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Abstract

In data-intensive applications, such as databases and key-

value stores, reducing the request handling latency is im-

portant for providing better data services. In such appli-

cations, I/O-intensive background tasks, such as check-

pointing, are the major culprit in worsening the latency

due to the contention in shared I/O stack and storage.

To minimize the contention, properly prioritizing I/Os

is crucial but the effectiveness of existing approaches is

limited for two reasons. First, statically deciding the pri-

ority of an I/O is insufficient since high-priority tasks

can wait for low-priority I/Os due to I/O priority inver-

sion. Second, multiple independent layers in modern

storage stacks are not holistically considered by exist-

ing approaches which thereby fail to effectively prioritize

I/Os throughout the I/O path.

In this paper, we propose a request-centric I/O priori-

tization that dynamically detects and prioritizes I/Os de-

laying request handling at all layers in the I/O path. The

proposed scheme is implemented on Linux and is eval-

uated with three applications, PostgreSQL, MongoDB,

and Redis. The evaluation results show that our scheme

achieves up to 53% better request throughput and 42×

better 99th percentile request latency (84 ms vs. 3581

ms), compared to the default configuration in Linux.

1 Introduction

In data-intensive applications, such as databases and

key-value stores, the response time of a client’s re-

quest (e.g., key-value PUT/GET) determines the level

of application performance a client perceives. In this

regard, many applications are structured to have two

types of tasks: foreground tasks, which perform essen-

tial work for handling requests, and background tasks,

which conduct I/O-intensive internal activities, such as

checkpointing [31, 14, 3], backup [11, 9, 24, 18], com-

paction [21, 34, 38, 13], and contents filling [36]. The
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main reason for this form of structuring is to reduce re-

quest handling latency by taking off the internal activ-

ities from the critical path of request execution. How-

ever, background tasks are still interfering foreground

tasks since they inherently share the I/O path in a stor-

age stack. For example, background checkpointing in

relational database has known to hinder delivering low

and predictable transaction latency, but the database and

operating system (OS) communities have no reasonable

solution despite their collaborative efforts [12].

The best direction to resolve this problem in OS is to

provide an interface to specify I/O priority for a differen-

tiated storage I/O service. Based on this form of OS sup-

port, two important issues should be addressed: 1) decid-

ing which I/O should be given high priority, and 2) effec-

tively prioritizing high priority I/Os along the I/O path.

The conventional approaches for classifying I/O priori-

ties are I/O-centric and task-centric. These approaches

statically assign high priority to a specific type of I/O

(e.g., synchronous I/O [30, 2, 32]) and to I/Os issued by

a specific task (e.g., interactive task [42]). This I/O pri-

ority is typically enforced at the block-level scheduler or

at several layers [42, 43].

The previous approaches, however, have limitations in

achieving high and consistent application performance.

First, they do not holistically consider multiple indepen-

dent layers including caching, file system, block, and de-

vice layers in modern storage stacks. Missing I/O pri-

oritization in any of the layers can degrade application

performance due to delayed I/O processing in such lay-

ers (Section 2.1). Second, they do not address the I/O

priority inversion problem caused by runtime dependen-

cies among concurrent tasks and I/Os. Similar to the

priority inversion problem in CPU scheduling [35], low-

priority I/Os (e.g., asynchronous I/Os and background

I/Os) sometimes can significantly delay the progress of a

high-priority foreground task, thereby inverting I/O pri-

ority (Section 2.2). More seriously, I/O priority inver-

sions can occur across different layers in a storage stack.
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Due to these limitations, existing approaches are limited

in effectively prioritizing I/Os and result in suboptimal

performance.

In this paper, we introduce a request-centric I/O pri-

oritization (or RCP for short) that holistically prioritizes

critical I/Os (i.e., performance-critical I/Os) over non-

critical ones along the I/O path; we define a critical I/O

as an I/O in the critical path of request handling regard-

less of its I/O type and submitting task. Specifically,

our scheme identifies foreground tasks by exposing an

API and gives critical I/O priority to the foreground tasks

(Section 4.1). To handle I/O priority inversions, critical

I/O priority is dynamically assigned to a task or an out-

standing I/O on which a foreground task depends to make

progress (Section 4.2). Then, each layer in the I/O path

is adapted to prioritize the critical I/Os and to support

I/O priority inheritance (Section 4.3). We also resolve an

I/O priority inversion caused by a transitive dependency,

which is a chain of dependencies involving multiple tasks

(Section 4.4).

As a prototype implementation, we enlightened the

I/O path of the Linux kernel. Specifically, in order to

accurately identify I/O criticality, we implemented the

I/O priority inheritance to blocking-based synchroniza-

tion methods (e.g., mutex) in the Linux kernel. Based

on the identified I/O criticality, we made the Linux

caching layer, ext4 file system, and the block layer un-

derstand and enforce I/O criticality. Based on the proto-

type, we evaluated our scheme using PostgreSQL [10],

MongoDB [8], and Redis [22] with TPC-C [17] and

YCSB [25] benchmarks. The evaluation results have

shown that our scheme effectively improves request

throughput and tail latency (99.9th percentile latency) by

about 7–53% and 4.4–20×, respectively, without penal-

izing background tasks, compared to the default config-

uration in Linux.

2 Motivation and Related Work

Background I/O-intensive tasks, such as checkpointing

and compaction, are problematic for achieving the high

degree of application performance. We illustrate this

problem by running the YCSB [25] benchmark against

MongoDB [8] document store on a Linux platform with

two HDDs each of which is allocated for data and jour-

nal, respectively; see Section 7 for the details. As shown

in Figure 1, application performance represented as op-

erations per second is highly fluctuated with the CFQ [2],

the default I/O scheduler in Linux, mainly due to the con-

tention incurred by periodic checkpointing (60 seconds

by default) 1. Assigning low priority (idle-priority [7] in

CFQ) to the checkpoint task using the existing interface,

1The interference is not exactly periodic because the checkpointing

occurs 60 seconds after the completion of the previous checkpointing.
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Figure 1: Limitation of existing approaches. Update-

heavy workload in YCSB is executed against MongoDB.

denoted as CFQ-IDLE, is also ineffective in alleviat-

ing the performance interference. Moreover, Split-AFQ

(SPLIT-A) and Split-Deadline (SPLIT-D), the state-of-

the-art cross-layer I/O schedulers [43], also cannot pro-

vide consistent application performance even though the

checkpoint thread is given lower priority than foreground

ones; adjusting the parameters in the SPLIT-A/D (e.g.,

fsync() deadline) did not show any noticeable im-

provement. Likewise, QASIO [32], which tries to elimi-

nate I/O priority inversions, also shows frequent drops in

application performance.

The root causes of this undesirable result in the ex-

isting I/O prioritization schemes are twofold. First, the

existing schemes do not fully consider multiple indepen-

dent layers including caching, file system, and block lay-

ers in modern storage stacks. Prioritizing I/Os only in

one or two layers of the I/O path cannot achieve proper

I/O prioritization for foreground tasks. Second and more

importantly, the existing schemes do not address the I/O

priority inversion problem caused by runtime dependen-

cies among concurrent tasks and I/Os. I/O priority in-

versions can occur across different I/O stages in multi-

ple layers due to transitive dependencies. As shown by

RCP in Figure 1, the cliffs in application throughput can

be significantly mitigated if the two challenges are ad-

dressed. In the rest of this section, we detail the two chal-

lenges from the perspective of application performance

and discuss existing approaches.

2.1 Multiple Independent Layers

In modern OSes, a storage I/O stack is comprised of

multiple and independent layers (Figure 2). A caching

layer first serves reads if it has the requested block and

it buffers writes until they are issued to a lower layer. If

a read miss occurs or a writeback of buffered writes is

required, a file system generates block I/O requests and

passes them to a block layer. Then, the block layer ad-

mits an I/O request into a block-level queue and sched-

ules a queued I/O request to dispatch to a storage de-

vice. Finally, a storage device admits an I/O command

received from a host into a device-internal queue and
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Figure 2: Challenges in modern storage stacks. FG in a circle and a box means a foreground task and an I/O,

respectively. Likewise, BG in a circle and a box indicates a background task and an I/O each.

schedules a queued command to an internal device con-

troller. Though this form of layering with abstraction is

an essential part in computer systems for interoperability

and independent innovations across the layers, it makes

effective I/O prioritization strenuous because each layer

has independent policy with limited information.

In the caching layer, priority-agnostic admission con-

trol can harm the application performance. Modern

OSes, such as Linux [26] and Windows [40], control the

admission of buffered writes based on the dirty ratio of

available memory for ensuring system stability. How-

ever, since a single system-wide dirty ratio is applied to

all tasks, a foreground task can be blocked even if most

dirty pages are made by background tasks. Giving higher

I/O priority to the foreground task is ineffective unless

I/O priority is applied to the dirty throttling.

A file system forces specific ordering of writes for

consistent updates [39, 41, 19], thereby complicating ef-

fective I/O prioritization. For example, ext4 file system,

which is the default for most Linux distributions, en-

tangles buffered writes into a single, global, compound

transaction that needs to be durable atomically. Since a

file system transaction contains dirty pages from any file

written by any task, a foreground task calling fsync()

should wait for the completion of I/Os issued not only by

itself, but also by a background task.

In the block layer, many modern block I/O schedulers

already reflect the priority of I/Os in their scheduling.

However, priority-agnostic admission control can also

degrade the application performance. Typically, the size

of a block-level queue is limited to restrict memory usage

and to control disk congestion [42]. In this case, a burst

of background I/Os can significantly delay the process-

ing of a foreground I/O by quickly filling the available

slots in a block-level queue. The existing priority sched-

ulers cannot help to mitigate this problem because they

have no control of submitted I/Os that are not yet entered

the block-level queues.

Even after a foreground I/O becomes ready to dispatch

to a storage device, the processing of the foreground I/O

can be further prolonged. This is because the size of a

device-internal queue (e.g., NCQ [16]) is also limited

and a device firmware reorders I/O commands based on

the internal geometry of storage media for improving de-

vice throughput [44, 20]. Hence, a foreground I/O can be

staged because the queue slots are busy handling back-

ground I/Os. Furthermore, even if a foreground I/O can

be dispatched to the device, the device-internal schedul-

ing can delay the processing of the I/O because of its

internal scheduling policy.

2.2 I/O Priority Inversion

The most straightforward way of improving application

performance in the existence of background tasks would

be to prioritize foreground I/Os over background ones

and all I/O layers respect their priorities. However, this

simple prioritization is insufficient since I/O priority in-

versions caused by runtime dependencies can delays the

execution of a foreground task (Figure 2). Similar to

the priority inversion problem in CPU scheduling [35],

I/O priority inversions are problematic because the pro-

cessing of a background I/O on which a foreground task

depend can be arbitrarily delayed by other background

I/Os.

Two types of dependencies cause I/O priority inver-

sions: a task dependency and an I/O dependency. The

task dependency occurs when two tasks interact with

each other via synchronization primitives, such as a lock

and a condition variable. The dependency caused by a

lock complicates effective I/O prioritization because a

background task can be blocked waiting for an I/O within

a critical section that a foreground task needs to enter.

For instance, a foreground task attempting to write a file

can be blocked on an inode mutex if the mutex is al-

ready held by a background task concurrently writing

to the different part of that file. Likewise, the depen-
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dency caused by a condition variable also cause a sim-

ilar problem. A foreground task should indirectly wait

for the I/Os awaited by a background task that is go-

ing to signal the foreground task. For example in Linux

ext4, when a foreground task calls fsync(), it waits on

a specific condition variable which is signaled by jbd2

kernel thread, which could be busy completing journal

transactions for background tasks.

Meanwhile, the I/O dependency occurs between a task

and an outstanding I/O. Basically, the I/O dependency is

generated when a task needs to directly wait for the com-

pletion of an ongoing I/O in order to ensure correctness

and/or durability. For example, when a foreground task

calls fsync(), it blocks on the completion of a write

I/O that is asynchronously issued by a kernel thread (e.g.,

pdflush in Linux) for cleaning buffer cache. Once the

task and the I/O dependency-induced priority inversions

occur, the foreground task should wait for a long time

because each layer in the I/O path can arbitrarily prolong

the processing of low-priority background I/Os.

Unfortunately, resolving I/O priority inversions is

challenging for the following reasons. Firstly, depen-

dency relationships cannot be statically determined since

they depend on various runtime conditions, such as ex-

ecution timing, resource constraint, and client require-

ment. For example, a foreground task does not always

depend on the progress of a kernel thread handling file

system transaction since the kernel thread periodically

writes out transactions in background [4]. Secondly, de-

pendency occurs in a transitive manner involving mul-

tiple concurrent tasks blocked at either synchronization

primitives or various I/O stages in multiple layers. We

empirically found that a dependency sometimes cas-

caded in four steps due to the complex interaction be-

tween delayed allocation and crash-consistency mecha-

nism in a file system (Section 4.4). Finally, a dependency

relationship might not be visible at the kernel-level be-

cause of the extensive use of user-level synchronizations

(e.g., shared memory mutex) based on kernel-level sup-

ports (e.g., Futex [6]) in modern applications.

2.3 Related Work

Table 1 summarizes how the illustrated challenges are

addressed (or not) by the existing prioritization schemes.

CFQ [2] is a block-level I/O scheduler that supports mul-

tiple priority classes (real-time, best-effort, and idle) and

priority levels (0 to 7) [7]. However, CFQ prioritizes I/Os

only at the block-level queue. It does not consider the I/O

priority inversion problem as well as the prioritization at

the block queue admission stage.

Redline [42] adapts all I/O layers to limit the interfer-

ence from background tasks (e.g., virus scanner) for im-

proving responsiveness of interactive applications (e.g.,

web browser). Redline, however, lacks resolving I/O pri-

Scheme

Multiple I/O Priority

Independent Layers Inversion

Cache Filesystem Block Kernel User

CFQ [2] No No Yes No No

Redline [42] Yes Yes Yes No No

Split [43] Yes Yes Yes No No

QASIO [32] No No Yes Yes No

sCache [33] No No No Yes No

RCP Yes Yes Yes Yes Yes

Table 1: I/O prioritization challenges. This table shows

whether a specific challenge for effective I/O prioritiza-

tion is addressed or not in each previous work.

ority inversions that occur between foreground and back-

ground tasks in typical data-intensive applications.

Recently, Split [43], a cross-layer I/O scheduling

framework, is introduced to address the limitation of a

single-level I/O schedulers. Basically, Split provides ad-

ditional hooks to several layers for supporting correct

cause mapping, cost estimation, and reordering, in the

existence of the file system challenges like delayed allo-

cation and journaling [43]. Based on the proposed frame-

work, Split-AFQ and Split-Deadline have been imple-

mented to prove its effectiveness. Split-AFQ, a priority-

based scheduler using the Split framework, schedules

write I/Os including write() and fsync() at the

system-call layer to avoid the runtime dependencies

caused by file system journaling. Different from conven-

tional deadline schedulers, Split-Deadline provide dead-

line scheduling of fsync() calls. In addition, it aggres-

sively writes-back dirty data in background to make the

latency of fsync() more deterministic by minimizing

the file system transaction entanglement. Though Split

itself is a generic I/O scheduling framework, its repre-

sentative schedulers do not specifically consider the I/O

priority inversion problem despite its significance.

On the other side, QASIO [32] considers I/O pri-

ority inversions for improving system responsiveness.

However, QASIO solely focuses on the kernel-level de-

pendencies to asynchronous writes based on the analy-

sis of the several mobile app scenarios. Furthermore,

sCache [33] fully considers I/O priority inversions at the

kernel-level in order to effectively utilize non-volatile

write caches. Both QASIO and sCache, however, do not

consider I/O priority inversions at the user-level. More-

over, they do not address the challenges in the I/O path

for effective I/O prioritization.

Though several challenges have been separately ad-

dressed in the previous work, we argue that only a holis-

tic approach can deliver consistently high application

performance as in Figure 1. This is because the I/O pri-

ority inversion problem can be worsened when combined

with multiple layers as a dependency transitively occurs

across layers. Our scheme (RCP) addresses all the chal-

lenges in Table 1 by enlightening the I/O path and resolv-

ing the kernel- and user-level I/O priority inversions.
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3 Our Approach

In this work, we classify I/Os into two priority levels:

(performance) critical and non-critical I/Os. In particu-

lar, we define a critical I/O as an I/O in the critical path

of request handling since the response time of a request

determines the level of application performance.

The proposed classification is distinguished from con-

ventional I/O classification schemes: I/O-centric and

task-centric classifications (Figure 3). The I/O-centric

classification differentiates the priority of each I/O based

on its operation type (e.g., synchronous I/Os over asyn-

chronous ones [30, 2, 32]). On the other side, the

task-centric classification distinguishes the I/Os based

on issuing tasks (e.g., foreground I/Os over background

ones [42]). These static classification schemes, however,

are inadequate for identifying the (performance) criti-

cality of I/Os. In our request-centric viewpoint, syn-

chronous I/Os (e.g., checkpoint writes) and foreground

I/Os (e.g., buffered writes) can be non-critical whereas

asynchronous I/Os and background I/Os can sometimes

be critical due to the runtime dependencies.

Based on the I/O criticality classification, we intro-

duce a request-centric I/O prioritization (or RCP) that

identifies critical I/Os and prioritizes them over non-

critical ones along the I/O path. This form of two-level

I/O prioritization is effective for many cases since back-

ground tasks are ubiquitous in practice. For example, ac-

cording to a Facebook developer: “... There are always

cleaners and compaction threads that need to do I/O, but

shouldn’t hold off the higher-priority ”foreground” I/O.

... Facebook really only needs two (or few) priority lev-

els: low and high.” [5].

Our goals for realizing RCP are twofold: 1) min-

imizing application modification for detecting critical

I/Os, and 2) processing background tasks in a best-

effort manner while minimizing the interference to fore-

ground tasks. The following section describes our design

for effectively identifying and enforcing I/O criticality

throughout the I/O path.

4 I/O Path Enlightenment

4.1 Enlightenment API

The first step to identifying critical I/Os is to track a set

of tasks (i.e., foreground tasks) involved in request han-

dling and this can be done in two ways: system-level and

application-guided approaches. A system-level approach

infers foreground tasks by using information available

in the kernel. Though this approach has the benefit of

avoiding application modification, it may induce runtime

overhead for the inference and the possibility of misiden-

tification. In contrast, an application-guided approach

can accurately identify foreground tasks without runtime

overheads at the expense of application modification.

Figure 3: Comparison with conventional approaches.

We chose the application-guided approach for accu-

rate detection of foreground tasks without burdening the

OS kernel. In particular, we provide an enlightenment in-

terface to user-level so that an application developer (or

an administrator if possible) can dynamically set/clear

a foreground task based on application-level semantics.

The foreground task can be from a short code section to

an entire life of a thread depending on where set/clear

APIs are called. The simplicity of using APIs makes

developers easily prioritize critical I/Os in their appli-

cations. We believe the modification cost is also low

in practice because typical data-intensive applications

already distinguish foreground tasks from background

tasks; see Section 6 for the details.

Since the API is solely used for deciding I/O critical-

ity in the OS kernel, a wrong API call does not affect

the correct execution of an application. However, API

abuse by a malicious or a thoughtless application/tenant

may compromise performance isolation among multiple

applications/tenants sharing a storage stack. This prob-

lem can be solved by integrating RCP to a group-based

resource management (e.g., cgroup in Linux [37]). Ad-

dressing this issue is out of scope of this paper.

4.2 I/O Priority Inheritance

Based on the enlightenment API, we basically regard a

synchronous I/O issued by a foreground task as a critical

I/O. This obvious identification, however, is insufficient

for detecting all critical I/Os because runtime dependen-

cies cause background I/Os to be awaited by foreground

tasks indirectly (Section 2.2). Hence, the next step for

critical I/O detection is to handle I/O priority inversions

caused by runtime dependencies. To this end, we intro-

duce I/O priority inheritance that temporarily gives crit-

ical I/O priority to a background task (Section 4.2.1) or

a background I/O (Section 4.2.2) on which a foreground

task depends to make progress.

4.2.1 Handling Task Dependency

Kernel-level dependency. Resolving the lock-induced

dependency has been well-studied in the context of CPU

scheduling [35]. Inspired by the previous work, we re-

solve the lock-induced dependency by inheriting critical

I/O priority to a background task when it blocks a fore-

ground task until it leaves a critical section. Specifically,

we record an owner task into each lock object (e.g., mu-

tex). When a task is blocked to acquire a lock, the lock
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owner inherits I/O priority of the waiting task. The in-

herited priority is revoked when the owner task exits the

critical section. This inheritance procedure is repeated

until the foreground task acquires the lock. Note that we

consider only blocking-based locks since spinning-based

locks are not involved with I/O waiting.

Unlike the case of locks, there is no distinct owner in a

condition variable at the time of dependency occurs. To

deal with the condition varible-induced dependency, we

borrow a solution in previous work [27]. In particular,

a task is registered as a helper task [27] into the corre-

sponding object of a condition variable when the task is

going to signal the condition variable. Later, the helper

task inherits I/O priority of a task blocked to wait for

the condition become true. The inherited I/O priority is

revoked when the helper task finally signals the waiting

task. In the kernel-level, this approach is viable because

only a few condition variables and threads cause the run-

time dependencies.

User-level dependency. The key challenge in han-

dling the user-level dependency is that the OS kernel can-

not clearly identify a dependency relationship resulted

from user-level synchronizations. For user locks, the ker-

nel cannot determine the owner because a user lock vari-

able is located in a shared memory region and modified

through atomic operations (e.g., cmpxchg in x86) to in-

dicate the lock status. This is an intrinsic optimization

to eliminate unnecessary kernel interventions in the un-

contended cases. The kernel is involved only when to

block or to wake up lock waiters via a system call (e.g.,

sys futex()). As a consequence, the OS kernel can

see only the waiters failed to acquire a user-level lock.

To detect the owner of a user lock, we adjust a user

lock primitive (e.g., pthread mutex lock()) to ad-

ditionally pass down the information of the owner when

a task should block in the kernel due to lock contention.

In practice, this can be readily done without modifying

existing interfaces; see Section 5 for our implementation.

Based on the delivered information, the kernel can prop-

erly inherit the I/O priority of a waiting task to a lock-

holder task. Note that this modification does not entail

the kernel intervention in uncontended cases.

Unlike the condition variable-induced dependency in

kernel-level, handling such dependency in user-level is

difficult because it is hard to pinpoint helper tasks for

condition variables. Modern applications extensively use

user-level condition variables for various purposes. For

instance, we found over a hundred of user-level condi-

tion variables in the source code of MongoDB. There-

fore, properly identifying all helper tasks is not trivial

even for an application developer.

We adopt an inference technique that identifies a

helper task based on usage history of each user-level con-

dition variable. Typically, a background task is dedicated

to a specific activity like logging, checkpointing, com-

paction, and buffer cleaning. Hence, a task signaling

a condition is highly likely signal the condition again.

Based on this observation, a background task is regis-

tered as a helper task when it signals a user-level condi-

tion variable. Then, the helper task inherits critical I/O

priority of a foreground task when the foreground task

needs to block on the user-level condition variable. The

helper task is unregistered when it does not signal again

for a specific time window.

4.2.2 Handling I/O Dependency

Properly resolving a dependency to an outstanding I/O

is complicated because the dependent I/O can be in any

stage in the block layer at the time of the dependency

occurs. For example, an outstanding I/O can be in ad-

mission control stage waiting for the available slots of a

block-level queue. Hence, we need to track the status of

an ongoing non-critical I/O and appropriately reprioritize

it according to the current location when required.

For tracking outstanding non-critical I/Os, we add an

ncio data structure that stores an I/O descriptor, cur-

rent location, and the descriptor of a requesting task. An

ncio object is allocated when an incoming I/O is clas-

sified as non-critical at the entrance of the block layer,

and inserted to a per-device list indexed by starting sec-

tor number. The fields including I/O descriptor and cur-

rent location in the ncio object are properly updated as

the corresponding I/O flows along the I/O path. The allo-

cated ncio object is freed when the corresponding I/O

is reclassified or dispatched to a device.

When a dependency to an ongoing non-critical I/O oc-

curs, the per-device ncio list is searched to find the cor-

responding ncio object. Then, the non-critical I/O is

reclassified as critical I/O based on the information in

the I/O descriptor stored in an ncio object if the cor-

responding ncio object is found. In this case, we may

need to conduct additional chores according to the cur-

rent location of the dependent I/O; we present the details

in the following subsection.

The runtime overhead for maintaining the ncio struc-

ture is fairly small. In our implementation, we used a

red-black tree for fast lookup. The memory cost is also

limited because the number of outstanding non-critical

I/Os is limited (128 by default) by the admission control

mechanism at the block layer.

4.3 Criticality-Aware I/O Prioritization

As we discussed in Section 2.1, prioritizing critical I/Os

only within a single layer (e.g., scheduling in a block-

level queue) is ineffective for improving application per-

formance. Hence, we adapt each layer in the I/O path to

make it understand and enforce the I/O criticality.
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In the caching layer, similar to the approach in [42],

we apply separate dirty ratios to tasks issuing critical

and non-critical writes, respectively. For tasks issuing

non-critical writes, the applied dirty ratio is low (1% by

default) to mitigate the interference to foreground tasks.

With the lowered limit, a background task writing a large

amount of data to buffer cache cannot fill all the available

space since it should block until the current dirty ratio

drops below the configured ratio. As a consequence, a

foreground task is not blocked by a burst of background

writes. Moreover, a foreground task calling fsync()

does not need to depend on a large amount of dirty data

generated by background tasks resulting from the file

system ordering requirement [42, 43].

In the admission control stage at the block layer, we

separately allocate the block queue slots for critical and

non-critical I/Os, respectively, so that the admission con-

trol is isolated between critical and non-critical I/Os. To

resolve the dependency to the I/O blocked at this stage,

we transiently give critical I/O priority to the request-

ing task recorded in the corresponding ncio object and

wake up the task to make it retry allocation of available

slot with critical I/O priority. By doing so, the criticality-

inherited I/O can avoid the unnecessary congestion with

other non-critical I/Os during the admission.

We also designed a simple priority-based I/O sched-

uler at the block layer. In particular, our scheduler main-

tains two FIFO queues that are dedicated for critical

and non-critical I/Os each. Then, all I/Os in the criti-

cal queue is dispatched first before any I/O in the non-

critical queue. To prevent starvation, we use a timer

to monitor the non-critical queue and guarantee that at

least one non-critical I/O is processed per unit of time

(10 ms by default). Furthermore, we added queue pro-

motion support into our scheduler for properly handling

a dependency to a non-critical I/O staged at the block-

level queue. In order to minimize the interference at the

device-level, we conservatively limit the number of non-

critical I/Os dispatched to a storage device; this number

is configurable and we use one by default. This form of

limiting is common in practice for improving responsive-

ness [2, 36]. Our scheme can be integrated with an exist-

ing feature-rich scheduler like Linux CFQ at the expense

of additional work to support the I/O priority inheritance.

4.4 Handling Transitive Dependency

Transitive dependencies make effective I/O prioritization

more challenging. Consider a dependency chain of tasks

(τ1,τ2, ...,τn) where each task τi(1≤ i≤ n−1) is blocked

due to a task dependency to τi+1. The last task τn can be

in one of the three states: runnable, blocked due to I/O

dependency, and blocked at the admission control stages.

If τn is runnable or blocked due to the I/O dependency,

the transitive dependency can be resolved by inheriting

the critical I/O priority through the dependency chain.

However, if τn is blocked at one of the admission

stages, inheriting the critical I/O priority is insufficient

because the cause of the blocking should also be re-

solved. To handle this case, the applied dirty ratio at

the caching layer is transiently changed to that of criti-

cal I/Os and the blocked task is woken up. At the block

layer, similar to the I/O dependency resolution, the crit-

ical I/O priority is transiently inherited by the blocked

task and the task is woken up. Then, the awakened task

retries the admission with the changed I/O priority.

In order to resolve the transitive dependencies, we

record a blocking status into the descriptor of a task when

the task is about to be blocked. A blocking status con-

sists of blocking cause and an object to resolve the cause.

Blocking cause can be one of task dependency, I/O de-

pendency, and blocking at admission control stage. For

the task dependency cause, a corresponding object of

lock or condition vatiable is recorded. For the I/O depen-

dency cause, an I/O descriptor (i.e., block device identi-

fier and sector number) is recorded. No additional object

is recorded for the blocking at admission control stage.

Based on the recorded blocking status, a foreground task

can effectively track and resolve the blocking causes in

the transitive dependencies.

In our experiments, at most four steps of transitive de-

pendency has occurred. In particular, a foreground task

is blocked on an inode mutex for file writes. The mutex

is held by a background task and the task is also blocked

waiting for the signal by a journaling daemon since the

task tries to open a new file system transaction. The jour-

naling daemon is also waiting for the completion of up-

dating journal handle by another background task. The

last background task is blocked on the admission control

stage of the block layer because the task is issuing a burst

of writeback for carrying out delayed allocation.

5 Implementation on Linux

We implemented our schemes in Linux 3.13 including

around 3100 lines of additional code. A task descriptor

has a field indicating whether this task is a foreground

task or not. The field is set/cleared by using an existing

setpriority() system call interface; unused values

are used. To denote I/O crticality, a bi rw field in bio

and cmd flags field in request data structures are

given an extra flag. These flags are used for the admis-

sion control and I/O scheduling at the block layer.

We implemented the I/O priority inheritance to

mutex, rw semaphore, and semaphore. In ad-

dition, we resolved the condition variable-induced task

dependency in Linux journaling layer (i.e., jbd2). We

registered jbd2 kernel thread as a helper task for the

condition variables j wait trasnaction locked

and j wait done commit. For the condition vari-
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able j wait updates, a helper task is dynamically

assigned and removed since a helper task can be any

task having a user context. The three condition vari-

ables are specific to ext4, which can hinder the adop-

tion of our scheme to other file systems. A good start-

ing point for identifying condition variables causing run-

time dependencies is to inspect the wait queues (i.e.,

wait queue head t) defined in a file system. For ex-

ample, only nine and three wait queues need to be in-

spected for integrating with xfs and f2fs, respectively.

The I/O priority inheritance for resolving the user-

level dependency is implemented in Futex [6] and Sys-

tem V Semaphore [15] (SysV sem for short). The

priority inheritance in Futex (FUTEX LOCK PI) is ex-

ploited and a similar method is implemented in SysV

sem with an additional owner field to sembuf. A

lock owner is recorded at user-level when acquiring a

lock and is passed down to the kernel when a waiter

is blocked. For the I/O dependencies, we implemented

the I/O priority inheritance to wait on bit() and

wait on bit lock() methods that are used to syn-

chronize with buffer pages. We attempt I/O prioriti-

zation at these methods when a task waits until a spe-

cific bit (PG locked, PG writeback, BH Lock, and

BH Shadow) is cleared. Note that BH Shadow is used

to protect a buffer page that are under journaling I/O for

guaranteeing file system consistency.

6 Application Studies

To validate the effectiveness of our scheme, we chose

three widely deployed data-intensive applications: Post-

greSQL [10] relational database v9.5, MongoDB [8]

document store v3.2, and Redis [22] key-value store

v3.0. For tagging foreground tasks, we inserted 15, 14,

and 2 lines of code to PostgreSQL, MongoDB, and Re-

dis, respectively. This result indicates that adopting the

enlightenment API is not complicating for typical data-

intensive applications.

PostgreSQL relational database. In PostgreSQL,

backend is dedicated to client for serving requests

while other processes, such as checkpointer, background

writer, log writer, and autovacuum worker, carry out

I/O jobs in background. The checkpointer periodically

flushes all dirty data buffers to disk and writes a spe-

cial checkpoint record to the log file, in order to truncate

transaction logs reflected to database, thereby bounding

storage space and crash recovery time. The background

writer periodically writes some dirty buffers to disk to

keep regular backend processes from having to write out

dirty buffers. Similarly, the log writer periodically writes

out the log buffer to disk in order to reduce the amount of

synchronous writes backend processes should perform at

commit time. The autovacuum worker reclaims storage

occupied by dead tuples since tuples deleted or obsoleted

by an update are not physically removed from their table.

We classified the backend processes as foreground

tasks. In addition, since PostgreSQL utilizes SysV sem

to implement LWLocks, which is a user-level mutex, we

modified LWLocks to pass down lock owner information

to the kernel. Note that the information is passed only

when a waiter is blocked.

MongoDB document store. In WiredTiger, which is

the default storage engine since MongoDB 3.2, back-

ground threads, such as log threads, eviction threads, and

a checkpoint thread, conduct internal activities, such as

logging and checkpointing, while client threads handle

external requests in foreground. The log threads period-

ically flush log buffers to an on-disk journal file. Like-

wise, the eviction threads write dirty pages in the inter-

nal cache to OS buffer cache for making free pages. The

checkpoint thread periodically flushes all dirty pages in

the internal cache to disk for consistency.

We classified the client threads as foreground

tasks. MongoDB extensively uses Pthread mutex

and condition variable. To handle user-level depen-

dency, we modified the protocol of Pthread mutex to

PTHREAD PRIO INHERIT to distinguish Pthread mu-

tex and condition variable at the kernel-level and to uti-

lize the priority inheritance implemented in Futex.

Redis key-value store. Redis has two options to pro-

vide durability: snapshotting and command logging. The

snapshotting periodically produces point-in-time snap-

shots of the dataset but does not provide complete dura-

bility since up to a few minutes of data can be lost.

Meanwhile, the command logging guarantees the com-

plete durability by synchronously writing an update log

to an append-only file before responding back to the

command. In the command logging, log rewriting is pe-

riodically conducted to constrain the size of the log file.

Similar to the other applications, the snapshotting and

log rewriting are conducted by child processes in back-

ground while a main server process serves all requests

sequentially. Hence, we classified the main server pro-

cess as a foreground task.

7 Evaluation

7.1 Experimental Setup

The evaluation system is a Dell PowerEdge R530 server

that is equipped with two Intel Xeon E5-2620 proces-

sors and 64 GB RAM. The CPU frequency is set to the

highest level and hyper-threading is enabled. A single 1

TB Micron MX200 SSD is used to store data sets for the

evaluation workloads. We used Ubuntu 14.04 with the

modified Linux kernel version 3.13 as an OS and ext4

file system mounted with the default options.

We used CFQ as the baseline for our experiments. In

addition, we used CFQ-IDLE to prioritize foreground
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Figure 4: PotsgreSQL request throughput.

tasks by putting background tasks (e.g., checkpointer)

to idle-priority [7]. We also used the split-level sched-

ulers [43], including Split-AFQ (SPLIT-A) and Split-

Deadline (SPLIT-D), and QASIO [32] for comparison.

For RCP, we configured 1% dirty ratio for non-critical

writes and 20% dirty ratio (the default ratio in Linux) for

critical writes. We separately allocated 128 slots for each

critical and non-critical block-level queues. The number

of non-critical I/Os outstanding to a storage device is lim-

ited to one, and the timeout for non-critical I/Os is set to

10 ms to prevent starvation at the block-level queue.

7.2 PostgreSQL Relational Database

We used the OLTP-Bench [28] to generate a TPC-C [17]

workload for PostgreSQL. We simulated 50 clients run-

ning on a separate machine for 30 minutes. PostgreSQL

was configured to have 40% buffer pool of the size of the

initial database and to checkpoint every 30 seconds. For

CFQ-IDLE and QASIO, we put the checkpointer to the

idle-priority. For SPLIT-A, we set the highest and the

lowest I/O priorities to backends and the checkpointer,

respectively. For SPLIT-D, we set 5 ms and 200 ms

fsync() deadlines to backends and the checkpointer,

respectively; the configurations are dictated from those

in [43]. We report transactions per second and transac-

tion latency as the performance metrics.

Request throughput. Figure 4 shows transaction

throughput averaged over three runs on an SSD with

100, 600, and 2000 TPC-C scale factors, which corre-

spond to about 10 GB, 60 GB, and 200 GB of initial

databases, respectively. We used unlimited request rate

(i.e., zero idle/think time) for this experiment. CFQ-

IDLE does not help to improve application throughput

though we put the major background task (i.e., check-

pointer) to idle-class priority because CFQ-IDLE prior-

itizes high-priority (foreground) I/Os only at the block-

level scheduler. SPLIT-A improves transaction through-

put only when read I/Os are dominant as scale factor in-

creases. This is because SPLIT-A does not consider the

I/O priority inversion problem and hinders foreground

tasks from fully utilizing the OS buffer cache by schedul-

ing writes at the system-call layer. As presented in [43],

SPLIT-D is effective in improving the PostgreSQL’s per-

formance mainly because it procrastinates the check-
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pointing task. Though QASIO addresses I/O priority

inversions induced by kernel-level dependencies, QA-

SIO does not show any noticeable improvement due to

the unresolved dependencies and the inability existed in

the block-level scheduler as in CFQ-IDLE. RCP outper-

forms the existing schemes by about 15%–37%, 8%–

28%, and 6%–31% for 100, 600, and 2000 scale factors,

respectively.

Impact on background task. To analyze the im-

pact of each scheme on the background task (i.e., check-

pointer), we measured the size of transaction logs during

the workload execution in the case of 100 scale factor. As

shown in Figure 5, CFQ, CFQ-IDLE, and QASIO com-

plete checkpointing task regularly as intended, thereby

bounding the size of transaction logs to 8GB in total.

SPLIT-A increases the size of transaction logs to 12GB.

On the other hand, SPLIT-D increases the size of transac-

tion logs by 3.6× over CFQ since it penalizes the regular

checkpoint by delaying every fsync() calls made by

the checkpointer until the dirty data of the requested file

drops to 100 pages. As a result, SPLIT-D leads to using

more storage space and possibly taking longer recovery

time, which are undesirable in practice [12]. RCP com-

pletes the checkpointing task as frequent as CFQ while

improving request throughput. Note that the log sizes

with the other scale factors show similar trend.

Request latency. In order to show the effectiveness of

RCP in terms of request latency, we ran rate-controlled

TPC-C workload (i.e., fixed number of transactions) with

100 scale factor. Figure 6 demonstrates a complemen-

tary cumulative distribution function (CCDF), and so the

point (x,y) indicates that y is the fraction of requests

that experience a latency of at least x ms. This form

of representation helps visualizing latency tails, as y-

axis labels correspond to the 0th, 90th, 99th (and so on)

percentile latencies. Though CFQ-IDLE, SPLIT-D, and

QASIO achieves better latency than CFQ, all the exist-

ing schemes induce several seconds request latency af-

ter 99th percentile. This is because the critical path of

request execution is arbitrarily prolonged at the various

stages in the I/O path. On the other hand, RCP bounds

request latency up to around 300 ms. We omit the la-

tency results with 600 and 2000 scale factors because it
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Latency (ms) CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

semtimedop 1351.8 (3.9) 3723.0 (4.2) 3504.4 (3.4) 1951.1 (3.4) 2241.7 (2.7) 247.8 (1.0)

j wait done commit 1282.9 (55.9) 1450.1 (66.0) 342.4 (6.4) 1886.1 (10.6) 198.0 (3.8) 23.9 (2.5)

PG writeback 490.2 (0.2) 1677.6 (0.1) 454 (0.2) 458.0 (0.2) 454.7 (0.1) 243.2 (0.1)

get request 481.8 (3.0) 3722.8 (22.0) 405.2 (1.3) 240.1 (2.8) 2241.1 (3.7) 1.3 (0.1)

j wait transaction locked 306.5 (68.8) 229.4 (53.2) 0.4 (0.1) 2.4 (0.2) 0.3 (0.1) 0.2 (0.1)

BH Lock 201.3 (40.3) 1339.7 (356.7) 1.1 (0.1) 53.9 (11.1) 0.0 (0.0) 1.7 (0.5)

rwsem down 92.4 (8.9) 357.1 (179.7) 0.8 (0.1) 33.4 (1.4) 0.0 (0.0) 2.3 (0.2)

BH Shadow 46.5 (2.9) 15.9 (2.9) 208.9 (3.8) 236.1 (14.1) 1294.0 (36.9) 2.4 (0.2)

mutex lock 32.7 (7.0) 16.3 (3.1) 18.6 (2.5) 944.3 (53.3) 53.3 (3.1) 0.4 (0.1)

write entry N/A N/A 1703.2 (1.8) 0.0 (0.0) N/A N/A

fsync entry N/A N/A 1084.4 (0.5) 0.0 (0.0) N/A N/A

Table 2: PostgreSQL system latency breakdown. This table shows the maximum latency incurred at each kernel

method in milliseconds; the corresponding average latency is presented in parenthesis.
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Figure 6: PostgreSQL request latency.

is similar to that with 100 scale factor.

To analyze the reason behind the performance differ-

ences, we measured the maximum and average wait time

of foreground tasks (i.e., PostgreSQL backends) in ker-

nel functions using LatencyTOP [29]. As shown in Ta-

ble 2, CFQ incurs tens to a thousand milliseconds la-

tency at various synchronization methods. In particular,

foreground tasks suffer from excessive latency at SysV

sem (semtimedop) and j wait done commit con-

dition variable. CFQ-IDLE additionally causes sev-

eral seconds latency waiting for the allocation of a

block-level queue slot (get request), the writeback

of cache pages (PG writeback), and the acquisition

of a buffer lock (BH Lock). SPLIT-A and -D are

effective in resolving the file system-induced depen-

dencies by scheduling writes at the system-call layer.

However, SPLIT-A causes over one second latency at

write entry and fsync entry because it prevents

foreground tasks from fully utilizing the OS buffer cache.

SPLIT-D also causes about one second latency at in-

ode mutex (mutex lock) due to the I/O priority in-

version. Though QASIO resolves some dependency-

induced latencies ocurred in CFQ-IDLE, it still incurs

excessive latencies at semtimedop, get request,

and BH Shadow. On the contrary, RCP bounds all the

latencies below 250 ms.

7.3 MongoDB Document Store

For MongoDB, we used the update-heavy workload

(Workload A) in the YCSB [25] benchmark suite. We

simulated 150 clients running on a separate machine for
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Figure 7: MongoDB request throughput.

30 minutes. MongoDB was configured to have internal

cache of size 40% of the initial data set. We applied the

identical configuration to client threads and checkpoint

thread as the PostgreSQL case for CFQ-IDLE, SPLIT-A,

SPLIT-D, and QASIO. We report operations per second

and operation latency as the performance metrics.

Request throughput. Figure 7 plots request through-

put averaged over three runs with 10, 60, and 200 million

objects, which correspond to about 10 GB, 60 GB, and

200 GB of initial data sets, respectively. As in the Post-

greSQL case, CFQ-IDLE and QASIO do not help to mit-

igate the interference from background tasks. Unlike the

case of PostgreSQL, SPLIT-D degrades request through-

put rather than improving due to the different application

design. MongoDB stores a collection of documents into

a single file whereas PostgreSQL splits a database into

multiple 1 GB-sized files. Hence, the checkpoint thread

in MongoDB writes whole data set to the collection file

and then calls fsync() to the file. In this case, SPLIT-

D cannot help to prevent write entanglement since it does

not schedule writes at the system-call layer. Meanwhile,

scheduling writes at the system-call layer (SPLIT-A) is

not also effective because buffered writes are handled

slowly as in the PostgreSQL case. On the other hand,

RCP improves request throughput by about 53%–152%,

12%–136%, and 12%–201% for 10, 60, and 200 million

objects, respectively, compared to the existing schemes.

Request latency. Figure 8 shows CCDF of re-

quest latency measured during the execution of the rate-

controlled YCSB workload (i.e., fixed number of oper-

ations) with 10 million objects. CFQ and CFQ-IDLE
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Latency (ms) CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

futex lock pi 6092.6 (3.3) 11849.3 (3.4) 8300.6 (3.6) 12292.6 (3.7) 3717.4 (3.1) 305.6 (3.2)

j wait done commit 6067.3 (2.3) 11846.2 (2.4) 4066.9 (2.4) 10598.4 (2.6) 3652.1 (2.0) 246.5 (2.0)

pg writeback 239.5 (0.1) 240.1 (0.1) 426.2 (0.2) 241.0 (0.2) 241.8 (0.2) 64.2 (0.1)

get request 35.0 (18.4) 48636 (26.6) 17.3 (5.5) 0.0 (0.0) 852.5 (6.8) 0.0 (0.0)

j wait transaction locked 2.2 (1.0) 1790.3 (44.1) 1.4 (0.1) 0.0 (0.0) 1942.6 (24.0) 2.0 (0.9)

mutex lock 0.0 (0.0) 3296.6 (544.2) 0 (0.0) 1.2 (0.1) 992.0 (77.2) 0.0 (0.0)

write entry N/A N/A 7884.9 (27.4) 0.0 (0.0) N/A N/A

fsync entry N/A N/A 8273.1 (26.2) 0.0 (0.0) N/A N/A

Table 3: MongoDB system latency breakdown. This table shows the maximum latency incurred at each kernel

method in milliseconds; the corresponding average latency is presented in parenthesis.
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Figure 8: MongoDB request latency.

significantly increase latency tail especially after 99th

percentile. SPLIT-A and SPLIT-D also cannot help to

bound latency; about five seconds latency at 99.99th per-

centile. Though QASIO improves request latency com-

pared to the other existing schemes, it still incurs about

four seconds latency at 99.999th percentile. On the con-

trary, RCP completes all the requests within 310 ms by

carefully handling the critical path of request execution.

Note that the latency results with 60 and 200 million ob-

jects is similar to that of 10 million objects.

Table 3 shows the maximum and average system la-

tencies in foreground tasks. All the existing schemes

induce excessive latencies at various synchronization

methods, such as Pthread mutex (futex lock pi) and

j wait done commit condition variable. Unlike the

case of PostgreSQL, CFQ-IDLE and QASIO cause over

a second latency at j wait transaction locked

condition variable, which is a barrier for starting a

new file system transaction. RCP largely reduces

dependency-induced system latencies .

7.4 Redis Key-Value Store

For Redis, we used the same workload as the Mon-

goDB’s except that we concurrently ran ten YCSB

benchmarks against ten Redis instances to utilize our

multicore testbed due to the single threaded design of

Redis [23]. We enabled both snapshotting and command

logging for data safety [24]. We report operations per

second and operation latency as the performance metrics.

Figure 9 plots operation throughput averaged over

three runs and 99.9th percentile operation latency. CFQ-

IDLE and QASIO slightly improves application per-

formance by putting the background tasks including
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the snapshotting and log rewriting to idle-class prior-

ity. SPLIT-A and SPLIT-D deteriorate application per-

formance because SPLIT-A does not fully utilize write

buffer in the caching layer and SPLIT-D does not protect

non-critical writes from file system-level entanglement.

By handling the limitations in the existing prioritization

schemes in terms of application performance, RCP im-

proves request throughput by about 7%–49% compared

to the existing schemes. In addition, RCP shows 78 ms

request latency at 99.9th percentile, thereby achieving

2×–20× improvement over the existing schemes.

7.5 Need for Holistic Approach

In order to show why a holistic approach is crucial for

application performance, we selectively disabled one of

the components in our scheme, the caching layer, the

block layer, the kernel-level dependency handling, the

user-level dependency handling, and the transitive de-

pendency handling. Figure 10 shows average request

throughput normalized to that of all the components are

enabled in the 10 GB data set configurations. Disabling

any one of the component degrades application through-

put by about 7–33% and 6–45% for PostgreSQL and

MongoDB each. This result justifies our claim that only

a holistic approach can guarantee high degree of applica-

tion performance.

7.6 Impact of Limiting I/Os

Due to hidden and unpredictable I/O scheduling inside

storage, we limited the number of sojourn non-critical

I/Os to one. This may lead to low utilization of storage

devices when there is low foreground activity. To quan-

tify the impact on system throughput, we concurrently
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Figure 10: Normalized request throughput with turn-

ing off one of the components in RCP.

ran a sequential write workload with 5 ms thinktime as a

lightly-loaded foreground task and a random write work-

load without thinktime as a I/O-intensive background

task. As shown in Figure 11, the system-wide through-

put increases from 223 MB/sec to 345 MB/sec (55% im-

provement) while relaxing the limitation on non-critical

I/Os. However, the improvement in system throughput

comes with the degraded latency of foreground I/O. In

particular, the average latency of foreground I/O gradu-

ally increases from 110 us to 1771 us (over 16× slow-

down). If storage devices implement priority-based

scheduling feature in storage interface standards (e.g.,

SCSI, ATA, and NVMe), this tradeoff would be mini-

mized by exploiting the priority feature.

8 Discussion

Penalizing background tasks. Whether a foreground

task really does not rely on the progress of background

tasks depends on the semantic of an application. For ex-

ample in MySQL, when the size of transaction logs is

below a preconfigured maximum size, a foreground task

does not wait for a checkpointer. However, the fore-

ground task stops accepting updates when the log size

exceeds the threshold. One workaround is to provide

another threshold which is a point to give the critical

I/O priority to the checkpointer. This sort of applica-

tion modification requires understanding of application

semantic. We believe application developers are likely

willing to conduct such modifications since our scheme

brings superior performance with a simple API.

User-level threading library. An application may use

a user-level threading library, such as Fiber [1], though it

is uncommon for data-intensive applications we targeted.

In this case, our scheme cannot detect the user-level de-

pendency. If using a user-level threading library is preva-

lent, implementing the I/O priority inheritance to the li-

brary based on the enlightenment API may be necessary.

User-level condition variable. Our scheme uses

a simple history-based inference technique to track a

helper task of a user-level condition variable. In the

tested applications, this method was sufficient since ob-

served helpers were mostly static. However, if an ap-

plication has a complex relationship between condition
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Figure 11: Tradeoff between system throughput and

foreground latency.

variables and helpers, a more sophisticated inference

technique is desired, which is our future work.

Implementation practicality. Our prototype imple-

mentation involves modifications to all the layers and the

synchronization methods in the I/O path, thereby hinder-

ing our scheme from wide adoption. The most promis-

ing direction to be practically viable is exploiting the

Split framework [43]. It provides a collection of han-

dlers for an I/O scheduler to operate across all layers in

the I/O path. We believe our scheme can be cleanly im-

plemented based on the framework by controlling non-

critical writes at the system-call level, before the caching

and file system layer generates complex dependencies,

and non-critical reads at the block-level.

9 Concluding Remarks

In this paper, we have shown that all the layers in the

storage I/O path should be considered as a whole with

I/O priority inversion in mind for effective I/O prioriti-

zation. Our experiments demonstrate that the proposed

scheme can provide low and predictable request latency

while minimally penalizing background tasks. We be-

lieve that our scheme can contribute to reducing total cost

of ownership by alleviating the contention introduced by

a burst of background I/Os and thereby relaxing the need

for over-provisioning storage resources.

To handle the fairness issue which results from sharing

a storage stack among multiple applications/tenants, we

plan to explore integrating our scheme with an existing

group-based I/O scheduler (e.g, CFQ). We also plan to

investigate request handling in a distributed system with

replicated data stores.
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