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Abstract

This position paper advocates that storage hardware with
built-in transparent compression brings new opportunities to
innovate data storage management software (e.g., database
and filesystem). Modern storage appliances (e.g., all-flash
array) and some latest SSDs (solid-state drives) can perform
data compression transparently from OS and user applica-
tions. Such storage hardware decouples logical storage space
utilization efficiency from physical storage space utilization
efficiency. This allows data storage management software in-
tentionally waste logical storage space in return for employ-
ing simpler data structures, leading to lower implementation
complexity and higher performance. Following this theme,
we carried out three preliminary case studies in the context
of relational database and key-value (KV) store. Initial ex-
perimental results well demonstrate the promising potential,
and it is our hope that this preliminary study will attract more
interest towards exploring this new research area.

1 Introduction

This position paper advocates that storage hardware with
built-in transparent compression brings exciting opportuni-
ties to innovate data management software (e.g., database
and filesystem). Commercial market has witnessed the rise
of block storage appliances/devices that perform data com-
pression with complete transparency to OS and user ap-
plications. Modern all-flash arrays (e.g., Dell EMC Pow-
erMAX [1], HPE Nimble Storage [2], and Pure Storage
FlashBlade [4]) support block-level transparent compres-
sion. SSDs with built-in transparent compression are also
emerging on the market (e.g., computational storage drive
from ScaleFlux [5] and Nytro SSD from Seagate [13]).

In addition to its apparent benefit on reducing the stor-
age cost, storage hardware with built-in transparent com-
pression decouples the logical storage space utilization effi-
ciency from the physical storage space utilization efficiency.
This creates a new spectrum for data management software
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innovation, which can be explained as follows. When run-
ning on conventional storage hardware, data management
software is solely responsible for the physical storage space
utilization efficiency. As a result, data management soft-
ware faces a stringent trade-off between storage utilization
efficiency and implementation complexity: In order to im-
prove the storage space utilization, data management soft-
ware should make full use of the logical storage space and
completely fill each 4KB LBA (logical block address) sec-
tor with user data, which demands more sophisticated data
structures and algorithms. In comparison, when running on
storage hardware with built-in transparent compression, data
management software can purposely waste the logical stor-
age space to reduce its implementation complexity, while re-
lying on the storage hardware to retain physical storage space
efficiency. Lower software implementation complexity may
lead to higher speed performance and better system stability.

Little prior research has studied how data management
software can effectively leverage the decoupled logical
vs. physical storage utilization efficiency. Regardless of
specific application, the essential design theme is that data
management software judiciously wastes the logical storage
space in return for lower implementation complexity and
higher performance. As storage hardware with built-in trans-
parent compression emerges on the mainstream market, it
becomes increasingly necessary to re-think the data man-
agement software design under this framework. As the first
effort along this direction, we carried out three preliminary
case studies: (1) We show that PostgreSQL (the second most
popular open-source relational database) can easily benefit
from this theme by simply adjusting a parameter; (2) We
show that log-structured data store can leverage this theme
to reduce the impact of background GC (garbage collection);
(3) We show that one could apply this theme to implement a
hash-based KV store at almost zero memory usage. It is our
hope that these preliminary case studies will contribute to
attracting more research interest and activities towards this
largely unexplored territory, which may lead to unforeseen
opportunities to innovate future data management software.



2 Proposed Design Theme

For systems running on conventional storage hardware, their
logical and physical storage space utilization always tightly
couple together, i.e., the LBA space is (almost) equal to
the physical storage space inside the storage hardware, and
each 4KB LBA sector always occupies 4KB physical storage
space. Therefore, data management software is solely re-
sponsible for the physical storage space utilization efficiency.
As a result, data management software typically employs
sophisticated data structures (e.g., B-tree and log-structured
merge tree) and algorithms in order to fully utilize the phys-
ical storage space. This however leads to high implemen-
tation complexity, high CPU/memory resource usage, and
difficulty on achieving high speed and stability. A majority
of prior research on data management systems focused on
searching for better design trade-offs between storage cost
and implementation/performance cost.

For the purpose of illustration, Fig. 1 shows the structure
of an SSD with built-in transparent compression. Data com-
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Figure 1: Illustration of an SSD with built-in transparent
compression.
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pression and decompression are carried out on the IO path by
the hardware engine inside the SSD controller, being trans-
parent to the host software stack. The FTL (flash translation
layer) inside SSD controller manages the mapping/indexing
of all the variable-length compressed data blocks. By com-
pressing each LBA sector and exposing a LBA space much
larger than the physical storage space, storage hardware with
built-in transparent compression decouples the logical stor-
age space utilization efficiency from the physical storage
space utilization efficiency. This allows data management
software to purposely under-utilize the logical storage space
in return for using less sophisticated data structures and algo-
rithms. This can lead to lower implementation complexity,
less CPU/memory resource usage, and higher performance
and stability. Accordingly, we propose to re-think the design
of data management software from two aspects:

1. Under-utilize LBA space: Storage hardware with built-
in transparent compression can natively expose an LBA
space that is much larger than the physical storage
space. We should investigate whether data management
software can employ simpler data structure and algo-
rithm by intentionally wasting the abundant LBA space.

2. Under-utilize each LBA: We note that special data pat-
terns (e.g., all-zero and all-one vectors) can be highly

compressed even with simple compression algorithms
such as 1z4 and Snappy. Hence, we should investi-
gate whether data management software can employ
simpler data structure and algorithm by intentionally
wasting the 4KB storage space of each LBA (i.e., leave
each 4KB LBA sector partially filled with user data and
padded with all-zero vectors).

3 Preliminary Case Studies

Following the theme presented above, we carried out three
case studies that apply the proposed theme to (1) improve
the performance of PostgreSQL at minimal storage space
overhead, (2) reduce the impact of GC in log-structured
data store, and (3) architect a new highly efficient KV store.
All the experiments were carried out based on commercial
SSDs [5] that support built-in transparent compression and
achieve the same IOPS (IO per second) and throughput per-
formance as leading-edge normal NVMe SSDs.

3.1 Improve the Performance of PostgreSQL
3.1.1 Background

PostgreSQL applies B-tree index to manages its data storage,
and realizes MVCC (multi-version concurrency control) by
storing all the row versions in the table space. Hence, instead
of directly in-place updating a row, PostgreSQL always first
stores the new row version at a new location and relies on
a background vacuum process to reclaim the table space oc-
cupied by dead row versions. As a result, the performance
of updating non-index fields in a row strongly depends on
whether PostgreSQL can store the new row version in the
same page as the old row version:

o If the page hosting the old row version is full, Post-
greSQL has to store the new row version in another
page. Hence, PostgreSQL must accordingly modify the
B-tree structure by manipulating (and splitting or creat-
ing) one or multiple additional pages. This causes extra
CPU usage and performance degradation.

o If the page hosting the old row version has sufficient
empty space, PostgreSQL simply appends the new row
version in that page. By keeping the B-tree structure
intact, this causes very low CPU usage, leading to a
higher speed performance.

The above fact reveals a fundamental trade-off between
TPS (transactions per second) performance and storage
space usage: When inserting new rows into a page, if we do
not completely fill the page and reserve the remaining empty
space to absorb future updates, we can improve the TPS per-
formance. Nevertheless, this meanwhile leads to larger stor-
age space usage. PostgreSQL allows users to configure such
a trade-off by exposing a parameter called fillfactor. Being
a percentage value between 10 and 100, it controls how full



each page will be filled with inserted rows. Its default value
is 100, i.e., each page is 100% filled with inserted rows and
hence does not reserve any space for future updates.

3.1.2 Basic Concept and Experimental Results

Storage hardware with built-in transparent compression
makes PostgreSQL much less subject to the above perfor-
mance vs. storage cost trade-off, leading to a unique oppor-
tunity to improve the PostgreSQL TPS performance at min-
imal storage cost. As pointed out above in Section 2, spe-
cial data patterns like all-zeros can be highly compressed.
Meanwhile, with fillfactor being less than 100, PostgreSQL
initializes the reserved space in each page as zeros. Hence,
when running PostgreSQL on SSDs with built-in transpar-
ent compression, the all-zero segment in each page only oc-
cupies very small amount of physical flash memory storage
space. Therefore, by decoupling the logical vs. physical stor-
age space utilization efficiency, storage hardware with built-
in transparent compression allows PostgreSQL aggressively
reduce the fillfactor to improve the TPS performance at very
small increase of physical storage space usage.

To further demonstrate this concept, we carried out ex-
periments on PostgreSQL (version 10.10) using the Percona
Sysbench-TPCC OLTP benchmark [3]. We used a server
with 32-core 3.3GHz Xeon CPU and 64 client threads. For
the purpose of comparison, we run the same experiments on
one 3.2TB NVMe SSD and one 3.2TB SSD with built-in
transparent compression. By keeping the fillfactor as its de-
fault value of 100, the PostgreSQL TPS is 3,214 and physi-
cal storage usage is 740GB in the case of NVMe SSD, and
the PostgreSQL TPS is 3,128 and physical storage usage is
178GB (i.e., the Sysbench dataset can be compressed from
740GB to 178GB) in the case of SSD with built-in transpar-
ent compression. By reducing the fillfactor to 75, the Post-
greSQL TPS improves to 4,265 and physical storage usage
jumps to 905GB in the case of NVMe SSD, and the Post-
greSQL TPS improves to 4,330 and physical storage usage
slightly increases to 198GB in the case of SSD with built-in
transparent compression. As further illustrated in Fig. 2, the
results suggest that, by simply configuring the fillfactor pa-
rameter, PostgreSQL can noticeably benefit from the decou-
pled logical vs. physical storage space utilization efficiency.

3.2 Reduce the Impact of GC
3.2.1 Background

Log-structured design principle [21, 27] has been widely
used to implement modern data management systems, €.g.,
SSD-oriented file systems [15, 31]) and KV stores [12, 18,
24, 26]. Because log-structured data stores do not perform
in-place updates, stale data will accumulate over the time,
leading to the data storage bloating (or space amplification).
To limit the storage space amplification, storage systems

4500 -~ — b

IS

=}

S

<}
T

w

@

=}

S
T

PostgreSQL TPS
£3
&8
» O
»
w)

_ fillfactor=100

3000 - —— =
| | | | | | | |
100 200 300 400 500 600 700 800 900 1000
Physical Storage Usage (GB)

Figure 2: Illustration of the measured Sysbench-TPCC TPS
performance and physical storage usage, where TC-SSD
means SSD with built-in transparent compression.

must periodically carry out background GC operations to re-
claim the storage space at the cost of write amplification.
This leads to a fundamental trade-off between space ampli-
fication and write amplification: Let C,,; and Cj,,,; denote
the amount of valid and invalid data in the log-structured
data store. Define ¥ = (Cyu; + Cinvar) /Crar as the data bloat-
ing factor, and we trigger GC whenever Y is larger than a
given threshold 7;,. As we reduce the threshold 7, the
runtime data bloating will become less significant (i.e., the
peak space amplification will reduce), and meanwhile GC-
induced write amplification will increase and hence GC will
more noticeably degrade the system performance.

3.2.2 Basic Design Concept

Following the proposed theme, we present a method called
virtual data trim to make log-structured data store less sub-
ject to the space amplification vs. write amplification trade-
off. As illustrated in Fig. 3, the basic concept is to reset the
content of invalid data elements to all-zeros, through which
we can rely on the transparent compression, instead of GC, to
reclaim the physical storage space occupied by invalid data.
It only reduces the physical storage space bloating, and the
logical storage space bloating remains unchanged. There-
fore, once we schedule GC based on the physical storage
space bloating, we can reduce the frequency of GC opera-
tions, which can reduce the GC-induced write amplification
and hence reduce its impact to the system performance.

We note that virtual data trim also induces write amplifi-
cation, since it carries out read-modify-write in order to reset
the data content. Therefore, we should perform virtual data
trim only if it causes sufficiently small write amplification.
Given the 4KB SSD sector size, we propose the following
strategy to implement the virtual data trim: Within each 4KB
sector, let S, denote the amount of valid data and define
y¥) = 4KB /Svar- We perform virtual data trim only for those
sectors whose ¥; is larger than the threshold 7;,. We note that,
if S, 1s O (i.e., the 4KB sector contains only invalid data),
we can simply trim the entire sector, instead of using virtual
data trim. Accordingly, we should modify the GC schedul-
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Figure 3: Tllustration of the proposed virtual data trim design
concept to reclaim physical storage space without GC.
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and trigger GC whenever 7, is larger than the threshold 7.

3.2.3 Preliminary Experimental Results

To preliminary evaluate the proposed design approach, we
implement a simple log-structured data store that consists of
a number of 64MB segments. At one time, only one seg-
ment is open to receive inserted/updated data elements in the
append-only manner. Once the open segment reaches 64MB,
it will be closed, and a new empty segment will be opened.
During each GC operation, we search among all the closed
segments and pick the ones with the highest garbage rate for
recycling. For the purpose of comparison, we studied two
scenarios: (1) Current practice: Following the current prac-
tice of log-structured data store design, all the closed seg-
ments are strictly immutable, and we do not apply data trim;
(2) Trim-assisted: We apply the proposed virtual data trim
to runtime reclaim the physical storage space, where all the
segments are no longer strictly immutable. We set each data
element is 2KB, and Table 1 lists the measured write ampli-
fication (WA) and physical space amplification (PSA). The
results show that the proposed design approach indeed could
enable a more favorable trade-off between write amplifica-
tion and physical space amplification.

Table 1: Measured write and physical space amplification.

Current practice Trim-assisted
Yin 1.2 1.3 1.4 1.2
WA 3.20 2.34 1.93 2.16
PSA 120% 131% 141% 119%

3.3 Hash-based KV Store
3.3.1 Background

To implement a KV store, the core design decision is the
index data structure, which can be either tree-based or hash-
based. However, compared with significant prior efforts on
tree-based KV store (e.g., see [7, 10, 12, 18, 22, 24, 30]), lit-
tle prior efforts chose to focus on hash-based KV store [11],
even though hash-based approach can support higher index
access throughput. The in-memory data store Redis [25] ap-
pears to be the only commercially successful hash-based KV
store. Arguably, this is mainly due to the very high memory
cost of hash-based approach, especially compared with the
ones built upon log-structured merge tree.

In conventional practice, hash-based KV store must use an
in-memory hash table to maintain the mapping from the key
space to storage space. Such indirect addressing through the
intermediate hash table can ensure the compact placement
of KV pairs on the storage space and hence maximize the
storage space utilization. Meanwhile, the memory footprint
of hash table is directly proportional to the number of KV
pairs, leading to prohibitively high memory cost for large-
scale hash-based KV stores.

3.3.2 Basic Design Concept

Following the theme of leveraging the decoupled logical
vs. physical storage utilization efficiency, we propose a
table-less hash-based KV store design approach as illus-
trated in Fig. 4. The basic idea is to directly hash the key
space onto the logical storage space, without going through
an intermediate hash table. In particular, let K denote the key
space of the KV store and IL. denote the logical LBA storage
space. We use a hash function fx_,; to hash each key K; € K
onto one LBA L; € .. By obviating the use of a hash ta-
ble, it eliminates the memory cost obstacle faced by conven-
tional implementation of hash-based KV store. Moreover, it
relieves CPU from managing/searching hash table, leading
to less CPU usage. As pointed out above, indirect address-
ing through an in-memory hash table can ensure the compact
placement of KV pairs on the logical storage space. In con-
trast, as illustrated in Fig. 4, the proposed approach is fun-
damentally subject to logical storage space under-utilization
(i.e., almost all the LBAs have empty space left unoccupied).
Once we keep the content of the unoccupied space as all-
zeros, storage hardware with built-in compression can natu-
rally retain the physical storage under-utilization.
Converting this simple design approach into a commer-
cially viable KV store certainly is nontrivial, and must ade-
quately address several open issues and overcome many en-
gineering challenges. For example, we should effectively
handle the occurrence of hashing overflow when more than
4KB of KV pairs are hashed onto the same LBA. In this case,
we should use a separate data store to host those spilled-
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Figure 4: Tllustration of the proposed table-less hash-based KV store design approach.

over KV pairs. Moreover, given the key space K, we must
make the LBA space (i.e., |L|) large enough in order to
make the hashing overflow rate sufficiently low (e.g., be-
low 1%). Therefore, as the size of the key space varies,
we must accordingly adjust the size of the LBA space and
meanwhile ensure minimal impact on the runtime KV store
performance. It is also highly desirable to develop a math-
ematical formulation framework that can guide the runtime
LBA space re-sizing.

3.3.3 Preliminary Experimental Results

We implemented a preliminary KV store prototype that can
realize the basic GET and PUT operations, and use embed-
ded SQLite [29] to absorb the spilled-over KV pairs. The KV
store serves all the PUT requests in an asynchronous man-
ner, i.e., after recording the PUT requests in the write-ahead
log (WAL), client threads submit PUT requests to a queue,
and background threads process the queue in a batch mode
with asynchronous I0s. As pointed out in [16], the use of
asynchronous IOs can very effectively improve the through-
put at low CPU usage. To improve the operational paral-
lelism, we partition one table space into multiple sections,
each section has its own PUT request queue and associates
with one background thread that processes the PUT request
queue. All the GET requests are served by client threads
through synchronous direct-IOs. For the purpose of evalua-
tion, we carried out experiments on this KV store prototype
and RocksDB with the following configurations: We loaded
2 billion KV pairs, where each key and value is 16-byte and
400-byte, respectively. We kept the default RocksDB set-
tings, and the background thread pool size is 32. For our
KV store prototype, we partitioned the table space into 16
sections. Table 2 lists the measured results when running 32
client threads with 7:3 GET vs. PUT ratio. The results shows
that the table-less hash-based KV store has a very promis-
ing potential to achieve significantly higher performance and
meanwhile consume less CPU cycles and almost zero mem-
ory capacity, compared with the popular RocksDB.

Table 2: Measured KV store performance and CPU usage.

Read latency CPU
Avg. 99% utilization
Proposed 275K 130us 605us 21.7%
RocksDB 182K 240us 915us 43.7%

ops/s

4 Related Work

Research community has long studied the benefit and trade-
off of applying compression in database [6, 19, 28, 14, 23],
and investigated the implementation of transparent com-
pression at the filesystem level [9, 8] and block device
level [20, 17]. By implementing an emulator for SSD with
built-in transparent compression, Zuck ef al. [32] studied the
options of integrating transparent compression into SSD, and
demonstrated its potential of reducing storage cost for rela-
tional database without sacrificing TPS performance. Most
prior work studied the use of compression solely for the pur-
pose of reducing the data storage cost. In comparison, this
work studies the potential of simplifying data management
software in the presence of storage hardware with built-in
transparent compression.

5 Conclusion

This position paper for the first time points out that, by de-
coupling the logical storage space utilization from the phys-
ical storage space utilization, storage hardware with built-
in transparent compression enables a promising potential to
innovate data storage management software. The essential
theme is to make data storage management software inten-
tionally and appropriately under-utilize the logical storage
space in return for employing simpler data structures and
algorithms, which can further enable lower implementation
complexity and higher performance. We carried out three
preliminary case studies that apply this design theme in the
context of relational database and KV store, and the results
well demonstrate the promise.



6 Discussion

Given the wide landscape of data management software
ecosystem, there will be numerous open questions and un-
foreseen opportunities as the research community start to
explore this proposed direction. Here we list several open
questions which hopefully may serve as a catalyst.
Application to more relational databases: This position
paper demonstrates how PostgreSQL may benefit from the
proposed theme by simply configuring a parameter. It re-
mains unclear how other popular relational databases (e.g.,
MySQL and Oracle) could utilize this theme. Because
they implement MVCC using different strategies than Post-
greSQL, we expect that one may need to appropriately mod-
ify their source code in order to gain similar benefits.
Integration into log-structured data store: This position
paper presents very preliminary results on applying virtual
data trim to reduce the GC impact for log-structured data
store. Much more research is needed to fully understand the
trade-offs and study how to practically integrate the proposed
technique into real-world log-structured data stores.
Implementation of table-less hash-based KV store: This
position paper outlines the basic idea of the proposed table-
less hash-based KV store. By eliminating the memory-
hungry hash table, it has a promising potential to en-
able high-performance, low-cost alternatives to existing KV
stores such as RocksDB. Of course, there are many open is-
sues to be addressed, e.g., how to most effectively handle
hashing overflow, how to realize LBA space resizing at the
minimal performance impact, and how it can support addi-
tional features such as snapshot and transaction.
Application to data analytics: Data analytics typically em-
ploy column-store to improve the performance and reduce
the storage cost. However, the heavy use of compression
in today’s column-store makes it almost impossible to effec-
tively serve transactional queries. Column-stores may possi-
bly leverage the decoupled logical vs. physical storage space
utilization to mitigate this issue, which still remains a com-
pletely open question.

Application to filesystems: As the core operation of any
filesystems, storage space allocation and indexing involve
a trade-off between storage space utilization efficiency and
implementation complexity (and performance). This clearly
leads to a potential of leveraging the proposed theme in the
context of filesystems.

Application to SSD-based caching for HDDs: Comple-
menting HDDs with SSD-based cache can improve the stor-
age system performance at modest cost overhead. In con-
ventional practice, cache must maintain a complicated index
data structure to manage the mapping between HDD storage
space and SSD-based cache space. Following the proposed
design theme, one could envision a cache design solution
that obviates the explicit use of indexing, which can reduce
the implementation complexity of the SSD-based cache.
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