Toward Orchestration of
Complex Networking
Experiments

Alefiya Hussain, Prateek Jaipuria, Geoff Lawler,
Stephen Schwab, Terry Benzel

Long Experience Paper

What is an Networking Experiment?

| Jy >

System unler Testbed
test

- Create meso-scale representations of the internet
- Understand how the system behaves

What is an Networking Experiment?

Representati Testbed
Scenarios

- Create meso-scale representations of the internet
- Understand how the system behaves

What makes experiments complex?

System under test

Complexity in networking experiments

The system is mapped to different
configuration

Complexity in networking experiments

O

Each configuration is overlapped
with rich set of application mixes

Complexity in networking experiments

The configuration is
converted to
execution

Experiment Orchestration

Definition: Sequence of steps required to execute the representative scenarios
on the testbed

‘iA FE
Representative
Scenarios Sequence of Testbed

Steps

Related Work: Tools and Testbeds

/Shell or Ssh-based
Scripts:
+most popular

_error handling

-limited feedback and

~

/Ansible and other
configuration
management Tools:
+rich toolkit

\-Iimited expressibility

AN

</

/Emulab:first emulation N
testbed

*Tevc
*Experimenters
Kworkbench

/PlanetLab: first globally
distributed testbed
*Plush

%
<

N /
/GENI: Federated)
collection of testbeds
*ansible

* Labwiki

/
DETER:first cyber

security testbed
*SEER
*MAGI
(N

*Fabric
*Chameleon
*EdgeNet

*ODEL
\

K*MergeTB

/Emerging Testbeds:

AN

Experiment Orchestration in MAGI

Design: agents for wide range of scenarios

Execute: orchestrator and daemons

—peo

—

ﬁ/;‘f
b
o
2
3

Representative
Scenarios

Sequence of Testbed
Steps

MAGI: Montage AGent Infrastructure

Design: agents for wide range of scenarios

Execute: orchestrator and daemons

Server Client Cleanup
Stream Stream Stream
@\\
Se'p
e,sh"
Oy
wait
serverStoppeqd m

Conceptual:
Sequence of Steps

groups:
client_group: [clientnode]
server_group: [servernode]

agents:
client_agent:
group: client_group

path: http_client/http_client.tar.gz
execargs: {servers: [servernode]}

server_agent:
group: server_group
path: apache/apache.tar.gz
execargs: []

ts: [ser cli

| eventstreams:

serverstream:
- type: event
agent: server_agent
method: startServer
trigger: serverStarted
args: {}

- type: trigger

triggers: [{ event: clientStopped}]

- type: event
agent: server_agent
method: stopServer
trigger: serverStopped
args: {}

Specification: agent
activation language

clientstream:

- type: trigger
triggers: [{ event: serverStarted }]

- type: event

agent: client_agent
method: startClient
args: {}

- type: trigger
triggers: [{ timeout: 60000 }]

- type: event
agent: client_agent
method: stopClient

1 trigger: clientStopped

cleanupstream:
- type: trigger
triggers: [{event: serverStopped, target: exit}]

Parser

\ 4

Scheduler

Evaluator

v

)4OM]1aN |0J3U0)

Node 1

| uowsep ‘

Node 2

[uowsaep |

||

uowaep

Node N

Execution:Orchestrator and
node daemons, agents

MAGI SpeCIfICatlon Specification

groups: clientstream:
. . client_group: [clientnode] - type: trigger
Group: mapping of behavior roles to server_grop: [servemmode] triggers: [{event: serverstarted }
. . . agents: - type: event
physical and virtual machines dlent_agent: e chent, et
group: client_group thod: startClient
path: http_client/http_client.tar.gz ::5;?} sarten
- 1 execargs: {servers: [servernode]}
Agent: implementation of the t .
. server_agent: triggers: [{ timeout: 60000 }]
behavior roles o ey

path: apache/apache.tar.gz - type: event
execargs: (] agent: client_agent

Event: a method that can be invoked method: stopClient

streamstarts: [serverstream, clientstream, cleanupstream] trigger: clientStopped

i n the agent eventstreams: cleanupstream:

- type: trigger
serverstream: triggers: [{event: serverStopped, target: exit}]

Eventstreams:ordered collection of et

agent: server_agent
method: startServer

events that formulate the experiment tgger:serversarted

args: {}

behaV|OrS - type: trigger

triggers: [{ event: clientStopped}]

Triggers: time- or condition based Hypeeent

agent: server_agent

method: stopServer

synchronization points tigger:serverStopped

args: {}

Specification

Specification

groups: clientstream:

. . client_group: [clientnode] - type: trigger
Group: mapplng Of behaV|Or’ roles to server_group: [servernode] t:iggers:g[g{event: serverStarted }]
phySical and Virtual maChineS a?ﬁgr:i:_agem: -t:gp:r;:‘glaiztnt_agent

group: client_group
path: http_client/http_client.tar.gz
execargs: {servers: [servernode]}

method: startClient
args: {}

- type: trigger

Agent: implementation of the
behaVior rOIGS S::;irp_:asgeer:'gr_group triggers: [{ timeout: 60000 }]

path: apache/apache.tar.gz - type: event
execargs: (] agent: client_agent

Event: a method that can be invoked method: stopClient

streamstarts: [serverstream, clientstream, cleanupstream] trigger: clientStopped

i n the agent eventstreams: cleanupstream:

- type: trigger
serverstream: triggers: [{event: serverStopped, target: exit}]

Eventstreams:ordered collection of et

agent: server_agent
method: startServer

events that formulate the experiment tgger:serversarted

args: {}

behaV|OrS - type: trigger

triggers: [{ event: clientStopped}]

Triggers: time- or condition based Hypeeent

agent: server_agent

method: stopServer

synchronization points tigger:serverStopped

args: {}

Specification

Group: mapping of behavior roles to
physical and virtual machines

Agent: implementation of the
behavior roles

Event: a method that can be invoked
in the agent

Eventstreams:ordered collection of
events that formulate the experiment
behaviors

Triggers: time- or condition based
synchronization points

Specification

groups:
client_group: [clientnode]
server_group: [servernode]

agents:
client_agent:
group: client_group
path: http_client/http_client.tar.gz
execargs: {servers: [servernode]}

server_agent:
group: server_group
path: apache/apache.tar.gz
execargs: []

clientstream:
- type: trigger
triggers: [{ event: serverStarted }]

- type: event
agent: client_agent
method: startClient
args: {}

- type: trigger
triggers: [{ timeout: 60000 }]

- type: event
agent: client_agent
method: stopClient

streamstarts: [serverstream, clientstream, cleanupstream] trigger: clientStopped

eventstreams:

- type: event
agent: server_agent
method: startServer
trigger: serverStarted

args: {}

- type: trigger
triggers: [{ event: clientStopped}]

- type: event
agent: server_agent
method: stopServer
trigger: serverStopped
args: {}

cleanupstream:
- type: trigger
triggers: [{event: serverStopped, target: exit}]

Specification

p groups: clientstream:
. . client_group: [clientnode] - type: trigger
G rou p . ma p pl ng Of be haVl or rOIeS to server_group: [servernode] triggers: [{ event: serverStarted }]
. . . agents: - type: event
physical and virtual machines dlent_agent: e chent, et
group: client_group method: startClient
path: http_client/http_client.tar.gz args: {}
- 1 execargs: {servers: [servernode]}
Agent: implementation of the .
. server_agent: triggers: [{ timeout: 60000 }]
behavior roles o ey
path: apache/apache.tar.gz - type: event
. execargs: (] agent: client_agent
Event: a method that can be invoked | method: stopClient
streamstarts: [serverstream, clientstream, cleanupstream | trigger: clientStopped

i n th e ag e nt eventstreams: cleanupstream:

- type: trigger
serverstream: triggers: [{event: serverStopped, target: exit}]

Eventstreams:ordered collection of et

agent: server_agent
method: startServer

events that formulate the experiment tgger:serversarted

args: {}

behaV|OrS - type: trigger

triggers: [{ event: clientStopped}]

Triggers: time- or condition based Hypeeent

agent: server_agent

method: stopServer

synchronization points tigger:serverStopped

args: {}

Specification

groups:

Specification

Group: mapping of behavior roles to server_group: [servernode]

clientstrearm:
- type: trigger
triggers: [{ event: serverStarted }]

. . . agents: - typereve
physical and virtual machines dlent_agent: e chern, et
group: client_group method: startClient
path: http_client/http_client.tar.gz args:

Ag e nt: I m ple m e ntatl 0 n Of th e execargs: {servers: [servernode]}
server_agent:

behavior roles o ey
path: apache/apache.tar.gz - type: event
execargs: (] agent: client_agent

Event: a method that can be invoked method: stopClient

streamstarts: [serverstream, clientstream, cleanupstream] trigger: clientStopped

i n the agent eventstreams: cleanupstream:

- type: trigger
serverstream: triggers: [{event: serverStopped, target: exit}]

Eventstreams:ordered collection of et

agent: server_agent
method: startServer

events that formulate the experiment tgger:serversarted

args: {}

behaV|OrS - type: trigger

triggers: [{ event: clientStopped}]

- type: trigger
triggers: [{ timeout: 60000 }]

Triggers: time- or condition based Hypeeent

agent: server_agent

method: stopServer

synchronization points tigger:serverStopped

args: {}

MAGI: Montage AGent Infrastructure

Design: agents for wide range of scenarios

Execute: orchestrator and daemons

Server Client Cleanup
Stream Stream Stream
@\\
Se'p
e,sh"
Oy
wait
serverStoppeqd m

Conceptual:
Sequence of Steps

groups:
client_group: [clientnode]
server_group: [servernode]

agents:
client_agent:
group: client_group

path: http_client/http_client.tar.gz
execargs: {servers: [servernode]}

server_agent:
group: server_group
path: apache/apache.tar.gz
execargs: []

ts: [ser cli

| eventstreams:

serverstream:
- type: event
agent: server_agent
method: startServer
trigger: serverStarted
args: {}

- type: trigger

triggers: [{ event: clientStopped}]

- type: event
agent: server_agent
method: stopServer
trigger: serverStopped
args: {}

Specification: agent
activation language

clientstream:

- type: trigger
triggers: [{ event: serverStarted }]

- type: event

agent: client_agent
method: startClient
args: {}

- type: trigger
triggers: [{ timeout: 60000 }]

- type: event
agent: client_agent
method: stopClient

1 trigger: clientStopped

cleanupstream:
- type: trigger
triggers: [{event: serverStopped, target: exit}]

Parser

\ 4

Scheduler

Evaluator

v

)4OM]1aN |0J3U0)

Node 1

| uowsep ‘

Node 2

[uowsaep |

||

uowaep

Node N

Execution:Orchestrator and
node daemons, agents

Orchestration o

Parser: Reads specification Scheduler

Scheduler: handles each eventstream 1
concurrently, sends events to node Evaluator

daemons.

Node 1

‘ uowaep ‘

ddy

Node 2

\ uowaep ‘

ddy

)4JOMISN |043U0)D)

uowaep

dy

I Node N
I—.

)40OMIoN usawadx3

Evaluator: receives return values from
the node daemons to satisfy triggers

Daemons and Agents

Daemons: lightweight control conduit

Received events to launches and controls agents
Returns values from agents to orchestrator for
trigger evaluation

Agent Modules: implementations on nodes in
Python

uowaep

Node 1

ddy

}40M]IoN |0JIU0D

uowaep

Node 2

ddy

uowsaep

Node N

YJoMiaN usawiIadx3

Case Studies:

Education

e Development and assessment of
multi-user text-based chat client and
server system

e 40-75 students for undergraduate
class, Introduction to Computer

Networks;
o Student client with instructor server
o Random client with student server
o Upto 30 clients with student server

120 Total Traffic —— Control Clients —— Web Clients

100 e e e s A Aot e A

80

cond)

60

20

Traffic (MB/se

F e e d b a c k L o o p s o 0 500 1000 1500 2000 2500 3000 3500 4000

Time (seconds)

Different teams interact in an
experiment; while limiting access to
parts of the scenario

2000 webclients, 1000 control
clients, 50 apache2 servers in
webfarm

(@]

o

Sense traffic on network

Compute devise control action to
increase, decrease or maintain traffic
Actuate executes control action

Case Studies:

Integrated system development

Five teams develop
adversary-resistant communication
to circumvent censorship in Tor
Configure, deploy, manage Tor and

technologies
o Multi-scale experiments, 10 machines to
100 machines
o Tor agents to start relays, bridges, and
clients
o Large scale- 5120 client processes,
microblogging, VolIP, file sharing apps

Cyber physical systems

Distributed optimization control
algorithms for monitoring power flow
oscillations in presence of DDoS
attacks

IEEE 39 bus power system overlaid
on a 18 node communication
topology

High volume attacks and study
impact on damping the oscillations.

Retrospective Takeaways

e Specification is topology agnostic
o allows direct scaling experiments

e Unordered events and with synchronization triggers
o enables exploiting concurrency and asynchronous execution in experiment

e Error handling and logging

o Errors and failures forwarded from nodes to orchestrator

Conclusion

The MAGI tool makes it easier to run large and complex experiments on testbeds
by providing a wide range of traffic agents and automating the experiment
execution.

MAGI is general
e runs on most testbeds
® Open source

Available at https://github.com/deter-project/magqi
Documented with examples at https://montage.deterlab.net/magqi

https://github.com/deter-project/magi
https://montage.deterlab.net/magi

Thank you
Contact: Alefiya Hussain

hussain@isi.edu

