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Abstract

The Serverless or Function-as-a-Service (FaaS) model capital-
izes on lightweight execution by packaging code and depen-
dencies together for just-in-time dispatch. Often a container
environment has to be set up afresh— a condition called “cold
start", and in such cases, performance suffers and overheads
mount, both deteriorating rapidly under high concurrency.
Caching and reusing previously employed containers ties up
memory and risks information leakage. Latency for cold starts
is frequently due to work and wait-times in setting up various
dependencies — such as in initializing networking elements.
This paper proposes a solution that pre-crafts such resources
and then dynamically reassociates them with baseline con-
tainers. Applied to networking, this approach demonstrates
an order of magnitude gain in cold starts, negligible memory
consumption, and flat startup time under rising concurrency.

1 Introduction

Containerization decouples developers from provisioning of
hosting environments, simplifies software solutions, and fa-
cilitates frictionless evolution and delivery of services. In
comparison with virtual machines (VMs), containers are re-
source efficient means of performing quick executions, and
thus provide for highly responsive on-demand staging of
solutions at an exceptional scale [17], —notably, in micro-
services oriented and server-agnostic deployments. In particu-
lar, the serverless model (also known as Function-as-a-Service
or FaaS) permits the developer to focus exclusively on the
application logic [13], while freeing up the cloud service
provider (CSP) to maximize productive utilization of infras-
tructure. FaaS has emerged as the natural choice for cloud-
and container-based fulfillment [2] [7] [5] [8] as on-demand
computation increasingly materializes as event-triggered tasks
that arise unpredictably and then run to completion. FaaS in-
troduces new software management considerations that CSPs
must weigh [12, 15]; these include, security, determinism, and
startup overheads of container-based dispatch.

A function’s execution must be preceded by the bring-up
of its execution environment —which frequently comprises

a “cold start” wherein the container is started from scratch.
Even though containers are several factors faster than VMs
their cold start time can still be a significant fraction of that of
a typical function’s execution and rise sharply with increased
concurrency of function triggers [6] as described in section
3. Concurrent function executions are common especially
during rush hours (e.g. Uber) and with function chaining.
Common workarounds to reduce cold starts tend to be costly
and resource consuming, as explained in section 2.

A detailed analysis of time spent in various stages of a
cold start in section 4 identifies network creation and initial-
ization as the prime contributor to latency (also shown in
[16]), a common stage involved in almost all the serverless
frameworks. The solution proposed in this paper (and pro-
totyped with Apache OpenWhisk) is to (i) pre-create and
cache networking endpoints, (ii) bind them to function con-
tainers when created, and (iii) salvage them for reuse when
function containers are dismantled. This is achieved by using
Pause containers [1], which are network-ready empty contain-
ers readily attachable to other containers that execute using
its predefined network configuration. Our solution includes a
management system around this concept, called as Pause Con-
tainer Pool Manager, and abbreviated as PCPM, reduces cold
start latencies and their concurrency impact by nearly an order
of magnitude; for example, at hundred concurrent containers,
the startup time reduces by close to 80%, while consuming a
negligible amount of system memory. Our solution, described
in section 5 and evaluated in section 6 is not limited to Open-
whisk. Section 7 captures continuing and future work and
concludes. Even though this paper focusses on pre-creating
network resources, the idea of identifying FaaS performance
bottlenecks and pre-creating or pre-fetching resources can be
extended beyond network endpoints as discussed in section 7.

2 Related Work

The existing approaches revolve around ensuring that the envi-
ronment for a function (runtime, dependencies, and versions,
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Figure 1: Impact of concurrent cold starts: (a) shows the total time for different concurrent cold starts; total time increases with
concurrency, (b) shows the total time under concurrent cold start for AWS Lambda. Total time increases with concurrency and
Lambda employs additional virtual machines (VMs) to mitigate this problem. Multiple instances of the same function are used.

known memory and network requirements) pre-arranged for
its invocation. One popular approach is pre-warmed contain-
ers [10] which saves the cost of launching a new container
by pre-creating the container with the needed code and its
dependencies and starting it up when invoked. A related ap-
proach, Warm containers 3, 10], goes further and saves the
startup time by caching a running copy of the container with
the needed environment (between successive executions) and
usually this approach ties up more resources. Both techniques
are limited to using the containers for the specific environ-
ments for which they are created; and failure to do so means
either squandering memory, swap space, etc. by overprovision-
ing such resources, or, degrading scalability and predictabil-
ity of response time by undersubscribing them. Even slight
under-provisioning can provoke cold-start bursts when arrival
patterns shift suddenly, and produce large startup times. A
heuristic, periodic warming [4] consists of submitting dummy
requests every so often to induce a CSP to keep containers
warm. Non-deterministic and concurrent invocations are not
effectively mitigated by this technique. Akkus et al. [11] re-
duces container counts by running multiple functions from
same user inside a container, which is still prone to cold starts
as user counts rise.

3 Impact of Concurrent Cold Starts

This section describes the cold start issue and its measured
impact in detail. First, we show the cold start symptoms
through experimentation using the open source Apache Open-
Whisk [8] framework. Here we trigger incremental concur-
rent cold starts and use custom instrumentation to generate
a latency breakdown of execution. Then, we confirm similar
effects (but different magnitudes) on AWS Lambda [2]. For
both frameworks, we employ a simple, short running, ALU in-
tensive function (i.e. light on caches and memory bandwidth)
as the test case; this function calculates prime numbers within
a fixed range using the sieve method [9]. Note that the cold
start issue is independent of the function and related to the

container start up required to run the function.

3.1 Apache OpenWhisk

Our Apache OpenWhisk setup uses a single Intel Xeon®
Platinum 8180 server to both host the framework and exe-
cute functions. Since OpenWhisk is built upon Docker, we
have used Docker’s logging and eventing capabilities to trace
the life of a function and generate a latency distribution. In
Fig. 1(a), we plot the 99" percentile time attributed to various
phases under different numbers of concurrent cold starts'. For
simplicity in Fig. 1(a), we divide the vertical bars into three
parts: (i) startup time — which is the wall-clock time to create
and initialize the Docker container, (ii) run time, which is the
elapsed time to the function (i.e. compute prime numbers),
and (iii) remaining time that includes the framework’s man-
agement overheads such as identifying and meeting various
module dependencies, load balancing, user authentication etc.
The total time to execute functions increases dramatically
with concurrency even though the server has sufficient cores
to run these activities independently. More than 90% of this
total time is spent in the start up time (shown in red), indicat-
ing a scaling bottleneck. The issue is not with the OpenWhisk
architecture but with the container network setup in the kernel
for the containers, as explained in Section 4.

3.2 AWS Lambda

To ensure we are not merely confronting some Apache Open-
Whisk artifact, we also characterized execution on AWS
Lambda. Fig. 1 (b) shows the total time to execute Lambda
functions for concurrent function triggers. We use the ap-
proach described by Wang et al. [18] to determine when new
Virtual Machines (VMs) and containers are used by Lambda
to execute functions. Fig. 1(b) shows that the total 99" per-
centile time increases with concurrency, though at a gradual

'We cross-verify the startup time measurements by using Docker logs
generated by the Docker daemon
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Figure 2: Container and network namespace creation.

rate with the aid of multiple VMs used for concurrent function
execution. The total time however increases significantly with
increasing cold containers within the same VM. As reported
in Wang et al. [18], the VMs used for Lambda are approxi-
mately 3 GB in size; thus, Lambda incurs significant memory
outlay to mitigate the concurrent cold start scaling bottleneck.

4 Role of Network in Cold Starts

Fig. 2, left, depicts the lifecycle of a Docker container (how-
ever, the illustration also applies to other containers). It shows
that a container goes through four major stages, viz. (i) service
invocation, in which a function trigger reaches the Docker
daemon, (ii) startup, which consists of creating a container,
setting up its network, and connecting it to the network, (iii)
run time, in which the function is executed, (iv) cleanup,
which includes stopping the container, disconnecting its net-
work, and destroying it. The service invocation, startup, and
run time fall directly in the critical path of the function execu-
tion. The cleanup step could fall indirectly in the critical path
of other functions as it demands cycles from Docker daemon.

To understand the scaling bottleneck, we arbitrarily pick
the 50 concurrent execution case from Fig. 1 (a) and break
down the total execution time of each function into the four
steps listed above. Fig. 3 shows a Gantt chart of their execu-
tion timelines, which highlights the growth in startup time
as the major factor limiting the scaling of performance. The
increase in the comparatively modest service invocation time
is from the Docker daemon taking more time to process the
concurrent requests. The run time remains steady across all
the containers. The cleanup time is the second highest contrib-
utor to the full execution time. The service invocation, startup,
and cleanup are overheads for the FaaS provider.

Referring back to Fig. 2, the startup time is further broken
down into Container Create, Network Create, and Network
Connect times with the help of the Docker events tracing
mechanism. Our analysis finds that the Network Create and
Network Connect steps account for 90% of the startup time.
To drill further into these network tasks we emulate network
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Figure 3: Timeline of 50 concurrent functions with alternate
containers. Startup time accounts for 90% of total time.

Table 1: Network Namespace Creation and Removal Bottle-
neck under Concurrency

#Concurrent Namespaces | 1 10 50 100
Create Time (s) 028 | 1.27 | 6.28 | 14.41
Cleanup Time (s) 0.20 | 0.71 | 3.24 | 7.77

namespace creation within the Linux kernel — by using the
Linux ip command to create and initialize the network in a
manner similar to Docker. The steps in Fig. 2, right, include
creating a new network namespace, creating virtual Ethernet
(veth) pairs, assigning IP address, and enabling the connec-
tions. We create and initialize multiple networks concurrently
to emulate the launching of multiple Docker containers. Ta-
ble. | shows that the time to create network namespaces and
initialize them increases with concurrency, and are the main
reason for the super-linear increase in startup time. The clean-
ing up of a container includes deleting the namespace and veth
pairs, and Table | shows that this too increases significantly
with concurrency. A recent study [16] corroborates our find-
ings and identifies that the scalability bottleneck of namespace
creation is due to a single global lock. They [16] also explain
that namespace cleaning happens in batches and is less time
consuming compared to namespace creation. Virtually all
serverless frameworks require creating network namespaces
frequently, thereby facing performance hurdle as of Linux
kernel version 4.4.0-116 (Ubuntu).

_Service Run time Cleanup
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Trigger Container Execution Container kill
start
Container die
Startup Release pause
Container Attach to pause COnGNCHONICUsS
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Figure 4: Container lifecycle under pause containers — by-
passes time-consuming Network create and connect steps.
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5 Pause Container Pool Manager (PCPM)

This section describes the approach for the solution this paper
takes. It consists of pre-creating networks and connecting
them to function containers, so that the time otherwise spent
in the network create and network connect steps (Fig. 2) are
removed from the critical step of startup. For pre-creation and
initialization of networks, we borrow from Kubernetes [14],
the concept of Pause containers [1] and use it as explained in
Section 5.1. We also develop a pool manager for connecting
the appropriate function to a pause container and managing its
lifecycle. We prototype the complete solution, termed PCPM,
for evaluation under Apache OpenWhisk.

5.1 Network Pre-creation

A pause container (PC) is created ahead of time, with its ini-
tialization paused after the network creation step where an IP
address is assigned to it. A normal Docker (or any) container
is subsequently attached to a PC when needed, thus effectively
sharing its pre-established network namespace. Since PCs are
part of the (Docker) network, any container attached to a PC
is also part of the same network and can communicate with
other containers that are part of that network.

Our solution incorporates a pool management system —
pause container pool manager (PCPM). The PCPM creates
PCs and places them in a pool. When needed, they are then
taken from the pool and bound to function containers; and
when those application containers are ready to terminate, the
PCs are detached and placed back in the pool. Fig. 4 shows the
resulting new cold start process — now, the time-consuming
network-create and network-connect steps of Fig. 2 are re-
placed by the simple step of just attaching the newly created
execution container to a PC taken from the pool.

When the function container terminates, the PC is simply
detached and put back in the PC pool for reuse. The PCs
are environment agnostic and can be used by any application
container; thus, a PC used at one time by a Python function
can be later re-used for a Node.js function. Further, except
for the network ID, the PCs are stateless, —needing just a few
kilobytes each; and the PCs do not become conduits of any
information between a previous attachment and a new one.

5.2 Pool Management

As just recounted, the PCPM manages a pool of PCs; it does
so in three key phases. The first phase is the build phase
during which the FaaS framework is setup and initialized.
Fig. 5 (a) shows the build phase of a generic container based
framework. The module responsible for launching containers
and executing tasks is referred to as Invoker in OpenWhisk.
As shown in Fig. 5 (a), during the build phase, a number of
pause containers are launched. At this time, PCPM initializes
a free pool with the identifiers corresponding to the PCs. The
invoker has knowledge about the PCs through the PCPM.

Fig. 5 (b) shows the second phase, — namely the execution
phase. During this phase, the invoker queries the pool manager
and obtains the identifier of an available PC (e.g., PC 1 in
Fig. 5 (b)). Using this identifier, the invoker attaches the newly
launched container to the corresponding PC (i.e., PC 1), and
removes it from the free pool.

Fig. 5 (c) depicts the third phase, —namely the completion
phase, when a function is completed and its execution con-
tainer is terminated or otherwise recycled. At this point, the
invoker contacts the pool manager and the pool manager re-
claims PC1 and inserts the identifier back into the free pool.
The point of insertion doesn’t matter as PCs have no data
retention and therefore, no locality benefits.

It is beneficial to keep a large number of PCs in the pool
to support function execution at scale, and this is reasonable
given their small memory footprint. The Linux kernel has
a limit on creating multiple veth pairs on a single network
bridge (1024) but this is easily mitigated by creating multiple
network bridges and linking them together to support a large
number (>> 1024) of PCs. In the absence of free PCs, a
default startup process will follow. A requirement for using
PCs is that the network configuration of the function con-
tainer match that of the PC, and since in OpenWhisk, function
containers are expected to have port 8080 exposed, the PCs
expose port 8080 as well. Even though non-standard network
requirements are unlikely since common FaaS frameworks
may not support them, it is easy to accommodate them when
they arise, by creating multiple variety of PC pools for them
under PCPM. Even though we built PCPM for evaluation
within OpenWhisk, it can be implemented for any other FaaS
framework, as the basic concept of pre-creating and initializ-
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Figure 6: Reduction in cold start time with PCPM. PCPM
reduces the cold start execution time up to 80%.

ing networks is common across frameworks.
6 Results

We evaluate concurrent executions for our PCPM-based Open-
Whisk using unmodified OpenWhisk for baseline. In this
section we compare with the pre-warm and warm container
mitigation and show up to 80% savings in execution time
(relative to cold starts) and memory saving of several orders
of magnitude relative to pre-warm/warm containers.

6.1 Comparison with OpenWhisk

Fig. 6 compares its execution time with that of baseline, for
concurrency levels ranging from one to hundred. At fifty
concurrent cold starts, execution time is cut by 75%; this
improves further to a cut of 80% at hundred concurrent cold
starts. Fig. 7 shows a Gantt-chart for fifty cold-start executions
under PCPM-OpenWhisk for comparison with the baseline
in Fig. 3 (a). It may be noted that the cleanup time is also
reduced as PCPM avoids deleting network namespaces and
veth pairs during terminations. Work is in progress to identify
next level bottlenecks and reduce the service invocation time.

6.2 Comparison with Pre-warm and Warm

Table 2: PCPM vs Cold, Pre-warm, and Warm Containers

Container | Environment| Function |Mem Usage (MB) | Total Time (s)
Type Dependency | Dependency | ( 50 Containers) |(50 Functions)
Cold NO NO 0 20.01
Warm YES YES 1600 0.78
Pre-Warm YES NO 1500 1.05
PCPM NO NO 2 4.84

Table 2 compares PCPM-based cold-starts with baseline
executions that are pre-warmed, warmed, or neither. Cold con-
tainer execution has no memory pre-committed (column 4).
Warm execution caches containers and code dependencies,
and thus has the highest memory footprint. The pre-warm
case has the execution environment (e.g. Python) ready but
must bring in the code dependencies, causing a high foot-
print. The memory footprint for the PCPM-based execution
is negligible. For our simple prime number function, the foot-
print and time of warm container compare well with those
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Figure 7: Timeline for 50 concurrent functions with PCPM
with alternate container shown (cf. Fig. 3).

of pre-warm containers. The gap between PCPM and Pre-
warmed time, while much smaller than cold-start, reflects the
dominance of the process setup work over the actual work
in the function itself. However, for more complex work (e.g.,
neural network inference), one should expect significantly
larger memory footprints but modest time reduction for warm
containers over pre-warm containers. Similarly the gap in
memory footprint between PCPM-based and the pre-warm or
warm containers can be expected to widen significantly. For
such complex actions, the relatively small contribution of the
process setup should make the total time comparable between
PCPM-based and pre-warmed activations.

7 Summary and Discussion

This paper presented the ideas of pre-creating resources to
improve the FaaS performance. We focused on the container
cold start issue and identified the network creation and initial-
ization to be the major reason for the performance bottleneck.
The proposed solution pre-creates networks (instead of pre-
creating containers), and seamlessly attaches the pre-created
networks to function containers. To pre-create networks, this
paper uses pause containers, and to govern their lifecycle, it
creates a pause-container pool manager (PCPM) system. Eval-
uation (using an OpenWhisk based prototype) demonstrates
up to 80% reduction in execution time compared with cold
containers, and several orders of magnitude reduction in mem-
ory footprint with a modest drop in performance compared
with pre-warmed containers. This solution does not exclude
the use of current approaches in which function containers
may themselves be pre-created and/or cached for reuse; how-
ever, it makes it significantly less necessary to adopt such
measures and tie down memory or clamp trigger rates.

With PCPM re-using pause containers and thereby IP ad-
dresses, we would like to add multiple security and isolation
policies over network namespaces to strengthen the security
aspects of PCPM. The idea of pre-creating or pre-fetching
resources can be extended beyond network entities. Some
opportunities include pre-creating components of function
environments and pre-fetching code dependencies with the
help of the container orchestrator to make FaaS agile with
minimal memory footprint.
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