
Open access to the Proceedings of
the 24th USENIX Security Symposium

is sponsored by USENIX

Mo(bile) Money, Mo(bile) Problems:
Analysis of Branchless Banking Applications

in the Developing World
Bradley Reaves, Nolen Scaife, Adam Bates, Patrick Traynor,

and Kevin R.B. Butler, University of Florida

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/reaves

This paper is included in the Proceedings of the
24th USENIX Security Symposium

August 12–14, 2015 • Washington, D.C.

ISBN 978-1-939133-11-3

USENIX Association 	 24th USENIX Security Symposium  17

Mo(bile) Money, Mo(bile) Problems:
Analysis of Branchless Banking Applications in the Developing World

Bradley Reaves
University of Florida

reaves@ufl.edu

Nolen Scaife
University of Florida

scaife@ufl.edu

Adam Bates
University of Florida
adammbates@ufl.edu

Patrick Traynor
University of Florida
traynor@cise.ufl.edu

Kevin R.B. Butler
University of Florida

butler@ufl.edu

Abstract
Mobile money, also known as branchless banking, brings
much-needed financial services to the unbanked in the
developing world. Leveraging ubiquitous cellular net-
works, these services are now being deployed as smart
phone apps, providing an electronic payment infrastruc-
ture where alternatives such as credit cards generally do
not exist. Although widely marketed as a more secure
option to cash, these applications are often not subject
to the traditional regulations applied in the financial sec-
tor, leaving doubt as to the veracity of such claims. In
this paper, we evaluate these claims and perform the first
in-depth measurement analysis of branchless banking ap-
plications. We first perform an automated analysis of all
46 known Android mobile money apps across the 246
known mobile money providers and demonstrate that au-
tomated analysis fails to provide reliable insights. We
subsequently perform comprehensive manual teardown
of the registration, login, and transaction procedures of
a diverse 15% of these apps. We uncover pervasive
and systemic vulnerabilities spanning botched certifica-
tion validation, do-it-yourself cryptography, and myriad
other forms of information leakage that allow an attacker
to impersonate legitimate users, modify transactions in
flight, and steal financial records. These findings confirm
that the majority of these apps fail to provide the pro-
tections needed by financial services. Finally, through
inspection of providers’ terms of service, we also dis-
cover that liability for these problems unfairly rests on
the shoulders of the customer, threatening to erode trust
in branchless banking and hinder efforts for global finan-
cial inclusion.

1 Introduction

The majority of modern commerce relies on cashless
payment systems. Developed economies depend on the
near instantaneous movement of money, often across

great distances, in order to fuel the engines of indus-
try. These rapid, regular, and massive exchanges have
created significant opportunities for employment and
progress, propelling forward growth and prosperity in
participating countries. Unfortunately, not all economies
have access to the benefits of such systems and through-
out much of the developing world, physical currency re-
mains the de facto means of exchange.

Mobile money, also known as branchless banking, ap-
plications attempt to fill this void. Generally deployed
by companies outside of the traditional financial services
sector (e.g., telecommunications providers), branchless
banking systems rely on the near ubiquitous deploy-
ment of cellular networks and mobile devices around
the world. Customers can not only deposit their physi-
cal currency through a range of independent vendors, but
can also perform direct peer-to-peer payments and con-
vert credits from such transactions back into cash. Over
the past decade, these systems have helped to raise the
standard of living and have revolutionized the way in
which money is used in developing economies. Over
30% of the GDP in many such nations can now be at-
tributed to branchless banking applications [39], many
of which now perform more transactions per month than
traditional payment processors, including PayPal [36].

One of the biggest perceived advantages of these ap-
plications is security. Whereas carrying large amounts
of currency long distances can be dangerous to physi-
cal security, branchless banking applications can allow
for commercial transactions to occur without the risk of
theft. Accordingly, these systems are marketed as a se-
cure new means of enabling commerce. Unfortunately,
the strength of such claims from a technical perspective
has not been publicly investigated or verified. Such an
analysis is therefore critical to the continued growth of
branchless banking systems.

In this paper, we perform the first comprehensive anal-
ysis of branchless banking applications. Through these
efforts, we make the following contributions:

1

18  24th USENIX Security Symposium	 USENIX Association

• Analysis of Branchless Banking Applications:
We perform the first comprehensive security anal-
ysis of branchless banking applications. First, we
use a well-known automated analysis tool on all 46
known Android mobile money apps across all 246
known mobile money systems. We then method-
ically select seven Android-based branchless bank-
ing applications from Brazil, India, Indonesia, Thai-
land, and the Phillipines with a combined user base
of millions. We then develop and execute a com-
prehensive, reproducible methodology for analyz-
ing the entire application communication flow. In
so doing, we create the first snapshot of the global
state of security for such applications.

• Identifications of Systemic Vulnerabilities: Our
analysis discovers pervasive weaknesses and shows
that six of the seven applications broadly fail to pre-
serve the integrity of their transactions. We then
compare our results to those provided through auto-
mated analysis and show that current tools do not re-
liably indicate severe, systemic security faults. Ac-
cordingly, neither users nor providers can reason
about the veracity of requests by the majority of
these systems.

• Analysis of Liability: We combine our technical
findings with the assignment of liability described
within every application’s terms of service, and de-
termine that users of these applications have no re-
course for fraudulent activity. Therefore, it is our
belief that these applications create significant fi-
nancial dangers for their users.

The remainder of this paper is organized as follows:
Section 2 provides background information on branch-
less banking and describes how these applications com-
pare to other mobile payment systems; Section 3 details
our methodology and analysis architecture; Section 4
presents our findings and categorizes them in terms of the
CWE classification system; Section 5 delivers discussion
and recommendations for technical remediation; Sec-
tion 6 offers an analysis of the Terms of Service and the
assignment of liability; Section 7 discusses relevant re-
lated work; and Section 8 provides concluding remarks.

2 Mobile Money in the Developing World

The lack of access to basic financial services is a con-
tributing factor to poverty throughout the world [17].
Millions live without access to basic banking services,
such as value storage and electronic payments, simply
because they live hours or days away from the nearest
bank branch. Lacking this access makes it more difficult
for the poor to save for future goals or prepare for future

(a) mPAY (b) GCash

(c) Oxigen Wallet

Figure 1: Mobile money apps are heavily marketed as be-
ing safe to use. These screenshots from providers’ mar-
keting materials show the extent of these claims.

setbacks, conduct commerce remotely, or protect money
against loss or theft. Accordingly, providing banking
through mobile phone networks offers the promise of
dramatically improving the lives of the world’s poor.

The M-Pesa system in Kenya [21] pioneered the mo-
bile money service model, in which agents (typically lo-
cal shopkeepers) act as intermediaries for deposits, with-
drawals, and sometimes registration. Both agents and
users interact with the mobile money system using SMS
or a special application menu enabled by code on a SIM
card, enabling users to send money, make bill payments,
top up airtime, and check account balances. The key
feature of M-Pesa and other systems is that their use
does not require having a previously established rela-
tionship with a bank. In effect, mobile money systems
are bootstrapping an alternative banking infrastructure
in areas where traditional banking is impractical, uneco-
nomic due to minimum balances, or simply non-existent.
M-Pesa has not yet released a mobile app, but is ar-
guably the most impactful mobile money system and
highlights the promise of branchless banking for devel-
oping economies.

Mobile money has become ubiquitous and essential.
M-Pesa boasts more than 18.2 million registrations in a
country of 43.2 million [37]. In Kenya and eight other
countries, there are more mobile money accounts than
bank accounts. As of August 2014, there were a total
of 246 mobile money services in 88 countries serving
a total of over 203 million registered accounts, continu-
ing a trend [49] up from 219 services in December 2013.
Note that these numbers explicitly exclude services that
are simply a mobile interface for existing banking sys-
tems. Financial security, and trust in branchless bank-
ing systems, depends on the assurances that these sys-
tems are secure against fraud and attack. Several of the
apps that we study offer strong assurances of security in
their promotional materials. Figure 1 provides examples

2

USENIX Association 	 24th USENIX Security Symposium  19

Branchless
Banking

Mobile
Payments

Mobile
Wallets

PayPal

Oxigen Wallet

CurrentC

Google Wallet
Apple Pay

Starbucks

SquareCash

Airtel Money

mPay

GCash

Zuum

mCoin
MOM

Figure 2: While Mobile Money (Branchless Banking)
and Mobile Payments share significant overlapping func-
tionality, the key differences are the communications
methods the systems use and that mobile money systems
do not rely on existing banking infrastructure.

of these promises. This promise of financial security is
even reflected in the M-Pesa advertising slogan “Relax,
you have got M-Pesa.” [52]. However, the veracity of
these claims is unknown.

2.1 Comparison to Other Services
Mobile money is closely related to other technologies.
Figure 2 presents a Venn diagram indicating how repre-
sentative mobile apps fall into the categories of mobile
payments, mobile wallets, and branchless banking sys-
tems. Most mobile finance systems share the ability to
make payments to other individuals or merchants. In our
study, the mobile apps for these finance systems are dis-
tinguished as follows:

• Mobile Payment describes systems that allow a mo-
bile device to make a payment to an individual or mer-
chant using traditional banking infrastructure. Exam-
ple systems include PayPal, Google Wallet, Apple Pay,
Softpay (formerly ISIS), CurrentC, and Square Cash.
These systems acting as an intermediary for an exist-
ing credit card or bank account.

• Mobile Wallets store multiple payment credentials
for either mobile money or mobile payment systems
and/or facilitate promotional offers, discounts, or loy-
alty programs. Many mobile money systems (like Ox-
igen Wallet, analyzed in this paper) and mobile pay-
ment systems (like Google Wallet and Apple Pay) are
also mobile wallets.

• Branchless Banking is designed around policies that
facilitate easy inclusion. Enrollment often simply re-
quires just a phone number or national ID number be
entered into the mobile money system. These systems
have no minimum balances and low transaction fees,

and feature reduced “Know Your Customer”1 regula-
tions [51]. Another key feature of branchless banking
systems is that in many cases they do not rely on In-
ternet (IP) connectivity exclusively, but also use SMS,
Unstructured Supplementary Service Data (USSD), or
cellular voice (via Interactive Voice Response, or IVR)
to conduct transactions. While methods for protect-
ing data confidentiality and integrity over IP are well
established, the channel cryptography used for USSD
and SMS has been known to be vulnerable for quite
some time [56].

3 App Selection and Analysis

In this section, we discuss how apps were chosen for
analysis and how the analysis was conducted.

3.1 Mallodroid Analysis

Using data from the GSMA Mobile Money Tracker [6],
we identified a total of 47 Android mobile money apps
across 28 countries. We first ran an automated analysis
on all 47 of these apps using Mallodroid [28], a static
analysis tool for detecting SSL/TLS vulnerabilities, in
order to establish a baseline. Table 3 in the appendix pro-
vides a comprehensive list of the known Android mobile
money applications and their static analysis results. Mal-
lodroid detects vulnerabilities in 24 apps, but its analysis
only provides a basic indicator of problematic code; it
does not, as we show, exclude dead code or detect major
flaws in design. For example, it cannot guarantee that
sensitive flows actually use SSL/TLS. It similarly can-
not detect ecosystem vulnerabilities, including the use of
deprecated, vulnerable, or incorrect SSL/TLS configu-
rations on remote servers. Finally, the absence of SS-
L/TLS does not necessarily condemn an application, as
applications can still operate securely using other proto-
cols. Accordingly, such automated analysis provides an
incomplete picture at best, and at worst an incorrect one.
This is a limitation of all automatic approaches, not just
Mallodroid.

In the original Mallodroid paper, its authors performed
a manual analysis on 100 of the 1,074 (9.3%) apps their
tool detected to verify its findings; however, only 41%
of those apps were vulnerable to SSL/TLS man-in-the-
middle attacks. It is therefore imperative to further ver-
ify the findings of this tool to remove false positives and
false negatives.

1“Know Your Customer” (KYC), “Anti-Money Laundering”
(AML), and “Combating Financing of Terrorism” policies are regu-
lations used throughout the world to frustrate financial crime activity.

3

20  24th USENIX Security Symposium	 USENIX Association

Figure 3: The mobile money applications we analyzed were developed for a diverse range of countries. In total, we
performed an initial analysis on applications from 28 countries representing up to approximately 1.2 million users
based on market download counts. From this, we selected 7 applications to fully analyze from 5 countries. Each black
star represents these countries, and the white stars represent the remainder of the mobile money systems.

3.2 App Selection

Given the above observations, we selected seven mobile
money apps for more extensive analysis. These seven
apps represent 15% of the total applications and were se-
lected to reflect diversity across markets, providers, fea-
tures, download counts, and static analysis results. Col-
lectively, these apps serve millions of users. Figure 3
shows the geographic diversity across all of the mobile
money apps we observed and those we selected for man-
ual analysis.

We focus on Android applications in this paper be-
cause Android has the largest market share world-
wide [43], and far more mobile money applications are
available for Android than iOS. However, while we can-
not make claims about iOS apps that we did not analyze,
we do note that all errors disclosed in Section 4 are pos-
sible in iOS and are not specific to Android.

3.3 Manual Analysis Process

Our analysis is the first of its kind to perform an in-depth
analysis of the protocols used by these applications as
well as inspect both ends of the SSL/TLS sessions they
may use. Each layer of the communication builds on the
last; any error in implementation potentially affects the
security guarantees of all others. This holistic view of
the entire app communication protocol at multiple layers

offers a deep view of the fragility of these systems.
In order to accomplish this, our analysis consisted

of two phases. The first phase provided an overview
of the functionality provided by the app; this included
analyzing the application’s code and manifest and test-
ing the quality of any SSL/TLS implementations on re-
mote servers. Where possible, we obtained an in-country
phone number and created an account for the mobile
money system. The overview phase was followed by a
reverse engineering phase involving manual analysis of
the code. For those apps that we possessed accounts, we
also executed the app and verified any findings we found
in the code.

Our main interest is in verifying the integrity of these
sensitive financial apps. While privacy issues like IMEI
or location leakage are concerning [26], we focus on
communications between the app and the IP or SMS
backend systems, where an adversary can observe, mod-
ify, and/or generate transactions.
Phase 1: Inspection

In the inspection phase, we determined the basic func-
tionality and structure of the app in order to guide later
analysis. Figure 4 shows the overall toolchain for ana-
lyzing the apps along with each respective output.

The first step of the analysis was to obtain the applica-
tion manifest using apktool [2]. We then used an sim-
ple script to generate a report identifying each app com-
ponent (i.e., activities, services, content providers, and

4

USENIX Association 	 24th USENIX Security Symposium  21

App baksmali
Dalvik

Bytecode,
Library usage

JEB Java

apktool

Execution Visual
Inspection

Processes Result

Unzip Layouts, etc.

Custom
Analysis Scripts

Manifest

Discover native
code

Figure 4: A visualization of the tools used for analyzing
the mobile money apps.

broadcast receivers) as well as the permissions declared
and defined by the app. This acted as a high-level proxy
for understanding the capabilities of the app. With this
report, we could note interesting or dangerous permis-
sions (e.g., WRITE EXTERNAL STORAGE can leak sen-
sitive information) and which activities are exported to
other apps (which can be used to bypass authentication).

The second step of this phase was an automated review
of the Dalvik bytecode. We used the Baksmali [10]
tool to disassemble the application dex file. While dis-
assembly provides the Dalvik bytecode, this alone does
not assist in reasoning about the protocols, data flows,
and behavior of an application. Further inspection is still
required to understand the semantic context and interac-
tions of classes and functions.

After obtaining the Dalvik bytecode, we used a
script to identify classes that use interesting libraries;
these included networking libraries, cryptography li-
braries (including java.security and javax.crypto

and Bouncy Castle [11]), well-known advertising li-
braries (as identified by Chen et al. [18]), and libraries
that can be used to evade security analysis (like Java
ClassLoaders). References to these libraries are found
directly in the Dalvik assembly with regular expressions.
The third step of the overview was to manually take note
of all packages included in the app (external libraries
like social media libraries, user interface code, HTTP li-
braries, etc.).

While analyzing the application’s code can provide
deep insight into the application’s behavior and clien-
t/server protocols, it does not provide any indication of
the security of the connection as it is negotiated by the
server. For example, SSL/TLS servers can offer vulner-
able versions of the protocol, weak signature algorithms,
and/or expired or invalid certificates. Therefore, the fi-
nal step of the analysis was to check each application’s
SSL endpoints using the Qualys SSL Server Test [50].2

2For security reasons, Qualys does not test application endpoints on

This test provides a comprehensive, non-invasive view of
the configuration and capabilities of a server’s SSL/TLS
implementation.
Phase 2: Reverse Engineering

In order to complete our holistic view of both the ap-
plication protocols and the client/server SSL/TLS nego-
tiation, we reverse engineered each app in the second
phase. For this step, we used the commercial interac-
tive JEB Decompiler [4] to provide Java syntax for most
classes. While we primarily used the decompiled out-
put for analysis, we also reviewed the Dalvik assem-
bly to find vulnerabilities. Where we were able to ob-
tain accounts for mobile money accounts, we also con-
firmed each vulnerability with our accounts when doing
so would not negatively impact the service or other users.

Rather than start by identifying interesting methods
and classes, we began analysis by following the appli-
cation lifecycle as the Android framework does, starting
with the Application.onCreate() method and mov-
ing on to the first Activity to execute. From there, we
constructed the possible control paths a user can take
from the beginning through account registration, login,
and money transfer. This approach ensures that our find-
ings are actually present in live code, and accordingly
leads to conservative claims about vulnerabilities.3 After
tracing control paths through the Activity user inter-
face code, we also analyze other components that appear
to have sensitive functionality.

As stated previously, our main interest is in verifying
the integrity of these financial applications. In the course
of analysis, we look for security errors in the following
actions:
• Registration and login
• User authentication after login
• Money transfers

These errors can be classified as:
• Improper authentication procedures
• Message confidentiality and integrity failures (in-

cluding misuse of cryptography)
• Highly sensitive information leakage (including fi-

nancial information or authentication credentials)
• Practices that discourage good security hygiene,

such as permitting insecure passwords
We discuss our specific findings in Section 4.

3.3.1 Vulnerability Disclosure

As of the publication deadline of this paper we have no-
tified all services of the vulnerabilities. We also included
basic details of accepted mitigating practices for each

non-standard ports or without registered domain names.
3In the course of analysis, we found several vulnerabilities in what

is apparently dead code. While we disclosed those findings to develop-
ers for completeness, we omit them from this paper.

5

22  24th USENIX Security Symposium	 USENIX Association

ID Common Weakness Enumeration Airtel Money mPAY Oxigen Wallet GCash Zuum MOM mCoin
SSL/TLS & Certificate Verification
CWE-295 Improper Certificate Validation � � � �

Non-standard Cryptography
CWE-330 Use of Insufficiently Random Values � � �
CWE-322 Key Exchange without Entity Authentication � �

Access Control
CWE-88 Argument Injection or Modification �
CWE-302 Authentication Bypass by Assumed-Immutable Data � �
CWE-521 Weak Password Requirements �
CWE-522 Insufficiently Protected Credentials �
CWE-603 Use of Client-Side Authentication �
CWE-640 Weak Password Recovery Mechanism for Forgotten Password �

Information Leakage
CWE-200 Information Exposure � � �
CWE-532 Information Exposure Through Log Files � � �
CWE-312 Cleartext Storage of Sensitive Information � � �
CWE-319 Cleartext Transmission of Sensitive Information � � �

Table 1: Weaknesses in Mobile Money Applications, indexed to corresponding Common Weakness Enumera-
tion (CWE) records. The CWE database is a comprehensive taxonomy of software vulnerabilities developed by
MITRE [55] and provide a common language for software errors.

finding. Most have not sent any response to our disclo-
sures. We have chosen to publicly disclose these vulner-
abilities in this paper out of an obligation to inform users
of the risks they face in using these insecure services.

4 Results

This section details the results of analyzing the mobile
money applications. Overall, we find 28 significant vul-
nerabilities across seven applications. Table 1 shows
these vulnerabilities indexed by CWE and broad cate-
gories (apps are ordered by download count). All but
one application (Zuum) presents at least one major vul-
nerability that harmed the confidentiality of user finan-
cial information or the integrity of transactions, and most
applications have difficulty with the proper use of cryp-
tography in some form.

4.1 Automated Analysis

Our results for SSL/TLS vulnerabilities should mirror
the output of an SSL/TLS vulnerability scanner such as
Mallodroid. Though two applications were unable to be
analyzed by Mallodroid, it detects at least one critical
vulnerability in over 50% of the applications it success-
fully completed.

Mallodroid produces a false positive when it detects
an SSL/TLS vulnerability in Zuum, an application that,
through manual analysis, we verified was correctly per-
forming certificate validation. The Zuum application
does contain disabled certificate validation routines, but
these are correctly enclosed in logic that checks for de-
velopment modes.

Conversely, in the case of MoneyOnMobile, Mallo-
droid produces a false negative. MoneyOnMobile con-

tains no SSL/TLS vulnerability because it does not em-
ploy SSL/TLS. While this can be considered correct op-
eration of Mallodroid, it also does not capture the severe
information exposure vulnerability in the app.

Overall, we find that Mallodroid, an extremely pop-
ular analysis tool for Android apps, does not detect the
correct use of SSL/TLS in an application. It produces
an alert for the most secure app we analyzed and did not
for the least. In both cases, manual analysis reveals stark
differences between the Mallodroid results and the real
security of an app. A comprehensive, correct analysis
must include a review of the application’s validation and
actual use of SSL/TLS sessions as well as where these are
used in the application (e.g., used for all sensitive com-
munications). Additionally, it is critical to understand
whether the remote server enforces secure protocol ver-
sions, ciphers, and hashing algorithms. Only a manual
analysis provides this holistic view of the communica-
tion between application and server so that a complete
security evaluation can be made.

4.2 SSL/TLS
As we discussed above, problems with SSL/TLS certifi-
cate validation represented the most common vulnera-
bility we found among apps we analyzed. Certificate
validation methods inspect a received certificate to en-
sure that it matches the host in the URL, that it has a
trust chain that terminates in a trusted certificate author-
ity, and that it has not been revoked or expired. However,
developers are able to disable this validation by creating
a new class that implements the X509TrustManager in-
terface using arbitrary validation methods, replacing the
validation implemented in the parent library. In the appli-
cations that override the default code, the routines were
empty; that is, they do nothing and do not throw excep-

6

USENIX Association 	 24th USENIX Security Symposium  23

Product Qualys Most Noteworthy
Score Vulnerabilities

Airtel Money A- Weak signature algorithm (SHA1withRSA)
mPAY 1 F- SSL2 support, Insecure Client-Initiated Renegot.
mPAY 2 F- Vulnerable to POODLE attack
Oxigen Wallet F- SSL2 support, MD5 cipher suite
Zuum A- Weak signature algorithm (SHA1withRSA)
GCash C- Vulnerable to POODLE attack
mCoin N/A Uses expired, localhost self-signed certificate
MoneyOnMobile N/A App does not use SSL/TLS

Table 2: Qualys reports for domains associated with
branchless banking apps. “Most Noteworthy Vulnerabil-
ities” lists what Qualys considers to be the most danger-
ous elements of the server’s configuration. mPAY con-
tacts two domains over SSL, both of which are separately
tabulated below. Qualys would not scan mCoin because
it connects to a specific IP address, not a domain.

tions on invalid certificates. This insecure practice was
previously identified by Georgiev et al. [31] and is specif-
ically targeted by Mallodroid.

Analyzing only the app does not provide complete vis-
ibility to the overall security state of an SSL/TLS ses-
sion. Server misconfiguration can introduce additional
vulnerabilities, even when the client application uses cor-
rectly implemented SSL/TLS. To account for this, we
also ran the Qualys SSL Server Test [50] on each of
the HTTPS endpoints we discovered while analyzing the
apps. This service tests a number of properties of each
server to identify configuration and implementation er-
rors and provide a “grade” for the configuration. These
results are presented in Table 2. Three of the endpoints
we tested received failing scores due to insecure im-
plementations of SSL/TLS. To underscore the severity
of these misconfigurations, we have included the “Most
Noteworthy Vulnerabilities” identified by Qualys.
mCoin. Coupling the manual analysis with the Qualys
results, we found that in one case, the disabled validation
routines were required for the application to function cor-
rectly. The mCoin API server provides a certificate that
is issued to “localhost” (an invalid hostname for an ex-
ternal service), is expired, and is self-signed (has no trust
chain). No correct certificate validation routine would
accept this certificate. Therefore, without this routine,
the mCoin application would be unable to establish a
connection to its server. Although Mallodroid detected
the disabled validation routines, only our full analysis
can detect the relationship between the app’s behavior
and the server’s configuration.

The implications of poor validation practices are se-
vere, especially in these critical financial applications.
Adversaries can intercept this traffic and sniff cleartext
personal or financial information. Furthermore, without
additional message integrity checking inside these weak
SSL/TLS sessions, a man-in-the-middle adversary is free
to manipulate the inside messages.

Encryption Server

Registration Server

1

2

3

Figure 5: The user registration flow of MoneyOnMobile.
All communication is over HTTP.

4.3 Non-Standard Cryptography

Despite the pervasive insecure implementations of
SSL/TLS, the client/server protocols that these apps im-
plement are similarly critical to their overall security. We
found that four applications used their own custom cryp-
tographic systems or had poor implementations of well-
known systems in their protocols. Unfortunately, these
practices are easily compromised and severely limit the
integrity and privacy guarantees of the software, giving
rise to the threat of forged transactions and loss of trans-
action privacy.
MoneyOnMobile. MoneyOnMobile does not use SS-
L/TLS. All API calls from the app use HTTP. In fact,
we found only one use of cryptography in the applica-
tion’s network calls. During the user registration process,
the app first calls an encryption proxy web service, then
sends the service’s response to a registration web service.
The call to the encryption server includes both the user
data and a fixed static key. A visualization of this proto-
col is shown in Figure 5.

The encryption server is accessed over the Internet via
HTTP, exposing both the user and key data. Because
this data is exposed during the initial call, its subsequent
encryption and delivery to the registration service pro-
vides no security. We found no other uses of this or any
other encryption in the MoneyOnMobile app; all other
API calls are provided unobfuscated user data as input.
Oxigen Wallet. Like MoneyOnMobile, Oxigen Wal-
let does not use SSL/TLS. Oxigen Wallet’s registration
messages are instead encrypted using the Blowfish al-
gorithm, a strong block cipher. However, a long, ran-
dom key is not generated for input into Blowfish. In-

7

24  24th USENIX Security Symposium	 USENIX Association

stead, only 17 bits of the key are random. The remain-
ing bits are filled by the mobile phone number, the date,
and padding with 0s. The random bits are generated by
the Random [34] random number generator. The stan-
dard Java documentation [44] explicitly warns in its doc-
umentation that Random is not sufficiently random for
cryptographic key generation.4 As a result, any attacker
can read, modify, or spoof messages. These messages
contain demographic information including first and last
name, email address, date of birth, and mobile phone
number, which constitutes a privacy concern for Oxigen
Wallet’s users.

After key generation, Oxigen Wallet transmits the key
in plaintext along with the message to the server. In other
words, every encrypted registration message includes the
key in plaintext. Naturally, this voids every guarantee of
the block cipher. In fact, any attacker who can listen to
messages can decrypt and modify them with only a few
lines of code.

The remainder of client-server interactions use an
RSA public key to send messages to the server. To es-
tablish an RSA key for the server, Oxigen Wallet sends
a simple HTTP request to receive an RSA key from the
Oxigen Wallet server. This message is unauthenticated,
which prevents the application from knowing that the re-
ceived key is from Oxigen Wallet and not from an at-
tacker. Thus, an attacker can pretend to be Oxigen Wal-
let and send an alternate key to the app. This would al-
low the attacker to read all messages sent by the client
(including those containing passwords) and forward the
messages to Oxigen Wallet (with or without modifica-
tions) if desired. This RSA man-in-the-middle attack is
severe and puts all transactions by a user at risk. At the
very least, this will allow an attacker to steal the pass-
word from messages. The password can later be used to
conduct illicit transactions from the victim’s account.

Finally, responses from the Oxigen Wallet servers are
not encrypted. This means that any sensitive information
that might be contained in a response (e.g., the name of
a transaction recipient) can be read by any eavesdropper.
This is both a privacy and integrity concern because an
attacker could read and modify responses.
GCash. Unlike Oxigen Wallet, GCash uses a static
key for encrypting communcations with the remote
server. The GCash application package includes a file
“enc.key,” which contains a symmetric key. During the
GCash login process, the user’s PIN and session ID are
encrypted using this key before being sent to the GCash
servers. This key is posted publicly because it is included
with every download of GCash. An attacker with this
key can decrypt the user’s PIN and session ID if the en-

4Although the Android offers a SecureRandom class for
cryptographically-secure generation, it does not mention its necessity
in the documentation.

crypted data is captured. This can subsequently give the
attacker the ability to impersonate the user.

The session ID described above is generated dur-
ing the login process and passed to the server to pro-
vide session authentication in subsequent messages. We
did not find any other authenticator passed in the mes-
sage body to the GCash servers after login. The ses-
sion ID is created using a combination of the device
ID, e.g., International Mobile Station Equipment Iden-
tity (IMEI), and the device’s current date and time. An-
droid will provide this device ID to any application with
the READ PHONE STATE permission, and device IDs can
be spoofed on rooted phones. Additionally, IMEI is fre-
quently abused by mobile apps for persistent tracking of
users [25], and is thus also stored in the databases of hun-
dreds of products.

Although the session ID is not a cryptographic con-
struct, the randomness properties required by a strong
session ID match those needed by a strong cryptographic
key. This lack of randomness results in predictable ses-
sion IDs can then be used to perform any task as the ses-
sion’s associated user.
Airtel Money. Airtel Money performs a similar mistake
while authenticating the user. When launching the appli-
cation, the client first sends the device’s phone number
to check if there is an existing Airtel Money account. If
so, the server sends back the user’s account number in
its response. Although this response is transmitted via
HTTPS, the app does not validate certificates, creating
a compound vulnerability where this information can be
discovered by an attacker.

Sensitive operations are secured by the user’s 4-digit
PIN. The PIN is encrypted in transit using a weakly-
constructed key that concatenates the device’s phone
number and account number in the following format:

Keyenc = j7zgy1yv‖ phone#‖account# (1)

The prefixed text in the key is immutable and included
with the application. Due to the weak SSL/TLS imple-
mentation during the initial messages, an adversary can
obtain the user’s account number and decrypt the PIN.
The lack of randomness in this key again produces a vul-
nerability that can lead to user impersonation.

4.4 Access Control
A number of the applications that we analyzed used ac-
cess control mechanisms that were poorly implemented
or relied on incorrect or unverifiable assumptions that
the user’s device and its cellular communications chan-
nels are uncompromised. Multiple applications relied on
SMS communications, but this channel is subject to a
number of points of interception [56]. For example, an-
other application on the device with the RECEIVE SMS

8

USENIX Association 	 24th USENIX Security Symposium  25

permission could read the incoming SMS messages of
the mobile money application. This functionality is out-
side the control of the mobile money application. Addi-
tionally, an attacker could have physical access to an un-
locked phone, where messages can be inspected directly
by a person. This channel does not, therefore, provide
strong confidentiality or integrity guarantees.
MoneyOnMobile. The MoneyOnMobile app presents
the most severe lack of access control we found among
the apps we analyzed. The service uses two differ-
ent PINs, the MPIN and TPIN, to authenticate the user
for general functionality and transactions. However, we
found that these PINs only prevent the user from moving
between Android activities. In fact, the user’s PINs are
not required to execute any sensitive functionality via the
backend APIs. All sensitive API calls (e.g., balance in-
quiry, mobile recharge, bill pay, etc.) except PIN changes
can be executed with only knowledge of the user’s mo-
bile phone number and two API calls. MoneyOnMobile
deploys no session identifiers, cookies, or other stateful
tracking mechanisms during the app’s execution; there-
fore, none of these are required to exploit the service.

The first required API call takes the mobile number
as input and outputs various parameters of the account
(e.g., Customer ID). These parameters identify the ac-
count as input in the subsequent API call. Due to the
lack of any authentication on these sensitive functions,
an adversary with no knowledge of the user’s account can
execute transactions on the user’s behalf. Since the ini-
tial call provides information about a user account, this
call allows an adversary to brute force phone numbers in
order to find MoneyOnMobile users. This call also pro-
vides the remainder of the information needed to perform
transactions on the account, severely compromising the
security of the service.
mPAY. While the MoneyOnMobile servers do not re-
quire authentication before performing server tasks, we
found the opposite is true with mPAY. The mPAY app ac-
cepts and performs unauthenticated commands from its
server. The mPAY app uses a web/native app hybrid that
allows the server to send commands to the app through
the use of a URL parameter “method.” These methods
instruct the app to perform many actions, including start-
ing the camera, opening the browser to an arbitrary URL,
or starting an arbitrary app. If the control flow of the web
application from the server side is secure, and the HTTP
channel between client and server is free from injection
or tampering, it is unlikely that these methods could be
harmful. However, if an attacker can modify server code
or redirect the URL, this functionality could be used to
attack mobile users. Potential attacks include tricking
users into downloading malware, providing information
to a phishing website, or falling victim to a cross-site
request forgery (CSRF) attack. As we discussed in the

previous results, mPAY does not correctly validate the
certificates used for its SSL/TLS sessions, and so these
scenarios are unsettlingly plausible.
GCash. Although GCash implements authentication, it
relies on easily-spoofable identity information to secure
its accounts. During GCash’s user registration process,
the user selects a PIN for future authentication. The se-
lected PIN is sent in plaintext over SMS along with the
user’s name and address. GCash then identifies the user
with the phone number used to send the SMS message.
This ties the user’s account to their phone’s SIM card.
Unfortunately, SMS spoofing services are common, and
these services provide the ability for an unskilled adver-
sary to send messages appearing to be from an arbitrary
number [27]. SIM cards can be damaged, lost, or stolen,
and since the wallet balance is tied to this SIM, it may be
difficult for a user to reclaim their funds.

Additionally, GCash requires the user to select a 4-
digit PIN to register an account. As previously men-
tioned, this PIN is used to authenticate the user to the
service. This allows only 10,000 possible combinations
of PINs, which is quickly brute-forceable, though more
intelligent guessing can be performed using data on the
frequency of PIN selection [16]. We were not able to
create an account with GCash to determine if the service
locks accounts after a number of incorrect login attempts,
which is a partial mitigation for this problem.
Oxigen Wallet. Like GCash, Oxigen Wallet also allows
users to perform several sensitive actions via SMS. The
most severe of these is requesting a new password. As a
result, any attacker or application with access to a mobile
phone’s SMS subsystem can reset the password. That
password can be used to login to the app or to send SMS
messages to Oxigen Wallet for illicit transactions.

4.5 Information Leakage

Several of the analyzed applications exposed personally-
identifying user information and/or data critical to the
transactional integrity through various methods, includ-
ing logging and preference storage.

4.5.1 Logging

The Android logging facility provides developers the
ability to write messages to understand the state of their
application at various points of its execution. These mes-
sages are written to the device’s internal storage so they
can be viewed at a future time. If the log messages were
visible only to developers, this would not present the op-
portunity for a vulnerability. However, prior to Android
4.1, any application can declare the READ LOGS per-
mission and read the log files of any other application.
That is, any arbitrary application (including malicious

9

26  24th USENIX Security Symposium	 USENIX Association

ones) may read the logs. According to statistics from
Google [32], 20.7% of devices run a version of Android
that allows other apps to read logs.

mPAY. mPAY logs include user credentials, personal
identifiers, and card numbers.

GCash. GCash writes the plaintext PIN using the ver-
bose logging facility. The Android developer documen-
tation states that verbose logging should not be compiled
into production applications [33]. Although GCash has a
specific devLog function that only writes this data when
a debug flag is enabled, there are still statements without
this check. Additionally, the session ID is also logged
using the native Android logging facility without check-
ing for a developer debug flag. An attacker with GCash
log access can identify the user’s PIN and the device ID,
which could be used to impersonate the user.

MoneyOnMobile. These logs include server responses
and account balances.

4.5.2 Preference Storage

Android provides a separate mechanism for storing pref-
erences. This system has the capability of writing the
stored preferences to the device’s local storage, where
they can be recovered by inspecting the contents of the
preferences file. Often, developers store preferences data
in order to access it across application launches or from
different sections of the code without needing to explic-
itly pass it. While the shared preferences are normally
protected from the user and other apps, if the device is
rooted (either by the user or a malicious application) the
shared preferences file can be read.

GCash. GCash stores the user’s PIN in this system. The
application clears these preferences in several locations
in the code (e.g., logout, expired sessions), however if
the application terminates unexpectedly, these routines
may not be called, leaving this sensitive information on
the device.

mPAY. Similarly, mPAY stores the mobile phone number
and customer ID in its preferences.

mCoin. Additionally, mCoin stores the user’s name,
birthday, and certain financial information such as the
user’s balance. We also found that mCoin exposes this
data in transmission. Debugging code in the mCoin ap-
plication is also configured to forward the user’s mCoin
shared preferences to the server with a debug report. As
noted above, this may contain the user’s personal infor-
mation. This communication is performed over HTTP
and sent in plaintext, providing no confidentiality for the
user’s data in transmission.

4.5.3 Other Leakage

Oxigen Wallet. We discussed in Section 4.3 that re-
quests from the Oxigen Wallet client are encrypted (in-
securely) with either RSA or Blowfish. Oxigen Wallet
also discloses mobile numbers of account holders. On
sign up, Oxigen Wallet sends a GetProfile request to
a server to determine if the mobile number requesting a
new account is already associated with an email address.
The client sends an email address, and the server sends
a full mobile number back to the client. The applica-
tion does appear to understand the security need for this
data as only the last few digits of the mobile number are
shown on the screen (the remaining digits are replaced
by Xs). However, it appears that the full mobile num-
ber is provided in the network message. This means that
if an attacker could somehow read the full message, he
could learn the mobile number associated with the email
address.

Unfortunately, the GetProfile request can be sent
using the Blowfish encryption method previously de-
scribed, meaning that an attacker could write his own
code to poll the Oxigen Wallet servers to get mobile num-
bers associated with known email addresses. This enu-
meration could be used against a few targets or it may be
done in bulk as a precursor to SMS spam, SMS phish-
ing, or voice phishing. This bulk enumeration may also
tax the Oxigen Wallet servers and degrade service for le-
gitimate users. This attack would not be difficult for an
attacker with even rudimentary programming ability.

4.6 Zuum

Zuum is a Brazilian mobile money application built by
Mobile Financial Services, a partnership between Tele-
fonica and MasterCard. While many of the other apps
we analyzed were developed solely by cellular network
providers or third-party development companies, Master-
Card is an established company with experience building
these types of applications.

This app is particularly notable because we did not
find in Zuum the major vulnerabilities present in the
other apps. In particular, the application uses SSL/TLS
sessions with certificate validation enabled and includes
a public key and performs standard cryptographic oper-
ations to protect transactions inside the session. Mallo-
droid detects Zuum’s disabled certificate validation rou-
tines, but our manual analysis determines that these rou-
tines would not run. We discuss MasterCard’s involv-
ment in the Payment Card Industry standards, the app’s
terms of service, and the ramifications of compromise in
Section 5.

10

USENIX Association 	 24th USENIX Security Symposium  27

4.7 Verification

We obtained accounts for MoneyOnMobile, Oxigen
Wallet, and Airtel Money in India. For each app, we
configured an Android emulator instance to forward its
traffic through a man-in-the-middle proxy. In order to re-
main as passive as possible, we did not attempt to verify
any transaction functionality (e.g., adding money to the
account, sending or receiving money, paying bills, etc.).
We were able to successfully verify every vulnerability
that we identified for these apps.

5 Discussion

In this discussion section, we make observations about
authentication practices and our SSL/TLS findings, reg-
ulations governing these apps, and whether smartphone
applications are in fact safer than the legacy apps they
replace.

Why do these apps use weak authentication? Numeric
PINs were the authentication method of choice for the
majority of the apps studied — only three apps allow
use of a traditional password. This reliance on PINs is
likely a holdover from earlier mobile money systems de-
veloped for feature phones. While such PINs are known
to be weak against brute force attacks, they are chosen for
SMS or USSD systems for two usability reasons. First,
they are easily input on limited phone interfaces. Sec-
ond, short numeric PINs remain usable for users who
may have limited literacy (especially in Latin alphabets).
Such users are far more common in developing countries,
and prior research on secure passwords has assumed user
literacy [54]. Creating a distinct strong password for the
app may be confusing and limit user acceptability of new
apps, despite the clear security benefits.

Beyond static PINs, Airtel Money and Oxigen Wallet
(both based in India) use SMS-provided one-time
passwords to authenticate users. While effective at
preventing remote brute-force attacks, this step provides
no defense against the other attacks we describe in the
previous section.

Why do these apps fail to validate certificates? While
this work and prior works have shown that many Android
apps fail to properly validate SSL/TLS certificates [28],
the high number of branchless banking apps that fail to
validate certificates is still surprising, especially given
the mission of these apps. Georgiev et al. found that
many applications improperly validate certificates, yet
identify the root cause as poorly designed APIs that make
it easy to make a validation mistake [31]. One possible
explanation is that certificate validation was disabled for
a test environment which had no valid certificate. When

the app was deployed, developers did not test for im-
proper validation and did not remove the test code that
disabled host name validation. Fahl et al. found this ex-
planation to be common in developer interviews [29],
and they also further explore other reasons for SSL/TLS
vulnerabilities, including developer misunderstandings
about the purpose of certificate validation.

In the absence of improved certificate management
practices at the application layer, one possible defense is
to enforce sane SSL/TLS configurations at the operating
system layer. This capability is demonstrated by Fahl
et al. for Android [29], while Bates et al. present a
mechanism for Linux that simultaneously facilitates the
use of SSL trust enhancements [15]. In the event that the
system trusts compromised root certificates, a solution
like DVCert [23] could be used to protect against man in
the middle attacks.

Are legacy systems more secure? In Section 7, we noted
that prior work had found that legacy systems are fun-
damentally insecure as they rely principally on insecure
GSM bearer channels. Those systems rely on bearer
channel security because of the practical difficulties
of developing and deploying secure applications to a
plethora of feature phone platforms with widely varying
designs and computational capabilities. In contrast,
we look at apps developed for relatively homogenous,
well-resourced smartphones. One would expect that the
advanced capabilities available on the Android platform
would increase the security of branchless banking apps.
However, given the vulnerabilities we disclose, the
branchless banking apps we studied for Android put
users at a greater risk than legacy systems. Attacking
cellular network protocols, while shown to be practi-
cal [56], still has a significant barrier to entry in terms
of equipment and expertise. In contrast, the attacks we
disclose in this paper require only a laptop, common
attack tools, and some basic security experience to
discover and exploit. Effectively, these attacks are easier
to exploit than the previously disclosed attacks against
SMS and USSD interfaces.

Does regulation help? In the United States, the PCI Se-
curity Standards Council releases a Data Security Stan-
dard (PCI DSS) [48], which govern the security require-
ments for entities that handle cardholder data (e.g., card
numbers and expiration dates). The council is a consor-
tium of card issuers including Visa, MasterCard, and oth-
ers that cooperatively develop this standard. Merchants
that accept credit card payments from these issuers are
generally required to adhere to the PCI DSS and are sub-
ject to auditing.

The DSS document includes requirements, testing
procedures, and guidance for securing devices and net-

11

28  24th USENIX Security Symposium	 USENIX Association

works that handle cardholder data. These are not, how-
ever, specific enough to include detailed implementation
instructions. The effectiveness of these standards is not
our main focus; we note that the PCI DSS can be used
as a checklist-style document for ensuring well-rounded
security implementations.

In 2008, the Reserve Bank of India (RBI) issued
guidelines for mobile payment systems [13]. (By their
definition, the apps we study would be included in these
guidelines). In 12 short pages, they touch on aspects as
broad as currencies allowed, KYC/AML policies, inter-
bank settlement policies, corporate governance approval,
legal jurisdiction, consumer protection, and technology
and security standards for a myriad of delivery channels.
The security standards give implementers wide leeway to
use their best judgement about specific security practices.
MoneyOnMobile, which had the most severe security is-
sues among all of the apps we manually analyzed, promi-
nently displays its RBI authorization on its web site.

Some prescriptions stand out from the rest: an objec-
tive to have “digital certificate based inquiry/transaction
capabilities,” a recommendation to have a mobile PIN
that is encrypted on the wire and never stored in clear-
text, and use of the mobile phone number as the chief
identifier. These recommendations may be responsible
for certain design decisions of Airtel Money and Oxigen
Wallet (both based in India). For example, the digital cer-
tificate recommendation may have driven Oxigen Wallet
developers to develop their (very flawed) public key en-
cryption architecture. These recommendations also ex-
plain why Airtel Money elected to further encrypt the
PIN (and only the PIN) in messages that are encapsulated
by TLS. Further, the lack of guidance on what “strong
encryption” entails may be partially responsible for the
security failures of Airtel Money and Oxigen Wallet. Fi-
nally, we note that we believe that Airtel Money, while
still vulnerable, was within the letter of the recommen-
dations.

To our knowledge, other mobile money systems stud-
ied in this paper are not subject to such industry or gov-
ernment regulation. While a high-quality, auditable in-
dustry standard may lead to improved branchless bank-
ing security, it is not clear that guidelines like RBI’s cur-
rently make much of a difference.

6 Terms of Service & Consumer Liability

After uncovering technical vulnerabilities for branchless
banking, we investigated their potential implications for
fraud liability. In the United States, the consumer is not
held liable for fraudulent transactions beyond a small
amount. This model recognizes that users are vulnera-
ble to fraud that they are powerless to prevent, combat,
or detect prior to incurring losses.

To determine the model used for the branchless bank-
ing apps we studied, we surveyed the Terms of Service
(ToS) for each of the seven analyzed apps analyzed. The
Airtel Money [1], GCash [3], mCoin [5], Oxigen Wal-
let [9], MoneyOnMobile [7], and Zuum [12] terms all
hold the customer solely responsible for most forms of
fraudulent activity. Each of these services hold the cus-
tomer responsible for the safety and security of their
password. GCash, mCoin, and Oxigen Wallet also hold
the customer responsible for protecting their SIM (i.e.,
mobile phone). GCash provides a complaint system, pro-
vided that the customer notifies GCash in writing within
15 days of the disputed transaction. However, they also
make it clear that erroneous transactions are not grounds
for dispute. mPAY’s terms [8] are less clear on the sub-
ject of liability; they provide a dispute resolution sys-
tem, but do not detail the circumstances for which the
customer is responsible. Across the body of these terms
of service, it is overwhelmingly clear that the customer
is responsible for all transactions conducted with their
PIN/password on their mobile device.

The presumption of customer fault for transactions is
at odds with the findings of this work. The basis for
these arguments appear to be that, if a customer pro-
tects their PIN and protects their physical device, there
is no way for a third party to initiate a fraudulent trans-
action. We have demonstrated that this is not the case.
Passwords can be easily recovered by an attacker. Six of
the seven apps we manually analyzed transmits authenti-
cation data over insecure connections, allowing them to
be recovered in transit. Additionally, with only brief ac-
cess to a customer’s phone, an attacker could read GCash
PINs out of the phone logs or trigger the Oxigen Wallet
password recovery mechanism. Even when the mobile
device and SIM card are fully under customer control,
unauthorized transactions can still occur, due to the per-
vasive vulnerabilities found in these six apps. By launch-
ing a man-in-the-middle attack, an adversary would be
able to tamper with transactions while in transit, mislead-
ing the provider into believing that a fraudulent transac-
tion originated from a legitimate user. These attacks are
all highly plausible. Exploits of the identified vulnera-
bilities are not probabilistic, but would be 100% effec-
tive. With only minimal technical capability, an adver-
sary could launch these attacks given the ability to con-
trol a local wireless access point. This litany of vulnera-
bilities comes only from an analysis of client-side code.
Table 2 hints that there may be further server side con-
figuration issues, to say nothing of the security of cus-
tom server software, system software, or the operating
systems used.

Similar to past findings for the “Chip & Pin” credit
card system [40], it is possible that these apps are already
being exploited in the wild, leaving consumers with no

12

USENIX Association 	 24th USENIX Security Symposium  29

recourse to dispute fraudulent transactions. Based on
the discovery of rampant vulnerabilities in these applica-
tions, we feel that the liability model for branchless bank-
ing applications must be revisited. Providers must not
marry such vulnerable systems with a liability model that
refuses to take responsibility for the technical flaws, and
these realities could prevent sustained growth of branch-
less banking systems due to the high likelihood of fraud.

7 Related Work

Banking has been a motivation for computer security
since the origins of the field. The original Data Encryp-
tion Standard was designed to meet the needs of bank-
ing and commerce, and Anderson’s classic paper “Why
Cryptosystems Fail” looked specifically at banking secu-
rity [14]. Accordingly, mobile money systems have been
scrutinized by computer security practitioners. Current
research on mobile money systems to-date has focused
on the challenges of authentication, channel security, and
transaction verification in legacy systems designed for
feature phones. Some prior work has provided threat
modeling and discussion of broader system-wide secu-
rity issues. To our knowledge, we are the first to examine
the security of smartphone applications used by mobile
money systems.

Mobile money systems rely on the network to pro-
vide identity services; in essence, identity is the tele-
phone number (MS-ISDN) of the subscriber. To address
physical access granting attackers access to accounts, re-
searchers have investigated the use of a small one-time
pads as authenticators in place of PINs. Panjwani et
al. [47] present a new scheme that avoids vulnerabili-
ties with using one-time passwords with PINs and SMS.
Sharma et al. propose using scratch-off one-time au-
thenticators for access with supplemental recorded voice
confirmations [53]. These schemes add complexity to
the system while only masking the PIN from an adver-
sary who can see a message. These schemes do not pro-
vide any guarantees against an adversary who can mod-
ify messages or who recovers a message and a pad.

SMS-based systems, in particular, are vulnerable to
eavesdropping or message tampering [42], and so have
seen several projects to bring additional cryptographic
mechanisms to mobile money systems [20, 41, 22]. Sys-
tems that use USSD, rather than SMS, as their bearer
channel can also use code executing on the SIM card
to cryptographically protect messages. However, it is
unknown how these protocols are implemented or what
guarantees they provide [45].

Finally, several authors have written papers investigat-
ing the holistic security of mobile money systems de-
signed exclusively for “dumbphones.” Paik et al. [45]
note concerns about reliance on GSM traffic channel

cryptographic guarantees, including the ability to inter-
cept, replay, and spoof the source of SMS messages.
Panjwani fulfills the goals laid out by Paik et al. by
providing a brief threat model and a design to protect
against the threats they identify [46]. While those papers
focus on technical analysis, de Almeida [38] and Harris
et al. [35] note the policy implications of the insecurity
of mobile money.

While focused strictly on mobile money platforms,
this paper also contributes to the literature of Android
application security measurement. The pioneering work
in this space was TaintDroid [25, 25], a dynamic anal-
ysis system that detected private information leakages.
Shortly after, Felt et al. found that one-third of apps stud-
ied held privileges they did not need [30], while Chin et
al. found that 60% of apps manually examined were vul-
nerable to attacks involving Android Intents [19]. More
recently, Fahl et al. [28] and Egele et al. [24] use auto-
mated static analysis investigated cryptographic API use
in Android, finding respectively that 8% of apps studied
were vulnerable to man-in-the-middle attacks and that
88% of apps make some mistake with regards to cryp-
tographic libraries [24]. Our work confirms these re-
sults apply to mobile money applications. This project
is most similar to the work of Enck et al. [26], who auto-
matically and manually analyzed 1,100 applications for
a broad range of security concerns.

However, prior work does not investigate the security
guarantees and the severe consequences of smart phone
application compromise in branchless banking systems.
Our work specifically investigates this open area of re-
search and provides the world’s first detailed security
analysis of mobile money apps. In doing so, we demon-
strate the risk to users who rely on these systems for fi-
nancial security.

8 Conclusions

Branchless banking applications have and continue to
hold the promise to improve the standard of living for
many in the developing world. By enabling access to
a cashless payment infrastructure, these systems allow
residents of such countries to reap the benefits afforded
to modern economies and decrease the physical security
risks associated with cash transactions. However, the se-
curity of the applications providing these services has
not previously been vetted in a comprehensive or pub-
lic fashion. In this paper, we perform precisely such an
analysis on seven branchless banking applications, bal-
ancing both popularity with geographic representation.
Our analysis targets the registration, login, and transac-
tion portions of the representative applications, and cod-
ifies discovered vulnerabilities using the CWE classifi-
cation system. We find significant vulnerabilities in six

13

30  24th USENIX Security Symposium	 USENIX Association

of the seven applications, which prevent both users and
providers from reasoning about the integrity of transac-
tions. We then pair these technical findings with the dis-
covery of fraud liability models that explicitly hold the
end user culpable for all fraud. Given the systemic prob-
lems we identify, we argue that dramatic improvements
to the security of branchless banking applications are im-
perative to protect the mission of these systems.

Acknowledgments

The authors are grateful to Saili Sahasrabudde for her
assistance with this work. We would also like to thank
the members of the SENSEI Center at the University of
Florida for their help in preparing this work, as well as
our anonymous reviewers for their helpful comments.

This work was supported in part by the US National
Science Foundation under grant numbers CNS-1526718,
CNS-1540217, and CNS-1464087. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessar-
ily reflect the views of the National Science Foundation.

References
[1] Airtel Money: Terms and Conditions of Usage. http://www.

airtel.in/personal/money/terms-of-use.

[2] android-apktool: A Tool for Reverse Engineering Android APK
Files. https://code.google.com/p/android-apktool/.

[3] GCash Terms and Conditions. http://www.globe.com.ph/

gcash-terms-and-conditions.

[4] JEB Decompiler. http://www.android-decompiler.com/.

[5] mCoin: Terms and Conditions. http://www.mcoin.co.id/

syarat-dan-ketentuan.

[6] MMU Deployment Tracker. http://www.gsma.com/

mobilefordevelopment/programmes/mobile-money-

for-the-unbanked/insights/tracker.

[7] Money on Mobile Sign-Up: Terms and Conditions. http://

www.money-on-mobile.com.

[8] mPAY: Terms and Conditions. http://www.ais.co.th/

mpay/en/about-term-condition.aspx.

[9] Oxigen Wallet: Terms and Conditions. https://www.

oxigenwallet.com/terms-conditions.

[10] smali: An assembler/disassembler for Android’s dex format.
https://code.google.com/p/smali/.

[11] The Legion of the Bouncy Castle. https://www.

bouncycastle.org/.

[12] Zuum: Termos e Condições. http://www.zuum.com.br/

institucional/termos.

[13] Mobile Payment in India — Operative Guidelines for Banks.
Technical report, Reserve Bank of India, 2008.

[14] R. Anderson. Why Cryptosystems Fail. In Proc. of the 1st
ACM Conf. on Comp. and Comm. Security, pages 215–227. ACM
Press, 1993.

[15] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, D. Tian,
A. Alkhelaifi, and K. Butler. Securing SSL Certificate Verifi-
cation through Dynamic Linking. In Proc. of the 21st ACM Conf.
on Comp. and Comm. Security (CCS’14), Scottsdale, AZ, USA,
Nov. 2014.

[16] N. Berry. PIN analysis. http://www.datagenetics.com/

blog/september32012/, Sept. 2012.

[17] Bill & Melinda Gates Foundation. Financial Services for the
Poor: Strategy Overview. http://www.gatesfoundation.

org/What-We-Do/Global-Development/Financial-

Services-for-the-Poor.

[18] K. Chen, P. Liu, and Y. Zhang. Achieving Accuracy and Scalabil-
ity Simultaneously in Detecting Application Clones on Android
Markets. In Proc. 36th Intl. Conf. Software Engineering, ICSE
2014, pages 175–186, New York, NY, USA, 2014. ACM.

[19] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing
Inter-application Communication in Android. In Proc. 9th Intl.
Conf. Mobile Systems, Applications, and Services, MobiSys ’11,
pages 239–252, New York, NY, USA, 2011. ACM.

[20] M. K. Chong. Usable Authentication for Mobile Banking. PhD
thesis, Univ. of Cape Town, Jan. 2009.

[21] P. Chuhan-Pole and M. Angwafo. Mobile Payments Go Viral:
M-PESA in Kenya. In Yes, Africa Can: Success Stories from a
Dynamic Continent. World Bank Publications, June 2011.

[22] S. Cobourne, K. Mayes, and K. Markantonakis. Using the Smart
Card Web Server in Secure Branchless Banking. In Network and
System Security, number 7873 in Lecture Notes in Computer Sci-
ence, pages 250–263. Springer Berlin Heidelberg, Jan. 2013.

[23] I. Dacosta, M. Ahamad, and P. Traynor. Trust no one else: De-
tecting MITM attacks against SSL/TLS without third-parties. In
Proceedings of the European Symposium on Research in Com-
puter Security, pages 199–216. Springer, 2012.

[24] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An Em-
pirical Study of Cryptographic Misuse in Android Applications.
In Proc. 20th ACM Conf. Comp. and Comm. Security, CCS ’13,
pages 73–84, New York, NY, USA, 2013. ACM.

[25] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Moni-
toring on Smartphones. ACM Trans. Comput. Syst., 32(2):5:1–
5:29, June 2014.

[26] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A Study
of Android Application Security. In Proc. 20th USENIX Security
Sym., San Francisco, CA, USA, 2011.

[27] W. Enck, P. Traynor, P. McDaniel, and T. La Porta. Exploiting
open functionality in SMS-capable cellular networks. In Proc. of
the 12th ACM conference on Comp. and communications secu-
rity, pages 393–404. ACM, 2005.

[28] S. Fahl, M. Harbach, T. Muders, L. Baumgartner, B. Freisleben,
and M. Smith. Why Eve and Mallory Love Android: An Analysis
of Android SSL (in)Security. In Proc. 2012 ACM Conf. Comp.
and Comm. Security, CCS ’12, pages 50–61, New York, NY,
USA, 2012. ACM.

[29] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith. Rethink-
ing SSL Development in an Appified World. In Proc. 20th ACM
Conf. Comp. and Comm. Security, CCS ’13, pages 49–60, New
York, NY, USA, 2013. ACM.

[30] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
Permissions Demystified. In Proc. 18th ACM Conf. Comp. and
Comm. Security, CCS ’11, pages 627–638, New York, NY, USA,
2011. ACM.

14

USENIX Association 	 24th USENIX Security Symposium  31

[31] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The Most Dangerous Code in the World: Vali-
dating SSL Certificates in Non-browser Software. In Proc. 2012
ACM Conf. Comp. and Comm. Security, CCS ’12, pages 38–49,
New York, NY, USA, 2012. ACM.

[32] Google. Dashboards — Android Developers. https:

//developer.android.com/about/dashboards/index.

html.

[33] Google. Log — Android Developers. https://developer.

android.com/reference/android/util/Log.html.

[34] Google. Random — Android Developers. https:

//developer.android.com/reference/java/util/

Random.html.

[35] A. Harris, S. Goodman, and P. Traynor. Privacy and Security
Concerns Assocaited with Mobile Money Applications in Africa.
Washington Journal of Law, Technology & Arts, 8(3), 2013.

[36] V. Highfield. More than 60 Per Cent of Kenyan GDP Came
From Mobile Money in June 2012, a New Survey Shows.
http://www.totalpayments.org/2013/03/01/60-cent-

kenyan-gdp-mobile-money-june-2012-survey-shows/,
2012.

[37] J. Kamana. M-PESA: How Kenya Took the Lead in Mobile
Money. http://www.mobiletransaction.org/m-pesa-

kenya-the-lead-in-mobile-money/, Apr. 2014.

[38] G. Martins de Almeida. M-Payments in Brazil: Notes on How
a Countrys Background May Determine Timing and Design of a
Regulatory Model. Washington Journal of Law, Technology &
Arts, 8(3), 2013.

[39] C. Mims. 31% of Kenya’s GDP is Spent Through Mobile
Phones. http://qz.com/57504/31-of-kenyas-gdp-is-

spent-through-mobile-phones/, Feb. 2013.

[40] S. Murdoch, S. Drimer, R. Anderson, and M. Bond. Chip and PIN
is Broken. In Security and Privacy (SP), 2010 IEEE Symposium
on, pages 433–446, May 2010.

[41] B. W. Nyamtiga, A. Sam, and L. S. Laizer. Enhanced security
model for mobile banking systems in Tanzania. Intl. Jour. Tech.
Enhancements and Emerging Engineering Research, 1(4):4–20,
2013.

[42] B. W. Nyamtiga and L. S. Sam, Anael Laizer. Security perspec-
tives for USSD versus SMS in conducting mobile transactions:
A case study of Tanzania. Intl. Jour. Tech. Enhancements and
Emerging Engineering Research, 1(3):38–43, 2013.

[43] J. Ong. Android Achieved 85% Smartphone Market Share in Q2.
http://thenextweb.com/google/2014/07/31/android-

reached-record-85-smartphone-market-share-q2-

2014-report/, July 2014.

[44] Oracle. Random - Java Platform SE 7. https://docs.oracle.
com/javase/7/docs/api/java/util/Random.html.

[45] M. Paik. Stragglers of the Herd Get Eaten: Security Concerns
for GSM Mobile Banking Applications. In Proc. 11th Workshop
on Mobile Comp. Syst. and Appl., HotMobile ’10, pages 54–59,
New York, NY, USA, 2010. ACM.

[46] S. Panjwani. Towards End-to-End Security in Branchless Bank-
ing. In Proc. 12th Workshop on Mobile Comp. Syst. and Appl.,
HotMobile ’11, pages 28–33, New York, NY, USA, 2011. ACM.

[47] S. Panjwani and E. Cutrell. Usably Secure, Low-Cost Authenti-
cation for Mobile Banking. In Proc. 6th Symp. Usable Privacy
and Security, SOUPS ’10, pages 4:1–4:12, New York, NY, USA,
2010. ACM.

[48] PCI Security Standards Council, LLC. Data Security Stan-
dard — Requirements and Security Assessment Procedures.
https://www.pcisecuritystandards.org/documents/

PCI_DSS_v3.pdf.

[49] C. Penicaud and A. Katakam. Mobile Financial Services for the
Unbanked: State of the Industry 2013. Technical report, GSMA,
Feb. 2014.

[50] Qualys. SSL Server Test. https://www.ssllabs.com/

ssltest/.

[51] Reserve Bank of India. Master Circular - KYC norms, AML
standards, CFT, Obligation of banks under PMLA, 2002.
http://rbidocs.rbi.org.in/rdocs/notification/

PDFs/94CF010713FL.pdf, 2013.

[52] Safaricom. Relax, you have got M-PESA. http:

//www.safaricom.co.ke/personal/m-pesa/m-pesa-

services-tariffs/relax-you-have-got-m-pesa.

[53] A. Sharma, L. Subramanian, and D. Shasha. Secure Branchless
Banking. In 3rd ACM Workshop on Networked Syst. for Devel-
oping Regions, Big Sky, Montana, Oct. 2009.

[54] R. Shay, S. Komanduri, A. L. Durity, P. S. Huh, M. L. Mazurek,
S. M. Segreti, B. Ur, L. Bauer, N. Christin, and L. F. Cranor.
Can Long Passwords Be Secure and Usable? In Proc. Conf. on
Human Factors in Comp. Syst., CHI ’14, pages 2927–2936, New
York, NY, USA, 2014. ACM.

[55] The MITRE Corporation. CWE - Common Weakness Enumera-
tion. http://cwe.mitre.org/.

[56] P. Traynor, P. McDaniel, and T. La Porta. Security for Telecom-
munications Networks. Springer, 2008.

15

32  24th USENIX Security Symposium	 USENIX Association

Appendix

Package Name Country Downloads Mallodroid Alert
bo.com.tigo.tigoapp Bolivia 1000-5000
br.com.mobicare.minhaoi Brazil 500000-1000000 �
com.cellulant.wallet Nigeria 100-500 �
com.directoriotigo.hwm Honduras 10000-50000
com.econet.ecocash Zimbabwe 10000-50000
com.ezuza.mobile.agent Mexico 10-50
com.f1soft.esewa Nepal 50000-100000
com.fetswallet App Nigeria 100-500
com.globe.gcash.android Philippines 10000-50000 �
com.indosatapps.dompetku Indonesia 5000-10000 �
com.japps.firstmonie Nigeria 50000-100000
com.m4u.vivozuum Brazil 10000-50000 �
com.mcoin.android Indonesia 1000-5000 �
com.mdinar Tunisia 500-1000 �
com.mfino.fortismobile Nigeria 100-500 �
com.mibilleteramovil Argentina 500-1000
com.mobilis.teasy.production Nigeria 100-500
com.mom.app India 10000-50000
com.moremagic.myanmarmobilemoney Myanmar 191
com.mservice.momotransfer Vietnam 100000-500000 �
com.myairtelapp India 1000000-5000000 �
com.oxigen.oxigenwallet India 100000-500000 �
com.pagatech.customer.android Nigeria 1000-5000
com.palomar.mpay Thailand 100000-500000 �
com.paycom.app Nigeria 10000-50000 �
com.pocketmoni.ui Nigeria 5000-10000
com.ptdam.emoney Indonesia 100000-500000 Market Restriction
com.qulix.mozido.jccul.android Jamaica 1000-5000 �
com.sbg.mobile.phone South Africa 100000-500000 N/A
com.simba Lebanon 1000-5000 �
com.SingTel.mWallet Singapore 100000-500000 �
com.suvidhaa.android India 10000-50000 Market Restriction
com.tpago.movil Dominican Republic 5000-10000 �
com.useboom.android Mexico 5000-10000 �
com.vanso.gtbankapp Nigeria 100000-500000
com.wizzitint.banking South Africa 100-500 �
com.zenithBank.eazymoney Nigeria 50000-100000 �
mg.telma.mvola.app Madagascar 1000-5000 N/A
net.omobio.dialogsc Sri Lanka 50000-100000 �
org.readycash.android Nigeria 1000-5000
qa.ooredoo.omm Qatar 5000-10000
sv.tigo.mfsapp El Salvador 10000-50000 �
Tag.Andro Côte d’Ivoire 500-1000
th.co.truemoney.wallet Thailand 100000-500000 �
tz.tigo.mfsapp Tanzania 50000-100000 �
uy.com.antel.bits Uruguay 10000-50000
com.vtn.vtnmobilepro Nigeria Unknown
za.co.fnb.connect.itt South Africa 500000-1000000

Table 3: We found 48 mobile money Android applications across 28 countries. Highlighted rows represent those
applications manually analyzed in this paper. We were unable to obtain two apps due to Android market restrictions.
Mallodroid was unable to analyze the apps marked N/A.

16

