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Abstract
Traditional data center monitoring systems focus on col-
lecting basic metrics such as CPU and memory usage, in
a centralized location, giving administrators a summary
of global system health via a database of observations.
Conversely, emerging research systems are focusing on
scalable, distributed monitoring capable of quickly de-
tecting and alerting administrators to anomalies. This
paper outlines VStore, a system that seeks to combine
fast online anomaly detection with offline storage and
analysis of monitoring data. VStore can be used as a
historical reference to help guide administrators towards
quickly classifying and fixing anomalous behavior once
a problem has been detected. We demonstrate this idea
with a distributed big streaming data application, and ex-
plore three common fault scenarios in this application.
We show that each scenario exhibits a slightly different
monitoring history, which may be undetectable by online
algorithms that are resource-constrained. We also offer
a discussion of how historical data captured by VStore
can be combined with online monitoring tools to improve
troubleshooting efforts in the data center.

1 Introduction

Today’s data center applications are increasingly con-
cerned with fast and efficient processing of huge amounts
of data. Web companies use data analytics to track and
analyze user actions and provide real-time business deci-
sions to improve user experience. Applications that store
and process such vast amounts of data are no longer com-
posed of single codes running on a few machines, but
rather a complex set of many interconnected distributed
systems, often across hundreds of machines in a data cen-
ter. With cost savings and flexibility afforded by services
like Amazon’s EC2 and Elastic MapReduce [1, 2], these
applications are now being deployed in virtualized envi-
ronments as well.

As data scale increases and the push towards real-time
data analytics continues, efficient monitoring and trou-
bleshooting of these systems has become more impor-
tant. Each component of a system may have different
performance characteristics and failure scenarios. In tra-
ditional data centers, the scale of machines required to
process data fast enough means hardware failures are
common [10]. In cloud environments, performance can
often be erratic due to virtualized resource contention
with other cloud tenants [9]. To combat these issues,
monitoring is often used as a tool for administrators to
detect, diagnose, and fix failures quickly.

This paper outlines a method for combining fast and
scalable monitoring of distributed applications with a
scalable database backend for offline storage and anal-
ysis of monitoring data. Traditional monitoring appli-
cations use polling interfaces and centralized collection,
providing a snapshot of overall system health via metrics
collected over some period of time. However, these sys-
tems can have scalability issues, and lack fast anomaly
detection required for real-time streaming data applica-
tions that are deeply ingrained in business logic. In
our previous work, VScope [17], we developed a sys-
tem that scales to thousands of machines and allows dy-
namic, real-time monitoring using online analytics for
fast anomaly detection. In this paper we outline an ex-
tension to VScope, which we call VStore, that enables
offline archiving of monitoring data gathered by VScope
for historical analysis. This approach allows for online
algorithms to be deployed dynamically to quickly detect
problems, and to compare current observations to a rich
set of historical data for targeted debugging.

The remainder of this paper is organized as follows:
section 2 discusses problems with current solutions; sec-
tion 3 outlines our system design; section 4 explores use
cases from three common anomaly scenarios in a dis-
tributed weblog application, and discusses how VStore
can aid troubleshooting efforts; and in section 5 we con-
clude and discuss future work.
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2 Problem Description

Traditional data center monitoring systems such as such
as Ganglia [5], Nagios [6], and OpenTSDB [8] provide
for basic collection of simple metrics like CPU, memory,
and network utilization from machines in a datacenter.
These metrics offer a summary of global system health,
but sometimes this view can be limited. In the case of
Ganglia, for instance, a round-robin database limits the
amount of data stored in a centralized place. OpenTSDB
provides a scalable data storage backend, but still relies
on simple polling of metrics. Although Nagios supports
alerting, methods are typically based on heuristics such
as pre-defined thresholds for each monitored metric.

Conversely, emerging methods for monitoring systems
in the research literature such as Monalytics [15] and VS-
cope [17] use a more targeted approach by aggregating
data over a very large scale of machines, and performing
online analysis for rapid detection of anomalies. These
systems provide an opportunity to dynamically adjust the
monitoring and analysis functions within the datacenter,
but lack support for a rich history of monitoring data to
compare against.

Each of these monitoring systems provides an invalu-
able set of information to data center administrators.
System-wide monitoring applications provide a global
overview of application and system health over longer
time windows, whereas online algorithms provide ex-
tremely fast detection of anomalies and targeted debug-
ging when problems arise. However, we lack a coherent
bridge between these two paradigms. An administrator
working on troubleshooting an issue in a complex dis-
tributed system would like to not only know when an
anomaly is detected, but what type of anomaly the ap-
plication is experiencing. Consider a distributed system
like HBase, which is composed of other complex com-
ponents (namely Hadoop and ZooKeeper). As noted in
[14, 4], a number of different fault types can lead to ir-
regular behavior in an HBase cluster. These range from
a failing disk causing excessive I/O wait times at HDFS
nodes, imbalanced key spaces causing ”hot spots” at re-
gion servers, or a failing NIC causing network requests
to be delayed. Each scenario may exhibit subtly differ-
ent anomalies at each tier, making classification difficult
if data has been aggregated or summarized.

Bridging this gap will allow for faster detection and
correction of faults in large, distributed systems. Anoma-
lous behavior can first be detected with an online algo-
rithm, then classified by gathering enough data from a
set of monitored nodes and comparing it with historical
data. This comparison guides the administrator down the
right path for further debugging.

3 System Overview

We are working on integrating both offline storage and
analysis of monitoring data with fast, scalable, online
monitoring. We have built an extension to VScope
[17] which adds a scalable database backend built on
OpenTSDB [8], which we call VStore. This database al-
lows us to bridge the gap between VScope’s targeted, on-
line analytics over short time windows, and the extended
view of long-term interactions between application tiers
provided by a database. An administrator can use VS-
tore to draw upon a rich history of monitoring data to
fine-tune online algorithms, and uncover anomalies that
otherwise might be missed by VScope.

VStore integrates with VScope by hooking in to the
online monitoring and analysis performed by Distributed
Processing Graphs (DPG). First outlined in our previous
works [19, 17], DPGs are essentially scalable overlay
networks capable of being dynamically deployed and re-
configured with customized monitoring functions. For
example, a ”watch” DPG may be deployed across all
nodes to coarsely track low level metrics such as CPU
and memory utilization, while a ”query” DPG might
deploy on a subset of nodes to perform fine-grained
application-level monitoring. To scale monitoring func-
tions, DPGs support arbitrary aggregations, such as trees
that aggregate values observed from child nodes in the
monitoring graph. Additionally, VScope can run fast
analytics on data aggregated in a DPG, which can be
used to detect anomalies over a short time window. For
instance, a DPG may gather 5 minutes worth of data
and perform an entropy calculation (see [16, 20, 21]) to
quickly identify CPU spikes or other anomalies, and alert
an administrator of an impending fault.

To complement this, VStore can be deployed at the
root of a DPG, where values are aggregated and ana-
lyzed. The root uses VStore to archive each individual
observation before aggregation. Whereas an online pro-
cess will throw away data after aggregating and analyz-
ing over a short time window, VStore saves this history
completely for later analysis. As a simple example, con-
sider a DPG that aggregates CPU utilization at a number
of nodes. The root of the DPG collects observations (per-
haps once per second) from each node and buckets them
over a sliding time window to perform an online analy-
sis. At the same time, when each observation is received
at the root, it sends it to VStore for archiving.

VStore acts as an OpenTSDB client, and provides a
communications layer between custom monitoring code
running inside DPGs and a scalable key-value store using
HBase, the backbone of OpenTSDB. Monitoring code
executing within a DPG that uses VStore can store any
type of numeric metric that is being collected. To scale
archiving at different points in the DPG, VStore can be
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(a) CPU usage at HBase Region Servers (b) CPU usage at HDFS nodes (c) Network traffic at HDFS nodes

Figure 1: A periodic, high-CPU background task running at the HBase tier. The top graph shows a normal workload, while the bottom shows a
periodic process starting and stopping every 5 minutes. A periodic high-CPU load at the HBase tier has relatively low impact on HDFS, making
this type of anomaly more difficult to detect using a global online algorithm.

integrated at multiple levels. Each aggregation point in a
DPG can thus use VStore to archive observations before
either forwarding them or collapsing into a single value.
Because it is backed by HBase, VStore can scale well to
concurrent clients archiving a large amount of monitored
data. This is critical to integrating with VScope’s goal of
providing low-overhead and scalable troubleshooting for
over 1000 nodes.

4 Use Cases

To demonstrate how collection and offline analysis can
be combined with online monitoring systems, we ex-
perimented with three typical scenarios seen in modern,
multi-tiered data center applications: a periodic back-
ground process that interferes with normal processing, a
misconfiguration in the software application itself, and a
fault or misconfiguration at the network level. Our ex-
periments are designed around a big data application,
similar to that of [17], to collect and analyze web logs
for micro-marketing purposes. We constructed a dis-
tributed log collection workload using Hadoop, HBase,
and Apache Flume [3, 18].

Our experimental testbed is deployed on a local re-
search cloud at Georgia Tech using the OpenStack plat-
form [7], with virtual machines running Ubuntu Linux
12.10. We run an HDFS tier containing a Hadoop Mas-
ter server, plus 10 VMs running data and task tracker
processes. The HBase tier contains a Master server, plus
10 VMs acting as region servers, and is not colocated
with HDFS nodes. 3 VMs are dedicated to a ZooKeeper
quorum. Finally, 70 VMs serve as workload generators
and aggregators for Flume. A workload generator runs a
simple log generation process simulating a web server
processing requests. These log records are sent via a
Flume pipeline to sinks that connect directly to HBase
to archive log records.

Each of the graphs in our results show two plots: the

top plot shows data collected by VStore under normal
conditions, while the bottom shows data for the same ex-
periment with an anomaly introduced.

4.1 Periodic Processes
A common task for multi-functional servers in a data
center is to periodically perform some short-lived opera-
tion. For example, a cron job may be used to clean up and
archive system logs or application data once per day. In
the case of our weblog application, HBase may be manu-
ally configured to perform major compactions on a peri-
odic basis. Such tasks can be resource-intensive, and are
typically scheduled at off-peak hours so as not to disturb
other running applications. However, a misconfiguration
or other fault may lead to such processes running at in-
correct times.

Unfortunately, online monitoring algorithms may not
detect and easily classify such cycles. As mentioned be-
fore, an online algorithm might only observe a short pe-
riod of time during which a periodic process is not run-
ning. Furthermore, the observed window may not fully
classify periodic behavior, for instance if only the begin-
ning or end of a spike is observed.

To simulate a periodic process, we used the Linux
”stress” utility to impose a load on certain servers, and
measured the impact on metrics collected during this
time. Each such stress test process runs every 5 minutes,
for a duration of 2 minutes. We run 2 concurrent ”stress”
processes for a single resource, such as CPU or disk I/O.

4.1.1 CPU-intensive Periods

The first experiment simulates a periodic, high-CPU
workload at the HBase tier. This is potentially common
for major compactions which require frequent commu-
nication with HDFS nodes. Figure 1a shows the CPU
utilization for each HBase region server. Each period of
high-CPU activity is clearly identified, but only over a

3
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(a) CPU usage at HDFS nodes (b) Network traffic at HDFS nodes (c) CPU usage at HBase Region Servers

(d) Avg write reqs at HBase Region Servers (e) CPU usage at Workload Generators (f) Network traffic at Workload Generators

Figure 2: A periodic, I/O intensive background task running on HDFS nodes. High disk I/O on HDFS nodes tends to starve many resources, and
leads to anomalous behavior at all tiers

brief period of time. To properly correlate this behav-
ior, an online algorithm would need an extended time
window to distinguish between periodic spikes (such as
those under normal load), and a deterministic process.
Additionally, we can see from figures 1b and 1c that CPU
and network utilization at other tiers remains relatively
unaffected. Thus, an online algorithm that aggregates
monitoring data across tiers may not efficiently detect the
problem at the HBase tier alone.

4.1.2 Intense Disk I/O

We also experimented with periods of high disk I/O at the
Hadoop tier. This may be triggered by an external pro-
cess (such as a periodic MapReduce Job), or an internal
process (such as log cleanup). Additionally, as suggested
in [13], anomalies in disk I/O could be caused by ”limp-
ware,” failing or degraded hardware that causes excessive
I/O latencies or a higher amount of disk reads compared
to normal operation. For this test, we find that high disk
I/O on HDFS nodes has a more drastic effect across tiers
on different metrics.

Figures 2a and 2b compare CPU utilization and net-
work flows at HDFS nodes. A spike in CPU utilization
is visible during the period of high disk usage, but is diffi-
cult to distinguish from HDFS’s normal CPU workload.
However, we see a significant drop in packets sent and
received during this time, indicating other tiers are being
affected by the spike. Figures 2c and 2d show a signif-

icant change in CPU utilization and requests fielded by
each region server, respectively, while figures 2e and 2f
show a corresponding change at workload servers them-
selves. An online algorithm would need to observe both
an extended time window and multiple metrics across
tiers to detect this type of anomaly.

4.2 Software Misconfigurations

Another typical scenario involves a misconfigured or
buggy software application which leads to load imbal-
ance, crashes, or other anomalous behavior. In the case
of HBase, one source of load imbalance stems from re-
gion splitting. By default, a client request is sent to the
region server hosting the region that falls within a key
range for the requested row. Tables are ”split” based on
contiguous ranges of row keys. Although HBase will do
this automatically, it is sometimes advantageous to pre-
split tables to maintain a uniform distribution of requests
across the cluster. For instance, if the row key is based
on a hash function, each region server can be assigned
portions of the hash space for balanced load distribution.

To emulate a misconfiguration under this scenario,
we constructed a pre-split table in HBase using the
HexStringSplit algorithm, which assumes that row
keys are a uniformly distributed hexadecimal string.
Flume agents write log records to HBase using a random
UUID as the row key, providing even row key distribu-
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(a) CPU Utilization at HBase Region Servers (b) Avg write reqs at HBase Region Servers (c) Network traffic at HDFS nodes

Figure 3: A software misconfiguration at the Flume tier. The HBase table is pre-split using HexStringSplit, and agents use a random hexadecimal
string for row keys. Misconfigured agents use a timestamp instead, causing unbalanced regions.

tion. An anomalous configuration uses a timestamp in-
stead, leading to load imbalance as keys increase mono-
tonically.

Figures 3a and 3b compare CPU utilization and write
requests at HBase region servers, respectively. These fig-
ures show a clear imbalance among region server load
when timestamps are used as the row key. From fig-
ure 3c, we also see how this can have a drastic effect
on HDFS communications. This type of anomaly is dis-
tinct from periodic process interruptions, but could be
missed by an algorithm that aggregates observations (for
instance, calculating an average). However, the individ-
ual data captured by VStore clearly distinguishes the two
scenarios.

4.3 Network Faults

A faulty or misconfigured network interface is a com-
mon problem in data centers. Such a fault may stem
from a variety of issues, such as a physical NIC incor-
rectly negotiating a link speed with a switch (see [4]), or
a software-defined networking layer misconfiguring the
bandwidth provisioned to a VM. As noted in [13], net-
work hardware can also suffer ”limpware” anomalies - a
faulty adapter may drop or corrupt packets periodically,
forcing error correction mechanisms to be used and re-
ducing overall bandwidth on the link. Sustained network
bandwidth is important for a variety of applications. For
instance, many web applications run realtime analytics
on incoming requests at a high speed (such as calculat-
ing ”trending” topics). Faults at the network layer can
thus directly affect an application’s business logic.

To simulate this, we configured 60 flume agents to
generate an 8KB JSON object 5000 times per second
(simulating web server requests). These requests are for-
warded to 10 aggregator Flume agents, which count the
number of records processed. Each server has a 1Gbps
LAN connection; we simulate an anomaly by limiting
bandwidth to 100Mbps at the 10 aggregation nodes.

(a) Network traffic at Flume agents

(b) Avg rate of records processed by Flume ag-
gregation agents

Figure 4: Simulating a network misconfiguration. A real-time stream-
ing aggregation application counts requests collected from a front-end
tier. A VLAN misconfiguration or other network fault may limit band-
width to a critical set of nodes, leading to reduced throughput through-
out the application.

Figure 4a shows the network traffic for each server.
With a faulty network link, there is a precipitous drop-off
in network traffic across the cluster, as other agents be-
come limited in the amount of work they can send to the
aggregation tier. This situation also highlights how mon-
itoring application metrics can provide useful anomaly
classification information. Figure 4b shows the rate of
records processed per second at each aggregation Flume
agent. When bandwidth is scarce, agents are severely
limited in the amount of records they can process.

5
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4.4 Discussion

The data collected in our experiments indicate that there
are uses for combined online and offline monitoring in
a number of real-world debugging scenarios. Ideally,
an operator troubleshooting a problem should be able to
leverage both current and past data efficiently to rapidly
identify and fix problems when the occur. Some oppor-
tunities for VStore to assist in these efforts include:

• Targeted debugging with full history: A strength
of VScope is the ability to guide troubleshooting
and monitoring efforts to the right servers when
an anomaly is detected. VStore can integrate with
VScope to offer automatic snapshots of historical
data to aid in the troubleshooting process. A base-
line watch DPG runs continuously in the datacenter
and uses VStore to capture basic performance met-
rics, such as CPU and network utilization. When
a problem occurs, the operator may use a combi-
nation of VScope’s watch, scope, and query opera-
tions to locate the affected machines (refer to sec-
tion 4.1 of [17] for an example). A new watch DPG
is deployed on these machines to capture data about
the current scenario. The VShell running this new
watch presents the operator with current data, and
automatically pulls snapshots of historical data from
OpenTSDB for comparison - for instance data from
the same time period for the past 10 days. The end
result is that the operator has quickly gained knowl-
edge about how a current problem relates to past
events, which can help guide debugging efforts.

• Detecting ”limplock”: The authors of [13] suggest
that efficient detection through monitoring is one
method of mitigating ”limplock” - a situation where
failing or degraded hardware causes systems to slow
considerably, but does not trigger normal fail-stop
mechanisms. VStore and VScope could be used
as tools to detect limplock by providing a histori-
cal reference to help distinguish between overload-
induced slowdown and failing hardware. VScope
DPGs can be used to target monitoring on nodes and
metrics known to cause limplock (such as HDFS
write performance at Hadoop reducers). The online
monitoring is then compared with historical data
collected by VStore to determine if the system is
limplocked, or simply experiencing a higher-than-
usual load.

• Classification of anomalies: The rich set of histor-
ical data collected by VStore could be analyzed to
help automatically classify anomalies, for instance
using support vector machines [12] or statistical ap-
proaches like that of [11]. When combined with the

targeted debugging approach outlined above, VS-
cope could then query this data to attempt to auto-
matically identify the type of anomaly currently tak-
ing place. If the current fault scenario can be clas-
sified using historical data, this helps the operator
identify a debugging approach much more rapidly.

5 Conclusion and Future Work

In this paper we described VStore, an extension to our
previous work VScope, which aims to bridge the gap be-
tween fast and flexible online monitoring systems with
large-scale data collection for historical analysis. Our
experiments show that VStore’s capabilities in archiv-
ing fine-grained monitoring data across a large cluster
of systems can help pinpoint hard-to-find anomalies that
an online anomaly detection algorithm might miss. We
have evaluated three common fault scenarios, and dis-
cussed how VStore’s data archiving capabilities can be
combined with VScope’s online monitoring to comple-
ment debugging efforts for real-world scenarios.

A main goal of our future work involves a more com-
plete integration of VStore with VScope’s DPGs and on-
line algorithms, to allow historical data to be captured
dynamically at different points in the graph. This in-
tegration will allow us to begin exploring some of the
use cases for fully integrated online and offline moni-
toring outlined in the discussion in section 4.4. In addi-
tion to monitoring and detecting application-level perfor-
mance anomalies, we are also exploring ways to use VS-
tore to detect infrastructure faults in cloud systems, such
as a misconfigured SDN causing performance anomalies
across cloud tenant applications.

A thorough performance evaluation of VStore is also
needed. Results from [17] indicate that VScope can scale
well to thousands of nodes, and we believe VStore also
scales well as it is backed by HBase. Our experience
with the experiments in this paper suggest the overhead
of our system is small, but a detailed evaluation of VS-
tore’s scalability and perturbation when run along side
real-time streaming data applications is required to quan-
tify this.
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