usenix .-
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

MarX: Controlled Data Migration in the
Expansion of Decentralized Object-Based

Storage Systems

Li Wang, Didi Chuxing; Yiming Zhang, NiceX Lab, NUDT;
Jiawei Xu and Guangtao Xue, SJTU

https://www.usenix.org/conference/fast20/presentation/wang-li

This paper is included in the Proceedings of the
18th USENIX Conference on File and

Storage Technologies (FAST '20)
February 25-27, 2020 « Santa Clara, CA, USA
978-1-939133-12-0

Open access to the Proceedings of the
18th USENIX Conference on File and
Storage Technologies (FAST '20)

is sponsored by

. fiNetApp® —

MAPX: Controlled Data Migration in the Expansion of
Decentralized Object-Based Storage Systems

Li Wang
laurence.liwang @ gmail.com
Didi Chuxing

Yiming Zhang
sdiris @ gmail.com (Corresponding)
NiceX Lab, NUDT

Jiawei Xu

titan_xjw @cs.sjtu.edu.cn
SJTU

Guangtao Xue

xue-gt@cs.sjtu.edu.cn
SJTU

Abstract

Data placement is critical for the scalability of decentralized
object-based storage systems. The state-of-the-art CRUSH
placement method is a decentralized algorithm that de-
terministically places object replicas onto storage devices
without relying on a central directory. While enjoying
the benefits of decentralization such as high scalability, ro-
bustness, and performance, CRUSH-based storage systems
suffer from uncontrolled data migration when expanding the
clusters, which will cause significant performance degrada-
tion when the expansion is nontrivial.

This paper presents MAPX, a novel extension to CRUSH
that uses an extra time-dimension mapping (from object
creation times to cluster expansion times) for controlled
data migration in cluster expansions. Each expansion is
viewed as a new layer of the CRUSH map represented by
a virtual node beneath the CRUSH root. MAPX controls
the mapping from objects onto layers by manipulating the
timestamps of the intermediate placement groups (PGs).
MAPX is applicable to a large variety of object-based storage
scenarios where object timestamps can be maintained as
higher-level metadata. For example, we apply MAPX to
Ceph-RBD by extending the RBD metadata structure to
maintain and retrieve approximate object creation times at
the granularity of expansions layers. Experimental results
show that the MAPX-based migration-free system outper-
forms the CRUSH-based system (which is busy in migrating
objects after expansions) by up to 4.25x in the tail latency.

1 Introduction

Object-based storage systems have been widely used for var-
ious scenarios such as distributed file storage, remote block
storage, small object (e.g., profile pictures) storage, blob
(e.g., large videos) storage, etc. Compared to filesystem-
based storage, object-based storage simplifies data layout
by exposing an interface for reading and writing objects
via unique object names, and thus reduces management
complexity at the backend.

Objects are distributed among a large number of object
storage devices (OSDs) possibly with various capacities and
characteristics, making data placement critical for the scala-
bility of object-based systems. Decentralized placement
methods uniformly distribute objects among OSDs without
relying on a central directory, and usually outperform cen-
tralized methods because their clients could directly access
objects by calculating (instead of retrieving) the responsible
OSDs. CRUSH [67] is the state-of-the-art placement algo-
rithm that allows structured mapping from objects onto a hi-
erarchical cluster map comprising nodes representing OSDs,
machines, racks, etc. Currently, CRUSH has been widely
adopted in large-scale storage systems (like Ceph [66] and
Ursa [44]]) owing to its simplicity and generality.

While enjoying the benefits of decentralization such as
high scalability, robustness, and performance, CRUSH-
based storage systems suffer from uncontrolled data mi-
gration after expanding the clusters and/or adding more
intermediate placement groups (PGs). Although the mi-
gration could re-balance the load of the entire system right
after the expansion, it also causes significant performance
degradation when the expansion is nontrivial (e.g., adding
several racks of storage machines).

In practical deployment of distributed storage systems,
it is preferred to avoid large-scale data migration after
cluster expansions [15], even at the cost of temporary load
imbalance. Ceph [66] is a CRUSH-based object storage
system which mitigates CRUSH’s migration problem via
implementation-level optimizations. It limits the migration
rate to a relatively-low level, performing writes to the old
OSDs if the written object is waiting for migration. However,
all object replicas will be eventually migrated to the target
OSDs calculated by the CRUSH algorithm, making Ceph
experience degraded performance for a long period of time.

In contrast, traditional centralized placement methods
could easily control data migration for cluster expansions.
For example, Haystack [15] and HDFS [9] maintain a central
directory recording object positions, so as to keep existing
objects unaffected during expansions and place only new

USENIX Association

18th USENIX Conference on File and Storage Technologies 1

objects onto the newly-added OSDs.

In this paper we present MAPX, a novel extension to
CRUSH that uses an extra dimensional mapping (from object
creation times to cluster expansion times) for controllable
data migration in the expansion of decentralized object-
based storage systems. Each expansion is viewed as a new
layer of the CRUSH map represented by a virtual node
beneath the CRUSH root. MAPX controls the mapping from
objects onto layers by manipulating the timestamps of the
intermediate PGs.

The time-dimension mapping cannot support general ob-
ject storage where the maintenance overhead of per-object
timestamps might be overwhelming. However, MAPX is
applicable to a large variety of object-based storage sce-
narios (such as block storage and file storage), where the
object creation timestamps can be maintained as higher-
level storage metadata. We apply MAPX to Ceph-RBD
(Reliable-autonomic-distributed-object-store Block Device)
[3] and CephFS (Ceph File System) [4] with minimum
modifications to the original CRUSH algorithm in Ceph
(Luminous) [S]]. For Ceph-RBD, we extend the rbd_header
metadata structure to maintain and retrieve approximate
object creation times at the granularity of expansion layers;
while for CephFS, we extend the inode metadata structure to
take the files’ creation times, which could also be maintained
at the granularity of layers, as the creation times of the
files’ objects. More complex applications of MAPX could
be built based on block storage (Ceph-RBD) or file storage
(CephFS). Experimental results show that the MAPX-based
migration-free system outperforms the CRUSH-based sys-
tem (which is busy in migrating objects after expansions) by
up to 4.25 x in the tail latency.

The rest of this paper is organized as follows. Section
introduces the background and problem of CRUSH. Sec-
tion [3] presents the design of MAPX. Section [evaluates
the performance of MAPX and compares it with CRUSH.
Section [5] introduces related work. And finally Section [6]
concludes the paper and discusses future work.

2 Background
2.1 CRUSH Overview

CRUSH uses a logical cluster map to abstract the storage
cluster’s hierarchical structure. Fig. [I] illustrates a three-
level storage hierarchy, where the entire cluster (root) is
composed of cabinets (representing racks), which are filled
with shelves (representing storage machines) each installing
many OSDs (disks). The internal nodes (root, cabinet, and
shelf) in the hierarchy are referred to as buckets (the types
of which are straw2 throughout this paper as discussed in
detail in Section[5.1). The hierarchy is flexible for extension.
For example, cabinets might be further grouped into “row”
buckets for larger clusters.

Object-Based RBDs

take(root) Toot(32)36)-

cabi(8) | [caba(8) | [caby®) | [cabu(®)(12) |

,,,,, bty o(4)
[shfi @ [[shtoi@ JI[shfs @) I shei@) [F

_---Affected weights

select(3, cabinet)

select(1, shelf)

’
I
]
1
I
I
I
1
I
I
I
]
1
I
I

\ select(1,0sd)

-

Figure 1: Example of CRUSH placement algorithm. An
RBD is mapped to a PG which is subsequently mapped to a
list of OSDs. The second operation (select (3, cabinet))
realizes three-way replication with three different cabinets.
For simplicity each leaf OSD has the same weight of one.

Each OSD has a weight assigned by the administrator to
control the OSD’s relative amount of stored data, so that the
load of an OSD is on average proportional to its weight. The
weight of an internal bucket is (recursively) calculated as the
sum of the weights of its child items. There are mainly two
steps for CRUSH to place object replicas onto OSDs, which
are briefly introduced below and will be discussed in more
details in Section[3.1]

First, the objects are categorized into PGs by computing
the modulo of the hashing of object names, i.e., pgid =
HASH (name) mod PG_NUM. Second, the objects in a PG are
mapped to a list of OSDs following the CRUSH algorithm.
The first step is similar to traditional hashing and in the rest
of this section we will briefly introduce the second step.

The CRUSH algorithm supports flexible constraints for
reliable replica placement by (i) encoding the information
of failure domains (like shared power source or network)
into the cluster map, and (ii) letting the administrator define
the placement rules that specify how replicas are placed by
recursively selecting bucket items.

Fig. [I] demonstrates a typical placement procedure of
CRUSH (for the dark blue PG) beginning at the root, where
the values in the buckets’ parentheses represent the weights.
The first operation (take (root)) of the rule selects the root
of the storage hierarchy and uses it as an input to subsequent
operations. The second operation (select(3,cabinet))
repeatedly computes the following Eq. [(T)] to choose x = 3
items (cabinets at this level) for three-way replication, from
totally |{| = 4 items € 7 beneath the root:

C(pgid,i,r) = argmax HASH (pgid, r,ID(i)) x W (i), (1)

ic€i

where pgid is the ID of the input PG, r = 1,2,--- is a pa-
rameter for the argmax computation, HASH is a three-input
hash function, and ID(i) and W (i) are the ID and weight of
an item i € i, respectively. To choose x distinct items, it is

2 18th USENIX Conference on File and Storage Technologies

USENIX Association

70000 58619,
o
60000 5.86%
”
¥ 50000
°
& 40000
2
® 30000
s 776, 1‘;299;;/ 14155,
§ 20000 3.23% -IY7 5902, 58.98%
10000 867, 0.59% I
0.09
0 Ao an M
Adding 1 OSD Adding 1 host Adding 1 rack
(10 OSDs) (80 OSDs)

W Small cluster (240 OSDs) M Large cluster (10,000 OSDs)

Figure 2: Data migration of two simulated CRUSH clusters
during expansions.

possible to perform Eq. [(T)] more than x times because the
output of Eq. may have already been chosen in previous
computation or the chosen item may be failed/overloaded.
Similarly, the subsequent operations (select(1,shelf)
and select(1,0sd)) follow Egq. to choose x = 1 shelf
and OSD beneath each of the three cabinets. The final result
of the placement rule is the three darkblue OSDs in Fig.[T]

2.2 The Main Drawback of CRUSH

CRUSH achieves statistical load balancing without a central
directory, and could automatically re-balance the load when
the storage cluster map changes. On the downside, however,
it also causes uncontrollable data migration in cluster expan-
sions. For instance, adding a new shelf (shf4_3) with 4 OSDs
beneath a cabinet (caby) in Fig. |I| will affect the weights
(labeled in the second red parentheses) of all items along the
path from the newly-added shelf up to the root, and thus will
lead to data movement not only from other shelves in caby to
the newly-added shf, 3 but also from other cabinets to caby.
The amount of data migration can be as high as h% if Aw is
small relative to W [[67]], where £ is the number of levels in
the hierarchy, and Aw and W are the increased weight of the
expansion and the total weight of all OSDs, respectively.

To demonstrate the severity of the problem, we measure
the amount of data movement in two simulated CRUSH-
based three-level Ceph clusters, which adopt three-way repli-
cation taking a rack as a failure domain. One rack consists
of 8 hosts each containing 10 OSDs. The first small cluster
has a total of 3 racks, 24 hosts, and 240 OSDs, and stores
24,000 PGs; while the second large cluster has 125 racks,
1000 hosts, and 10,000 OSDs, and stores 1,000,000 PGs.
We respectively add one OSD, one machine, and one rack to
the two clusters. The result (Fig.[2) shows that the migration
is significant when the expansion is nontrivial, e.g., almost
60% of the PGs will be affected when adding one rack to
the small cluster, which will inevitably cause performance
degradation during the entire migration period.

| cab, | | cab, | ------ | cab, I |cab,,1 || cab, |

—+ —+ —+ — —
[shelf |_|-|| shelf |_|J [shelf U—‘ [shelt Lu [shelf I_H

(a) The composite cluster map after two expansions

RBD, RBD, RBD;

(take(root) \
i select(1, layer) | i
| select(3, cabinet) | | :
| select(1, shelf) I E

\

Ll P _ layer; } L
! !
. P
i P
. b
. b

i i

i
Lo

TN TR T TR
0!

Tayer, | |
"select(l, 0sd) ¥ %

(b) Time-dimension mapping to three layers

Figure 3: MAPX records each expansion as a layer. MAPX
implicitly adds a select operation (select(1,layer)) to
the placement rule.

3 MAPX Design

Compared to moderate load imbalance, large-scale data
migration often has much more negative impact on I/O
performance in the expansion of distributed storage systems.
The CRUSH placement algorithm suffers from data migra-
tion after each cluster expansion because it “crushes” the
differences between the new and the old objects/OSDs. To
address this problem, MAPX extends the original CRUSH
algorithm with an extra time-dimension mapping.

3.1 Migration-Free Expansion

Storage systems usually prefer to avoid data migration after
cluster expansion even at the cost of temporary load imbal-
ance. For instance, Haystack and HDFS leverage a central
directory to keep existing objects unaffected during cluster
expansions. As new objects are stored onto the new OSDs,
the available capacity of them decreases over time and thus
eventually the entire system will achieve approximate load
balancing. Data migration can be performed (with metadata
modification) at any time as needed.

Inspired by the centralized placement methods, our goal is
to achieve controlled data migration for cluster expansions.
To achieve this, we design MAPX on top of CRUSH by
introducing an extra time-dimension mapping to distinguish
the new and the old objects/OSDs, while still preserving the
benefits of randomness and uniformness of CRUSH.

Fig. Bfa) depicts an example of two expansions to the
original cluster which consists of n cabinets each having
two shelves. The first expansion adds a shelf (represented
by a red rectangle) to each of the n cabinets and the second
expansion adds m cabinets (represented by blue rectangles).

USENIX Association

18th USENIX Conference on File and Storage Technologies 3

Algorithm 1 Extended select Procedure of MAPX
1: procedure SELECT (number, type)
2: if rype #“layer” then
return CRUSH_SELECT(number, type)
end if
layers < layers beneath currently-processing bucket
> each layer represents an expansion

A

6 num_layers < number of layers in layers
7: pg < current Placement Group
8 o0+ @ > output list
9 for (i = num_layers—1;i > 0;i— —) do
10: layer < layers]i]
11: if layer.timestamp < pg.timestamp then
12: if layer was chosen by previous select then
13: continue
14: end if
15: 0+ 8+ {layer}
16: number <— number — 1
17: if number == 0 then
18: break
19: end if
20: end if
21: end for
22: return ¢

23: end procedure

Unlike CRUSH which monolithically updates the cluster
map, MAPX views each expansion, as well as the original
cluster, as a separate layer which contains not only the new
leaf OSDs but also all the internal buckets (shelves, cabinets,
etc.) from the leaf OSDs up to the root.

To support the time-dimension mapping with minimum
modifications to CRUSH, we insert a virtual level beneath
the common CRUSH root (Fig. b)), where each virtual
node represents a layer of expansion. The virtual level en-
ables MAPX to realize migration-free expansion by mapping
new objects to the new layer before further processing of the
CRUSH algorithm. Since the new layer will not affect the
weights of the old ones, the placement of old objects within
old layers will not change.

Mapping objects to PGs. In each expansion, the new layer
is assigned with a certain number of newly-created PGs each
having a timestamp (f,4;) equal to the layer’s expansion
time (#;). When writing/reading an object O (with creation
timestamp 7,), we first compute the ID (pgid) of O’s PG by

pgid = Hash(name) mod INIT_PG_NUM]/]
j-1
+ Z INIT_PG_NUM[i], 2)
i=0
where name is the object name, INIT_PG_.NUM]Ji] is the
initial number of PGs of the i layer, and the j™ layer has the
latest timestamp #; < ¢, among all layers. Note that although

PGs might be remapped to other layers for, e.g., load
rebalancing (Section[3.2)), INIT_PG_NUM is a layer’s constant
and thus the mapping from objects to PGs is immutable.
Consequently, each object is mapped to a responsible PG
during creation, which has the latest timestamp #,¢s < 1,
among all PGs. For instance, suppose that the three RBD,
RBD,, and RBDj in Fig. [3[b) are created respectively after
the expansions of layery, layer;, and layer,. The objects
of RBD;, RBD;,, and RBD3 will use the three layers’
INIT_PG_NUM to calculate their PGs respectively within
layery, layer;, and layer,.

Mapping PGs to OSDs. Similar to CRUSH, MAPX maps a
PG onto a list of OSDs following a sequence of operations in
a user-defined placement rule. As shown in Fig.[3(b), MAPX
implicitly adds a select operation (select(1l,layer)) to
the placement rule, so as to realize the time-dimension
mapping from PGs to layers without disturbing the adminis-
trators. Internally, MAPX extends CRUSH’s original select
operation to support the layer-type select (), as shown in
Algorithm [T} If rype is not “layer”, then the processing is
the same as the original CRUSH (Lines 2 ~ 4). Otherwise,
we initialize an array of layers which stores all layers
beneath the currently-processing bucket (usually the root) in
an ascending order of the layers’ timestamps (Line 5). We
also initialize num_layers (the number of layers), pg (the
placement group), and & (the output list) at Lines 6 ~ 8. Then
the loop (Lines 9 ~ 21) adds number layers in the array of
layers to the output list 6. In most cases number = 1 so
that the PG could be mapped to OSDs in one layer, but it is
also possible to specify a larger number for, e.g., mirroring
between two layers of expansions.

Note that the replicas of an object are not necessarily
all placed on the newest layer. For example, suppose
that the last expansion (layerp) adds only two cabinets in
Fig. B(a) (i.e., m = 2) but the second select () function
(Select(3, cabinet)) requires three cabinets. This will
cause the first select () function (select(l, layer)) to be
invoked twice to satisfy the rules following the backtracking
mechanism of CRUSH: when a select () function cannot
select enough items beneath a “layer” bucket, MAPX will
retain (rather than abandon) the selected items and backtrack
to the root to select the lacking items beneath a previous
layer. Lines 12 ~ 14 check whether /ayer has been chosen
by previous select () and if so we continue to the next loop,
so as to avoid duplicate layer selection when performing
backtracking. The double check ensures Algorithm [I] to
correctly handle this situation, respectively returning layer,
and layer) for the first and second select () functions.

3.2 Migration Control

The MAPX-based migration-free placement algorithm pro-
vides (statistical) load balancing within each layer, owing
to the randomness and uniformness of the original CRUSH

4 18th USENIX Conference on File and Storage Technologies

USENIX Association

algorithm, and achieves approximate load balancing among
different layers by timely expanding the cluster when the
load of the current layer increases to the same level as
previous layers.

However, the load of a layer might change because of,
e.g., removals of objects, failures of OSDs, or unpredictable
workload changes. In Fig.[3] for example, it is possible that
the cluster performs the second expansion (layer,) when the
load of the first expansion (layer;) is as high as that of the
original cluster (layerp), but afterwards a large number of
objects of layer; are removed and consequently the loads of
the first two layers may get imbalanced.

To address the potential load imbalance problem, we
design three flexible strategies for dynamically managing the
load in MAPX, namely, placement group remapping, cluster
shrinking, and layer merging.

PG remapping. MAPX supports to control object data
migration by dynamically remapping the PGs. Each PG
has two timestamps, namely, a static timestamp (¢,,s) that
is equal to the expansion time of the PG’s initial layer, and
a dynamic timestamp (#,¢4) that could be set to any layer’s
expansion time. Different from the mapping from objects to
PGs which uses static timestamps (Section[3.I]), the mapping
from PGs to layers is performed by comparing the PGs’
dynamic timestamps to the layers’ timestamps (Line 11 in
Algorithm [T). Consequently, a PG can be easily remapped
to any layer by manipulating the dynamic timestamp (as
illustrated in Fig. Ekb)), which will be notified to all OSDs
and clients via incremental map updates. The storage
overhead for PGs’ timestamps is moderate. For example, if
we use a one-byte index for each PG timestamp (pointing
to the corresponding layer’s timestamp) which supports a
maximum of 28 = 256 layers), and suppose that one machine
has 20 OSDs each responsible for 200 PGs, then the memory
overhead of timestamps for a 1000-machine cluster is 1000 x
20 %200 x 2 x 1B = 8MB.

Cluster shrinking. When the load of a layer becomes lower
than a threshold, MAPX shrinks the cluster by removing the
layer’s devices (such as OSDs, machines, and racks) from
the cluster, as an inverse operation of cluster expansions.
Given a layer Q to be removed from the cluster, we first
assign all PGs in Q to the remaining layers according to their
aggregated weights (for simplicity the reassignment does not
consider the actual loads of the layers), and then migrate the
PGs to the target layers through remapping (as discussed
above). After shrinking the layer Q is logically preserved
(with no physical devices or PGs) and its INIT_PG_NUM will
not change, so as not to affect the mapping from objects to
PGs (following Eq. [2)).

Layer merging. MAPX balances the loads of two layers (Q
and Q') via layer merging, which could be easily realized by
setting the expansion time of one layer (') to be the same
as that of the other (Q).

3.3 Implementing MAPX in Ceph

We have implemented the MAPX structure in Ceph by
augmenting the original CRUSH algorithm with an extra
time-dimension mapping. As shown in Fig.[3(b), the internal
buckets (like shelves, cabinets, and rows, but not leaf OSDs)
may belong to multiple layers. Therefore, we assign an
internal device in a particular layer (i.e., beneath a particular
virtual node) with a virtual device ID by concatenating the
physical device ID and the layer’s timestamp. We use
the weight fields of the virtual nodes to record the layers’
timestamps, which will be compared with the PGs’ dynamic
timestamps for layer selection.

MAPX is not suitable for general object stores, mainly
because it is nontrivial to maintain and retrieve the times-
tamps of arbitrary objects. The overhead of per-object
timestamp maintenance is similar to that of the maintenance
of a central directory, and thus should be avoided in de-
centralized placement methods like CRUSH and MAPX.
However, MAPX is applicable to a large variety of object-
based storage systems such as block storage (Ceph-RBD [3]))
and file storage (Ceph-FS [4]), where the object timestamps
can be maintained as higher-level metadata.

Ceph-RBD. We have implemented the metadata-based time-
stamp retrieval mechanism for Ceph-RBD (RADOS Block
Device). Ceph stores the metadata (such as the prefix of
data object names, and the information of volume, snapshot,
striping, etc.) of an RBD in its rbd_header structure,
which will be retrieved when a client mounts the RBD via
rbd_open. Since an object of an RBD can be created after
any expansions, we inherit the timestamp of the current layer
(when an object is created) as the object’s timestamp. There-
fore, we add a per-object index (named ob ject_timestamp)
to the rbd_header structure which points to each layer’s
expansion time. The storage overhead for the extra metadata
is moderate. For example, if we use one byte for the
per-object index and each object is 4MB, then the storage
overhead of the object timestamp array for a4TB RBD is at
most % x 1B = 1MB.

CephFS. We have also (partially) implemented the time-
stamp retrieval mechanism for CephFS (Ceph Filesystem).
Ceph stores the file metadata (including file creation times)
in the inode structure. A client reads inode when opening a
file and gets the file creation time. Currently we let all the
objects of a file inherit the file’s timestamp, so that we could
control the time-dimension mapping at the granularity of
files. We also plan to support finer-grained object timestamp
maintenance. If the size of a file exceeds a threshold T
(e.g., T = 100 MB), we could divide it into subfiles each
smaller than 100 MB. The file’s metadata maintains both
the mapping from the file to its sub-files and the creation
timestamp of each subfile, so that we could control the time-
dimension mapping at the granularity of subfiles.

USENIX Association

18th USENIX Conference on File and Storage Technologies 5

latency(ms)

origin origin expand 1 expand 1 expand 2 expand 2
read write read write read write

Figure 4: 99" percentile 1/0 latency of MAPX and CRUSH
(during cluster expansions).

4 Evaluation

In this section we evaluate the performance of the MAPX-
based Ceph and compare it with that of the original CRUSH-
based Ceph. Our testbed consists of four machines, of which
three machines run the Ceph OSD storage servers and the
other machine runs the client. Each machine has dual 20-
core Xeon E5-2630 2.20GHz CPU, 128GB RAM, and one
10GbE NIC, running CentOS 7.0. Each storage machine,
installs four 5.5TB HDDs, and runs Ceph 12.2 (Luminous)
with the BlueStore backend. In all experiments every storage
machine is viewed as a failure domain. The Ceph monitor is
co-located with one of the storage servers. The client runs
the fio benchmark.

4.1 1/0O Performance during Expansions

We compare the I/O performance of MAPX and CRUSH
during expansions, respectively being used as the object
placement methods for Ceph.

We use the default values of all parameters of Ceph
except OSD_max_backfills. ~As discussed in Section [I]
Ceph mitigates the migration problem of CRUSH via
implementation-level optimizations. It uses the parameter
OSD_max_backfills > 1 to trade off between the severity
and duration of performance degradation caused by data
migration.

By default Ceph sets the parameter OSD_max_back fills =
1, which makes migration have the lowest priority so
that objects in PGs could be migrated with an extremely-
low speed. Although partially mitigating the degradation
problem, setting OSD_max_backfills = 1 will significantly
extend the migration period and largely increase the write
load before the migration completes: writes to a PG waiting
for migration will first be performed to the origin OSD
and then be asynchronously migrated to the target OSD.
Clearly, this makes Ceph experience less severe performance
degradation but for a longer period of time. We set

800

600

10PS

400

200

origin origin expand 1 expand 1 expand 2 expand 2
read write read write read write

Figure 5: IOPS of MAPX and CRUSH (during cluster
expansions).

OSD_max_backfills = 10, which is more reasonable in this
experiment so that migration could get a higher priority to
demonstrate the algorithm-level difference between MAPX
and CRUSH. We will discuss more on the impact of migra-
tion priority in Section[5.2}

The initial Ceph cluster has three storage machines each
of which has two OSDs. We create 128 PGs, and the
three-way replication results in (on average) 128 x 3 +3 =
2 = 64 PGs for which each OSD will be responsible. We
create 40 RBD images (each with 20GB data) in the initial
cluster. We expand the storage cluster by respectively adding
one and two OSDs to each machine in the cluster. We
evaluate the performance (including I/O latency and IOPS)
of Ceph running the migration-free MAPX, and compare it
with the performance of Ceph running the original CRUSH
algorithm. The I/O size is 4KB. The iodepth is 1 and 128 in
the latency and IOPS tests, respectively.

Fig. Ié—_ll shows the evaluation result for the 99" percentile
tail latencies. Note that cloud storage scenarios usually care
about the (99", 99.9"" or 99.99™" percentile) tail latency
rather than the mean or median latency, so as to guarantee
SLA. MAPX outperforms CRUSH by up to 4.25 %, mainly
because the migration in CRUSH severely contends with
the normal I/O requests. In this experiment, MAPX always
uses six OSDs of the initial cluster to serve I/O requests
because it does not migrate existing RBDs to the new
OSDs. In contrast, CRUSH respectively uses six, nine,
and twelve OSDs, but the CRUSH-induced data migration
severely degrades the performance, which is unacceptable
for latency-sensitive applications.

Fig|5[shows the evaluation result for IOPS respectively in
MaprX and CRUSH. Each result is the mean of 20 runs, and
we omit the error bars because the variances to the mean are
relatively small (less than 5%). Similar to the latency test,
MAPX significantly outperforms CRUSH by up to 74.3%
in the IOPS test, because CRUSH’s data migration contends
with the normal I/O requests.

6 18th USENIX Conference on File and Storage Technologies

USENIX Association

60

51.651.8

50
40
29.930.2
20 18.618.9
13.413.7
9.710.93 10.711.1 II
0 II II
600

1200 2400 4800 9600 19200

Time (us)
w
o

[
o

B CRUSH ® MapX

Figure 6: Computation overhead of MAPX and CRUSH.

140
120
100
80
60

Latency (ms)

40
25.56 28

0
MapX CRUSH
Hread M write

Figure 7: 99" percentile 1/O latency of MAPX and CRUSH
(during cluster shrinking).

4.2 Computational Overhead

We compare the computation times of MAPX and CRUSH
by simulating a Ceph cluster of different numbers of OSDs
(varying from 600 to 19,200). The result (Fig [6) shows
that both MAPX and CRUSH can map an object to an OSD
in tens of microseconds. The small extra times of MAPX
compared to CRUSH come from the computation of the
time-dimension mapping beneath the root.

4.3 1/0 Performance during Shrinking

We evaluate the I/O performance of MAPX (used as the
object placement methods for Ceph) in shrinking. The Ceph
cluster has three storage machines each initially having three
OSDs, and we expand the cluster by adding one OSD to
each of the three machines using the same configurations as
that in Section f.T] We then remove the newly-added layer
(i.e., removing one OSD from each of the three machines),
following the shrinking method (introduced in Section [3.2).
We control the migration speed by setting the number of
concurrently migrated PGs to eight.

Fig. El depicts the 99™ percentile I/O latency of MAPX

3217

256.1

152.4

M Total No. PGs
M 3rd exp (CRUSH)

M 1st exp (CRUSH)
M 4th exp (CRUSH)

2nd exp (CRUSH)
Layer Merge (MapX)

Figure 8: Number of affected PGs in layer merging in MAPX
(after four expansions). Since CRUSH does not support
merging, for reference we measure the number of affected
PGs after each expansion in CRUSH.

during cluster shrinking. For reference, Fig.[7]also shows the
99" percentile latency of CRUSH in shrinking by removing
one OSD from each of the three machines. Ceph shrinks
the cluster by directly modifying the cluster map. Note that
the result does not necessarily mean that MAPX has lower
latency than CRUSH in shrinking, because they adopt dif-
ferent throttling mechanisms. However, MAPX outperforms
CRUSH during cluster shrinking in that MAPX requires less
migration than CRUSH. For instance, removing an OSD in
CRUSH will lower the entire subtree’s weight and thus may
result in unnecessary data migration. In contrast, MAPX
never causes migration between preserved OSDs because
shrinking occurs at the granularity of layers. We omit the
result for IOPS during shrinking due to lack of space, which
has similar trends with that for I/O latency.

4.4 Layer Merging

We use CrushTool [6] to emulate layer merging in MAPX.
We adopt three-way replication where each object has three
replicas stored on three OSDs. Initially the storage cluster
consists of 5 racks each having 20 machines. One machine
has 20 OSDs. There are totally 100 machines and 2000
OSDs, storing 200,000 PGs. We expand the cluster four
times. In each expansion, we add a new layer of one rack
(of 20 machines and 400 OSDs), and add 40,000 new PGs
to the new layer. Clearly, MAPX maps all the new PGs onto
the newly-added OSDs and thus no migration happens. After
the four expansions, there are totally 9 racks, 180 machines,
and 3600 OSDs, storing 360,000 PGs. We then merge the 40
machines of the first and second expansions (as introduced
in Section [3.2), and measure how many PGs are affected by
the merging in MAPX.

The result is depicted in Fig. [8] where layer merging
in MAPX affects 70,910 PGs among all the 80,000 PGs
of the two merged layers. The relatively high ratio of
affected PGs in layer merging of MAPX is decided by the

USENIX Association

18th USENIX Conference on File and Storage Technologies 7

nature of CRUSH. For reference, we also emulate the four
expansions in CRUSH, where we let the cluster initially have
360,000 PGs and do not add new PGs during expansions,
because otherwise CRUSH will change the mapping from
objects to PGs causing many more PGs to be migrated.
Fig. [§] also shows how many PGs are affected by each
expansion in CRUSH. For instance, almost 90% of all the
PGs are affected in the fourth expansion when the number of
machines increases from 160 to 180.

5 Related Work

5.1 CRUSH in Ceph

Ceph [660] is a widely-used object-based storage system
supporting block storage [3], file storage [4], and simple
object storage [8] (like S3 [1]). To deterministically and
uniformly maps data objects onto OSDs without relying
on a central directory, Ceph applies CRUSH by taking the
following two steps.

In the first step, Ceph computes the placement groups
(PGs) of the objects. The actual computation of PGs is
slightly more complicated than simple hashing and modulo
(discussed in Section [2.1) when the PG number (PG_NUM)
is not a power of two: it computes the pgids with double-
modulo by using two values of 2" power near PG_NUM, so
as to minimize pgid changes when changing the numbers
of PGs. For instance, consider two objects A and B with
HASH(A) = 25 and HASH(B) = 29. Suppose that at first
the PG has PG_NUM; = 8, which results in pgid4s = 1 and
pgidp = 5. Then, suppose that we increase the PG number
to PG_NUM, = 12. Since 23 < 12 < 2*, Ceph first computes
the modulo for A and B using 2* = 16, and respectively gets
pgida =9 and pgidp = 13. For pgid4 < PG_NUM,, Ceph will
take pgids =9 as the final pgid of A. In contrast, for pgidg >
PG_NUM,, Ceph will compute the modulo again using 2° = 8
and get pgidp =5 as the final pgid of B. Clearly, the double-
modulo mechanism makes the pgids not to change when the
first modulo is between PG_NUM, = 12 and 2% = 16.

In the second step, Ceph maps pgids onto OSDs in the
storage cluster, where the hierarchy is composed of OSDs
and buckets. Buckets can contain any number of OSDs
or other buckets. OSDs are always at the leaves and are
assigned weights by the administrator to control the relative
amount of data they are responsible for. Bucket weights are
the sum of the weights of its items. Currently CRUSH has
five types (uniform, list, tree, straw, and straw2) of buckets,
and different bucket types use different formulas to choose
a given number of items beneath the bucket. The straw2
buckets are the most popular because they have the smallest
migration overhead when changing the cluster map or the
number of PGs. By default all buckets in Ceph have the
straw? type.

5.2 Load Balancing & Migration Overhead

Ceph developers have realized the performance degradation
problem due to expansion-caused migration. They alleviate
this problem through implementation-level optimizations by
lowering the priority of migration tasks to avoid bursty
migration after the expansion [7]. However, the PGs cal-
culated by CRUSH have to be eventually migrated. Further,
the conservative migration settings significantly extend the
migration period during which a large fraction of PGs are
waiting for migration. This complicates their write proce-
dure (first being written to the origin OSDs and then to the
target OSDs), unnecessarily increasing the load.

In contrast, MAPX provides administrators with the abi-
lity to control the migration at the algorithm level: the
migration may never happen if (as in most cases) there is
not severe imbalance between the loads of different layers.
Further, sometimes CRUSH needs to increase the number of
PGs, for example to reduce the per-OSD load, which causes
a large fraction of objects to be migrated even using the
double-modulo method (Section @, while MAPX could
smoothly add PGs during expansions without migration.

Focusing on OSD failure caused data migration, Ref. [36]]
proposes to use cluster device flags to selectively label failed
OSDs for reducing data transfer. However, it is not clear how
to use the flags to address/alleviate the migration problem
when expanding the storage clusters.

Consistent distributed hash tables (DHTs) [63} 157, (74,
59, 160, 38, [73]] are widely used for decentralized overlay
storage. Early DHTSs require multi-hop routing to locate the
data and thus are not suitable for distributed object storage.
For example, Chord [63] uses hashing to map both the IDs
of storage nodes and the keys of data onto a ring. A node
is responsible for a key if it is the nearest node after the key
on the ring. Each node only has routing information about
a subset of nodes on the ring, and it takes O(logN) time
to locate a key in an N-node Chord network. Later DHT
networks (like OneHop [18]) support direct key locating
by maintaining all routing information on each node in
the system, and have been adopted in some decentralized
object stores including Amazon Dynamo [28], S3 [1], and
OpenStack Swift [L1].

Compared to CRUSH, most DHTs cannot express the
storage hierarchy including OSDs, machines, racks, etc.
DHT-based storage systems have to use additional mech-
anisms to model the hierarchy (e.g., Cassandra [41] and
CubeX [71] respectively adopt virtual nodes and multi-level
cubic ring [70], and hierarchy-aware DHTs[33} 51} 29} 139,
69] adopt hierarchical routing tables), which are inflexible
compared to CRUSH. Further, load assignment in DHTs is
decided by the positions of the nodes and keys on the ring,
and thus adding a new node will only make a portion of
the load of its successor move to it, which inevitably causes
imbalance (although introducing less migration).

8 18th USENIX Conference on File and Storage Technologies

USENIX Association

5.3 Storage Systems

Decentralized Object storage systems. In recent years,
decentralized object storage has been widely used in various
scenarios. For example, Twitter uses virtual buckets to store
its photos [2]], LinkedIn designs Ambry [54] which adopts
logical grouping and asynchronous replication to realize
geo-distributed object storage [61]], and Facebook designs
F4 [52] which adopts erasure coding [45] to reduce repli-
cation factors for its warm objects. Key-value (KV) storage
systems [[10} 20} 28} 140l [47] could be viewed as generalized
object stores that provide an interface for reading, writing,
deleting and modifying the values associated with keys.
Unlike general object stores, their values are often relatively
small.

Centralized Object storage systems. Some object stores
adopt a centralized metadata directory to simplify data
placement. Haystack [15] is a centralized object store
for Facebook’s large amounts of small objects like photos,
audio/video pieces, HS files, etc. Haystack places object data
(packed into needles) in large files stored in data servers,
and stores object positions (i.e., on which machines) in
a central directory. Similar to Haystack, Lustre [16]] and
HDEFS [9] leverage a central directory to maintain object
positions which helps keep existing objects unaffected dur-
ing cluster expansions. The central directory based place-
ment methods are inefficient in scalability and robustness.
Further, the multi-phase I/O of metadata and data leads to
poor performance and complicates consistency issues [23}
221 155, 134]] and thus cannot satisfy the requirement of the
emerging OLDI (online data-intensive) applications [25}(68]].
Compared to the centralized placement methods, MAPX
preserves the benefits of decentralized CRUSH placement al-
gorithm while providing flexible control over data migration
in expanding the storage clusters.

Block storage systems. Large-scale block storage sys-
tems [63) 149} 42| |35]] adopt distributed protocols [12, [17]]
to provide block interface to remote clients. For example,
Ursa [44] designs a hybrid block store for optimizing SSD-
based storage [46, 14} 27, 26, [13]. Salus [64] provide
virtual disk service based on HBase [31]. Blizzard [50]
realizes high-performance parallel I/O based on FDS [53].
PARIX [45] [72]] performs speculative partial writes to alle-
viate the inability of erasure coding (EC) [19, 162} [37]] and
efficiently support random small writes.

File systems. Distributed file systems spread the data of a
file across many storage servers [22, 24} [30} 32} 35] 43} 48|
58]|. For instance, GFS [30] is a large-scale fault-tolerant file
system for data-intensive cloud applications. Zebra [32] uses
striping on RAID [21]] and logs for high disk parallelism.
BPFS [24] focuses on persistent memory hardware and uses
epoch barrier to provide an in-memory file system with
ordering guarantees. OptFS [22]] improves the journaling file
system [56] by decoupling durability from ordering.

6 Conclusion

The contention between decentralized and centralized data
placement methods has been long lived in the design
of large-scale object storage systems. The decentralized
CRUSH method achieves high scalability, robustness, and
performance, but suffers from uncontrollable data migra-
tion in cluster expansions. This paper presents MAPX, a
novel extension to CRUSH that embraces the best of both
decentralized and centralized methods. MAPX controls data
migration by introducing an extra time-dimension mapping
from object creation times to cluster expansion times, while
still preserving the randomness and uniformness of CRUSH.
We have applied MAPX to Ceph-RBD and CephFS, re-
spectively by extending the rbd_header and inode metadata
structures. In our future work, we will study how to reduce
the maintenance overhead of object timestamps, so as to
apply MAPX to a broader range of object-based storage
scenarios.

Acknowledgement

We would like to thank John Bent, our shepherd, and the
anonymous reviewers for their insightful comments. We
thank Mingya Shi and Haonan Wang for helping in the
experiments, and we thank the Didi Cloud Storage Team
for their discussion. Li Wang and Yiming Zhang are co-
primary authors. Jiawei Xu implemented some parts of
MAPX when he was an intern at Didi Chuxing. This research
is supported by the National Key R&D Program of China
(2018YFB2101102), the National Natural Science Founda-
tion of China (NSFC 61772541, 61872376 and 61370018).
and the Joint Key Project of the NSFC (U1736207).

References

[1] https://aws.amazon.com/s3/.

[2] https://blog.twitter.com/engineering/en_us/a/2012/
blobstore-twitter-s-in-house-photo-storage-system.
html.

[3] https://ceph.com/ceph-storage/block-storage/|
[4] https://ceph.com/ceph-storage/file-system/|

[5] https://docs.ceph.com/docs/master/releases/
luminous/|

[6] https://docs.ceph.com/docs/mimic/man/8/crushtool/,

[7] https://docs.ceph.com/docs/mimic/rados/
configuration/osd-config-ref/.

[8] https://github.com/ceph/ceph/tree/master/src/rgw.

[9] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.
html.

[10] https://rocksdb.org/|

[11] https://www.swiftstack.com/product/open-source/
openstack-swift/.

USENIX Association

18th USENIX Conference on File and Storage Technologies 9

https://aws.amazon.com/s3/
https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system.html
https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system.html
https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system.html
https://ceph.com/ceph-storage/block-storage/
https://ceph.com/ceph-storage/file-system/
https://docs.ceph.com/docs/master/releases/luminous/
https://docs.ceph.com/docs/master/releases/luminous/
https://docs.ceph.com/docs/mimic/man/8/crushtool/
https://docs.ceph.com/docs/mimic/rados/configuration/osd-config-ref/
https://docs.ceph.com/docs/mimic/rados/configuration/osd-config-ref/
https://github.com/ceph/ceph/tree/master/src/rgw
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://rocksdb.org/
https://www.swiftstack.com/product/open-source/openstack-swift/
https://www.swiftstack.com/product/open-source/openstack-swift/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

AIKEN, S., GRUNWALD, D., PLESZKUN, A. R., AND WILLEKE, J.
A performance analysis of the iscsi protocol. In Mass Storage Systems
and Technologies, 2003.(MSST 2003). Proceedings. 20th IEEE/11th
NASA Goddard Conference on (2003), IEEE, pp. 123-134.

ANAND, A., MUTHUKRISHNAN, C., KAPPES, S., AKELLA, A.,
AND NATH, S. Cheap and large cams for high performance data-
intensive networked systems. In NSDI (2010), USENIX Association,
pp. 433-448.

ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHANISHAY-
EE, A., TAN, L., AND VASUDEVAN, V. Fawn: a fast array of wimpy
nodes. In SOSP (2009), J. N. Matthews and T. E. Anderson, Eds.,
ACM, pp. 1-14.

BEAVER, D., KUMAR, S., L1, H. C., SOBEL, J., AND VAJGEL, P.
Finding a needle in haystack: facebook’s photo storage. In Usenix
Conference on Operating Systems Design and Implementation (2010),
pp. 47-60.

BRAAM, P. The lustre storage architecture.
iv:1903.01955 (2019).

CASHIN, E. L. Kernel korner: Ata over ethernet: putting hard drives
on the lan. Linux Journal 2005, 134 (2005), 10.

CASTRO, M., COSTA, M., AND ROWSTRON, A. I. T. Debunking
some myths about structured and unstructured overlays. In NSDI
(2005).

CHAN, J. C., DING, Q., LEE, P. P., AND CHAN, H. H. Parity
logging with reserved space: Towards efficient updates and recovery
in erasure-coded clustered storage. In Proceedings of the 12th
USENIX Conference on File and Storage Technologies (FAST 14)
(2014), pp. 163-176.

CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH,
D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND GRUBER,
R. E. Bigtable: A distributed storage system for structured data. Acm
Transactions on Computer Systems 26, 2 (2008), 1-26.

CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND
PATTERSON, D. A. Raid: High-performance, reliable secondary
storage. ACM Computing Surveys (CSUR) 26, 2 (1994), 145-185.

CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Optimistic crash consistency. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), ACM, pp. 228-243.

CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Consistency without ordering. In
Proceedings of the 10th USENIX conference on File and Storage
Technologies, FAST 2012, San Jose, CA, USA, February 14-17, 2012
(2012), p. 9.

CONDIT, J., NIGHTINGALE, E. B., FrRosT, C., IPEK, E., LEE,
B., BURGER, D., AND COETZEE, D. Better i/o through byte-
addressable, persistent memory. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles (2009), ACM,
pp. 133-146.

DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM 51, 1 (2008),
107-113.

DEBNATH, B., SENGUPTA, S., AND LI, J. Skimpystash: Ram space
skimpy key-value store on flash-based storage. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2011), SIGMOD ’11, ACM, pp. 25-36.

DEBNATH, B. K., SENGUPTA, S., AND LI, J. Flashstore: High
throughput persistent key-value store. PVLDB 3, 2 (2010), 1414—
1425.

DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G.,
LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHAL-
L, P., AND VOGELS, W. Dynamo: amazon’s highly available key-
value store. Acm Sigops Operating Systems Review 41, 6 (2007), 205—
220.

arXiv preprint arX-

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

GANESAN, P., GUMMADI, P. K., AND GARCIA-MOLINA, H. Canon
in g major: Designing dhts with hierarchical structure. In ICDCS
(2004), pp. 263-272.

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file
system. In SOSP (2003), pp. 29-43.

HARTER, T., BORTHAKUR, D., DONG, S., AIYER, A., TANG, L.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Analysis
of hdfs under hbase: A facebook messages case study. In Proceedings
of the 12th USENIX Conference on File and Storage Technologies
(FAST 14) (2014), pp. 199-212.

HARTMAN, J. H., AND OUSTERHOUT, J. K. The zebra striped
network file system. ACM Transactions on Computer Systems (TOCS)
13,3 (1995), 274-310.

HARVEY, N.J. A., JONES, M. B., SAROIU, S., THEIMER, M., AND
WOLMAN, A. Skipnet: A scalable overlay network with practical
locality properties. In USENIX Symposium on Internet Technologies
and Systems (2003).

HERLIHY, M. P., AND WING, J. M. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst.
12, 3 (July 1990), 463-492.

HILDEBRAND, D., AND HONEYMAN, P. Exporting storage systems
in a scalable manner with pnfs. In 22nd IEEE/I13th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST’05)
(2005), IEEE, pp. 18-27.

HuaNg, M., Luo, L., LI, Y., AND LIANG, L. Research on data
migration optimization of ceph. In 2017 14th International Computer
Conference on Wavelet Active Media Technology and Information
Processing (ICCWAMTIP) (2017), IEEE, pp. 83-88.

JIN, C., FENG, D., JIANG, H., AND TIAN, L. Raid6l: A log-assisted
raid6 storage architecture with improved write performance. In 2011
IEEE 27th Symposium on Mass Storage Systems and Technologies
(MSST) (2011), IEEE, pp. 1-6.

KAASHOEK, M. F., AND KARGER, D. R. Koorde: A simple degree-
optimal distributed hash table. In I/PTPS (2003), pp. 98-107.

KARGER, D. R., AND RUHL, M. Diminished chord: A protocol for
heterogeneous subgroup formation in peer-to-peer networks. In /PTPS
(2004), pp. 288-297.

LAKSHMAN, A., AND MALIK, P. Cassandra:a structured storage
system on a p2p network. In Proc Acm Sigmod International
Conference on Management of Data (2009).

LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems Review
44, 2 (2010), 35-40.

LEE, E. K., AND THEKKATH, C. A. Petal: Distributed virtual disks.
In ACM SIGPLAN Notices (1996), vol. 31, ACM, pp. 84-92.

LEUNG, A. W., PASUPATHY, S., GOODSON, G. R., AND MILLER,
E. L. Measurement and analysis of large-scale network file system
workloads. In USENIX annual technical conference (2008), vol. 1,
pp- 2-5.

L1, H., ZHANG, Y., L1, D., ZHANG, Z., L1U, S., HUANG, P., QIN,
Z., CHEN, K., AND XIONG, Y. Ursa: Hybrid block storage for
cloud-scale virtual disks. In Proceedings of the Fourteenth EuroSys
Conference 2019 (2019), ACM, p. 15.

L1, H., ZHANG, Y., ZHANG, Z., Liu, S., L1, D., Liu, X., AND
PENG, Y. Parix: speculative partial writes in erasure-coded systems.
In 2017 USENIX Annual Technical Conference (USENIX ATC 17)
(2017), USENIX Association, pp. 581-587.

LimM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Silt: A
memory-efficient, high-performance key-value store. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples (2011), ACM, pp. 1-13.

10

18th USENIX Conference on File and Storage Technologies

USENIX Association

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

Lu, L., GOPALAKRISHNAN, H., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Wisckey: Separating keys from values in
ssd-conscious storage. Acm Transactions on Storage 13,1 (2017), 5.

McKusICK, M. K., Joy, W. N., LEFFLER, S.J., AND FABRY, R. S.
A fast file system for unix. ACM Transactions on Computer Systems
(TOCS) 2, 3 (1984), 181-197.

MEYER, D. T., AGGARWAL, G., CULLY, B., LEFEBVRE, G.,
FEELEY, M. J., HUTCHINSON, N. C., AND WARFIELD, A. Parallax:
virtual disks for virtual machines. In ACM SIGOPS Operating Systems
Review (2008), vol. 42, ACM, pp. 41-54.

MICKENS, J., NIGHTINGALE, E. B., ELSON, J., GEHRING, D.,
FAN, B., KADAvV, A., CHIDAMBARAM, V., KHAN, O., AND
NAREDDY, K. Blizzard: Fast, cloud-scale block storage for cloud-
oblivious applications. In 1/th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14) (2014), pp. 257-273.

MISLOVE, A., AND DRUSCHEL, P. Providing administrative control
and autonomy in structured peer-to-peer overlays. In IPTPS (2004),
pp. 162-172.

MURALIDHAR, S., LLOYD, W., Roy, S., HILL, C., LIN, E., LIU,
W., PAN, S., SHANKAR, S., SIVAKUMAR, V., AND TANG, L. f4:
Facebook’s warm blob storage system. In Usenix Conference on
Operating Systems Design and Implementation (2014), pp. 383-398.

NIGHTINGALE, E. B., ELSON, J., FAN, J., HOFMANN, O., How-
ELL, J.,, AND SUZUE, Y. Flat datacenter storage. In OSDI (2012).

NOGHABI, S. A., SUBRAMANIAN, S., NARAYANAN, P,
NARAYANAN, S., HOLLA, G., ZADEH, M., LI, T., GUPTA, 1., AND
CAMPBELL, R. H. Ambry:linkedin’s scalable geo-distributed object
store. In International Conference on Management of Data (2016),
pp- 253-265.

ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTERHOUT,
J. K., AND ROSENBLUM, M. Fast crash recovery in ramcloud. In
SOSP (2011), pp. 29-41.

PIERNAS, J., CORTES, T., AND GARCIA, J. M. Dualfs: a new
journaling file system without meta-data duplication. In Proceedings
of the 16th international conference on Supercomputing (2002), ACM,
pp. 137-146.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R. M., AND
SHENKER, S. A scalable content-addressable network. In Proceed-
ings of the ACM SIGCOMM 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication,
August 27-31, 2001, San Diego, CA, USA (2001), pp. 161-172.

REN, K., ZHENG, Q., PATIL, S., AND GIBSON, G. Indexfs: Scaling
file system metadata performance with stateless caching and bulk
insertion. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2014),
IEEE Press, pp. 237-248.

ROWSTRON, A. I. T., AND DRUSCHEL, P. Pastry: Scalable,
decentralized object location, and routing for large-scale peer-to-peer
systems. In Middleware (2001), pp. 329-350.

SHEN, H., XU, C.-Z., AND CHEN, G. Cycloid: A constant-degree
and lookup-efficient p2p overlay network. Perform. Eval. 63,3 (2006),
195-216.

SPIROVSKA, K., DIDONA, D., AND ZWAENEPOEL, W. Optimistic
causal consistency for geo-replicated key-value stores. In Distributed
Computing Systems (ICDCS), 2017 IEEE 37th International Confer-
ence on (2017), IEEE, pp. 2626-2629.

STODOLSKY, D., GIBSON, G., AND HOLLAND, M. Parity logging
overcoming the small write problem in redundant disk arrays. In
ACM SIGARCH Computer Architecture News (1993), vol. 21, ACM,
pp. 64-75.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

STOICA, 1., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup service
for internet applications. ACM SIGCOMM Computer Communication
Review 31,4 (2001), 149-160.

WANG, Y., KAPRITSOS, M., REN, Z., MAHAJAN, P., KIRUBANAN-
DAM, J., ALvVIsI, L., AND DAHLIN, M. Robustness in the salus
scalable block store. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13) (2013), pp. 357-370.

WARFIELD, A., ROSS, R., FRASER, K., LIMPACH, C., AND HAND,
S. Parallax: Managing storage for a million machines. In HorOS
(2005).

WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D., AND
MALTZAHN, C. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation (2006), pp. 307-320.

WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND MALTZAHN,
C. Crush: Controlled, scalable, decentralized placement of replicated
data. In SC’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (2006), IEEE, pp. 31-31.

ZAHARIA, M., CHOWDHURY, M., DAS, T., AND DAVE, A. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In NSDI (2012), pp. 1-14.

ZHANG, Y., CHEN, L., LU, X., AND L1, D. Enabling routing control
in a dht. IEEE Journal on Selected Areas in Communications 28, 1
(2009), 28-38.

ZHANG, Y., L1, D., Guo, C., Wu, H., XIONG, Y., AND LU, X.
Cubicring: Exploiting network proximity for distributed in-memory
key-value store. IEEE/ACM Transactions on Networking 25,4 (2017),
2040-2053.

ZHANG, Y., L1, D., AND LI1U, L. Leveraging glocality for fast failure
recovery in distributed ram storage. ACM Transactions on Storage
(TOS) 15,1 (2019), 1-24.

ZHANG, Y., L1, H., Liu, S., XU, J., AND XUE, G. Pbs: An
efficient erasure-coded block storage system based on speculative
partial writes. ACM Transactions on Storage (TOS) 15 (2020), 1-26.

ZHANG, Y., AND L1u, L. Distributed line graphs: A universal
technique for designing dhts based on arbitrary regular graphs. IEEE
Transactions on Knowledge and Data Engineering 24, 9 (2011),
1556-1569.

ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C., JOSEPH,
A. D., AND KUBIATOWICZ, J. Tapestry: a resilient global-scale
overlay for service deployment. [EEE Journal on Selected Areas in
Communications 22, 1 (2004), 41-53.

USENIX Association

18th USENIX Conference on File and Storage Technologies 11

	Introduction
	Background
	CRUSH Overview
	The Main Drawback of CRUSH

	MapX Design
	Migration-Free Expansion
	Migration Control
	Implementing MapX in Ceph

	Evaluation
	I/O Performance during Expansions
	Computational Overhead
	I/O Performance during Shrinking
	Layer Merging

	Related Work
	CRUSH in Ceph
	Load Balancing & Migration Overhead
	Storage Systems

	Conclusion

