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Flow-level Network Monitoring

Data Plane: Update

Packet: (flowkey, values)

i

<&

Control Plane: Query

Flow Statistics

Pkt count |...|...l...

Flow 2 Pkt count |...|...|...

Flow 3 Pkt count |...|...|...




Flow-level Network Monitoring

Data Plane: Update Control Plane: Query

Flow Statistics
o Pktcount
3 ' n l J28 Pkt count |...)......

Flow 3 Pkt count |...|...|...
Limited resources Estimated results with error bounds

Packet: (flowkey, values)

Approximate techniques are widely used




Existing Guarantees Are Not Enough

» Theoretical bounds only apply to specific flows
* E.g., heavy hitters, super-spreaders, ...

» For most flows, the bounds are too loose



Example

Count-Min Sketch to monitor byte count

_/4 +v,
Configuration <|:

10GB network traffic

1074 counters per-row
—2>1T U
X, Uy Uy >10 rows
+v,
Error bound: Per-flow error <210KB
A
| 1
<2% relative error for large flows (>10MB) © Unacceptable for small flows ®

Small flows matter:
E.g., single-packet TCP flows imply various anomalies




Our Contributions

New algorithms that achieve nearly-zero-error monitoring

Nearly-zero error: for almost all (>99%) flows, the relative error is small (<0.1%)

Sketch

+

Compressive Sensing




Our Contributions

New algorithms that achieve nearly-zero-error monitoring

Nearly-zero error: for almost all (>99%) flows, the relative error is small (<0.1%)

1. Advantages and limitations of 2. Efficiency of combining
compressive sensing for network monitoring sketch and compressive sensing

\ Sketch /
A/compressive SensinN

3. A theoretical framework to revisit 4. Two new sketch algorithms
common approaches in sketch design that efficiently embrace compressive sensing
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Compressive Sensing

Sensing Operation

d X X

Sensing matrix

(m xn) Original signal
(n x 1 vector)

Update Flow statistics

Procedure

Measurement signal
(m x 1 vector)

y

Approximate Data
Structure

)

Recovery Operation

Solve an 1
| optimization problem | X

Recovered signal
(m x 1 vector)

Estimated
flow statistics
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Sensing Operation

O

Sensing matrix
(m x n)

X

Compressive Sensing

X —

Original signal
(n x 1 vector)

y

Recovery Operation

Measurement signal
(m x 1 vector)

)

Solve an 1
| optimization problem | X

Recovered signal
(m x 1 vector)

Classical Compressive Sensing:
Guarantee accuracy with recommended
@ and optimization algorithm




1st Attempt: Directly Adopt

> 4 types of sensing matrix:
« Bernoulli Matrix (BM), Fourier Matrix (FM), Gaussian Matrix (GM), and Incoherence matrix (IM)

» 2 recovery algorithms:
* L1 norm minimization (L1)
» Orthogonal Matching Pursuit (OMP)

Advantage: limited memory to achieve nearly-zero error Limitation: each packet incurs a large number of updates
(High accuracy) (Poor scalability)

Update by a packet

~ 400 MLl i
- OMP Dense matrix

¥ 300 ] { /
S 200 X —

£
g 100
0 BM FM GM IM

O X y
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2nd Attempt: Formulate Sketch

Pkt

(k, v)

Y3

Solve an
| optimization problem |
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2nd Attempt: Formulate Sketch

Pkt

Vg

(k, v)

\ >4

\ v

Y3

Solve an
| optimization problem |
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2nd Attempt: Formulate Sketch

k=0
k=1

k=2 =

k=3

Yo

Y1

Y2

Vi
Y3 [ 7
(k, v) /

Y3

V4

)

Vs

Solve an
| optimization problem |
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O O|R|OIOC|K

O|RrOO|—|O

R OO, | OO

O O|Rr|O|O|F

2nd Attempt: Formulate Sketch
Pkt =

[ —
Y3
(k, v /
Yo
xO k=0 yl
r———————-
X1 | k=1 ¥V, Solve an
— —
X Blee= [ BD [ o oo
X3 | k=3 Va
Vs

However, the recovery accuracy is low (see paper)
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Key Matrix Property

High Accuracy

Solve an
Recommended —_— —t /
Matrix X X —_— y » y | optimization problem | X

Low Accuracy

Sketch-derived
Matrix X X

|
<

| Solve an 1
» y | optimization problem KX
________ -
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Recommended
Matrix

Sketch-derived
Matrix

Key Matrix Property

High Accuracy

Low Accuracy
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Key Matrix Property

________ High Accuracy

Recommended |
Matrix

Low Accuracy

Sketch-derived
Matrix |

I

|

I

I

i |

| |

| | .
: | Study the difference between the two types of matrices
i |

| |

| |

I

I

|

I
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Key Matrix Property: Orthonormality

» Orthonormality: ability to preserve the norm of a sparse vector
« High orthonormality: x can be preserved and accurately recovered

» RIP value: quantify orthonormality
* The lower RIP, the higher orthonormality

~
210. 2 GO mg\ o
28_ ﬁ,‘;‘ﬁm%mwﬁ N N ©
- e - — L B | -
&26.
o »4. 1
22| 1
|
21N © R 8
20-0’300
| IFAE
BM FM

l J
1
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Key Matrix Property: Orthonormality

________ High Accuracy

How to construct sketch with high Orthonormality?

Low Accuracy
Sketch-derived

Matrix

e e e e —— — —
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Class 1: Fractional Update

Methods:
Sampling, or
Conservative update

Examples:
CU Sketch [SIGCOMM’ 02]
NitroSketch [SIGCOMM’ 19]

Matrix property:
Fractional elements in matrix

RIP=5.00 RIP=2.47
1/1]0(1 0.7/0.8| 0 |0.9
0[1]1]1 0 0.7]0.8/|0.7
1/0(1]0 l:>0.6 0106/ 0
0/1/0]0 0105/ 0|0

Revisit Sketch Design

How common approaches affect matrix?

Class 2: Adding Rows

Methods:
Maintain multiple simple
sketch structures

Examples:
FlowRadar [NSDI’ 16]
UnivMon [SIGCOMM’ 16]
SketchLearn [SIGCOMM’ 18]

Matrix property:
More rows in the matrix

RIP=4.24 RIP=2.69
11101 1/1]0]1
o111 i> o111
More rows - v el
0|0|1]|0

Class 3: Clearing Columns

Methods:
Store flowkeys separately

Examples:
FlowRadar [NSDI’ 16]
UnivMon [SIGCOMM’ 16]

Matrix property:
Clearing useless columns

RIP=5.00 RIP=2.45
111101 110]0|0
0j1[1]1 0/0|1]0
110/1]0 |:> 1/0[1]0
01,00 0/0j0]0

Class 4: Matrix Decomposition

Methods:
Separate traffic into two parts,
or extract large flows

Examples:
SketchLearn [SIGCOMM’ 18]
Elastic Sketch [SIGCOMM’ 18]

Matrix property:
Decomposing simpler matrices

RIP=5.00 RIP=2.00 RIP=4.36
17101 110(0(0 0(1]|0]1
O(1]11 i> 0[0j0fO + o|111]1
1710(1]0 110(0(0 0/0(1]0
0/1(0(0 0j0j0fO 0/1/0|0

20



New Algorithms

» Existing algorithms are not enough
* Not specifically designed for compressive sensing
« Use the common approaches, but not efficiently combine them
* Orthonormality is not the main goal

» Need new algorithms
« Combine the approaches more efficiently
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New Algorithms

SeqSketch

flc|d

fi| e di

flow
record

[ Algorithm | Cl | C2 a3 c4
Conservative
CU Sketch [25] update
; Multiple Flow
Deltoid [19] CM instances extraction
ElasticSketch [79] s::?lf?:g
Multiple Bloom Flow
FlowRadar [48] Bloom Filters Filter extraction
NitroSketch [52) | Sampling CS“”;:;:;’[:;S Heap
RevSketch [67] exul:::;?:‘:;on
Multiple Flow
SeqHash [8] CM instances extraction
Multiple Flow
SketchLearn [37] CM instances extraction
SketchVisor [35] s:mﬁi:g
UnivMon [53] CSMiﬁl;::;ics Heap
Fractional Bloom Filter Splitting
SeqSketch update + Controller | + Controller
. Fractional Bloom Filter Extraction
EmbedSketch update + controller + Controller

|Packet‘—' filc|d

| Controller |

Send to Controller S +0.8¢;

-

o|lo|e

| —]

-0.6c;

fo | Cn | dn

EmbedSketch

loft]ofof1]of-]1]
Hash Table Bloom Filter Fractional Sketch
I Vii | cij | dij | fij
@}\ Bloom
Ei Filter |0 | 1|
Sketch Bucket
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Results

> RIP values <3

» Accuracy
* 100% precision and 100% recall
* <0.1% relative error for >99.7% flows

» Robustness under different memory configuration

» Low resource usage

 Hardware resources
 Bandwidth

» Recovery time
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Conclusion

» Problem: nearly-zero-error monitoring

1. Classical compressive sensing achieves 2. Existing sketch algorithms suffer from low
high accuracy but has poor scalability accuracy due to the low orthonormality

\ Sketch /
/ompressive SensinN

3. A framework can study the orthonormality 4. New algorithms are needed to combine
of various common approaches the approaches more efficiently

Source Code Available: https://github.com/N2-Sys/NZE-Sketch ,,




Thank You
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