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Abstract Experimentation allows developers to understand the vari-

Experimentation is an essential tool for developing net-
worked and distributed systems. However, it is inherently
complex due to the concurrent, asynchronous, heterogeneous,
and prototype-based systems that must be integrated into rep-
resentative scenarios to conduct valid evaluations. This paper
offers a retrospective on the development and use of MAGI,
an orchestration tool, that translates an experiment specifi-
cation into an execution on an emulation-based testbed with
high-level directives for message passing, remote process exe-
cution, and failure tracking, for conducting large and complex
experiments. The MAGTI tool has been used for more than
seven years in a variety of experiments, including undergrad-
uate education, anonymous communication, cyber-physical
systems, and attacker-defender games on the DETER testbed.
‘We hope the insights and takeaways learned from using our
tool will aid in developing the next-generation experiment
management tools.

1 Introduction

Over the past two decades, many emulation-based and
internet-based testbeds have been developed to enable real-
istic evaluations of networked and distributed systems. How-
ever, the process of evaluating and tuning alternative designs
and implementations of distributed systems is intrinsically
complex. The complexity is mainly due to the high levels of
concurrency and asynchrony of such systems and the practical
obstacles that developers face in evaluating their systems with
representative scenarios. Creating representative evaluation
scenarios requires the concurrent execution of traffic gener-
ators and monitoring systems along with the prototype dis-
tributed system. The sequence of steps required to create such
representative scenarios on a testbed is known as experiment
orchestration. Experiment orchestration grows increasingly
challenging as the scale and complexity of networked systems
grow [5,24].
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ous dynamic system properties and tune their systems before
transitioning into the real world [32]. Experimentation with
security properties of distributed systems is particularly im-
portant and particularly challenging: important because in the
presence of attacks, distributed systems can exhibit a wide
range of unanticipated behaviors; and challenging in that it
can be difficult, costly, and time-consuming to reproduce all
possible configurations of a distributed system, under all pos-
sible usage scenarios, and under all possible environmental
conditions, in the testbed.

The terminology of experimentation is not universal. In
this paper, we define an experiment to be a list of steps for an
individual run of the distributed system. These steps include a
specific set of tuning parameters for the system components,
the configuration parameters for background traffic compo-
nents, and the deployment and execution of the components
to the testbed nodes and network elements. Experiment or-
chestration is thus the process of executing the sequence of
steps that define the experiment. For statistically sound re-
sults, a series of identical experiments are typically executed.
Additionally, different experiments are required to optimize
the performance of the system, for example, by varying a
tuning parameter across a range of values and analyzing the
performance of the system.

Many networking experiments are meso-scale represen-
tations of an internet or enterprise network. They attempt
to recreate the network conditions in terms of topological
construction and application traffic mixes. Experiment com-
plexity comes from several sources. In some experiments, the
complexity results from a unique set of required conditions,
for example, the volume of traffic on a particular link in the
topology needs to meet a threshold in order to evaluate the
performance of a server under stress. If the generation of the
traffic is not done correctly, the experiment may unknowingly
produce invalid results and not succeed. In many cases, ex-
periment complexity is due to the integration of technologies
from different sources. For example, when teams collaborate
on a project, team members bring different technologies to the



experiment or use off-the-shelf components. The integration
and orchestration of diverse technologies benefit immensely
from automated experiment orchestration. Lastly, in research
or educational settings, an experiment is repeated to recreate
the results by another researcher or a student. In such cases,
some form of experiment orchestration is crucial to enable
the execution of the experiment.

A large and complex experiment on a testbed can be viewed
as a single distributed system with multiple components that
must run concurrently to generate traffic, monitor, and analyze
performance. Most experimenters develop only a subset of
the components of the experiment, such as a network defense
system, and want to evaluate their defense system with a wide
range of traffic and network configurations developed by other
researchers. In this paper, we discuss the MAGI (Montage
AGent Infrastructure) experiment orchestration tool that has
been widely used over the last seven years to evaluate dis-
tributed systems on the DETER testbed. MAGI is part of a
larger collection of experimentation tools, including an exper-
iment lifecycle manager and repository [21,22]. In Section 2
we provide a survey of current orchestration techniques and
tools used in network and emulation testbeds. Where appli-
cable, we discuss how MAGI built on the ideas of previous
generations of orchestration tools and extends their capabili-
ties.

In Section 3, we discuss the key components of the MAGI
tool that enable experiment orchestration and graceful error
handling. In a nutshell, an experiment starts as a conceptual
model that is translated into a specification and orchestrated
on the testbed by the orchestrator, node-based daemons, and
agent modules. The specification combines high-level direc-
tives such as events and triggers to enable remote execution,
coordination, and control in the experiment.

In Section 4, we present illustrative examples that docu-
ment our experience of using the MAGI tool for experimen-
tation. The examples illustrate the applicability of MAGI
in many environments, such as a senior-level undergraduate
course in networking, multi-party games, for safe and anony-
mous communication on Tor networks and the evaluation of
distributed control algorithms in cyber-physical systems. We
summarize our key takeaway from each experience. In Sec-
tion 5, we evaluate the overhead of the orchestrator and agent
daemons and show that it is minimal for most experiments.
We then outline a path forward in next-generation testbeds.
Finally in Section 6, we summarize the retrospective takeways
from our experience with the development of MAGI, and at-
tempt to provide guiding principles for future development of
such tools.

The scale and complexity of distributed systems experimen-
tation will continue to grow with the seamless integration of
virtualization technologies and cloud-based testbeds [4,9, 17].
Experimentation tools are typically developed in conjunc-
tion with a testbed and have an overlapping usage and re-
tirement arc [7]. The DETER testbed has been operational

for almost two decades and is now metamorphosing with the
next generation testbed technologies [17]. This paper is thus
a retrospective on the development and use of an experiment
orchestration tool on the DETER tested. The goal is to capture
our experience and share some key insights, that the authors
believe, were critical to the success of MAGI and use them to
develop an orchestration mechanism for the next generation
virtualization-based testbeds. We hope it will initiate discus-
sion and spur the development of experimentation tools for
distributed systems.

2 Related Work

In this section, we briefly discuss a few tools and testbeds used
for distributed system experimentation, along with insights
into how they informed the design of our orchestration tool.
Shell or ssh-based scripts: Many experimenters design
and execute experiments using a sequence of shell commands
to execute programs on the experimentation nodes. We found
that structure of the scripts fall into two major categories:
some experimenters develop specialized scripts for each be-
havior in the experiment, transfer the scripts to the different
nodes, and then execute the scripts on the nodes; other ex-
perimenters choose to develop a master script that remotely
executes commands on the individual experiment nodes, us-
ing ssh-based tools, such as shremote [28] and the Python
fabric library [19]. Shremote is an ssh-based tool for the timed
execution of remote commands. It has a configuration file that
allows running commands on remote machines, verifies suc-
cess, and gathers log files for post-processing. Fabric fabfiles
are Python programs that execute arbitrary commands on sub-
sets of machines identified with Python decorators. The use
of decorators and a programming language enables writing
flexible configurations and control schemes, but limits the
amount of feedback that can be received from the experiment.
In both cases, processes need to be terminated using a OS kill
command that could lead to sudden EOF for file processing or
a TCP-RST for open connections. Such techniques limit the
level of control and error handling in large scale experiments
and can lead to hard-to-track failures that may manifest as
incorrect analysis and results. However, this continues to be
the most popular form of experimentation on testbeds [6,20]
Ansible: Ansible is a configuration management (CM) and
orchestration tool that leverages built-in modules to perform
tasks on remote systems [3]. Ansible is agent-less with declar-
ative semantics and is used by experimenters to describe the
configuration of the nodes in a playbook. It is limiting when
conducting with experiments that require expressing proce-
dural complexity. Under the hood, Ansible uses ssh-based
commands to configure the nodes; hence, any complex ex-
periments that go beyond a simple list of tasks, such as con-
figure, start, wait, and collect results, are difficult to express.
Although we primarily discuss Ansible in this paper, there
are several Ansible-like environments for configuration of



systems such as Salt [33], TerraForm [35] and Chef [10]. Al-
though, these systems cannot be effectively used for complex
experimentation, they provide a reliable solution to deploy
software to experiments.

Emulab Testbed Tools: The Emulab testbed was the first
emulation-based testbed that allowed experimenters to run
short experiments on networking protocols and systems [37].
Experimenters were able to configure nodes and topologies
on demand with emulated network links between their nodes.
The early version of the Emulab testbed had a tool, tevc,
that enabled scheduling event sequences in a ns-2 topol-
ogy description file or interactively using the command line
client [37]. Later, the tested provided the Emulab Experi-
menters Workbench [14] with support for experiment version-
ing, cloning via templates, and archiving. These capabilities
support pre-packaged experiments, and are useful features for
sharing, but did not provide any additional support for experi-
ment orchestration and management. The Emulab testbed was
extended to include a ProtoGENI testbed to support federa-
tion of resources and incorporated into the GENI testbed [24].
More recently, it has added features to support cloud-based
application evaluation under the aegis of CloudLab.

PlanetLab Testbed Tools: Althought PlanetLab officially
retired in May 2020 [29], at its peak it supported more than
1300 nodes worldwide, and provided a sophisticated set of
experimentation tools whose features were critical to the suc-
cess of the testbed within the community [1]. Plush was a
toolkit for distributed experiment configuration, management,
and visualization. Plush provided a Nebula-based workbench
through which users could request testbed resources, config-
ure them with the required libraries and software, and view a
runtime visualization of the experiment [2]. To manage the
concurrency, Plush provide two synchronization primitives,
predecessors and barriers. Predecessors allow the ordering of
processes locally on a node; barriers enable the ordering of
processes globally in the experiment. The Plush primitives,
however, did not have the expressiveness to define complex de-
pendency constraint in the experiment. The PlanetLab testbed
was incorporated into the GENI testbed [6].

DETER Testbed Tools: The DETER testbed is an
emulation-based testbed designed for cybersecurity exper-
iments, especially those with malicious code [5,39] . When
the testbed launched in 2005, it had a GUI-based tool, SEER,
that enabled the experimenter to visualize and monitor traffic
on the experiment links and associate traffic generators with
nodes at runtime via point-and-click mechansisms [34]. The
DETER testbed provides an assortment of experiment man-
agement and topology construction tools [22]. More recently,
it proposed a system to specify distributed workflows, which
is currently under development [26].

GENI Testbed Tools: The Global Environment for Net-
work Innovations (GENI) experimental facility is a federation
of testbed resources contributed by various institutions in-
cluding the testbeds listed above [24]. GENI is instrumented

for the collection, analysis, and pooling of measurements
from multiple locations and provides Fabric [19] and An-
sible [3] to enable experimenters to customize and run ex-
periments [18]. It also uses a LabWiki that allows experi-
menters to describe and instrument an experiment, execute
it, and collect results [31]. GENI’'s OMF is a testbed control,
measurement, and management framework that allows con-
figuration and control for testbed-based experiments. OMF
is event-driven and provides a set of trigger-based and time-
based directives for experiment definition [24,30]. The Orbit
Experiment Description Language (ODEL) provides the On-
Event directive to synchronize and order processes. The OMF
experiment controller comes with a default set of events that
can be extended with the defEvent directive. OMF natively
supports collection of measurement data.

Emerging Testbeds: The testbeds mentioned above are
either transforming or retiring as new cloud-based and
virtualization-based testbeds emerge. We mention a few here
to complete our discussion on testbeds and tools. The FAB-
RIC testbed, started in October 2019, is a unique national
research infrastructure for exploratory research at-scale in
networking, cybersecurity, distributed computing and storage
systems, machine learning, and science applications. It’s goal
is to enable nationwide instrumentation with network ele-
ments equipped with large amounts of compute and storage
resources, interconnected by high speed, dedicated optical
links [4]. The Chameleon testbed, started in July 2015, pro-
vides a configurable experimental testbed for cloud research
and education communities. It allows experiments to address
the challenges of high-level cloud research, such as cloud
scheduling, cloud platforms, and cloud applications, and low-
level problems in hardware architecture, systems research,
network configuration, and software design [9]. EdgeNet,
started in 2018, is a modern distributed edge cloud, which
incorporates advances in cloud technologies in order to allow
experimenters to use standard Kubernetes tools and technolo-
gies to deploy an application across the EdgeNet infrastruc-
ture [16]. The DComp testbed, started in 2019, is a large-scale
testbed, combining EVPN-based network isolation with cus-
tomized nodes, commodity switches, and modular software to
create flexible and adaptable strategies to provision network
emulation and infrastructure services on a per-experiment
basis [17].

3 Key Features

This section discusses the key features of the MAGI tool for in-
strumenting experiments with high-level directives to control
concurrency and graceful handling of failure. An experiment
typically starts with a conceptual model that is translated into
a specification and orchestrated on a testbed, as shown in
Figure 1. An experiment specification is a sequence of steps
that describe an individual run of a distributed system with a
specific set of parameters, configuration of background traffic



Conceptual Specification
Server Client Cleanup groups:

client_group: [clientnode]
Stream Stream Stream server_group: [servernode]

- type: event
agent: client_agent
method: startClient
args: {}

http_client tar.gz
execargs: {servers: [servernodel}

group: server_group

path: apache/apache tar.gz - type: event

xecargs agent: client_agent
method: stopClient

[ . 1 trig

eventstreams: cleanupstream
- type: trigger

m rver
trigger: serverStarted
args: {}

- type: trigger
triggers: [ { event: clientStopped} |

type: event
agent: server_agent
method: stopServer
trigger: serverStopped
args: {}

event: serverStarted }]

- type: trigger
server_agent: triggers: [ { timeout: 60000 }]

triggers: [ {event: serverStopped, target: exit} | 1

I Node 1
Dam— o
3 >
> P 5 ¢
arser A ]
o
>
| S |—|g| Node2
= 3|=
P s
Scheduler > 5 H
g :
o .
= -
=4

Evaluator

||

uowaep

I Node N

Figure 1: Experiment Orchestration: An experiment starts with a conceptual model that is encoded as a specification and

orchestrated on the testbed

components, and mapping of components to testbed node and
network elements. Experiment orchestration is the process of
executing this sequence of steps. We discuss them in detail
below.

3.1 Specification

The experiment specification is a concise description of the ex-
periment’s execution as a sequence of steps. Figure | outlines
the process of experiment orchestration from conceptualiza-
tion, through specification, and then execution on a testbed.
We now illustrate this process with a simple client-server
example. The steps at the conceptual level include: starting
servers, starting clients, running the experiment for some pe-
riod of time At, and then analyzing the results. These steps
are translated into a specification with the following direc-
tives: (a) Groups: Nodes, the physical or virtual machines
that form the topology, are organized into groups based on
the role they play in the experiment, such as a client or a
server. The group directive is the only coupling between the
experiment specification and the experiment topology. As the
experiment scales from a few nodes to hundreds of nodes,
only this part of the experiment specification needs to be
modified. (b) Agent: The agent code that implements the role
behavior or functionality in the experiment. The specifica-
tion also includes a mapping of the agents to the groups as
seen in Figure 1. The client_agent is mapped to all nodes
in the client_group. The scheduler deploys the agents im-
plementation, located at the path on the nodes within the
group, and parameterizes them as specified in execargs. (c)
Event: Each event corresponds to a method implemented in
the agent and is invoked by the scheduler. In this example, a
client has a startclient method that requests a file every
five seconds from the server, the size is randomly distributed
between 1KB to 10KB. All events are non-blocking and run
asynchronously. After the event is scheduled, the scheduler

moves on to the next event in the stream. (d) Eventstreams:
A collection of related events is organized into blocks that
formulate the desired behavior in the experiment. They have a
unique identifier that can be used to execute the event stream
at the start of the experiment with streamstarts or after
evaluating a trigger. (e) Trigger: An experiment stream can
define time-based or condition-based barrier synchronization
point, a trigger, where the scheduler must wait. When the
condition is satisfied, the evaluator returns the result to the
scheduler, and the event stream is unblocked. We discuss
these in more detail below.

For statistically sound results, a series of identical experi-
ments is typically executed. A series of different experiments
is used to answer an experimental question, such as finding an
optimal setting for a system parameter by varying the value
of that parameter across experiments.

3.2 Orchestrator

The orchestrator is the heart of the MAGTI tool and is in-
voked through the command-line. It consists of three main
parts as shown in Figure 1, The parser reads the exper-
iment script and identifies the group, agents, events,
eventstream and triggers in the experiment. The decom-
position of events into event streams provides the flexibility
of scheduling them at multiple times in the experiment based
on the results received from the experiment execution.

The scheduler starts a thread to handle each eventstream
and sends events to all the nodes in the experiment. An event
invokes an agent method on the group of nodes with the
specified parameters. Events are nonblocking, hence once an
event is sent out to the daemon, the scheduler moves onto the
next event in the eventstream. Each event can define a return
value that will be sent back to the evaluator on completion of
the event. These return values are labeled to indicate which
event generated them. In the client-server example, the first



event in the serverstream, called startServer, labels the
return value as serverStarted. Multiple event streams can
be scheduled to run concurrently as the experiment executes.

The evaluator receives the return values from the nodes
in the experiment and collates the responses. Every event
in the experiment sends a response back to the orchestrator
to enable first class logging and error handling. An exper-
iment eventstream can define a time-based or a condition-
based barrier synchronization point, called triggers. In time-
based triggers, the scheduler waits for the specified amount
of time, in milliseconds, before proceeding with the execu-
tion of the event stream. For example, [{timeout: 60000}]
will cause the scheduler to wait for 60 seconds before pro-
cessing the next event in the clientstream eventstream.
In condition-based triggers, the scheduler must wait for the
agents to return from the labeled event. The evaluator re-
ceives the return values from the agents and tries to sat-
isfy the barrier condition. Barrier conditions are evaluated
as a series of boolean return values from the agent that in-
dicate success or failure of the event. Return values may
also be a result string. For example, triggers: [{event:
clientStopped}] in the serverstream eventstream, will
cause the scheduler to wait until all the stopClient method
on the remote nodes is executed by the agents. The daemon
then returns the results labeled with clientStopped, which
is evaluated by the evaluator.

By default, the evaluator waits for all agents within the
agent group, but for graceful error handling in large topolo-
gies, experiments can specify a smaller count number of re-
turn values for success. When the condition is satisfied, the
evaluator returns the result to the scheduler and the event
stream is unblocked. Triggers can also be used to spec-
ify conditional branching in the eventstream based on the
value of the returned result. We discuss an example in Sec-
tion 4. The target directive within a trigger, as shown
in the cleanupstream eventstream, enables an experiment
to loop in the current eventstream or terminate the current
eventstream to start another eventstream. The target direc-
tive is widely used to provide error handling, experiment
analysis, and procedural complexity within the experiment.

3.3 Daemons and Agents

The lightweight daemon provides a conduit for control on
the experiment nodes and runs on every node in the experi-
ment. The daemon maintains the group memberships and is
responsible for deploying agent implementations, receiving
the event commands, invoking the agent methods based on
the commands, and sending the results back to the evaluator.
This is all done asynchronously. An agent runs in two modes:
thread-based or process-based. In the threaded mode, the dae-
mon runs the agent as a thread in its own process space, which
simplifies status and failure handling. In the process mode,
the daemon runs the agent in a process space separate from

itself. If possible, the daemon communicates with the agent
via a pipe or a socket for status and failure handling. Some
agents are off-the-shelf components and have no mechanism
to communicate with the daemon, limiting the ability of status
and failure handling. One of the important goals of the dae-
mon’s task is to support error handling and transmit the errors
back to the orchestrator when they occur. When evaluating
large systems under stress and attack, the experiment may
have many unexpected errors and failures due to interaction
between different processes or incorrect assumptions about
the concurrency involved. The MAGI tool generates detailed
log traces with multiple levels of detail to understand how the
execution evolved during the experiment. Logs can be saved
locally as well as managed by a log collector and saved in a
MongoDB database.

The MAGI tool is organized into two parts; core and agent
modules. The core system consists of the orchestrator, dae-
mon, messaging utilities, and log and data management infras-
tructure. It is implemented in 15K lines of Python code. The
agent modules are agent function implementations and the
code base consists for more than 20+ agents to generate web
traffic, data sharing, microblogging, irc, voip, videostream-
ing, specific attack traffic agents as well as tcpdump, pack-
etcounter, and file and process monitoring agents. This code
base is constantly evolving, as users add more agents, and is
currently at 35K lines of code.

MAGTI has also been used in Emulab, GENI, and mininet
environments. The MAGI toolkit has a modular structure
that supports defining testbed-specific configuration, such as
directory structures, topology and network interface informa-
tion. When the tool is invoked on other testbeds, the testbed
parameters can be specified in the configurations files.

4 Case Studies

This section illustrates how the MAGI tool enables novice
students as well as sophisticated experimenters to to run com-
plex experiments. We illustrate some of the mechanisms in-
troduced in the previous section. All the experiments were
conducted on a emulation-based testbed.

4.1 Senior-level Undergraduate Course

The MAGI tool has been used to develop and evaluate pro-
gramming assignments for CS353, introduction to computer
networks, a senior-level class on networking and distributed
systems at USC. The course programming assignments re-
quired the students to progressively build a large networked
and distributed system with several milestones and checks set
up during the course to support the students. For example,
the students were required to develop a text-based, multi-user
chat client and server system over a period of twelve weeks.
In the first few weeks, they developed the client application
following the detailed protocol defined in the assignment and
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Figure 2: Closed-loop orchestration

evaluated it against the instructor’s server. Then they devel-
oped the server that supported one-on-one chatting between
the clients. For the final part of the assignment, they added
support for one-to-many chatting between the clients.

One of the challenges students face when developing such
systems is self-assessing the correctness and performance of
their system within a real distributed deployment beyond their
personal laptop machine. As instructors, we want to facilitate
mechanisms for the students to check the implementation
of the server with different client implementations and with
multiple clients at the same time over the network. However,
as a student, such self-assessment is extremely hard, being a
novice in an introductory course on distributed systems.

To facilitate self-assessment, we developed a pair of client
and server agent modules that deployed their implementation
as a process-based agent on multiple systems. During the
discussion sessions for the course, we conducted hands-on
tutorials with example testcase inputs to ensure the students
learned how to evaluate their implementations at each mile-
stone. During the first part of the assignment, the students
could rapidly self-assess their client implementation with the
instructor’s server. During the second part, the MAGI tool
randomly chose another classmate’s client implementation
(already verified for correctness from the first part) to self-
assess their server implementation. During the final part of
the assignment, we allowed the students to self-assess by de-
ploying up to thirty clients with their server implementation.
The MAGTI tool proved invaluable in allowing the students to
develop and evaluate their solutions in a consistent manner,
get immediate feedback on the correctness of the protocol im-
plementation, and truly explore development in a distributed
setting.

We used the same setup to the grade the assignments. The
continuity of the environment from the assignment develop-
ment and self-assessment phase to the assignment grading
phase made grading straightforward. Students who did not
adhere to the protocol exactly, or could not complete the full
protocol implementation due to their workload, required some
manual deployment and grading. The MAGI tool has been
used for four years with class sizes varying from 40 to 75
students.
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4.2 Feedback Loops

Some experimentation scenarios require different teams to
interact, while limiting the access to parts of the experimenta-
tion environment. Typical examples include attack-defense
games [11,27] and capture-the-flag games [12]. Each team
attempts to achieve their goals in the presence of benign or
adversarial disturbances. In this example, we illustrate how
the MAGI tool can be used to facilitate such experiments.
While the orchestration of a full game is complex and beyond
the scope of this paper, we demonstrate how the MAGTI tool
can be used to create a closed-feedback loop for experimen-
tation. We believe creating such closed-feedback loops is a
fundamental building block for automated development of

adversarial games.

In this illustrative game, the goal is to maintain the amount
of traffic on a link within the range of 100MBps—105MBps.
Our experiment topology consists of 3000 web clients served
by a web-server farm of 50 apache?2 servers connected in a
canonical dumbbell topology. The web clients are partitioned
into two groups: 2000 web clients that periodically request a

random-sized file from a server and 1000 control clients that
change the size of their request to ensure the traffic goal is

achieved with a sensor, compute and actuate agent. A sensor
agent measures the amount of traffic on the link; a compute
agent devises a control action to increase, decrease, or main-
tain the same traffic; and an actuate agent executes the control
action. With condition-based triggers, the experiment spec-

ification can branch to different eventstreams to modulate
amount of traffic on the link as shown in the specification

sample below:

- type: trigger
triggers: [ { event: ethOSensed, result: '-1’, target: /increaseTraffic’ },
{ event: ethOSensed, result: '1’, target: ' affic’ },
{ event: ethOSensed, result: ’0’, target: /controlLoop’}]

This trigger waits for the sensor results to return periodically
to the evaluator. The sensed value is compared to the target
range of 100MBps—105MBps to compute an actuation ac-
tion to increase traffic, reduce traffic, or just loop back to the
controlLoop.

The resulting graph in Figure 2 shows that the controlled
clients adjust their load as required to successfully maintain
the traffic on the link within the specified threshold. The x-
axis shows experiment time and the y-axis shows the volume
of traffic on the link in MBps. The gray box indicates the
threshold of SMBps of tolerated fluctuation on the link. The



web clients in the graph are exogenous to this experiment and
only the control clients can be orchestrated in this experiment.

4.3 Integrated System Development and Eval-
uation

This example illustrates how five teams in the DARPA
SAFER research project [13] used the MAGI tool to develop
and evaluate adversary-resistant communication technology
to circumvent censorship in Tor. The experiments were com-
plex, as they required thousands of users communicating with
applications such as instant messaging, electronic mail, so-
cial networking, streaming video, voice over Internet protocol
(VoIP), and video conferencing, while attackers were attempt-
ing to discover the identity and location of the users and block
the communication. The evaluation involved conducting a
range of attacks to check the effectiveness of a team’s solu-
tion across several vectors, such as user anonymity, message
integrity and delivery, protocol inspection, client connectivity,
and the ability of the solution to ensure speedy delivery.

The experiments needed to support the configuration and
deployment of Tor, a large complex distributed system, along
with the orchestration of the technology developed by each
team on a wide range of topological representations and traffic
environments. As each prototype technology matured, the test
and evaluation performer had to support the orchestration of
multiple teams, which required integrating their systems both
for demonstrations and for system analysis. The scale of their
experiments ranged from tens to hundreds of physical nodes
on the DETER testbed.

Each team evaluated their technology with wide-area mi-
croblogging and data sharing scenarios [11, 15,36,38]. The
underlying Tor network consisted of two evaluation topolo-
gies, one with 32 servers with 10 client machines per server,
and 24 servers with 12 client machines per server, for a total of
320 and 288 client machines respectively. To simulate a larger
number of client participants, some experiments launched 16
client process modules on each client machine, creating 5120
client processes that were managed by the MAGI tool. The
teams developed a Tor agent that bootstrapped all the Tor-
related directories, relays, bridges and clients with a single
command. Once the setup was completed, the agent signaled
that the Tor system was ready. Each team then launched their
respective agent modules that implemented the functionality
of their solution. After the technology is deployed, the back-
ground and attack traffic agents generate the evaluation traffic
and start monitoring the experiment. The team created more
than 390 unique experiments on the DETER testbed and each
experiment was run using the MAGI tool hundreds of times
for statistically sound results.

The project also conducted larger red teaming exercise with
a three-tier node “core-stub-node” topology with 45 client
nodes generating web and VoIP traffic [11]. Each client had
a microblogging, VoIP, and data sharing traffic module. The

microblogging module generated curl requests to fetch files
of sizes less than 500K from a remote web server, whereas
the VoIP module generated fixed bit-rate traffic between the
client and a destination server for a randomly selected period
of time. Additionally, the teams conducted periodic integrated
demonstrations for the research sponsor. The culminating
demonstration at the end of the project was conducted with
all five technologies deployed over a hundred client topology.
This demonstration experiment had over 30 different agent
modules that generated microblogging, data sharing, and VoIP
traffic in addition to the anti-censorship defense technology
modules developed by each team.

4.4 Cyber-physical Systems

The modern power grid, with thousands of digital sensors
monitoring the conventional and renewable power sources,
energy storage systems, and smart loads, creates a large and
complex distributed cyber-physical system [8]. This system
poses novel challenges in capturing the vast amounts of sensor
data and developing command and control algorithms for
smart cities and smart homes.

We discuss how the MAGI tool facilitated the evaluation
of a real-time distributed optimization algorithm for monitor-
ing of power flow oscillation patterns in large power system
networks. The solution evaluated two variants of the control
algorithm: a centralized algorithm and a distributed consensus-
based estimation algorithm in the presence of DoS attacks.

The experiment was run with an 18 node network topol-
ogy overlaid on a IEEE 39 bus power system. Both control
algorithms were developed in C and deployed using process
agent modules in the experiment. In addition to the estimation
control agents, the experiment also generated background
web traffic and launched high volume DoS attacks on the
communication links between the areas to evaluate resiliency.
The results are not included in the paper due to space con-
straints [40].

5 Performance

To evaluate the performance of MAGI, we set up a two-node
experiment and systematically vary the volume of control
messages from the scheduler to the sink node. Both nodes are
quad-core Xeon 3.0GHz processor with 2 GB memory.

On the scheduler node, we deploy a stress agent that can
generate messages of the specified size and rate and send them
to the sink node. We measure CPU utilization every second in
jiffies for all child processes and threads within the system by
tracking /proc/stat and /proc/<processid>/stat files.
We get the jiffies spent in both user mode and kernel mode and
compute CPU utilization using standard techniques [23]. We
show CPU utilization in jiffies, rather than in CPU utilization
percentage, for better resolution in the figures below.



We vary the control message rate from 1 packet/second to
1000 packets/second in steps of 1 packet/second. The size of
each message is constant at 1000B and each evaluation round
lasts for 1000 seconds. Figure 3 shows the CPU utilization in
jiffies on the y-axis in log scale with varying message rate on
the x-axis in log scale. At packet rates below 10 packets/sec,
the CPU utilization is at or below 1 jiffy and hence not shown.
The CPU utilization is directly proportional to the rate of mes-
sages. This implies that the processing overhead is uniform at
the sink node even as the rate increases. The maximum CPU
utilization at packet size of 10KB is 25 jiffies or 6%CPU at
peak load. This result shows that our system scales well with
an increase in the rate of messages and that the performance
characteristics degrade gracefully with increased load.

We vary the message payload size from O bytes to 10K
bytes in steps of 10B while keeping the message rate con-
stant at 100 packets/sec. Each evaluation round lasts for 1000
seconds. Figure 4 shows the CPU utilization in jiffies on the
y-axis in log scale with varying message size on the x-axis
in log scale. At packet rates below 50 packets/sec, the CPU
utilization is at or below 1 jiffy and hence not shown. The
CPU utilization remains almost constant with the change in
message size. The marginal increase in CPU utilization is due
to the increased amount of data being processed-in from the
socket-level transport interface and being stored and passed
to the system. The maximum CPU utilization at the rate of
100 packets/sec is 4 jiffies or 1% CPU and at rate of 1000
packets/sec is 38 jiffies or 9% CPU when the packet size is
10KB.

The above control message volume is well below what is
typical generated in experiments. For example, in the case
studies discussed in Section 4, we generated a maximum of
40KBps when experimenting with 10K agents at a maximum
rate of 200Bps.

6 Retrospective Takeaways

This effort offers several important lessons. The MAGI tool
made the process of running experiments substantially easier.
First, it is topology agnostic. The experiment, defined as a
sequence of steps, is coupled to the topology using only the
groups directive in the specification. A change in the topol-
ogy structure or scale results in changes in the group speci-
fication. Since no other changes are required, experimenters
widely used this feature to develop and test the experiment at
small scales before deploying large scale experiments. Sec-
ond, it allows the experimenter to exploit concurrency where
ever possible in the experiment design. For example, it allows
the experimenter to rapidly and concurrently deploy and start
a range of traffic generators that are not dependent on each
other using events and event streams. When the order of un-
related events is not relevant, the experimenter can leave the
order unspecified, providing greater flexibility and experiment
execution speed. When the order of the events is important,

for example, starting clients only after all the servers have
started, a trigger can be used to order the events. Third, it
has multiple levels of concurrency: multiple event streams
can be scheduled at the orchestrator; multiple agents can be
deployed and managed by the daemon on the local node;
and the experiment itself is distributed across multiple nodes.
Fourth, the tool combines logging, events, and triggers to
provide mechanisms for specifying, notifying, and handling
failures critical for experiment reliability. The authors believe
the above features were key to MAGI’s success as they en-
abled developing adaptive experimentation environments that
allowed rigorous evaluations of the systems under test.

It is impossible to anticipate all possible components re-
quired by future experiments. Therefore, MAGI provides a
systematic way for researchers to add new components, such
as new attack tools, to the framework as agent modules. Our
experience is that a researcher will choose to use MAGI be-
cause of its wide range of supported modules, and will add
their own novel modules to MAGI because they find it conve-
nient and productive to do so. This has lead to a virtuous cycle
in which the growing set of community developed modules
and tools attracts even more users to using MAGI.

We are starting to develop the next generation orchestration
tool for the Merge testbed platform [25]. In addition to the
above listed features, one of the goals for the next generation
orchestration tool will be to ensure the footprint of the dae-
mon is minimal so that it can be effectively used in highly
virtualized environments.

7 Conclusion

This paper is a retrospective on the development and use of
an experiment orchestration tool. The MAGI tool enabled the
development and evaluation of large and complex networked
and distributed systems in testbed environments through rapid
experimentation in representative scenarios. We described
the key components of its architecture and presented sev-
eral illustrative examples of its use in a variety of settings
ranging from undergraduate education, anonymous communi-
cation, cyber-physical systems, and attacker-defender games.
We discussed the key takeaways from the design, including
topology-agnostic specification along with high-level direc-
tives for concurrency, message passing, and error handling,
that we believe facilitated experimentation. We hope these
insights and takeaways, distilled with the usage of our MAGI
tool over a period of seven years, provide guiding principles
that will aid in developing the next-generation experiment
management tools.

Availability: The MAGI documentation and sample
experiments are located at https://montage.deterlab.
net/magi/. The MAGI code base is installed on the
DETER testbed and available at https://github.com/
deter-project/magi.


https://montage.deterlab.net/magi/
https://montage.deterlab.net/magi/
https://github.com/deter-project/magi
https://github.com/deter-project/magi
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