method; 4) when the onClick method ends its exe-
cution, the control flow goes back to the Android framework
once again. These various control flow transitions make our
analysis significantly more complicated. We note that these
problems do not affect more traditional programs that do not
heavily rely on asynchronous callbacks.

APIs cannot be invoked without proper context. With
the aim of collecting data about which syscalls are invoked
by which API, one possibility would be to consider each
API separately and automatically invoke it within an instru-
mented environment. Unfortunately, this approach would
not work in practice. In fact, the vast majority of APIs need
to be invoked with the appropriate context, or otherwise they
would quickly quit their execution due to errors. Moreover,
many of these APIs require a proper “receiving” object to be
invoked on, and the automatic creation of such objects is a
very challenging task per-se.

4 Approach

This section discusses how we approached the various chal-
lenges discussed in the previous section. Our approach is
summarized in Figure 1.

The first step of our approach consists in building a dataset
containing which syscalls are invoked by which API. Con-
ceptually, the idea is to use this dataset as a sort of ground
truth, to then use it to perform additional experiments. As
mentioned earlier, this task is challenging per-se. In fact, we
cannot just create code to execute the various APIs, as we
would not know with which arguments we would need to
invoke them and from which context. We approached this
problem by taking a large number of benign Android apps
and by executing them in an instrumented environment to
produce both API- and syscall-level traces. This step is dis-
cussed in Section 5.

This raw data is sparse and contains a remarkable amount
of redundancy, and the scale of this data does not make
it suitable to be used for additional analysis without a pre-
processing step. Thus, in a second step, the raw data is then
organized in a data structure (that we refer to as knowledge
base), which lays the foundation for subsequent analysis.
For this step, the idea is to eliminate unneeded redundancy
and to somehow obtain a concise representation of what con-
tained in the dataset. The output of this analysis is a set of
so-called API models. These models offer a “usable” over-
approximation of all the behavior collected during the initial
analysis phase (see Section 6).
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Figure 1: Overview of the approach.

The specifics of these API models have been designed to
be useful for two different purposes. First, we perform the
first empirical data exploration on this peculiar dataset (see
Section 7), and we use it to uncover patterns and high-level
metrics that show how challenging the problem of semantics
reconstruction actually is. Second, we use these API models
to take the first steps toward mapping a generic sequence of
syscalls to their associated APIs, as discussed in Section 8.

5 Knowledge Base

API A: E n t e r i n g
S y s c a l l w
S y s c a l l x
API B : E n t e r i n g

S y s c a l l y
API B : E x i t i n g
API C : E n t e r i n g

S y s c a l l z
API C : E x i t i n g

API A: E x i t i n g

Listing 1: Example of an analysis trace.

In this section we present the methodology we followed
to create our knowledge base. We started by considering a
set of benign Android apps, which we then analyzed within
our analysis framework, discussed in this section. This anal-
ysis framework consists in an instrumented environment ca-
pable of logging traces of both syscalls and APIs. These raw
analysis traces are then parsed and loaded in a more suitable
tree-based data structure.

5.1 Analysis Tracing Pipeline

Syscall-level tracing. To log the syscalls invoked by a given
app we relied on strace , which is a robust, off-the-shelf tool
based on the ptrace syscall. For each syscall, we traced the
timestamp, the calling thread id, the syscall name and its
arguments. For obvious performance reasons, this behavior
can be selectively enabled on the application under analysis
only, so to avoid to slow the entire system down with un-
needed instrumentation.

We note that, in principle, relying on strace has two disad-
vantages. First, it can be detected by an app. While this is
true, this is not a problem at this stage because our goal is
to collect the behavior of benign apps, which we assume to
not contain anti-debugging techniques. Moreover, strace can
be completely implemented in kernel space [12,20], making
it more resilient to anti-debugging techniques and suitable
for the analysis of malicious programs. Second, strace can
cause a significant slowdown. However, once again, this is
not a significant concern in our scenario as we are analyzing
apps to collect “as much behavior as possible,” and we do
not necessary need to cover “all” the behavior of an app. In
other words, while the slowdown may make us lose some
behavior, this aspect does not threaten the validity of our ex-
periments. The aspect that is actually of critical importance
is that all the events (both syscalls and APIs) are logged in
the appropriate chronological order, which is the case for our
system.

API-level tracing. To log the APIs invoked by a given app,
we first considered well known instrumentation frameworks,
such as Xposed [6] and Frida [2]. In fact, one of the main fea-
tures of these frameworks is the possibility of tracing specific
API methods. Unfortunately, it turns out that when attempt-
ing to hook more than a few hundreds APIs, these frame-
works make the system unstable, leading to repeated crashes.
This is a problem as the Android framework is constituted by
tens of thousands of APIs.

To this end, we have developed a new solution, which is
based on source code instrumentation. By means of Java-
Parser [4], we automatically instrumented all the public
methods in the AOSP framework. In particular, we added
a call to logApi() — a new static method that we defined in
the java.logging.Logger class — at the entry point and at
all exit points (e.g., return statements, catch blocks of excep-
tions) of every instrumented method.

The logApi method takes a string as its first argument,
which our instrumentation pass uses to specify which API
has been invoked. In particular, this string contains the name
of the instrumented method and whether the call originates
from an entry point or an exit point (i.e., whether the method
has been just invoked or whether its execution is about to
end). Under the hood, this logApi method simply invokes
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a write syscall, using as an argument the same argument
received by the logApi method itself.

This technical solution gives us a setting where both
syscalls and APIs logging converge in the same unified trac-
ing channel. Since these analysis traces are also thread-
aware (by simply logging the thread id of the thread that
invoked the API or syscall), all the log entries are already
chronologically ordered and consistent, by design.

Example of an analysis trace. The result of this step is
a merged analysis trace, which contains both syscalls and
APIs, with the corresponding thread id and timestamp. List-
ing 1 shows an example of an analysis trace. In the listing, it
is possible to see how the system can transparently log both
enter and exit events for both syscalls and APIs.

5.2 Building a Knowledge Base

The analysis traces created in the previous step contain all
the information collected, but they are not easily processable.
To this end, we post-process these traces and we organize
them in a more suitable data structure. This structure consists
in a key-value store in which each key is the fully qualified
method name of an API, and each value is a list of entries,
each of which represents a specific instance of an API invo-
cation. Each of these entries contains a list of events recorded
between the start and the end of that specific instance of the
API invocation. The events can either be “syscall invocation”
or “API invocation.”

6 API Models

Invocations of the same API usually share common features
but they are not always completely identical. For example,
the two different branches of an if-else construct in the API
code can lead to different sequences of API calls or syscalls
(see Section 3 for a more systematic discussion of similar
challenges). The knowledge base discussed in the previ-
ous section contains all relevant information and it can be
already used as a source of interesting data. However, it can-
not be used to recover the high-level semantics without some
kind of pre-processing. The reason for this is that APIs can
potentially have a big number of different invocations (see
Section 7) and each invocation can be significantly different
from others.

In this section we introduce the concept of API models,
their design and the rationale behind it. We then present an
algorithm that creates API models starting from the invoca-
tions of an API. The last part of this section discusses how a
sequence of syscalls can be then matched against these API
models.

6.1 Anatomy of an API Model

In the context of this paper, an API model is an object that
summarizes the common features between different invoca-
tions of the same API. A model is constituted by an or-
dered sequence of symbols representing the various APIs and
syscalls found in the invocations. Each symbol in the model
can have an optional modifier that indicates that it can appear
up to an unlimited number times.

API models represent an over-approximation of all the in-
formation stored in the knowledge base. In fact, by assuming
that a syscall pattern can be repeated up to an unlimited num-
ber of times, an API model can match sequences that have
not been observed in the API invocations.

The choice to model repetitions of syscalls in this way is
driven by the intuition that repeated patterns generate from
loops in the execution. Those loops can be repeated either a
fixed or a variable number of times. Our API models make
use of the repetition modifier only if the same pattern has
been observed repeating itself a different number of times in
distinct invocations.

6.2 API Models Creation Algorithm

The model creation phase consists in applying a two-step al-
gorithm to all the APIs in the knowledge base. In the first
step we identify all those invocations that are identical ac-
cording to the following definition: two invocations are iden-
tical if they contain the same API calls and syscalls in the
same order. Note that the syscalls arguments are not taken
into account. Duplicate invocations are not taken into ac-
count from further processing.

In the second step the algorithm processes each of the re-
maining invocations to create a list of models for each API.
In particular, the algorithm proceeds as follows. It first at-
tempts to find the longest repeated pattern in the invocation
under analysis. If a repeating pattern is found (e.g., a single
syscall or a sequence of syscalls that keep repeating itself),
the algorithm creates a model similar to the original invoca-
tion, except for the repeating pattern that is marked with the
repetition modifier. This model is then checked against the
other invocations. If at least one of them produces a match,
the generalization is considered “useful” and the model is
added to the list of API models. If not, it means that this
over-generalized model was not useful: the algorithm thus
discards it, and adds to the list of API models the trivial
model matching the “exact” invocation under analysis.

6.3 API Models Matching

Once these API models are computed, the next step is to ap-
proach the mapping problem. Given a sequence of syscalls,
this problem aims at determining which API is the most
likely to have generated such a sequence. In a way, the goal
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is to map a given sequence to the “correct” API. There are of
course many different possible algorithms and strategies to
implement this.

For this paper, we opted to implement two extreme strate-
gies: the longest match and shortest match strategies. In both
cases, the algorithm starts from the very beginning of the
syscall sequence. It then considers all the API models in our
database and it determines which of these API models ac-
tually match the given sequence of syscalls. The algorithm
then selects the longest (or the shortest) of these matches,
and this initial sequence of syscalls is considered as covered.
The algorithm then proceeds by applying the same method to
the sequence of syscalls that followed the one that is covered
by the selected API model.

We note that this constitutes the first step into reconstruct-
ing the API trace starting from a sequence of syscalls. We
present an evaluation of these two strategies in Section 7. Of
course, we acknowledge that there are in fact many other po-
tential strategies. However, we believe that considering these
two extreme strategies is a promising first step toward under-
standing and exploring this relevant research problem.

7 Data Exploration

This section explores our knowledge base (KB) by dis-
cussing interesting statistics and insights. We start by giving
more precise information about the apps that we analyzed
for collecting the analysis traces and the experimental setup.
We then present measurements about the information stored
in the KB. These measures provide empirical data highlight-
ing the difficulties in reconstructing the high-level semantics
from generic low-level syscall traces. Specifically, we will
show how the APIs in the KB are very diverse and, because
of their nature, how different APIs present different chal-
lenges for semantic reconstruction. We will also show how
a human analyst can query the KB and how this is important
in highlighting the problematic nature of two aspects, namely
noise and ambiguity, making semantic reconstruction a task
more challenging than what previously thought. We then ex-
plore these two aspects in an automated fashion and we dis-
cuss the gained insights in Section 7.3 and 7.4, respectively.

7.1 Apps Dataset and Experimental Setup

As mentioned throughout this paper, we opted for a data-
driven approach to explore the problem of semantics gap re-
construction. We build our ground truth of analysis traces
by recording the execution of a set of 750 apps. We col-
lected these apps from the F-Droid Open Source Android
App Repository [1]. In particular, we selected all apps from
this dataset that used at least one dangerous permission. The
rationale behind this choice is that these apps would tend to
be more complex than others not requiring any permission,

Leaf APIs Non-Leaf APIs
Empty APIs 1730 -
Monoform APIs 29 810
Multiform APIs 573 1488

Table 1: API occurrences in KB. Note: there cannot be
Empty APIs that are also Non-Leaf APIs

Leaf APIs Non-Leaf APIs
Empty APIs 2850 -
Monoform APIs 59 665
Multiform APIs 94 962

Table 2: API occurrences in KB (after noise reduction)

and would thus have more chances to expose interesting be-
havior.

Each app was executed for five minutes on a Google
Nexus 5X device, which was previously instrumented with
our modified Android framework, as described in Sec-
tion 5.1. We then used the Android Monkey Runner [16]
to stimulate the app’s user interface. We fully acknowledge
that the Monkey Runner is not sophisticated and may not trig-
ger deep parts of the app’s codebase. However, we note that
the rationale behind these experiments is not to fully cover a
specific app, but to execute many apps and collect what we
can from each of them.

7.2 API Classification and Statistics

Our KB contains invocations for a total number of 4,630 dis-
tinct APIs. The total number of API invocations observed
is over 40 million, while the total number of syscall that
these API invocations invoked is over 13 milion. Note that
the number of API invocations is larger than the number of
syscalls, which means that a significant number of API in-
vocations do not result in any syscall. In average, each API
has been observed 8,721 times, while the average number of
events in the invocation lists is 0.84 (3.63 without consider-
ing empty invocation lists).

We categorize the APIs according to two different aspects.
First, we consider how many different entries each API has
in its invocation list. That is, for each API we look at how
many different syscall sequences we have recorded in our
dataset. We distinguish three different cases: 1) Empty APIs,
those whose invocations are all empty lists; 2) Monoform
APIs, those for which all the invocations are equals (and non-
empty); and 3) Multiform APIs, those that have at least two
different non-empty invocations. Second, we cluster APIs
according to the type of events that each of their invocations
contains. For this aspect, we distinguish between 1) Leaf
APIs, those whose invocations contain only syscalls, and 2)
Non-Leaf APIs, those containing at least one API in their
invocation lists.
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Table 1 shows the occurrences of each category of APIs in
our KB. It is interesting to understand how each category of
API plays a different role in the context of semantic recon-
struction. Empty APIs are those that are completely imple-
mented in user space and do not make any system calls. For
this reason, their behavior cannot be identified at all based
on syscall information only. Multiform APIs make the over-
all task of semantic reconstruction very challenging because
all of their invocations must be taken into account. Our mod-
eling algorithm, for example, could produce more than one
model for each API in this class. Monoform APIs, on the
other hand, are simpler because their only invocation can
also be used as model.

Leaf APIs are the closest to syscalls in terms of seman-
tics. Some of them invoke always the same syscall (e.g.,
android.net.LocalSocket.setSoTimeout always executes the
syscall setsockopt). They are also the easiest to reconstruct,
since their behavior can be recognized directly from the ex-
ecuted syscall. To reconstruct a Non-Leaf API, instead, one
needs first to reconstruct the other APIs that it could invoke.

7.3 Noise Patterns Identification

While inspecting the data offered by our knowledge base,
we came across surprising insights. For example, we found
some syscalls in the invocation list of a few of those APIs
that were expected to be empty. One example is the
java.lang.StringBuilder.append API. Interestingly, while the
vast majority of the invocations of these APIs were indeed
empty, (very) few of these invocations contained peculiar
syscall patterns that, at first glance, we could not explain with
the expected behavior of the API. To our surprise, we then
found that these patterns were also observed in the models
built for other APIs.

To investigate this unexpected finding, we developed a
post-process analysis pass to automatically identify similar
cases. The key idea is to perform anomaly detection. Our
system identifies a model of an API as an outlier if the model
describes a number of invocations (of that API) that is lower
than a certain threshold (for our tests, we used 1/1000 as a
threshold). With this tool, we identified three “noise” pat-
terns. The first relates to thread synchronization (e.g., futex,
sched_yield and clock_gettime syscalls). The second relates
to memory management (e.g., madvise and mprotect) or their
combinations. Finally, the third pattern we identified relates
to the specific malloc implementation in Android’s bionic C
library: since it is used to obtain memory for the allocation
of new objects, it can potentially appear during the invoca-
tion of any API that allocates Java objects—and, similarly to
the other two cases, this is what causes the noisy pattern.

To better explore the role that these noisy patterns have
in our dataset, we opted to eliminate from our models all
the syscall patterns that contribute to such noise (i.e., the
ones mentioned above), since we believe that these classes of
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Figure 2: Pattern Ambiguity for 1-syscall long patterns

syscalls do not carry any meaningful information that can be
used to reconstruct any API semantic. Table 2 shows statis-
tics for each class of APIs in the KB after removing the noisy
patterns. A comparison of these data with those in Table 1
suggests that noise reduction leads to more consistent data.
For instance, the number of APIs that have two or more dif-
ferent invocations decreased by almost 50%.

7.4 Ambiguity Measurement

Another aspect we explored relates to the inherent ambigu-
ity of models included in our KB. For example, we noticed
that some models overlap or are identical, even though they
belong to different APIs. This means that potentially more
than one API model can provide a match for the same syscall
pattern, leading to ambiguity in the results of any matching
algorithm.

With the goal of quantifying the ambiguity of the results in
our dataset, we define a new metric, which we call ambiguity
score. This metric is an integer number that can be computed
for each pattern of syscalls. We define this metric as the num-
ber of different APIs (in our KB) that match against a given
pattern of syscalls. We tackle this problem by considering
syscalls patterns of different lengths. Moreover, we consider
two different values: pattern ambiguity score and total pat-
tern ambiguity score, the only difference between the two
being that in the latter case we weight a pattern according to
how many times it appeared in our traces. Figure 2 and Fig-
ure 3 show the cumulative distribution functions (CDF) of
the ambiguity score for 1-syscall and 2-syscall long patterns
respectively (after having removed the noise). Figure 4 and
Figure 5, instead, plot the CDF of the total ambiguity score,
for the same patterns. These figures show the data before and
after removing the noise. For a better visual comparison be-
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Figure 3: Pattern Ambiguity for 2-syscall long patterns

Shortest Match Longest Match
w/ noise w/o noise w/ noise w/o noise

Trace coverage 26.4% 45.2% 33.0% 61.5%
Correct matches 30.9% 38.9% 26.4% 46.9%

Table 3: Results of two variants of the matching algorithm.

tween the CDFs, the figures show the data around the point
in which the CDF of the noiseless KB reaches 1.0. The CDF
of the noisy KB instead reaches 1.0 at much higher abscissa
(not shown in the figures), since it raises at a slower pace
with respect to those of the noiseless KB. This is also true
for the CDFs built for other syscall pattern lengths, meaning
that models built without removing the noise are more am-
biguous than their noiseless counterpart. For the interested
reader, we also report, in the Appendix, the CDFs for pat-
terns of different lengths (from three to up to five).

8 Exploring the Mapping Problem

This section discusses a first attempt to reconstruct the se-
mantics gap of a generic sequence of syscalls. The input
to this step is a non-annotated syscall trace and we investi-
gate how two strategies would perform in this context. The
challenges discussed in Section 3 make this task particularly
difficult.

To this end, we define the notion of correct match as fol-
lows. A match is correct if it spans the same syscalls of an
API in the annotated trace and if said API is in the set of
those that the algorithm selected as candidates. This means
that a match is not considered correct if, for example, it cov-
ers more syscalls than the ones actually produced by the API,
or if it does not start exactly on its first syscall.
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Figure 4: Total Pattern Ambiguity Comparison (1-syscall
long patterns)

Method Class Package
Trace Coverage 61.8% 62.0% 63.1%
Correct Matches 46.9% 47.0% 49.3%

Table 4: Accuracy results under relaxed definition of correct-
ness.

We measure the results of the reconstruction process in
terms of percentage of APIs correctly identified (i.e., the ra-
tio between the number of APIs correctly identified and the
total number of APIs in the annotated trace) and percentage
of the traces covered by correct matches (i.e., the ratio be-
tween the number of syscalls correctly assigned to a candi-
date API and the number of syscalls effectively in the trace).

We implemented two variants of a matching algorithm: a
shortest match and a longest match policy. Table 3 reports
the results in terms of trace coverage (i.e., which percentage
of the trace was possible to cover) and correct matches (i.e.,
the ratio of matches that are correct). These results show that,
clearly, the “longest match” heuristic results are better, as it
produces higher rates of correct matches and trace coverage
in each single test. Table 3 also provides a comparison of the
results obtained by adopting the models built before and after
noise reduction. It is interesting to note that not only noise
reduction decreases the ambiguity (as shown in Section 7.3),
but it also increases the amount of correct matches.

We note that the results reported thus far use a quite ag-
gressive definition of “correctness.” In a way, we consider a
match correct if and only if the algorithm is able to identify
the specific, exact API. Since there are cases in which differ-
ent APIs belonging to the same class (or package) actually
have the same semantics, we decided to explore how the ac-
curacy would change under a more relaxed definition of “cor-
rect match.” Table 4 shows the percentage of trace coverage
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and match correctness when a match is considered as correct
in three different scenarios (using the “longest match” heuris-
tics and after noise removal): we consider a match correct if
the method name, the class name, or the package name of the
API matched (instead of its fully qualified name, which also
contains the types of its arguments). The table shows that
the numbers do improve, but that they are still far from ideal.
We believe that the reason for the low accuracy of the results
of our algorithm resides in the fact that it fails in recovering
from an incorrect match caused by a length mismatch. In this
situation, the algorithm is out of synchronization as it tries to
match the next API from the very next syscall in the trace.

Another source of desynchronization is given by those sec-
tions of the trace in which no APIs are recorded (i.e., when
the execution of the application returns to the framework, see
Section 3 for more details). This issue cannot be solved ap-
plying the same approach used for APIs, but they do not
share enough features to build meaningful models. More-
over, these areas contain similar patterns to those observed in
API models, making it difficult to distinguish between them.

Discussion. These results show that simple strategies are
far from enough to properly map sequences of low-level
syscalls to high-level APIs. The mapping task appears even
more challenging when considering that our experimental
setup made the analysis, in theory, much simpler than what
it would be in a real scenario. In fact, our experiments at-
tempt to map sequences of syscalls to APIs that have been
extracted from the same knowledge base. In a real scenario,
instead, the algorithm would not have any guarantee that the
potential target API is one API already in the knowledge base
(as an unknown app may make use of APIs never seen in the
training set). Moreover, we even simplified the problem by
assuming that the starting point of the first API in the trace

is known. Last, our “correctness” definition is quite gener-
ous, as it considers an API match as correct if the correct
API is among one of the selected candidates: ideally, the per-
fect matching system should indicate only one API for each
match. We believe these observations strength our key hy-
pothesis: that, even under these very favorable conditions,
the mapping problem presents inherent difficulties that are
very challenging to overcome.

Future directions. We believe that reducing the noise in the
models is a key component for a successful approach to the
mapping problem, since we identified that the noisy patterns
produced by the framework and the ART runtime a strong
source of ambiguity. To this aim, we believe that future work
should investigate a more aggressive noise reduction strategy
to improve the results. Another direction for improvements
could be to leverage the fact that some APIs are often used
in conjunction with others, providing a heuristic for choosing
between multiple candidate APIs.

At the moment, our system collected information about
the APIs exposed via Java public method. A different ap-
proach would be to monitor the invocation of every single
Java method (including private ones) in the framework. On
the one hand, this approach could shed light on those areas
of the traces that seemingly do not contain any API. On the
other hand, private methods are more difficult to interpret for
an analyst since they are undocumented and require knowl-
edge of the internals of the Android framework to be fully
understood.

Another step of our pipeline that can be enhanced is the
model creation algorithm. In general, we believe that future
works should focus on creating API models that describe as
many features of the API invocations as possible. In this
work we show how to model repeating patterns, but there
are other features that are worth modeling. For example,
one possible improvement can be to summarize in the same
model all those invocations that differ for a small number of
syscalls and/or API calls only.

In an attempt to model this type of scenarios, a first ver-
sion of our prototype relied on the Needleman-Wunsch se-
quence alignment algorithm [26]. The rationale was that by
aligning two invocations is possible to find those syscalls
and API calls that appear in only one of them. We lever-
aged the aligned sequences to create models in which the
symbols corresponding to these API calls and syscalls were
marked with an additional modifier. This modifier indicates
that the symbol to which it is applied is “optional,” meaning
that the model matches a sequence regardless of its presence.
This approach, however, led to unacceptably high computa-
tional complexity of the pattern matching phase, to the point
of making it unfeasible in practice for models with many en-
tries. Still, we believe there could be some value in adopting
this technique for only a subset of the APIs, especially those
whose invocations contain only a small number of syscalls
and API calls.
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Lastly, we believe our approach would clearly benefit
from integrating the results from existing systems like Cop-
perDroid [30], which already perform several steps to re-
cover the semantics of the ioctl syscalls. This particular class
of syscalls is among the most frequent and ambiguous ones
in our knowledge base. This is due to its fundamental role
in the low-level implementation of the Binder subsystem,
which relies on the ioctl syscall to exchange “parcels” of data
between user apps and system services. Integrating Copper-
Droid with our system would add the corresponding Binder
semantics to each ioctl syscall, which would eventually re-
duce the ambiguity for this class of syscalls significantly.

9 Related Work

The Android security community has published a vast num-
ber of works related to program analysis of unknown apps.
This section places our work in the context of two main re-
lated areas, namely static and dynamic program analysis.

Several static analysis approaches have been proposed to
analyze Android apps, and malware in particular. Some of
the early works in this area include RiskRanker [18] and
DroidRanger [34], which rely on symbolic execution and a
set of heuristics to detect unknown malicious applications.
Another work is Apposcopy, which uses a signature-based
approach to detect known malware samples [14]. Other
works do not only focus on malware detection, but are more
generic and attempt to identify suspicious data flows via taint
analysis. Two relevant works in this area are FlowDroid [10]
and DroidSafe [17].

Another important trend of works attempts to perform
malware classification by using machine learning tech-
niques. Some of the early works include Drebin [9] and
DroidAPIMiner [7], which both extract several features from
Android applications (e.g., requested permissions, invoked
framework APIs) and then apply machine learning tech-
niques to perform classification. A different system is Ap-
pContext [32], which uses machine learning techniques to
identify malware by using the “context” of each behavior
as a feature. More recently, Mariconti et al. proposed Ma-
MaDroid [23], a tool that uses Hidden Markov Model chains
and, once again, starts from the API function calls to build be-
havioral models. Another recent work in a similar direction
is SLAP [22], which also uses machine learning with fea-
tures based on API-related information, with the difference
that it attempts to be more resilient to adversarial samples.

There has also been extensive research on program anal-
ysis of Android apps through dynamic analysis. Enck et
al. [13] present TaintDroid, a dynamic taint analysis that
performs whole-system data flow tracking through modifi-
cations to the underlying Android framework and native li-
braries. Other efforts, such as Mobile Sandbox [29] and
Andrubis [21], developed tools and techniques to dynami-
cally analyze unknown Android applications. Another trend

of works has proposed approaches based on dynamic anal-
ysis to perform multipath execution and dynamic symbolic
execution on Java and Android applications [5,15,25,27,31].
These approaches achieve higher code coverage than simpler
dynamic analysis tools.

We note that all these existing works use API-level in-
formation as the main building block for their analysis.
Their main rationale is that API-level information provides
semantics-rich data, which in many cases is enough to dis-
cern benign apps from the malicious ones. This common
trait of all these recent works underline the importance that
API-related, semantics-rich data can play within the An-
droid security research community. However, as often men-
tioned in this paper, all these approaches can be detected and
evaded [8].

One of the very few works that fully acknowledge this lim-
itation and performs a step forward is CopperDroid [28, 30].
In this work, the authors show how it is possible to recon-
struct two categories of high-level behaviors. The first one
consists in those implemented through Android Services,
which CopperDroid identifies by unmarshaling objects used
in Binder transactions (e.g., access to geolocalisation). The
second includes those behaviors that result in a sequence of
syscalls with a clear data dependency, which CopperDroid
reconstructs by means of a value-based data flow analysis
technique (e.g., opening a file and performing operations on
it).

However, the authors of CopperDroid also note that API-
level information, while useful in reconstructing high-level
behaviors in some cases, is not fully trustworthy when deal-
ing with some complex scenarios. Take, as an example,
the behavior of the createSocket method of the SSLSocket-
Factory Java class. This API creates an SSL tunnel over
an already opened TCP socket. Exploring our dataset we
noticed that to perform this task the framework invokes
various syscalls, for example, “getrandom” to generate the
nonce used for the encryption or “read/write” to perform
the handshake. By simply inferring the data dependency
between syscalls, CopperDroid would be able to recognize
its network-related aspect, but it would fail in understanding
that the syscall pattern is actually implementing a tunnelling
mechanism that, according to the API documentation [3], en-
ables to instantiate an SSL connection over a proxy.

Our work thus differs from CopperDroid by exploring
the behavior reconstruction problem in a more generic way:
given a list of syscalls, is it possible to build a pattern identifi-
cation and “go back” from syscall to API in the general case?
In other words, in this paper we are interested in answering
a more generic question, and we do not rely on specific pat-
terns or on data-dependency among syscalls to address the
mapping problem. The main difference with previous works
is that we focused on using a data-driven approach to ex-
plore the more-generic problem of performing semantics re-
construction of a generic sequence of syscalls. In the process,

USENIX Association        22nd International Symposium on Research in Attacks, Intrusions and Defenses 527



we have also built the first dataset of API-syscall relationship
— to the best of our knowledge, the first of its kind.

The problem of reconstructing high-level behaviors from
low-level features is not exclusive to the Android security
research field. Martignoni et al. [24], for example, mod-
eled a set of malicious behaviors found in different malware
families for the Windows operating system. To this aim
the authors manually analyzed the executions traces of mal-
ware and benign programs to express high-level behaviors in
terms of lower-level syscall-like events.

The main drawback of their approach is that the modeling
phase cannot be automated because it requires human under-
standing of each high-level behavior. In our work, instead,
the modeling phase is completely automated. Moreover, our
approach is more generic since it models more than just a
restricted set of behaviors and is not bound to malicious be-
haviors only.

10 Conclusion

Dynamic analysis has proven to be fundamental in the field
of program analysis, especially when it provides high-level
and human-friendly information about a program’s behavior,
like in the case of API traces. As discussed, a vast number of
research works rely on these semantics-rich API traces. Un-
fortunately, all current instrumentation frameworks can be
detected and evaded, making these techniques not suitable to
be used in an adversarial context, like malware analysis.

This paper provides the first systematic exploration on the
challenges of automatically reconstructing API traces seman-
tics from low-level syscall traces. Ideally, a system that can
complete this task in an accurate manner would provide all
the advantages of API semantic analysis, while remaining
undetectable by malicious programs.

The evaluation of this work shows that this task is chal-
lenging — arguably much more challenging than what pre-
viously thought. While previous works focus on recognizing
specific patterns, we adopt a generic data-driven approach
and we collected and analyzed data on several millions API
and syscall invocations. As one of the core contributions, we
built a new dataset and an analysis pipeline, which we pub-
licly release to encourage future work in this important area.
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Figure 6: Pattern Ambiguity for 3-syscall long patterns
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Figure 7: Pattern Ambiguity for 4-syscall long patterns
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Figure 8: Pattern Ambiguity for 5-syscall long patterns
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Figure 9: Total Pattern Ambiguity Comparison for 3-syscall
long patterns
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Figure 10: Total Pattern Ambiguity Comparison for 4-syscall
long patterns
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Figure 11: Total Pattern Ambiguity Comparison for 5-syscall
long patterns
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