
USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 121

Spotting Code Optimizations in Data-Parallel Pipelines through PeriSCOPE
Zhenyu Guo† Xuepeng Fan†£ Rishan Chen†‡ Jiaxing Zhang† Hucheng Zhou†

Sean McDirmid† Chang Liu †§ Wei Lin∗ Jingren Zhou∗ Lidong Zhou†

†Microsoft Research Asia ∗Microsoft Bing ‡Peking University
£Huazhong University of Science and Technology §Shanghai Jiao Tong University

ABSTRACT

To minimize the amount of data-shuffling I/O that oc-
curs between the pipeline stages of a distributed data-
parallel program, its procedural code must be optimized
with full awareness of the pipeline that it executes in.
Unfortunately, neither pipeline optimizers nor traditional
compilers examine both the pipeline and procedural code
of a data-parallel program so programmers must either
hand-optimize their program across pipeline stages or
live with poor performance. To resolve this tension be-
tween performance and programmability, this paper de-
scribes PeriSCOPE, which automatically optimizes a
data-parallel program’s procedural code in the context
of data flow that is reconstructed from the program’s
pipeline topology. Such optimizations eliminate unnec-
essary code and data, perform early data filtering, and
calculate small derived values (e.g., predicates) earlier
in the pipeline, so that less data—sometimes much less
data—is transferred between pipeline stages. We de-
scribe how PeriSCOPE is implemented and evaluate its
effectiveness on real production jobs.

1 INTRODUCTION

The performance of big data computations improves
dramatically when they are parallelized and distributed
on a large number of machines to operate on parti-
tioned data [5, 14]. Such data-parallel programs involve
pipelines of computation stages where I/O intensive data
shuffling between these stages can dominate program
performance. Unfortunately, data-shuffling I/O is diffi-
cult to optimize automatically because computations at
each pipeline stage are encoded as flexible procedural
code; current pipeline optimizers treat this code as a
black box while compilers treat pipelines as black boxes
and so are unaware of the data flow between the proce-
dural code at different computation stages. The program-
mer must manually perform optimizations that require
examining both the program’s pipeline and procedural
code; e.g., to not propagate unused data or to move the
computation of smaller derived values to an earlier stage
so less data is transmitted during data shuffling. Perform-
ing these optimizations by hand is not only tedious, it
also limits code reuse from generic libraries.

So that programmers can write data-parallel pro-
grams with reasonable performance without sacrificing
programmability, automatic optimizations must exam-
ine both the pipeline and procedural code of a data-
parallel program. Common logical optimizations [8, 28,
34, 40, 43] for data-parallel programs focus on a high-
level pipeline topology that is subject to relational query-
optimization techniques. Unfortunately, at best relational
components are extracted from procedural code into a
relational optimization framework [20], which is lim-
ited by the inability of the relational framework to
match the expressiveness of procedural code. We in-
stead observe that projecting well-understood declarative
pipeline properties into more flexible procedural code is
intrinsically simpler than extracting declarative proper-
ties from procedural code. Such projection can then be
used to reconstruct program data flow, enabling auto-
matic optimizations of procedural code across pipeline
stages that can improve I/O performance.

This paper presents PeriSCOPE, which automati-
cally optimizes the procedural code of programs that run
on SCOPE [8, 42], a production data-parallel compu-
tation system. PeriSCOPE connects the data flow of a
SCOPE program’s procedural code together by examin-
ing a high-level declarative encoding of the program’s
pipeline topology. PeriSCOPE then applies three core
compiler-like optimizations to the program. Column re-
duction suppresses unused data in the pipeline based
on the program’s reconstructed data flow. Early filtering
moves filtering code earlier in the pipeline to reduce how
much data is transmitted downstream. Finally, smart cut
finds a better boundary between pipeline stages in the
data flow graph to minimize cross-stage I/O; e.g., the
code that computes a predicate from two string values
could be moved to an earlier stage, so that only a boolean
value, rather than two string values, needs to be transmit-
ted. The result is faster program execution because less
data needs to be transferred between pipeline stages.

We have implemented PeriSCOPE and evaluated its
effectiveness on 28,838 real SCOPE jobs from a large
production cluster. We also evaluate end-to-end perfor-
mance comparisons on eight real jobs.

The rest of the paper is organized as follows. Sec-
tion 2 presents a sample SCOPE program to show the po-
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1 t1 = EXTRACT query:string,clicks:long,market:int,...
2 FROM "/users/foo/click_0342342"
3 USING DefaultTextExtractor("-s")
4 HAVING IsValidUrl(url) AND clicks != 0;
5 t2 = REDUCE t1 ON query
6 PRODUCE query, score, mvalue, cvalue
7 USING PScoreReducer("clicks")
8 HAVING GetLength(query) > 4;
9 t3 = PROCESS t2 PRODUCE query, cscore

10 USING SigReportProcessor("cvalue")
11 OUTPUT t3 TO "/users/foo/click/0342342";

Figure 1: Declarative code that defines the pipeline of a sam-
ple SCOPE program. Rows of typed columns (line 1) are first
extracted from a log file (line 2) using a default text extrac-
tor (line 3) and filtered based on certain conditions (line 4).
Next, the input rows are reduced with a user-defined func-
tion PScoreReducer (line 7) to produce a table with four
columns (line 6) after being filtered (line 8). Finally, the user-
defined function SigReportProcessor (line 10) is applied
to the result as it is emitted (line 11).

Stage 2

Stage 1

Filter$GenDefaultTextExtractor

SigReportProcessor

Data Shuffling

PScoreReducer

OUTPUT

INPUT

Figure 2: An illustration of the pipeline defined by the declar-
ative code in Figure 1. The Filter$Gen operator is gener-
ated from the HAVING clauses on line 4 and 8 of Figure 1;
other operators refer to user-defined functions. Each directed
edge represents the data flow between operators.

tential benefits of PeriSCOPE’s optimizations. The I/O-
reduction optimizations in PeriSCOPE are described in
Sections 3 and 4, with Section 3 covering column reduc-
tion and Section 4 discussing early filtering and smart
cut, which are both forms of code motion. PeriSCOPE’s
implementation is covered in Section 5, followed by an
evaluation in Section 6. We survey related work in Sec-
tion 7 and conclude in Section 8.

2 A MOTIVATING EXAMPLE

We motivate PeriSCOPE by describing the pipeline-
aware optimization opportunities that are found in a sam-
ple data-parallel program, which is adapted from a real
SCOPE job. SCOPE is a distributed data-parallel compu-
tation system that employs a hybrid programming model
where declarative SQL-like code describes a program’s
high-level pipeline structure, like other similar systems
such as Hive [33], Pig [15], and DryadLINQ [40]. Fig-

ure 1 shows the declarative code of our sample job that is
compiled into an execution pipeline, which we illustrate
in Figure 2.

The operators of a SCOPE pipeline manipulate a data
model of rows and columns and can be encoded as user-
defined functions of procedural code that are either de-
fined by the user or reused from generic libraries. A com-
putation stage consists of one or more chained operators,
and runs on a group of machines independently with par-
titioned data stored locally; data-shuffling phases then
connect computation stages together by transmitting req-
uisite data between machines. The pipeline in Figure 2
contains two computation stages that are separated by
one data-shuffling phase according to the reduce call on
line 5 in Figure 1. SCOPE applies logical optimizations,
such as early selection, to programs according to the
declarative structure of their pipeline. For example, the
filtering clause on line 8 of Figure 1 can be applied be-
fore data shuffling; and so the Filter$Gen operator in
the first stage of Figure 2 therefore includes the condi-
tions from line 8 as well as line 4. Such logical opti-
mizations apply only to the declarative code defined in
Figure 1, treating the procedural code of the Default-
TextExtractor, PScoreReducer, and SigReport-
Processor as black boxes.

The SCOPE program of Figure 1 is easily writ-
ten by reusing two functions (DefaultTextExtrac-
tor and SigReportProcessor) from generic libraries
while the encoding of the custom PScoreReducer func-
tion, shown in Figure 3, is straightforward. However,
the program contains three serious I/O inefficiencies that
need to be eliminated before it is “fast enough.” First, the
if statement on line 7 of Figure 3 is actually a proce-
dural filter that discards rows. Such rows can be filtered
out early so that they are not transmitted during the data-
shuffling phase, which can be accomplished by splitting
PScoreReducer into two parts as encoded in Figure 5:
a PScoreReducerPre function that executes the com-
putations of lines 5–7 in Figure 3 before data-shuffling;
and a PScoreReducerPost that executes the rest of the
computations from the original PScoreReducer func-
tion after data-shuffling. Our sample program’s declara-
tive SCOPE code is updated in Figure 4 to reflect this
split, whose pipeline is illustrated in Figure 6.

Next, the alteredQuery column is transmitted only
for computing a simple predicate on line 9 of Figure 3;
the predicate computation can be done before the shuf-
fling phase so that smaller boolean values are transmit-
ted instead of strings. This is accomplished by com-
puting the predicate in PScoreReducerPre on line 16
of Figure 5 and propagating its result as a column to
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1 public class PScoreReducer : Reducer {
2 List<Row> Reduce(List<Row> input, string[] args){
3 maxImpr = 0; score = 0; mvalue = 0; cvalue = 0;
4 foreach (Row row in input) {
5 int impr = SmoothImpr(row[args[0]].Long());
6 bool incl = row["ctrls"].Contains(args[0]);
7 if (!incl && impr < 0) continue;
8 string[] keys = row["query"].Split(’,’);
9 bool p = row["alteredQuery"].ContainsAny(keys);

10 if (p)
11 score += ...;
12 if (impr > maxImpr)
13 maxImpr = impr;
14 if (impr * IMPR RATIO > maxImpr) continue;
15 ... cvalue += ...
16 ... mvalue += ... row["market"] ...
17 }
18 outRow[1] = Normalize(score, ...);
19 outRow["mvalue"] = mvalue;
20 outRow["cvalue"] = cvalue;
21 ...
22 yield return outRow;
23 }}

Figure 3: The procedural code of the PScoreReducer
user-defined function. Because PScoreReducer is a reduce
operator, the preceding data shuffling ensures that rows having
the same shuffling key are grouped together. For each group
(input) of rows sharing the same shuffling key (line 2), this
reduce operator iterates on each row in that group using a loop
(lines 4-17) and outputs a single row as outRow for that group
(line 22). The impr variable of line 5 represents an “improve-
ment” that regulates accumulation of mvalue and cvalue.

PScoreReducerPost where it is used on line 29. An
analogous transformation can be applied to clicks,
which is used for computing impr, converting it from
a long to an int.

Finally, the SigReportProcessor function called
on line 10 of Figure 1 uses only the cvalue column,
bound to its input parameter, that is computed by the
PScoreReducer function; in contrast the mvalue col-
umn computed on lines 16 and 19 of Figure 3 is unused
and therefore does not need to be computed and propa-
gated in the PScoreReducerPost function of Figure 5.
More importantly, if mvalue is eliminated, the mar-
ket column does not need to be extracted in Figure 1
by DefaultTextExtractor and transmitted during the
data-shuffling that is illustrated in Figure 2. Instead, the
programmer can define their own specialized MyText-
Extractor function (top of Figure 5) that does not ex-
tract and propagate the market column. The market col-
umn is also eliminated from Figure 4’s declarative code.

The PeriSCOPE approach

The optimized sample program in Figures 4 and 5 exe-
cutes more efficiently at the expense of programmabil-
ity: it can no longer reuse the DefaultTextExtractor

1 t1 = EXTRACT query:string,clicks:long,market:int,...
2 FROM "/users/foo/click_0342342"
3 USING MyTextExtractor
4 HAVING IsValidUrl(url) AND clicks != 0
5 AND GetLength(query) > 4;
6 t2 = PROCESS t1 PRODUCE query, impr, ...
7 USING PScoreReducerPre;
8 t3 = REDUCE t2 ON query
9 PRODUCE query, score, mvalue, cvalue

10 USING PScoreReducerPost
11 t4 = PROCESS t3 PRODUCE query, cscore
12 USING SigReportProcessor("cvalue")
13 OUTPUT t4 TO "/users/foo/click/0342342";

Figure 4: Optimized declarative code of our sample program;
strike-through text is original code that is eliminated.

1 public class MyTextExtractor : Extractor {
2 List<Row> Extract(StreamReader reader, string[] args){
3 ...
4 string[] columns = line.Split(’,’);
5 int market = int.Parse(columns[2]);
6 outRow[2].Set(market);
7 ...
8 }}
9 public class PScoreReducerPre : Processor {

10 List<Row> Process(List<Row> input, string[] args){
11 foreach (Row row in input) {
12 int impr = SmoothImpr(row["clicks"].Long());
13 bool incl = row["ctrls"].Contains("clicks");
14 if (!incl && impr < 0) continue;
15 string[] keys = row["query"].Split(’,’);
16 outRow["p"] =
17 row["alteredQuery"].ContainsAny(keys);
18 outRow["impr"] = impr;
19 ...
20 yield return outRow;
21 }}
22 public class PScoreReducerPost : Reducer {
23 List<Row> Reduce(List<Row> input, string[] args){
24 maxImpr = 0; score = 0; mvalue = 0; cvalue = 0;
25 foreach (Row row in input) {
26 int impr = row["impr"].Int();
27 bool incl = row["ctrls"].Contains("clicks");
28 if (!incl && impr < 0) continue;
29 if (row["p"].Boolean()) score += ...;
30 if (impr > maxImpr) maxImpr = impr;
31 if (impr * IMPR RATIO > maxImpr) continue;
32 ... cvalue += ...
33 ... mvalue += ... row["market"] ...
34 }
35 outRow["score"] = Normalize(score, ...);
36 outRow["mvalue"] = mvalue;
37 outRow["cvalue"] = cvalue;
38 ...
39 yield return outRow;
40 }}

Figure 5: Optimized procedural code of our sample program.

function, the logic for the PScoreReducer function is
now distributed into two sections that execute in different
pipeline stages, while the optimizations are tedious as the
programmer must carefully move code across pipeline
stages. These optimizations should be automated but
cannot be performed by either logical pipeline optimiz-
ers that treat user-defined functions as black boxes or by

3
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Figure 6: Resulting pipeline for the optimized job.

compilers that are unaware of pipelines.
PeriSCOPE automates such optimizations by consid-

ering both user-defined functions and the pipeline of a
data-parallel program. In particular, PeriSCOPE recon-
structs the data flow across the user-defined functions ac-
cording to the pipeline topology and applies column re-
duction to remove unused columns along with the com-
putations to compute them from user-defined functions;
e.g., PeriSCOPE can eliminate the unused mvalue and
market columns of our sample program. PeriSCOPE
next identifies filtering conditions in a user-defined func-
tion and moves them earlier in the pipeline through
early filtering; e.g., the if condition on line 7 of Fig-
ure 3 is moved earlier to reduce row propagation in the
pipeline. Finally, PeriSCOPE applies smart cut that finds
better boundaries between two stages to minimize data-
shuffling I/O by moving size-reducing transformation
upstream and size-enlarging transformation downstream
in the pipeline. We describe how PeriSCOPE automates
these optimizations in Sections 3 and 4.

3 COLUMN REDUCTION

A user-defined function might not use a particular input
column that is available to it in a calling pipeline. For
example, the SigReportProcessor function of Sec-
tion 2’s sample program does not use the mvalue col-
umn of the pipeline encoded in Figure 1. In distributed
data-parallel programs, transferring unused columns dur-
ing data-shuffling can consume a significant amount of
network I/O. As we discuss in Section 6, this problem
commonly arises from the reuse of user-defined func-
tions that we observe in production SCOPE jobs.

Column reduction is an optimization in PeriSCOPE
that leverages information about how operators are con-
nected together in a pipeline to eliminate unused columns
from the program, removing their associated computa-
tion and I/O costs. The optimization analyzes the depen-
dency information between the input and output columns

...

...

query clicksmarket url

DefaultTextExtractor

Filter$Gen
query clicksmarket url

PScoreReducer
query scoremvalue cvalue

SigReportProcessor
query cscore

...

...

All Input Columns

Figure 7: A simplified column-dependency graph for column
reduction. Columns and computation in the shaded areas are
removed by the column reduction optimization.

of all operators in the pipeline; Figure 7 shows part of the
column dependency graph for the example in Figure 1.
An input or output column of an operator is represented
as a vertex while an edge from a source column s to a
destination column d indicates that d has either a data
or control dependency on s. Only data dependency edges
are shown in Figure 7 as control dependency edges are
too numerous to illustrate clearly. Because SCOPE al-
lows a column to be accessed by name (e.g., line 6 in
Figure 3) or index (e.g., line 18), a column read or write
operation may be unresolved during compilation, where
PeriSCOPE considers that this column could be any col-
umn that is visible to the user-defined function, leaving
no opportunity for column reduction. Fortunately, as we
discuss in Section 5, column accesses that cannot be re-
solved through simple optimization techniques are rela-
tively rare—at only a 1.9% occurrence in our survey of
real SCOPE jobs.

PeriSCOPE applies column reduction by computing
a set of “used” output columns for each operator that are
used as the input columns of succeeding operators in the
pipeline topology. If the operator immediately precedes a
data-shuffling phase, the shuffling-key columns are also
required as used output columns. Any unused output
columns of an operator are removed and, if the opera-
tor is a user-defined function, PeriSCOPE also rewrites
it to remove all code that only contributes to computing
the removed output columns. If any columns were re-
moved, PeriSCOPE removes any input columns that are
no longer used because of removed code and repeats col-
umn reduction again.

For example, thecolumn mvalue is removed from
the PScoreReducer function because it is not used by
the SigReportProcessor function listed in Figure 3.

4
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This causes the code that computes mvalue to be re-
moved (lines 36 and 33 in Figure 5), which further
causes the output column market to be removed from
the DefaultTextExtractor function. Finally, Peri-
SCOPE creates, through specialization that eliminates
code, function whose code is semantically similar to the
MyTextExtractor function of Figure 5.

4 CODE MOTION

Code motion moves code from user-defined functions
across pipeline stages using two techniques: early filter-
ing and smart cut that respectively reduce the number of
rows and the size of each row transmitted during data
shuffling. Because such code motion can be done only
if safe, i.e., the result of the program is unchanged, we
describe the correctness conditions of code motion using
the example in Figure 3, with a focus on identifying the
domain knowledge that is needed to define correctness.

Moving a statement across a data-shuffling phase is
not always safe. For the statements on lines 12–14 in Fig-
ure 3, the value of maxImpr depends on the processing
order of the input rows. Because data shuffling re-orders
rows based on a shuffling key, computing maxImpr be-
fore and after data shuffling would yield different results.
PeriSCOPE makes the following two observations on
data shuffling, each leading to a safety rule for code mo-
tion. First, the data-shuffling phase reads the shuffling-
key columns of each row, leaving other columns un-
touched; i.e.,

RULE 1. PeriSCOPE must not move a statement after
data shuffling if it generates shuffling-key columns.

Second, the data-shuffling phase can change transpar-
ently the number and order of the rows processed on each
machine through re-partitioning and grouping. Any com-
putation that relies on the number or order of the rows,
which we say is stateful, cannot be moved across the
data-shuffling phase; i.e.,

RULE 2. PeriSCOPE must not move a stateful state-
ment across the data shuffling phase.

PeriSCOPE applies loop dependency analysis [4] to the
body of the main loop for each user-defined function
to identify stateful statements as those that have loop-
carried dependencies. A loop-carried dependency indi-
cates that the destination statement relies on the execu-
tion of the source statement from an earlier iteration. For
example, the statement on line 12 of Figure 3 relies on
its reassignment on line 13 from previous iterations and
is therefore stateful; by similar reasoning, the statements
on lines 11, and 13–15 are also stateful.

entry

5. impr=SmoothImpr(...)
6. incl = ctrls.Contains(…)
7. if (!incl && impr < 0) continue;

  8. keys = qurery.Split (…)
  9. p = alteredQuery.ContainsAny(…)
10. if (p)

11. score += …;

12. if (impr > maxImpr)

13. maxImpr = impr;

14. if (impr … > maxImpr) continue;

...G

F
T

T

T

T

F
F

F

F

Figure 8: Control flow graph for the loop body in PScore-
Reducer in Figure 3. Edges marked T and F are branches
that are taken when the last predicate in the source basic block
evaluates to true and false, respectively. The vertices in gray are
the basic blocks that contain filtering statements.

Care must be taken in identifying stateful statements.
A statement might be stateful if it calls a routine that
transparently accesses data; such as by reading and writ-
ing a global variable. Also, statefulness is only deter-
mined by dependencies on rows that are iterated by the
main loop of a user-defined function; PeriSCOPE treats
inner loops as single statements.

Early Filtering
Early filtering is applied to the first user-defined function
in a computation stage that executes after a data shuffling
phase. PeriSCOPE first identifies filtering statements in
the user-defined function’s main loop, which are state-
ments that branch back to the beginning of the main loop.
Figure 8 shows the control flow graph for the loop body
of PScoreReducer in Figure 3; statements 7, 14 and the
end of basic block G are identified as filtering statements.
Because earlier filtering will reduce the number of rows
that are iterated on later, PeriSCOPE must ensure that
moving a filtering statement does not change the cumu-
lative effect of any downstream stateful statements; i.e.,

RULE 3. PeriSCOPE must not move a filtering state-
ment before a data shuffling phase if the statement is, or
is reachable from, a stateful statement.

5
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This rule excludes statement 14 in Figure 8 because it
is stateful, and excludes the last statement in basic block
G because it is reachable from statement 14. PeriSCOPE
next identifies code that computes the filtering condition
by applying backward slicing [35], which starts from the
identified filtering statement and collects, as its backward
slice, the statements that can affect it. The backward slice
of statement 7 in Figure 8 includes statements 5–7. Peri-
SCOPE then copies the entire backward slice upward
causing rows to be filtered out before data shuffling oc-
curs. Given rule 3, the slice cannot contain any stateful
statements and so this copy is always safe. Finally, the
conditions of the moved filter can now be assumed in
the original user-defined function, enabling the removal
of code through dead code elimination. For the code in
Figure 8, statement 7 is removed because (!incl &&

impr < 0) is always false; no row otherwise is permit-
ted past the data-shuffling phase due to early filtering.
Statement 6 is then removed because incl is not used
anymore, causing ctrls to become unused in the user-
defined function. As a result, early filtering not only re-
duces the number of rows that are transferred across a
data shuffling phase, but can also trigger column reduc-
tion (e.g., on ctrls).

Smart Cut

The cross-stage flow of data across the network in a data-
parallel program is significantly more expensive than a
traditional program whose data flows only through mem-
ory. PeriSCOPE therefore aims at re-partitioning the
code by finding smart cuts as shuffling I/O boundaries
that minimize cross-stage data flow. Finding smart-cuts
can be formulated as a compiler-like instruction schedul-
ing problem [2, 25]. However, while a compiler usually
rearranges instructions to improve instruction-level par-
allelism on a specific CPU architecture, smart cut re-
orders statements to reduce the amount data transmitted
across the network.

Smart cut is applied to user-defined functions that
are immediately adjacent to data-shuffling phases. Peri-
SCOPE first applies if-conversion [3] to the body of the
main loop for a given user-defined function so that the
loop body becomes a single basic block, which is neces-
sary because instruction scheduling can only be applied
to blocks of non-branching instructions. Figure 9 shows
the simplified result for the code segment on lines 5–15
of Figure 3, after lines 6 and 7 are removed according
to early filtering. Every statement is now guarded with
a predicate that specifies the path condition of its execu-
tion; e.g., the statement on line 13 is guarded with predi-
cate p1 because it is executed only when p1 is true.

5 (T) impr = SmoothImpr(row["clicks"].Long());

8 (T) keys = row["query"].String().Split(’,’);
9 (T) p = row["alteredQuery"].ContainsAny(keys);

11 (p) score += ...;
12 (T) p1 = impr > maxImpr;
13 (p1) maxImpr = impr;
14 (T) p2 = !(impr * IMPR RATIO > maxImpr);
15 (p2) ... cvalue += ...

Figure 9: Simplified if-conversion result for lines 5–15 in Fig-
ure 3. T stands for True which means that the statement al-
ways executes.

keys=query.Split() impr=SmoothImpr(clicks)

p = alteredQuery.ContainAny(keys)

alteredQuery:string:?

clicks: long: 8

keys: string []:?

p: bool: 1

5

9

8

impr: int32: 4

query:string:?

S

T

(p) score += ...11 p1 = impr > maxImpr12

query:string:?

∞ ∞ 

Figure 10: Labeled data dependency graph with a smart cut.
Statements 13–15 are omitted. Statements in gray are stateful.

PeriSCOPE then builds a data dependency graph [2,
25] for this basic block using the SSA [13] format. Ver-
tices in the data dependency graph are instructions, while
directed edges represent read-after-write (RAW) data de-
pendencies where sink instructions use variables defined
in the source instructions. PeriSCOPE labels the edges
with the name and byte size of the dependent variables,
which are either columns or local variables. Figure 10
shows part of the labeled data dependency graph for our
example; PeriSCOPE further adds two vertices S and T
to represent the overall input and output of this code snip-
pet, respectively. PeriSCOPE also adds an edge labeled
query from S to T as query is used as the shuffling key
and should always be transmitted. To ensure that rules
1 and 2 are not violated, PeriSCOPE adds directed edges
from S to any statement that is either stateful or generates
shuffling keys before the data-shuffling phase, and adds
directed edges from any stateful statement after the data-
shuffling phase to T; all of these edges have an infinite
weight to ensure that those statements are never moved
across the data-shuffling phase.

The smart-cut problem is now reduced to one of find-
ing an edge cut between S and T in the data dependency
graph that minimizes the total byte size of all dependent
variables on edges across the cut. The problem appears

6
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similar to the minimum cut problem [10] of a directed
graph. However, there are two subtle differences between
our problem and the standard minimum cut problem:

• Data flows across the data-shuffling phase in only
one direction, so all edges must have the same di-
rection across the cut.

• When multiple edges on a cut are labeled with the
same variable name, the byte size of that variable is
only counted once as it only needs to be transferred
once.

Computing an optimal edge cut statically is difficult be-
cause the precise weights of some edges depend on dy-
namic data. For example, it is hard to statically esti-
mate the weights of string-typed columns and variables
as their length is unknown. In practice, PeriSCOPE re-
sorts to a simple heuristic-based technique to identify
opportunities to move code across data-shuffling phases.
Specifically, PeriSCOPE looks for a simple pattern with
a variable computed from one or more input columns.
If the total size of the input columns that are used only
for computing this variable is larger than the size of
this variable, this computation should be moved to an
earlier stage. Similarly, PeriSCOPE also looks for a re-
verse pattern where a variable is used to generate one or
more output columns. In Figure 10, the input columns
alteredQuery and query from Figure 3 are used to
compute variable p in the optimize function of Figure 5.
Although the alteredQuery column is never used else-
where, the query column is used in a later stage. Be-
cause the byte size of a string type (alteredQuery) is
always larger than that of a boolean variable (p), the cut
should cross the edges labeled with p, instead of those la-
beled with alteredQuery. The same reasoning applies
to the computation of impr from clicks. In the end,
edges between statements 9 and 11, and between state-
ments 5 and 12, are selected for the smart cut.

Finally, PeriSCOPE applies instruction scheduling
according to the selected cut. In our example (Figure 9),
statements 5, 8 and 9 are moved before data shuffling.
The recorded schema across the data-shuffling phase is
changed accordingly where two new columns are added:
the boolean-typed p, and the integer-typed impr, and two
old columns (the string-typed alteredQuery and the
long-typed clicks) are deleted. The result is similar to
the code shown in Figures 4 and 5 in Section 2.

5 IMPLEMENTATION

PeriSCOPE examines a SCOPE program’s operators, the
definition of the rows used by the operators, and the

Execution Plan from SCOPE

Specialized Operators + DAG

Optimized Operators + DAG’

Optimized Execution Plan

Constant Propagation
Loop Unrolling
Stateful Checking

Preparation

Optimization
Column Reduction
Early Filtering
Smart Cut

Generation Operator Rewriting
Plan Rewriting

Figure 11: Optimization flow in PeriSCOPE.

program’s pipeline topology represented as a directed
acyclic graph (DAG) in the program’s execution plan.
The operators and row definitions are extracted from
.NET binary executables, while the pipeline topology
is represented as an XML file. PeriSCOPE extends IL-
Spy [32], a de-compiler from .NET byte-code to C#
code, and Cecil [36], a library to generate and inspect
.NET assemblies, to implement PeriSCOPE as two com-
ponents. PeriSCOPE’s optimizer is built on top of ILSpy
to specialize all operators in the input execution plan,
applying all PeriSCOPE’s optimizations to operators (as
user-defined functions) as found at the intermediate rep-
resentation (IR) level. The generator emits new bytecode
for user-defined functions and generates all utility code
for the program, such as new row schemas and their re-
lated serialization routines, as well as the new SCOPE
description file for the execution plan.

The optimizer and generator components are both
implemented in C# with 7,334 and 2,350 lines of code,
respectively. Figure 11 illustrates PeriSCOPE’s opti-
mization flow with three major tasks, each containing
several steps, where the optimizer performs the first two
tasks, while the generator performs the last. Plan rewrit-
ing updates the original DAG XML file that describes
pipeline topology because some original operators are
now split into different computation stages.

SCOPE user-defined functions use a column index or
name to access a column. When such index is a vari-
able, program analysis can only make conservative as-
sumption on what column is being manipulated, signif-
icantly reducing the opportunity for PeriSCOPE’s opti-
mizations. In our survey of SCOPE programs, we found
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that 11.4% of the column accesses use variable indices.
Fortunately, our investigation shows that many column
index variables are determined by the input arguments to
the user-defined functions, which is the case on lines 7
and 10 of Figure 1, and constant propagation can be ap-
plied to resolve their concrete value. However, not every
column index can be resolved by constant propagation
only. A user-defined function might enumerate columns
using a variable in a loop, which we addressed by stan-
dard loop unrolling [2, 25] when the schema describing
the data is known. A column index could also be de-
termined by the value of another column, which Peri-
SCOPE cannot deal with very well. Fortunately, we have
found that among the 11.4% of the jobs that use a vari-
able as a column index, PeriSCOPE is able to resolve
83.3% of them, leaving just 1.9% of the jobs containing
unresolved column access.

Instead of directly rewriting operator code, Peri-
SCOPE copies operator code when it needs to be written
because a user-defined function can be reused multiple
times in a job, each reuse requiring different code trans-
formations. Likewise, row type schema definitions and
serialization code are copied and transformed as columns
are eliminated from different points in the pipeline.

6 EVALUATION

We use a real trace of 28,838 jobs from a 10,000 machine
SCOPE production cluster to evaluate PeriSCOPE’s core
I/O reduction optimizations of column reduction, early
filtering, and smart cut. Our evaluation focuses on first
assessing the overall potential for these optimizations
and second evaluating in detail the effectiveness of these
optimizations on the end-to-end performance of several
real production jobs. With an average analysis time of
3.9 seconds for each job, our current implementation
successfully analyzes 19,914 (69%) of the 28,838 jobs.
PeriSCOPE fails on the rest of these jobs given limita-
tions in our implementation primarily relating to incon-
sistent SCOPE versions (18.9%) or outright ILSpy de-
compilation failures (8.5%), but a minority involve code
that cannot be analyzed in general due to unresolved col-
umn indices (1.9%) or for reasons that we have yet been
unable to determine (1.7%). Table 1 shows that 14.05%
of the jobs are eligible for column reduction optimiza-
tion, 10.47% for early filtering, and 5.35% for smart cut.
Some jobs are eligible for multiple types of optimiza-
tions, and so the total percentage (22.18%) of jobs that
are eligible for those optimizations is lower than the sum
of the three.
We next examine the user-defined functions of these
jobs. We found that these jobs used only 2,108 unique

optimization eligible jobs
column reduction 4,052 (14.05%)
early filtering 3,020 (10.47%)
smart cut 1,544 ( 5.35%)
Total 6,397 (22.18%)

Table 1: Optimization coverage statistics which lists the num-
ber and the percentage of the jobs that are eligible for the given
optimization.

user-defined functions, meaning many jobs are encoded
purely in declarative code that leverages pre-existing
user-defined functions. About 16.4% of the user-defined
functions are reused more than ten times, where the most
popular user-defined function is reused 4,076 times. We
suppose that the heavy reuse of user-defined functions
creates more opportunities for PeriSCOPE’s optimiza-
tions. And in fact, about 80.2% of the user-defined func-
tions in jobs eligible for column reduction were reused at
least 13 times, confirming our speculation that generic li-
brary functions contain a lot of redundancies that can be
optimized away. On the other hand, no such correlation is
observed for early filtering or smart cut, whose eligibil-
ity appear to be unrelated to reuse. Finally, 637 (30.2%)
unique user-defined functions used in these jobs have ar-
guments in their function bodies that are used as branch
conditions or column names, while 79.1% of the user-
defined function invocations in the job scripts contain
constant parameters. Specialization of such user-defined
functions is a necessary pre-processing step to resolve
columns and apply PeriSCOPE’s optimizations.

Case Study

To understand the overall effectiveness of PeriSCOPE’s
optimizations, we compare the performance of the jobs
before and after our optimization in terms of both exe-
cution time and the amount of I/O used during the data-
shuffling phase. Ideally, we would carry out this exper-
iment with representative benchmarks, which unfortu-
nately do not exist. We therefore select eight real and
typical SCOPE jobs that are eligible for at least one of
PeriSCOPE’s optimizations and whose input data is still
available on the cluster. The selected jobs are mostly re-
lated to web-search scenarios that process crawler traces,
search query histories, search clicks, user information,
and product bidding logs. Our experiment executes these
real production jobs (cases 1–8 in Figure 12) on various
number of machines. Specifically, cases 1, 2, and 4 use
1,000 machines, case 3 uses 10 machines, cases 5–7 use
192 machines, while case 8 uses 100 machines.

Figure 12 shows the performance-gain breakdown for
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Figure 12: Performance gains with PeriSCOPE’s column reduction, early filtering, and smart cut optimizations; chart (a) labels
unoptimized job time in seconds while chart (b) labels total unoptimized job shuffling I/O size in GB; the bars in each case represent
the effectiveness of each optimization relative to unoptimized execution time (a) or shuffling I/O (b); shorter bars indicate more
reduction; the “All” bar is only shown for cases that are eligible for more than one PeriSCOPE’s optimization; final case reduction
of time or I/O is presented as a percentage next to an I-bar; both the execution time and the shuffling I/O are average values with a
relative standard deviation (RSD) ranging from 7.3% to 23.0% due to the nature of our shared computing environment.

our chosen 8 production jobs in terms of a reduction
in both execution time and data-shuffling I/O. The un-
optimized and optimized versions of each job are exe-
cuted three times; we report the average. Due to the na-
ture of our shared computing environment we are us-
ing, we see high relative standard deviations (7.3% to
23.0%) in our latency experiments, while the reduction
numbers in data-shuffling I/O is a more reliable indica-
tor. In particular, highest standard deviations are seen for
cases 5 (23.0% and 22.6%) and 6 (18.0% and 14.9%), in-
dicating that the reductions are insignificant statistically
in those cases. The execution time reduction for case 8
(10%) is also statistically insignificant with standard de-
viations of 13.4% and 7.3%. Case 1 benefits from all
three of PeriSCOPE’s optimizations, cases 2–3 are eli-
gible for two, while cases 4–8 are only eligible for one
each. PeriSCOPE reduces data-shuffling I/O in all cases
but the last by between 9% and 99%; the last case in-
curs no benefit for reasons discussed below. Execution
time is reduced by between 7% to 74%, which, beyond
data-shuffling I/O, includes other tasks such as execut-
ing data-processing code, and reading and writing data
to and from storage. Case 4 is particularly sensitive to
storage overhead as this job extracts data from a 2.26TB
log file.

Column reduction can be applied six of the eight jobs,
yielding I/O reductions ranging from 4.8% up to 96%
that depend on how many columns are removed com-
pared to the total byte size of all columns. Column reduc-

tion on case 4 removes 18 columns out of 22; the reducer
that executes immediately after an extractor uses only 4
of the columns extracted. For case 7, only 2 out of 31
columns are used by its reducer; other columns are con-
sumed by other operators and are not transmitted across
the data-shuffling phase.

The effectiveness of early filtering depends highly on
the goal of filtering. We have found that filtering condi-
tions simply exclude rows whose columns have invalid
values. While such case is rare, early filtering leads only
to a negligible I/O reduction; case 8 is exactly this case.
The execution time of case 8 is still reduced because
PeriSCOPE moved the filtering computation to before
the data-shuffling phase, improving the parallelism be-
cause more resource (136 CPU cores) are allocated to the
stage before shuffling than after (42). When the filtering
does not check for invalid values, they usually exclude
a large number of rows and early filtering is quite effec-
tive. As an extreme case, data-shuffling I/O is reduced
by 99% in case 1 because the vast majority of the rows
in this job are filtered out and so do not need to be trans-
mitted in the pipeline. The opportunity for early filtering
discovered by PeriSCOPE was not obvious: 7 if condi-
tions, some of them deeply nested, select desired rows
for various computations, and manually writing a single
filtering condition to replicate these if conditions is not
trivial for a developer.

In contrast to early filtering, smart cut will always
deliver I/O reductions when it can be applied. Compu-
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tations that trigger smart cut typically involve one col-
umn that is mapped to a column of a smaller size, usually
via the conversion from string to some arithmetic types,
or size-reduction operations such as Trim and Substring.
Binary operations (e.g., +,∗,==,>) between two input
columns can also trigger smart cut. For example, case 5
contains two string-typed columns as start and end event
timestamps; the job parses the two as integer timestamps
and computes their delta for the elapsed time of the event,
where smart cut causes the delta to be precomputed.

Discussion
Overall, we found that column reduction and smart cut
are always effective in reducing data-shuffling I/O while
the effectiveness of early filtering highly depends on
the purpose of the filtering. Our experiments have also
demonstrated that programmers often write inefficient
data-parallel programs; we speculate that they are either
unaware of how to optimize these programs or are valu-
ing programmability over performance. In this context,
PeriSCOPE’s optimizations are valuable as the program-
mer can be less concerned about I/O performance.

Even experienced programmers who value perfor-
mance could eventually rely on PeriSCOPE’s optimiza-
tions to avoid hand-optimizing their code and allow them
to reuse more existing code in their programs. In this
case, the reliability and predictability of PeriSCOPE’s
optimizations are as important as the optimizations’ ef-
fectiveness; we leave an exploration of this topic to future
work.

7 RELATED WORK

PeriSCOPE is closely related to a large body of re-
search in the areas of data-parallel computation, dis-
tributed database systems [16] and query optimizations,
and compiler optimizations [2, 4, 25]. Instead of attempt-
ing to cover those areas thoroughly, we focus on the most
related research that lies in the intersection of those three
areas.

Distributed data-parallel systems
MapReduce [14] has inspired a lot of follow-up research
on large-scale distributed data-parallel computation, in-
cluding Hadoop [5] and Dryad [18]. The MapReduce
model has been extended [38] with Merge to support
joins and adapted [11] to support pipelining. High-level
languages for data-parallel computation have also been
proposed for ease of programming. Examples include
Sawzall [31], Pig Latin [29, 15], SCOPE [8], Hive [33,
34], and DryadLINQ [40]. In addition, FlumeJava [9] is a
Java library for programming and managing MapReduce

pipelines that proposes new parallel-collection abstrac-
tions, does deferred evaluation, and optimizes the data
flow graph of an execution plan internally before execut-
ing. Nova [27] is a work-flow manager with support for
stateful incremental processing which pushes continually
arriving data through graphs of Pig programs executing
on Hadoop clusters. Cascading [7] is a Java library built
on top of Hadoop for defining and executing complex,
scale-free, and fault tolerant data processing work-flows.
Bu et al. [6] shows how recursive SQL queries may be
translated into iterative Hadoop jobs. Programs in those
systems go through a compilation and optimization pro-
cess to generate code for a low-level execution engine,
such as MapReduce and Dryad. All of them support user-
defined functions that are treated as black boxes during
optimization of the program’s pipeline.

PeriSCOPE’s optimizations work at the level of byte-
code operators and pipeline descriptions, which are typ-
ically the result of the existing compilation and opti-
mization process. Conceptually, the approaches taken by
the PeriSCOPE’s optimizations can be applied to data-
parallel systems other than SCOPE, because almost all
systems produce a pipeline with operators that call user-
defined functions. The coverage and the effectiveness of
the concrete optimizations, however, vary due to their
different programming models and language runtime im-
plementation. We show two cases where the differences
in those systems matter. First, the data models differ,
ranging from a relational data model (e.g., SCOPE) or
its variations (e.g., Hive, Pig), to the object model (e.g.,
FlumeJava and DryadLINQ), which introduces differ-
ent opportunities and difficulties for PeriSCOPE’s op-
timizations. For example, with an object model, Peri-
SCOPE does not need to resolve the column access in-
dex any more, because all fields are accessed explic-
itly. Also, in an object model, declaring a new schema
requires explicit class/object definitions. The resulting
inconvenience often cause developers to reuse existing
object definitions that contains unneeded fields, offer-
ing more opportunities for column reduction. Develop-
ers sometimes write custom (de-)serialization functions
for an object to achieve better performance, which would
pose challenges to PeriSCOPE’s optimizations that cause
schema changes: those functions must be modified ac-
cordingly.

Second, different systems might define different in-
terfaces to their user-defined functions; those interfaces
represent different trade offs between expressiveness and
ease of analysis. For example, SCOPE exposes a collec-
tion of records to a mapper while others usually take
a single record as the input to a mapper (e.g., in the
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MapReduce framework in Hadoop). Other examples in-
clude the reducer interface in SCOPE versus the UDAF
(user-defined aggregation function) interface in Hive,
where the former exposes the record collection and the
latter only receives a single value, and is usually applied
to a single column. The more restricted the interface and
the less expressive the language, the easier it is to ana-
lyze. The interface definition also influences where the
optimization opportunities lie. For example, if a user-
defined function is defined to take a single column as
its input, cross-column relationships are now explicitly
expressed, reducing the need for program analysis and
optimizations.

Database optimizations

Most of the data-parallel systems adopt a hybrid pro-
gramming model that combines declarative relational op-
erators with procedural user-defined functions, and are
heavily influenced by database systems. The support
of relational operators in those systems allows jobs to
be specified easily, while at the same time facilitates
database optimizations based on relational algebra.

There are interesting similarities between some of the
PeriSCOPE’s optimizations and the classic database op-
timizations. Early filtering in PeriSCOPE corresponds
naturally to early selection in database optimizations.
The counterpart to column reduction in database opti-
mization is early projection that drops unused columns
as early as possible. Such logical optimizations [28] have
already been proposed for data-parallel programs, but
they cannot be readily applied when user-defined func-
tions are involved because they rely on relational opera-
tors.

A line of related research focuses on extracting re-
lational queries from user-defined functions. Hadoop-
ToSQL [19] transforms MapReduce queries to use the
indexing, aggregation, and grouping features provided
by SQL databases, taking advantage of advanced stor-
age engines by employing symbolic execution to extract
selection and projection conditions. Manimal [20] simi-
larly extracts relational operations such as selection, pro-
jection, and data compression from user-defined func-
tions through static data flow analysis. Early filtering
and column reduction are possible in Manimal because
those optimizations have clear relational interpretations.
But PeriSCOPE can also remove unnecessary code from
the user-defined functions, while Manimal never rewrites
user-defined functions as it can only optimize the rela-
tional layer. For example, lines 27, 28, 33, 36 in Figure 5,
which are eliminated by PeriSCOPE, would not be re-
moved by Manimal. As a result, PeriSCOPE further re-

moves columns ctrls and market, as well as the code
on lines 5 and 6 in Figure 5 through column reduction,
which Manimal cannot do.

Neither Manimal nor HadoopToSQL support smart
cut because neither system rewrites any user-defined
functions in its optimizations. For smart cut, the clos-
est concept in database optimization that we are aware
of is the notion of “virtual columns” from Oracle [30],
where a computed column is lazily evaluated when it is
used, similar in spirit to moving a computation to a later
place in the code. Such lazy evaluation is limited to spe-
cial cases and cannot be performed on user-defined func-
tions in general.

Program analysis and optimizations

The need to analyze user-defined functions, by means of
techniques such as data flow analysis [2, 4, 25], abstract
interpretation [12], and symbolic execution [17], has al-
ready been recognized. Ke et al. [21] focuses on data
statistics and computational complexity of user-defined
functions to cope with data skew. Sameer et al. [1] con-
cludes that certain data and code properties can improve
performance of data-parallel jobs, and presents the RoPE
system that adaptively re-optimizes jobs by collecting
statistics on such code and data properties in a distributed
context. Scooby [37] analyzes the data flow relation-
ships of SCOPE’s user-defined functions between input
and output tables, such as column independence and col-
umn equality, by extending the Clousot analysis infras-
tructure [22]. Yuan et al. [39] define the associative-
decomposable property of a reducer function to enable
partial aggregation automatically after analysis on the
reducer functions. Sudo [41] identifies a set of interest-
ing user-defined functions, such as pass-through, one-to-
one, and monotonicity, and develops a framework to rea-
son about data-partition properties, functional properties,
and data shuffling in order to eliminate unnecessary data
shuffling. Sudo analyzes user-defined functions to infer
their properties, but never rewrites any user-defined func-
tions.

Compilation of declarative language has huge im-
pact on the efficiency of a high-performance and high-
throughput environment. Steno [26] can translate code
for declarative LINQ [24, 23] queries both in serial C#
programs and DryadLINQ programs to type-specialized,
inlined, and loop-based procedural code that is as effi-
cient as hand-optimized code. PeriSCOPE similarly ap-
plies those optimizations in program specialization as a
preparation step, although differences in the language de-
signs between SCOPE and LINQ lead to different chal-
lenges and approaches. Steno can automatically generate
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code for operators expressed in LINQ, but has to treat
external functions called inside operators as black boxes.
PeriSCOPE instead works with compiled user-defined
functions, which include such external functions.

8 CONCLUDING REMARKS

Optimizing distributed data-parallel computation ben-
efits from an inter-disciplinary approach that involves
database systems, distributed systems, and program lan-
guages. In particular, PeriSCOPE has demonstrated per-
formance gains on real production jobs by applying pro-
gram analysis and compiler optimizations in the con-
text of the pipelines that these jobs execute in. Much
more can be done. We can explore how to enhance the
reliability and predictability of PeriSCOPE’s optimiza-
tions so programmers can reuse existing code as well as
write straightforward code without much guilt that per-
formance is being sacrificed. Going further, we can ex-
plore how the programming model itself can be enhanced
with more guarantees about program behavior, allowing
for even more aggressive optimizations that further im-
prove performance.
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