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Abstract

A variety of tools are used to support software vulnerability
analysis processes. However, when analysts want to select the
optimal tool for a particular use case, or attempt to compare a
new tool against others, no standard method is available to do
so. In addition, we have determined that although vulnerabil-
ities can be categorized into vulnerability types, these types
are often disproportionately represented in current datasets.
Hence, when comparative analyses of tools based upon these
data sets are conducted, the results are distorted and unreal-
istic. To address this problem, we are building a Benchmark
for Vulnerability Analysis Tools (B-VAT).
Representativeness is a key element of a good benchmark.
In this paper, we use stratified sampling to identify a rep-
resentative set of vulnerabilities from over 800 CWE’s and
75,000 CVE’s. This set becomes the foundation upon which
we will build a purpose-based benchmark for vulnerability
analysis tools. By using the correlation between current CWE
and CVE data, the proposed B-VAT will assess tools using
vulnerabilities in the proportions their types occur in the wild.

1 Introduction

The security community relies on tools to support software
vulnerability analysis processes. However, there is no bench-
mark to support the comparison of vulnerability analysis tools.
One current comparison approach is to see how well tools
perform using test cases.

Hundreds of thousands of publicly available test cases con-
taining known software flaws are aggregated into datasets
of vulnerabilities, each with its own structure, test cases,
supported languages, and reporting method, e.g., Juliet Test
Suite [1]. Databases such as the Software Assurance Refer-
ence Dataset (SARD) attempt to inject order by providing
a consolidated repository of vulnerability datasets and test
cases [2]. Unfortunately, even the SARD, which contains 40
datasets and over 170,000 test cases, is not exhaustive— it
excludes datasets such as the Cyber Grand Challenge (CGC)
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Corpus [3], and OWASP Benchmark Project [4]. We will show
that many of these datasets contain an unrealistic representa-
tion of weakness types, i.e., Common Weakness Enumeration
(CWE) entries, when compared to known vulnerability in-
stances in the wild, i.e., accepted Common Vulnerabilities
and Exposures (CVE) entries. Consequently, even if vulnera-
bility analysis tools were assessed using all of the SARD test
cases, the results would would still not reflect reality. In our
effort to create a Benchmark for Vulnerability Analysis Tools
(B-VAT), test cases that are statistically representative of the
vulnerabilities found in the wild are needed.

The CWE provides a repository of weakness types, and the
CVE, a dictionary of vulnerability instances. A weakness is a
mistake in software or hardware that, under proper conditions,
could lead to the introduction of a vulnerability [5,6]. A vul-
nerability is an occurrence of one or more weaknesses that
can be used to, "modify or access unintended data, interrupt
proper execution, or perform incorrect actions that were not
specifically granted to the party who uses the weakness" [6].

We analyzed four popular datasets of software vulnerabili-
ties: Juliet C/C++, Juliet Java [ 1], the CGC Corpus [3], and the
OWASP Benchmark [4]. Each contains test cases that can be
used to assess vulnerability analysis tools. We show that none
represent vulnerability types in the proportions those types oc-
cur in the wild. By correlating the data from 839 CWE’s, and
over 75,000 CVE’s we identify a representative set of known
vulnerabilities that can be used to design a purpose-based
benchmark for vulnerability analysis tools.

This paper makes the following contributions:

o We synthesize 839 CWE’s with over 75,000 CVE’s to
determine the relative proportions of vulnerability in-
stances and weakness types in the wild.

e We analyze four popular software vulnerability datasets,
and show that none accurately represents vulnerability
instances and weakness types as they occur in the wild.

e We perform stratified sampling to determine the appro-
priate number of test cases for each weakness type. This
provides the foundational data upon which B-VAT is
being constructed.



We next provide a brief background on benchmarks, and
identify the key benchmark property motivating this paper:
representativeness. Section 3 explores how representativeness
is achieved, and Section 4 offers a conclusion and future work.

2 The Benchmark

There are many types of computer benchmarks. In the 1960’s
traditional benchmarks were used to compare the speed with
which computers accomplished basic data processing func-
tions [7]. In 1965, Joslin proposed an application bench-
mark that used specific applications to emphasize the relative
throughput performance of different system configurations [8].
Specification-based benchmarks define functions, and include
required inputs and expected output [9]. Gustafson defined a
purpose-based benchmark that, "explicitly and comprehen-
sively measures the ability of a computing system to reach a
goal of human interest" [10]. Our benchmark has a clear pur-
pose: to facilitate comparison of vulnerability analysis tools.
For this reason, we are designing a purpose-based benchmark.

2.1 Benchmark Characteristics

Researchers have proposed a number of desirable bench-
mark characteristics [9, 11-13]. We consider the following
key characteristics for B-VAT:

Relevant The benchmark problems should be closely con-
nected to reality.
Repeatable The same results should be consistently repro-
duced when the benchmark is run with the same tool.
Usable The benchmark should be able to be used in multiple
operating environments, and run with a variety of tools.
Fair The benchmark should impartially measure each tool.
Verifiable There should be confidence that benchmark re-
sults are accurate.
Determining the relevance of benchmark problems involves
a number of elements. From a design perspective, relevance
involves two dimensions: the breadth of the benchmark’s
applicability, and the degree to which benchmark problems
are relevant in each area [9, 12]. In this paper, we focus on
relevance, and specifically on the representativeness of the
problems in B-VAT. See Section 4 for a description of future
work related to B-VAT.

3 A Representative Set

The most important property of a benchmark relates to its
problems [8, 10]. Joslin called this the "representativeness”
of a benchmark, and Gustafson the benchmark’s "problem
size." Gustafson proposed a balance between a benchmark’s
problem size and its usefulness — too many problems in a
benchmark raises its cost, while too few reduces its utility [10].
We will refer to benchmark problems as test cases.

We define a representative set of vulnerabilities as a sub-
set of vulnerabilities instances that adequately represents the

larger set of known vulnerability instances and types [14]. We
identify a representative set from a repository of over 75,000
accepted CVE’s published between 2014 and 2019.

3.1 Vulnerability Instances

Much like the SARD, the CVE provides organization and
standardization. The CVE is a dictionary of publicly known
vulnerability and exposure instances [15]. Each entry de-
scribes an instance of a vulnerability, and includes metadata
such as a unique identifier (CVE ID), standardized descrip-
tion, and where applicable, a corresponding CWE entry'. We
cannot predict future vulnerabilities; our work is constrained
to the set of "known known" and "known unknown" vulnera-
bilities [16]. Additionally, we recognize that the CVE is not
exhaustive, however, it provides an extensive repository of
known vulnerability instances that is suitable for our purposes.

To date, the greatest number, 21,598, of publicly disclosed
vulnerabilities and exposures was reported by the CVE in
2018. Over half, 93,056 out of 160,544, of all of vulnerabil-
ities ever reported (excluding 2020) by the CVE were pub-
lished between 2014 to 2019 [15]. We use these six years of
75,535 community-accepted CVE’s as the set from which we
identify a representative subset of vulnerability instances.

The CVE provides instances of known vulnerabilities, and
the simplest method to identify a representative subset from
these data would be to take a random sample of the larger set.
However, a simple random sample may result in the misrep-
resentation of vulnerability types [17]. By using the existing
correlation between CVE ID’s and CWE ID’s we can link
each CVE ID to one of ten CWE pillars and take a stratified
sample of the set.

3.2 Weakness Types

What the CVE provides for vulnerability instances, the
CWE provides for weakness types. The CWE is a repository
of over 1200 hardware and software weaknesses, and pro-
vides a common language, identifier, and definition for each
weakness type referenced. CWE entries are organized into a
number of views to support different objectives. We use view
CWE-1000, Research Concepts, that includes a hierarchy of
839 CWE entries. The hierarchy contains one of the following
abstraction types for each CWE ID [18]:

Pillar Weaknesses that are described in the most abstract
fashion (10 CWE’s). Pillars include:

1. CWE-284 Improper Access Control

2. CWE-435 Improper Interaction Between Multiple Correctly-
Behaving Entities

3. CWE-664 Improper Control of a Resource Through its Life-
time

4. CWE-682 Incorrect Calculation

5. CWE-691 Insufficient Control Flow Management

6. CWE-693 Protection Mechanism Failure

ICVE entries published prior to the development of the CWE (2006) do
not include a CWE ID



7. CWE-697 Incorrect Comparison
8. CWE-703 Improper Check or Handling of Exceptional Condi-
tions
9. CWE-707 Improper Neutralization
10. CWE-710 Improper Adherence to Coding Standards

Class Abstract weakness, typically independent of any spe-
cific language or technology (96 CWE’s).

Base A more specific type of weakness (441 CWE’s).

Variant A weakness that is described at a very low level of
detail, typically limited to a specific language or technol-
ogy (285 CWE’s).

Composite A set of weaknesses that must all be present si-
multaneously in order to produce an exploitable vulnera-
bility (7 CWE’s).

The weakness hierarchy presented by view CWE-1000 can
be organized into ten rooted trees. A rooted tree is a tree with
a single root vertex that is distinguished from all others. Each
pillar in the hierarchy is a root node of a rooted tree.

Figure 1: CWE view 1000 as a hierarchical radial dendrogram

Using BeautifulSoup [19], pandas [20], and D3 [21] we
crawled over 1000 individual pages on the CWE website to
create and visualize the tree data structures for each of the ten
CWE Pillars. This approach allows us to view the most up-to-
date information on CWE relationships and hierarchies. Then,
by using CWE-1000 as the root node of a tree we can create
a single rooted tree that includes every CWE in the CWE-
1000 view. Figure | depicts the ten CWE pillars and their 839
children as a hierarchical radial dendrogram with root node
CWE-1000. We use the CWE relationship and hierarchy data
to organize the CVE’s into ten strata (see Section 3.4).

3.3 Combining Types with Instances

Of the 75,535 community-accepted CVE’s, 55,128 have
an associated CWE ID. By using the correlations between

CVE ID’s and CWE ID’s, we classify each of these vulnerabil-
ity instances by their weakness type. Figure 2 shows the sum
of known vulnerability instances (CVE IDs), by type (CWE
IDs) from 2014-2019. This visualization shows the relative
proportions of CWE ID’s in the wild. The enclosing circles
show the cumulative size of each of the ten CWE pillars (i.e.
subtrees), while maintaining relationship and hierarchical data.
The exterior circle represents root node, CWE-1000.

Figure 2: Sum of vulnerggiiit? iH&ances (CVE ID) by type
(CWE ID) from 2014-2019

We then use the CWE hierarchy to trace each vulnerability
instance to a corresponding pillar node. This allows us to
represent each CWE pillar as a percentage of the total known
vulnerability instances. For example, pillar CWE-664 and
its [grand]children represent 45% of community-accepted
vulnerabilities (CVE’s) published from 2014-2019. We repeat
this process using four popular vulnerability datasets: Juliet
C/C++ (Jul.(C)), Juliet Java (Jul.(J)), the OWASP Benchmark
(OWASP), and the CGC Corpus (CGC).
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Figure 3: Comparison of sunburst diagrams

Figure 3 also shows the sum of vulnerability instances (CVE
ID) by type (CWE ID) from 2014-2019 (a), and includes a



sum of test cases in the CGC Corpus by type (CWE ID) (b)
for comparison. These diagrams illustrate the stark contrast
between the types of weaknesses in the wild, and those in
current vulnerability datasets”.

Like the CVE, each test case in the reviewed datasets has
a corresponding CWE ID that can be traced to a pillar node.
Table 1 shows the relative percentages of test cases in each
pillar by vulnerability dataset. It shows that none of the vul-
nerability datasets accurately reflects vulnerabilities as they
have occurred in the wild, i.e., CVE’s from 2014-2019. By
taking a stratified sample of the CVE-CWE data we propose a
subset of test cases for B-VAT that proportionately represents
vulnerability instances, and weakness types.

Pillar CVE CGC Jul(C) JulJ) OWASP
CWE-284 10.66% 3.47% 0.95% 0.89% 0.00%
CWE-435 0.07% 0.00% 0.04% 0.00% 0.00%
CWE-664 4527% 72.25% 68.48% 25.52% 14.38%
CWE-682  2.53% 9.83% 12.66% 34.06% 0.00%
CWE-691 2.57% 0.00% 0.65% 0.35% 0.00%
CWE-693  4.66% 0.00% 0.47% 1.73%  38.03%
CWE-697  0.03% 1.16% 0.02% 0.12% 0.00%
CWE-703  0.30% 1.16% 091% 0.34% 0.00%
CWE-707 32.03% 925% 1040% 33.19%  47.59%
CWE-710 1.87% 0.00% 5.18% 3.43% 0.00%

Table 1: % of test cases in each CWE pillar by dataset

3.4 A Stratified Sample

Stratified sampling is a statistical method that allows sub-
groups, or strata to be proportionately represented [22], thus
providing a representative sample of a larger population. Un-
like random sampling, which may result in the misrepresenta-
tion of vulnerability instances and weakness types, stratified
sampling allows us to preserve the relative proportions of
each pillar, or strata. Table 2 shows the proportionate strati-
fied sample size of each pillar.

Pillar Total CVE’s  Stratified Sample
CWE-284 5,847 245
CWE-435 40 2
CWE-664 24,957 1,042
CWE-682 1,397 58
CWE-691 1,419 59
CWE-693 2,571 107
CWE-697 15 1
CWE-703 168 7
CWE-707 17,657 737
CWE-710 1,030 43

Table 2: Stratified sample size of each CWE pillar

These sample sizes become the number of test cases in the
B-VAT aligned to each CWE pillar. By using the correlation

2We have similar diagrams for each of the datasets reviewed.

between CWE and CVE entries our B-VAT will represent
vulnerability instances and weakness types in the proportions
they occur in the wild. In this paper, we used CWE pillars
as the strata in our sample, however, it may be prudent to
add additional variables before taking a stratified sample. For
example, we could also include a severity ranking for each
CVE, and force our sample to include vulnerability instances
with a high severity [23].

4 Conclusion and Future work

Despite the large number of tools used to support software
vulnerability assessments, there is no benchmark that permits
evaluation and comparison of those tools. To address this
problem, we are developing a Benchmark for Vulnerability
Analysis Tools. In this paper, we have discussed a fundamen-
tal property of B-VAT: representativeness. We examined four
popular datasets of software vulnerability test cases: Juliet
C/C++, Juliet Java, the OWASP Benchmark, and the CGC
Corpus, and determined that none represent vulnerabilities
as they have occurred in the wild from 2014-2019. First, we
synthesized the data from 839 CWE’s and over 75,000 CVE’s,
then we used stratified sampling to identify a distribution of
weakness types that is representative of known vulnerability
instances. This analysis provides a foundation for B-VAT;
however, much work remains.

Currently, we are exploring the impact of including addi-
tional variables before taking a stratified sample (e.g., rele-
vance of specific CVE’s and CWE’s, severity rankings, and
a weighted component for rare vulnerabilities). After deter-
mining the desired number of test cases for B-VAT, we must
determine a method to score vulnerability analysis tools. Ex-
isting datasets contain over 150,000 test cases; Table 3 shows
the collective number of available test cases corresponding
to each pillar. We are exploring methods to reuse these test
cases in a more representative way, as described in this paper.

Pillar Required Test Cases  Available Test Cases
CWE-284 245 3,309
CWE-435 2 42
CWE-664 1,042 92,733
CWE-682 58 28,876
CWE-691 59 1,511
CWE-693 107 3,321
CWE-697 1 76
CWE-703 7 1,117
CWE-707 737 34,417
CWE-710 43 7,236

Table 3: Available open-source test cases

This work is ongoing, and we welcome collaboration. All
data and code is available upon request.
We wish thank Lyn Whitaker for valuable discussions.
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