
Towards a Leaner Geo-distributed Cloud Infrastructure

Iyswarya Narayanan‡, Aman Kansal†, Anand Sivasubramaniam‡,
Bhuvan Urgaonkar‡, Sriram Govindan†

‡ Pennsylvania State University †Microsoft Corporation

Abstract

Modern cloud infrastructures are geo-distributed. Geo-
distribution offers many advantages but can increase
the total cloud capacity required. To achieve low la-
tency, geo-distribution forfeits statistical multiplexing of
demand that a single data center could benefit from.
Geo-distribution also complicates software design due
to storage consistency issues. On the other hand, geo-
distribution can lower costs through eliminating redun-
dancies at individual sites or exploiting regional dif-
ferences in energy prices. We discuss several factors
that influence geo-distributed capacity provisioning, and
quantify latency, availability, and capacity trade-offs that
emerge. We describe open research challenges in design-
ing software that efficiently uses cloud capacity.

1 Introduction

Most large online services are geo-distributed. Cloud in-
frastructures make it easy for any application to become
geo-distributed. Many techniques have been developed
for geo-distributed application design such as distributed
failure detection and request re-routing [41, 48, 7, 38, 8],
geo-distributed storage consistency management [36, 46,
15, 16, 14, 12, 47, 31], data placement [1, 49, 43], and
distributed consensus [11, 28, 2].

However, geo-distribution complicates allocation of
compute resources compared to building a single large
data center. In this paper we explore multiple factors that
affect geo-distributed capacity provisioning and discuss
open challenges in realizing efficient resource allocation.

Capacity implications of geo-distribution: Ar-
guably, the most compelling reason to go geo-distributed
is latency. Geo-distribution creates a point of presence
close to clients, thereby reducing latency. Latency is
critical for interactive online applications, and directly
impacts user experience and revenue [21, 30, 9, 22]. La-
tency expectations for cloud services are becoming more

stringent due to increasing interactive features in cloud
services such as auto-complete of search queries, cloud
hosted mobile games, and growth in cloud hosted ver-
sions of traditionally client-based applications such as
content editing. Trends such as the use of edge data cen-
ters and hosting VMs at cellular base stations [44] will
only lead to greater geo-distribution.

Latency gains come at the cost of potentially larger to-
tal data center capacity compared to a single very large
data center. Consider the demand over time seen at six
data center locations, where each is serving the clients
nearest to itself (Figure 1). The demand is based on mea-
sured server utilization at one data center location host-
ing Microsoft’s production applications spanning tens of
thousands of servers. It is re-played in the local time-
zone for each data center, and the peak magnitude is
scaled in proportion to the population size [10] served
by that location. The peak of the sum of these demands
(single data center capacity) is smaller than the sum of
the peaks of these demands (capacity required for geo-
distributed data centers). Table 1 shows the increase in
capacity compared to a single data center, assuming the
geo-distributed data centers are located at the publicly
available US data center locations of Google [26], Ama-
zon [6] and 6 of Microsoft’s 1.

Locations for Excess over single data center
Microsoft 20.2%
Google 16.4%
Amazon 16.2%

Table 1: Excess capacity due to geo-distribution.

A second advantage is that geo-distribution can safe-
guard against failures that backup resources (e.g., diesel
generators) and isolation techniques such as availability

1We focus on the US since data center deployments across the world
vary quite a bit in density per unit population and modeling demand
in proportion to population does not give a good estimate of demand
across regions.

0.01

0.1

1

1 3 5 7 9 11 13 15 17 19 21 23

N
o

rm
al

iz
e

d
 D

e
m

an
d

Time of Day (hr)

WA IA TX IL VA WY Total

Figure 1: Population based demand projection at 6 of
Microsoft data center locations in the US.

zones [4] at a single site cannot: earthquakes, civil un-
rest, or severe weather issues [23, 39, 3, 20]. Even at
a given level of availability, geo-distribution offers new
design options by trading off local redundancy costs for
spare capacity [29, 19].

Availability gains also come at the cost of extra spare
capacity added to make up for capacity lost in a failure.
If all data centers were equally sized and served equal
demand, then 6 data centers would require an excess of
1/6 of the total capacity as spare, spread across data cen-
ters remaining after a failure. This leads to a total of 20%
excess spare capacity. The actual excess will be higher
because not all data centers are equally sized, and failure
of a larger data center necessitates larger spare at remain-
ing ones.

A third reason to use geo-distribution is to exploit re-
gional differences in energy prices or availability of re-
newable energy [45, 33, 42, 35, 34, 17, 18]. But to shut
down servers when energy is expensive or unavailable
from green sources at one location, we would have to
add additional servers at another location. If the entire
workload is to be moved, this can lead to 100% excess.

Problem: We see that geo-distribution leads to excess
capacity. Capacity is expensive, and its cost needs to be
weighed against the advantages of lower latency, higher
availability, and energy savings. Our goal in this paper
is to determine the lowest excess capacity required. De-
termining the optimal capacity is non-trivial. The spare
created due to latency and availability reasons is not dis-
joint and some of it may overlap, depending on latency
requirements after a failure. While current server and
network costs may be too high to justify buying excess
capacity for reduced energy price, green incentives, or
customer goodwill, the excess capacity already available
due to latency and availability objectives could be used
for that purpose. Capacity allocation also depends on
factors such as reduced the cost per unit capacity due to
reduced local availability requirements [29] and revenue
from sale of excess capacity on the spot market [5].

Optimized capacity allocation also impacts software
design because existing geo-distribution methods do not
use capacity efficiently. For instance, routing client re-
quests to the next-nearest data center after a failure may
not allocate clients in the right proportion from a capac-
ity provisioning perspective. Distributed storage meth-
ods may need to account for capacity provisioning deci-
sions when determining placement of data replicas. We
discuss such open challenges in making geo-distributed
software more efficient in terms of capacity used.

2 Minimizing Waste

We want to understand the minimum capacity required
to realize the advantages of geo-distribution.

Consider n geo-distributed data centers, located based
on proximity to clients and availability of power, net-
work, land or other resources. The clients are spread
across m locations where each location could be a small
geographic unit within which network latency variation
is insignificant. Response time consists of the service
time within the data center and the network latency out-
side the data center. Assuming that the service time (in-
cluding queuing delay) is the same regardless of which
data center is used, we focus on network latency. Let
li j represent the latency when data center at location j
serves a client at location i. Suppose client demand over
time is known based on history, denoted by {di(t)} for
clients at location i in time slot t, where t ∈ {1,,T}
and T is a period over which demand repeats (e.g., T=24
hours if demand has a diurnal pattern).

We wish to determine the capacity c j for the data cen-
ter at location j, such that there is sufficient capacity to
serve all of the client demand within a latency target, l,
when no data centers have failed and within latency l′

(l′ ≥ l) when up to one data center has failed, while min-
imizing total cloud capacity. We assume each data center
is large enough to benefit from economies of scale appli-
cable to multi-megawatt data centers and hence do not
model any extra fixed costs aside from the capacity.

The solution also requires specifying how clients are
allocated to different data centers. Let fi jk(t) denote the
demand originating from client i that will be serviced by
data center j when the kth data center has failed, during
time slot t. Here, k = 0 represents no data center failed,
and k = {1, ...,n} represents one of the n data centers
having failed.

Objective: The optimization objective thus becomes:

min ∑
j∈{1,...,n}

c j

Constraints: At any given time, demand from a client
location should be serviced by data centers that are

2

within the latency target. Before failure, this can be ex-
pressed mathematically as:

∑
j:li j≤l

fi j0(t)≥ di(t),∀i, t. (1)

where the summation represents the total demand from
client i allocated to data centers that are within a network
latency of l from this client location.

After failure, the constraint is similar, except that the
failed data center is not used in the summation and the
latency constraint could be less stringent.

∑
j: j 6=k,li j≤l′

fi jk(t)≥ di(t),k > 0,∀i, t. (2)

The capacity at each data center should be sufficient
to serve all of the demand allocated to it in any time slot.
Before failure, this implies:

c j ≥∑
i

fi j0(t) ∀ j, t, (3)

After each possible failure, this implies:

c j ≥∑
i

fi jk(t) k > 0,k 6= j,∀ j, t. (4)

The above optimization problem is a linear program
(LP) and can be solved using any LP solver.

We use the above optimization to explore some of the
interesting latency, availability and capacity trade-offs.

Latency and Availability: As latency constraints be-
come tighter, we expect greater spare capacity to be re-
quired, since more capacity would have to be placed
closer to each client, leading to lower multiplexing of de-
mand across client locations. Figure 2 shows the excess
capacity required, compared to a single very large data
center, for different post-failure latency constraints with
up to one data center failure. The pre-failure latency (l)
is set to the latency achieved when each client is mapped
to the nearest data center, and is different for each set of
data center locations.

0

10

20

30

40

1 1.05 1.1 1.15 1.2

Ex
ce

ss
 C

ap
ac

it
y

(%
)

Latency (l’/l)

MS - 1 Failure
Amazon-1 Failure
Google-1 Failure

Figure 2: Excess capacity required for supporting one
data center failure.

Interestingly, the excess capacities required jointly for
latency and availability for each set of locations are sim-
ilar to the excess capacity present anyway to reduce la-
tency, shown in Table 1. For Amazon locations, increas-
ing l′ to above 1.1l allows more data centers to be within
range giving a large reduction in excess capacity at that
latency. Prior works have shown that tighter latency con-
straints at a given availability led to an increase in the
number of locations but not in total capacity [19], be-
cause they ignored the statistical multiplexing of demand
across locations over time. This is significant since the
increase in capacity can be leveraged for other uses such
as higher availability and energy cost reduction.

Energy Savings Opportunity: The geo-distributed
system has idle capacity at any given time since the de-
mand varies over time, both at each data center location
and also globally. Figure 3 shows the idle capacity at
different times of the day summed over Microsoft’s data
center locations. This capacity is available for use on
the spot market for cloud resources [5], or for shifting
load latency tolerant load to a location with lower energy
price or greater renewable availability. The load shifting
opportunity depnds on how the spare is distributed across
multiple sites.

0

0.2

0.4

0.6

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25

N
o

rm
al

iz
e

d
 Id

le

C
ap

ac
it

y

Time of Day (hr)

Figure 3: Capacity available for energy optimizations,
normalized with respect to total capacity.

Software Impact: Figure 4 shows the excess capac-
ity required without exploiting time of day effects, i.e.,
assuming demand is always at its peak at each location.
Significant excess capacity results. However, using effi-
cient capacity complicates the allocation of client traffic.
If peak based capacity is provisioned, the client demand
allocations to different data centers stay constant over
time. Re-allocation is required only in case of a fail-
ure. But when time of day effects are exploited, client
demand requires re-allocation even without failures, as
demands in different regions change.

Figure 5 shows the optimal demand allocations at
three different times of the day for Pennsylvania clients.
We see that the demand shifts between Virginia and Iowa
data centers. One of the mechanisms used by geo-load
balancers to allocate clients to a data center is to set dif-
ferent DNS entries for the geo-distributed application. In
this method, DNS entries may have to be changed over

3

0

20

40

60

Amazon Google MS

Ex
ce

ss
 C

ap
ac

it
y

(%
)

Peak demand Temporal demand

Figure 4: Excess capacity assuming peak demand and
when exploiting temporal variations.

time.

0

50

100

150

1 2 3

D
em

an
d

 A
llo

ca
ti

o
n

 (
%

)

Time slots

IA VA

Figure 5: Demand allocations to two data centers for
Pennsylvania for three time slots.

3 Open Challenges

3.1 Infrastructure Design
Optimization: The optimization above can be expanded
to consider additional factors. Data center construction
takes time and demand curves over time are often not
available for the time horizon for which capacity is built.
Errors in demand projection need to be accounted for.
While in today’s clouds more than one data center failing
at the same time is highly unlikely, multiple failures may
become more practically relevant when the number of
geo-distributed data centers grows much larger. The ca-
pacity required for a given demand can also be optimized
by running servers at higher utilization and increasing
the queuing delays inside the data center, when tolera-
ble. The optimization could thus obtain a more efficient
solution when considering queuing delays and network
latencies jointly.

Heterogeneity and Right-Sizing: One size may not
fit all applications, because multiple cloud applications
share the infrastructure. A key opportunity is to allow
finer grained control of latency and availability objec-
tives. Different applications may have different latency
requirements, or even multiple latency objectives for dif-
ferent percentiles of the client population.

Availability requirements also vary across applications
depending on factors such as whether an application
faces external customers or is for internal use. This opens

up opportunities to also consider heterogeneous data cen-
ter infrastructures, where some portion of the capac-
ity is highly resilient and provisioned with power back-
ups, redundant network connectivity, and highly reliable
hardware, but other portions of the infrastructure econ-
omize on redundancy, environmental controls, or hard-
ware quality. Cost and availability are not linearly related
and not all points in the trade-off space may be practi-
cal to build given available technology. A few classes
of such data centers are likely to suffice to meet a wide
range of requirements but determining the most appro-
priate cost-reliability trade-offs is an open problem.

Spatio-temporal variations: Failures do not neces-
sarily happen when demand is at its peak. Since the peak
only happens for a small portion of the time, we could
provision for meeting availability objectives only for a
high percentile of the time and reduce overall capacity.
Failures and their impact may also be time dependent.
Failures may be more likely in winter months. A failure
during non-work hours may take longer to recover since
the right staff may not be on-site.

Not all data centers may be equally likely to fail. Spa-
tial differences such as varying susceptibility to severe
weather, nearness to earthquake zones, network back-
bone redundancy in the region can make certain loca-
tions much more reliable than others. Exploiting these
variations offers an opportunity to further optimize both
the total capacity provisioned and its distribution across
sites. While nearness to clients may force us to place
data centers in a less reliable region, the backup capacity
may be preferrentially placed at more reliable sites.

3.2 Software Design

For the infrastructure to be efficient, it is essential that
software be designed to use it efficiently. Several oppor-
tunities exist to improve geo-distributed software design.

Request Routing: Existing geo-load balancing solu-
tions are largely designed to route client traffic to the
nearest available data center. They may rely on maintain-
ing Internet latency maps and set DNS entries in every
regions to point to the nearest data center, or they may
rely on IP anycast [40] to automatically find the route
from the client to the nearest available application end-
point. As we saw, the nearest data center may not lead
to the most efficient capacity allocation. Especially after
a failure, routing to the nearest data center will not make
efficient use of available capacity. Compute capacity al-
location information is typically not something that the
network can easily access or make use of even if avail-
able. Application layer intervention will likely be needed
to ensure that clients are routed to the correct data center,
either through logic hosted in edge data centers or even
at the client as part of the application. If coordination be-

4

tween the application and cloud infrastructure is needed
to realize the correct demand allocations, new APIs to
facilitate that will be needed. Cost structures that guide
applications to behave efficiently are also important in
this context.

State Replication: Many geo-replication systems
save a copy of the state at a remote site [12]. If the ob-
jective of the replication is only to improve data durabil-
ity and protect it against data destruction at the primary
site, replicating to any remote site suffices. However, if
the data will be actively used by the application from the
replica site, it is essential to make sure that the replicas
exist at the same site where the compute capacity will be
allocated after a failure. This allocation may depend on
time of day since availability of spare capacity changes
with temporal variations in demand. If the data center
fails at an off peak hour, the nearest data center to it may
be able to serve all of its demand. However, if the fail-
ure happens at peak demand time, the nearest data center
may itself be at its peak demand, and many clients from
the region may have to be routed to multiple different
data centers. At the very least, geo-replication solutions
need to take input from the capacity provisioning sys-
tem regarding where clients will be re-directed after a
failure. Since we do not know when the failure will hap-
pen, statically determining replication sites will likely re-
quire significantly conservative copying to too many pos-
sible backup sites. On the other hand, backing up to just
one site may mean that large amounts of data has to be
migrated after a failure. A good solution will carefully
trade-off the network costs of data replication, increased
consistency protocol overheads due to increased number
of copies, support for concurrent access at multiple lo-
cations for shared data, the higher storage space require-
ment, and post-failure migration penalty. It may even
turn out that for data intensive applications with high
network usage, minimizing network usage at the cost of
increased excess capacity nearby is more cost effective.
Since many applications have user specific data, place-
ment of replicas will also influence which users are to
be re-directed to which data center and this can require
coordination with the request routing mechanism. Deter-
mining the best APIs to share the required information is
an interesting research problem.

Auto-scaling: Cloud applications can auto-scale the
compute capacity they are using in response to client de-
mand. As long as demand follows expected patterns, the
provisioned capacity at each data center would allow for
this scaling. However, if an application sees an unex-
pected demand spike, and the local data center is unable
to satisfy the scaling needs, auto-scaling can re-direct
this demand to other data centers and scale its number
of instances across multiple data centers. While exist-
ing auto-scaling algorithms only tune up (or down) the

number of compute instances, leaving the storage layer
scaling to the cloud provider, a global auto-scaling algo-
rithm will have to consider additional factors aside from
compute utilization, such as which data centers have the
required data replicas and if additional data needs to be
migrated to enable a scaling event.

Virtualized Availability: The cloud infrastructure as
constructed may be capable of meeting certain latency
and availability targets if an application is geo-distributed
to all the cloud locations. However, not all applica-
tions may need that same latency and availability. Based
on actual needs, an application may determine which
and how many of the cloud data centers it spreads it-
self across. Using fewer data centers may not yield the
lowest latency but can help reduce data replication com-
plexity and networking costs. Reduced spare capacity, or
longer post-failure latency constraints can be used if the
application can tolerate lower performance after a fail-
ure. A good design can exploit the flexibility offered by
geo-distribution to virtualize the cloud in the availability
dimension, allowing applications to pay for what they
need.

4 Related Work

Generic capacity and placement planning for geo-
distributed facilities has been studied in depth in the con-
text of the facility location problem [13, 27]. Specifically
for data centers, both placement and capacity optimiza-
tions have been considered in [19, 24, 25, 32]. For in-
stance, the work in [19] used sophisticated cost models
for a geo-distributed cloud infrastructure to show that a
larger number of locations provides lower latency, and
that for a given availability target, a larger number of
cheaper (reduced redundancy) data centers are more cost
effective. However, prior works have not considered the
excess capacity created due to temporal variations in de-
mand across sites and how this capacity can be leveraged
to achieve higher availability for no additional cost. Prior
works [37] have turned servers off temporarily by ex-
ploiting multiple data center locations within a latency
bound from a client but these works do not minimize
the actual capacity built at each of those data centers,
and do not determine the excess capacity required for
availability reasons. Also, we model availability in terms
of supporting a data center failure, rather than assuming
hard numbers quantifying the probability of failure. Such
numbers are typically only available for the power infras-
tructure, designated as tiers or number of 9s, and do not
account for other causes of data center failures observed
in practice such as electrical storms, software issues and
operator errors [39, 3, 20].

5

References
[1] AGARWAL, S., DUNAGAN, J., JAIN, N., SAROIU, S., WOL-

MAN, A., AND BHOGAN, H. Volley: automated data place-
ment for geo-distributed cloud services. In Proceedings of the
7th USENIX conference on Networked systems design and imple-
mentation (Berkeley, CA, USA, 2010), NSDI’10, USENIX As-
sociation, pp. 2–2.

[2] AGUILERA, M. K., MERCHANT, A., SHAH, M., VEITCH, A.,
AND KARAMANOLIS, C. Sinfonia: A new paradigm for building
scalable distributed systems. ACM Trans. Comput. Syst. 27, 3
(Nov. 2009), 5:1–5:48.

[3] AMAZON-AWS. Summary of the october 22,2012 aws ser-
vice event in the us-east region. https://aws.amazon.com/

message/680342/, Oct. 2012.

[4] AWS, A. Amazon ec2 regions and availability zones.
http://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/using-regions-availability-zones.html.

[5] AWS, A. Amazon ec2 spot instances. https://aws.amazon.
com/ec2/purchasing-options/spot-instances/.

[6] AWS, A. Global infrastructure north america.
http://aws.amazon.com/about-aws/globalinfrastructure/.

[7] BALLANI, H., AND FRANCIS, P. Towards a global ip anycast
service. In Proceedings of the 2005 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communications (New York, NY, USA, 2005), SIGCOMM ’05,
ACM, pp. 301–312.

[8] BIRMAN, K. P. The process group approach to reliable dis-
tributed computing. Commun. ACM 36, 12 (Dec. 1993), 37–53.

[9] BRUTLAG, J. Speed matters for google web search.
http://services.google.com/fh/files/blogs/

google_delayexp.pdf, July 2009.

[10] BUREAU, U. C. Census data access tools.

[11] BURROWS, M. The chubby lock service for loosely-coupled dis-
tributed systems. In Proceedings of the 7th Symposium on Oper-
ating Systems Design and Implementation (Berkeley, CA, USA,
2006), OSDI ’06, USENIX Association, pp. 335–350.

[12] CALDER, B., WANG, J., OGUS, A., NILAKANTAN, N.,
SKJOLSVOLD, A., MCKELVIE, S., XU, Y., SRIVASTAV, S.,
WU, J., SIMITCI, H., HARIDAS, J., UDDARAJU, C., KHATRI,
H., EDWARDS, A., BEDEKAR, V., MAINALI, S., ABBASI, R.,
AGARWAL, A., HAQ, M. F. U., HAQ, M. I. U., BHARDWAJ, D.,
DAYANAND, S., ADUSUMILLI, A., MCNETT, M., SANKARAN,
S., MANIVANNAN, K., AND RIGAS, L. Windows azure storage:
a highly available cloud storage service with strong consistency.
In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2011), SOSP ’11,
ACM, pp. 143–157.

[13] CHURCH, R., AND REVELLE, C. The maximal covering loca-
tion problem. Papers of the Regional Science Association 32, 1
(1974), 101–118.

[14] COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA, U., SIL-
BERSTEIN, A., BOHANNON, P., JACOBSEN, H.-A., PUZ, N.,
WEAVER, D., AND YERNENI, R. Pnuts: Yahoo!’s hosted data
serving platform. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1277–
1288.

[15] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E.,
LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,
QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK,
M., TAYLOR, C., WANG, R., AND WOODFORD, D. Span-
ner: Google’s globally-distributed database. In Proceedings of

the 10th USENIX conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2012), OSDI’12, USENIX
Association, pp. 251–264.

[16] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles (New York,
NY, USA, 2007), SOSP ’07, ACM, pp. 205–220.

[17] DENG, N., STEWART, C., GMACH, D., ARLITT, M., AND KEL-
LEY, J. Adaptive green hosting. In Proceedings of the 9th Inter-
national Conference on Autonomic Computing (New York, NY,
USA, 2012), ICAC ’12, ACM, pp. 135–144.

[18] GAO, V., ZENG, Z., LIU, X., AND KUMAR, P. The answer is
blowing in the wind: Analysis of powering internet data centers
with wind energy. In INFOCOM, 2013 Proceedings IEEE (April
2013), pp. 520–524.

[19] GOIRI, I., LE, K., GUITART, J., TORRES, J., AND BIANCHINI,
R. Intelligent placement of datacenters for internet services.
In Distributed Computing Systems (ICDCS), 2011 31st Interna-
tional Conference on (June 2011), pp. 131–142.

[20] GOOGLE APPENGINE FORUM. Post-mortem for february
24th, 2010 outage. https://groups.google.com/forum/#!
topic/google-appengine/p2QKJ0OSLc8, Mar. 2010.

[21] GRAY, W., AND BOEHM-DAVIS, D. Milliseconds matter: An
introduction to microstrategies and to their use in describing and
predicting interactive behavior. Journal of Experimental Psychol-
ogy: Applied 6, 4 (2000), 322.

[22] GREENBERG, A., HAMILTON, J., MALTZ, D. A., AND PATEL,
P. The cost of a cloud: research problems in data center networks.
SIGCOMM Comput. Commun. Rev. 39, 1 (Dec. 2008), 68–73.

[23] HAMILTON, J. Inter-datacenter replication and georedun-
dancy. http://perspectives.mvdirona.com/2010/05/

10/InterDatacenterReplicationGeoRedundancy.aspx,
2010.

[24] HANS, R., LAMPE, U., AND STEINMETZ, R. Qos-aware, cost-
efficient selection of cloud data centers. In Proceedings of the
2013 IEEE Sixth International Conference on Cloud Computing
(CLOUD) (2013).

[25] HASAN, S., GORINSKY, S., DOVROLIS, C., AND SITARAMAN,
R. K. Trade-offs in optimizing the cache deployments of cdns.
In Proceedings of the International Conference on INFOCOM
(2014).

[26] INC, G. Data center locations. http://www.google.com/

about/datacenters/inside/locations/index.html.

[27] JAIN, K., MAHDIAN, M., MARKAKIS, E., SABERI, A., AND
VAZIRANI, V. V. Greedy facility location algorithms analyzed
using dual fitting with factor-revealing lp. J. ACM 50, 6 (Nov.
2003), 795–824.

[28] JUNQUEIRA, F. P., AND REED, B. C. The life and times of a
zookeeper. In Proceedings of the 28th ACM Symposium on Prin-
ciples of Distributed Computing (New York, NY, USA, 2009),
PODC ’09, ACM, pp. 4–4.

[29] KANSAL, A., URGAONKAR, B., AND GOVINDAN, S. Using
dark fiber to displace diesel generators. In Proceedings of the
14th USENIX Conference on Hot Topics in Operating Systems
(Berkeley, CA, USA, 2013), HotOS’13, USENIX Association,
pp. 15–15.

[30] KOHAVI, R., HENNE, R. M., AND SOMMERFIELD, D. Prac-
tical guide to controlled experiments on the web: listen to your
customers not to the hippo. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and
data mining (New York, NY, USA, 2007), KDD ’07, ACM,
pp. 959–967.

6

[31] LAKSHMAN, A., AND MALIK, P. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev. 44, 2 (Apr.
2010), 35–40.

[32] LARUMBE, F., AND SANSÒ, B. Optimal location of data cen-
ters and software components in cloud computing network de-
sign. In Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012)
(2012), CCGRID ’12.

[33] LE, K., BIANCHINI, R., MARTONOSI, M., AND NGUYEN,
T. D. Cost- and energy-aware load distribution across data cen-
ters. In Proceedings of the Workshop on Power-Aware Computing
and Systems (HotPower) (October 2009).

[34] LE, K., BILGIR, O., BIANCHINI, R., MARTONOSI, M., AND
NGUYEN, T. D. Capping the brown energy consumption of in-
ternet services at low cost. In Proceedings of the International
Green Computing Conference (IGCC) (August 2010).

[35] LIU, Z., LIN, M., WIERMAN, A., LOW, S. H., AND ANDREW,
L. L. Greening geographical load balancing. In Proceedings of
the ACM SIGMETRICS Joint International Conference on Mea-
surement and Modeling of Computer Systems (New York, NY,
USA, 2011), SIGMETRICS ’11, ACM, pp. 233–244.

[36] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Stronger semantics for low-latency geo-replicated
storage. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation (Berkeley, CA,
USA, 2013), nsdi’13, USENIX Association, pp. 313–328.

[37] MATHEW, V., SITARAMAN, R., AND SHENOY, P. Energy-aware
load balancing in content delivery networks. In INFOCOM, 2012
Proceedings IEEE (March 2012), pp. 954–962.

[38] MICROSOFT. Windows azure traffic manager overview.
http://msdn.microsoft.com/en-us/library/

windowsazure/hh744833.aspx.

[39] MSDN BLOGS. Details of the december 28th, 2012 win-
dows azure storage disruption in us south. http://blogs.

msdn.com/b/windowsazure/archive/2013/01/16/

details-of-the-december-28th-2012-windows-azure

-storage-disruption-in-us-south.aspx, Jan. 2013.

[40] PRINCE, M. A brief primer on anycast. http://blog.

cloudflare.com/a-brief-anycast-primer.

[41] RAJAGOPALAN, S., CULLY, B., O’CONNOR, R., AND
WARFIELD, A. Secondsite: disaster tolerance as a service. In
Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on
Virtual Execution Environments (New York, NY, USA, 2012),
VEE ’12, ACM, pp. 97–108.

[42] SINGH, R., IRWIN, D., SHENOY, P., AND RAMAKRISHNAN,
K. K. Yank: Enabling green data centers to pull the plug. In Pro-
ceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation (Berkeley, CA, USA, 2013), nsdi’13,
USENIX Association, pp. 143–156.

[43] SIVASUBRAMANIAN, S., ALONSO, G., PIERRE, G., AND VAN
STEEN, M. Globedb: Autonomic data replication for web appli-
cations. In Proceedings of the 14th International Conference on
World Wide Web (WWW) (2005).

[44] SOLUTIONS, N., AND NETWORKS. Liquid
applications. http://nsn.com/portfolio/

liquid-net/intelligent-broadband-management/

liquid-applications.

[45] STEWART, C., AND SHEN, K. Some joules are more precious
than others: Managing renewable energy in the datacenter. In
HotPower (2009).

[46] TERRY, D. B., PRABHAKARAN, V., KOTLA, R., BALAKR-
ISHNAN, M., AGUILERA, M. K., AND ABU-LIBDEH, H.

Consistency-based service level agreements for cloud storage. In
Proceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2013), SOSP ’13,
ACM, pp. 309–324.

[47] WU, Z., BUTKIEWICZ, M., PERKINS, D., KATZ-BASSETT,
E., AND MADHYASTHA, H. V. Spanstore: Cost-effective geo-
replicated storage spanning multiple cloud services. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles (New York, NY, USA, 2013), SOSP ’13, ACM,
pp. 292–308.

[48] XU, H., AND LI, B. Joint request mapping and response routing
for geo-distributed cloud services. In INFOCOM, 2013 Proceed-
ings IEEE (April 2013), pp. 854–862.

[49] YE, Z., LI, S., AND ZHOU, X. Gcplace: Geo-cloud based cor-
relation aware data replica placement. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing (New York, NY,
USA, 2013), SAC ’13, ACM, pp. 371–376.

7

