
USENIX Association

July 15–17, 2020

Proceedings of the
2020 USENIX Annual Technical Conference

© 2020 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-14-4

Cover Image created by freevector.com and distributed under the Creative Commons Attribution-ShareAlike 4.0
license (https://creativecommons.org/licenses/by-sa/4.0/).

Conference Organizers
Program Co-Chairs
Ada Gavrilovska, Georgia Institute of Technology
Erez Zadok, Stony Brook University

Program Committee Leaders
Aruna Balasubramanian, Stony Brook University
Donald Porter, The University of North Carolina at Chapel Hill
Liuba Shrira, Brandeis University
Swaminathan Sundararaman, Pyxeda AI
Vasily Tarasov, IBM Research-Almaden

Program Committee
Sangeetha Abdu Jyothi, VMware Research and University of

California, Irvine
Rachit Agarwal, Cornell University
Nitin Agrawal, ThoughtSpot
Irfan Ahmad, CachePhysics
Gustavo Alonso, ETH Zurich
Deniz Altinbuken, Google
George Amvrosiadis, Carnegie Mellon University
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Behnaz Arzani, Microsoft Research
Mona Attariyan, Google
Anirudh Badam, Microsoft Research
Saurabh Bagchi, Purdue University
Antonio Barbalace, Stevens Institute of Technology
Ran Ben Basat, Harvard University
Orna Agmon Ben-Yehuda, Technion—Israel Institute of

Technology
Pramod Bhatotia, University of Edinburgh
Ken Birman, Cornell University
Sergey Blagodurov, AMD Research
Herbert Bos, Vrije Universiteit Amsterdam
James Bottomley, IBM Research
Kevin Butler, University of Florida
Yinzhi Cao, Johns Hopkins University
Zhen Cao, Google
Feng Chen, Louisiana State University
Ming Chen, Google
Young-ri Choi, Ulsan National Institute of Science and

Technology (UNIST)
Guilherme Cox, Nvidia
Heming Cui, The University of Hong Kong (HKU)
Dilma Da Silva, Texas A&M University
Alex Daglis, Georgia Institute of Technology
David Devescery, Georgia Institute of Technology
Abhinav Duggal, Dell EMC
Michael Ferdman, Stony Brook University
Pedro Fonseca, Purdue University
Moshe Gabel, University of Toronto
Manya Ghobadi, Massachusetts Institute of Technology
Jana Giceva, Imperial College London
Ashvin Goel, University of Toronto
Xiaohui (Helen) Gu, North Carolina State University
Vishakha Gupta-Cledat, ApertureData
Andreas Haeberlen, University of Pennsylvania

Dongsu Han, Korea Advanced Institute of Science and
Technology (KAIST)

Danny Harnik, IBM Research—Haifa
Tim Harris, Amazon
Eshcar Hillel, Yahoo Research
Michio Honda, University of Edinburgh
Yu Hua, Huazhong University of Science and Technology
Jian Huang, The University of Illinois at Urbana-Champaign
Trent Jaeger, The Pennsylvania State University
Bill Jannen, Williams College
Junchen Jiang, University of Chicago
Changhee Jung, Purdue University
Sudarsun Kannan, Rutgers University
Baris Kasikci, University of Michigan
Idit Keidar, Technion—Israel Institute of Technology
Ana Klimovic, Google Brain
Michael Kozuch, Intel Labs
Orran Krieger, Boston University
Mohan Kumar Kumar, Facebook
Youngjin Kwon, Korea Advanced Institute of Science and

Technology (KAIST)
Julia Lawall, Inria/LIP6
Philip Levis, Stanford University
Felix Lin, Purdue University
Heiner Litz, University of California, Santa Cruz
Vincent Liu, University of Pennsylvania
Brandon Lucia, Carnegie Mellon University
Xiaosong Ma, Qatar Computing Research Institute (QCRI),

HBKU, Qatar
Peter Macko, NetApp
Harsha V. Madhyastha, University of Michigan
Carlos Maltzahn, University of California, Santa Cruz
Alexander Merritt, Intel
Michael Mesnier, Intel Labs
Changwoo Min, Virginia Polytechnic Institute and State

University
Shuai Mu, Stony Brook University
Gilles Muller, Inria
Kiran-Kumar Muniswamy-Reddy, Oracle
Srinivasan Narayanamurthy, NetApp
Ravi Netravali, University of California, Los Angeles
Radhika Niranjan Mysore, VMware Research
Roberto Palmieri, Lehigh University
Aurojit Panda, New York University
Gabriel Parmer, George Washington University
Raju Rangaswami, Florida International University
Oriana Riva, Microsoft Research
Amitabha Roy, Google
Larry Rudolph, Two Sigma
Jack Sampson, The Pennsylvania State University
Mahadev Satyanarayanan, Carnegie Mellon University
Jiri Schindler, Tranquil Data
Malte Schwarzkopf, Brown University
Russell Sears, Apple
Siddhartha Sen, Microsoft Research

External Reviewers
Amogh Akshintala

Ali Anwar
Avi Asayag
Gal Assa
Jia-Ju Bai

Lauren Bindschaedler
Yuval Cassuto

Joanna Che
Yitao Chen
Peter Chubb
Shir Cohen

Dave Dice
Babak Esmaeili
Sungho Hong

Trammell Hudson
Kasra Jamshidi

Runyu Jin
Geoff Kuenning

Eugene Kuznetsov
Yubo Liu

Mugilan Mariappan
Matthew Morrison

Oded Naor
Arik Rinberg

Donour Sizemore
Weijia Song
Lynus Vaz

Tianzheng Wang
David Yakira
Qirui Yang
Yiting Yao
Ding Yuan
Kaiqi Zhao

Philip Shilane, Dell EMC
Mark Silberstein, Technion—Israel Institute of Technology
Richard Spillane, VMware Research
Scott Stoller, Stony Brook University
Patrick Stuedi, LinkedIn
Lalith Suresh, VMware Research
Amy Tai, VMware Research
Eno Thereska, Amazon
Theodore Ts’o, Google
Alexey Tumanov, Georgia Institute of Technology
Keval Vora, Simon Fraser University
Ric Wheeler, Facebook
Avani Wildani, Emory University
Emmett Witchel, The University of Texas at Austin
Yue Yang, Micron Technology
Ming Zhao, Arizona State University
Lin Zhong, Rice University
Noa Zilberman, University of Oxford

External Review Committee
Raja Appuswamy, EURECOM, Sophia Antipolis
Muli Ben-Yehuda, LightBits Labs
Angela Demke Brown, University of Toronto
Sindhu Ghanta, Pyxeda Inc.
Gernot Heiser, UNSW Sydney
Paul E. McKenney, IBM Linux Technology Center
Ethan Miller, University of California, Santa Cruz, and Pure

Storage
Dalit Naor, IBM Research—Haifa
Youjip Won, Korea Advanced Institute of Science and

Technology (KAIST)
Gala Yadgar, Technion—Israel Institute of Technology

Submissions Co-Chairs
Ketan Bhardwaj, Georgia Institute of Technology
Dongyoon Lee, Stony Brook University

2020 USENIX Annual Technical Conference

July 15–17, 2020

USENIX ATC ’20 Program Co-Chairs Message . x

Wednesday, July 15
The Non-Volatile One
Libnvmmio: Reconstructing Software IO Path with Failure-Atomic Memory-Mapped Interface 1
Jungsik Choi, Sungkyunkwan University; Jaewan Hong and Youngjin Kwon, KAIST; Hwansoo Han, Sungkyunkwan
University

MatrixKV: Reducing Write Stalls and Write Amplification in LSM-tree Based KV Stores with Matrix Container
in NVM .17
Ting Yao, Yiwen Zhang, and Jiguang Wan, Huazhong University of Science and Technology; Qiu Cui and Liu Tang,
PingCAP; Hong Jiang, UT Arlington; Changsheng Xie, Huazhong University of Science and Technology; Xubin He,
Temple University

Disaggregating Persistent Memory and Controlling Them Remotely: An Exploration of Passive Disaggregated
Key-Value Stores . 33
Shin-Yeh Tsai, Purdue University; Yizhou Shan and Yiying Zhang, University of California, San Diego

SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores . 49
Alexander Conway, Rutgers University and Vmware Research; Abhishek Gupta, DropBox; Vijay Chidambaram,
University of Texas at Austin and VMware Research; Martin Farach-Colton, Rutgers University; Richard Spillane,
VMware; Amy Tai and Rob Johnson, VMware Research

Twizzler: a Data-Centric OS for Non-Volatile Memory . 65
Daniel Bittman and Peter Alvaro, UC Santa Cruz; Pankaj Mehra, IEEE Member; Darrell D. E. Long, UC Santa Cruz;
Ethan L. Miller, UC Santa Cruz / Pure Storage

The Data Center One
BASTION: A Security Enforcement Network Stack for Container Networks . 81
Jaehyun Nam, Seungsoo Lee, and Hyunmin Seo, KAIST; Phil Porras and Vinod Yegneswaran, SRI International;
Seungwon Shin, KAIST

Spool: Reliable Virtualized NVMe Storage Pool in Public Cloud Infrastructure . 97
Shuai Xue, Shang Zhao, and Quan Chen, Shanghai Jiao Tong University and Alibaba Cloud; Gang Deng, Zheng Liu,
Jie Zhang, Zhuo Song, Tao Ma, Yong Yang, Yanbo Zhou, Keqiang Niu, and Sijie Sun, Alibaba Cloud; Minyi Guo,
Shanghai Jiao Tong University

HDDse: Enabling High-Dimensional Disk State Embedding for Generic Failure Detection System of Heterogeneous
Disks in Large Data Centers . 111
Ji Zhang, Huazhong University of Science and Technology and University of Amsterdam; Ping Huang, Huazhong
University of Science and Technology and Temple University; Ke Zhou, Huazhong University of Science and Technology;
Ming Xie, Tencent Inc.; Sebastian Schelter, University of Amsterdam

Adaptive Placement for In-memory Storage Functions . 127
Ankit Bhardwaj, Chinmay Kulkarni, and Ryan Stutsman, University of Utah

NetKernel: Making Network Stack Part of the Virtualized Infrastructure . 143
Zhixiong Niu, Microsoft Research; Hong Xu, City University of Hong Kong; Peng Cheng, Microsoft Research; Qiang
Su, City University of Hong Kong; Yongqiang Xiong, Microsoft Research; Tao Wang, New York University; Dongsu Han,
KAIST; Keith Winstein, Stanford University

The Cloudy One
Platinum: A CPU-Efficient Concurrent Garbage Collector for Tail-Reduction of Interactive Services 159
Mingyu Wu, Ziming Zhao, Yanfei Yang, Haoyu Li, Haibo Chen, Binyu Zang, and Haibing Guan, Shanghai Jiao Tong
University; Sanhong Li, Chuansheng Lu, and Tongbao Zhang, Alibaba

PinK: High-speed In-storage Key-value Store with Bounded Tails .173
Junsu Im and Jinwook Bae, DGIST; Chanwoo Chung and Arvind, Massachusetts Institute of Technology; Sungjin Lee,
DGIST

OptimusCloud: Heterogeneous Configuration Optimization for Distributed Databases in the Cloud 189
Ashraf Mahgoub and Alexander Michaelson Medoff, Purdue University; Rakesh Kumar, Microsoft; Subrata Mitra, Adobe
Research; Ana Klimovic, Google Research; Somali Chaterji and Saurabh Bagchi, Purdue University

Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider 205
Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo Laureano,
Colby Tresness, Mark Russinovich, and Ricardo Bianchini, Microsoft Azure and Microsoft Research

Lessons Learned from the Chameleon Testbed . 219
Kate Keahey, Argonne National Laboratory; Jason Anderson and Zhuo Zhen, University of Chicago; Pierre Riteau,
StackHPC Ltd; Paul Ruth, RENCI UNC Chapel Hill; Dan Stanzione, Texas Advanced Computing Center; Mert Cevik,
RENCI UNC Chapel Hill; Jacob Colleran and Haryadi S. Gunawi, University of Chicago; Cody Hammock, Texas
Advanced Computing Center; Joe Mambretti, Northwestern University; Alexander Barnes, François Halbah, Alex Rocha,
and Joe Stubbs, Texas Advanced Computing Center

The Buggy One
SPINFER: Inferring Semantic Patches for the Linux Kernel . 235
Lucas Serrano and Van-Anh Nguyen, Sorbonne University/Inria/LIP6; Ferdian Thung, Lingxiao Jiang, and David Lo,
School of Information Systems, Singapore Management University; Julia Lawall and Gilles Muller, Inria/Sorbonne
University/LIP6

FuZZan: Efficient Sanitizer Metadata Design for Fuzzing . 249
Yuseok Jeon, Purdue University; WookHyun Han, KAIST; Nathan Burow, Purdue University; Mathias Payer, EPFL

PracExtractor: Extracting Configuration Good Practices from Manuals to Detect Server Misconfigurations 265
Chengcheng Xiang and Haochen Huang, University of California San Diego; Andrew Yoo, University of Illinois at
Urbana-Champaign; Yuanyuan Zhou, University of California, San Diego; Shankar Pasupathy, NetApp

Reverse Debugging of Kernel Failures in Deployed Systems . 281
Xinyang Ge, Microsoft Research; Ben Niu, Microsoft; Weidong Cui, Microsoft Research

Offload Annotations: Bringing Heterogeneous Computing to Existing Libraries and Workloads 293
Gina Yuan, Shoumik Palkar, Deepak Narayanan, and Matei Zaharia, Stanford University

Thursday, July 16
The Machine Learning One
HetPipe: Enabling Large DNN Training on (Whimpy) Heterogeneous GPU Clusters through Integration of
Pipelined Model Parallelism and Data Parallelism . 307
Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T. Nguyen, and Seungmin Lee, UNIST; Jaesik Choi, KAIST; Sam H.
Noh and Young-ri Choi, UNIST

AutoSys: The Design and Operation of Learning-Augmented Systems . 323
Chieh-Jan Mike Liang, Hui Xue, Mao Yang, and Lidong Zhou, Microsoft Research; Lifei Zhu, Peking University and
Microsoft Research; Zhao Lucis Li and Zibo Wang, University of Science and Technology of China and Microsoft
Research; Qi Chen and Quanlu Zhang, Microsoft Research; Chuanjie Liu, Microsoft Bing Platform; Wenjun Dai,
Microsoft Bing Ads

Daydream: Accurately Estimating the Efficacy of Performance Optimizations for DNN Training 337
Hongyu Zhu, University of Toronto & Vector Institute; Amar Phanishayee, Microsoft Research; Gennady Pekhimenko,
University of Toronto & Vector Institute

ALERT: Accurate Learning for Energy and Timeliness . 353
Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann, Michael Maire, and Shan Lu, University of Chicago

NeuOS: A Latency-Predictable Multi-Dimensional Optimization Framework for DNN-driven Autonomous
Systems . 371
Soroush Bateni and Cong Liu, University of Texas at Dallas

Percival: Making In-Browser Perceptual Ad Blocking Practical with Deep Learning . 387
Zainul Abi Din, UC Davis; Panagiotis Tigas, University of Oxford; Samuel T. King, UC Davis, Bouncer Technologies;
Benjamin Livshits, Brave Software, Imperial College London

The OS and Virtualization One
Harmonizing Performance and Isolation in Microkernels with Efficient Intra-kernel Isolation and Communication 401
Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, and Haibo Chen, Shanghai Jiao Tong University

Faasm: Lightweight Isolation for Efficient Stateful Serverless Computing . 419
Simon Shillaker and Peter Pietzuch, Imperial College London

Fewer Cores, More Hertz: Leveraging High-Frequency Cores in the OS Scheduler for Improved Application
Performance . 435
Redha Gouicem and Damien Carver, Sorbonne University, LIP6, Inria; Jean-Pierre Lozi, Oracle Labs; Julien Sopena,
Sorbonne University, LIP6, Inria; Baptiste Lepers and Willy Zwaenepoel, University of Sydney; Nicolas Palix, Université
Grenoble Alpes; Julia Lawall and Gilles Muller, Inria, Sorbonne University, LIP6

vSMT-IO: Improving I/O Performance and Efficiency on SMT Processors in Virtualized Clouds 449
Weiwei Jia, New Jersey Institute of Technology; Jianchen Shan, Hofstra University; Tsz On Li, University of Hong Kong;
Xiaowei Shang, New Jersey Institute of Technology; Heming Cui, University of Hong Kong; Xiaoning Ding, New Jersey
Institute of Technology

Lightweight Preemptible Functions . 465
Sol Boucher, Carnegie Mellon University; Anuj Kalia, Microsoft Research; David G. Andersen, Carnegie Mellon
University; Michael Kaminsky, BrdgAI / Carnegie Mellon University

coIOMMU: A Virtual IOMMU with Cooperative DMA Buffer Tracking for Efficient Memory Management in
Direct I/O . 479
Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu Dong, Intel Corporation

The WAN One
BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learning . 493
Chengliang Zhang, Suyi Li, Junzhe Xia, and Wei Wang, Hong Kong University of Science and Technology; Feng Yan,
University of Nevada, Reno; Yang Liu, WeBank

A Deep Dive into DNS Query Failures . 507
Donghui Yang, Institute of Computing Technology, Chinese Academy of Sciences; Zhenyu Li, Institute of Computing
Technology, Chinese Academy of Sciences, and Purple Mountain Laboratories; Gareth Tyson, Queen Mary University
of London

A Decentralized Blockchain with High Throughput and Fast Confirmation . 515
Chenxin Li, Peilun Li, and Dong Zhou, Tsinghua University; Zhe Yang, Ming Wu, and Guang Yang, Conflux Foundation;
Wei Xu, Tsinghua University; Fan Long, University of Toronto and Conflux Foundation; Andrew Chi-Chih Yao, Tsinghua
University

Reconstructing proprietary video streaming algorithms . 529
Maximilian Grüner, Melissa Licciardello, and Ankit Singla, ETH Zürich

Midgress-aware traffic provisioning for content delivery . 543
Aditya Sundarrajan, University of Massachusetts Amherst; Mangesh Kasbekar, Akamai Technologies; Ramesh K.
Sitaraman, University of Massachusetts Amherst & Akamai Technologies; Samta Shukla, CVS Health

The One about Big Data
GraphWalker: An I/O-Efficient and Resource-Friendly Graph Analytic System for Fast and Scalable Random
Walks . 559
Rui Wang and Yongkun Li, University of Science and Technology of China; Hong Xie, Chongqing University; Yinlong
Xu, University of Science and Technology of China; John C. S. Lui, The Chinese University of Hong Kong

Scaph: Scalable GPU-Accelerated Graph Processing with Value-Driven Differential Scheduling 573
Long Zheng, Xianliang Li, Yaohui Zheng, Yu Huang, Xiaofei Liao, and Hai Jin, Huazhong University of Science and
Technology; Jingling Xue, UNSW Sydney; Zhiyuan Shao and Qiang-Sheng Hua, Huazhong University of Science and
Technology

Peregreen – modular database for efficient storage of historical time series in cloud environments 589
Alexander Visheratin, Alexey Struckov, Semen Yufa, Alexey Muratov, Denis Nasonov, and Nikolay Butakov, ITMO
University; Yury Kuznetsov and Michael May, Siemens

AC-Key: Adaptive Caching for LSM-based Key-Value Stores . 603
Fenggang Wu, Ming-Hong Yang, Baoquan Zhang, and David H.C. Du, University of Minnesota

Posh: A Data-Aware Shell .617
Deepti Raghavan, Sadjad Fouladi, Philip Levis, and Matei Zaharia, Stanford University

Friday, July 17
The One about Acceleration
FineStream: Fine-Grained Window-Based Stream Processing on CPU-GPU Integrated Architectures 633
Feng Zhang and Lin Yang, Renmin University of China; Shuhao Zhang, Technische Universität Berlin and National
University of Singapore; Bingsheng He, National University of Singapore; Wei Lu and Xiaoyong Du, Renmin University
of China

OpenExpress: Fully Hardware Automated Open Research Framework for Future Fast NVMe Devices 649
Myoungsoo Jung, KAIST

Fast Software Cache Design for Network Appliances . 657
Dong Zhou, Tsinghua University; Huacheng Yu, Princeton University; Michael Kaminsky, BrdgAI; David Andersen,
BrdgAI and Carnegie Mellon University

Reexamining Direct Cache Access to Optimize I/O Intensive Applications for Multi-hundred-gigabit Networks . . 673
Alireza Farshin, KTH Royal Institute of Technology; Amir Roozbeh, KTH Royal Institute of Technology and Ericsson
Research; Gerald Q. Maguire Jr. and Dejan Kostić, KTH Royal Institute of Technology

sRDMA – Efficient NIC-based Authentication and Encryption for Remote Direct Memory Access 691
Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler, ETH Zurich

Ureqa: Leveraging Operation-Aware Error Rates for Effective Quantum Circuit Mapping on NISQ-Era Quantum
Computers . 705
Tirthak Patel, Baolin Li, Rohan Basu Roy, and Devesh Tiwari, Northeastern University

The One about Storage
Austere Flash Caching with Deduplication and Compression . 713
Qiuping Wang and Jinhong Li, The Chinese University of Hong Kong; Wen Xia, Harbin Institute of Technology,
Shenzhen; Erik Kruus and Biplob Debnath, NEC Labs; Patrick P. C. Lee, The Chinese University of Hong Kong

DADI: Block-Level Image Service for Agile and Elastic Application Deployment . 727
Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu, and Windsor Hsu, Alibaba Group

Efficient Miss Ratio Curve Computation for Heterogeneous Content Popularity .741
Damiano Carra, University of Verona, Italy; Giovanni Neglia, Inria, Université Côte d’Azur, France

Can Applications Recover from fsync Failures? . 753
Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau,
University of Wisconsin - Madison

DupHunter: Flexible High-Performance Deduplication for Docker Registries . 769
Nannan Zhao, Hadeel Albahar, Subil Abraham, and Keren Chen, Virginia Tech; Vasily Tarasov, Dimitrios Skourtis, Lukas
Rupprecht, and Ali Anwar, IBM Research—Almaden; Ali R. Butt, Virginia Tech

OSCA: An Online-Model Based Cache Allocation Scheme in Cloud Block Storage Systems 785
Yu Zhang, Huazhong University of Science and Technology; Ping Huang, Huazhong University of Science and
Technology and Temple University; Ke Zhou and Hua Wang, Huazhong University of Science and Technology; Jianying
Hu, Yongguang Ji, and Bin Cheng, Tencent Inc.

The Memorable One
Lock-free Concurrent Level Hashing for Persistent Memory . 799
Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo, Huazhong University of Science and Technology

Optimizing Memory-mapped I/O for Fast Storage Devices . 813
Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Manolis Marazakis, and Angelos Bilas, FORTH-ICS

A Comprehensive Analysis of Superpage Management Mechanisms and Policies . 829
Weixi Zhu, Alan L. Cox, and Scott Rixner, Rice University

Effectively Prefetching Remote Memory with Leap . 843
Hasan Al Maruf and Mosharaf Chowdhury, University of Michigan

go-pmem: Native Support for Programming Persistent Memory in Go . 859
Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubramanian, and Pratap Subrahmanyam, VMware

End the Senseless Killing: Improving Memory Management for Mobile Operating Systems 873
Niel Lebeck, Arvind Krishnamurthy, and Henry M. Levy, University of Washington; Irene Zhang, Microsoft Research

The One on the Edge
Retwork: Exploring Reader Network with COTS RFID Systems . 889
Jia Liu and Xingyu Chen, Nanjing University; Shigang Chen, University of Florida; Wei Wang, Dong Jiang, and Lijun
Chen, Nanjing University

Acclaim: Adaptive Memory Reclaim to Improve User Experience in Android Systems . 897
Yu Liang and Jinheng Li, City University of Hong Kong; Rachata Ausavarungnirun, King Mongkut’s University of
Technology North Bangkok; Riwei Pan, City University of Hong Kong; Liang Shi, East China Normal University; Tei-Wei
Kuo, City University of Hong Kong and National Taiwan University; Chun Jason Xue, City University of Hong Kong

SweynTooth: Unleashing Mayhem over Bluetooth Low Energy . 911
Matheus E. Garbelini, Singapore University of Technology and Design; Chundong Wang, ShanghaiTech University;
Sudipta Chattopadhyay, Singapore University of Technology and Design; Sun Sumei and Ernest Kurniawan, A*Star

Fine-Grained Isolation for Scalable, Dynamic, Multi-tenant Edge Clouds . 927
Yuxin Ren, The George Washington University; Guyue Liu, Carnegie Mellon University; Vlad Nitu, INSA Lyon France;
Wenyuan Shao, Riley Kennedy, Gabriel Parmer, and Timothy Wood, The George Washington University; Alain Tchana,
ENS Lyon France

Firefly: Untethered Multi-user VR for Commodity Mobile Devices . 943
Xing Liu, University of Minnesota, Twin Cities; Christina Vlachou, Hewlett Packard Labs; Feng Qian and Chendong
Wang, University of Minnesota, Twin Cities; Kyu-Han Kim, Hewlett Packard Labs

x 2020 USENIX Annual Technical Conference USENIX Association

Message from the
USENIX ATC ’20 Program Co-Chairs

1 . Preamble
Every year, conference chairs share their thoughts about the conference. This is often chock-full of statistics about acceptance
rates, etc. We’ll include stats for sure. We felt, however, that we’d like to share with all of you some of the “inside scoop” of
how a conference is organized and run from the Co-Chairs’ perspective. Many authors don’t know what happens behind the
scenes; and even most PC members don’t get to chair a conference of this magnitude. We are honored to have been selected
to co-chair USENIX ATC ’20. Running a conference like ATC is substantially more work than some other, even well estab-
lished conferences, for the reasons outlined below (and that effort skyrocketed when the pandemic hit). There is a lot to know
and we hope that this information will be valuable to all of you in the future.

2 . Early Decisions
ATC is a large and complex conference to run for several reasons.

First, while it is a systems conference, ATC is fairly broad. Whereas conferences such as OSDI, FAST, NSDI, etc. see more
focused papers, ATC has a much broader set of papers that span many systems conferences: networking, storage, operating
systems, security, etc. This breadth meant that the PC’s makeup had to be carefully balanced to ensure appropriate represen-
tation for all likely topics.

Second, ATC is also the place where new systems papers are often submitted for topics that may not have a home of their
own. FAST, NSDI, USENIX Security, and others—all started in part because ATC was getting too many papers in those
areas, suggesting it was time to form a new, more focused conference. In recent years ATC started getting papers on edge
computing and applied machine learning; and this year we expected we might get for the first time ever papers in quantum
computing (and we were right). This meant that the PC’s makeup also had to include people who could review papers in
newer and emerging topics such as machine learning and quantum computing.

Third, ATC receives submissions from many first time or relatively junior authors. Everyone has to start somewhere. But this
meant that the PC had to do more work in reviewing and shepherding papers.

It would be nearly impossible to find ATC PC Chairs who are experts in all areas of systems research, including emerging
ones. Recognizing this, we decided, for the first time, to recruit a few “PC Leaders” early on. We recruited five excellent PC
leaders who, in addition to reviewing papers, would also help us form the PC itself. These five Leaders are experts in areas
that us Co-Chairs were not as knowledgeable in, and they were instrumental in recommending and helping us pick members
for this large PC.

Another important decision we made followed previous ATCs: we selected two “Submission Co-Chairs,” one each at our
respective institutions: Ketan Bhardwaj (Georgia Institute of Technology) and Dongyoon Lee (Stony Brook University). They
were instrumental in assisting us run the conference submissions site (HotCRP) and overall, during the review process. They
helped us analyze data, collect various statistics, write scripts, monitor online discussions, helped us run the (virtual) PC, and
more. We cannot imagine running this conference without them, especially when the pandemic demanded a lot more effort
on everyone’s part.

2 .1 . Decisions we made early on: R1 rejections, topics/themes
Every chair gets a chance to redefine the process of running the conference somewhat. We looked at past conferences as well
as past ATCs and decided to try a few changes.

2 .1 .1 . Two review rounds and early rejections
ATC and other conferences have two rounds of reviewing. In the first round (R1), every paper gets a few reviews, and we
decided to keep it at 3 reviews. There would then be online discussion and filtering. Those papers deemed worthy would
advance to the second round of reviewing (R2) and receive about 2 more reviews. We aimed for 3 reviews in R1 and 5 in R2.
There’s an “art” of sorts to deciding how many reviews to have in each round: if you have too few, less informed decisions are
made. But ironically, if you have too many reviews, in many cases that does not lead to better decisions. We have seen it before:

USENIX Association 2020USENIX Annual Technical Conference xi

when you assign a paper more reviews, there’s sometimes less convergence to an accept/reject decision; often the result is
more variance, so converging on a decision is harder. No, more reviews aren’t necessarily better. Rather, PC members have to
be given time to discuss their reviews and try to convince each other of the merits of one’s opinions.

Traditionally, papers that don’t make it to R2 are slated for rejection. But as there’s a second round of reviewing and a PC
meeting, there’s often a month or more between when R2 reviewing begins and all rejection notices are sent.

So we decided to send rejection notices for papers in R1 who didn’t make it to R2, as quickly as we could. That was almost a
month before final paper decisions were released. We did this to help authors, who now have even more time to consider their
papers and the reviews they received, and decide how to revise the work for an eventual resubmission.

While sending R1 rejections helped authors, it meant more work for the PC and Co-Chairs, and a tighter schedule. Before
any reviews are sent out, we decided to follow past models and perform a “Review Sufficiency Check” (RSC). In this stage, a
paper reviewer is assigned to read all of the reviews and to ensure that they are complete, detailed, fair, respectful, proofread,
and not missing useful information. An example of what an RSC check catches is when a reviewer might say “this work was
done before,” during this RSC phase, we would catch this and ask the reviewer to provide more details such as an actual cita-
tion to the “done before” work.

2 .1 .2 . Paper topics
When authors submit papers, they check several boxes to indicate what topics their paper fits into (e.g., networking, storage,
operating systems). Similarly, before PC members begin to review any paper, they log in to the conference reviewing sys-
tem, HotCRP (yes, pronounced hot-crap :-), and configure their expertise level in each of the topics. PC members mark their
expertise on a five-point scale from “no expertise,” to “neutral,” to “expert.” This indicates the PC member’s preference in
reviewing or not reviewing papers on certain topics.

Assigning hundreds of papers to over 100 PC members is a daunting task. Thankfully, HotCRP has a built-in “auto-assignment”
feature. HotCRP can match papers to PC members by mutual interest in a given topic. HotCRP’s initial assignment is very
helpful but is not perfect, so it still needs a lot of review and tweaking by the Co-Chairs.

One trend in recent years has been to increase the number of topics and even add “cross-cutting” themes (sometimes called
“aspects”). For example, instead of just saying “networking,” you break it down into local-area, wide-area, mobile, protocols,
data-center, etc., networking. And instead of saying “storage” you break it down to file systems, NVMs, Flash storage, net-
work storage, KV stores, etc. And then you add orthogonal themes that can be applied to any of the finer-grained topics, for
example: performance, scalability, security, availability, reliability, scheduling, etc.

There was a good reason to add more and more fine-grained topics and themes: HotCRP could do a better matching of
papers to reviewers, ensuring that the best-qualified experts would get to review a paper. But there was a growing problem
with the proliferation of topics and themes.

First, asking PC members and authors to mark 60+ topics and themes was a growing burden.

Second, authors don’t always mark their papers correctly, often missing important topics/themes.

Third, some PC members don’t want to mark their topic preference on purpose: they would like to get a “random assign-
ment” of papers from the pool of submissions. There is a valid reason for this. A good paper should not just appeal to experts
in the paper’s field, but to a wider audience from the same community. So by reviewing some papers by highly technical PC
members, but not necessarily experts, you ensure the selection of papers with greater appeal to the systems community.

Fourth, and most important. We found that the “cross-cutting themes” were not helping much; in fact, they were likely hurt-
ing HotCRP’s initial assignment of papers to reviews. Suppose an author marks their paper with one or more topics and the
theme of “performance.” A person who can review a “storage performance” paper well probably won’t be able to review
a “network performance” paper as well. Similarly, “scheduling” in data centers is very different from I/O scheduling or
network-packet scheduling. Analyzing these themes, we decided that they were not helpful and even counter-productive, and
so we decided to eliminate all cross-cutting themes from the USENIX ATC ’20 CFP.

Next, we tackled proliferation in the number of themes. After much discussion that involved our PC Leaders and Submission
Co-Chairs, we decided to narrow the list of topics from several dozen to just 14. The reason to reduce the number of topics
was to lower the burden on authors and PC members when marking their expertise; but at the same time, we wanted to ensure
that we would still be able to assign papers to expert reviewers. So we chose multi-topic themes such that expertise in one

xii 2020 USENIX Annual Technical Conference USENIX Association

topic is likely to translate to another. For example, one topic was “Distributed Systems, Clouds, Clusters, Data Centers.” The
idea was that if a PC member can review a paper in “Distributed systems,” then they should also be able to review a paper on
“data centers” reasonably well. No paper-to-reviewers assignment is ever perfect, but we felt that the way we chose themes
and fewer of them helped reduce overall burden and still keep the reviewing quality high.

3 . PC Selection Process
PC selection is a multi-dimensional optimization problem. Co-Chairs have to ensure that the PC is well balanced as much as
possible across multiple dimensions (in no particular order):

1 . Junior vs . senior people: it’s good to have some “fresh blood” and first time PC members, but also to have senior
people who provide the necessary “institutional memory” and the wisdom that comes with... gray hair.

2 . Industry vs . academia: it’s not enough to have just academics on a PC. We have to have representation from industry,
who work on many real-world cutting-edge problems.

3 . Domestic vs . international: the systems community is spread around the world. We want representation not just from
U.S. researchers, but from Europe, Far and Middle East, and more.

4 . Male vs . female: notwithstanding that genders are not binary, computer science and systems research are sorely lack-
ing in female representation. This is true in academia (faculty and students), as well as industry. Inclusivity and diver-
sity has proven to improve outcomes of many decision-making processes. Alas, our community has far fewer female
researchers than we’d like to have. Many female researchers get asked repeatedly to serve on PCs, creating perhaps an
unfair load. We tried to invite as many female PC members to join as we could: 24% of invited were female; and in
the end our PC had 23% female representation.

5 . Topic diversity: it’s important for the PC to have just the right number of people to review papers in various topics.
We reviewed stats from previous years, such as how many papers were received in traditional topics (e.g., storage,
clouds) as well as emerging topics (e.g., edge, ML). We estimated how many papers we might get overall and how
many papers in each topic. We planned for getting anywhere from 300 to 500 (worst case) submissions. In the end, we
had just under 350 reviewed submissions. For each PC member we considered inviting, we had a spreadsheet to mark
their expertise in various areas.

Next, we chose to follow previous year’s models and invite PC members in multiple rounds and for multiple effort levels.
During the fall of 2019 we sent out eight different rounds of invitations. After waiting to hear back, we reviewed the current
makeup of the PC along the five aforementioned dimensions. We used google sheets and docs extensively. We then adjusted
our strategy and sent out the next round of invitations, consulting with our PC Leaders as necessary. Adjustment was neces-
sary to ensure that, if we were short in one dimension above, that we doubled our efforts to catch up along that dimension
without hurting other dimensions.

We offered three tiers of reviewing load. Heavy PC members were expected to review 16–20 papers; Light PC members were
expected to review 8–10 papers; and External Review Committee (ERC) members were expected to review 1–3 papers at
most. Heavy PC members were required to attend the physical PC meeting (which was converted to a virtual PC—more on
that later). ERC members were selected for specialized expertise in narrow areas where we felt we would need a couple more
reviews. All PC members were expected to review papers in two rounds and participate in both rounds’ online discussions.
We first invited Heavy, then Light, then ERC. In some cases, those who declined our invitation to be Heavy PC members
were offered to be a Light PC member (several agreed).

We made a total of 214 PC invitations. 42% of all invited declined (many are understandably busy). Of the 125 that accepted,
we had 67 Heavy PC members, 48 Light, and 10 ERC.

CFP updated and posted, PC formed, HotCRP configured, we were ready...

... or so we thought.

Con permiso, Capitán. The hall is rented, the orchestra engaged. It’s now time to see if you can dance.
 –Q to Captain Picard, “Q Who,” Star Trek: The Next Generation

USENIX Association 2020USENIX Annual Technical Conference xiii

4 . Before Paper Submission Due Date
Anonymizing papers helps ensure the integrity of the conference. When neither authors nor PC members know each other’s
identity, this is called a double-blind review process.

We received dozens of emails from authors who asked for clarifications on how to anonymize their papers. This is always
a difficult subject. If you anonymize your paper too much, you may be hiding information about useful prior work you did,
which could help the current paper under submission. Ironically, if you anonymize your past work too well, you could be
incorrectly accused of reproducing or even plagiarizing “someone else’s work” where it’s really your own work.

If you don’t anonymize, or poorly anonymize, you expose your identity, even indirectly to PC members. There’s no consensus
whether it helps or hurts a paper’s chances, but there is consensus that it biases the process one way or another.

Many ATC authors are first-timers or relatively junior, which explains why we received many such queries about the anony-
mization process. Our advice to authors was as follows. PC members are encouraged not to search the Internet for informa-
tion that might reveal the authors’ identities. So authors had to ensure that their papers were anonymized and self-contained.
Citations to one’s own paper should be stated in the third person: you can refer to your own past work as “John Doe et al. [1]
did this or that” and then state how you improved on those “other” people’s work.

There are times when anonymization can get very difficult. Suppose the authors are from a very large cloud operator and are
reporting on their experiences running a million computers across dozens of data centers worldwide. This kind of experience
is invaluable to report to the systems community, as most researches can only dream of having access to such a large set of
computers and its associated data sets. Therefore it doesn’t make sense in such a paper, to “hide” details as to the size and
scope of the environment being studied: hiding such details would likely hurt such a paper considerably. However, anyone
reviewing such an anonymized paper would have a pretty good guess which company the authors work for. After all, we can
all count on one hand the number of cloud operators with such a large operation.

The above was just one example. We generally told authors that anonymizing is a “best-effort” process: try your best to hide
your identity but avoid going too far that it genuinely hurts your paper.

5 . After Submissions Were Received
HotCRP had 408 records of submissions, but many were just from novice authors experimenting with HotCRP to see how it
works; some authors re-uploaded their paper multiple times, creating duplicate submissions; and some authors registered the
paper days earlier, but withdrew or never completed their submission.

There were just over 350 complete submissions. We inspected each one of them! Not surprisingly, we found over a dozen
submissions that did not follow the rules: many did not anonymize and even had the authors’ full names on the title page;
some had bad fonts or bad PDFs; some had odd background colors or a watermark; some violated the formatting guidelines
(fonts, sizes, margins, or the number of pages). We contacted each of those papers’ authors and gave them 24 hours to fix
their submission or we might have been forced to withdraw their papers. Most authors complied quickly. A couple of papers
were withdrawn. We were left with 348 submissions that were ready to be reviewed.

6 . Conflict Management and Integrity
A conference’s reputation and prestige depend heavily on at least two important factors. First, the number, length, and quality
of the reviews received. This is especially important for rejected papers. Getting a paper rejected is always disappointing; a
good conference will provide reviews that would show authors that reviewers understood their paper, read it carefully, and
provided constructive criticism to help the authors improve the work for a future resubmission.

Second, the perceived fairness of the process. In a conference like ATC, where over 80% of all papers are rejected, it is vital
that the authors of all those rejected papers would feel that the process was fair and unbiased: that the decision on papers
which got accepted or rejected was based on merit alone, and not on who reviewed, who was on the PC, or who are the con-
ference organizers.

In 2019, there were stories circulating about possible poor practices in certain systems conferences. In one case this led to
a tragedy. Organizations such as ACM and IEEE are still investigating various reports. And we have also heard from other
senior members of our community, directly and indirectly, about possible conflicts and violations of anonymity rules.

We expected and followed three common conflict and anonymity rules:

xiv 2020 USENIX Annual Technical Conference USENIX Association

1. PC chairs are prohibited from submitting papers to their conference. When recruiting our Submission Co-Chairs, we
told them they would also not be allowed to submit papers to ATC’20. That is because all four of us had “superuser”
privileges on HotCRP, allowing us to see any review.

2. Authors had to mark every PC conflict (and select a reason) for their paper. HotCRP is excellent at ensuring that
conflicted PC members had no direct or indirect knowledge about papers those PC members are conflicted with: they
can’t see reviews, who reviewed, or scores; and they would be excluded from all online and PC discussions regarding
conflicted papers.

3. Both of us Co-Chairs had papers marked as conflicts (often from our collaborators or ex-students). That’s unavoidable.
Thankfully there were no papers in which we were both conflicted. Therefore, we decided that each one of us PC Co-
Chairs would alone handle all matters (e.g., PC discussions and decisions) relating to papers we were conflicted on;
this included getting us PC Co-Chairs (or Submission Co-Chairs) excluded from parts of the live PC meeting discus-
sions, as well as the selection of paper awards.

Nevertheless, we decided to “take it up a notch”:

First, we added a new statement to the CFP that read as follows:

Authors and others are prohibited from directly or indirectly communicating with any ATC ’20 PC/ERC member about
any potentially submitted paper. All requests should be made exclusively to atc20chairs@usenix.org. Violations of these
guidelines may seek remedies as stipulated in the USENIX Conference Submissions Policy.

This was to ensure that PC members and authors should never communicate directly, regardless of whether a paper was
accepted or rejected, even after the conference is long passed.

Second, our Submission Co-Chairs leveraged past scripts and data-sets that scour the Web, DLBP paper databases, and other
resources. Those scripts attempt to identify additional or incorrectly marked conflicts for every paper. The scripts, for ex-
ample, attempt to find if person A collaborated with person B on a recently published paper, person A submitted to USENIX
ATC ’20, person B was a PC member, but person B was not marked as a conflict for person A’s submission. The scripts also
looked at possible institutional conflicts, and more.

These scripts were far from perfect. They produced many false positives due to very similar names as well as their inability
to perfectly match people’s names with abbreviated initials. Our Submission Co-Chairs manually poured over thousands(!)
of flagged potential conflicts from these scripts and together we narrowed them down to about 242 possible conflicts across
92 papers. We wrote separate scripts that emailed all authors and asked them to verify whether these possible conflicts were
valid or not. Over 50% of all responses indicated that indeed these were valid conflicts for those papers, and so we marked
additional conflicts.

We were now ready in earnest to assign papers to reviewers and begin the first round of reviews.

Phew.

7 . Next Stages of Running a Conference
At this stage of any conference, about half of the Co-Chairs’ work is done: forming a PC, posting a CFP, getting and sanitiz-
ing papers, and assigning reviews. We could now sit back and relax for a while...

... or so we thought.

COVID-19 happened. In other words, the Borg was unleashed on us before anyone was ready.

For many of us, the amount of work in our day-jobs increased considerably. Food and supply shortages. Dire predictions
every day. No one knows what happens next. Many of us who are parents were having to juggle twice the workload and now
having to provide full-time childcare, with schools and childcare facilities closed. People losing their jobs in droves. The
economy tanking. The stress levels everyone was going through were through the roof.

We began to receive reports from PC members who were unable to meet the already tight review deadlines. Some review-
ers reported stress, work and family problems, and even health problems related to COVID-19. Not prying, we tried our best
to work with everyone’s abilities and schedules. In some cases, we had to reassign papers and reviews to ensure we kept the
expected review quality of ATC. This was a non-stop daily effort from mid-February to mid-April of 2020.

USENIX Association 2020USENIX Annual Technical Conference xv

8 . The PC Meeting
An in-person PC meeting is important. No amount of written reviews and numeric scores can replace the human experience.
When people discuss a paper face to face, everyone can better gauge exactly how every reviewer feels about a paper. Seeing
people’s faces, hearing the inflection in their voices, and noting their body language are all vital cues that help us communi-
cate better with one another. This is especially important because the PC meeting is often reserved for the most challenging
borderline papers whose fate depends on informed discussions.

We had grand plans to hold a day-long physical PC meeting at Georgia Tech. The plan was to review no more than 70 papers
during the PC meeting.

We started to get many emails from PC members who were concerned about traveling due to their own health, or their
employer restricted or prohibited all travel. It was clear that holding a physical conference was not possible. So we canceled it
and informed all PC members that it would be a virtual PC.

We had no idea how we would run a virtual PC yet. But we realized that we would not be able to hold a day-long virtual PC,
nor would we have time to review ~70 papers virtually.

Based on past experience, we had already decided to pre-accept and pre-reject some papers during the R2 discussion period
(and recall we also sent out early rejections for papers that were rejected in R1). The thinking was that if the PC can reach
accept/reject decisions on some papers during the R2 online discussion period, and ahead of the PC meeting, then there
would be fewer papers that had to be discussed at the actual PC. Past experience suggested that such papers’ decisions rarely
change during a PC meeting, so it was just going to waste time if we discussed them. Therefore, we assigned a discussion
leader to each paper and asked them to see if a consensus could be reached during the R2 discussion period: pre-accept, pre-
reject, or “need to be discussed at the PC.” We gave PC members wide latitude to opine on those pre-accepted and pre-
rejected papers. If any reviewer felt the decision was incorrect, then that paper would be discussed at the PC instead.

In normal times, it’s just too easy to “punt” on making difficult decisions and merely push the paper to be discussed at the
PC meeting. But now, having been forced to run a shorter, virtual PC, we could not afford to leave too many papers for the
PC meeting itself. So we pushed our PC to make the difficult decisions early on, try to reach consensus, and pre-accept or
pre-reject as many papers as possible. In order to provide for some cross-paper “calibration,” we configured HotCRP so as to
make all reviews and discussions visible to all non-conflicted PC members. This was difficult for everyone, especially during
a worldwide pandemic. But our PC did admirably well. We were left with 38 papers to discuss at the PC meeting.

8 .1 . The Virtual PC (vPC)
Running a virtual PC (vPC) was a new thing. Few have ever attempted it. We could write ten more pages of “Chair Notes”
about our experience. Wait, we did! You can find our full-length report on how we planned and ran our vPC here:
https://www3.cs.stonybrook.edu/~ezk/vPC.html. So we’ll only give you the highlights below:

1. We (two Co-Chairs and two Submission Chairs) evaluated multiple solutions and in the end, we chose Zoom as the
most suitable one.

2. We shortened the PC meeting to just five hours. But we underestimated how long it would take. Indeed, we ran about
2 hours longer.

3. We polled our PC members for their schedules and current time-zones. And we clustered the papers to discuss into
groups that best optimize for PC members’ availability.

4. In a physical PC meeting, PC members who are conflicted are asked to leave the room, then they’re called back in.
With a vPC, we used Zoom’s “Waiting Room” feature: it neatly allowed us to virtually move conflicted PC members
from the actual PC to the waiting room, where their video and audio are disabled, they cannot hear or see any of the
discussions, until they are let back in.

Given the unprecedented circumstances we faced, we believe the vPC went very well. And we strongly believe that USENIX
ATC ’20 maintains the high standards of quality despite all that everyone had to go through.

8 .2 . The Stats
And now, for the customary statistics from the paper review process.

xvi 2020 USENIX Annual Technical Conference USENIX Association

Finalizing the program decisions for USENIX ATC ’20 took 1,379 reviews, 4,193 discussion comments posted during the
two online discussion rounds (post R1 and post rebuttals). The PC wrote a total of over 1.15 million words. Out of the initial
348 submissions, 150 papers (43%) were advanced to the second round, the remaining 198 papers received an early (R1) re-
jection notification. During the post-rebuttal online discussion period, the PC decided to pre-accept 42 highly-ranked papers
and to pre-reject 70 more papers. The remaining 38 papers were further discussed during the vPC meeting. 23 of these papers
were accepted and 15 were rejected. The final acceptance rate for ATC ’20 is 18.7% (65 out of 348).

Among the accepted papers, 61 are regular full-length papers, 3 are short papers which were submitted as short, one paper
will appear at the conference as a short paper but was originally submitted as a full-length 11-page paper, and another paper
submitted as long was accepted as a short paper but given 9 pages. All accepted papers were initially conditionally accepted
and assigned 1 or 2 shepherds, who ensured that the final version of the paper addressed the reviewers’ feedback.

9 . The Conference
With the paper selection process complete, we were almost done—just to organize the papers in sessions that fit the more-or-
less standard schedule template that USENIX was going to provide…

… or so we thought.

Shortly after the vPC concluded and all decisions were communicated, unsurprisingly, it was determined that the actual con-
ference will also have to be held as a virtual event. So, we were back in uncharted territory, trying to make the best decisions
on how to organize and run a multi-day, multi-track USENIX ATC ’20 conference—and for the first time fully online.

We spoke with Co-Chairs of other major systems conferences that switched to virtual mode—ASPLOS ’20, Eurosys ’20, and
ISCA ’20. We polled some of our PC members for their feedback from virtual conferences they had attended. We read blogs
and recommendations on different virtual conference tools and experiences. We consulted on a weekly basis with the USENIX
staff and the Co-Chairs of the workshops affiliated with ATC (HotStorage and HotCloud). And we mapped out the time
zones of the authors of the accepted papers, and much more.

In the end, we arrived at a program that retained the original conference dates, organized in 12 technical papers sessions pre-
sented in two parallel tracks, and two plenary keynote addresses. With a goal of creating a balance among giving to authors
an opportunity to present their work in front of a live audience, providing conference attendees with high-quality technical
content, and shielding everyone from “Zoom fatigue,” we opted for a schedule that combines longer, asynchronously-delivered,
pre-recorded presentations, and live sessions with shorter video presentations and Q&A.

The two keynotes are scheduled at the end of the first two days of the conference, with ample time for discussions and Q&A.
The first keynote is by Professor Ethan Miller from UC Santa Cruz on “The Future of the Past: Challenges in Archival Storage”
and discusses, for example, future storage technologies such as DNA and Glass. The second keynote is by Professor Margo
Seltzer from the University of British Columbia, titled “The Fine Line between Bold and Fringe Lunatic.” Margo’s talk hope-
fully sets a new tradition at USENIX ATC where the previous year’s Lifetime Achievement Award Winner delivers one of
the keynote addresses in the following year.

We look forward to three days of technical papers, keynote presentations, and discussions.

10 . In Closing
Despite the tremendous amount of (unanticipated) work, we are thrilled to have had the honor of chairing USENIX ATC. We
are thankful to everyone who helped and contributed along the way: to the authors who submitted their high-quality work to
ATC, to the dedicated program committee and external reviewers who evaluated hundreds of submissions and provided con-
structive feedback to the authors, to the PC Leaders, Submission Co-Chairs and to the USENIX staff who provided invalu-
able advice and support.

We are excited to welcome everyone at the first-ever virtual USENIX Annual Technical Conference, and we hope you will
enjoy it.

USENIX ATC ’20 Program Co-Chairs
Erez Zadok, Stony Brook University
Ada Gavrilovska, Georgia Institute of Technology

Libnvmmio: Reconstructing Software IO Path with Failure-Atomic
Memory-Mapped Interface

Jungsik Choi
Sungkyunkwan University

Jaewan Hong
KAIST

Youngjin Kwon
KAIST

Hwansoo Han
Sungkyunkwan University

Abstract
Fast non-volatile memory (NVM) technology changes the
landscape of file systems. A series of research efforts to over-
come the traditional file system designs that limit NVM perfor-
mance. This research has proposed NVM-optimized file sys-
tems to leverage the favorable features of byte-addressability,
low-latency, and high scalability. The work tailors the file sys-
tem stack to reduce the software overhead in using fast NVM.
As a further step, NVM IO systems use the memory-mapped
interface to fully capture the performance of NVM. However,
the memory-mapped interface makes it difficult to manage
the consistency semantics of NVM, as application developers
need to consider the low-level details. In this work, we pro-
pose Libnvmmio, an extended user-level memory-mapped IO,
which provides failure-atomicity and frees developers from
the crash-consistency headaches. Libnvmmio reconstructs a
common data IO path with memory-mapped IO, providing
better performance and scalability than the state-of-the-art
NVM file systems. On a number of microbenchmarks, Lib-
nvmmio gains up to 2.2× better throughput and 13× better
scalability than file accesses via system calls to underlying
file systems. For SQLite, Libnvmmio improves the perfor-
mance of Mobibench and TPC-C by up to 93% and 27%,
respectively. For MongoDB, it gains up to 42% throughput
increase on write-intensive YCSB workloads.

1 Introduction

The recent surge of non-volatile main memory (NVM)
technology such as PCM [32, 55], STT-MRAM [4, 30],
NVDIMMs [45], and 3D Xpoint memory [21] allows ap-
plications to access persistent data via CPU load/store in-
structions directly. With the benefits of competitive perfor-
mance, low power consumption, and high scalability, they
are expected to complement or even replace DRAM in future
systems [30, 33].

To leverage the performance and persistent features, re-
searchers have proposed NVM-optimized file systems [8, 12,

13, 24, 28, 46, 65, 67, 68]. The most important challenge ad-
dressed in the series of work is to revise the inefficient be-
havior of the software IO stack, which presents a dominating
overhead in fast NVM [2, 3, 9, 22, 26, 48, 69]. To reduce the
overhead, state-of-the-art NVM-aware file systems discard
the traditional block layer and the page cache layer in the
IO path. Despite these optimizations, file accesses through
the OS kernel’s file system still incur significant overhead.
For example, read and write system calls are still expensive
ways to leverage the low latency of NVM, due to frequent
user/kernel mode switches, data copies, and complicated VFS
layers [7, 9, 24, 25, 27, 57, 62].

A promising approach to further reduces IO overhead of
NVM file systems is to use memory-mapped IO [9, 35, 58,
60, 67, 68]. The memory-mapped IO naturally fits the charac-
teristics of NVM. Applications can map files to their virtual
address space and access files directly with load/store in-
structions without kernel interventions. Memory-mapped IO
also minimizes the CPU overhead of file system operations
by eliminating file operations such as indexing to locate data
blocks and checking permissions [65]. With these benefits,
the mmap would be a critical interface for file IO in future
NVM systems.

While memory-mapped IO exposes the raw performance
of NVM to applications, a lot of responsibility is laid on ap-
plications as well. One thing to keep in mind for application
programmers is that memory-mapped IO does not guarantee
atomic-durability. If a system failure occurs during memory-
mapped IO, the file contents may be corrupted and inconsis-
tent in the application context. In return for fast performance,
developers should build application-specific crash-safe mech-
anisms. Cache lines should be flushed to ensure durability
and memory barriers should be enforced to provide a correct
persistent ordering for NVM updates. This mechanism often
induces a serious software overhead, and makes it notoriously
difficult to write accurate and efficient crash-proof code for
NVM systems [38, 50–52, 71]. For an instance, applying
cache flush and memory barrier instructions correctly in the

USENIX Association 2020 USENIX Annual Technical Conference 1

right locations is challenging; excessive use causes perfor-
mance degradation, but omitting them in required locations
leads to data corruption [39, 70]. This is the major obstacle
blocking the adoption of memory-mapped IO to fully exploit
the advantages of NVM.

We propose Libnvmmio, a user library that provides failure-
atomic memory-mapped IO with msync. We add atomicity
and ordering features to the existing msync at user-level. By
separating failure-atomicity concerns from memory-mapped
IO applications, Libnvmmio allows developers to focus on the
main logic of programs. To make the msync failure-atomic,
Libnvmmio uses user-level logging techniques. Our library
stages written data to per-block, persistent logs and applies the
updates to memory-mapped files in a failure-atomic manner
on msync.

Implementing msync at user-level has many advantages.
First, the user-level msync minimizes system call overhead.
Existing msync imposes system call overhead, which takes
locks and excessively serializes threads in a multi-threaded ap-
plication. Second, it reduces write amplification. Kernel-level
msync flushes rather large ranges whose size are multiples
of the system page size (4KB, 2MB, or 1GB). Whereas,
user-level msync can track dirty data at a cacheline gran-
ularity and flush them at cacheline level. Third, it avoids
TLB-shootdown overhead. When applications invoke msync
on NVM file systems, operating systems track down updated
pages by searching for dirty bits in the page table and flush
corresponding cache lines of those dirty pages to NVM. After
the flush, they clear the dirty bits in the page table to enable
tracking new updates. This incurs TLB invalidations in other
cores, as dirty bit state is just kind of information in TLB
along with the virtual to physical page mapping. As Libnvm-
mio’s msync maintains user-level logs for update tracking, we
can totally avoid TLB-shootdown overhead. Fourth, it takes
advantage of non-temporal store instructions which bypass
CPU caches with no need of cache flushing. Kernel-level
msync flushes the entire range, even if updates are performed
with non-terminal store instructions. In general, there is no
other way to communicate with msync that the non-temporal
stores are used. For all of these reasons, a user-level msync
in Libnvmmio can perform better than a kernel-level msync.

Existing applications that use conventional file IO inter-
face (e.g., read/write, fsync, etc.) can also benefit from
memory-mapped IO using Libnvmmio. Like FLEX [66] and
SplitFS [24], Libnvmmio transparently intercepts the tradi-
tional file IO requests and then perform memory-mapped
IO. When applications call fsync, Libnvmmio carries out
its failure-atomic msync. Libnvmmio rebuilds the common
IO path with efficient mechanisms for read and write perfor-
mance, but the uncommon, complex file operations such as
directory namespace and protection are passed to the slow
path of the existing file systems.

Libnvmmio runs on any file systems that supports memory-

read syscalls memory mapped IO
0

1

2

3

El
ap

se
d

Ti
m

e
(S

ec
)

Memory Copy
(43.87%)

Complicated
IO Stack
(45.44%)

Libc (10.6%) User
Kernel

Figure 1: Read syscalls vs. memory mapped IO. Sequential
read on a 16GB file. Both cases use read or memcpy to copy
file data into the user buffer by 4KB.

mapped interface on NVM such as Ext4-DAX, XFS-DAX,
PMFS [13], and NOVA [68]. Libnvmmio running on NOVA
performs better than NOVA by 2.5× and Ext4-DAX by 1.18×
in Mobibench and TPC-C.

Libnvmmio makes the following contributions:

• Libnvmmio extends the semantics of msync, providing
failure-atomicity.

• With experimental evidences, Libnvmmio demonstrates
lower-latency and higher-throughput with scalability
than the state-of-the-art NVM file systems

• Design and implementation of Libnvmmio, running on
Ext4-DAX, XFS-DAX, PMFS, NOVA. Libnvmmio is
publicly available at:
https://github.com/chjs/libnvmmio.

2 Background

2.1 Need for Memory-Mapped IO
The fundamental difference between memory-mapped IO
and read-write IO is the data path. The read-write interface
copies the user buffer into a kernel buffer1, searches the file
system index to locate physical block address, and performs
metadata operations if necessary. Whereas, the memory-
mapped interface allows direct accesses to storage, skipping
the index searching and copying to the kernel buffer. The
simplified data path in memory-mapped IO drastically reduces
the software overhead compared to the read-write interface,
which significantly improves IO performance in fast non-
volatile memory. To compare the performance, we run a
micro-benchmark performing sequential reads on a 16 GB
file. Figure 1 shows the performance difference. Memory-
mapped IO shows 2.3× better performance than the read
system call. The read system calls spends 43.9% out of the
IO entire latency on copying user buffers to kernel buffers
and 45.4% for the rest of kernel IO stack. Memory-mapped
IO eliminates most of the software overhead. We observed
that the total number of instructions to execute a single read

1Some NVM file systems such as NOVA avoid it.

2 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/chjs/libnvmmio

is 69× less in the memory-mapped IO than the read system
call.

2.2 Need for Atomic Updates

Modern processors guarantee only cache-sized, aligned stores
(64 bit) to be atomic. The atomicity guarantee is not sufficient
for general file IO which requires more complex and larger
atomic updates. On writing a 4 KB or larger block, a crash
may cause partially updated states, which needs significant
costs to detect and recover the block. To avoid the hassle,
researchers put an effort to make large updates failure-atomic
in non-volatile memory file systems [24, 28, 67]. Existing
file systems deploy a variety of techniques to implement the
failure-atomicity guarantee: copy-on-write and journaling.
These techniques work in different ways, and the advantages
and disadvantages in terms of performance vary.

2.2.1 Copy-on-Write

When updating a block, the Copy-on-Write (CoW) (or
shadow-paging) [12, 17, 42, 56, 67, 68] mechanism creates
a copy of the original page and writes the new data to the
copied page rather than updating the new data in place. Not
only for data update but the CoW mechanism performs the
out-of-place update for index. For a tree-based indexing struc-
ture, the CoW mechanism causes a change of a child node to
update its parent node in an out-of-place manner, propagating
all the changes of internal nodes up to the top of the tree
(called wandering tree problem).

The CoW mechanism induce significant software overhead
when used in the NVMM system. First, CoW dramatically
increases write amplification. CoW usually performs writes
at the page granularity, which is a typical node size of file
systems indexing. Even if only a few bytes are updated,
the entire page must be written. Besides, as the capacity
of main memory has increased, the utilization of hugepages
(e.g., 2MB or 1GB) is increasing [6, 13, 14, 29, 47, 54]. This
trend makes the use of the CoW technique more costly [9].
Second, the CoW technique causes TLB-shootdown overhead
in memory-mapped IO. If the CoW technique is applied to
memory-mapped files, the mapping of the virtual address
must be changed from the original page to the copied page,
necessitating TLB-shootdown whenever an update occurs.
When a CoW occurs, the kernel flushes the local TLB and
send flush requests to remote cores through inter-processor
interrupt (IPI). The remote cores flush their TLB entries ac-
cording to the information received by the IPI and report back
when completed. If the remote core has interrupts disabled,
the IPI may be kept pending. The initiator core expects to
receive all acknowledge the process of flushing the TLBs.
This process could take microseconds, causing a notable over-
head [3, 61].

2.2.2 Journaling

Journaling (or logging) is a technique that is widely used in
databases [43] and journaling file systems [13, 16, 22, 34, 49,
53] to ensure data-atomicity and consistency between data
and metadata. It persists a copy of new or original data before
updating the original file. If a system failure occurs during
writing, the valid log can be used for recovery. Two logging
policies are possible: undo logging and redo logging. Redo
logging first writes new data to the redo log. When the new
data becomes durable in the log, the data are overwritten to
the original file. If a system failure occurs while updating the
file, the new data in the log can be written again to the file. For
read requests, applications need to check the log first because
only the log may have the up-to-date data. Undo logging
first copies the original data to the log. After the original
data becomes persistent, undo logging updates the new data
to the file in place. If a system failure occurs during the
write, undo logging allows to roll back the original data using
the undo log. Because the latest data are always in the file,
applications can read the data directly from the file without
checking the log. Therefore, undo logging is appropriate for
the applications that perform read frequently (§3.4).

Logging techniques require writing data twice: once to the
log and once to the original file, which may cause software
overhead. However, redo logging allows updating the original
file out of the critical path of execution. Because the log has
the persistent data, redo logging can postpone updating the
file in the background (§3.3). Besides, logging technique is
convenient to implement the differential logging [1,15,23,36].
Unlike page-based logging, which logs an entire page, the
differential logging only logs differential data at the byte-
granularity. Differential logging can significantly reduce write
amplification especially when it is used for byte-granularity
storage devices such as NVM [27].

2.3 Atomic Update for Memory-Mapped IO

While the direct access of memory-mapped IO is essential for
reducing the software overhead in NVM file system, it pushes
the burden of data atomicity to the application. The POSIX
msync primitives provides durability and consistency between
data and metadata but not atomicity. To support atomicity of
large updates, application developers must implement their
own reliability mechanism. However, implementing the in-
house mechanism is tedious and notoriously buggy [50].

Researchers have proposed adding the atomicity guaran-
tee to the msync interface in traditional storage [50] and
NVM [67]. To provide atomicity to memory-mapped files,
they take journaling-like approaches; dirty pages are staged
first and copied to the original file. Providing atomicity at
the kernel-level has a fundamental limit which impacts good
performance. For example, NOVA [67] creates a replica page
on a page fault and maps the replica page on the faulting

USENIX Association 2020 USENIX Annual Technical Conference 3

virtual address. On msync, kernel copies the replica page to
the original page atomically. The minimum unit of copying is
a page size (4 KB or 2 MB), which causes write amplification
for small IO requests.

3 Libnvmmio

The purpose of Libnvmmio is eliminating software overhead,
while providing low-latency, scalable file IO with ensured
data-atomicity. Libnvmmio is linked with applications as
a library, providing the efficient IO path by using the mmap
interface. In particular, Libnvmmio has following design
goals and implementation strategies.

Low-latency IO. Reducing software overhead is crucial to
take advantage of low latency NVM. Since Libnvmmio aims
to make the common IO path efficient for low-latency IO, it
avoids using the complicated kernel IO path including the
slow journaling for common cases.

Efficient logging for data atomicity. Libnvmmio transpar-
ently intercepts file APIs and provides atomicity for data
operations by using logging. As sustaining low-latency file
IO is essential, Libnvmmio endeavors to minimize write am-
plification and software overhead for data logging.

High-throughput, scalable IO with high concurrency.
To sustain high throughput across different IO sizes, Libnvm-
mio uses varying sizes of log entries depending on IO sizes.
To this end, Libnvmmio deploys a flexible data structure for
indexing the log entries and handles various log entry sizes.
Additionally, Libnvmmio aims to achieve high concurrency
through fine-grained logging and scalable indexing structure.

Data-centric, per-block based organization. Libnvmmio
constructs most of its data structures and metadata as data-
centric. For example, Libnvmmio builds per-block logs and
metadata rather than per-thread or per-transaction based logs.
Data-centric design allows a single instance of a data structure
and metadata for a corresponding data block. The singleton
design makes it easy to coordinate shared accesses with locks.
As multiple threads access the same large file concurrently in
recent applications, they require more fine-grained locks than
entire file locks [40]. With fine-grained locks at block level,
Libnvmmio achieves scalability for data-centric logging. Per-
inode logging improves scalability, when multiple accesses
are performed on different files [67,68]. However, it provides
a limited degree of scalability for multiple accesses to the
same file.

Transparent to underlying file systems. On top of exist-
ing NVM file systems, Libnvmmio improves the performance

Atomic Write

open
write

read
fsync

close

Application

NVM-aware FSKernel

FilesNVM

…

Libnvmmio Logs

Memory Mapped Files

munmap
/close

open
/mmap MMIOa

Figure 2: Libnvmmio Overview

for common data IO, keeping POSIX interfaces unchanged.
For complex, uncommon IO operations, Libnvmmio lever-
ages rich, well-tested features of existing file systems. With-
out breaking POSIX semantics, Libnvmmio offers extended
POSIX APIs to applications for additional features. For exam-
ple, POSIX semantics does not guarantee atomicity of mmap.
While atomicity is useful, not all files need atomic update
guarantees — it is unnecessary for temporal files. Libnvm-
mio extends open API to let applications indicate atomicity
guarantee in a per-file basis. To communicate with the kernel,
Libnvmmio translates the extended APIs to the conventional
APIs with additional flags. With such a user-level extension
design, Libnvmmio runs on any NVM file systems that sup-
port DAX-mmap, while enjoying file-system specific features
such as fast snapshot and efficient block allocation.

3.1 Overall Architecture

Libnvmmio runs in the address space of a target application
as a library and interacts with underlying file systems. Lib-
nvmmio intercepts IO requests and turns them into internal
operations. For each IO request, Libnvmmio distinguishes
data and metadata operations. For all data requests, Libnvm-
mio services them in the user-level library, bypassing the slow
kernel code. Whereas, for complex metadata and directory
operations, Libnvmmio lets the operations be processed by
the kernel. This design is based on the observation that data
updates are the common, performance-critical operations. On
the other hand, the metadata and directory operations are rel-
atively uncommon and include complex implementation to
support POSIX semantics. Handling them differently, the
architecture of Libnvmmio follows the design principle of
making the normal case fast [31] with a simple, fast user-level
implementation.

Figure 2 shows the overall architecture of Libnvmmio.
When an application opens a file, Libnvmmio interposes the
open call with a user-level open API. Within the open API,
it maps the whole content of the file onto the user memory

4 2020 USENIX Annual Technical Conference USENIX Association

space and initializes per-file metadata (§3.5). The metadata
Libnvmmio initializes includes inode number, logging policy,
epoch number, etc. After the initialization, it returns the file
descriptor to the application.

Memory-mapped IO. To directly access the NVM, Libn-
vmmio maps the file via mmap system call. Libnvmmio inter-
cepts and replaces read calls with memcpy, and write calls
with a non-temporal version of memcpy that uses the movnt in-
struction. There are two reasons why the memory-mapped IO
allows faster NVM access than the traditional kernel-served
read and write method. First, when persisting and obtaining
data, the simple, the fast code path in Libnvmmio replaces
the complex, slow kernel IO path [24, 28]. Second, read
and write system calls involve indexing operations to locate
physical blocks, which causes a non-trivial software over-
head for fast NVM accesses. Whereas, in memory-mapped
IO, the kernel searches the complex index when it maps the
file blocks to the user address space on page faults. After
the mapping is established, Libnvmmio can access the file
data simply with offset in the memory-mapped address, elim-
inating the indexing operations in the steady state. Besides,
finding file blocks through virtual addresses is offloaded to
the MMU (e.g., page table walkers, TLBs). Therefore, it
reduces a sizable amount of the CPU overhead caused by file
indexing [65].

Atomicity and durability with user-level logging. On
SYNC2 calls, Libnvmmio flushes the cache data and stores
the data to NVM atomically via the logging mechanism. All
write data are firstly persisted to the user-level log and later
they are copied (called checkpoint) to the memory-mapped
file. Data from both write and memcpy interfaces goes down
the same path.

Providing atomicity via the user-level logging has sev-
eral advantages over the kernel-level design. Using the
user-level IO information, Libnvmmio can leverage the byte-
addressability of NVM to log data in the fine-grained unit. On
the other hand, in the kernel-level approach, the logging unit
should be a page size, as msync relies on the page dirty bit to
log the memory-mapped data, causing write amplification in
case of small writes (i.e., less than a page size). After msync
is done, kernel must clear the dirty bit in the page table fol-
lowed by TLB shootdown. However, user-level design uses
own data structure to track dirty data without relying on the
page dirty mechanism, saving unnecessary TLB shootdowns.

Application transparency. For applications using read
and write, Libnvmmio can transparently replace them with
the memory mapped IO operations. For applications using
mmap, Libnvmmio can redirect the memory operations to
NVM memory-mapped IO operations without effort.

2This term means both fsync and msync.

Providing atomic-durability on top of the mmap interface
makes the case challenging, as Libnvmmio cannot distinguish
the memcpy operations that requires atomic-durability from
the ones that do not require.

Guaranteeing atomicity to all IO operations is prohibitively
expensive. Some IO requests do not need atomicity such as
logging internal traces or errors. To address the problem, Lib-
nvmmio exposes two version of memcpy: POSIX version and
Libnvmmio version. Libnvmmio versions are prefixed with
nv (e.g., nvmmap, nvmemcpy, nvmunmap, etc.) and provide
atomic-durability. Libnvmmio avoids intrusive modifications
of existing applications in order to use the Libnvmmio APIs.
Instead, we instrument the application binary with an in-house
tool, which lists the files the application accesses and asks
developers which files need atomic-updates. With the list
of files requiring atomic-durability, we patches the binary to
use Libnvmmio APIs. In most cases, applications use read,
write, or memcpy APIs, which are easy to patch for the ap-
plication binary. However, in case of manipulating files with
pointers, we need source-level modifications (e.g., 182 lines
in the MongoDB MMAPv1 engine).

3.2 Scalable Logging
Applications such as in-memory database and key-value
stores, that benefit from Libnvmmio, require high concur-
rency level to sustain high throughput. Libnvmmio responds
to the high concurrency requirement with scalable logging
that is based on per-block data logging and indexing.

3.2.1 Scalable per-block logging

Finding proper logging granularity is necessary to achieve
high concurrency. Application-centric techniques such as
per-thread and per-transaction logging are widely adopted in
databases, providing high concurrency. However, these tech-
niques rely on the strong assumption that data is only visible
and applicable to the current thread or transaction; e.g., data
in logs need not to be shared among threads or transactions,
which is guaranteed by isolation property. Logging without
needing to consider shared data allows for high scalability.
However, the assumptions do not hold in general IO cases;
sharing IO data among threads is a common use case. More-
over, the transaction boundary is not visible to the current
design of Libnvmmio.

Instead, Libnvmmio performs data-centric logging. It di-
vides the file space into multiple file blocks (4 KB∼2 MB)
and creates a log entry for each file block. Log entries in Lib-
nvmmio are visible to all threads. The fine-grained, per-block
logging allows a flexible way to share data among threads.
When an update is made to a mapped file, Libnvmmio creates
a log entry indexed by the offset, where the update occurred
in the memory-mapped file. If other threads read the updated
offset, it serves data from the log entry instead of the original

USENIX Association 2020 USENIX Annual Technical Conference 5

Global Upper Middle Table Offset

rwlock
entry
offset
len
dest
policy
epoch

File
Offset

lgd
skip

radix_root

LGD
LUD

LMD
Table Index

Entry
(32B)

Delta

Log
Entry

(4KB~2MB)

9 9 9 9~0 12~21

Lock-Free Radix Tree
Persistent Memory

size

21

Figure 3: Indexing structure of Libnvmmio.

mapped file. When another update comes to the same file
offset, it overwrites the update in the existing log entry. For
shared data reads, per-block logging provides better perfor-
mance than per-thread logging, as per-thread logging needs
to search all the logs of all threads to gather all the updates
made to the same file blocks. In addition to per-block log-
ging, Libnvmmio takes advantage of the byte-addressable
characteristics of NVM and reduces write amplification by
performing differential logging for a partial update, where the
update size is smaller than log block size.

3.2.2 Scalable log indexing

Along with data logging, indexing design is also critical to
achieve high concurrency. Libnvmmio uses a file offset as an
index key to a log block. To index many log blocks, Libn-
vmmio uses multi-level indexing to reduce space overhead.
Similar to the page table, it uses radix trees for indexing.
Fixed-depth trees allow lock-free mechanisms, which provide
better concurrency than balanced trees such as red-black trees.
As balanced trees require coarse-grained locks to protect the
entire trees for tree re-balancing, their algorithms severely
hurt concurrency [10, 11].

Figure 3 shows the index design of Libnvmmio. Each
internal node is an array of buckets pointing to the next level
internal nodes. Each set of 9 bits from file offset is used to
locate a bucket in a corresponding internal node. Each leaf
node points to an index entry, where entry field points to
log entry. The index entry also contains other metadata for
the given file offset. Libnvmmio supports variable-size log
entries for large IO requests. Log entries range from 4KB to
2MB, doubling the size. To index 4KB log entries, it uses 9
bits for Table and 12 bits for Offset. For 2 MB log entry, it
uses 21 bits for Offset without using Table.

In an index entry, offset and len are used for updated
data offset within a log entry and update size, respectively.
If update size in len is smaller than the log entry size, it
means the log entry contains partial updates (Delta). The log
entry can hold a single delta chunk indicated by offset and

len. If another delta chunk needs to be added in the same
log entry, the two chunks are merged. The virtual address
of the memory mapped file specified in dest is the location
where the log will be checkpointed. The logging policy for
the corresponding data is specified in policy, which decides
whether Libnvmmio uses undo log or redo log (§3.4). To
determine if the log entry should be checkpointed, the number
in epoch is used (§3.3).

The radix tree has a fixed depth to implement a lock-free
mechanism. The four-level radix tree can support 256 TiB file
size, but it can cause unnecessary search overhead for small
files. Libnvmmio uses a skip pointer to implement a lock-free
radix tree while also reducing the search overhead. As shown
in Figure 3, the radix_root has a skip field. If the file size
is small, Libnvmmio uses the field to skip unnecessary parent
nodes. When the file size changes, Libnvmmio can adjust the
skip pointer.

To achieve fast indexing, Libnvmmio manages the internal
nodes of the radix tree in DRAM and does not persist them
to NVM. It persists only the index entries and the log entries.
Libnvmmio does not need to build the entire radix tree for
recovery. On a crash, it simply scans the persisted index and
log entries, which are committed but not checkpointed yet.
It can copy the log entries to the original file by referring
the dest attribute in the corresponding index entries and the
per-file metadata. To achieve high concurrency, Libnvmmio
does not use any coarse-grained locks to update internal nodes
of the radix tree. Instead, it updates each bucket of internal
nodes with an atomic operation. Only when it needs to update
index entry, it holds the per-entry, reader-writer lock.

3.3 Epoch-based Background Checkpointing

Log entries are committed on SYNC3. The committed log
entries must be checkpointed to the corresponding memory-
mapped file and cleaned. To make the checkpoint operations
out of the performance critical path, Libnvmmio checkpoints
the log entries in the background. It periodically wakes up
checkpointing threads for copying and cleaning log entries4.
While checkpointing, the background threads do not need to
obtain a coarse-grained tree lock. This minimizes disruption
on on-going read/write operations. The background threads
holds a per-entry writer lock to serialize checkpoint operations
and read/write requests on the log entry.

Libnvmmio uses per-block logging. When an application
calls SYNC, it must convert many of the corresponding per-
block logs to committed status. This increases the commit
overhead significantly. To avoid such overhead, Libnvmmio
performs committing and checkpointing based on the epoch,
which increases monotonically. Libnvmmio maintains two

3This term means both fsync and msync.
4Through sensitivity studies, we configured Libnvmmio wakes up the

threads every 100 microsecond.

6 2020 USENIX Annual Technical Conference USENIX Association

types of epoch numbers; each index entry has an epoch num-
ber for its update log and per-file metadata carries the current
global epoch number. When allocating an index entry, it as-
signs the current global epoch number for file to the epoch
number for the index entry. Libnvmmio increases the current
global epoch number, when applications issue SYNC calls to
the file. The epoch numbers are used to distinguish committed
(but yet to be checkpointed) log entries from the uncommitted
ones. If a log entry has a smaller epoch number than the
current global epoch number, it indicates that the log entry is
committed. If the epoch number of a log entry is the same as
the global epoch number, the log entry is not yet committed.
Libnvmmio checkpoints only committed log entries in the
background threads. After being checkpointed, log entries
are cleaned and reused later.

The epoch-based approach allows fast commit of log en-
tries, as Libnvmmio does not need to traverse the radix tree
and mark log entries as committed. Instead, it simply in-
creases the current global epoch number in the per-file meta-
data, which reduces SYNC latency greatly. Commit operations
are performed synchronously and atomically, when the appli-
cation calls SYNC. Meanwhile, checkpoint operations are done
asynchronously by background threads. Consequently, there
are committed logs and uncommitted logs mixed in the radix
tree. When applications request writes, the corresponding log
entries are overwritten for uncommitted ones. Meanwhile,
Libnvmmio synchronously checkpoints the committed logs
first for committed ones. After completing the checkpoint-
ing, it allocates a new uncommitted log and processes write
requests.

3.4 Hybrid Logging

Libnvmmio uses a hybrid logging technique to optimize IO la-
tency and throughput. As pointed out in §2.2.2, undo logging
performs better when accesses are mostly reads, whereas redo
logging is better when accesses are mostly writes. To achieve
the best performance of both logging policies, Libnvmmio
transparently monitors the access patterns of each file and
applies different logging policies depending on current read
and write intensity.

Libnvmmio maintains counters to record read and write
operations for a file (§3.5). When SYNC is called, Libnvm-
mio checks the counters to determine whether which type
of logging would be better for the next epoch. If the log-
ging policy changes, Libnvmmio carries out both committing
and checkpointing synchronously. SYNC is a clean transition
point for changing the logging policy, as current log data are
checkpointed and cleaned. This allows Libnvmmio to avoid
complex cases where it otherwise has to maintain two log
policies at the same time. The per-file, hybrid logging enables
the fine-grained logging policy, allowing Libnvmmio to adopt
the individually best logging mechanism for each file. By

rwlock
start
end
ino
offset
epoch
policy
read_cnt
write_cnt
radix_root

Per-File Metadata

Persistent Memory
Radix Tree

Process
Address Space

Memory
Mapped

File

Per-Thread
Cache

hit

Red-Black Tree

Virtual Address

fd Array

…

miss

Figure 4: Per-File Metadata

default, Libnvmmio uses undo logging. It switches to redo
logging, when the ratio of write operations becomes higher
than or equal to 40%. The policy for the new epoch is deter-
mined by the write ratio in the previous epoch. The threshold
ratio is obtained from the sensitivity analysis in §4.2.1.

3.5 Per-File Metadata

Libnvmmio maintains two types of metadata in persistent
memory; the index entry is the metadata for each log entry,
and the per-file metadata shown in Figure 4 is the metadata
for each file. Libnvmmio stores both metadata as well as log
entries in NVM, which enables Libnvmmio to recover its data
in case of system failures.

When Libnvmmio accesses a file, it first gets the per-file
metadata of the file and the index entry corresponding to
the file offset. If applications access a file with nvmemcpy
interface, it needs to find the per-file metadata by using access
address of the nvmemcpy. The approach Libnvmmio takes
for this purpose is to employ a red-black tree and perform
range searches with virtual addresses. To speed up the search
process, Libnvmmio caches recently used per-file metadata
in the per-thread cache. Meanwhile, Libnvmmio can quickly
obtain the per-file metadata through the file descriptor, if
applications access files with read/write interface.

The per-file metadata consists of ten fields. The rwlock is
a reader-writer lock. During SYNC process, this lock prevents
other threads from accessing the file. The start and end
fields store the location of the virtual address to which the file
is mapped. The ino and offset fields record which part of
a file is mapped. The epoch field stores the current global
epoch number for the file. The policy field stores the current
logging policy for the file. The read_cnt and write_cnt are
counters of read and write operations during the current epoch,
respectively. The radix_root field stores the root node of
the radix tree indexing for index entries and log entries.

USENIX Association 2020 USENIX Annual Technical Conference 7

R
2

redo
0/4

rwlock
epoch
policy
r/w cnt

Radix Tree

2 2 1 2

W
3

redo
0/0

rwlock
epoch
policy
r/w cnt

Radix Tree

2 2 1 2

SYNC()Per-File
Metadata

Index Entry

Log Entry

Figure 5: Epoch-based committing

3.6 Putting all together: write and SYNC

Figure 5 shows the steps of the epoch-based checkpointing
in Libnvmmio. The numbers in the index entries indicate
per-entry epoch numbers, and the check marks indicate their
log entries are committed. A simplified version of per-file
metadata is shown in tables.

Write. 1© The thread holds the reader lock in the per-file
metadata of the file and increases the write counter with
atomic operations. Holding the reader lock in per-file meta-
data allows multiple threads to access the file concurrently.
2© The thread traverses the in-memory radix tree to locate

the corresponding index entry and holds the writer lock for
the index entry. 3© Depending on the current logging policy
in the per-file metadata, Libnvmmio creates an undo or redo
log entry. 4© The thread writes data to the log entry with
the non-temporal store instruction, and Libnvmmio updates
the index entry of the log entry. 5© Libnvmmio calls sfence
indicating logging is done and unlocks the index entry and
per-file metadata, and returns to the application.

SYNC. 1© Libnvmmio holds the writer lock in the per-file
metadata and increases the global epoch counter by one. Hold-
ing the writer lock of the per-file metadata prevents other
threads from accessing the file. 2© Libnvmmio calculates the
write ratio from the write and read counters. In the exam-
ple in Figure 5, Libnvmmio continues to use redo logging
for the next epoch, as the access pattern is write-intensive
(4 writes out of 4 accesses). After determining the logging
policy, Libnvmmio initializes the counters. When logging
policy is unchanged, Libnvmmio lets checkpointing threads
commit log entries in the background. If Libnvmmio decides
to change logging policy, it synchronously checkpoints all
committed log entries before the new epoch begins. 3© Fi-
nally, Libnvmmio unlocks the per-file metadata and returns
to the application.

3.7 Crash Consistency and Recovery
Libnvmmio preserves write ordering of a sequence of write
requests. For each write, Libnvmmio writes data to the log and
flushes the CPU cache. The order-preserving write provides

NVMM Rand Read Rand Write Seq Read Seq Write
NVDIMM-N 35.84 20.61 92.42 20.65
Optane DC 3.588 1.026 13.64 4.30

Table 1: NVMM Characteristics (GB/s)

the prefix semantics [63], guaranteeing every thread to see a
consistent version of data updates. Along with the consistency
of data, Libnvmmio guarantees consistency between metadata
and data. Libnvmmio maintains two persistent metadata: per-
file metadata and index entries. Libnvmmio strictly orders
between the sequence of [data update, index entry update]
and SYNC call.

In the recovery phase, Libnvmmio checks whether the in-
dex entries are committed, while scanning the index entries.
If Libnvmmio finds a committed log, whose epoch number
is smaller than the global epoch number, it finds the per-file
metadata from the index entry’s dest attribute. Then, it re-
does or undoes according to the logging policy. Libnvmmio
can efficiently parallelize this recovery task by using multi-
threading.

4 Evaluation

We implemented Libnvmmio from scratch. Our prototype of
Libnvmmio has a total 3,452 LOC5 in C code. To persist data
to NVM, Libnvmmio employs the PMDK library [20].

4.1 Experimental setup
To evaluate Libnvmmio on different types of NVM, we used
NVDIMM-N [45] and Intel Optane DC Persistent Memory
Module [19]. The system with 32GB NVDIMM-N has 20
cores and 32GB DRAM. Another system with 256GB Op-
tane has 16 cores and 64GB DRAM. In the Optane server,
we used two 128GB Optanes configured in interleaved App
Direct mode. Table 1 shows the results of measuring the
performance of each memory using Intel Memory Latency
Checker (MLC) [18].

In our experiment, Libnvmmio used NOVA [68] running
on Linux kernel 5.1 as its underlying file system. To compare
Libnvmmio with various file systems, we experimented with
four file systems: Two of these, Ext4-DAX and PMFS [13],
journal only metadata and perform in-place writes for data.
The two others, NOVA and SplitFS [24], guarantee data-
atomicity for each operation. We configured NOVA to use
CoW updates, but without enabling checksums. For SplitFS,
we configured it to use strict mode. We ran PMFS and SplitFS
on Linux kernel 4.13, and Ext4-DAX and NOVA on Linux
kernel 5.1. Kernel versions are the latest versions that support
the underlying file systems.

5we measure LOC with sloccount [64]

8 2020 USENIX Annual Technical Conference USENIX Association

0:1
00

10
:90

20
:80

30
:70

40
:60

50
:50

60
:40

70
:30

80
:20

90
:10

10
0:0

R:W Ratio

0

5

10

15

20

El
ap

se
d

Ti
m

e
(s

ec
) Undo

Redo
Hybrid

Figure 6: Performance on different logging policies

4.2 Microbenchmark
4.2.1 Hybrid logging

Most logging systems adopt only one logging policy (redo
or undo). Each logging policy has different strengths and
weaknesses, depending on the type of file accesses. While
redo logging is better for write-intensive workloads, undo
logging is better for read-intensive workloads.

Figure 6 shows how logging policies (redo, undo, and hy-
brid logging) affect the performance of Libnvmmio. Undo
logging shows better performance than redo, when the work-
load has high read ratio. Redo logging shows better perfor-
mance than undo, when the workload has high write ratio.
When the R:W ratio is 60:40, the two logging policies show
the same level of the performance. Based on this observation,
Libnvmmio uses the ratio as a change point for its hybrid
logging policy. As shown in Figure 6, hybrid logging in Libn-
vmmio achieves the best case performance of the two logging
policies.

4.2.2 Throughput

We measured the bandwidth performance by using FIO [5]. It
repeatedly accesses a 4GB file in units of 4KB for 60 seconds
in a single thread. Two graphs in Figure 7 show the experi-
ment results on NVDIMM-N (A) and Optane (B), respectively.
Four file access patterns are used for our experiment: sequen-
tial read (SR), random read (RR), sequential write (SW), and
random write (RW). All the other file systems except Libn-
vmmio perform the file IO at kernel level. Libnvmmio avoids
the kernel IO stack overhead and performs file IO mostly at
user level.

As shown in Figure 7, Libnvmmio provides the highest
throughput on all access patterns, outperforming the other file
systems by 1.66∼2.20× on NVDIMM-N and 1.14∼1.74× on
Optane. The performance improvements are more noticeable
in NVDIMM-N than in Optane. The maximum achievable
bandwidths on Optane are 2.5GB/s and 1.46GB/s for FIO
mmap based read and write without atomicity support. These
are indicated as red dotted lines in Figure 7 (B). The per-
formance results on Optane are almost near the maximum
achievable bandwidths for Libnvmmio, which suggests the
performance on Optane is limited by the hardware limit, not

SR RR SW RW
Access Pattern

0

2

4

6

Ba
nd

wi
dt

h
(G

iB
/s

)

(A) NVDIMM-N

SR RR SW RW
Access Pattern

0

2

4

6

(B) Optane
Ext4-DAX
PMFS
NOVA
Libnvmmio

Figure 7: Performance on different access patterns

128B 1KB
0.0

0.5

1.0

1.5

Ba
nd

wi
dt

h
(G

iB
/s

)

4KB 64KB 1MB
0

2

4

128B 1KB
0.0

0.5

1.0

1.5

Ba
nd

wi
dt

h
(G

iB
/s

)
4KB 64KB 1MB

0

2

4
Ext4-DAX
PMFS

NOVA
Libnvmmio

(A) NVDIMM-N

(B) Optane
Write Size

Write Size

Figure 8: Performance on different write sizes

by the mechanisms in Libnvmmio.
The performance in Libnvmmio is also improved over the

other file systems by maximizing logging efficiency in hybrid
logging. For read access patterns (SR and RR), Libnvmmio
performs only user-level memcpy from the memory-mapped
file to the user buffer under the undo logging. For write
access patterns (SW and RW), Libnvmmio updates only the
log, not the memory-mapped file, under the redo logging and
asynchronously writes the data from the redo log on SYNC
call at the file close.

Figure 8 shows the performance of the FIO sequential write
on various IO sizes. Libnvmmio performs per-block logging,
but provides various log block sizes. With this feature, Lib-
nvmmio can keep the high performance across different IO
sizes. The performance generally improves on the increased
IO sizes for all file systems and Libnvmmio, as the number
of write system calls decreases within the 60 second duration
of FIO experiment. Libnvmmio shows significantly higher
performance than the other file systems when the IO size is
smaller than the page size (128B, 1KB). This is mainly due
to the differential logging feature in Libnvmmio. For file
systems that use CoW for atomicity, such as NOVA, write
amplification becomes a large overhead on sub-page size data
writes.

Figure 9 shows the performance of the FIO sequential write
on different fsync intervals. The horizontal axis represents
the fsync frequency. For example, the interval 10 means
FIO performed fsync after every ten writes issued. The per-
formance of Ext4-DAX and PMFS slightly increased as the
fsync interval increased. Since Ext4-DAX and PMFS perform

USENIX Association 2020 USENIX Annual Technical Conference 9

1 10 100
fsync Interval

0

2

4

Ba
nd

wi
dt

h
(G

iB
/s

)

Ext4-DAX PMFS NOVA Libnvmmio

Figure 9: Performance on different fsync intervals

1 2 4 8 16
Threads

0

10

20

30

Ba
nd

wi
dt

h
(G

iB
/s

) Private file

1 2 4 8 16
Threads

0

10

20

30
Shared file

1 2 4 8 16
Threads

0

10

20

30

Ba
nd

wi
dt

h
(G

iB
/s

) Private file
Ext4-DAX
PMFS
NOVA
Libnvmmio

1 2 4 8 16
Threads

0

10

20

30
Shared file

(A) NVDIMM-N

(B) Optane

Figure 10: Scalability: FIO random write with multithreads

only metadata journaling, there is no dramatic performance
improvement. NOVA shows the same performance regardless
of the fsync interval. Since NOVA performs all the writes
atomically and fsync actually does nothing, its performance
is not sensitive to the fsync intervals. Libnvmmio implements
fsync efficiently with almost little overhead by increasing the
current global epoch number at user level. A heavy-lifting
work for checkpointing data log is processed in the back-
ground. As the fsync interval increases, checkpointing can be
done in a batch even in the background. Thus, Libnvmmio
can slightly increase the performance on long intervals.

4.2.3 Scalability

Figure 10 shows the performance of multithreaded file IO
with FIO random write. In private file configuration, each
thread writes data to its private file. Whereas, all threads
write data to one shared file in shared file configuration. In
private file configuration on NVDIMM-N, Libnvmmio and
NOVA show highly scalable performance. Libnvmmio still
shows 29% better performance than NOVA. In contrast, only
Libnvmmio sustains scalable performance in shared file con-
figuration on NVDIMM-N. Libnvmmio achieves 13× better
performance on 16 threads run than NOVA. It is common
for modern applications to access shared files simultaneously
from multithreads [40]. While NOVA uses per-inode log-
ging with entire file locks, Libnvmmio uses per-block logging
with fine-grained per-block locks. This makes Libnvmmio
achieve scalable performance, even when multithreads access

Latency Ext4-DAX PMFS NOVA Libnvmmio
(us) read write read write read write read write
Avg. 1.73 50.43 2.21 6.16 1.73 4.43 1.12 4.14
99th 3 61 3 9 3 9 2 10

99.9th 6 552 4 12 3 10 3 12
99.99th 8 605 8 239 6 15 5 15
99.999th 12 648 17 258 8 5216 7 76

Table 2: 4KB read and write latencies on Optane

0 2 4 6 8 10 12
Elapsed Time (microsecond)

WR (REDO)
WR (UNDO)
RD (REDO)
RD (UNDO)

(A) NVDIMM-N

0 2 4 6 8 10 12
Elapsed Time (microsecond)

WR (REDO)
WR (UNDO)
RD (REDO)
RD (UNDO)

(B) Optane

Per-File Metadata
Index Log
Alloc Log

NT Store
Memory Fence
Manage Log

Cache Flush
memcpy

Figure 11: Latency breakdown

the shared file simultaneously. The scalability on Optane is
limited mainly due to the memory bandwidth limitation, but
Libnvmmio on Optane still shows a little promising results
than the others. The other two file systems, Ext4-DAX and
PMFS rarely scale on multi-threaded experiments.

4.2.4 Latency

We measured write and read latencies of various NVM-aware
file systems and Libnvmmio. To make a fair comparison,
all operations are synchronous (fsync on every write opera-
tion). Table 2 shows the latency of 4KB IO by a single thread.
The results were measured on Optane. Libnvmmio outper-
forms all the other file systems. The advantage of Libnvmmio
comes from writing logs in user space and background check-
pointing. Ext4-DAX requires copying data between user
and kernel buffers, PMFS involves modification of complex
data structures, and NOVA requires CoW. Low tail laten-
cies on 99.999th show that Libnvmmio has a high chance to
meet the demand for target applications. Since Libnvmmio
hooks read/write calls and does not involve any kernel mode
switches, Libnvmmio on any file systems can remove the
complex techniques the kernel level file systems use. The
Libnvmmio latencies on other file systems exhibit almost the
same as the ones in Table 2. Our results indicate that applica-
tions sensitive to tail latency can adopt Libnvmmio on top of
their file systems and drop tail latency dramatically.

Figure 11 shows the latency breakdown of read and write
for two logging policies (undo and redo). As for write, the

10 2020 USENIX Annual Technical Conference USENIX Association

Insert Update Delete
0

10

20

30

Tr
an

sa
ct

io
ns

/s
 (k

) (A) NVDIMM-N

Insert Update Delete
0

10

20

30
(B) Optane

DEL TRUNC WAL OFF Libnvmmio

Figure 12: Mobibench on SQLite

Ext4-DAX PMFS NOVA SplitFS
0.0

0.5

1.0

1.5

No
rm

al
ize

d
tp

m
C

(A) NVDIMM-N

Ext4-DAX PMFS NOVA SplitFS
0.0

0.5

1.0

1.5 (B) Optane
Only underlying FS Libnvmmio on FS

Figure 13: TPC-C on SQLite

portion of non-temporal store (NT Store) is dominating. How-
ever, the overheads of the memory fence and cache flush is
low due to NT store. In this experiment, we confirmed that it
is crucial to select an appropriate logging policy according to
access types, as the time spent on memory copy (memcpy, NT
Store) varies greatly depending on logging policy. The actual
seconds for read and write latencies in Figure 11 are bigger
than the latency in Table 2, as time measurement routines for
breakdown have been injected.

4.3 Real applications

4.3.1 SQLite

We experimented with SQLite [59] to see how Libnvmmio
performs in real applications. To guarantee data-atomicity,
SQLite uses its own journaling by default. SQLite calls fsync
on commit to ensure that all data updated in a transaction is
persistent. Libnvmmio keeps updated data in its logs and
atomically writes to the original file when fsync called. This
is how data-atomicity can be guaranteed on SQLite on Libn-
vmmio without the journaling provided by SQLite. However,
the file systems we experimented with cannot turn off the
journaling. Even file systems that provide data-atomicity for
each operation cannot guarantee the atomicity at transaction
level without the journaling.

We used Mobibench [41] to evaluate the basic performance
of SQLite. In this experiment, we ran SQLite on NOVA
with various journal modes: delete (DEL), truncate (TRUNC),
write-ahead logging (WAL), no-journaling (OFF). Figure 12
shows that Libnvmmio outperforms all journaling modes on
insert and update queries. Even when no journaling is pro-
vided from SQLite, Libnvmmio outperforms as all file ac-
cesses are handled at user level. Compared to WAL mode on
NVDIMM-N, insert and update queries have 60% and 93%

A B C D E F
Workloads

0.0

0.5

1.0

1.5

No
rm

al
ize

d
Th

ro
ug

hp
ut

MongoDB-Journaling Atommic-mmap Libnvmmio

Figure 14: YCSB performance on MongoDB

performance gains in Libnvmmio, respectively. On Optane,
the performance gains become 162% and 120%. Mobibench
queries request about 100B data IOs. Libnvmmio excels on
such small size IOs. On delete transactions, Libnvmmio per-
forms not quite well. According to our call trace, files are
truncated frequently on delete workload. When a file is trun-
cated, Libnvmmio needs to adjust the mapping size along
with the file size as in FLEX [66] and SplitFS [24]. This
incurs relatively high overhead on Libnvmmio. To mend this
problem, Libnvmmio needs to optimize file size changes by
reflecting file size changes on file close.

We evaluate Libnvmmio on four different file systems by
running TPC-C with SQLite. Figure 13 shows that running
on Libnvmmio exhibits better performance than running only
on underlying file systems. The performance gains range
from 16% to 27% on NVDIMM-N and from 13% to 27%
on Optane. Since Libnvmmio processes file IO at user level,
most of file IO operations can be handled efficiently. As for
SplitFS [24], which is built as user-level file system, Libnvm-
mio uses only mmap interface from SplitFS and performs all
other functionalities with its own mechanism. This is why the
performance on SplitFS is better for Libnvmmio than only
SplitFS. Data updates are kept in its staging files in SplitFS.
When applications call fsync, SplitFS relinks the updated
blocks in staging files into the original file without additional
data copying. To make the relink mechanism work, a com-
plete content of the block is required. If applications update
only part of a block, SplitFS must copy the rest of the par-
tial data for that block on fsync. The relink mechanism also
needs splitting and remapping the existing mapping. Since
mapping changes require expensive TLB-shootdown, remap-
ping can cause a higher cost than copying [37]. Additionally,
frequent relinks can cause extent fragmentation, as SplitFS
uses Ext4-DAX as its underlying file system.

4.3.2 MongoDB MMAPv1

To evaluate Libnvmmio for applications that use memory-
mapped IO, we experimented with MongoDB [44] MMAPv1
engine. MongoDB MMAPv1 maps DB files onto its ad-
dress space, and read/write data with memcpy. We have modi-
fied 182 lines of source code to make MongoDB MMAPv1
engine use interfaces in Libnvmmio. Figure 14 shows the

USENIX Association 2020 USENIX Annual Technical Conference 11

performance of YCSB workloads on MongoDB. MongoDB-
Journaling represents the performance when MongoDB uses
its own journaling. In order to ensure that all modifications
to a MongoDB data set are durably written to DB files, Mon-
goDB, by default, records all modifications to a journal file.
After persisting the data in journal, MongoDB writes the data
to a memory-mapped file. Then, it calls msync periodically to
flush the data in the memory to its file image on the persistent
storage. If a system failure occurs during the synchroniza-
tion, MongoDB can redo the updates by using the journal.
Atomic-mmap represents the performance when MongoDB
uses atomic-mmap provided by NOVA [67]. NOVA maps
the replica pages of files onto the user memory, and later
when msync is called, it copies the replica pages atomically
to the original file. In this case, MongoDB can guarantee data-
atomicity without using its own journaling. Libnvmmio also
ensures the same level of data-atomicity as the atomic-mmap
in NOVA. Libnvmmio represents the performance when Lib-
nvmmio is used without MongoDB journaling. Compared
to MongoDB journaling, Libnvmmio shows 31∼42% perfor-
mance gains on write intensive workloads (A and F). On read
intensive workloads (B, C, D, and E), it shows 6∼15% gains.

Libnvmmio shows the highest performance for all work-
loads. In YCSB workloads, the default record size is 1KB.
Since MongoDB-Journaling uses msync provided by the OS
kernel, the synchronization is performed at page granularity.
This increases the write amplification but also incurs TLB-
shootdown overhead. Whereas, Libnvmmio uses differential
logging and user-level msync to minimize write amplification
and eliminate unnecessary TLB-shootdown. Atomic-mmap
also performs synchronization at page granularity. Besides,
as all the replica pages of the file are synchronized regardless
of their states (clean or dirty), huge write amplification occurs.
Due to such inefficiency, the atomic-mmap feature has been
removed from the latest NOVA [68].

5 Related Work

In NVMM systems, file operations travel through memory
bus led significantly improved latency. In traditional systems,
storage latency was dominant in the total file IO overhead, but
in NVMM systems, inefficient behavior of software stacks
becomes a dominating overhead. State-of-the-art NVMM-
aware file systems bypass the block layer and the page cache
layer to avoid the software overhead. Many optimizations
take the characteristics of NVMM into account in the file
system design. Some suggest to fundamentally change the
way file operations work from kernel space to user space.

BPFS and PMFS are early versions of NVMM-aware file
systems. BPFS [12] manages the CPU cache based on epoch
to provide an accurate ordering and provides atomic data
persistence with short-circuit shadow paging. PMFS [13]
came up with eXecute In Place (XIP) which nowadays call

Direct Access (DAX). PMFS pointed out that NVMM sys-
tems should bypass the block layer and page cache to remove
unnecessary management schemes from past days.

NOVA [67, 68] suggested more efficient software layer to
manage NVMM. NOVA extends the log-structuring tech-
nique optimized for block devices to NVMM. NOVA gives
each inode a separate log. This technique is suited well
in NVMM utilizing fast random access characteristics of
NVMM. NOVA provides protection against media errors as
well as software errors.

Aerie [62] is a user-level file system that provides flexible
file system interfaces. Aerie maximizes the benefits of low-
latency NVMM by implementing file system functionality
at the user-level. However, Aerie does not guarantee data-
atomicity and does not support POSIX semantics.

Strata [28] is a cross-media file system that suggested
separation of kernel and user responsibilities. While providing
fast performance for read and write, Strata does not support
atomic memory-mapped IO. Strata brought data into user
space and processes metadata in kernel space.

FLEX [66] replaces read/write system calls with memory-
mapped IO to avoid entering the OS kernel. FLEX provides
transparent user-level file IO, allowing existing applications
to utilize the characteristics of NVMM efficiently. However,
FLEX does not guarantee data-atomicity.

SplitFS [24] supports user-level IO while providing flex-
ible crash-consistency guarantees. The relink mechanism
proposed by SplitFS allows atomic file updates with minimal
data copying. SplitFS handles common data operations at
the user level and offloads complex and uncommon metadata
operations to kernel file systems. SplitFS proposed the proper
role of user libraries and kernel file systems for efficient file
IO.

6 Conclusion

Libnvmmio is a simple and practical solution, which pro-
vides low-latency and scalable IO while guaranteeing data
atomicity. Libnvmmio rebuilds performance-critical software
IO path for NVM. It leverages the memory-mapped IO for
fast data access and makes applications free from the crash-
consistency concerns by providing failure-atomicity. Source
code is publicly available at: https://github.com/chjs/
libnvmmio.

Acknowledgments

This research was supported in part by Samsung Electronics
and the National Research Foundation in Korea under PF
Class Heterogeneous High Performance Computer Develop-
ment NRF-2016M3C4A7952587. We would like to thank
our shepherd, Ric Wheeler, and the anonymous reviewers for
their insightful comments and suggestions.

12 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/chjs/libnvmmio
https://github.com/chjs/libnvmmio

References

[1] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and
Jose E. Moreira. Adaptive incremental checkpointing
for massively parallel systems. In Proceedings of the
18th Annual International Conference on Supercomput-
ing, ICS ’04, pages 277–286, New York, NY, USA,
2004. ACM.

[2] Jaehyung Ahn, Dongup Kwon, Youngsok Kim, Moham-
madamin Ajdari, Jaewon Lee, and Jangwoo Kim. DCS:
A Fast and Scalable Device-centric Server Architecture.
In Proceedings of the 48th International Symposium on
Microarchitecture, MICRO-48. ACM, 2015.

[3] Nadav Amit. Optimizing the tlb shootdown algorithm
with page access tracking. In Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’17, pages 27–39, Berkeley, CA,
USA, 2017. USENIX Association.

[4] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts,
Vladimir Nikitin, Xueti Tang, Daniel Lottis, Kiseok
Moon, Xiao Luo, Eugene Chen, Adrian Ong, Alexander
Driskill-Smith, and Mohamad Krounbi. Spin-transfer
torque magnetic random access memory (stt-mram). J.
Emerg. Technol. Comput. Syst., 9(2), May 2013.

[5] Jens Axboe. Flexible I/O Tester. https://github.
com/axboe/fio.

[6] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,
Mark D. Hill, and Michael M. Swift. Efficient vir-
tual memory for big memory servers. In Proceedings of
the 40th Annual International Symposium on Computer
Architecture, ISCA ’13, pages 237–248, New York, NY,
USA, 2013. ACM.

[7] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eis-
ner, Arup De, Joel Coburn, and Steven Swanson. Pro-
viding safe, user space access to fast, solid state disks.
In Proceedings of the Seventeenth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XVII. ACM,
2012.

[8] J. Choi, J. Ahn, J. Kim, S. Ryu, and H. Han. In-memory
file system with efficient swap support for mobile smart
devices. IEEE Transactions on Consumer Electronics,
62(3):275–282, 2016.

[9] Jungsik Choi, Jiwon Kim, and Hwansoo Han. Efficient
Memory Mapped File I/O for In-Memory File Systems.
In 9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17). USENIX Association,
2017.

[10] Austin T. Clements, M. Frans Kaashoek, and Nicko-
lai Zeldovich. Scalable address spaces using rcu bal-
anced trees. In Proceedings of the Seventeenth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
XVII, page 199–210, New York, NY, USA, 2012. Asso-
ciation for Computing Machinery.

[11] Austin T. Clements, M. Frans Kaashoek, and Nicko-
lai Zeldovich. Radixvm: Scalable address spaces for
multithreaded applications. In Proceedings of the 8th
ACM European Conference on Computer Systems, Eu-
roSys ’13, page 211–224, New York, NY, USA, 2013.
Association for Computing Machinery.

[12] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and
Derrick Coetzee. Better I/O Through Byte-addressable,
Persistent Memory. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples, SOSP ’09. ACM, 2009.

[13] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14. ACM, 2014.

[14] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan
Milojicic, Reto Achermann, Paolo Faraboschi, Wen-mei
Hwu, Timothy Roscoe, and Karsten Schwan. Spacejmp:
Programming with multiple virtual address spaces. In
Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’16, pages
353–368, New York, NY, USA, 2016. ACM.

[15] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini. Trans-
parent, incremental checkpointing at kernel level: a
foundation for fault tolerance for parallel computers.
In SC ’05: Proceedings of the 2005 ACM/IEEE Confer-
ence on Supercomputing, pages 9–9, Nov 2005.

[16] R. Hagmann. Reimplementing the cedar file system
using logging and group commit. In Proceedings of
the Eleventh ACM Symposium on Operating Systems
Principles, SOSP ’87, pages 155–162, New York, NY,
USA, 1987. ACM.

[17] Dave Hitz, James Lau, and Michael Malcolm. File
system design for an nfs file server appliance. In Pro-
ceedings of the USENIX Winter 1994 Technical Con-
ference on USENIX Winter 1994 Technical Conference,
WTEC’94, pages 19–19, Berkeley, CA, USA, 1994.
USENIX Association.

USENIX Association 2020 USENIX Annual Technical Conference 13

https://github.com/axboe/fio
https://github.com/axboe/fio

[18] Intel Memory Latency Checker. https:
//software.intel.com/en-us/articles/
intelr-memory-latency-checker.

[19] Intel OptaneTM DC Persistent Memory.
https://www.intel.com/content/www/
us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[20] Intel Persistent Memory Programming. https://pmem.
io/pmdk/.

[21] Intel and Micron’s 3D XPointTM Technol-
ogy. https://www.micron.com/about/
our-innovation/3d-xpoint-technology.

[22] Jonathan Corbet. Supporting filesystems in persis-
tent memory, 2014. https://lwn.net/Articles/
610174/.

[23] Juchang Lee, Kihong Kim, and S. K. Cha. Differ-
ential logging: a commutative and associative logging
scheme for highly parallel main memory database. In
Proceedings 17th International Conference on Data En-
gineering, pages 173–182, April 2001.

[24] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
pages 494–508, New York, NY, USA, 2019. ACM.

[25] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim.
NVMeDirect: A User-space I/O Framework for
Application-specific Optimization on NVMe SSDs. In
8th USENIX Workshop on Hot Topics in Storage and
File Systems, HotStorage ’16. USENIX Association,
2016.

[26] Hyunjun Kim, Joonwook Ahn, Sungtae Ryu, Jungsik
Choi, and Hwansoo Han. In-memory file system for non-
volatile memory. In Proceedings of the 2013 Research
in Adaptive and Convergent Systems, RACS ’13, page
479–484, New York, NY, USA, 2013. Association for
Computing Machinery.

[27] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beom-
seok Nam, and Youjip Won. NVWAL: Exploiting
NVRAM in Write-Ahead Logging. In Proceedings of
the Twenty-First International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’16. ACM, 2016.

[28] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17,
pages 460–477, New York, NY, USA, 2017. ACM.

[29] Youngjin Kwon, Hangchen Yu, Simon Peter, Christo-
pher J. Rossbach, and Emmett Witchel. Coordinated
and efficient huge page management with ingens. In
Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’16,
page 705–721, USA, 2016. USENIX Association.

[30] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and
O. Mutlu. Evaluating stt-ram as an energy-efficient
main memory alternative. In 2013 IEEE International
Symposium on Performance Analysis of Systems and
Software, ISPASS ’13, April 2013.

[31] Butler W. Lampson. Hints for computer system design.
In Proceedings of the Ninth ACM Symposium on Oper-
ating Systems Principles, SOSP ’83, pages 33–48, New
York, NY, USA, 1983. ACM.

[32] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek,
O. Mutlu, and D. Burger. Phase-change technology and
the future of main memory. IEEE Micro, 30(1):143–143,
Jan 2010.

[33] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug
Burger. Architecting phase change memory as a scal-
able dram alternative. In Proceedings of the 36th An-
nual International Symposium on Computer Architec-
ture, ISCA ’09. ACM, 2009.

[34] Edward K. Lee and Chandramohan A. Thekkath. Petal:
Distributed virtual disks. In Proceedings of the Seventh
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS VII, pages 84–92, New York, NY, USA, 1996.
ACM.

[35] Gyusun Lee, Wenjing Jin, Wonsuk Song, Jeonghun
Gong, Jonghyun Bae, Tae Jun Han, Jae W. Lee, and
Jinkyu Jeong. A case for hardware-based demand pag-
ing. In Proceedings of the 47th Annual International
Symposium on Computer Architecture, ISCA ’20, pages
1103–1116, New York, NY, USA, 2020. ACM.

[36] Sang-Won Lee and Bongki Moon. Design of flash-based
dbms: An in-page logging approach. In Proceedings
of the 2007 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’07, page 55–66,
New York, NY, USA, 2007. Association for Computing
Machinery.

[37] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. Socksdirect: Datacenter sockets can be fast and
compatible. In Proceedings of the ACM Special Interest
Group on Data Communication, SIGCOMM ’19, page

14 2020 USENIX Annual Technical Conference USENIX Association

https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://www.micron.com/about/our-innovation/3d-xpoint-technology
https://www.micron.com/about/our-innovation/3d-xpoint-technology
https://lwn.net/Articles/610174/
https://lwn.net/Articles/610174/

90–103, New York, NY, USA, 2019. Association for
Computing Machinery.

[38] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli,
and Samira Khan. Pmtest: A fast and flexible testing
framework for persistent memory programs. In Pro-
ceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’19, page 411–425,
New York, NY, USA, 2019. Association for Computing
Machinery.

[39] Amirsaman Memaripour and Steven Swanson. Breeze
: User-Level Access to Non-Volatile Main Memories
for Legacy Software. In 2018 IEEE 36st International
Conference on Computer Design, ICCD ’18. IEEE,
2018.

[40] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and
Taesoo Kim. Understanding manycore scalability of file
systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 71–85, Denver, CO, June 2016.
USENIX Association.

[41] Mobibench. https://github.com/ESOS-Lab/
Mobibench.

[42] C. Mohan. Repeating history beyond aries. In Proceed-
ings of the 25th International Conference on Very Large
Data Bases, VLDB ’99, page 1–17, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[43] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pira-
hesh, and Peter Schwarz. Aries: A transaction recov-
ery method supporting fine-granularity locking and par-
tial rollbacks using write-ahead logging. ACM Trans.
Database Syst., 17(1):94–162, March 1992.

[44] MongoDB. https://www.mongodb.com.

[45] Netlist NVvault DDR4 NVDIMM-N. https:
//www.netlist.com/products/specialty-dimms/
nvvault-ddr4-nvdimm.

[46] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A High Perfor-
mance File System for Non-volatile Main Memory. In
Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys ’16. ACM, 2016.

[47] Ashish Panwar, Aravinda Prasad, and K. Gopinath.
Making huge pages actually useful. In Proceedings
of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’18, pages 679–692, New
York, NY, USA, 2018. ACM.

[48] Jim Pappas. Annual Update on Interfaces, 2014.
https://www.flashmemorysummit.com/English/
Collaterals/Proceedings/2014/20140805_U3_
Pappas.pdf.

[49] Daejun Park and Dongkun Shin. ijournaling: Fine-
grained journaling for improving the latency of fsync
system call. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 787–798, Santa Clara,
CA, July 2017. USENIX Association.

[50] Stan Park, Terence Kelly, and Kai Shen. Failure-atomic
msync(): A simple and efficient mechanism for preserv-
ing the integrity of durable data. In Proceedings of the
8th ACM European Conference on Computer Systems,
EuroSys ’13. ACM, 2013.

[51] Thanumalayan Sankaranarayana Pillai, Ramnatthan Ala-
gappan, Lanyue Lu, Vijay Chidambaram, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Appli-
cation Crash Consistency and Performance with CCFS.
In 15th USENIX Conference on File and Storage Tech-
nologies, FAST ’17. USENIX Association, 2017.

[52] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All file systems are not created equal: On the
complexity of crafting crash-consistent applications. In
11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14. USENIX Association,
2014.

[53] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Analysis and evolution
of journaling file systems. In Proceedings of the An-
nual Conference on USENIX Annual Technical Confer-
ence, ATEC ’05, pages 8–8, Berkeley, CA, USA, 2005.
USENIX Association.

[54] S. Qiu and A. L. N. Reddy. Exploiting superpages in
a nonvolatile memory file system. In 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–5, April 2012.

[55] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,
Y. . Chen, R. M. Shelby, M. Salinga, D. Krebs, S. .
Chen, H. . Lung, and C. H. Lam. Phase-change random
access memory: A scalable technology. IBM Journal
of Research and Development, 52(4.5):465–479, July
2008.

[56] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. Trans. Storage, 9(3):9:1–9:32,
August 2013.

USENIX Association 2020 USENIX Annual Technical Conference 15

https://github.com/ESOS-Lab/Mobibench
https://github.com/ESOS-Lab/Mobibench
https://www.mongodb.com
https://www.netlist.com/products/specialty-dimms/nvvault-ddr4-nvdimm
https://www.netlist.com/products/specialty-dimms/nvvault-ddr4-nvdimm
https://www.netlist.com/products/specialty-dimms/nvvault-ddr4-nvdimm
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140805_U3_Pappas.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140805_U3_Pappas.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140805_U3_Pappas.pdf

[57] Livio Soares and Michael Stumm. FlexSC: Flexible Sys-
tem Call Scheduling with Exception-less System Calls.
In Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’10.
USENIX Association, 2010.

[58] Nae Young Song, Yongseok Son, Hyuck Han, and
Heon Young Yeom. Efficient Memory-Mapped I/O
on Fast Storage Device. ACM Transactions on Storage,
12(4):19:1–19:27, 2016.

[59] SQLite. https://www.sqlite.org.

[60] Michael M. Swift. Towards o(1) memory. In Proceed-
ings of the 16th Workshop on Hot Topics in Operating
Systems, HotOS ’17. ACM, 2017.

[61] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion,
A. Ramirez, A. Mendelson, N. Navarro, A. Cristal, and
O. S. Unsal. Didi: Mitigating the performance impact
of tlb shootdowns using a shared tlb directory. In 2011
International Conference on Parallel Architectures and
Compilation Techniques, pages 340–349, Oct 2011.

[62] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and
Michael M. Swift. Aerie: Flexible File-system In-
terfaces to Storage-class Memory. In Proceedings of
the Ninth European Conference on Computer Systems,
EuroSys ’14. ACM, 2014.

[63] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince
Mahajan, Jeevitha Kirubanandam, Lorenzo Alvisi, and
Mike Dahlin. Robustness in the salus scalable block
store. In Proceedings of the 10th USENIX Confer-
ence on Networked Systems Design and Implementation,
nsdi’13, page 357–370, USA, 2013. USENIX Associa-
tion.

[64] David A. Wheeler. SLOCCount. https://dwheeler.
com/sloccount/.

[65] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A
File System for Storage Class Memory. In Proceedings
of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’11.
ACM, 2011.

[66] Jian Xu, Juno Kim, Amirsaman Memaripour, and
Steven Swanson. Finding and fixing performance
pathologies in persistent memory software stacks. In
Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19, page
427–439, New York, NY, USA, 2019. Association for
Computing Machinery.

[67] Jian Xu and Steven Swanson. NOVA: A Log-
structured File System for Hybrid Volatile/Non-volatile
Main Memories. In 14th USENIX Conference on File
and Storage Technologies, FAST ’16. USENIX Associ-
ation, 2016.

[68] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. NOVA-Fortis: A
Fault-Tolerant Non-Volatile Main Memory File System.
In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17. ACM, 2017.

[69] Jisoo Yang, Dave B. Minturn, and Frank Hady. When
poll is better than interrupt. In Proceedings of the
10th USENIX Conference on File and Storage Technolo-
gies, FAST’12, pages 3–3, Berkeley, CA, USA, 2012.
USENIX Association.

[70] Jun Yang, Qingsong Wei, Cheng Chen, Chundong
Wang, Khai Leong Yong, and Bingsheng He. Nv-tree:
Reducing consistency cost for nvm-based single level
systems. In 13th USENIX Conference on File and Stor-
age Technologies, FAST ’15. USENIX Association,
2015.

[71] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin,
Mark Lillibridge, Elizabeth S. Yang, Bill W Zhao, and
Shashank Singh. Torturing databases for fun and profit.
In 11th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI ’14. USENIX Associa-
tion, 2014.

16 2020 USENIX Annual Technical Conference USENIX Association

https://www.sqlite.org
https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/

MatrixKV: Reducing Write Stalls and Write Amplification in LSM-tree Based
KV Stores with a Matrix Container in NVM

Ting Yao1, Yiwen Zhang1, Jiguang Wan1*, Qiu Cui2, Liu Tang2, Hong Jiang3,
Changsheng Xie1, and Xubin He4

1WNLO, Huazhong University of Science and Technology, China
Key Laboratory of Information Storage System, Ministry of Education of China

2PingCAP, China
3University of Texas at Arlington, USA

4Temple University, USA

Abstract

Popular LSM-tree based key-value stores suffer from subopti-
mal and unpredictable performance due to write amplification
and write stalls that cause application performance to peri-
odically drop to nearly zero. Our preliminary experimental
studies reveal that (1) write stalls mainly stem from the sig-
nificantly large amount of data involved in each compaction
between L0-L1 (i.e., the first two levels of LSM-tree), and (2)
write amplification increases with the depth of LSM-trees.
Existing works mainly focus on reducing write amplification,
while only a couple of them target mitigating write stalls.

In this paper, we exploit non-volatile memory (NVM) to
address these two limitations and propose MatrixKV, a new
LSM-tree based KV store for systems with multi-tier DRAM-
NVM-SSD storage. MatrixKV’s design principles include
performing smaller and cheaper L0-L1 compaction to reduce
write stalls while reducing the depth of LSM-trees to mitigate
write amplification. To this end, four novel techniques are
proposed. First, we relocate and manage the L0 level in NVM
with our proposed matrix container. Second, the new column
compaction is devised to compact L0 to L1 at fine-grained key
ranges, thus substantially reducing the amount of compaction
data. Third, MatrixKV increases the width of each level to
decrease the depth of LSM-trees thus mitigating write ampli-
fication. Finally, the cross-row hint search is introduced for
the matrix container to keep adequate read performance. We
implement MatrixKV based on RocksDB and evaluate it on
a hybrid DRAM/NVM/SSD system using Intel’s latest 3D
Xpoint NVM device Optane DC PMM. Evaluation results
show that, with the same amount of NVM, MatrixKV achieves
5× and 1.9× lower 99th percentile latencies, and 3.6× and
2.6× higher random write throughput than RocksDB and the
state-of-art LSM-based KVS NoveLSM respectively.

*Corresponding author. Email: jgwan@hust.edu.cn

1 Introduction

Persistent key-value stores are increasingly critical in support-
ing a large variety of applications in modern data centers. In
write-intensive scenarios, log-structured merge trees (LSM-
trees) [49] are the backbone index structures for persistent
key-value (KV) stores, such as RocksDB [24], LevelDB [25],
HBase [26], and Cassandra [35]. Considering that random
writes are common in popular OLTP workloads, the perfor-
mance of random writes, especially sustained and/or bursty
random writes, is a serious concern for users [2, 41, 51]. This
paper takes random write performance of KV stores as a ma-
jor concern. Popular KV stores are deployed on systems with
DRAM-SSD storage, which intends to utilize fast DRAM
and persistent SSDs to provide high-performance database
accesses. However, limitations such as cell sizes, power con-
sumption, cost, and DIMM slot availability prevent the sys-
tem performance from being further improved via increasing
DRAM size [4, 23]. Therefore, exploiting non-volatile mem-
ories (NVMs) in hybrid systems is widely considered as a
promising mechanism to deliver higher system throughput
and lower latencies.

LSM-trees [49] store KV items with multiple exponentially
increased levels, e.g., from L0 to L6. To better understand
LSM-tree based KV stores, we experimentally evaluated the
popular RocksDB [24] with a conventional system of DRAM-
SSD storage, and made observations that point to two chal-
lenging issues and their root causes. First, write stalls lead to
application throughput periodically dropping to nearly zero,
resulting in dramatic fluctuations of performance and long-tail
latencies, as shown in Figures 2 and 3. The troughs of system
throughput indicate write stalls. Write stalls induce highly
unpredictable performance and degrade the quality of user ex-
periences, which goes against NoSQL systems’ design goal of
predictable and stable performance [53, 57]. Moreover, write
stalls substantially lengthen the latency of request process-
ing, exerting high tail latencies [6]. Our experimental studies
demonstrate that the main cause of write stalls is the large
amount of data processed in each L0-L1 compaction. The L0-

USENIX Association 2020 USENIX Annual Technical Conference 17

L1 compaction involves almost all data in both levels due to
the unsorted L0 (files in L0 are overlapped with key ranges).
The all-to-all compaction takes up CPU cycles and SSD band-
width, which slows down the foreground requests and results
in write stalls and long-tail latency. Second, write amplifica-
tion (WA) degrades system performance and storage devices’
endurance. WA is directly related to the depth of the LSM-
tree as a deeper tree resulting from a larger dataset increases
the number of compactions. Although a large body of re-
search aims at reducing LSM-trees’ WA [20,36,41,44,45,51],
only a couple of published studies concern mitigating write
stalls [6, 31, 53]. Our study aims to address both challenges
simultaneously.

Targeting these two challenges and their root causes, this
paper proposes MatrixKV, an LSM-tree based KV store for
systems with DRAM-NVM-SSD storage. The design prin-
ciple behind MatrixKV is leveraging NVM to (1) construct
cheaper and finer granularity compaction for L0 and L1, and
(2) reduce LSM-trees’ depth to mitigate WA. The key en-
abling technologies of MatrixKV are summarized as follows:

Matrix container. The matrix container manages the un-
sorted L0 of LSM-trees in NVM with a receiver and
a compactor. The receiver adopts and retains the
MemTable flushed from DRAM, one MemTable per row.
The compactor selects and merges a subset of data from
L0 (with the same key range) to L1, one column per
compaction.

Column compaction. A column compaction is the fine-
grained compaction between L0 and L1, which compacts
a small key range a time. Column compaction reduces
write stalls because it processes a limited amount of
data and promptly frees up the column in NVM for the
receiver to accept data flushed from DRAM.

Reducing LSM-tree depth. MatrixKV increases the size of
each LSM-tree level to reduce the number of levels. As
a result, MatrixKV reduces write amplification and de-
livers higher throughput.

Cross-row hint search. MatrixKV gives each key a pointer
to logically sort all keys in the matrix container thus
accelerating search processes.

2 Background and Motivation

In this section, we present the necessary background on NVM,
LSM-trees, LSM-based KV stores, and the challenges and
motivations in optimizing LSM-based KV stores with NVMs.

2.1 Non-volatile Memory
Service providers have constantly pursued faster database
accesses. They aim at providing users with a better quality

MemTable

Immutable
MemTable

MemTable

Immutable
MemTable

Compaction

a. RocksDB

……

MemTable

Immutable
MemTable

Flush

Insert

DRAM DRAM NVM

L1

L0

Ln

b. NoveLSM

……
SSD

SSTable

Figure 1: The structure of RocksDB and NoveLSM.

of service and experience without a significant increase in
the total cost of ownership (TCO). With the emergence and
development of new storage media such as phase-change
memory [8, 33, 48, 52], memristors [55], 3D XPoint [28], and
STT-MRAM [21], enhancing storage systems with NVMs
becomes a cost-efficient choice. NVM is byte-addressable,
persistent, and fast. It is expected to provide DRAM-like
performance, disk-like persistency, and higher capacity than
DRAM at a much lower cost [9, 16, 61]. Compared to SSDs,
NVM is expected to provide 100× lower read and write la-
tencies and up to ten times higher bandwidth [3, 10, 14, 22].

NVM works either as a persistent block storage device ac-
cessed through PCIe interfaces or as main memory accessed
via memory bus [1, 38]. Existing research [31] shows that
the former only achieve marginal performance improvements,
wasting NVM’s high media performance. For the latter, NVM
can supplant or complement DRAM as a single-level memory
system [27, 58, 61, 65], a system of NVM-SSD [30], or a hy-
brid system of DRAM-NVM-SSD [31]. In particular, systems
with DRAM-NVM-SSD storage are recognized as a promis-
ing way to utilize NVMs due to the following three reasons.
First, NVM is expected to co-exist with large-capacity SSDs
for the next few years [32]. Second, compared to DRAM,
NVM still has 5 times lower bandwidth and 3 times higher
read latency [28]. Third, a hybrid system balances the TCO
and system performance. As a result, MatrixKV focuses on
efficiently using NVMs as persistent memory in a hybrid
system of DRAM, NVMs, and SSDs.

2.2 Log-structured Merge Trees

LSM-trees [29, 49] defer and batch write requests in mem-
ory to exploit the high sequential write bandwidth of storage
devices. Here we explain a popular implementation of LSM-
trees, the widely deployed SSD-based RocksDB [24]. As
shown in Figure 1 (a), RocksDB is composed of a DRAM
component and an SSD component. It also has a write-ahead
log in SSDs protecting data in DRAM from system failures.

To serve write requests, writes are first batched in DRAM
by two skip-lists (MemTable and Immutable MemTable).
Then, the immutable MemTable is flushed to L0 on SSDs
generating Sorted String Tables (SSTables). To deliver a fast
flush, L0 is unsorted where key ranges overlap among dif-

18 2020 USENIX Annual Technical Conference USENIX Association

ferent SSTables. SSTables are compacted from L0 to deeper
levels (L1, L2...Ln) during the lifespan of LSM-trees. Com-
paction makes each level sorted (except L0) thus bounding
the overhead of reads and scans [53].

To conduct a compaction, (1) an SSTable in Li (called a
victim SSTable) and multiple SSTables in Li+1 who has over-
lapping key ranges (called overlapped SSTables) are picked as
the compaction data. (2) Other SSTables in Li that fall in this
compaction key ranges are selected reversely. (3) Those SSTa-
bles identified in steps (1) and (2) are fetched into memory,
to be merged and sorted. (4) The regenerated SSTables are
written back to Li+1. Since L0 is unsorted and each SSTable
in L0 spans a wide key range, the L0-L1 compaction performs
step (1) and (2) back and forth involving almost all SSTables
in both levels, leading to a large all-to-all compaction.

To serve read requests, RocksDB searches the MemTable
first, immutable MemTable next, and then SSTables in L0
through Ln in order. Since SSTables in L0 contain overlapping
keys, a lookup may search multiple files at L0 [36].

2.3 LSM-tree based KV stores

Existing improvements on LSM-trees includes: reducing
write amplification [19, 36, 44, 46, 51, 62–64], improving
memory management [7, 39, 56], supporting automatic tun-
ing [17, 18, 40], and using LSM-trees to target hybrid storage
hierarchies [5, 47, 50]. Among them, random write perfor-
mance is a common concern since it is severely hampered by
compactions. In the following, we discuss the most related
studies of our work in three categories: those reducing write
amplification, addressing write stalls, and utilizing NVMs.

Reducing WA: PebblesDB [51] mitigates WA by using
guards to maintain partially sorted levels. Lwc-tree [62] pro-
vides lightweight compaction by appending data to SSTables
and only merging the metadata. WiscKey [36] separates keys
from values, which only merges keys during compactions thus
reducing WA. The key-value separation solution brings the
complexities of garbage collection and range scans and only
benefits large values. LSM-trie [59] de-amortizes compaction
overhead with hash-range based compaction. VTtree [54]
uses an extra layer of indirection to avoid reprocessing sorted
data at the cost of fragmentation. TRIAD [44] reduces WA by
creating synergy between memory, disk, and log. However,
almost all these efforts overlook performance variances and
write stalls.

Reducing write stalls: SILK [6] introduces an I/O sched-
uler which mitigates the impact of write stalls to clients’
writes by postponing flushes and compactions to low-load
periods, prioritizing flushes and lower level compactions, and
preempting compactions. These design choices make SILK
exhibits ordinary write stalls on sustained write-intensive
and long peak workloads. Blsm [53] proposes a new merge
scheduler, called “spring and gear”, to coordinate compactions
of multiple levels. However, it only bounds the maximum

write processing latency while ignoring the large queuing
latency [43]. KVell [37] makes KV items unsorted on disks
to reduce CPU computation cost thus mitigating write stalls
for NVMe SSD based KV stores, which is inapplicable to
systems with general SSDs.

Improving LSM-trees with NVMs: SLM-DB [30] pro-
poses a single level LSM-tree for systems with NVM-SSD
storage. It uses a B+-tree in NVM to provide fast read for the
single level LSM-tree on SSDs. This solution comes with the
overhead of maintaining the consistency between B+-trees
and LSM-trees. MyNVM [23] leverages NVM as a block
device to reduce the DRAM usage in SSD based KV stores.
NoveLSM [31] is the state-of-art LSM-based KV store for
systems with hybrid storage of DRAM, NVMs, and SSDs.
NVMRocks [38] aims for an NVM-aware RocksDB, similar
to NoveLSM, which adopts persistent mutable MemTables
on NVMs. However, as we verified in § 2.4.3, mutable NVM
MemTables only reduce access latencies to some extent while
generating a negative effect of more severe write stalls.

Since we build MatrixKV for systems with multi-tier
DRAM-NVM-SSD storage and redesign LSM-trees to ex-
ploit the high performance NVM, NoveLSM [31] is consid-
ered the most relevant to our work. We use NoveLSM as our
main comparison in evaluations. In addition, we also evaluate
PebblesDB and SILK on NVM-based systems since they are
state-of-art solutions for reducing WA or write stalls but their
original designs are not for the hybrid systems.

2.4 Challenges and Motivations

To explore the challenges in LSM-tree based KV stores, we
conduct a preliminary study on the SSD-based RocksDB. In
this experiment, an 80 GB dataset of 16bytes-4KB key-value
items is written/loaded to RocksDB in uniformly random or-
der. The evaluation environments and other parameters are
described in § 5. We record random write throughput every
ten seconds as shown in Figure 2. The experimental results
expose two challenging issues. Challenge 1, Write stalls.
System performance experiences peaks and troughs, and the
troughs of throughput manifest as write stalls. The significant
fluctuations indicate unpredictable and unstable performance.
Challenge 2, Write amplification. WA causes performance
degradation. System performance (i.e., the average through-
put) shows a downward trend with the growth of the dataset
size since the number of compactions increases with the depth
of LSM-trees, bringing more WA.

2.4.1 Write Stalls

In an LSM-based KV store, there are three types of possible
stalls as depicted in Figure 1(a). (1) Insert stalls: if MemTable
fills up before the completion of background flushes, all insert
operations to LSM-trees are stalled [31]. (2) Flush stalls: if
L0 has too many SSTables and reaches a size limit, flushes to

USENIX Association 2020 USENIX Annual Technical Conference 19

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000

A
m

ou
nt

 o
f c

om
p

da
ta

 (
M

B
)

R
an

do
m

 L
oa

d
Th

ro
ug

hp
ut

 (M
B

/s
)

Elapsed time (s)

Throughput L0-L1 comp Average throughput

Figure 2: RocksDB’s random write performance and L0-L1
compactions. The blue line shows the random write through-
put measured in every 10 seconds. The green line shows the
average throughput. Each red line represents the duration
and amount of data processed in a L0-L1 compaction.

Figure 3: The CDF of latencies of the 80 GB write requests.

storage are blocked. (3) Compaction stalls: too many pending
compaction bytes block foreground operations. All these stalls
have a cascading impact on write performance and result in
write stalls.

Evaluating these three types of stalls individually by record-
ing the period of flushes and compactions at different levels,
we find that the period of L0-L1 compaction approximately
matches write stalls observed, as shown in Figure 2. Each red
line represents a L0-L1 compaction, where the length along
the x-axis represents the latency of the compaction and the
right y-axis shows the amount of data processed in the com-
paction. The average amount of compaction data is 3.10 GB.
As we elaborate in § 2.2, since L0 allows overlapping key
ranges between SSTables, almost all SSTables in both levels
join the L0-L1 compaction. A large amount of compaction
data leads to heavy read-merge-writes, which takes up CPU
cycles and the SSD bandwidth, thus blocking foreground re-
quests and making L0-L1 compaction the primary cause of
write stalls.

Write stalls not only are responsible for the low system
throughput, but also induce high write latency leading to the
long-tail latency problem. Figure 3 shows the cumulative
distribution function (CDF) of the latency for each write re-
quest during the 80 GB random load process. Although the
latency of 76% of the write requests is less than 48 us, the
write latency of the 90th, 99th, and 99.9th percentile reaches
1.15, 1.24, and 2.32 ms respectively, a two-order magnitude in-
crease. The high latency significantly degrades the quality of
user experiences, especially for latency-critical applications.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000

A
m

o
u

n
t

o
f

co
m

p
 d

a
ta

 (
M

B
)

R
a

n
d

o
m

 L
o

a
d

 T
h

ro
u

gh
p

u
t

(M
B

/s
)

Elapsed time (s)

Throughput

L0-L1 comp

Figure 4: NoveLSM’s random write performance and L0-L1
compactions. Comparing to RocksDB in Figure 2, the average
period of write stalls is increased.

2.4.2 Write Amplification

Next, we analyze the second observation, i.e., system through-
put degrades with the increase in dataset size. Write ampli-
fication (WA) is defined as the ratio between the amount of
data written to storage devices and the amount of data written
by users. LSM-tree based KV stores have long been criticized
for their high WA due to frequent compactions. Since the
sizes of adjacent levels from low to high increase exponen-
tially by an amplification factor (AF = 10), compacting an
SSTable from Li to Li+1 results in a WA factor of AF on av-
erage. The growing size of the dataset increases the depth of
an LSM-tree as well as the overall WA. For example, the WA
factor of compacting from L1 to L2 is AF , while the WA factor
of compacting from L1 to L6 is over 5×AF . The increased
WA consumes more storage bandwidth, competes with flush
operations, and ultimately slows down application through-
put. Hence, system throughput decreases with higher write
amplification caused by the increased depth of LSM-trees.

2.4.3 NoveLSM

NoveLSM [31] exploits NVMs to deliver high throughput for
systems with DRAM-NVM-SSD storage, as shown in Fig-
ure 1(b). The design choices of NoveLSM include: (1) adopt-
ing NVMs as an alternative DRAM to increase the size of
MemTable and immutable MemTable; (2) making the NVM
MemTable mutable to allow direct updates thus reducing
compactions. However, these design choices merely postpone
the write stalls. When the dataset size exceeds the capacity
of NVM MemTables, flush stalls still happen, blocking fore-
ground requests. Furthermore, the enlarged MemTables in
NVM are flushed to L0 and dramatically increase the amount
of data in L0-L1 compactions, resulting in even more severe
write stalls. The worse write stalls magnify performance vari-
ances and hurt user experiences further.

We evaluate NoveLSM (with 8 GB NVM) by randomly
writing the same 80 GB dataset. Test results in Figure 4 show
that NoveLSM reduces the overall loading time by 1.7×
compared to RocksDB (Figure 2). However, the period of
write stalls is significantly longer. This is because the amount

20 2020 USENIX Annual Technical Conference USENIX Association

DRAM

LSM-trees with reduced depth
L1, L2,…

Matrix Container
(L0 of LSM-trees)

mem

imm

Posix

PMDK

SSD

NVM

Flush

Column compaction

Put

Cross-row
 hints

Compactor

Receiver

Figure 5: MatrixKV’s architectural overview. MatrixKV is a
KV store for systems consisting of DRAM, NVMs, and SSDs.

of data involved in each L0-L1 compaction is over 15 GB,
which is 4.86× larger than that of RocksDB. A write stall
starts when compaction threads call for the L0-L1 compaction.
Then, the compaction waits and starts until other pending
compactions with higher priorities complete (i.e., the grey
dashed lines). Finally, performance rises again as the com-
paction completes. In general, NoveLSM exacerbates write
stalls.

From the above analysis, we conclude that the main cause
of write stalls is the large amount of data involved in L0-L1
compactions, and the main cause of increased WA is the deep-
ened depth of LSM-trees. The compounded impact of write
stalls and WA deteriorates system throughput and lengthens
tail latency. While NoveLSM attempts to alleviate these is-
sues, it actually exacerbates the problem of write stalls. Moti-
vated by these observed challenging issues, we propose Ma-
trixKV that aims at providing a stable low-latency KV store
via intelligent use of NVMs, as elaborated in the next section.

3 MatrixKV Design

In this section, we present MatrixKV, an LSM-tree based key-
value store for systems with multi-tier DRAM-NVM-SSD
storage. MatrixKV aims to provide predictable high perfor-
mance through the efficient use of NVMs with the following
four key techniques, i.e., the matrix container in NVMs to
manage the L0 of LSM-trees (§ 3.1), column compactions
for L0 and L1 (§ 3.2), reducing LSM-tree levels (§ 3.3), and
the cross-row hint search (§ 3.4). Figure 5 shows the overall
architecture of MatrixKV. From top to bottom, (1) DRAM
batches writes with MemTables, (2) MemTables are flushed
to L0 that is stored and managed by the matrix container in
NVMs, (3) data in L0 are compacted to L1 in SSDs through
column compactions, and (4) SSDs store the remaining levels
of a flattened LSM-tree.

Receiver

Compactor

a-c c-e e-n n-o … … u-z

Flush

NVM

SSD a d e g h n o

SSTables on L1

… …

A RowTable

0

1

3

2

0

1

3

2

c

A B

Figure 6: Structure of matrix container. The receiver absorbs
flushed MemTables, one per row. Each row is reorganized as a
RowTable. The compactor merges L0 with L1 in fine-grained
key ranges, one range at a time, referred to as column com-
paction. In Process A, the receiver becomes the compactor
once RowTables fill its capacity. In Process B, each column
compaction frees a column.

3.1 Matrix Container

LSM-tree renders all-to-all compactions for L0 and L1 be-
cause L0 has overlapping key ranges among SSTables. The
heavy L0-L1 compactions are identified as the root cause of
write stalls as demonstrated in § 2.4. NoveLSM [31] exploits
NVM to increase the number and size of MemTables. How-
ever, it actually exacerbates write stalls by having a larger
L0 and keeping the system bottleneck, L0-L1 compactions,
on lower-speed SSDs. Hence, the principle of building an
LSM-tree based KV store without write stalls is to reduce the
granularity of L0-L1 compaction via high-speed NVMs.

Based on this design principle, MatrixKV elevates L0 from
SSDs to NVMs and reorganizes L0 into a matrix container
to exploit the byte-addressability and fast random accesses
of NVMs. Matrix container is a data management structure
for the L0 of LSM-trees. Figure 6 shows the organization of
a matrix container, which comprises one receiver and one
compactor.

Receiver: In the matrix container, the receiver accepts
and retains MemTables flushed from DRAM. Each such
MemTable is serialized as a single row of the receiver and or-
ganized as a RowTable. RowTables are appended to the matrix
container row by row with an increasing sequence number, i.e.,
from 0 to n. The size of the receiver starts with one RowTable.
When the receiver size reaches its size limit (e.g., 60% of the
matrix container) and the compactor is empty, the receiver
stops receiving flushed MemTables and dynamically turns
into the compactor. In the meantime, a new receiver is created
for receiving flushed MemTables. There is no data migration
for the logical role change of the receiver to the compactor.

RowTable: Figure 7(a) shows the RowTable structure con-
sisting of data and metadata. To construct a RowTable, we
first serialize KV items from the immutable MemTable in the

USENIX Association 2020 USENIX Annual Technical Conference 21

...

MetadataData blocks

...
Meta

block n
MetaIndex

block
Index block

Meta
block 0

footer

Data block 0 Data block n

k0 v0 ... kn vn

(b) Conventional SSTable structure

k0 v0 ...k1 v1 kn vn

Metadata: a sorted arrayData: sorted kv items

P0

k0

P1

K1

P...

K...

Page0

Offset

Page0

Offset

Page...

Offset Pn

kn

Pagen

Offset

(a) RowTable structure

Figure 7: RowTable and conventional SSTable.

order of keys (the same as SSTables) and store them to the
data region. Then, we build the metadata for all KV items
with a sorted array. Each array element maintains the key, the
page number, the offset in the page, and a forward pointer
(i.e., pn). To locate a KV item in a RowTable, we binary
search the sorted array to get the target key and find its value
with the page number and the offset. The forward pointer in
each array element is used for cross-row hint searches that
contribute to improving the read efficiency within the matrix
container. The cross-row hint search will be discussed in §
3.4. Figure 7(b) shows the structure of conventional SSTable
in LSM-trees. SSTables are organized with the basic unit of
blocks in accordance with the storage unit of devices such as
SSDs and HDDs. Instead, RowTable takes an NVM page as
its basic unit. Other than that, RowTables are only different
from SSTables in the organization of metadata. As a result, the
construction overhead of SSTables and RowTables is similar.

Compactor: The compactor is used for selecting and merg-
ing data from L0 to L1 in SSDs at a fine granularity. Leverag-
ing the byte addressability of NVMs and our proposed RowTa-
bles, MatrixKV allows cheaper compactions that merge a
specific key range from L0 with a subset of SSTables at L1
without needing to merge all of L0 and all of L1. This new L0-
L1 compaction is referred to as column compaction (detailed
in § 3.2). In the compactor, KV items are managed by logical
columns. A column is a subset of key spaces with a limited
amount of data, which is the basic unit of the compactor in
column compactions. Specifically, KV items from different
RowTables that fall in the key range of a column compaction
logically constitute a column. The amount of these KV items
is the size of a column, which is not strictly fixed but at a
threshold determined by the size of column compactions.

Space management: After compacting a column, the
NVM space occupied by the column is freed. To manage
those freed spaces, we simply apply the paging algorithm [3].
Since column compactions rotate the key ranges, at most one
page per RowTable is partially fragmented. The NVM pages
fully freed after column compactions are added to the free list
as a group of page-sized units. To store incoming RowTables
in the receiver, we apply free pages from the free list. The 8
GB matrix container contains 211 pages of 4 KB each. Each
page is identified by the page number of an unsigned inte-

ger. Adding the 8 bytes pointer per list element, the metadata
size for each page is 12 bytes. The metadata of the free list
occupies a total space of 24 KB on NVMs at most.

It is worth noting that in the matrix container, while
columns are being compacted in the compactor, the receiver
can continue accepting flushed MemTables from DRAM si-
multaneously. By freeing the NVM space one column at a
time, MatrixKV ends the write stalls forced by merging the
entire L0 with all of L1.

3.2 Column Compaction

Column compaction is a fine-grained L0-L1 compaction that
each time compacts only a column, i.e., a small subset of
the data in a specific key range. Thus, column compaction
can significantly reduce write stalls. The main workflow of
column compaction can be described in the following seven
steps. (1) MatrixKV separates the key space of L1 into multi-
ple contiguous key ranges. Since SSTables in L1 are sorted
and each SSTable is bounded by its smallest key and largest
key, the smallest keys and largest keys of all the SSTables in
L1 form a sorted key list. Every two adjacent keys represent
a key range, i.e., the key range of an SSTable or the gap be-
tween two adjacent SSTables. As a result, we have multiple
contiguous key ranges in L1. (2) Column compaction starts
from the first key range in L1. It selects a key range in L1 as
the compaction key range. (3) In the compactor, victim KV
items within the compaction key range are picked concur-
rently in multiple rows. Specifically, assuming N RowTables
in the compactor, k threads work in parallel to fetch keys
within the compaction key range. Each thread in charge of
N/k RowTables. We maintain an adequate degree of concur-
rent accesses on NVMs with k = 8. (4) If the amount of data
within this key range is under the lower bound of compaction,
the next key range in L1 joins. The k threads keep forward in
N sorted arrays (i.e., the metadata of the RowTables) fetching
KV items within the new key range. This key range expan-
sion process continues until the amount of compaction data
reaches a size between the lower bound and the upper bound
(i.e., 1

2 AF ×Ssst and AF ×Ssst respectively). The two bounds
guarantee the adequate overhead of a column compaction. (5)
Then a column in the compactor is logically formed, i.e., KV
items in N RowTables that fall in the compaction key range
make up a logical column. (6) Data in the column are merged
and sorted with the overlapped SSTables of L1 in memory. (7)
Finally, the regenerated SSTables are written back to L1 on
SSDs. Column compaction continues between the next key
range of L1 and the next column in the compactor. The key
ranges of column compaction rotate in the whole key space
to keep LSM-trees balanced.

We show an example of column compaction in Figure 8.
First, MatrixKV picks the SSTable with key range 0-3 in
L1 as the candidate compaction SSTable. Then, we search
the metadata arrays of the four RowTables. If the amount

22 2020 USENIX Annual Technical Conference USENIX Association

Figure 8: Column compaction: an example. There are 4
RowTables in the compactor. Each circle represents an
SSTable on L1. Columns are logically divided (red dashed
lines) according to the key range of compaction.

of compaction data within key range 0-3 is under the lower
bound, the next key range (i.e., key range 3-5) joins to form
a larger key range 0-5. If the amount of compaction data is
still beneath the lower bound, the next key range 5-8 joins.
Once the compaction data is larger than the lower bound, a
logical column is formed for the compaction. The first column
compaction compacts the column at the key range of 0-8 with
the first two SSTables in L1.

In general, column compaction first selects a specific key
range from L1, and then compacts with the column in the
compactor that shares the same key range. Comparing to the
original all-to-all compaction between L0 and L1, column
compaction compacts at a much smaller key range with a lim-
ited amount of data. Consequently, the fine-grained column
compaction shortens the compaction duration, resulting in
reduced write stalls.

3.3 Reducing LSM-tree Depth

In conventional LSM-trees, the size limit of each level grows
by an amplification factor of AF = 10. The number of levels in
an LSM-tree increase with the amount of data in the database.
Since compacting an SSTable to a higher level results in a
write amplification factor of AF, the overall WA increases with
the number of levels (n) in the LSM-tree, i.e., WA=n*AF [36].
Hence, the other design principle of MatrixKV is to reduce
the depth of LSM-trees to mitigate WA. MatrixKV reduces
the number of LSM-tree levels by increasing the size limit of
each level at a fixed ratio making the AF of adjacent levels
unchanged. As a result, for compactions from L1 and higher
levels, the WA of compacting an SSTable to the next level
remains the same AF but the overall WA is reduced with due
to fewer levels.

Flattening conventional LSM-trees with wider levels brings
two negative effects. First, since the enlarged L0 has more
SSTables that overlap with key ranges, the amount of data
in each L0-L1 compaction increases significantly, which not
only adds the compaction overhead but also lengthens the
duration of write stalls. Second, traversing the larger unsorted

83 136 30 45 51

73 105 23 28

12

RowTable3

RowTable2

RowTable1

35

RowTable0

91 104 13 38 42

113 128 14 40 48

Figure 9: Cross-row hint search. This figure shows an example
of searching the target key (k = 12) with forward pointers of
each array element.

L0 decreases the search efficiency. MatrixKV addresses the
first problem with the fine-grained column compaction. The
amount of data involved in each column compaction is largely
independent of the level width as a column contains a limited
amount of data. For the second problem, MatrixKV proposes
the cross-row hint search (§ 3.4) to compensate for the in-
creased search overhead due to the enlarged L0. It is worth
noting that locating keys in fewer levels reduces the lookup
time on SSDs, since SSTables from L1 to Ln are well-sorted.

3.4 Cross-row Hint Search

In this section, we discuss solutions for improving the read
efficiency in the matrix container. In the L0 of MatrixKV, each
RowTable is sorted and different RowTables are overlapped
with key ranges. Building Bloom filters for each table is a
possible solution for reducing search overheads. However, it
brings costs on the building process and exhibits no benefit to
range scans. To provide adequate read and scan performances
for MatrixKV, we build cross-row hint searches.

Constructing cross-row hints: When we build a
RowTable for the receiver of the matrix container, we add
a forward pointer for each element in the sorted array of meta-
data (Figure 7). Specifically, for a key x in RowTable i, the
forward pointer indexes the key y in the preceding RowTable
i−1, where the key y is the first key not less than x (i.e., y≥ x).
These forward pointers provide hints to logically sort all keys
in different rows, similar to the fractional cascading [11, 53].
Since each forward pointer only records the array index of
the preceding RowTable, the size of a forward pointer is only
4 bytes. Thus, the storage overhead is very small.

Search process in the matrix container: A search pro-
cess starts from the latest arrived RowTable i. If the key range
of RowTable i does not overlap the target key, we skip to its
preceding RowTable i−1. Else, we binary search RowTable
i to find the key range (i.e., bounded by two adjacent keys)
where the target key resides. With the forward pointers, we can
narrow the search region in prior RowTables, i−1, i−2, . . .
continually until the key is found. As a result, there is no need
to traverse all tables entirely to get a key or scan a key range.

USENIX Association 2020 USENIX Annual Technical Conference 23

Cross-row hint search improves the read efficiency of L0 by
significantly reducing the number of tables and elements in-
volved in a search process.

An example of cross-row hint search is shown in Figure 9.
The blue arrows show the forward pointers providing cross-
row hints. Suppose we want to fetch a target key k = 12 in
the matrix container, we first binary search RowTable 3 to get
a narrowed key range of key=10 to key=23. Then their hints
lead us to the key 13 and 30 in RowTable 2 (the red arrows).
The preceding key is added into the search region when the
target key is not included in the key range of the two hint keys.
Next, we binary search between key=8 and key=30. Failing
to find the target key, we move to the prior RowTable 1, then
RowTable 0, with the forward pointers. Finally, the target key
12 is obtained in RowTable 0.

4 Implementation

We implement MatrixKV based on the popular KV en-
gine RocksDB [24] from Facebook. The LOC on top of
RocksDB is 4117 lines 1. As shown in Figure 5, MatrixKV
accesses NVMs via the PMDK library and accesses SSDs
via the POSIX API. The persistent memory development kit
(PMDK) [1, 60] is a library based on the direct access fea-
ture (DAX). Next, we briefly introduce the write and read
processes and the mechanism for consistency as follows.

Write: (1) Write requests from users are inserted into a
write-ahead log on NVMs to prevent data loss from system
failures. (2) Data are batched in DRAM, forming MemTable
and immutable MemTable. (3) The immutable MemTable is
flushed to NVM and stored as a RowTable in the receiver of
the matrix container. (4) The receiver turns into the compactor
logically if the number of RowTables reaches a size limit (e.g.,
60% of the matrix container) and the compactor is empty.
This role change has no real data migrations. (5) Data in
the compactor is column compacted with SSTables in L1
column by column. In the meantime, a new receiver receives
flushed MemTables. (6) In SSDs, SSTables are merged to
higher levels via conventional compactions as RocksDB does.
Compared to RocksDB, MatrixKV is completely different
from step 3 through step 5.

Read: MatrixKV processes read requests in the same way
as RocksDB. The read thread searches with the priority of
DRAM>NVMs>SSDs. In NVMs, the cross-row hint search
contributes to faster searches among different RowTables
of L0. The read performance can be further improved by
concurrently searching in different storage devices [31].

Consistency: Data structures in NVM must avoid incon-
sistency caused by system failures [12, 13, 34, 42, 58]. For
MatrixKV, writes/updates for NVM only happen in two pro-
cesses, flush and column compaction. For flush, immutable

1MatrixKV source code is publicly available at https://github.com/
PDS-Lab/MatrixKV.

Table 1: FIO 4 KB read and write bandwidth
SSDSC2BB800G7 Optane DC PMM

Rnd write 68 MB/s 1363 MB/s
Rnd read 250 MB/s 2346 MB/s
Seq write 354 MB/s 1444 MB/s
Seq read 445 MB/s 2567 MB/s

MemTables flushed from DRAM are organized as RowTables
and written to NVM in rows. If a failure occurs in the mid-
dle of writing a RowTable, MatrixKV can re-process all the
transactions that were recorded in the write-ahead log. For
column compaction, MatrixKV needs to update the state of
RowTables after each column compaction. To achieve con-
sistency and reliability with low overhead, MatrixKV adopts
the versioning mechanism of RocksDB. RocksDB records
the database state with a manifest file. The operations of com-
paction are persisted in the manifest file as version changes.
If the system crashes during compaction, the database goes
back to its last consistent state with versioning. MatrixKV
adds the state of RowTables into the manifest file, i.e., the
offset of the first key, the number of keys, the file size, and the
metadata size, etc. MatrixKV uses lazy deletion to guarantee
that stale columns invalidated by column compactions are not
deleted until a consistent new version is completed.

5 Evaluation

In this section, we run extensive experiments to demonstrate
the key accomplishments of MatrixKV. (1) MatrixKV ob-
tains better performance on various types of workloads and
achieves lower tail latencies (§ 5.2). (2) The performance
benefits of MatrixKV come from reducing write stalls and
write amplification by its key enabling techniques (§ 5.3).

5.1 Experiment Setup

All experiments are run on a test machine with two Genuine
Intel(R) 2.20GHz 24-core processors and 32 GB of memory.
The kernel version is 64-bit Linux 4.13.9 and the operating
system in use is Fedora 27. The experiments use two storage
devices, an 800 GB Intel SSDSC2BB800G7 SSD and 256 GB
NVMs of two 128 GB Intel Optane DC PMM [28]. Table 1
lists their maximum single-thread bandwidth, evaluated with
the versatile storage benchmark tool FIO.

We mainly compare MatrixKV with NoveLSM and
RocksDB (including RocksDB-SSD and RocksDB-L0-
NVM). RocksDB-SSD represents the conventional RocksDB
on a DRAM-SSD hierarchy. The other three KV stores are
for systems with DRAM-NVM-SSD storage. They use 8 GB
NVM to be consistent with the setup in NoveLSM’s paper
and force the majority of the 80 GB test data to be flushed
to SSDs. RocksDB-L0-NVM simply enlarges L0 into 8 GB
and stores it in NVM. MatrixKV reorganizes the 8 GB L0

24 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/PDS-Lab/MatrixKV
https://github.com/PDS-Lab/MatrixKV

6.48

15.5

23.7
29.5 31.5

36.2

13.8

26.6

45.8

76.9 81.2 78.5

0

10

20

30

40

50

60

70

80

90

64B 256B 1KB 4KB 16KB 64KB

T
h

ro
u

g
h

p
u

t
(M

B
/
s
)

Value size

(a) Random write

0

50

100

150

200

250

64B 256B 1KB 4KB 16KB 64KB
Value size

(b) Sequential write

0

20

40

60

80

100

120

64B 256B 1KB 4KB 16KB 64KB

Value size

(c) Random read

0

20

40

60

80

100

120

140

160

180

64B 256B 1KB 4KB 16KB 64KB
Value size

RocksDB-SSD

NoveLSM

MatrixKV

RocksDB-L0-NVM

(d) Sequential read

Figure 10: Performance on Micro-benchmarks with different value sizes.

in NVM and enlarges the L1 in SSDs into the same 8 GB.
NoveLSM employs NVM to store two MemTables (2*4 GB).
Test results from this configuration can also demonstrate that
MatrixKV achieves system performance improvement with
the economical use of NVMs. Finally, we evaluate PebblesDB
and SILK for systems with DRAM-NVM storage since they
are the representative studies on LSM-tree improvement but
are not originally designed for systems with multi-tier storage.
Unless specified otherwise, the evaluated KV stores assume
the default configuration of RocksDB, i.e., 64 MB MemTa-
bles/SSTables, 256 MB L1 size, and AF of 10. The default
key-value sizes are 16 bytes and 4 KB.

5.2 Overall performance evaluation
In this section, we first evaluate the overall performance of
the four KV stores using db_bench, the micro-benchmark
released with RocksDB. Then, we evaluate the performance
of each KV store with the YCSB macro-benchmarks [15].

Write performance: We evaluate the random write perfor-
mance by inserting KV items totaling 80 GB in a uniformly
distributed random order. Figure 10(a) shows the random
write throughput of four KV stores as a function of value
size. The performance difference between RocksDB-SSD
and RocksDB-L0-NVM suggests that simply placing L0 in
NVM brings about an average improvement of 65%. We use
RocksDB-L0-NVM and NoveLSM as baselines of our eval-
uation. MatrixKV improves random write throughput over
RocksDB-L0-NVM and NoveLSM in all value sizes. Specifi-
cally, MatrixKV’s throughput improvement over RocksDB-
L0-NVM ranges from 1.86× to 3.61×, and MatrixKV’s
throughput improvement over NoveLSM ranges from 1.72×
to 2.61. Taking the commonly used value size of 4 KB as
an example, MatrixKV outperforms RocksDB-L0-NVM and
NoveLSM by 3.6× and 2.6× respectively. RocksDB-L0-
NVM delivers relatively poor performance since putting L0 in
NVM only brings a marginal improvement. NoveLSM uses
a large mutable MemTable in NVM to handle a portion of
update requests thus slightly reducing WA. However, for both
RocksDB and NoveLSM, the root causes of write stalls and
WA remain unaddressed, i.e., the all-to-all L0-L1 compaction
and the deepened depth of LSM-trees.

We evaluate sequential write performance by inserting a
total of 80 GB KV items in sequential order. From the test
results in Figure 10(b), we make three main observations.
First, sequential write throughput is higher than random write
throughput for the four KV stores as sequential writes incur no
compaction. Second, RocksDB-SSD performs the best since
the other three KV stores have an extra NVM tier, requir-
ing data migration from NVMs to SSDs. Three, MatrixKV
and RocksDB-L0-NVM have better sequential write through-
put than NoveLSM since contracting RowTable/SSTables in
NVMs is cheaper than updating the skip list of NoveLSM’s
large mutable MemTable.

Read performance: Random/sequential read perfor-
mances are evaluated by reading one million KV items from
the 80 GB randomly loaded database. To obtain the read per-
formance free from the impact of compactions, we start the
reading test after the tree becomes well-balanced. Figure 10(c)
and (d) show the test results of random reads and sequential
reads. Since NVM only accommodates 10% of the dataset,
the read performance in SSDs dominates the overall read per-
formance. Besides, since a balanced tree is well-sorted from
L1 to Ln on SSDs, the four KV stores exhibit similar read
throughputs. MatrixKV does not degrade read performance
and even has a slight advantage in sequential reads for two
reasons. First, the cross-row hint search reduces the search
overhead of the enlarged L0. Second, MatrixKV has fewer
LSM-tree levels, resulting in less search overhead on SSDs.

Macro-benchmarks: Now we evaluate four KV stores
with YCSB [15], a widely used macro-benchmark suite de-
livered by Yahoo!. We first write an 80 GB dataset with 4KB
values for loading, then evaluate workload A-F with one mil-
lion KV items respectively. From the test results shown in
Figure 11, we draw three main conclusions. First, MatrixKV
gets the most advantage from write/load dominated work-
loads, i.e., load, and workload A and F. MatrixKV is 3.29×
and 2.37× faster than RocksDB-L0-NVM and NoveLSM on
the load workload (i.e., random write). Second, MatrixKV
maintains adequate performance over read-dominated work-
loads, i.e., workloads B to E. Third, NoveLSM and MatrixKV
behave better on workload D due to the latest distribution,
where they both hit more in NVMs and thus MatrixKV can

USENIX Association 2020 USENIX Annual Technical Conference 25

Load A B C D E F
Inserts 100% 0% 0% 0% 5% 0%
Updates 0% 50% 5% 0% 0% 0%
Reads 0% 50% 95% 100% 95% 50%
Range query 0% 0% 0% 0% 0% 0%
RMW 0%
Distribution Zipfian

1
8

0
1

2
7

7
2

8

1
8

3
3

8

1
9

5
1

9

1
3

5
6

1

3
6

6
8

1
1

1
4

2

3
4

1
4 2

9
5

6
7

1
9

0
2

9

1
9

7
9

9

1
4

4
8

1

3
8

0
9

1
2

4
5

9

4
7

4
6

4
4

2
6

0 1
7

5
6

4

1
6

4
4

4

2
4

5
2

9

3
4

4
4

1
0

4
8

5

1
1

2
2

9

6
6

9
7

3

2
0

8
2

7

2
1

5
1

6

2
1

5
8

4 3
9

1
6

1
5

8
5

6

0

1

2

3

4

5

6

7

N
o

rm
a

liz
e

d
 T

h
ro

u
gh

p
u

t
RocksDB-SSD RocksDB-L0-NVM

NoveLSM MatrixKV

50%

5%
0%
0%
95%
0%

Zipfian Zipfian Latest Zipfian ZipfianUniform
0% 0% 0% 0%

Figure 11: Macro-benchmarks. The y-axis shows the through-
put of each KV store normalized to RocksDB-SSD. The num-
ber on each bar indicates the throughput in ops/s.

Table 2: Tail Latency
Latency (us) avg. 90% 99% 99.9%
RocksDB-SSD 974 566 11055 17983
NoveLSM 450 317 2080 2169
RocksDB-L0-NVM 477 528 786 1112
MatrixKV 263 247 405 663

benefit more from cross-row hints.
Tail latency: Tail latency is especially important for LSM-

tree based KV stores, since they are widely deployed in pro-
duction environments to provide services for write-heavy
workloads and latency-critical applications. We evaluate the
tail latency with the same methodology used in SILK [6],
i.e., using the YCSB-A workload and setting request arrival
rate at around 20K requests/s. Table 2 shows the average,
90th, 99th, and 99.9th percentile latencies of four key-value
stores. MatrixKV significantly reduces latencies in all cases.
The 99th percentile latency of MatrixKV is 27×, 5×, and
1.9× lower than RocksDB-SSD, NoveLSM, and RocksDB-
L0-NVM respectively. The test results demonstrate that by
reducing write stalls and WA, MatrixKV improves the quality
of user experience with much lower tail latencies.

5.3 Performance Gain Analysis
To understand MatrixKV’s performance improvement over
random write workloads, we investigate the main challenges
of LSM-trees (§ 5.3.1) and the key enabling techniques of
MatrixKV (§ 5.3.2).

5.3.1 Main Challenges

In this section, we demonstrate that MatrixKV does address
the main challenges of LSM-trees, i.e., write stalls and WA.

Write Stalls: We record the throughput of the four KV
stores in every ten seconds during their 80 GB random write
process (similar to Figures 2 and 4) to visualize write stalls.
From the performance variances shown in Figure 12, we
draw three observations. (1) MatrixKV takes a shorter time
to process the same 80GB random write since it has higher

0.01

0.1

1

10

100

1000

0 1000 2000 3000 4000 5000 6000 7000

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Elapsed time (s)

RocksDB-SSD
NoveLSM
MatrixKV
RocksDB-L0-NVM

Figure 12: Throughput fluctuation as a function of time. The
random write performance fluctuates where the troughs on
curves signify the occurrences of possible write stalls.

702GB, 8.78x

384GB, 4.81x

274GB, 3.43x

355GB,4.41x

0

1

2

3

4

5

6

7

8

9

10

RocksDB-SSD NoveLSM MatrixKV RocksDB-L0-NVM

W
rit

e
am

pl
ifi

ca
tio

n
(x

 ti
m

es
)

Figure 13: Write amplification of 80 GB random writes.The
numbers on each bar show the amount of data written to SSDs
and the WA ratio respectively.

random write throughput than other KV stores (as demon-
strated in § 5.2). (2) Both RocksDB and NoveLSM suffer
from write stalls due to the expensive L0-L1 compaction. Nov-
eLSM takes longer to process a L0-L1 compaction because L0
maintains large MemTables flushed from NVMs. Comparing
to RocksDB-SSD, RocksDB-L0-NVM has lower throughput
during write stalls, which means that it blocks foreground
requests more severely because of the enlarged L0. (3) Ma-
trixKV achieves the most stable performance. The reason is
that we reduce write stalls by the fine-grained column com-
paction which guarantees a small amount of data processed
in each L0-L1 compaction.

Write Amplification: We measure the WA of four systems
on the same experiment of randomly writing 80 GB dataset.
Figure 13 shows the WA factor measured by the ratio of
the amount of data written to SSDs and the amount of data
coming from users. The WA of MatrixKV, NoveLSM, and
RocksDB-L0-NVM are 2.56×, 1.83×, and 1.99× lower than
RocksDB-SSD respectively. MatrixKV has the smallest WA
since it reduces the number of compactions by lowering the
depth of LSM-trees.

5.3.2 MatrixKV Enabling Techniques

Column compaction: To demonstrate the efficiency of col-
umn compaction, we record the amount of data involved, the
duration of every L0-L1 compaction for four KV stores in the
same 80 GB random write experiment. As shown in Figure 14,
MatrixKV conducts 467 column compactions, each 0.33 GB,

26 2020 USENIX Annual Technical Conference USENIX Association

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1000 2000 3000 4000 5000 6000 7000

A
m

o
u

n
t

o
f

d
at

a
(M

B
)

Elapsed Time (s)

RocksDB-SSD

NoveLSM

MatrixKV

RocksDB-L0-NVM

Figure 14: The L0-L1 compaction. Each line segment indi-
cates an L0-L1 compaction. The y-axis shows the amount of
data involved in the compaction and the length along x-axis
shows the duration of the compaction.

10

100

1000

10000

100000

0 200 400 600 800 1000 1200 1400 1600 1800

Co
m

pa
ct

io
n

da
ta

 v
ol

um
e

(M
B)

Number of compactions

RocksDB-SSD NoveLSM MatrixKV RocksDB-L0-NVM

Figure 15: Compaction analysis. This figure shows the amount
of data of every individual compaction during the 80 GB
random write.

written a total of 153 GB data. RocksDB-SSD processes
52 compactions, each 3.1 GB on average, written a total of
157 GB data. MatrixKV processes more fine-grained L0-L1
compactions, where each has the least amount of data and
the shortest compaction duration. As a result, column com-
pactions have only a negligible influence on foreground re-
quests and finally significantly reduce write stalls. NoveLSM
actually exacerbates write stalls since the enlarged MemTa-
bles flushed from NVM significantly increase the amount of
data processed in each L0-L1 compaction.

Overall compaction efficiency: We further record the
overall compaction behaviors of four KV stores by recording
the amount of data for every compaction during the random
write experiment. From the test results shown in Figure 15,
we draw four observations. First, MatrixKV has the smallest
number of compactions, attributed to the reduced LSM-tree
depth. Second, all compactions in MatrixKV process similar
amount of data since we reduce the amount of compaction
data on L0-L1 and does not increase that on other levels. Third,
NoveLSM and RocksDB-L0-NVM have fewer compactions
than RocksDB-SSD. The reasons are: (1) NoveLSM uses
large mutable MemTables to serve more write requests and
absorb a portion of update requests, and (2) RocksDB-L0-
NVM has an 8 GB L0 in NVM to store more data. Fourth,
the substantial amount of compaction data in NoveLSM and
RocksDB stems from the L0-L1 compaction.

Reducing LSM-tree depth: To evaluate the technique of
flattening LSM-trees, we change level sizes for both RocksDB

256MB 8GB 256MB 8GB 256MB 8GB
RocksDB-SSD MatrixKV RocksDB-L0-NVM

L0
L1

0.00 0.00 0.00 0.00 0.00 0.00

L2
0.19 7.95 0.23 8.01 0.24 7.99

L3
2.47 43.92 2.45 44.67 2.45 41.04

L4
24.97 24.99 25.00

3059.6
968

15557

19598

5447.2
3570

0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (o

ps
/s

)

23.72 21.90 21.85

Figure 16: Reducing LSM-tree depth. The y-axis shows ran-
dom write throughputs of RocksDB and MatrixKV when L1 is
256 MB/8 GB. The table below shows the data distribution
among levels (in GB).

and MatrixKV. The first configuration is L1 = 256MB (the
default L1 size of RocksDB). The second configuration is
L1 = 8GB. The following levels exponentially increased at
the ratio of AF=10. Figure 16 shows the throughput of ran-
domly writing an 80 GB dataset. The table under the figure
shows the data distribution on different levels after balancing
LSM-trees. The test results demonstrate that both RocksDB
and MatrixKV reduce the number of levels by enlarging level
sizes, i.e., from 5 to 3. However, they exert opposite influences
on system performance. RocksDB-SSD and RocksDB-L0-
NVM reduce their random write throughputs by 3× and 1.5×
respectively as level sizes increase. The reason is that the
enlarged L1 significantly increases the amount of compaction
data between L0 and L1. RocksDB-L0-NVM is slightly better
than RocksDB-SSD since it puts L0 in NVMs. For MatrixKV,
the throughput increases 25% since the fine granularity col-
umn compaction is independent of level sizes. Furthermore,
the MatrixKV with 256 MB L1 shows the performance im-
provement of only addressing write stalls.

Cross-row hint search: To evaluate the technique of cross-
row hint search, we first randomly write an 8 GB dataset with
4 KB value size to fill the L0 in NVMs for MatrixKV and
RocksDB-L0-NVM. Then we search for one million KV
items from NVMs in uniformly random order. This experi-
ment makes NVMs accommodate 100% of the dataset to fully
reflect the efficiency of cross-row hint searches. The random
read throughput of RocksDB-L0-NVM and MatrixKV are 9
MB/s and 157.9 MB/s respectively. Hence, compared to sim-
ply placing L0 in NVMs, the cross-row hint search improves
the read efficiency by 17.5 times.

5.4 Extended Comparisons on NVMs

To further verify that MatrixKV’s benefits are not solely due
to the use of fast NVMs, we evaluate more KV stores on
the DRAM-NVM hierarchy, i.e., RocksDB, NoveLSM, Peb-
blesDB, SILK, and MatrixKV, where DRAM stores MemTa-
bles, and all other components are stored on NVMs.

USENIX Association 2020 USENIX Annual Technical Conference 27

9.30
11.68

8.09
10.78

33.44

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

RocksDB NoveLSM SILK PebblesDB MatrixKV

Th
ro

ug
hp

ut
 (K

 o
ps

/s
)

Figure 17: Throughput on NVM based KV stores.

Table 3: Tail latency on NVM-based KV stores
Latency (us) avg. 90% 99% 99.9%
RocksDB 385 523 701 864
NoveLSM 377 250 808 917
SILK 351 445 575 747
PebblesDB 335 1103 1406 1643
MatrixKV 209 310 412 547

Throughput: Figure 17 shows the performance for ran-
domly writing an 80 GB dataset. MatrixKV achieves the best
performance among all KV stores. It demonstrates that the
enabling techniques of MatrixKV are appropriate for NVM
devices. Using NVM as a fast block device, PebblesDB does
not show much improvement over RocksDB. SILK is slightly
worse than RocksDB since its design strategies have limited
advantages over intensive writes.

Tail latency: Tail latencies are evaluated with YCSB-A
workload as in § 5.2. Since NVM has a significantly better
performance than SSDs, we speed up the requests from clients
(60K requests/s). Test results in Table 3 show that with the
persistent storage of NVMs most KV stores provide adequate
tail latencies. However, MatrixKV still achieves the shortest
tail latency.

6 Conclusion

In this paper, we present MatrixKV, a stable low-latency key-
value store based on LSM-trees. MatrixKV is designed for
systems with multi-tier DRAM-NVM-SSD storage. By lift-
ing the L0 to NVM, managing it with the matrix container,
and compacting L0 and L1 with the fine granularity column
compaction, MatrixKV reduces write stalls. By flattening
the LSM-trees, MatrixKV mitigates write amplification. Ma-
trixKV also guarantees adequate read performance with cross-
row hint searches. MatrixKV is implemented on a real system
based on RocksDB. Evaluation results demonstrate that Ma-
trixKV significantly reduces write stalls and achieves much
better system performance than RocksDB and NoveLSM.

7 Acknowledgement

We thank our shepherd Patrick Stuedi, the anonymous review-
ers, and Damien Le Moal for their insightful comments and
guidance. We appreciate Yun Liu, Hua Jiang, and Tao Zhong

from Intel for the hardware support and maintenance. We
also thank Zhiwen Liu and Chenghao Zhu for their efforts
in the open-source project.This work was sponsored in part
by the National Key Research and Development Program of
China No.2018YFB10033005, the Creative Reaserch Group
Project of NSFC No.61821003, and the National Natural Sci-
ence Foundation of China under Grant No.61472152. This
work is also partially supported by the US NSF under Grant
No.CCF-1704504 and No.CCF-1629625.

References

[1] Persistent memory development kit, 2019. https://
github.com/pmem/pmdk.

[2] David G Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
Fawn: A fast array of wimpy nodes. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP 09), pages 1–14, 2009.

[3] Remzi H Arpaci-Dusseau and Andrea C Arpaci-
Dusseau. Operating systems: Three easy pieces, volume
151. Arpaci-Dusseau Books Wisconsin, 2014.

[4] Joy Arulraj and Andrew Pavlo. How to build a non-
volatile memory database management system. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, pages 1753–1758. ACM, 2017.

[5] Anurag Awasthi, Avani Nandini, Arnab Bhattacharya,
and Priya Sehgal. Hybrid hbase: Leveraging flash ssds
to improve cost per throughput of hbase. In Proceedings
of the 18th International Conference on Management of
Data, pages 68–79, 2012.

[6] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. Silk: Preventing latency spikes in log-structured
merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (ATC 19), 2019.

[7] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis,
and Igor Zablotchi. Flodb: Unlocking memory in per-
sistent key-value stores. In Proceedings of the Twelfth
European Conference on Computer Systems, pages 80–
94, 2017.

[8] Meenakshi Sundaram Bhaskaran, Jian Xu, and Steven
Swanson. Bankshot: Caching slow storage in fast non-
volatile memory. In Proceedings of the 1st Workshop
on Interactions of NVM/FLASH with Operating Systems
and Workloads, 2013.

[9] Geoffrey W Burr, Bülent N Kurdi, J Campbell Scott,
Chung Hon Lam, Kailash Gopalakrishnan, and Rohit S
Shenoy. Overview of candidate device technologies for

28 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/pmem/pmdk
https://github.com/pmem/pmdk

storage-class memory. IBM Journal of Research and
Development, 52(4.5):449–464, 2008.

[10] Adrian M Caulfield, Arup De, Joel Coburn, Todor I Mol-
low, Rajesh K Gupta, and Steven Swanson. Moneta: A
high-performance storage array architecture for next-
generation, non-volatile memories. In Proceedings of
the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 385–395, 2010.

[11] Bernard Chazelle and Leonidas J Guibas. Fractional
cascading: I. a data structuring technique. Algorithmica,
1(1-4):133–162, 1986.

[12] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M
Grupp, Rajesh K Gupta, Ranjit Jhala, and Steven Swan-
son. Nv-heaps: making persistent objects fast and safe
with next-generation, non-volatile memories. In Pro-
ceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 11), pages 105–118, 2011.

[13] Nachshon Cohen, David T Aksun, Hillel Avni, and
James R Larus. Fine-grain checkpointing with in-cache-
line logging. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
19), pages 441–454, 2019.

[14] Jeremy Condit, Edmund B Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better i/o through byte-addressable, per-
sistent memory. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages
133–146, 2009.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the ACM
Symposium on Cloud Computing (SOCC 10), 2010.

[16] George Copeland, Tom W Keller, Ravi Krishnamurthy,
and Marc G Smith. The case for safe ram. In VLDB,
pages 327–335, 1989.

[17] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, pages 79–94, 2017.

[18] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-
time trade-offs for lsm-tree based key-value stores via
adaptive removal of superfluous merging. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, pages 505–520, 2018.

[19] Niv Dayan and Stratos Idreos. The log-structured merge-
bush & the wacky continuum. In Proceedings of the
2019 International Conference on Management of Data,
pages 449–466, 2019.

[20] Biplob Debnath, Sudipta Sengupta, and Jin Li. Skimpys-
tash: Ram space skimpy key-value store on flash-based
storage. In Proceedings of the 2011 ACM SIGMOD In-
ternational Conference on Management of data, pages
25–36, 2011.

[21] Alexander Driskill-Smith. Latest advances and future
prospects of stt-ram. In Non-Volatile Memories Work-
shop, pages 11–13, 2010.

[22] Subramanya R Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, page 15. ACM, 2014.

[23] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing dram
footprint with nvm in facebook. In Proceedings of the
Thirteenth EuroSys Conference, page 42. ACM, 2018.

[24] Facebook. Rocksdb, a persistent key-value store for fast
storage enviroments, 2019. http://rocksdb.org/.

[25] Sanjay Ghemawat and Jeff Dean. Leveldb, 2016. https:
//github.com/google/leveldb.

[26] Tyler Harter, Dhruba Borthakur, Siying Dong, Ami-
tanand S Aiyer, Liyin Tang, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. Analysis of hdfs under
hbase: a facebook messages case study. In 12th USENIX
Conference on File and Storage Technologies (FAST 14),
2014.

[27] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable transient inconsistency in
byte-addressable persistent b+-tree. In 16th USENIX
Conference on File and Storage Technologies (FAST 18),
pages 187–200, 2018.

[28] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R Dulloor, et al. Basic per-
formance measurements of the intel optane dc persis-
tent memory module. arXiv preprint arXiv:1903.05714,
2019.

[29] HV Jagadish, PPS Narayan, Sridhar Seshadri, S Sudar-
shan, and Rama Kanneganti. Incremental organization
for data recording and warehousing. In VLDB, vol-
ume 97, pages 16–25, 1997.

USENIX Association 2020 USENIX Annual Technical Conference 29

http://rocksdb.org/
https://github.com/google/leveldb
https://github.com/google/leveldb

[30] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young ri Choi. Slm-db: Single-
level key-value store with persistent memory. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 191–205, 2019.

[31] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing lsms for nonvolatile memory with novelsm.
In 2018 USENIX Annual Technical Conference (ATC
18), 2018.

[32] Hyojun Kim, Sangeetha Seshadri, Clement L Dickey,
and Lawrence Chiu. Phase change memory in enter-
prise storage systems: silver bullet or snake oil? ACM
SIGOPS Operating Systems Review, 48(1):82–89, 2014.

[33] Wook-Hee Kim, Beomseok Nam, Dongil Park, and You-
jip Won. Resolving journaling of journal anomaly in
android i/o: multi-version b-tree with lazy split. In 12th
USENIX Conference on File and Storage Technologies
(FAST 14), pages 273–285, 2014.

[34] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen,
and Thomas F Wenisch. High-performance transactions
for persistent memories. Proceedings of the Twenty-
First International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS 16), pages 399–411, 2016.

[35] Avinash Lakshman and Prashant Malik. Cassandra: A
decentralized structured storage system. In The 3rd
ACM SIGOPS International Workshop on Large Scale
Distributed Systems and Middleware, 2009.

[36] Lu Lanyue, Pillai Thanumalayan Sankaranarayana,
Arpaci-Dusseau Andrea C, and Arpaci-Dusseau Remzi
H. WiscKey: separating keys from values in ssd-
conscious storage. In 14th USENIX Conference on File
and Storage Technologies (FAST 16), 2016.

[37] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation of
a fast persistent key-value store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
pages 447–461, 2019.

[38] Jianhong Li, Andrew Pavlo, and Siying Dong. Nvm-
rocks: Rocksdb on non-volatile memory systems, 2017.

[39] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and
Yinlong Xu. Elasticbf: elastic bloom filter with hot-
ness awareness for boosting read performance in large
key-value stores. In 2019 USENIXAnnual Technical
Conference (USENIX ATC 19), pages 739–752, 2019.

[40] Hyeontaek Lim, David G Andersen, and Michael Kamin-
sky. Towards accurate and fast evaluation of multi-stage
log-structured designs. In 14th USENIX Conference on
File and Storage Technologies (FAST 16), pages 149–
166, 2016.

[41] Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. Silt: A memory-efficient, high-
performance key-value store. In Proceedings of the
23th ACM Symposium on Operating Systems Principles
(SOSP 11), pages 1–13, 2011.

[42] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai
Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.
Dudetm: Building durable transactions with decoupling
for persistent memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS 17), pages 329–343, 2017.

[43] Chen Luo and Michael J Carey. On performance sta-
bility in lsm-based storage systems (extended version).
arXiv preprint arXiv:1906.09667, 2019.

[44] Balmau Oana Maria, Didona Diego, Guerraoui Rachid,
Zwaenepoel Willy, Yuan Huapeng, Arora Aashray,
Gupta Karan, and Konka Pavan. Triad: creating syn-
ergies between memory, disk and log in log structured
key-value stores. In 2017 USENIX Annual Technical
Conference (ATC 17), 2017.

[45] Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, and Raju Rangaswami. Nvmkv: A scalable,
lightweight, ftl-aware key-value store. In 2015 USENIX
Annual Technical Conference (ATC 15), 2015.

[46] Fei Mei, Qiang Cao, Hong Jiang, and Jingjun Li. Sifrdb:
A unified solution for write-optimized key-value stores
in large datacenter. In Proceedings of the ACM Sympo-
sium on Cloud Computing, pages 477–489, 2018.

[47] Prashanth Menon, Tilmann Rabl, Mohammad Sadoghi,
and Hans-Arno Jacobsen. Optimizing key-value stores
for hybrid storage architectures. In Proceedings of 24th
Annual International Conference on Computer Science
and Software Engineering, pages 355–358, 2014.

[48] Iulian Moraru, David G Andersen, Michael Kaminsky,
Niraj Tolia, Parthasarathy Ranganathan, and Nathan
Binkert. Consistent, durable, and safe memory manage-
ment for byte-addressable non volatile main memory.
In Proceedings of the First ACM SIGOPS Conference
on Timely Results in Operating Systems, 2013.

[49] Patrick ONeil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth ONeil. The log-structured merge-tree (lsm-tree).
Acta Informatica, 33(4):351–385, 1996.

30 2020 USENIX Annual Technical Conference USENIX Association

[50] Patrick E O’Neil and Gerhard Weikum. A log-structured
history data access method (lham). In HPTS, page 0.
Citeseer, 1993.

[51] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value stores
using fragmented log-structured merge trees. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 497–514. ACM, 2017.

[52] Simone Raoux, Geoffrey W Burr, Matthew J Breitwisch,
Charles T Rettner, Y-C Chen, Robert M Shelby, Mar-
tin Salinga, Daniel Krebs, S-H Chen, H-L Lung, et al.
Phase-change random access memory: A scalable tech-
nology. IBM Journal of Research and Development,
52(4.5):465–479, 2008.

[53] Russell Sears and Raghu Ramakrishnan. blsm: A gen-
eral purpose log structured merge tree. In Proceedings
of the 2012 ACM SIGMOD International Conference
on Management of Data (SIGMOD 12), 2012.

[54] Pradeep Shetty, Richard P Spillane, Ravikant Malpani,
Binesh Andrews, Justin Seyster, and Erez Zadok. Build-
ing workload-independent storage with vt-trees. In 11th
USENIX Conference on File and Storage Technologies
(FAST 13), pages 17–30, 2013.

[55] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart,
and R Stanley Williams. The missing memristor found.
nature, 453(7191):80, 2008.

[56] Dejun Teng, Lei Guo, Rubao Lee, Feng Chen, Siyuan
Ma, Yanfeng Zhang, and Xiaodong Zhang. Lsbm-tree:
Re-enabling buffer caching in data management for
mixed reads and writes. In 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 68–79, 2017.

[57] Doug Terry. Transactions and Scalability in Cloud
Databases—Can’t We Have Both? USENIX Associ-
ation, Boston, MA, 2019.

[58] Michael Wu and Willy Zwaenepoel. envy: a non-
volatile, main memory storage system. In Proceedings
of the Sixth International Conference on Architectural

Support for Programming Languages and Operating
Systems (ASPLOS 94), pages 86–97, 1994.

[59] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-
trie: An lsm-tree-based ultra-large key- value store for
small data. In Proceedings of the USENIX Annual Tech-
nical Conference (ATC 15), 2015.

[60] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven
Swanson. Finding and fixing performance pathologies
in persistent memory software stacks. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS 19), pages 427–439, 2019.

[61] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. Nv-tree: Reduc-
ing consistency cost for nvm-based single level systems.
In 13th USENIX Conference on File and Storage Tech-
nologies (FAST 15), pages 167–181, 2015.

[62] Ting Yao, Jiguang Wan, Ping Huang, Xubin He, Qingxin
Gui, Fei Wu, and Changsheng Xie. A light-weight com-
paction tree to reduce i/o amplification toward efficient
key-value stores. In Proceedings of the 33rd Interna-
tional Conference on Massive Storage Systems and Tech-
nology (MSST 2017), 2017.

[63] Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhi-
wen Liu, Changsheng Xie, and Xubin He. Geardb: A
gc-free key-value store on hm-smr drives with gear com-
paction. In 17th USENIX Conference on File and Stor-
age Technologies (FAST 19), pages 159–171, 2019.

[64] Yinliang Yue, Bingsheng He, Yuzhe Li, and Weiping
Wang. Building an efficient put-intensive key-value
store with skip-tree. IEEE Transactions on Parallel and
Distributed Systems, 28(4):961–973, 2016.

[65] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and
high-performance hashing index scheme for persistent
memory. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages

461–476, 2018.

USENIX Association 2020 USENIX Annual Technical Conference 31

Disaggregating Persistent Memory and Controlling Them Remotely:
An Exploration of Passive Disaggregated Key-Value Stores

Shin-Yeh Tsai, Yizhou Shan, Yiying Zhang
Purdue University and University of California, San Diego

Abstract
Many datacenters and clouds manage storage systems sepa-
rately from computing services for better manageability and
resource utilization. These existing disaggregated storage
systems use hard disks or SSDs as storage media. Recently,
the technology of persistent memory (PM) has matured and
seen initial adoption in several datacenters. Disaggregating
PM could enjoy the same benefits of traditional disaggre-
gated storage systems, but it requires new designs because
of its memory-like performance and byte addressability.

In this paper, we explore the design of disaggregating
PM and managing them remotely from compute servers, a
model we call passive disaggregated persistent memory, or
pDPM. Compared to the alternative of managing PM at stor-
age servers, pDPM significantly lowers monetary and energy
costs and avoids scalability bottlenecks at storage servers.

We built three key-value store systems using the pDPM
model. The first one lets all compute nodes directly access
and manage storage nodes. The second uses a central coor-
dinator to orchestrate the communication between compute
and storage nodes. These two systems have various perfor-
mance and scalability limitations. To solve these problems,
we built Clover, a pDPM system that separates the location,
communication mechanism, and management strategy of the
data plane and the metadata/control plane. Compute nodes
access storage nodes directly for data operations, while one
or few global metadata servers handle all metadata/control
operations. From our extensive evaluation of the three pDPM
systems, we found Clover to be the best-performing pDPM
system. Its performance under common datacenter work-
loads is similar to non-pDPM remote in-memory key-value
store, while reducing CapEx and OpEx by 1.4× and 3.9×.

1 Introduction
Separating (or “disaggregating”) storage and compute has
become a common practice in many datacenters [11, 18]
and clouds [3, 4]. Disaggregation makes it easy to manage
and scale both the storage and the compute pools. By al-
lowing the storage pool to be shared across applications and
users, disaggregation consolidates storage resources and re-
duces their cost. As a recent success story, Alibaba listed
their RDMA-based disaggregated storage system as one of
the five reasons that enabled them to serve the peak load of
544,000 orders per second on the 2019 Single’s Day [62].

Existing disaggregated storage systems are all SSD- or
HDD-based. Today, a new storage media, non-volatile mem-

ory (or persistent memory, PM) has arrived [27, 29] and has
already seen adoption in several datacenters [21, 25, 46]. Ex-
isting distributed PM systems [42, 56, 69] have mainly taken
a non-disaggregated approach, where each server in a cluster
hosts PM for applications running both on the local server
and remote servers (Figure 1(a)).

Disaggregating PM could enjoy the same management
and resource-utilization benefits as traditional disaggregated
storage systems. However, building a PM-based disaggre-
gated system is very different from traditional disaggregated
storage systems as PM is byte addressable and orders of
magnitude faster than SSDs and HDDs. It is also different
from disaggregated memory systems [41, 55], since when
treated as storage systems, disaggregated PM systems need
to sustain power failure and be crash consistent.

There are two possible design directions in building dis-
aggregated PM systems, and they differ in where manage-
ment software runs. The first type, and the type that has
been adopted in traditional disaggregated storage systems,
runs management software at the storage nodes, i.e., actively
managing data at where the data is. When applying this
model to PM, we call the resulting system active disaggre-
gated PM, or aDPM (Figure 1(b)). By co-locating data and
their management, aDPM could offer low-latency perfor-
mance to applications. However, aDPM requires significant
processing power at storage nodes to sustain high-bandwidth
networks and to fully deliver PM’s superior performance.

In this paper, we explore an alternative approach of build-
ing disaggregated PM by treating storage nodes as passive
parties that do not perform any data processing or data man-
agement tasks, a model we call pDPM. pDPM offers several
practical benefits and research value. First, pDPM lowers
owning and energy cost. Without any processing need, a PM
node (we call it a data node or DN) can either be a regular
server that dedicates its entire CPU to other applications or
a hardware device that directly attaches a NIC to PM. Sec-
ond, pDPM avoids DN’s processing power being the perfor-
mance scalability bottleneck. Finally, pDPM is an approach
in the design space of disaggregated storage systems that
has largely been overlooked in the past. Exploring pDPM
systems would reveal various performance, scalability, and
cost tradeoffs that could help future researchers and systems
builders make better design decisions.

pDPM presents several new challenges, the biggest of
which is the need to avoid processing all together from where
data is hosted. Existing in-memory data stores heavily rely

USENIX Association 2020 USENIX Annual Technical Conference 33

…

Lo
ca

l
PM

Re
m

ot
e

PM

(a) non-Disaggregated PM

Lo
ca

l
PM

Re
m

ot
e

PM PM PM

Coordinator

PM
CPU

(d) pDPM-Central

…

…
DRAM
CPU
CN

DRAM
CPU
CN

DRAM

PM PM
(e) Clover

…

…
DRAM
CPU
CN

DRAM
CPU
CN

Metadata
Server PM

CPU
DRAM

PM PM
(c) pDPM-Direct

…

…
DRAM
CPU
CN

DRAM
CPU
CN…

…

(b) aDPM

DRAM
CPU
CN

CPU/SoC
DN

PM
CPU/SoC

DN

PM

CPU
DR

AM CPU

DR
AM

Metadata/Coordinator

Meta/Coord
DRAM
CPU
CN

DN DN DN DN DN DN

Figure 1: PM Organization Comparison. Blue bars indicate two-way communication and pink ones indicate one-way communication. Bars with
both blue and pink mean support for both. Dashed boxes mean some but not all existing solutions adopt centralized metadata server (or a coordinator).

on local processing power for both the data path and the con-
trol path. Without any processing power, accesses to DNs
have to come all from the network, which makes data opera-
tions like concurrent writes especially hard. Moreover, DNs
cannot perform any management tasks or metadata opera-
tions locally, and each DN can fail independently.

A key question in designing pDPM systems is where to
perform data and metadata operations when we cannot per-
form them at DNs. Our first approach is to let client/com-
pute nodes (CNs) perform all the tasks by directly accessing
DNs with one-sided network communication, a model we
call pDPM-Direct (Figure 1(c)). After building and evaluat-
ing a real pDPM-Direct key-value store system, we found
that since CNs cannot be efficiently coordinated, pDPM-
Direct performs and scales poorly when there are concur-
rent reads/writes to the same data. Our second approach is
pDPM-Central (Figure 1(d)), where we use a central server
(the coordinator) to manage DNs and to orchestrate all ac-
cesses from CNs to DNs. Although pDPM-Central provides
a way to coordinate CNs, it adds more hops between CNs
and DNs, and the coordinator is a new scalability bottleneck.

To solve the issues of the above two pDPM systems, we
build Clover, a key-value store system with a new architec-
ture of pDPM (Figure 1(e)). Clover’s main ideas are to sep-
arate the location of data and metadata, to use different com-
munication mechanisms to access them, and to adopt differ-
ent management strategies for them. Data is stored at DNs.
Metadata is stored at one or few global metadata servers
(MSs). CNs directly access DNs for all data operations us-
ing one-sided network communication. They use two-sided
communication to talk to MS(s). MS(s) perform all metadata
and control operations.

Clover achieves low-latency, high-throughput perfor-
mance while delivering the consistency and reliability guar-
antees that are commonly used in traditional distributed stor-
age systems. We designed a set of novel techniques at the
data and the metadata plane to achieve these goals. Our
data plane design is inspired by log-structured writes and
skip lists. This design achieves 1-/2-RTT read/write perfor-
mance when there is no high write contention, while ensur-
ing proper synchronization and crash consistency of concur-
rent writes with satisfactory performance. We move all meta-
data and control operations off performance critical path. We
completely eliminate the need for the MS to communicate

with DNs; it performs space management and other control
tasks without accessing DNs. In addition, Clover supports
replicated writes for high availability and reliability.

We evaluate Clover, pDPM-Direct, and pDPM-Central
using a cluster of servers connected with RDMA network
(some acting as CNs and MSs, some acting as emulated
DNs). We compare these pDPM systems with two non-
disaggregated PM systems [42, 56] and an aDPM key-value
store system [30] running on CPU-based servers and on
ARM-SoC-based RDMA SmartNIC [44]. We perform an
extensive set of experiments to study the latency, throughput,
scalability, CPU utilization, and owning cost of these sys-
tems using microbenchmarks and YCSB workloads [13, 71].
Our evaluation results demonstrate that Clover is the best-
performing pDPM system, and it significantly outperforms
traditional distributed PM systems. Clover achieves simi-
lar or better performance as aDPM systems under common
datacenter workloads, while reducing CapEx and OpEx by
1.4× and 3.9×. However, we also discovered a fundamen-
tal limitation of pDPM-based storage systems: no process-
ing at where data sits could hurt write performance, espe-
cially under high contention of concurrent accesses to the
same data entry. Fortunately, most datacenter workloads
are read-most [7]. Thus, we believe pDPM and Clover to
be good choices future systems builders can consider, given
their overall benefits in cost, performance, and scalability.

Overall, this paper makes the following contributions:

• Thorough exploration of the passive disaggregated
persistent-memory architecture, revealing its benefits,
tradeoffs, and pitfalls.

• Implementation of Clover and two alternative pDPM
key-value stores, all guaranteeing proper synchroniza-
tion, crash consistency, and high availability.

• A detailed design of how to separate the data plane and
the metadata plane under the pDPM model.

• Comprehensive evaluation results that can guide future
DPM research.

All our pDPM systems are publicly available at https://
github.com/WukLab/pDPM.

2 Background and Related Work
This section includes background and related work on in-
memory data stores, RDMA, and PM in datacenter settings.

34 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/WukLab/pDPM
https://github.com/WukLab/pDPM

2.1 PM and Distributed PM Storage
Non-volatile memory (or PM) technologies such as 3D-
XPoint [28], PCM, STTM, and the memristor provide byte
addressability, persistence, and latency that is within an order
of magnitude of DRAM [59, 70]. PM has attracted extensive
research efforts in the past decade, most of which focus on
single-node environments. The first commercial PM prod-
uct, Intel Optane DC, has finally come to market [27]. It is
pressing to seek solutions to incorporate PM in datacenters.

Existing distributed PM systems [42, 56, 69] have mainly
adopted a symmetric architecture where each node in a clus-
ter hosts some PM that can be accessed both locally and by
other nodes (Figure 1(a)). Some of these systems expose a
file system interface [42, 69], and others expose a memory
interface [56, 73]. Among them, Orion [69] uses a global
server for metadata, and the rest co-locate metadata with
data. These systems have fast local-data accesses but lack
flexibility in managing compute and storage resources, and
they cannot scale these resources independently.

2.2 RDMA and RDMA-Based Data Stores
Remote Direct Memory Access, or RDMA, is a network tech-
nology that offers low-latency and low-CPU-utilization ac-
cesses to memory at remote machines. RDMA supports two
communication patterns: one-sided and two-sided. One-
sided RDMA operations allow one node to directly ac-
cess the memory at another node without involving the lat-
ter’s CPU. Two-sided RDMA involves both sender’s and re-
ceiver’s CPUs, similar to traditional network messaging.

Because of its performance and cost benefits [22, 36, 49],
RDMA has been deployed in major datacenters like Mi-
crosoft [63] and Alibaba [2]. Several recent distributed sys-
tems such as in-memory key-value stores [15, 16, 38, 47, 48,
58] and in-memory databases/transactional systems [8, 10,
66, 72] use RDMA to perform their network communica-
tion. Most of them use a combination of one- and two-sided
RDMA or pure two-sided RDMA. For example, FaSST [32]
is an RDMA-based RPC system built entirely with two-sided
RDMA. FaRM [15, 16], an RDMA-based distributed mem-
ory platform, uses one-sided communication for reads and
performs both one- and two-sided operations for replicated
writes. Pilaf [47] is a key-value store system that uses one-
sided RDMA read for get and two-sided RDMA for put.
HERD [30, 31] is another RDMA-based key-value store sys-
tem. For each get and put, HERD uses two RDMA oper-
ations: client sending a one-sided RDMA write request to
server and server sending an RDMA send response to client.

To achieve low-latency performance, most existing sys-
tems use busy-polling threads to receive incoming two-sided
RDMA requests. They also perform management tasks such
as memory allocation and garbage collection at CPUs in
data-hosting nodes [15, 72]. Consequently, even when one-
sided RDMA operations help reduce CPU utilization, practi-
cal RDMA-based data stores still require a CPU and signifi-

cant amount of energy at each data-hosting server. For exam-
ple, although FaRM [15] tries to use as much one-sided com-
munication as possible, it still requires processing power at
data nodes to perform metadata operations and certain steps
in its write replication protocol.

HyperLoop [35] is a recent system that provides a mech-
anism to extend default one-sided RDMA operations to sup-
port more functionalities. These additional functionalities
are performed at RDMA NICs without involving host CPU.
HyperLoop’s computation offloading technique could be ap-
plied to pDPM systems to offload certain data operations
to DNs, which could potentially improve pDPM’s perfor-
mance. However, it is difficult to offload the more complex
metadata operations to RDMA NICs, and HyperLoop still
performs them at CPUs. Clover demonstrates how to ef-
ficiently separate the metadata plane and run it at a global
metadata server.

2.3 Resource Disaggregation
Resource disaggregation is a notion to separate different
types of resources into pools (e.g., a compute pool and a
storage pool), each of which can be independently managed,
configured, and scaled [6, 26, 55]. Because of its efficiency
in resource utilization and management, many datacenters
and clouds have taken this approach when building storage
systems [3, 4, 11, 18, 65].

Disaggregation could take two forms: disaggregating re-
sources and managing them at where they are (active), and
disaggregating resources but managing them at the compute
pool (passive). Existing storage and memory systems have
mainly taken the active approach, with most of them build-
ing disaggregated resource pools using regular CPU-based
servers [51, 65]. To sustain high-bandwidth networks and
fast PM, these systems will require many CPU cores to just
poll and process requests. Another way to build active disag-
gregated systems is to offload computation at storage nodes
to hardware [9, 12, 17, 33, 35, 38, 39, 54, 57, 57]. These
solutions either require significant hardware implementation
efforts (e.g., FPGA-based) or incur performance scalability
issues (e.g., ARM-SoC-based).

Compared to active disaggregation, the passive approach
of disaggregation largely reduces the owning, energy, and
development costs of storage nodes by avoiding busy polling
at storage nodes and shifting the rest of the computation
to compute nodes. Unfortunately, the passive approach has
largely been overlooked in the community. HPE’s “The Ma-
chine” (Memory-Driven Computing) project [19, 23, 24, 37,
64] is one of the few existing proposals [40, 41] that adopt the
passive model. So far, HPE has (separately) built a hardware
prototype and a software layer. The hardware prototype [20]
connects a set of SoCs to a set of DRAM/PM chips in a rack
over a proprietary photonic network. To use this hardware
prototype, application developers need to build software lay-
ers to manage and access data in DRAM/PM. HPE has also

USENIX Association 2020 USENIX Annual Technical Conference 35

been building a software memory-store solution on top of a
Superdome NUMA machine [37, 64]. This solution assumes
certain features from future interconnect technologies, does
not support data redundancy, and is work done in parallel
with us. Although being a significant initial step in passive
disaggregation research, the Machine project only explores
one design choice and relies heavily on special network to
access and manage disaggregated memory. Moreover, its de-
sign details are not open to the public.

3 pDPM Overview
This section gives an overview of pDPM, its unique chal-
lenges, the interface and guarantees our proposed pDPM sys-
tems have, and the network layer they employ. Table 1 sum-
marizes the comparison of our proposed pDPM systems and
traditional distributed PM and remote memory systems.

3.1 Passive Disaggregated Persistent Memory
Our definition of the pDPM architecture consists of two con-
cepts: separating PM from compute servers into a PM-based
storage pool and eliminating processing needs at these sepa-
rated PM nodes (DNs).

The first concept is in the same spirit of current disaggre-
gated storage systems and shares many of their benefits: it
is flexible to manage and customize the PM storage pool; it
offers high resource utilization, since data can be allocated
at any DNs; datacenters can scale DNs independently from
other servers; and it is easy to add, remove, and upgrade DNs
without the need to change existing (compute) servers.

The second concept follows the more aggressive disag-
gregation approach of forming resource pools with just hard-
ware (PM in our case). Such PM pools can be a set of regular
servers equipped with PM or a set of network-attached de-
vices with just network functionality and some PM. The for-
mer frees entire server CPUs to perform other tasks, while
the latter eliminates the need for a processor and its hard-
ware/server packaging all together, reducing not only the en-
ergy cost but also the building cost of DNs. Moreover, by
removing processing from DNs, pDPM also avoids DN-side
processor being a performance scalability bottleneck.

3.2 pDPM Challenges
pDPM offers many cost and manageability benefits and is
now feasible to build with fast, “one-sided” network com-
munication technologies like RDMA. However, it is only at-
tractive when there is no or minimal performance loss com-
pared to other more expensive solutions. Building a pDPM
storage system that can lower the cost but maintain the per-
formance of non-pDPM systems is hard. Different from tra-
ditional distributed storage and memory systems, DNs can
only be accessed and managed remotely. A major techni-
cal hurdle is in providing good performance with concur-
rent data accesses. The lack of processing power at DNs
makes it impossible to orchestrate (e.g., serialize) concurrent

accesses there. Managing distributed PM resources without
any pDPM-local processing is also hard and when performed
improperly, can largely hurt foreground performance. In ad-
dition, DNs can fail independently. Such failures should be
handled properly to ensure data reliability and availability.

Different from traditional disaggregated storage that is
based on SSDs or hard disks, PM is orders of magnitude
faster [70]. Although today’s datacenter network speed has
also improved significantly [43], pDPM storage systems
should still try to minimize network RTTs.

Different from disaggregated memory systems [40, 41,
55], pDPM is a persistent storage system and should sustain
power failures and node failures. Thus, we need to ensure
the consistency of data and metadata during crash recovery
and provide redundancy for high availability and reliability.

3.3 System Interface and Guarantees
Clover and our two alternative pDPM systems provide the
same interface and guarantees to applications. They are key-
value stores supporting variable-sized entries, where users
can create, read (get), write (put), and delete a key-value
entry. Different CNs can have shared access to the same
data. All our pDPM systems ensure the atomicity of an entry
across concurrent readers and writers. A successful write in-
dicates that the data entry is committed (atomically). Reads
only see committed value. We choose to build key-value
stores on the pDPM architectures because key-value stores
are widely used in many datacenters. Similarly, we choose
single-entry atomic write and read committed because these
consistency and isolation levels are widely used in many data
store systems [30, 47] and can be extended to other levels.

Our pDPM systems are intended for storing data persis-
tently. They provide crash consistency, data reliability, and
high availability. After recovering from crashes at arbitrary
points, each data entry is guaranteed to contain either only
new data values or only old ones. In addition, all our three
systems support replicated writes across DNs.

3.4 Network Layer
We choose RDMA as the network technology to connect
all servers and DNs. We use RDMA’s RC (Reliable Con-
nection) mode which supports one-sided RDMA operations
and ensures lossless and ordered packet delivery. Similar to
prior solutions [15, 30, 31, 67], we solve RDMA’s scalabil-
ity issues by registering memory regions using huge memory
pages with RDMA NICs. Note that we use regular RDMA
writes as persistent write for our evaluation, since the RDMA
durable write commit in the IETF standard takes one network
round trip [60], same as non-durable RDMA write.

4 Alternative pDPM Systems
Before Clover, we built two other pDPM systems during
our exploration of the pDPM architectures. They follow the
same interface and deliver the same consistency and relia-

36 2020 USENIX Annual Technical Conference USENIX Association

System CapEx ($) R-RTT W-RTT Energy Scalability Metadata Performance
Distributed PM 46736 0-N 0-N High Neither Large Good only when accessing data on local node
aDPM w/ CPU 79888 1 1 High w/ both? Small Good overall
aDPM w/ BlueField 80080 1 1 Low Neither Small Good under light load
pDPM-Direct 53096 1 4(4) Low w/ DN† Large Best for small-sized read
pDPM-Central 58096 2 2(2) High Neither Small Not good for read-intensive traffic
Clover 58096 1 2(3) Low w/ both Medium Good overall (unless high write contention)

Table 1: Comparison of Distributed PM Architectures. The CapEx column represents dollar cost to build eight CNs and eight PMs. Section 6
discusses the details of CapEx and energy (CPU utilization) calculation. The R-RTT and W-RTT columns show the number of RTTs required to perform a read
and a write (with replication). All RTT values are measured when there is no contention. RTTs in distributed PM’s read/write, N, depends on protocols and
whether data is local. The Scalability column shows if a system is scalable with the number of CNs, the number of DNs, both, or neither. ? only when there are
enough CPU cores. † only scalable when there is no contention. The metadata columns show the space needed to store the metadata of a data entry.

CC

PM
(a) pDPM-Direct

CN
Lock

Create-
Redo Update Unlock

read write

RL U WL UUM

Create-
Redo

(b) pDPM-Central

read write
CN

Cor

PM

Create-
Redo

Link-
Redo

Update-
Shortcut

US

MS

CN

PM

Foreground Background

GC

(c) Clover

WL Writer Lock

U Unlock

C CRC calculation

US Update Shortcut UM Update Metadata

RL Reader Lock

Compare & SwapOne-sided
RPC

Old data
New data

Figure 2: Read/Write Protocols of pDPM Systems.

bility guarantees as Clover. Even though the main system
we present in this paper is Clover, we have spent significant
amount of efforts on optimizing the performance of these al-
ternative systems and on adding replication and crash recov-
ery support to them. They can be used as stand-alone sys-
tems apart from being comparison points of Clover. Because
of space constraint, we only briefly present their basic data
structures and read/write protocols. We omit the discussion
of their replication and crash recovery protocols.

4.1 Direct Connection
Our first alternative pDPM system, pDPM-Direct, connects
CNs directly to DNs (Figure 1(c)). CNs perform un-
orchestrated, direct accesses to DNs using one-sided RDMA
operations. The main challenge in designing pDPM-Direct is
the difficulty in coordinating CNs for various data and meta-
data operations.

To avoid frequent space allocation (which requires coordi-
nation across CNs), we pre-assign two spaces for each data
entry, one to store committed data where reads go to (the
committed space) and one to store in-flight, new data (the un-
committed space). CNs allocate these spaces at data-entry
creation time with the help of a distributed consensus pro-
tocol. Afterwards, their locations do not change until data-
entry free time. CNs locally store all the metadata (e.g., the
locations of committed and uncommitted spaces) to avoid
reading and writing metadata to DNs and the cost of ensur-
ing metadata consistency under concurrent accesses.

To support synchronized concurrent data accesses and to
avoid reading intermediate data during concurrent writes, a
straightforward method and our strawman version is to al-
ways lock a data entry when reading or writing it using a dis-

tributed lock. Doing so incurs two additional network RTTs
for each data access (one for lock and one for unlock).

For better performance, we adopt a lock-free, checksum-
based read mechanism, which allows reads to take only one
RTT. Specifically, we associate a CRC (error detection code)
checksum with each key-value entry at DNs. To read a data
entry, a CN uses its stored metadata to find the location of the
data entry’s committed space. It then reads both the data and
its CRC from the DN with an RDMA read. Afterwards, the
CN calculates the CRC of the fetched data and compares this
calculated CRC with the fetched CRC. If they do not match,
then the read is incomplete (an intermediate state during an
ongoing write), and the CN retries the read request. Al-
though calculating CRCs adds some performance overhead,
it is much lower than the alternative of locking. Figure 2(a)
illustrates pDPM-Direct’s read and write protocols.

pDPM-Direct still requires locking for writes. We de-
signed an efficient, RDMA-based implementation of write
lock. We associate an 8-byte value at the beginning of each
data entry as its lock value. To acquire the lock, a CN per-
forms an RDMA c&s (compare-and-swap) operation to the
value. The c&s operation compares whether the value is 0.
If so, it sets it to 1. Otherwise, the CN retries the c&s oper-
ation. To release the lock, the CN performs an RDMA write
and sets the value to 0. Our lock implementation leverages
the unique feature of the pDPM model that all memory ac-
cesses to DNs come from the network (i.e., the NIC). With-
out any yprocessor’s accesses to memory, the DMA proto-
col guarantees that network atomic operations like c&s are
atomic across the entire DN [14, 61].

To write a data entry, a CN first calculates and attaches
a CRC to the new data entry. Afterwards, the CN locates
the entry with its local metadata and locks the entry (one
RTT). The CN then writes the new data (with the CRC) to
the un-committed space (one RTT), which serves as the redo
copy used during recovery if a crash happens. Afterwards,
the CN writes the new data to the committed space with an
RDMA write (one RTT). At the end, the CN releases the
lock (one RTT). The total write latency is four RTTs plus
the CRC calculation time (when no contention), and two of
these RTTs contain data.

USENIX Association 2020 USENIX Annual Technical Conference 37

4.2 Connecting Through Coordinator
Our second alternative pDPM system, pDPM-Central (Fig-
ure 1(c)), uses a central coordinator to orchestrate all data ac-
cesses and to perform metadata and management operations.
All CNs send RPC requests to the coordinator, which handles
them by performing one-sided RDMA operations to DNs.
We implement our RPC using HERD’s RPC design [30];
other RPC designs can easily be integrated too. To achieve
high throughput, we use multiple RPC handling threads at
the coordinator. Figure 2(b) illustrates pDPM-Central’s read
and write protocols.

Since all requests go through the coordinator, it can serve
as the serialization point for concurrent accesses to a data
entry. We use a local read/write lock for each data entry at
the coordinator to synchronize across multiple coordinator
threads. In addition to orchestrating data accesses, the co-
ordinator performs all space allocation and de-allocation of
data entries. The coordinator uses its local PM to persistently
store all the metadata of a data entry.

To perform a read, a CN sends an RPC read request to the
coordinator. The coordinator finds the location of the entry’s
committed data using its local metadata, acquires its local
lock of the entry, reads the data from the DN using a one-
sided RDMA read, releases its local lock, and finally replies
to the CN’s RPC request. The end-to-end read latency a CN
observes (when there is no contention) is two RTTs, and both
RTTs involve sending data.

To perform a write, the coordinator allocates a new space
at a DN for the new data and then writes the data there. We
do not need to lock (either at coordinator or at the DN) during
this write, since it is an out-of-place write to a location that
is not exposed to any other coordinator RPC handlers. After
the write, the coordinator updates its local metadata with the
new data’s location and flushes this new location to its lo-
cal PM for crash resistance. The total write latency without
contention is two RTTs, both containing data.

4.3 pDPM-Direct/-Central Drawbacks
pDPM-Direct delivers great read performance when read
size is small, since it only requires one lock-free RTT and
it is fast to calculate small CRC. Its write performance is
much worse because of high RTTs and lock contention. Its
scalability is also limited because of lock contention during
concurrent writes. Moreover, pDPM-Direct requires large
space for both data and metadata. For each data entry, it
doubles the space because of the need to store two copies of
data. The metadata overhead is also high, since all CNs have
to store all the metadata.

pDPM-Central largely reduces write RTTs over pDPM-
Direct and thus has good write performance when the scale
of the cluster is small. Unlike pDPM-Direct, CNs in pDPM-
Central do not need to store any metadata. However, from
our experiments, the coordinator soon becomes the perfor-
mance bottleneck when either the number of CNs or the

number of DNs increases. pDPM-Central’s read perfor-
mance is also worse than pDPM-Direct with the extra hop
between a CN and the coordinator. In addition, the coor-
dinator’s CPU utilization is high, since it needs many RPC
handler threads to sustain parallel requests from CNs.

5 Clover
To solve the problems of the first two pDPM systems we
built, we propose Clover (Figure 1(e)). The main idea
of Clover is to separate the location, the communication
method, and the management strategy of the data plane and
the control plane. It lets CNs directly access DNs for all data
operations and uses one or few metadata servers (MSs) for
all control plane operations.

To avoid MS being the scalability bottleneck, we support
multiple MSs, each serving a shard of data entries. Each MS
stores the metadata of the data entries it is in charge of in its
local PM. We keep the amount of metadata small. The stor-
age overhead of metadata is below 2% for 1 KB data entries.
CNs cache the metadata of hot data entries. Under memory
pressure, CNs evict metadata with a replacement policy (we
currently support FIFO and LRU).

Clover aims to deliver scalable, low-latency, high-
throughput performance at the data plane and to avoid the
MS being the bottleneck at the control plane. Our overall
approaches to achieve these design goals include: 1) mov-
ing all metadata operations off performance critical path, 2)
using lock-free data structures to increase scalability, 3) em-
ploying optimization mechanisms to reduce network round
trips for data accesses, and 4) leveraging the unique atomic
data access guarantees of pDPM. Figure 2(c) shows the read
and write protocol of Clover. Figure 3 illustrates the data
structures used in Clover.

5.1 Data Plane
To achieve our data plane design goals, we propose a new
mechanism to perform lock-free, fast, and scalable reads and
writes. Specifically, we allow multiple committed versions
of a data entry in DNs and link them into a chain. Each
committed write to a data entry will move its latest version
to a new location. To avoid the need of updating CNs with
the new location, we use a self-identifying data structure for
CNs to find the latest version.

We include a header with each version of a data entry.
The header contains a pointer and some metadata bits used
for garbage collection. The pointers chain all versions of a
data entry together in the order that they are written. A NULL
pointer indicates that the version is the latest.

A CN acquires the header of the chain head from the MS
at the first access to a data entry. It then caches the header
locally to avoid the overhead of contacting MS on every data
access. We call a CN-cached header a cursor.
Read. Clover reads are lock-free. To read a data entry, a CN
performs a chain walk. The chain walk begins with fetching

38 2020 USENIX Annual Technical Conference USENIX Association

MS

CN

uncommitted
version

committed versions

ptr

8B header
DN

data

data

data

data

shortcut
ptr GC-verFreeList

ToGCList

metadata cache

OvflowList

key

key write-cursor

head

tail

next
GC-ver

my
GC-ver

ch
ai

n

shortcut-loc

shortcut-loc

head of chain

read-cursor

Figure 3: Clover System Design.

the data buffer version that the CN’s cursor points to. It then
uses the pointer in this fetched buffer to read the next version.
The CN repeats this step until reading a NULL pointer, which
indicates that it has read the latest version. All steps in the
chain walk use one-sided RDMA reads. After a chain walk,
the CN updates its cursor to point to the latest version.

A chain walk can be slow with long chains when a cursor
is not up to date [68]. Inspired by skip lists [53], we solve
this issue by using a shortcut to directly point to the latest
version or a recent version of each data entry. Shortcuts are
best effort in that they are intended but not enforced to al-
ways point to the latest version of an entry. The shortcut of
a data entry is stored at its DN. The location of a shortcut
never changes during the lifetime of the entry. MS stores the
locations of all shortcuts. When a CN first accesses a data
entry, it retrieves the location of its shortcut from MS and
caches it locally.

The CN issues a chain walk read and a shortcut read in par-
allel. It returns the user request when the faster one finishes
and discards the other result. We do not replace chain walks
completely with shortcut reads, since shortcuts are updated
asynchronously in the background and may not be updated
as fast as the cursor. When the CN’s cursor points to the
latest version of a data entry, a read only takes one RTT.
Write. Clover never overwrites existing data entries and per-
forms a lock-free, out-of-place write before linking the new
data to an entry’s chain. To write a data entry, a CN first
selects a free DN space assigned to it by MS in advance
(see §5.2). It performs a one-sided RDMA write to write
the new data to this buffer. Afterwards, the CN performs an
RDMA c&s operation to link this new data to the tail of the
entry’s version chain. Specifically, the c&s operation is on
the header that the CN’s cursor points to. If the pointer in
the header is NULL, the c&s operation swaps the pointer to
point to the new data, and we treat this new data as a com-
mitted version. Otherwise, it means that the cursor does not
point to the tail of the chain and the CN performs a chain
walk to reach the tail and then issues another c&s.

Afterwards, the CN uses a one-sided RDMA write to up-
date the shortcut of the entry to point to the new data version.
This step is off the performance critical path. The CN also
updates its cursor to the newly written version. We do not in-

validate or update other CNs’ cursors at this time to improve
the scalability and performance of Clover.

Clover’ chained structure and write mechanism ensure
that writers do not block readers and readers do not block
writers. They also ensure that readers can only view com-
mitted data. Without high write contention to the same data
entry, one write takes only two RTTs.
Retire. After committing a write, a CN can retire older
versions of the data entry, indicating that the buffer spaces
can be reclaimed. To improve performance and minimize
the need to communicate with MS, CNs lazily send asyn-
chronous, batched retirement requests to MS in the back-
ground. We further avoid the need for MS to invalidate CN-
cached metadata using a combination of timeout and epoch-
based garbage collection (see §5.2).

5.2 Control Plane
CNs communicate with MS using two-sided operations for
all metadata operations. MS performs all types of manage-
ment of DNs. We carefully designed the MS functionalities
for best performance and scalability.
Space allocation. With Clover’s out-of-place write model,
Clover has high demand for DN space allocation. We use
an efficient space allocation mechanism where MS packages
free spaces of all DNs into chunks. Each chunk hosts data
buffers of the same size. Different chunks can have differ-
ent data sizes. Instead of asking for a new free space be-
fore every write, each CN requests multiple spaces at a time
from MS in the background. This approach moves space al-
location off the performance critical path and is important to
deliver good write performance.
Garbage collection. Clover’ append-only chained data
structure makes its writes very fast. But like all other append-
only and log-structured storage systems, Clover needs to
garbage collect (GC) old data. We design a new efficient
GC mechanism that does not involve any data movement or
communication to DN. It also minimizes the communication
between MS and CNs.

The basic flow of GC (a strawman implementation) is sim-
ple: MS processes incoming retire requests from CNs by
putting reclaimed spaces to a free list (FreeList). It gets
free spaces from the FreeList when a CN requests more free
buffers. A free space can be used by any CN for any new
writes, as long as the size fits.

Although the above strawman implementation is simple,
making GC work correctly, efficiently, and scale well is
challenging. First, to achieve good GC performance, we
should avoid the invalidations of CN cached cursors after
reclaiming buffers to minimize the network traffic between
MS and CNs. However, with the strawman GC implemen-
tation, CNs’ outdated cursors can cause failed chain walks.
We solve this problem using two techniques: 1) MS does
not clear the header (or the content) of a data buffer after
reclaiming it, and 2) we assign a GC version to each data

USENIX Association 2020 USENIX Annual Technical Conference 39

buffer. MS increases the GC version after reclaiming a data
buffer. It gives this new GC version together with the loca-
tion of the buffer when assigning the buffer as a free space
to a CN, CNk. Before CNk uses the space for a new write,
the content of this space at the DN contains old data and old
GC version. After CNk uses the space for a write, it contains
new data and new GC version. Other CNs that have cached
cursors to this buffer need to differentiate these two cases. A
CN tells if a buffer contains its intended data by comparing
the GC version in its cached cursor to the one it reads from
the DN. If they do not match, the CN will discard the read
data and invalidate its cached cursor. Our GC-version ap-
proach not only avoids the need for MS to invalidate cursor
caches on CNs, but also eliminates the need for MS to access
DNs during GC.

The next challenge is related to our goal of read-isolation
and atomicity guarantees (i.e., readers always read the data
that is consistent to its metadata header). An inconsistent
read can happen if the read to a data buffer takes long, and
during the reading time, this buffer has been retired by an-
other CN, reclaimed by MS, assigned to a CN as a newly
allocated buffer, and used to perform a write. We use a read
timeout scheme similar to FaRM [15] to prevent this incon-
sistent case. Specifically, we abort a read operation after two
RTTs, since the above steps in the problematic case take at
least (and usually a lot more than) two RTTs (one for a CN
to submit the retirement request to MS and one for MS to
assign the space to a new CN).

The final challenge is the overflow of GC versions. We
can only use limited number of bits for GC version in the
header of a data buffer (currently 8 bits), since the header
needs to be smaller than the size of an atomic RDMA opera-
tion. When the GC version of a buffer increases beyond the
maximum value, we have to restart it from zero. With just
our GC mechanism so far, CNs will have no way to tell if
a buffer matches its cached cursor version or has advanced
by 28 = 256 versions. To solve this rare issue without in-
validation traffic to CNs, we use an epoch-based timeout
mechanism. When MS finds the GC version of a data buffer
overflows, it puts the reclaimed buffer into an OvflowList and
waits for Te (a configurable time value) before moving it to
the FreeList. All CNs invalidate their own cursors after an
inactive period of Te (if during this time, the CN access the
buffer, it would have advanced the cursor already). To syn-
chronize epoch time, MS sends a message to CNs after Te.
Epoch messages are the only communication from MS to
CNs during GC.

5.3 Discussion
The Clover design offers four benefits. First, Clover yields
the best performance among all pDPM systems; it outper-
forms pDPM-Direct and pDPM-Central for both reads and
writes, and both with and without contention. Achieving this
low latency while guaranteeing atomic write and read com-

mitted is not easy. Four approaches enable us to reach this
goal: 1) ensuring that the data path does not involve MS, 2)
reducing metadata communication to MS and moving it off
performance critical paths, 3) ensuring no memory copy in
the whole data path, and 4) leveraging the unique advantages
of pDPM to perform RDMA atomic operations.

Second, Clover scales well with the number of CNs and
DNs, since its reads and writes are both lock free. Readers
do not block writers or other readers and writers do not block
readers. Concurrent writers to the same entry only contend
for the short period of an RDMA c&s operation. Clover also
minimizes the network traffic to MS and the processing load
on MS, which enables MS to scale well with the number of
CNs and with the amount of data operations.

Third, we avoid data movement and communication be-
tween MS and DNs entirely during GC. To scale and sup-
port many CNs with few MSs, we also avoid CN invalidation
messages. MS does not need to proactively send any other
messages to CNs either. Essentially, MS never pushes any
messages to CNs. Rather, CNs pull information from MS.
Furthermore, MS adopts a thread model that adaptively lets
working threads sleep to reduce MS’s CPU utilization.

Finally, the Clover data structure is flexible and can sup-
port load balancing very well. Different versions of a data
entry do not need to be on the same DN. As we will see in
§5.4 and §5.5, this flexible placement is the key to Clover’s
load balancing and data replication needs.

However, Clover also has its limitation. Each write in
Clover requires two RTTs and under heavy contention, its
write performance degrades. As we will see in §6, two-
sided aDPM systems outperform Clover with write-intensive
workloads, since they can complete writes in one RTT. For-
tunately, most datacenter workloads are read-most [7], and
under common cases, Clover delivers great performance.

5.4 Failure Handling
DNs can fail independently from CNs. Clover needs to han-
dle both transient and permanent failures of a DN. For the
former, Clover guarantees that a DN can recover all its com-
mitted data after reboot (i.e., crash consistent). For the latter,
we add the support of data replication across multiple DNs
to Clover. In addition, Clover also handles the failure of MS.
Recovery from transient failures. Clover’s recovery mech-
anism of a single DN’s transient failure is simple. If a DN
fails before a CN successfully links the new data it writes to
the chain (indicating an un-committed write), the CN simply
discards the new write by treating the space as unused.
Data redundancy. With the user-specified degree of replica-
tion being N , Clover guarantees that data is still accessible
after N−1 DNs have failed. We propose a new atomic repli-
cation mechanism designed for the Clover data structure.

The basic idea is to link each version of a data entry DN

to all the replicas of the next version (e.g., Da
N+1, Db

N+1,
Dc

N+1 for three replicas) by placing pointers to all these

40 2020 USENIX Annual Technical Conference USENIX Association

DN1 DN2 DN3 DN4
Figure 4: Replicated Data Entry. A replicated data entry on four
DNs. The replication factor is two.

replicas in the header of DN . Figure 4 shows an example of
a replicated data entry (with the degree of replication being
2). With this all-way chaining method, Clover can always
construct a valid chain as long as one copy of each version
in a data entry survives.

Each data entry version has a primary copy and one or
more secondary copies. To write a new version, DN+1, to
a data entry whose current tail is DN with R replicas, a CN
first writes the new data to R DNs. In parallel, the CN per-
forms a one-sided c&s to a bit, Bw, in the header of the
primary copy of DN to test if the entry is already in the mid-
dle of a replicated write. If not, the bit will be set, indicating
that the entry is now under replicated write. All the writes
and the c&s operation are sent out in parallel to minimize
latency. After the CN receives the RDMA acknowledgment
of all the operations, it constructs a header that contains R
pointers to the copies of DN+1 and writes it to all the copies
of DN . Once the new header is written to all copies of DN ,
the system can recover DN+1 from crashes (up to R − 1
concurrent DN failure).
MS redundancy. MSs manage several types of metadata.
Among them, the only type of metadata that cannot be recon-
structed is keys (of key-value entries) and the mapping from
a key to the location of its data entries in DNs. To avoid MS
being the single point of failure, we implement a mechanism
to include one or more backup MS. When creating (deleting)
a new key-value data entry, the primary MS synchronously
replicates (removes) the key and the head of the value chain
to all the backup MSs. These metadata are the only meta-
data that cannot be reconstructed. MSs reconstruct all other
metadata by reading value chains in DNs.

5.5 Load Balancing
A pDPM system has a pool of DNs. It is important to balance
the load to each of them. We use a novel two-level approach
to balance loads in Clover: globally at MS and locally at
each CN. Our global management leverages two features in
Clover: 1) MS is the party that assigns all new spaces to
CNs, and 2) data versions of the same entry in Clover can
be placed on different DNs. To reduce the load of a DN, MS
assigns more free spaces from other DNs to CNs at allocation
time. Each CN internally balances the load to different DNs
at runtime. Each CN keeps one bucket per DN to store free
spaces. It chooses free spaces from different buckets for new
writes according to its own load balancing needs.

6 Evaluation Results
This section presents the evaluation results of Clover. We
compare it with pDPM-Direct, pDPM-Central, two dis-
tributed PM-based systems, Octopus [42] and Hotpot [56],
and a two-sided RDMA-based key-value store, HERD [30].
All our experiments were carried out in a cluster of 14 ma-
chines, connected with a 100 Gbps Mellanox InfiniBand
Switch. Each machine is equipped with two Intel Xeon E5-
2620 2.40GHz CPUs, 128 GB DRAM, and one 100 Gbps
Mellanox ConnectX-4 NIC.

In order to compare the pDPM architecture with a low-
cost aDPM architecture, we use Mellanox BlueField, a
SmartNIC that includes an ARM-based SoC and a 100 Gbps
Mellanox ConnectX-5 NIC [44]. We port HERD to Blue-
Field by migrating it from x86 to ARM (we call the ported
HERD running on BlueField HERD-BF).

Unfortunately, at the time of writing, we cannot get hold
of real Intel Optane DC, and we use DRAM as PM. Our
experiments run on machines with PCIe 3.0 ×8 (7.87 GB/s),
and the bandwidth from RDMA-NIC to DRAM is capped by
it, making the effective bandwidth at most 7.87 GB/s. Intel
Optane DC’s read bandwidth is 6.6 GB/s [70], which is close
to PCIe 3.0 ×8. Thus, we envision read results to be similar
with real Optane. Optane’s write bandwidth is 2.3 GB/s, and
there may be some difference in our write results with real
Optane. But since our target is read-most workloads, we be-
lieve that the conclusion we make from our evaluation will
still be valid with real PM.

6.1 Micro-benchmark Performance
We first evaluate the basic read/write latency of Clover and
the systems in comparison using a simple micro-benchmark
where a CN synchronously reads/writes a key-value data en-
try on a DN. For this and all the rest of our experiments, we
use HERD’s default configuration of 12 busy polling receiv-
ing side’s threads for both HERD and HERD-BF.

Figure 5 plots the read latency with different request sizes.
We use native RDMA one-sided read as the baseline. Over-
all, Clover’s performance is the best among all systems and
is only slightly worse than native RDMA. pDPM-Direct has
great read performance when the request size is small. How-
ever, when request size increases, the overhead of CRC cal-
culation dominates, largely hurting pDPM-Direct’s read per-
formance. As expected, pDPM-Central’s read performance
is not good because of its 2-RTT read protocol. HERD per-
forms worse than Clover because it requires some extra CPU
processing time for each read. HERD-BF has a constant
overhead over HERD mainly because its processing is per-
formed in BlueField’s low-power ARM cores.

Figure 6 plots the average write latency comparison. We
use native RDMA one-sided write as a baseline here. Among
pDPM systems, Clover and pDPM-Central achieve the best
write latency. pDPM-Direct’s write performance is the worst

USENIX Association 2020 USENIX Annual Technical Conference 41

Request Size (B)
128 256 512 1K 2K 4K

L
a
t
e
n
c
y

(
u
s
)

0

5

10

15 pDPM−Direct

pDPM−Central

Clover

Verbs read

HERD−BF

HERD

Figure 5: Read Latency.

Request Size (B)
128 256 512 1K 2K 4K

L
a
t
e
n
c
y

(
u
s
)

0

5

10

15

20 pDPM−Direct

pDPM−Central

Clover

Verbs write

HERD−BF

HERD

Figure 6: Write Latency.

C(0%) B(5%) A(50%)

T
h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

5

10

15

20

25

pDPM−Direct

pDPM−Central

Clover

pDPM−Direct−R

pDPM−Central−R

Clover−R

Octopus

Figure 7: Throughput Comparison with YCSB.
Running YCSB on four CNs and four DNs.

because of its 4-RTT write protocol. Its write performance
also gets worse with larger request size because of the in-
creased overhead of CRC calculation. HERD outperforms
Clover and other pDPM systems because two-sided com-
munication allows it to complete a write within one RTT.
HERD-BF is still a lot worse than HERD because of Blue-
Field’s low processing power.

6.2 YCSB Performance and Scalability
We now present our evaluation results using the YCSB
benchmark [13, 71]. We use a total of 100K key-value en-
tries and 1M operations per test. The accesses to keys follow
the Zipf distribution. We use three workloads with different
read-write ratios: read only (workload C), 5% write (work-
load B), and 50% write (workload A). These three workloads
follow common application patterns in datacenters [7] and
are the set that previous PM and in-memory store systems
used for evaluation [30, 38, 47, 69].
Basic performance. We first evaluate the performance of
Clover, pDPM-Direct, pDPM-Central, Octopus, and Hotpot
under the same configuration: 4 CNs and 4 DNs, each CN
running 8 application threads. Neither Octopus nor Hot-
pot directly support key-value interface. In order to run the
YCSB key-value store workloads, we run MongoDB [50],
a key-value store database, on top of Octopus and Hotpot.
Note that HERD only supports one DN and we cannot com-
pare with HERD or HERD-BF in this experiment. We also
evaluate replication with our three pDPM systems here (with
degree of replication 2). Figure 7 shows the overall perfor-
mance of these systems. Hotpot yields similar performance
as Octopus and we omit its results in the figure.

Clover performs the best among all systems for all work-
loads. We further look into the Clover results and find that
the average number of hops during chain walks is only 0.2
to 0.3 for reads and 3.7 to 3.9 for writes. pDPM-Direct
performs better with read-most workloads than write-most
workloads. This is because without the need to perform any
locking, its read performance is not affected by contention.
pDPM-Central’s performance is the worst among pDPM sys-
tems, because under contention (Zipf distribution), the coor-
dinator becomes the bottleneck.

The overall performance of Octopus and Hotpot is more
than an order of magnitude worse than all pDPM systems.
There are two main reasons. First, these systems do not di-

Workload Median Average 99%
C 1 1 1
B 1 1.26 5
A 1 1.33 6

Table 2: Clover RTTs.

rectly support key-value interface, and running MongoDB
on top of them adds overhead. Unfortunately, there is no ex-
isting distributed PM systems that directly support key-value
interface as far as we know. Second, each read and write
operation in these systems involves a complex protocol that
requires RPCs across multiple nodes.

To further understand Clover’s performance, we mea-
sure the number of RTTs incurred when running YCSB on
Clover. Table 2 shows the median, average, and 99% RTTs
of Clover. Clover requires only one RTT for read-most work-
loads. Even for 50% write (workload A), Clover only incurs
six RTTs at 99% and one RTT at median.
Replication overhead. As expected, adding redundancy low-
ers the throughput of write operations for all pDPM systems.
Even though these systems issue the replication requests in
parallel, they only use one thread to perform asynchronous
RDMA read/write operations, and doing so still has an over-
head. However, the overhead is small.
Scalability. Next, we evaluate the scalability of different
systems with respect to the number of CNs and the num-
ber of DNs. Figure 8 shows the scalability of pDPM sys-
tems, HERD, and HERD-BF when varying the number of
CNs with a single DN. Clover and HERD have the best (and
similar) performance with workload C. Both systems sat-
urate network bandwidth, and neither have any scalability
bottlenecks. With workload B, the performance of Clover is
slightly worse than HERD because of increased write con-
tention. HERD-BF performs worse and scales worse than
Clover and HERD for both workloads mainly because of its
limited processing power. pDPM-Central performs the worst
and does not scale well with more CNs. pDPM-Direct also
performs poorly with fewer CNs. Apart from the limitation
of these system’s designs, their inefficient thread models also
contribute to their worse performance.

Figure 9 shows the scalability of pDPM data stores w.r.t.
the number of DNs (HERD only supports single memory
node and we cannot include it in this experiment). Clover
scales well with DNs because CNs access DNs directly for
data accesses, having no scalability bottleneck. pDPM-

42 2020 USENIX Annual Technical Conference USENIX Association

Number of CNs
1 2 4 8T

h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

2

4

6

8
Clover HERD HERD−BF

pDPM−Direct

pDPM−Central

(a) Workload C (0%)

Number of CNs
1 2 4 8T

h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

2

4

6

8

(b) Workload B (5%)

Figure 8: Scalability w.r.t. CNs. Running 1 DNs.

Number of DNs
1 2 4 8T

h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

5

10

15

20

25
Clover

pDPM−Direct

pDPM−Central

(a) Workload C (0%)

Number of DNs
1 2 4 8T

h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

5

10

15

(b) Workload B (5%)

Figure 9: Scalability w.r.t. DNs. Running 4 CNs.

C (0%) B (5%) A (50%)C
P
U

T
i
m
e

(
m
s
e
c
)

0

5

10

15

20

Clover

pDPM−Direct

pDPM−Central

HERD

HERD−BF

Opt−HERD

Opt−HERD−BF

Figure 10: CPU Utilization. Lighter
colors and darker colors represent the CPU
time used by the client side and the server
side. Opt-HERD and Opt-HERD-BF are hy-
pothetical optimal values.

C (0%) B (5%) A (50%)

E
n
e
r
g
y

(
K
J
)

0

2000

4000

6000

Clover

pDPM−Direct

pDPM−Central

HERD

HERD−BF

Opt−HERD

Opt−HERD−BF

Figure 11: Energy Consumption.
Lighter colors and darker colors represent
the CPU time used by the client side and the
server side. Opt-HERD and Opt-HERD-BF
are hypothetical optimal values.

C B

T
h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

5

10

15

20

25
100%

10%

1%

0%

Figure 12: Effect of
Metadata Cache in
Clover.

Round−

Robin

Write Read−

Write

T
r
a
f
f
i
c

(
G
B
)

0

2

4

6

8
DN−1

DN−2

DN−3

Figure 13: Load Balanc-
ing in Clover.

Central has poor scalability because of the coordinator being
the bottleneck that all requests have to go through. Surpris-
ingly, pDPM-Direct’s scalability is also poor. This is because
when the number of DNs increases, network bandwidth has
not become a performance bottleneck, but CNs need to do
more CRC calculation to read/write to more DNs. This com-
putation overhead becomes the performance bottleneck.

6.3 CPU Utilization and Cost
CPU utilization and energy cost. We evaluate the CPU uti-
lization of different systems by calculating the total CPU
time to complete ten million requests in YCSB’s workloads
A, B, and C, as illustrated in Figure 10. We further sepa-
rate the CPU time used at client side (CNs) and at server
side (DNs, the coordinator, MS). The three pDPM systems
run four CNs and four DNs. HERD and HERD-BF run four
CNs and one DN. Since HERD only supports one DN, to es-
timate the CPU utilization and energy of a scale-out version
of HERD, we hypothetically assume that HERD can achieve
perfect scaling (i.e., we reduce HERD’s total run time by
a factor of four to model it running on four CNs and four
DNs). This hypothetical calculation is the optimal perfor-
mance HERD could have achieved.

We further calculate the total energy cost using the power
consumption of our CPU core [34] and the ARM core of
BlueField [52]. Figure 11 plots this result. We do not include
the energy cost of PM, since it is the same for all systems.

For read-most workload, pDPM-Direct and Clover use
less CPU time than pDPM-Central and HERD because
they perform one-sided RDMA directly from CNs to DNs.
HERD’s total CPU time is much longer than Clover even
with optimal scale-out calculation, because it uses many

busy-polling threads at its server side to achieve good per-
formance (12 threads by default). Surprisingly, HERD-BF’s
energy is higher than HERD even when the power consump-
tion of an ARM core is more than an order of magnitude
lower than our CPU core. HERD-BF’s worse performance
makes each request to run longer and consumes more power.
pDPM-Central has high CPU utilization because the coordi-
nator’s CPU spends time on every request, and the total time
to finish the workloads with pDPM-Central is long. HERD’s
write performance and energy are both better than Clover.
pDPM systems consume more energy for write-heavy work-
loads because of their degraded write performance.

CapEx. Table 1 summarizes the cost to build different data
stores with 8 CNs and 8 DNs (for distributed PM, we use
eight machines in total). The CapEx is calculated with the
market price of 128 GB Intel Optane PM ($842 [5]), Mel-
lanox ConnectX-4 NIC ($795 [45]), Mellanox BlueField
NIC ($4168 [1]), and a DELL R740 server with the same
configuration as what we use in our experiments ($5000).
For servers with PM, we adjust the price difference between
PM and DRAM to the whole server price ($4144). Dis-
tributed PM has the lowest CapEx because it can share PM
and only needs eight machines in total. aDPM with CPU re-
quires 16 machines in total (8 for CNs and 8 for DNs). The
three pDPM systems and aDPM with BlueField do not re-
quire full machines for DNs and we only include PM and
NIC costs for them. Surprisingly, the cost of BlueField is
similar to a full machine. We suspect that this is because
BlueField is in a new and small market, and we expect its
price to drop in the future (but still not as low as pDPM).

USENIX Association 2020 USENIX Annual Technical Conference 43

6.4 Metadata Caching
Each data entry in Clover requires a constant of 8 B meta-
data (which is much smaller than typical key-value sizes of
100 B - 1000 B [7]). To evaluate the effect of different sizes
of metadata cache at CNs in Clover, we ran the same YCSB
workloads and configuration as Figure 7 and plot the results
in Figure 12. Here, we use the FIFO eviction policy (we
also tested LRU and found it to be similar or worse than
FIFO). With smaller metadata cache, all workloads’ perfor-
mance drop because a CN has to get the metadata from the
MS before accessing a data entry that is not in the local meta-
data cache. With no metadata cache (0%), CNs need to get
metadata from the MS before every request. However, under
Zipf distribution, with just 10% metadata cache, Clover can
already achieve satisfying performance.

6.5 Load Balancing
To evaluate the effect of Clover’s load balancing mechanism,
we use a synthetic workload with six data entries, a, b, and
c1 to c4. The workload initially creates a (no replication)
and b (with 3 replicas) and reads these two entries continu-
ously. At a later time, it creates c1 to c4 (no replication) and
keeps updating them. One CN runs this synthetic workload
on three DNs. Figure 13 shows the total traffic to the three
DNs with different allocation and load-balancing policies.
With a naive policy of assigning DNs to new write requests
in a round-robin fashion and reading from the first replica,
write traffic spreads evenly across all DNs but reads all go to
DN-1. With write load balancing, MS allocates free entries
for new writes from the least accessed DN. Doing so spreads
write traffic more towards the lighter-loaded DN-2 and DN-3.
With read load balancing, Clover spreads read traffic across
different replicas depending on the load of DNs. As a result,
the total loads across the three DNs are completely balanced.

7 Conclusion and Discussion
This paper explores a passive disaggregated persistent mem-
ory architecture where remote PM data nodes do not need
any processing. We present Clover, a low-cost, fast, and scal-
able pDPM key-value store which separates data and control
planes. We compare Clover with two alternative pDPM sys-
tems we built, existing distributed PM systems, and disag-
gregated systems that include processing at data nodes. We
performed extensive evaluation of these systems and learned
both the benefits and the limitations of them. We end this
paper by discussing our overall findings and our suggestions
to future systems builders.
Cost Implication. pDPM’s CapEx cost saving compared
to aDPM is apparent: pDPM reduces the cost of a pro-
cessor and hardware (server) packaging to host the proces-
sor. pDPM’s OpEx cost saving mainly comes from avoiding
polling at storage nodes. aDPM needs to busy poll network
requests to achieve the low latency that can match PM’s per-

formance. Meanwhile, to sustain high-bandwidth network
(e.g., 100 Gbps and above), aDPM requires many CPU cores
or a parallel-hardware unit like FPGA to poll and process
requests in parallel, adding to more runtime cost.
Performance Implication. The major tradeoff of removing
computation from storage nodes in pDPM is the potential
increase in network RTTs to access storage nodes remotely.
While it is generally true that moving computation towards
data could achieve good performance, our pDPM key-value
store systems demonstrate that with careful design, RTTs in
pDPM systems could be minimized and in many cases be the
same as aDPM systems. In other cases (e.g., key-value put
with high-contention), aDPM has unavoidable performance
loss because of extra RTTs. On the other hand, not having
enough processing power in aDPM (e.g., when only using
ARM-based SoC) could lead to significant performance loss.
Application Implication. Building applications with the
pDPM model requires careful design. As we demonstrated
with the three different pDPM key-value store systems, dif-
ferent application design choices could directly affect how
well pDPM performs and scales. The best design would min-
imize RTTs while avoiding scalability bottlenecks, as with
Clover. This paper focuses on key-value store systems, as
they are widely used in many datacenter applications. Other
systems such as remote file systems, databases, object stores,
and data sharing can also build on the pDPM model. As sys-
tems complexity increases, it will be more difficult to opti-
mize pDPM’s RTTs with just RDMA read, write, and atomic
operation interfaces. We believe that extended RDMA inter-
faces such as HyperLoop [35] could help in these cases.
Recommendation. This paper explores the extreme of com-
pletely removing computation power at storage nodes, which
helps set baselines in designing disaggregated PM systems.
Going forward, we believe that future disaggregated PM sys-
tems would benefit from a hybrid approach. Computation
that fundamentally involves multiple data accesses can be
moved to storage nodes, while the rest should be kept at
compute nodes. Among the former, those that have require
high performance can be placed on FPGA or ASIC to avoid
high CPU cost, while those that can tolerate degraded per-
formance can be placed at low-power cores.

Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd Anirudh Badam for their tremendous feedback and
comments, which have substantially improved the content
and presentation of this paper.

This material is based upon work supported by the Na-
tional Science Foundation under the following grant: NSF
1719215. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of NSF or other
institutions.

44 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Private conversation with mellanox sales department,
March 2019.

[2] Alibaba Cloud. Super computing cluster. https://
www.alibabacloud.com/product/scc, 2018.

[3] Amazon. Amazon elastic block store. https://
aws.amazon.com/ebs/?nc1=h ls, 2019.

[4] Amazon. Amazon s3. https://aws.amazon.com/s3/,
2019.

[5] Anton Shilov. Pricing of intel’s optane dc persis-
tent memory modules leaks: From $6.57 per gb.
https://www.anandtech.com/show/14180/pricing-of-
intels-optane-dc-persistent-memory-modules-leaks,
2019. visited on 01/15/20.

[6] Krste Asanović. FireBox: A Hardware Building Block
for 2020 Warehouse-Scale Computers, February 2014.
Keynote talk at the 12th USENIX Conference on File
and Storage Technologies (FAST ’14).

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-scale Key-value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint In-
ternational Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS ’12), London,
UK, June 2012.

[8] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim
Kraska, and Erfan Zamanian. The End of Slow Net-
works: It’s Time for a Redesign. Proceedings of the
VLDB Endowment, 9(7):528–539, 2016.

[9] Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers,
Jeremia Bär, and Zsolt István. Achieving 10gbps line-
rate key-value stores with fpgas. In Presented as part
of the 5th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’13), San Jose, CA, USA, June
2013.

[10] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen,
and Haibo Chen. Fast and general distributed trans-
actions using rdma and htm. In Proceedings of the
Eleventh European Conference on Computer Systems
(EUROSYS ’16), London, UK, April 2016.

[11] Brian Cho and Ergin Seyfe. Taking advantage of a
disaggregated storage and compute architecture. In
Spark+AI Summit 2019 (SAIS ’19), San Francisco, CA,
USA, April 2019.

[12] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and
Sungjin Lee. LightStore: Software-Defined Network-
Attached Key-Value Drives. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems (ASPLOS ’19), Providence, RI, April
2019.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking

Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC
’10), New York, New York, June 2010.

[14] Alexandras Daglis, Dmitrii Ustiugov, Stanko No-
vaković, Edouard Bugnion, Babak Falsafi, and Boris
Grot. Sabres: Atomic object reads for in-memory rack-
scale computing. In 2016 49th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO
’16), Taipei, Taiwan, October 2016.

[15] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast Remote
Memory. In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementa-
tion (NSDI ’14), Seattle, WA, USA, April 2014.

[16] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings
of the 25th Symposium on Operating Systems Princi-
ples (SOSP ’15), Monterey, CA, USA, October 2015.

[17] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka,
and Mark Silberstein. NICA: An Infrastructure for In-
line Acceleration of Network Applications. In 2019
USENIX Annual Technical Conference (ATC ’19), Ren-
ton, WA, July 2019.

[18] Facebook. Introducing bryce canyon: Our
next-generation storage platform. https:
//code.fb.com/data-center-engineering/introducing-
bryce-canyon-our-next-generation-storage-platform/,
2017.

[19] Paolo Faraboschi, Kimberly Keeton, Tim Marsland,
and Dejan Milojicic. Beyond processor-centric operat-
ing systems. In 15th Workshop on Hot Topics in Oper-
ating Systems (HotOS ’15), Kartause Ittingen, Switzer-
land, May 2015.

[20] Gen-Z Consortium, 2018. https://genzconsortium.org.
[21] Google. Available first on Google Cloud: Intel Optane

DC Persistent Memory. https://cloud.google.com/
blog/topics/partners/available-first-on-google-cloud-
intel-optane-dc-persistent-memory.

[22] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
RDMA over Commodity Ethernet at Scale. In Proceed-
ings of the 2016 ACM Conference on Special Interest
Group on Data Communication (SIGCOMM ’16), Flo-
rianopolis, Brazil, August 2016.

[23] Hewlett Packard. The Machine: A New Kind of
Computer. http://www.hpl.hp.com/research/systems-
research/themachine/, 2005.

[24] Hewlett Packard Labs. Memory-driven com-
puting. https://www.labs.hpe.com/memory-driven-
computing, 2019.

[25] Huawei. Huawei Launches New-Gen Servers Running

USENIX Association 2020 USENIX Annual Technical Conference 45

https://www.alibabacloud.com/product/scc
https://www.alibabacloud.com/product/scc
https://aws.amazon.com/ebs/?nc1=h_ls
https://aws.amazon.com/ebs/?nc1=h_ls
https://aws.amazon.com/s3/
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://code.fb.com/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://code.fb.com/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://code.fb.com/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://genzconsortium.org
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
http://www.hpl.hp.com/research/systems-research/themachine/
http://www.hpl.hp.com/research/systems-research/themachine/
https://www.labs.hpe.com/memory-driven-computing
https://www.labs.hpe.com/memory-driven-computing

on 2nd-Generation Intel® Xeon® Scalable Processors.
https://www.huawei.com/en/press-events/news/2019/
4/huawei-new-gen-servers-xeon-scalable-processors.

[26] Intel Corporation. Intel Rack Scale Architecture:
Faster Service Delivery and Lower TCO. http:
//www.intel.com/content/www/us/en/architecture-
and-technology/intel-rack-scale-architecture.html.

[27] Intel Corporation. Intel Optane Technology. https:
//www.intel.com/content/www/us/en/architecture-
and-technology/intel-optane-technology.html, 2019.

[28] Intel Corporation - Product and Performance Infor-
mation. Intel Non-Volatile Memory 3D XPoint. http:
//www.intel.com/content/www/us/en/architecture-
and-technology/non-volatile-memory.html?wapkw=
3d+xpoint, 2018.

[29] Intel Corporation - Product and Performance Informa-
tion. Reimagining the data center memory and storage
hierarchy. https://newsroom.intel.com/editorials/re-
architecting-data-center-memory-storage-hierarchy/,
2019.

[30] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using RDMA Efficiently for Key-value Services.
In Proceedings of the 2014 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM
’14), Chicago, IL, USA, August 2014.

[31] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Design Guidelines for High Performance RDMA
Systems. In Proceedings of the 2016 USENIX Annual
Technical Conference (ATC ’16), Denver, CO, USA,
June 2016.

[32] Anuj Kalia, Michael Kaminsky, and David G. An-
dersen. FaSST: Fast, Scalable and Simple Dis-
tributed Transactions with Two-Sided (RDMA) Data-
gram RPCs. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16), Sa-
vanah, GA, USA, 2016.

[33] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
Performance Packet Processing with FlexNIC. In Pro-
ceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16), Atlanta, Geor-
gia, USA, April 2016.

[34] Patrick Kennedy. Dual intel xeon e5-2620 (v1, v2 and
v3) compared. https://www.servethehome.com/dual-
intel-xeon-e5-2620-v1-v2-v3-compared/, 2015.

[35] Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Hongqiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. Hyperloop: Group-Based NIC-
Offloading to Accelerate Replicated Transactions in
Multi-Tenant Storage Systems. In Proceedings of the
2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’18), Budapest,

Hungary, August 2018.
[36] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,

Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. Freeflow:
Software-based virtual RDMA networking for con-
tainerized clouds. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
’19), Boston, MA, USA, 2019 2019.

[37] Mijung Kim, Jun Li, Haris Volos, Manish Marwah,
Alexander Ulanov, Kimberly Keeton, Joseph Tucek,
Lucy Cherkasova, Le Xu, and Pradeep Fernando.
Sparkle: Optimizing spark for large memory machines
and analytics. In Proceedings of the 2017 Symposium
on Cloud Computing (SoCC ’17), Santa Clara, CA,
USA, September 2017.

[38] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles (SOSP ’17), Shanghai, China, October
2017.

[39] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan R. K. Ports, Irene
Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and
Anirudh Badam. LeapIO: Efficient and Portable Vir-
tual NVMe Storage on ARM SoCs. In Proceedings of
the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS ’20), Lausanne, Switzerland,
March 2020.

[40] Kevin Lim, Jichuan Chang, Trevor Mudge,
Parthasarathy Ranganathan, Steven K. Reinhardt,
and Thomas F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. In Proceed-
ings of the 36th Annual International Symposium on
Computer Architecture (ISCA ’09), Austin, Texas,
2009.

[41] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F. Wenisch. System-level implications
of disaggregated memory. In Proceedings of the
2012 IEEE 18th International Symposium on High-
Performance Computer Architecture (HPCA ’12), New
Orleans, LA, USA, February 2012.

[42] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Oc-
topus: an rdma-enabled distributed persistent memory
file system. In 2017 USENIX Annual Technical Con-
ference (ATC ’17), Santa Clara, CA, USA, July 2017.

[43] Mellanox. ConnectX-6 Single/Dual-Port Adapter sup-
porting 200Gb/s with VPI. http://www.mellanox.com/
page/products dyn?product family=265&mtag=
connectx 6 vpi card.

[44] Mellanox. Bluefield smartnic. http://

46 2020 USENIX Annual Technical Conference USENIX Association

https://www.huawei.com/en/press-events/news/2019/4/huawei-new-gen-servers-xeon-scalable-processors
https://www.huawei.com/en/press-events/news/2019/4/huawei-new-gen-servers-xeon-scalable-processors
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-rack-scale-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-rack-scale-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-rack-scale-architecture.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html?wapkw=3d+xpoint
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html?wapkw=3d+xpoint
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html?wapkw=3d+xpoint
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html?wapkw=3d+xpoint
https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
https://www.servethehome.com/dual-intel-xeon-e5-2620-v1-v2-v3-compared/
https://www.servethehome.com/dual-intel-xeon-e5-2620-v1-v2-v3-compared/
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf

www.mellanox.com/related-docs/prod adapter cards/
PB BlueField Smart NIC.pdf, 2018.

[45] Mellanox. Mellanox connectx-4 adapter product
brief. https://www.mellanox.com/files/doc-2020/pb-
connectx-4-vpi-card.pdf, 2020. visited on 06/01/20.

[46] Microsoft. Introducing new product innovations for
SAP HANA, Expanded AI collaboration with SAP
and more. https://azure.microsoft.com/en-us/blog/
introducing-new-product-innovations-for-sap-hana-
expanded-ai-collaboration-with-sap-and-more/.

[47] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using One-sided RDMA Reads to Build a Fast, CPU-
efficient Key-value Store. In Proceedings of the 2013
USENIX Annual Technical Conference (ATC ’13), San
Jose, CA, USA, June 2013.

[48] Christopher Mitchell, Kate Montgomery, Lamont Nel-
son, Siddhartha Sen, and Jinyang Li. Balancing cpu
and network in the cell distributed b-tree store. In Pro-
ceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference (ATC ’16), Denver, CO,
USA, June 2016.

[49] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Ei-
tan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Scott Shenker. Revisiting network support for
rdma. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM ’18), Budapest, Hungary, August 2018.

[50] MongoDB Inc. MongoDB. http://www.mongodb.org/.
[51] Mihir Nanavati, Jake Wires, and Andrew Warfield.

Decibel: Isolation and Sharing in Disaggregated Rack-
Scale Storage. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
’17), Boston, MA, March 2017.

[52] Peng Peng, You Mingyu, and Xu Weisheng. Running
8-bit dynamic fixed-point convolutional neural network
on low-cost arm platforms. In 2017 Chinese Automa-
tion Congress (CAC), Jinan, China, Oct 2017.

[53] William Pugh. Skip lists: A probabilistic alterna-
tive to balanced trees. Communication of the ACM,
33(6):668–676, June 1990.

[54] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A User-
Programmable SSD. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’14), Broomfield, CO, October 2014.

[55] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A Disseminated, Distributed OS for
Hardware Resource Disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’18), Carlsbad, CA, October 2018.

[56] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed shared persistent memory. In Proceedings of
the 8th Annual Symposium on Cloud Computing (SoCC

’17), Santa Clara, CA, USA, September 2017.
[57] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-

rni, and Gustavo Alonso. StRoM: Smart Remote Mem-
ory. In Proceedings of the Fifteenth European Confer-
ence on Computer Systems (EuroSys ’20), Heraklion,
Greece, April 2020.

[58] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu
Stoica, Bernard Metzler, Nikolas Ioannou, and Ioannis
Koltsidas. Crail: A high-performance i/o architecture
for distributed data processing. IEEE Bulletin of the
Technical Committee on Data Engineering, 40:40–52,
March 2017. Special Issue on Distributed Data Man-
agement with RDMA.

[59] Kosuke Suzuki and Steven Swanson. The non-volatile
memory technology database (nvmdb). Technical Re-
port CS2015-1011, Department of Computer Science
& Engineering, University of California, San Diego,
May 2015.

[60] Tom Talpey and Jim Pinkerton. Rdma durable write
commit. https://tools.ietf.org/html/draft-talpey-rdma-
commit-00, 2016.

[61] Dan Tang, Yungang Bao, Weiwu Hu, and Mingyu
Chen. DMA cache: Using on-chip storage to archi-
tecturally separate I/O data from CPU data for improv-
ing I/O performance. In The Sixteenth International
Symposium on High-Performance Computer Architec-
ture (HPCA ’10), Bangalore, India, Jan 2010.

[62] TECHPP. Alibaba singles’ day 2019 had a record peak
order rate of 544,000 per second. https://techpp.com/
2019/11/19/alibaba-singles-day-2019-record/, 2019.

[63] Tejas Karmarkar. Availability of linux rdma on mi-
crosoft azure. https://azure.microsoft.com/en-us/blog/
azure-linux-rdma-hpc-available, 2015.

[64] Haris Volos, Kimberly Keeton, Yupu Zhang, Milind
Chabbi, Se Kwon Lee, Mark Lillibridge, Yuvraj Patel,
and Wei Zhang. Memory-oriented distributed comput-
ing at rack scale. In Proceedings of the ACM Sympo-
sium on Cloud Computing, (SoCC ’18), Carlsbad, CA,
USA, October 2018.

[65] Midhul Vuppalapati, Justin Miron, Rachit Agarwal,
Dan Truong, Ashish Motivala, and Thierry Cruanes.
Building An Elastic Query Engine on Disaggregated
Storage. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’20), Santa
Clara, CA, February 2020.

[66] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing rdma-enabled distributed trans-
actions: Hybrid is better! In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’18), Carlsbad, CA, October 2018.

[67] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and HTM. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP

USENIX Association 2020 USENIX Annual Technical Conference 47

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-4-vpi-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-4-vpi-card.pdf
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
http://www.mongodb.org/
https://tools.ietf.org/html/draft-talpey-rdma-commit-00
https://tools.ietf.org/html/draft-talpey-rdma-commit-00
https://techpp.com/2019/11/19/alibaba-singles-day-2019-record/
https://techpp.com/2019/11/19/alibaba-singles-day-2019-record/
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available

’15), Monterey, CA, USA, October 2015.
[68] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and An-

drew Pavlo. An empirical evaluation of in-memory
multi-version concurrency control. Proceedings of the
VLDB Endowment, 10(7):781–792, March 2017.

[69] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A distributed file system for non-volatile main
memory and rdma-capable networks. In 17th USENIX
Conference on File and Storage Technologies (FAST
’19), Boston, MA, USA, February 2019.

[70] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An Empirical Guide
to the Behavior and Use of Scalable Persistent Mem-
ory. In 18th USENIX Conference on File and Storage
Technologies (FAST ’20), Santa Clara, CA, February
2020.

[71] YCSB-C, 2015. https://github.com/basicthinker/
YCSB-C.

[72] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The End of a Myth: Distributed Transac-
tions Can Scale. Proceedings of the VLDB Endowment,
10(6):685–696, 2017.

[73] Yiying Zhang, Jian Yang, Amirsaman Memaripour,
and Steven Swanson. Mojim: A Reliable and Highly-
Available Non-Volatile Memory System. In Proceed-
ings of the 20th International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS ’15), Istanbul, Turkey, March
2015.

48 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/basicthinker/YCSB-C
https://github.com/basicthinker/YCSB-C

SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores

Alex Conway∗ Abhishek Gupta† Vijay Chidambaran‡ Martin Farach-Colton§

Rick Spillane¶ Amy Tai|| Rob Johnson||

June 5, 2020

1

Abstract
Modern NVMe solid state drives offer significantly higher
bandwidth and lower latency than prior storage devices. Cur-
rent key-value stores struggle to fully utilize the bandwidth
of such devices. This paper presents SplinterDB, a new key-
value store explicitly designed for NVMe solid-state-drives.

SplinterDB is designed around a novel data structure (the
STBε-tree) that exposes I/O and CPU concurrency and re-
duces write amplification without sacrificing query perfor-
mance. STBε-tree combines ideas from log-structured merge
trees and Bε-trees to reduce write amplification and CPU
costs of compaction. The SplinterDB memtable and cache are
designed to be highly concurrent and to reduce cache misses.

We evaluate SplinterDB on a number of micro- and
macro-benchmarks, and show that SplinterDB outperforms
RocksDB, a state-of-the-art key-value store, by a factor of
6–10× on insertions and 2–2.6× on point queries, while
matching RocksDB on small range queries. Furthermore,
SplinterDB reduces write amplification by 2× compared to
RocksDB.

1 Introduction
Key-value stores form an integral part of system infrastruc-
ture. Google’s LevelDB [22] and Facebook’s RocksDB [8] are
widely used, both within their companies and outside. Their
importance has spurred research into several aspects of key-
value store design, such as increasing write throughput, reduc-
ing write amplification, and increasing concurrency [1–3,6,8–
17, 19, 21, 22, 26, 30–32, 34, 35, 37, 39, 42, 43, 45–47, 50–52].

Existing key-value stores face new challenges with the in-
creasing use of high-performance NVMe solid state drives
(SSDs). NVMe SSDs offer high throughput (500K-600K
IOPS) and low latency (10-20 microseconds).

LevelDB and RocksDB struggle to utilize all the available
bandwidth in modern SSDs. For example, we find that for
the challenging but common case of small key-value pairs,

1∗Rutgers University and VMware Research Group; ∗Dropbox,
Inc.; ‡The University of Texas at Austin and VMware Research
Group; §Rutgers University; ¶VMware, Inc.; ||VMware Research
Group; {aconway, vchidambaram, robj, rspillane, taiam}@vmware.com;
abhi.gupta0290@gmail.com; martin@farach-colton.com

SplinterDB RocksDB PebblesDB

0
10

00
20

00

2352

348
83

O
ps

/S
ec

(T
ho

us
an

ds
)

0
5

10

5.6

9.1 8.2

W
ri

te
A

m
p.

Figure 1: YCSB load throughput and write amplification benchmark
results with 24-byte keys and 100-byte values.

RocksDB is able to use only 30% of the bandwidth supplied
by an Optane-based Intel 905p NVMe SSD (even when using
20 or more cores).

We find that the bottleneck has shifted from the storage
device to the CPU: reading data multiple times during com-
paction, cache misses, and thread contention cause RocksDB
to be CPU-bound when running atop NVMe SSDs. Thus,
there is a need to redesign key-value stores to avoid these
CPU inefficiencies.

We present SplinterDB, a key-value store designed for high
performance on NVMe SSDs. On workloads with small key-
value pairs, SplinterDB is able to fully utilize the device band-
width and achieves almost 2× lower write amplification than
RocksDB (see Figure 1). We show that compared to state-of-
the-art key-value stores such as RocksDB and PebblesDB,
SplinterDB is able to ingest new data 6–28× faster (see Fig-
ure 1) while using the same or less memory. For queries,
SplinterDB is 1.5-3× faster than RocksDB and PebblesDB.

Three novel ideas contribute to the high performance of
SplinterDB: the STBε-tree, a new compaction policy that
exposes more concurrency, and a concurrent memtable and
user-level cache that removes scalability bottlenecks. All three
components are designed to enable the CPU to drive high
IOPS without wasting cycles.

At the heart of SplinterDB is the STBε-tree, a novel data
structure that combines ideas from log-structured merge trees
and Bε-trees. The STBε-tree adapts the idea of size-tiering
(also known as fragmentation) from key-value stores such as
Cassandra and PebblesDB and applies them to Bε-trees to
reduce write amplification by reducing the number of times a
data item is re-written during compaction. The STBε-tree also
introduces a new flush-then-compact policy that increases

USENIX Association 2020 USENIX Annual Technical Conference 49

compaction concurrency across the entire tree and exploits
locality in the insertion workload to accelerate insertions.
By enabling fine-grained, localized compactions, STBε-trees
push ideas from PebblesDB to their logical conclusion.

Concurrency at the data structural level could be wasted
if the data structure is accessed through a cache with poor
concurrency. We designed a new user-level concurrent cache
for SplinterDB that uses fine-grained, distributed reader-writer
locks to avoid contention and ping-ponging of cache lines, as
well as a direct map to enable lock-free cache operations. All
the data read and written by SplinterDB flows through this
concurrent cache.

SplinterDB is not without limitations. Like all key-value
stores based on size-tiering, SplinterDB sacrifices the perfor-
mance of small range queries, although less than one might
expect. For large range queries, SplinterDB can use the full
device bandwidth. Similarly, size-tiering is known to tem-
porarily increase space usage until multiple versions of a sin-
gle data item are compacted together. Finally, SplinterDB was
designed for the most stringent requirements: small key-value
pairs and restricted memory. In cases where key-value pairs
are large or memory is plentiful, other choices may prove as
good as SplinterDB, and we make some of those comparisons
below.

In summary, the contributions of SplinterDB are as follows:
• We introduce the STBε-tree, which reduces write ampli-

fication and enables fine-grained concurrency in com-
paction operations (sections 2 to 3).
• We design and build a highly-concurrent memtable that

is able to drive enough operations to the underlying
STBε-tree (section 5).
• We combine the STBε-tree, memtable, and user-level

cache in SplinterDB, a key-value store that can fully
utilize NVMe SSD bandwidth. (section 6).

2 High-Level Design of STBε-trees
The basic STBε-tree design has three high-level goals:
• Handle inserts using bulk I/O, so that inserts are

bandwidth-bound.
• Minimize the number of times each key-value pair gets

read or written, so as to reduce write amplifiction, I/O am-
plification (i.e. read and write amplification), and CPU
costs of inserts.
• Maintain sufficient indexing information so that, under

normal conditions, each query requires at most one I/O.
In section 3 and section 4, we explain how we refine tree

operations to support high concurrency.
The STBε-tree shares many ideas with LSM trees, Bε-trees,

and external-memory hash tables from the theory literature.
See section 7 for details.

2.1 Overall Structure
The STBε-tree is a tree-of-trees, as shown in fig. 2. The back-
bone of the STBε-tree is the trunk tree (or just trunk). Each
node of the trunk has pointers to a collection of B-trees, called

2 01
1

0

2
3

1
0

1
0

1
0

2

0 201 01 1 00

memtable

Figure 2: The structure of a STBε-tree. The rectangles repre-
sent trunk nodes and the triangles represent branch trees and the
memtable. The inset boxes indicates the first active branch for each
pivot, referencing the pointer labels to the branches.

branch trees (or just branches). The branches store all of the
actual key-value pairs in the dataset. Each branch also has
an associated quotient filter, which serves the same purpose
as Bloom filters in LSM trees. Trunk nodes have a fanout
of up to F (typically 8 to 16), which is also an upper bound
on the number of branch trees. Branch trees have a fanout
determined by the number of pivot keys that can be packed
into a 4KB node.

The overall STBε-tree also has a memtable, which is used
to buffer insertions, as explained below. The memtable is also
a B-tree, just like the branches.

Within a trunk node, the branches are numbered from old-
est to youngest, i.e. all the key-value pairs in branch i were
inserted before any of the key-value pairs in branch i+1. For
example, in fig. 2, the root of the trunk tree has four branches,
numbered 0 through 3, with branch 0 being the oldest.

Furthermore, stored with each child pointer c in a trunk
node is an integer ac indicating the oldest branch that is active
for that child. Inactive branches are ignored during queries,
as explained below. So, for example, in fig. 2, only branches
2 and 3 are active for the root trunk node’s leftmost child,
branches 1, 2, and 3 are active for its middle child, and all
branches (0 through 3) are active for its rightmost child.

2.2 Queries
Queries begin by searching in the memtable. If the queried
item is not found in them memtable, then the query proceeds
down the trunk tree. Recall that all the data is stored in the
branches, and trunk nodes only contain metadata and pointers
to branches and filters.

When a query for a key k arrives at a trunk node t, it first
searches the pivots of t to determine the correct child c for k.
It then iterates over the active branches for c, from youngest
to oldest. For each branch b, it first queries b’s associated quo-
tient filter. If the quotient filter indicates that k is definitely not
in b, then the query moves on to the next branch. Otherwise,
is queries for k in b. If it finds a hit, it returns the result to the
caller. Otherwise, it moves on to the next branch. If none of
the branches contain k, then the query recurses to c.
Analysis. We now explain why queries take at most one I/O
in common configurations: those which use at least 32-byte
key-value pairs and have RAM which is at least 10% of the

50 2020 USENIX Annual Technical Conference USENIX Association

dataset size.
The memory used by filters and branch tree indices is

bounded as follows. Quotient filters use about 1–2 bytes per
key, so the overhead of quotient filters is greatest when key-
value pairs are small. With 32-byte key-value pairs, quotient
filters will be about 6% of the total database size. Branch trees
will have a very high fanout, e.g.≈ 128 for 4KB nodes, so the
interior of the branch trees will be less than 1% of the total
database size. Trunk nodes contain only metadata about the
branches and filter, and so use negligiable RAM. Therefore
all the indexing information will fit comfortably in a RAM
that is ≈ 7% of the total database size. For larger keys, e.g.
256 bytes, the branch trees will have a fanout of only about
16, and hence the interior nodes could be up to 6% of the total
database size. However, the quotient filters will be less than
1% of the data size, so the indexing data will still be less than
10% of the database size.

Thus the only I/Os during a query will be to load leaves
of branch trees. However, the false positive rate of quotient
filters with two bytes per key is < 1%, which is low enough to
ensure that most queries do not encounter any false positives
from the quotient filters that they query. Hence most queries
will query exactly one branch tree, which will contain the
desired key-value pair. Queries for keys that are not present
in the database will usually require no I/Os at all.

2.3 Insertions
When an item is inserted, it is first buffered in the memtable.
When the memtable is full, it is added to the root as a new
branch, say branch i. We also construct a quotient filter for
the memtable at this time. We call the process of adding the
memtable to the root of the trunk an incorporation.

The size of the memtable affects performance in the fol-
lowing ways. If the memtable gets too large, then some of its
nodes will get evicted from RAM and, once enough nodes
spill, a workload of random inserts would require essentially
one random I/O per insert, contradicting our goal of han-
dling inserts using bulk I/O. For most systems, this means the
memtable should be kept substantially smaller than RAM, e.g.
at most a few gigabytes for typical hardware configurations.

On the other hand, the memtable will eventually become a
branch, and we want branches to be large enough that scan-
ning a branch can use bulk I/O (i.e. if a branch consisted of
only a handful of nodes, then reading the entire branch would
be bottlenecked on I/O overheads, rather than bandwidth).
Branch scanning performance is critical for compactions and
range queries (see Sections 2.4 and 2.6). For most storage
devices, it is sufficient to ensure the branches (and hence the
memtable) are at least a few megabytes in size.

Thus, for most systems, the memtable can be anywhere
from a few megabytes to a few gigabytes in size. Since we are
specifically interested in building a system that is robust to
low-memory situations, and since making the memtable larger
has diminishing returns in terms of scanning throughput, we

select a maximum memtable size m that is just comfortably
large enough to ensure efficient scanning performance. In our
prototype, m = 24MB.

2.4 Flushing and Compaction
We cannot keep adding new branches to the root trunk in-
definitely. Eventually, the root will fill up and have no more
room for branch pointers. This solved by compacting data
and flushing it to its children.

This section describes a basic version of flushing and com-
paction which captures the basic underlying mechanics of
a STBε-tree. In section 3, we describe SplinterDB’s more-
involved flush-then-compact policy which leverages its Bε-
tree structure to expose more compaction concurrency and
optimize non-random insertion workloads.

In this simplified version, when a trunk node is full, data
is removed from it by repeatedly compacting some of its
branches into a single branch and flushing the resulting
branch to a child until the parent is no longer full (see fig. 3).
As in LSM trees, compaction is necessary to keep queries
fast. Without compaction, the number of branches that must
be queried would grow without bound.

A node p is considered to be full when its branches contain
F×m bytes of active key-value pairs, where F is the fanout
and m is the memtable capacity in bytes. When p becomes
full, the child c with the most active key-value pairs is chosen
and p is flushed into c. We construct a new branch b by
compacting all the branches in p that are active for c. Note
that the branches in p may contain keys for any of p’s children,
not just c, so when we compact the branches for a flush to c,
we scan over only the portions of each branch that contain
keys destined for c. We then add b to c as c’s youngest branch.
We also build a quotient filter for b and store a pointer to the
filter in c. Finally, we mark all the branches in p as inactive
for c, so they will not be flushed to c again. Any branches of
p that were active only for c are no longer active for any of
p’s children and can be garbage collected.

Since branches are large, compacting the branches for c
can proceed at disk bandwidth. Furthermore, we always flush
to the child with the most pending items in the parent. This
ensures that the resulting branch b will have at least m items
in it, and hence will be efficient to scan when we, at some
point in the future, flush it from the child to one of its children.

Analysis. Each time a key-value pair participates in a com-
paction, it moves one level down the trunk tree. Thus the
worst-case write amplification of the STBε-tree is O(logF N),
which is the same as in a size-tiered LSM tree. Level-tiered
LSM trees and (normal) Bε-trees have a substantially larger
write amplification of O(F logF N). In Section 3, we describe
our flush-then-compact strategy, which enables some key-
value pairs to skip compaction at some levels, particularly
when the workload exhibits locality.

USENIX Association 2020 USENIX Annual Technical Conference 51

10 010 0

2 0 2 01 4
1

0

2
3

10
10

2

1
0

2
3

Figure 3: In a STBε-tree, a flush to a pivot P consists of compacting
its active key-value pairs (from its branches) into a new branch in
the child. The dashed arrow indicates compaction.

2.5 Splitting
When a trunk leaf is full, it is split, and similarly when a
trunk internal node has more than F pivots, it is split. As in
standard B-trees and Bε-trees, the I/O costs of splitting and
merging do not asymptotically change the costs of inserts. See
Section 4 for how we make splitting and merging compatible
with hand-over-hand locking in STBε-trees.

2.6 Iterators and Scans
To construct an iterator starting from key k, we walk the trunk
search path for k, constructing B-tree iterators (also starting at
k) for each active branch along the path. We then construct a
merge iterator on top of the B-tree iterators, which simply re-
turns the smallest key from among all of the underlying B-tree
iterators. The merge iterator can be efficiently implemented
using a heap.

While constructing the B-tree iterators, we also compute
an upper bound u for the leaf of k’s search path. As soon as
the merge iterator returns a key that is greater or equal to u,
we tear down the merge iterator and all the B-tree iterators
and rebuild them, starting from u.

2.7 Deletions and Updates
Deletions are implemented through tombstone messages, i.e.
a key-value pair with special value indicating that the key has
been deleted. More generally, the STBε-tree supports update
messages that encode a function to be applied to the value
associated with a key.

3 Flush-then-Compact
This section describes the flush-then-compact algorithm,
which improves the I/O and CPU concurrency of compactions
during flushing and improves the performance of update work-
loads with locality, such as sequential workloads. The idea
behind flush-than-compact is to decouple the flushing step
from the compaction step, as shown in fig. 4.

In a flush, the references to the child’s active branches are
copied from the parent to the child, along with references
to their quotient filters, as shown in fig. 4. The child’s active
branch counter in the parent is updated to reflect the flush, just
as before. At this point the parent and child are in a consistent
state and any locks can be released. Since a flush is just a

10 010 010 0

2 0 2 0 2 01 4 4

compaction

1
0

2
3

1
0

2
3

1
0 1

0

2 3 4

1
0

2

1
0

2
3

flush

Figure 4: With the flush-then-compact policy, flushes are broken
into two steps. First references to the active branches are flushed
to the child and removed from the parent (by setting the pivot’s
active branch number). Then those branches are compacted by an
asychronous process. The compaction stage is performed without
holding a lock on the node, and during this time it can still flush, be
flushed into, split and by queried.

pointer swing, write locks are held very briefly.
Note that branches can now be referenced by multiple trunk

nodes, so branches are reference counted.
From here, if the child is full, we will perform a flush from

the child to its children, before initiating any compactions
(hence the name “flush-then-compact”). This flush will copy
the newly arrived branches from the child to one or more of its
children, exactly the same way that the branches were flushed
to the child. This process can repeat recursively.

Once all the flushes have completed, we schedule back-
ground jobs to compact all the new branches at each node
that received a flush. The background jobs will construct the
new branches and need to acquire write locks only to replace
the old branch pointers with a pointer to the newly created
branch.

Flush-then-compact accelerates non-random workloads.
Since we perform flushes before compactions, some of the
branches involved in a compaction at node p may already
be inactive for some of p’s children when we perform the
compaction. This means we can skip over those keys when
we compact those branches. And, since branches are stored as
B-trees, we can skip over those key ranges efficiently. Thus
we effectively avoid compacting those keys at p’s level in the
STBε-tree.

To see why this accelerates non-random insertion work-
loads, consider an extreme case: a workload of insertions all
for a single trunk leaf, `. For simplicity, assume also for the
moment that all the nodes on the path from the root to ` have
zero branches. The memtable will repeatedly fill with key-
value pairs for ` and get incorporated into the root. Once the
root fills, it will flush to its child c along the path to `. This
will cause c to immediately become full and flush to its child.
This process will repeat until all the branches arrive at `.

At that point, the system will schedule background com-
pactions for each trunk node along the path from the root to `.
However, at each node other than `, there will be no live data
in any of the branches. The compactions will thus skip all the
data in the branches, resulting in empty branches at each inte-
rior node. Consequently the interior nodes will again be left
with zero branches. Thus only ` will have a non-degenerate

52 2020 USENIX Annual Technical Conference USENIX Association

compaction. As a result, the new key-value pairs will partic-
ipate in only one compaction, and hence the STBε-tree will
have a write amplification of 1 for this workload.

Now consider the case when the nodes along the path to `
do not have zero branches. The first few times the root fills,
it may choose to flush to some child c′ that is not along the
path to `. This would happen if the root happened to contain
more items for c′ than c. However, as long as the workload
consists only of items for `, eventually the root will contain
more items for c than for any of its other children. From that
point forward, it will always flush to c. Then the same process
will repeat at c. Eventually, each time the root fills, the system
will flush all the new branches to `, as described above.

Thus this flushing protocol automatically adapts to the
insertion workload without knowing a priori what that work-
load is. Furthermore, if the workload changes then, after some
time, the flushing decisions will adapt to the new workload
automatically.

Furthermore, this flushing algorithm exploits less-than-
perfect locality automatically. For example, suppose the inser-
tion workload consists almost entirely of key-value pairs for
`, but a few random items for other leaves. Almost every time
the root fills, it will flush to c, and the process described above
will occur. However, each flush will leave a few new items in
the root. This cruft will accumulate, eventually causing the
root to flush to a child other than c, cleaning out some cruft.
After that, the root will resume flushing to c until enough cruft
accumulates again. Thus most data will get flushed directly
to `, and hence have a write amplification of 1, but a small
amount of data will get compacted at every level.

As these examples show, the flush-then-compact algorithm
is much more robust than the special-case optimizations fre-
quently implemented for sequential insertions. Special-case
optimizations can be foiled by a few random insertions sprin-
kled into a sequential workload. Flush-then-compact, on the
other hand, exploits locality rather than sequentiality. In sec-
tion 6.3 we show empirically that flush-then-compact enables
SplinterDB to outperform other systems on near-sequential
workloads.

Flush-then-compact exposes concurrency. Flush-then-
compact improves concurrency by setting up several com-
pactions and then launching them simultaneously, which im-
proves both CPU and I/O parallelism. The hierarchical nature
of the Bε-tree structure makes it trivially safe to perform com-
pactions concurrently at different trunk nodes. In a standard
compact-then-flush approach, each time the root is flushed,
it initiates a single compaction. The system would not start
another compaction until the root is filled (and flushed) again.

4 Preemptive Splitting for STBε-trees
Splits and merges pose problems for hand-over-hand locking
in B-trees (and Bε-trees). Hand-over-hand locking proceeds
from root to leaf, but splits and merges proceed from the
leaves up.

An approach to solving this issue in B-trees is to use pre-
emptive splitting and merging [40]. During a B-tree insert, if
a child already has the maximum number of children, then
it is split while the insertion thread still holds a lock on its
parent. Then the insertion can release the parent’s lock and
proceed down the tree, assured that the child will not need
to split again as part of this insertion. Analogously, deletions
merge a child with one of its neighbors if the child has the
minimum number of children. This works because insertion
and deletions can increase or decrease the number of children
of a node by at most 1.

This approach does not work in Bε-trees, because a flush
to a leaf could cause that leaf to split multiple times. In STBε-
trees with flush-then-compact, we can move all pending mes-
sages along a root-to-leaf path to the leaf before performing
any compactions, splits, or merges. The total number of mes-
sages moved to the leaf is bounded by O(Fm logF N), i.e. the
capacity of a trunk node times the height of the tree. The leaf
can therefore split into as many as O(logF N) new leaves of
size B. Similarly, a collection of flushes full of delete mes-
sages to several leaves of a single parent can reduce the par-
ent’s number of children by O(logF N). In practice, logF N is
less than 10 for typical fanouts F ≈ 8 and dataset size N ≤ 280

key-value pairs.
We extend preemptive splitting and merging to STBε-trees

as follows. We reserve space in each node to accommodate
up to F +H children, where H is an upper bound on the
tree height, e.g. H = 10. We then apply preemptive splitting,
except we preemptively split a node during a flush if its fanout
is above F . For merges, we take a similar approach. If, during
a flush, we encounter a node with less than F/2 children, then
we merge or rebalance it with one of its siblings.

Thus all operations on the STBε-tree—flushes, com-
pactions, splits, and merges—proceed from root to leaf and
can therefore use hand-over-hand locking.

The mechanisms for flush-then-compact make it easy to
handle branches during splits. Recall that each branch can
be marked dead or alive for each child, and branches are
refcounted and hence can be shared by multiple trunk nodes.
Thus we can split a trunk node by simply giving its new sibling
references to all the same branches as the node had before
the split. In the new node, we copy the liveness information
for each branch along with the children that are moved to the
new sibling.

5 From STBε-trees to SplinterDB
In this section, we discuss the details of SplinterDB’s im-
plementation, which addresses the concurrency and memory
bottlenecks associated with driving NVMe devices to full
bandwidth.

5.1 Branch Trees and Memtables
SplinterDB uses the same B-tree implementation for both its
branches and its memtables, although there are some differ-
ences to optimize for their use cases.

USENIX Association 2020 USENIX Annual Technical Conference 53

Branch trees, extents, and pre-fetching. When a branch is
created from a compaction, its key-value pairs are packed
into the leaves of the B-tree, and the leading edge of internal
nodes are created to index them. The nodes in each level
are allocated in extents of 32 pages, and the header of each
node stores the address of the following node, but also of the
next extent. In this way, the nodes of each level form a singly
linked list.

Iteration through a branch is performed by walking the
linked list formed by its leaves. Whenever the iterator reaches
the beginning of a new extent, it issues an asynchronus
prefetch request for the next extent. The extent length is con-
figurable to tune to the latency of the storage device.
Memtables. The basic design of the memtables mirrors that
of the branch B-trees, but includes some optimizations to
increase their insertion performance and concurrency.

As in the case of the static branch trees, the nodes on each
level of the memtable form a singly-linked list, and nodes
are allocated in extents. However, because nodes are created
on demand as nodes split, we do not try to guarantee that
successive nodes reside in the same extent. Furthermore, since
memtables are almost always in RAM, we do not perform
prefetching during memtable traversals.

The memtable uses hand-over-hand locking together with
preemptive splitting, as described by Rodeh [40]. To increase
concurrency, write locks are only obtained on internal nodes
when a split is required.

To ensure locks are held briefly, especially on nodes near
the top of the tree, the tree uses a new technique called shadow
splitting. To split a node c, a write lock is obtained on c and
the parent p. We allocate a physical block number (PBN) n
for the new sibling, c′ and add it as part of a new pivot in p.
However, in the cache, we initially point n to c. At this point,
we can release all locks on p. Now, we fill in the contents
of c′, update the PBN n to point to c′ in the cache, and then
release all locks on c′. Finally, we upgrade to a write lock on
c, truncate its child list (via a metadata operation) and then
release all locks on c.

5.2 User-level Cache and Distributed Locks
SplinterDB has a single user-level cache which keeps recently
accessed pages in memory. Almost all the memory that Splin-
terDB uses comes from this cache, so pages from all parts
of the data structure—trunk node pages, branch pages, filter
pages and memtable pages—are all stored there. Only cache
and file-system metadata, as well as small allocations used to
enqueue compaction tasks are allocated from system memory.

This design allows nearly all the free memory to be used
for whichever operations are being performed, so that parts
of the data structure which are not in use can be paged out.

The cache at a high level is a clock cache, but with several
features designed to improve concurrency.

Each thread has a thread-local hand of the clock, which
covers 64 pages. The thread draws free pages from the hand,

and if it has exhausted them, it acquires a new hand from a
global variable using a compare-and-swap. It then writes out
dirty pages from the hand which is a quarter turn ahead, and
evicts any evictable pages in its new hand. Thus threads clean
and evict pages from distinct cache lines within the cache
metadata, avoiding contention and cache-line ping-ponging.

SplinterDB uses distributed reader-writer locks [24] to
avoid cache-line thrashing between readers. Briefly, a dis-
tributed reader-writer lock consists of a per-thread reader
counter and a shared write bit. Each reader counter is on
a separate cache line to avoid cache-line ping-ponging when
readers acquire the lock. Writers set the write bit (using com-
pare and swap) and then wait for all the read counters to
become zero. Readers acquire the lock by incrementing their
read counter and then checking that the writer bit is 0. If it is
not, they decrement their reader counter and restart.

Distributed reader-writer locks allow readers to scale es-
sentially perfectly linearly, at the cost that acquiring a write
lock is expensive. However, the design of SplinterDB makes
writing rare enough that this is a good trade-off.

We make distributed reader-writer locks space efficent by
storing each thread’s reader counters in an array indexed by
cache-entry index. Each reader counter is one byte, so the
total space used by locks is t× c bytes, where t is the number
of threads and c is the number of cache entries.

SplinterDB supports three levels of lock: read locks,
“claims”, and write locks. A claim is a read lock that can be
upgraded to a write lock. Only one thread can hold a claim at
a time. After obtaining a read lock, a thread may try to obtain
a claim by trying to set a shared claim bit with a test-and-set.
If this fails, they must drop the read lock and start over. Oth-
erwise, they can upgrade their claim to a write lock by setting
a shared write bit and waiting for all the read counters to go
to zero.

5.3 Quotient filters
Bloom filters [7] are the standard filter for most LSMs [8, 22,
39]. However, the cost of Bloom filter insertions can dominate
the cost of sorting the data in a compaction. Therefore modern
key-value stores often use more efficient filters; for example,
RocksDB uses blocked Bloom filters [38];

Similarly, SplinterDB uses quotient filters [4, 5, 36] instead
of Bloom filters. A full presentation of quotient filters is out
of scope for this paper, but we review their salient features
for SplinterDB. See Pandey, et al. for a full presentation on
quotient filters [36]. The key feature of quotient filters is that,
like blocked Bloom filters, each insert or query accesses O(1)
cache lines (and hence O(1) page accesses). Quotient filters
are roughly as space efficient as Bloom filters—for the range
of parameters used in SplinterDB, quotient filters use between
0.8× and 1.2× the space of a blocked Bloom filter. We view
the space as essentially a wash. Quotient filter inserts and
lookups also require only one hash function computation. In
past work, quotient filter insertions and queries were shown

54 2020 USENIX Annual Technical Conference USENIX Association

to be 2-4× faster than in a Bloom filter.
A quotient filter for set S stores, without error, h(S) =

{h(x) | x ∈ S}, where h is a hash function. Since the quo-
tient filter stores h(S) exactly, all false positives are the result
of collisions under h. Thus each insertion or lookup requires
only one hash function computation. Furthermore, a quotient
filter stores the elements of h(S) in sorted order in a hash
table using a variant of linear probing. Thus most inserts and
lookups in a quotient filter access only 1 or 2 adjacent cache
lines. As a result, insertions and lookups in quotient filters are
typically 2-4× faster than in a Bloom filter. Finally, quotient
filters are space efficient, using slightly less space than Bloom
filters whenever the false positive rate ε is less than 1/64,
which is typical. For example, a quotient filter with ε = 0.1%
uses about 10% less space than a Bloom filter [36].

SplinterDB further reduces the CPU costs of filter building
during compaction by using a bulk build algorithm. During
the merging phase of compaction or when inserting into a
memtable, SplinterDB builds an unsorted array of all the
hashes of all the tuples compacted or inserted. The array is
then sorted (by hash value) and the quotient filter is built.
Since the quotient filter also stores the hashes in sorted order,
this means that the process of inserting all the hashes is a
linear scan of the sorted array and of the quotient filter. Hence
it has good locality and can benefit from cache prefetching.

5.4 Logging and Recovery
SplinterDB uses per-thread write-ahead logical logging for
recovery. By using per-thread logs, we avoid contention on
the head of a single, shared log.

The challenge is to resolve the order of operations across
logs after a crash. For this, we use a technique similar to
“cross-referenced logs” [25]. Our scheme works as follows.
Each leaf of the memtable has a generation number. Whenever
a thread inserts a new message into the memtable, it records
and increments the generation number of the memtable leaf
for the inserted key. It then appends the inserted message to
its per-thread log, tagged with the leaf’s generation number.
During recovery, the generation numbers in the logs give a to-
tal order on the operations performed on each leaf (and hence
on all the keys for that leaf), so that the recovery procedure
can replay the operations on each key in the proper order.
When a leaf of the memtable splits, the new leaf gets the same
generation number as the old leaf.

6 Evaluation
We evaluate the performance of SplinterDB on several mi-
crobenchmarks and on the standard YCSB application bench-
mark [20]. We compare this performance against that of two
state-of-the-art key-value stores, RocksDB and PebblesDB.
The following questions drive our evaluation:
• How much does SplinterDB improve insertion perfor-

mance? To what extent is improvement achieved through
reduced write amplification and other factors?
• Despite being size-tired, how much does SplinterDB

mitigate [range] query performance? Can SplinterDB
utilize device bandwidth for large range queries?
• How much faster are sequential (or otherwise local) in-

sertions in SplinterDB? Do they have lower write ampli-
fication?
• Do point lookups scale with the number of threads?

6.1 Setup and Workloads
All results are collected on a Dell PowerEdge R720 with a
32-core 2.00 GHz Intel Xeon CPU, 256 GiB RAM and a
960GiB Intel Optane 905p PCI Express 3.0 NVMe device.
The block size used was 4096 bytes.

In general, we use workloads derived from YCSB traces
with 24B keys. We generally use 100B values, but also include
a set of YCSB benchmarks for 1KiB values. We instrumented
dry runs of YCSB in order to collect workload traces for the
load and A–F YCSB workloads and replay them on each of
the databases evaluated. In order to eliminate the overhead
of reading from a trace file during the experiment, the trace
replayer mmaps the trace file before starting the experiment.
We use the same traces for each system.

In general, we limit the available memory to 10% of the
dataset size or less. In order to perform the benchmarks on
reasonably sized datasets, we restrict the available system
memory with a type 1 Linux cgroup, sized to the target mem-
ory size plus the size of the trace, which we pin so that it
cannot be swapped out. Unless otherwise noted, the target
memory size is 4GiB. PebblesDB has an apparent memory
leak, which causes it to consume the available memory, so we
allow it to use the full system memory. On the YCSB load
benchmarks, this causes it to swap for a small portion at the
end, but this was less than 10% of the run time.

Unless otherwise noted, SplinterDB uses a max fanout
of 8, a memtable size of 24MiB and a total cache size of
3.25GiB. The difference between this cache size and the target
memory size of 4GiB is to accommodate other in-memory
data structures maintained by SplinterDB.

Each system is run with the thread count which yields the
highest throughput. RocksDB is configured to use background
threads equal to the number of cores minus the number of
foreground threads, with a minimum of 4. PebblesDB uses
its default number of background compaction threads. Splin-
terDB is configured without background compaction threads.

6.2 YCSB
We measure application performance using the Yahoo Cloud
Services Benchmark (YCSB). The core YCSB workloads
consist of load phases and run phases. The load phases create
a dataset by inserting uniformly random key-value pairs. The
run phases emulate various workload mixes. Workload A
is 50% updates, 50% reads, workload B is 95% reads, 5%
updates), workload C is 100% reads, workload D is read latest
(95% reads, 5% insertions), workload E is short range scans
(95% scans, 5% insertions) and workload F is read-modify-
writes (50% reads, 50% RMWs).

USENIX Association 2020 USENIX Annual Technical Conference 55

SplinterDB RocksDB PebblesDB

Load A B C D E F

0
10

00
20

00

23
52

11
41

85
5

86
1

75
8

85

10
32

34
8 46

0

48
5 61

4

48
3

10
1

49
8

83 11
3 28

7

30
5

21
5

55 14
5

YCSB Workload (24B keys, 100B values)

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

(a) Throughput on YCSB workloads with 24B keys and 100B values. Load is 673M
operations, E is 20M operations and others are 160M operations. Higher is better.

Load A B C D E F

0
20

0
40

0
60

0
80

0

21
4

39
6

68
3 77

1

69
9

22

45
7

73

12
5

32
5

33
1 40

7

19

25
8

YCSB Workload (24B keys, 1KiB values)

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

(b) Throughput on YCSB workload with 24B keys and 1KiB
values. Load is 84M operations, E is 1.3M operations and others
are 10M operations. Higher is better.

Figure 5: YCSB throughput and I/O benchmark results.

Load:
Write Amp

Load:
Total I/O Amp

Run C:
Read Amp

0
10
20
30

5.6 8.1

23.1

9.1
15.8

29.2

8.2 8.3
4.4

YCSB IO Amplification (24B keys, 100B values)

I/
O

A
m

pl
ifi

ca
tio

n

Figure 6: IO amplification on YCSB load and Run C workloads, as
measured with iostat. Lower is better.

The results with 100B values and 1KiB values are shown
in Figure 5 (both workloads use 24B keys). Figure 6 shows
the write and I/O amplification in the 100B-value benchmark.

On the load phase, SplinterDB is faster than RocksDB by
almost an order of magnitude. Because of size-tiering and
its compaction/flushing policy SplinterDB has about 1/2 the
write amplification of the other systems. Note PebblesDB
performs almost no reads because it was given unlimited
memory. Surprisingly PebblesDB does not show substantially
lower write amplification than RocksDB.

On the run phases, which the exception of E, SplinterDB
is 40–150% faster than RocksDB, the next fastest system. On
E, SplinterDB is roughly 15% slower than RocksDB in the
100B-value case, and about 15% faster than RocksDB in the
1KiB-value benchmark.

Latency. SplinterDB maintains high throughput without
sacrificing latency. Table 1 reports insertion latency for Splin-
terDB and RocksDB. Unsurprisingly, the latency of RocksDB
is at least 3x that of SplinterDB on all metrics. This is because
mechanisms such as flush-and-compact (Section 3) improve
concurrency and eliminate stalls on the write path.

Table 2 reports read latency for SplinterDB and RocksDB.
SplinterDB read latency is comparable to RocksDB, because
the quotient filters (section 5.3) in SplinterDB behave simi-
larly to Bloom filters in RocksDB.

KVell. KVell [33] is a key-value store also designed to
utilize full NVMe bandwidth. It has an in-memory B-tree
index that maps all keys to disk page offsets. It does well on

system mean median P95 P99
SplinterDB 7.0 3.1 12.4 27.7
RocksDB 40.2 29.7 50.5 86.7

Table 1: Insertion latency (µs) for the workload in fig. 5a.

system mean median P95 P99
SplinterDB 46.4 13.3 126.3 216.1
RocksDB 51.1 28.8 108 221.1

Table 2: Read latency (µs) for the workload in fig. 5a.

Load A B C D E F

0
10

00
20

00
30

00
53

.3

6 4 6.
5

6 0.
02

4

10
75

16
.7

21
.7

23
.1

24
.2

0.
22 43
.6

30
68

35
2 54

5

58
3

58
3

12
.2

35
2

30
69

35
2 54

5

58
3

58
2

12
.1

35
2

30
47

35
2 54

5

58
3

58
4

12
.1

35
2

28
50

15
40

14
30

14
75

12
60

11
9

16
96

YCSB Workload (24B keys, 100B values)

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

20GiB 22GiB 24GiB

26GiB 28GiB SplinterDB 20GiB

Figure 7: Throughput of Kvell on YCSB workloads with varying
amounts of available RAM, 100B values. Throughput of SplinterDB
with 20GiB RAM shown for comparison. Load consists of 673M
operations, E consists of 20M operations and all other workloads
consist of 160M operations. Higher is better.

large (4KiB) key-value pairs, but on small key-value pairs,
the overhead of the in-memory index becomes a significant
fraction of the dataset size. In particular, it was impossible
to run KVell in a memory cgroup of 4GiB. Figure 7 shows
KVell’s performance on the YCSB workload with 100B val-
ues, for different memory sizes. At 22GiB, which is around
the size of the in-memory index, KVell’s performance starts
to drop. At 20GiB, KVell becomes unusable. Therefore in
realistic memory settings, KVell is not a viable option for the
small key-value sizes that SplinterDB targets.

SplinterDB is designed to work well even under low-
memory scenarios (less than 10% of total data size). However,
we also run the YCSB experiment with higher memory, 20
GiB, to compare with KVell in a regime where KVell per-

56 2020 USENIX Annual Technical Conference USENIX Association

Load A B C D E F

0
50

0
10

00
15

00

70

4.
7

3.
46

2.
59

2.
57

0.
04

3.
4

15
38

35
4

52
6

54
7

54
7

12

35
0

15
48

35
5

54
3 58
1

57
9

12

35
4

YCSB Workload (24B keys, 1KiB values)

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

3GiB 4GiB 6GiB

Figure 8: Throughput of Kvell on YCSB workloads with varying
amounts of available RAM, 1 KiB values. Load consists of 84M
operations, E consists of 1M operations and all other workloads
consist of 10M operations. Higher is better.

forms well. As shown in fig. 7, we find that SplinterDB al-
most matches KVell on insertions, but outperforms KVell by
roughly a factor of 2.5 on queries.

For larger values, the memory cliff for KVell is much lower.
We run the same YCSB workload on both systems, but with
1KiB values. In this case, KVell’s memory cliff is between
3GiB and 4GiB, as shown in fig. 8. For these larger values,
KVell outperforms SplinterDB insertions (see Figure 5b) due
to a low write amplification, but still can only achieve 55-
77% query throughput of SplinterDB on the other YCSB
workloads. KVell’s range-query performance (workload E) is
particularly lower than SplinterDB’s because KVell does not
keep key-value pairs sorted. Thus each 1KiB key-value pair
in the range requires a separate, random 4KiB I/O, resulting
in a read amplification of about 4×. Splinter, on the other
hand, sorts and packs key-value pairs into 4KB blocks, for a
read amplification close to 1 during range queries.

As soon as the memory cliff hits, KVell exhibits the same
performance drop as in the previous experiment. However,
when values are so large, this may not be so important, since
indexing information can easily fit in RAM.

6.3 Sequential Insertion Performance
Because of the flush-then-compact policy, we expect Splin-
terDB’s performance will improve substantially on insertion
workloads with a high degree of locality (see section 3). We
demonstrate this by performing 20GiB of single-threaded in-
sertions from a trace composed of interleaved sequential and
random keys in different proportions. For comparison, we
perform the same workload on RocksDB.

As shown in fig. 9a, SplinterDB’s performance improves
smoothly from 349K insertions per second for a purely ran-
dom workload to 614K insertions per second for a purely
sequential workload, which is 76% faster. This improvement
is partially obscured by the log, which adds a constant additive
IO overhead. If we disable the log, SplinterDB improves from
430K insertions per second on a purely random workload
to 866K operations per second on a purely sequential work-
load, 100% faster. Note that we would expect the intermediate

SplinterDB SplinterDB (no log) RocksDB

0 50 90 99 100

0
50

0

349 386

537
595 614430

521

676
799

866

144 152 171 185 193

Percentage Sequential Insertions

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

(a) Insertion throughput, higher is better.

0 50 90 99 100

0
5

10

4.12 3.97
3.09 2.37 2.34

2.87 2.56 1.91 1.27 1.24

9.67
7.87

4.96
4.1

0.94

Percentage Sequential Insertions

I/
O

A
m

pl
ifi

ca
tio

n

(b) Write amplification (solid) and total IO amplification (dashed) as
measured with iostat. Lower is better.

Figure 9: Single-threaded insertion throughput by varying mixed
sequential/random locality percentage. X-axis not to scale.

throughputs in the best case to be the [weighted] harmonic
mean of the pure cases, because they are rates. At 50% ran-
dom, 50% sequential for SplinterDB with no log this is 575K
insertions/second, so its actual performance of 521K inser-
tions/second captures a substantial amount of the potential
improvement.

RocksDB also improves as the workload becomes more
sequential, but this effect is much smaller, a 35% speedup.
Furthermore, RocksDB shows less than 20% speedup until
the workloads becomes 99% sequential.

Figure 9b shows that as predicted, SplinterDB incurs less
IO amplification on more sequential workloads. With the
log disabled, its write amp approaches 1 as the workload
approaches purely sequential. In contrast, while RocksDB
also has less IO amplification on more sequential workloads,
it still incurs write amplification of 4.1 even when 99% of the
keys are sequential. It is only when the workload becomes
100% sequential that the write amplification becomes close
to 1 (because of caching it even falls below 1).

6.4 Concurrency Scaling
SplinterDB is designed to scale with the number of available
cores up to the performance limits of the storage device. This
is especially true for reads, where the use of distributed reader-
writer locks and a highly concurrent cache design, together
with a careful avoidance of dirtying cache lines, can avoid
almost all contention between threads.

Read Concurrency. We test the read concurrency scaling
of SplinterDB by running YCSB workload C with 160M key-
value pairs, where, as in fig. 5a each instance of the test divides

USENIX Association 2020 USENIX Annual Technical Conference 57

0 4 8 12 16 20 24 28 32

0
20

0
40

0
60

0
80

0
42

86

17
3 24

3 30
9 36

9 44
9 49

5 55
4 60

8 67
0 72

6 77
7 80
9

83
0

83
9

84
2

3247
118

178
232 171

325
364

449
475

496
537

557
585

597
605

614

1422
54

77 97 64
127

135
142

260 265
295 272 267

305

Number of Concurrent Threads

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

SplinterDB
RocksDB

PebblesDB

Figure 10: Read concurrency: read throughput (YCSB workload C)
by number of threads. Each instance performs 160M reads divided
evenly between threads. Higher is better.

the keys evenly into N batches, which are then performed in
parallel by N threads. The results are in fig. 10.

The results show nearly linear scaling—throughput with
24 threads is 18.5× the single-threaded throughput. Between
roughly 24 and 32 threads, the scaling flattens out, but at that
point the measured throughput is 2.07–2.24 GiB/sec, which
is 88–95% of the device’s advertised random read capability.

While RocksDB also scales well, its throughput with 24
threads is 17.4× its single-threaded throughput, and with
32 threads it uses 91% of the device’s advertized random
read capability. Therefore, even though SplinterDB can per-
form more operations per second, RocksDB is still making
nearly full use of the device for reads. We conclude here
that SplinterDB is making better use of the available memory
for caching, since it has noticeably lower read amplification.
Finally, PebblesDB is unable to scale with more threads, flat-
tening out at around 300K reads/sec.
Insertion Concurrency We test the insertion concurrency
scaling of SplinterDB by running the YCSB load workload
with 673M key-value pairs divided into N batches, each of
which is inserted in parallel by a different thread. fig. 11
reports throughput for various N.

The results show that SplinterDB scales almost linearly
up to 10 threads. With 10+ threads, it performs 2.0-2.4M
insertions per second with IO amplification around 7.5, which
implies that it uses 1.9-2.2GiB/sec of bandwidth, which is at
or near the device’s sequential bandwidth of 2.2GiB/sec.

RocksDB’s insertion performance also scales as the number
of threads increase up to 14 threads, by a factor of 2.7. At
its peak, it uses 754GiB/sec of bandwidth. PebblesDB scales
slightly as well. For both RocksDB and PebblesDB, as many
background threads as available are used for flushing and
compaction during this benchmark.

6.5 Scan Performance
An inherent disadvantage of size-tiering is that short scans
must search every branch along the root-to-leaf path to the
starting key. Each of these searches is likely to incur an IO
to the device. As a result, as seen in fig. 5a, SplinterDB with
124B key-value pairs has scan throughput on small ranges

0 4 8 12 16 20 24 28 32

0
1,

00
0

2,
00

0

1,408

1,687

2,003

2,143

2,248

2,334
2,352

2,321
2,313

13
8

15
3 22
8

27
9

31
7

34
5

35
2

38
0

35
9

34
6

33
8

69 69 72 78 76 82 80 79 83 82 84

Number of Concurrent Threads

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

SplinterDB
RocksDB

PebblesDB

Figure 11: Insertion concurrency: insert throughput (YCSB Load)
by number of threads. Each instance performs 673M writes divided
evenly between threads. Higher is better.

100 101 102 103 104 105
0

10
00

20
00

device read throughput

12.2 118

857

2375
2496 2554

18.7
171

972

2063

2158

1872

4.3 43

397

1653
1926

Scan Length in Number of Key-Value Pairs

E
ff

ec
tiv

e
T

hr
ou

gh
pu

t
(M

iB
/s

ec
)

SplinterDB
RocksDB

PebblesDB

Figure 12: Scan throughput in MiB/sec as a function of scan length.
For small scans, the start up cost dominates, but as the scans get
longer, the throughput approaches the device’s advertised bandwidth
(2.6GiB/sec). The x-axis is on a log scale. Higher is better.

that is about 85% that of RocksDB. During that workload,
SplinterDB performed 2.26 GiB/sec of IO, which is within
96% of the devices advertised random read capability (short
scans of small key-value pairs are essentially random reads).

However, once the initial search for the successor to the
starting key has completed, the root-to-leaf path within each
relevant branch will be in memory. Together with prefetching,
this allows subsequent keys to be fetched at near disk band-
width. Therefore, we expect that scans have a relatively high
startup cost for the search to the starting key, followed by a
very low iteration cost of obtaining subsequent keys.

Thus, when the amount of data requested grows to mul-
tiple pages, the disadvantage begins to dissipate. One way
this happens is with larger key-value pairs: with 1kib values,
SplinterDB is about 16% faster than RocksDB.

Another way this can happen is with scans of more key-
value pairs. We modify YCSB workload E to have only fixed-
length scans of N key-value pairs, where N is 1, 10, 100, 1K,
10K or 100K. We perform runs of 10M scans of length 1,
10 and 100, 1M scans of length 1000, 100K scans of length
10000 and 10K scans of length 100000. Each run is performed
on a dataset of 80GiB (with 24B keys and 100B values) and
4GiB memory.

The result is shown in fig. 12. Short scans on SplinterDB
have low effective bandwidth, and in fact the bandwidth scales

58 2020 USENIX Annual Technical Conference USENIX Association

close to linearly with the scan length for scans of up to 100
key-value pairs. This suggests that for scans of this length,
the startup cost dominates the iteration cost, which is as ex-
pected. As the scan length increases, the effective bandwidth
of the scans approaches the device’s advertised sequential
read bandwidth, delivering 91% at scans of 1,000 key-value
pairs. At scans as small as 100 key-value pairs, SplinterDB
returns data at nearly half the bandwidth of the device.

7 Related Work
The STBε-tree is based on a Bε-tree, a data structure that has
been used in several file systems and databases [18, 27–29,
44, 48, 49]. The closest work to ours is Tucana [37], a Bε-tree
optimized for SSDs. They also focus on CPU cost, concur-
rency, and write amplification. Our work pushes this to the
even more demanding case of NVMe devices. SplinterDB im-
proves on techniques that have been applied to log-structured
merge (LSM) trees and key-value stores to reduce write am-
plification and increase concurrency.

Size-Tiering. Cassandra [19], Scylla [42] PebblesDB [39],
and RocksDB [8] (in “universal compaction” mode) use size-
tiering to reduce write amplification. Size tiering delays com-
paction of sorted runs in order to reduce write amplifica-
tion. This can harm query performance because queries must
search more runs to find the queried item. Fluid LSMs [16],
Dostoevsky [16], LSM bushes [17], and Wacky [17] use
hybrids between size-tiering and level-tiering to tune the
trade-off between write amplification and query performance.
See [39] for a survey of LSM-compaction schemes.

Size-tiering also decreases write amplification in Splin-
terDB. Because of the design of the STBε-tree, SplinterDB
further leverages size-tiering for flush-and-compact, which
greatly increases the concurrency of background operations.

Write amplification vs. range queries. Several systems
sacrifice range-query performance in order to reduce write am-
plification in other ways. Wisckey [34] reduces write amplifi-
cation by declustering their key-value store: they log values
and only store keys in the LSM-Tree. Since values are stored
on disk in arrival order, a range query must gather values from
the log. On NVMe, this is not a problem once the values are
4KB or larger. However, for smaller values, this can induce
huge read amplification, limiting range query performance to
a tiny fraction of device bandwidth. HashKV [10] builds on
Wisckey by introducing hash-based data-grouping to further
reduce write amplification, but inherits Wisckey’s range query
performance limitations.

Other approaches improve write amplification by sacrific-
ing range queries altogether. Conway et al. [14] describe a
write-optimized hash table, called the BOA, that also uses
size-tiering with an LSM. They also introduce the concept of
a routing filter, which extends the functionality of Bloom fil-
ters, in order to speed up queries. The principle advantage of
routing filters is that performance does not degrade as much
when they don’t fit in RAM. The BOA meets a provable lower

bound on the I/O costs of insertions and queries [26]. The
downside is that the BOA does not support range queries,
which are crucial to many key-value-store applications. LSM-
tries [46] organize the LSM tree using tries, resulting in re-
duced write amplification. However, LSM-tries do not support
range queries.

Other approaches. Researchers have also attempted to
reduce write amplification by exploiting special hardware
features such as flash translation layers [35] and vector in-
terfaces [45]. VT-Tree [43] uses indirection to avoid copy-
ing data that is already sorted, similar to “trivial moves” in
RocksDB and PebblesDB. TRIAD [1] reduces write amplifi-
cation by holding hot keys in memory, delaying compaction
until different runs have significant key overlap, and by reduc-
ing redundancy between log and LSM tree writes. All these
techniques are orthogonal to our work and can be used in
conjunction with our techniques.

Concurrency is also an important aspect of key-value store
performance. One of the first works in increasing concurrency
in LSM-based stores was cLSM [21] which introduces a new
compaction algorithm. Zuo et al. [52] show how to tune a
cuckoo hash for NVM. Such a scheme suffers from high write
amplification, since each insertion must re-write all keys in
a data block. Zuo et al. do not report write amplification
numbers but instead focus on concurrency.

Kourtis, et al. describe several systems-level optimizations
for improving key-value-store throughput on NVMe, such as
efficient use of user-level asynchronous I/O and low-latency
scheduling [31]. Their techniques are largely orthogonal to
the work in this paper.

8 Analysis
We begin with a disk-space analysis, showing that, in STBε-
tree, size-tiered compaction and flush-then-compact do not
blow up the on-disk space usage by more than a constant fac-
tor. We then use this to analyze memory usage from indexes
and filters, and finally summarize STBε-tree’s asymptotic per-
formance.
Disk-space. Like level-tiered and size-tiered LSM trees and
Bε-trees, the STBε-tree can have a space overhead when there
are updates to existing keys. This is because all of these data
structures buffer updates and apply them lazily. We begin
by showing that the space used by the STBε-tree is O(N),
where N is the number of distinct keys in the database. This
compares quite favorably to the space of a size-tiered LSM,
which can be as bad as Θ(FN).

Theorem 1. Let N be the number of distinct keys in a STBε-
tree. Then the STBε-tree uses O(N) space on disk.

Proof. We give only a sketch. The four key observations in
the proof are that (1) every leaf must be at least half full of
distinct keys due to the splitting and compaction policy, (2)
each branch has size at most mF due to the flushing policy,
(3) each non-leaf trunk node references at most 3F branches

USENIX Association 2020 USENIX Annual Technical Conference 59

due to the flushing policy, and (4) the number of non-leaf
trunk nodes is at most O(1/F) times the number of leaves.
Together, these prove that the total amount of data referenced
in the interior of the tree is at most a constant factor times the
number of distinct keys in the leaves.

For a workload of random updates to existing keys, we
estimate that the space blowup would be roughly a factor of
3. If the workload also contains insertions of new keys, then
the blowup would be even lower.
Asymptotic analysis. The height of the trunk is
O(logF N/Fm), and each item gets compacted at most
once per level, so the I/O complexity of random insertions are
O(

logF N/Fm
B), which is the same as in a size-tiered LSM tree.

Assuming that all index nodes and filters fit in RAM, the
I/O complexity of random point queries is O(1) I/Os, since
the filters will eliminate all but the correct branch from being
searched.

Long sequential insertion workloads will cost O(1/B) I/Os
per item. The I/O efficiency comes from the fact that, once
the first batch of items gets flushed to a leaf, the root-to-leaf
path for future insertions will be in cache, so no more I/O
will be needed, except to write out the new data. This also
workload has O(1) pass complexity because our flush-then-
compact policy will skip compactions at intermediate layers.
A straightforward implementation of a size-tiered LSM, on
the other hand, will have the same I/O and pass complexity
for both random and sequential insertion workloads.

Range queries returning k items cost O(F logF N/Fm) I/Os
to get started (since the range query must perform a query
in every branch along the root-to-leaf path of the query key).
Thereafter, they cost O(k/B) I/Os to return all the items. This
is comparable to the I/O cost of range queries in a size-tiered
LSM tree.

9 Conclusion
Our work shows that, by combining ideas from LSM trees
and Bε-trees, we can build a key-value store that outperforms
current key-value stores by up to an order of magnitude on
insertions, matches or outperforms on lookups, and is com-
petitive on range queries.

SplinterDB targets the common case of small key-value
pairs and non-uniformly random workloads. Many real-world
key-value workloads come from different clients, some of
which might be performing very localized operations, while
others are performing relatively random operations. Splin-
terDB exploits whatever locality is available.

SplinterDB makes contributions to both the data-structural
and systems design of high-performance key-value stores. We
show how to get the low write amplification of size-tiered data
structure while maintaining the high query throughput and
workload-adaptivity of a Bε-tree. We also describe several
systems issues, such as cache, lock, and memtable design,

that one must address to extract the full performance of high-
performance NVMe devices.

10 Acknowledgements
We would like to thank Ittai Abraham for his insight and
contribution to this project.

We would also like to thank the anonymous reviewers and
our shepherd, Ashvin Goel, for their insightful comments.

References
[1] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy

Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: creating synergies
between memory, disk and log in log structured key-
value stores. In Dilma Da Silva and Bryan Ford, editors,
USENIX ATC, pages 363–375. USENIX Association,
2017.

[2] Michael A. Bender, Jonathan W. Berry, Rob Johnson,
Thomas M. Kroeger, Samuel McCauley, Cynthia A.
Phillips, Bertrand Simon, Shikha Singh, and David
Zage. Anti-persistence on persistent storage: History-
independent sparse tables and dictionaries. In Tova
Milo and Wang-Chiew Tan, editors, SIGMOD, pages
289–302. ACM, 2016.

[3] Michael A. Bender, Martin Farach-Colton, Jeremy T.
Fineman, Yonatan R. Fogel, Bradley C. Kuszmaul, and
Jelani Nelson. Cache-oblivious streaming b-trees. In
Phillip B. Gibbons and Christian Scheideler, editors,
SPAA, pages 81–92. ACM, 2007.

[4] Michael A. Bender, Martin Farach-Colton, Rob John-
son, Russell Kraner, Bradley C. Kuszmaul, Dzejla
Medjedovic, Pablo Montes, Pradeep Shetty, Richard P.
Spillane, and Erez Zadok. Don’t thrash: How to cache
your hash on flash. Proc. VLDB Endow., 5(11):1627–
1637, 2012.

[5] Michael A. Bender, Martin Farach-Colton, Rob John-
son, Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo
Montes, Pradeep Shetty, Richard P. Spillane, and Erez
Zadok. Don’t thrash: How to cache your hash on flash.
In Irfan Ahmad, editor, HotStorage. USENIX Associa-
tion, 2011.

[6] Michael A. Bender, Martin Farach-Colton, Rob John-
son, Simon Mauras, Tyler Mayer, Cynthia A. Phillips,
and Helen Xu. Write-optimized skip lists. In Emanuel
Sallinger, Jan Van den Bussche, and Floris Geerts, edi-
tors, SIGMOD, pages 69–78. ACM, 2017.

[7] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[8] Dhruba Borthakur. Rocksdb github wiki – performance
benchmarks, 2013.

60 2020 USENIX Annual Technical Conference USENIX Association

[9] Gerth Stølting Brodal and Rolf Fagerberg. Lower
bounds for external memory dictionaries. In Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, January 12-14, 2003, Baltimore,
Maryland, USA, pages 546–554. ACM/SIAM, 2003.

[10] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and
Yinlong Xu. Hashkv: Enabling efficient updates in KV
storage via hashing. In Gunawi and Reed [23], pages
1007–1019.

[11] Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan,
Michael A. Bender, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and
Martin Farach-Colton. How to fragment your file sys-
tem. login Usenix Mag., 42(2), 2017.

[12] Alex Conway, Eric Knorr, Yizheng Jiao, Michael A. Ben-
der, William Jannen, Rob Johnson, Donald E. Porter,
and Martin Farach-Colton. Filesystem aging: It’s more
usage than fullness. In Daniel Peek and Gala Yadgar,
editors, HotStorage. USENIX Association, 2019.

[13] Alexander Conway, Ainesh Bakshi, Yizheng Jiao,
William Jannen, Yang Zhan, Jun Yuan, Michael A. Ben-
der, Rob Johnson, Bradley C. Kuszmaul, Donald E.
Porter, and Martin Farach-Colton. File systems fated for
senescence? nonsense, says science! In Geoff Kuenning
and Carl A. Waldspurger, editors, USENIX FAST, pages
45–58. USENIX Association, 2017.

[14] Alexander Conway, Martin Farach-Colton, and Philip
Shilane. Optimal hashing in external memory. In Ioan-
nis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
and Donald Sannella, editors, 45th International Col-
loquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Repub-
lic, volume 107 of LIPIcs, pages 39:1–39:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[15] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Sali-
hoglu et al. [41], pages 79–94.

[16] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-
time trade-offs for lsm-tree based key-value stores via
adaptive removal of superfluous merging. In Gautam
Das, Christopher M. Jermaine, and Philip A. Bernstein,
editors, SIGMOD, pages 505–520. ACM, 2018.

[17] Niv Dayan and Stratos Idreos. The log-structured merge-
bush & the wacky continuum. In Peter A. Boncz, Stefan
Manegold, Anastasia Ailamaki, Amol Deshpande, and
Tim Kraska, editors, SIGMOD, pages 449–466. ACM,
2019.

[18] John Esmet, Michael A. Bender, Martin Farach-Colton,
and Bradley C. Kuszmaul. The tokufs streaming file sys-
tem. In Raju Rangaswami, editor, HotStorage. USENIX
Association, 2012.

[19] Apache Software Foundation. Apache Cassandra, 2019.

[20] Steffen Friedrich and Norbert Ritter. YCSB. In Ency-
clopedia of Big Data Technologies. Springer, 2019.

[21] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and
Idit Keidar. Scaling Concurrent Log-structured Data
Stores. In Proceedings of the Tenth European Confer-
ence on Computer Systems (Eurosys 15), page 32. ACM,
2015.

[22] Inc. Google. Leveldb, 2019.

[23] Haryadi S. Gunawi and Benjamin Reed, editors. 2018
USENIX Annual Technical Conference, USENIX ATC
2018, Boston, MA, USA, July 11-13, 2018. USENIX
Association, 2018.

[24] W. C. Hsieh and W. E. Weihl. Scalable reader-writer
locks for parallel systems. In IPPS, 1992.

[25] Yihe Huang, Matej Pavlovic, Virendra J. Marathe,
Margo Seltzer, Tim Harris, and Steve Byan. Closing the
performance gap between volatile and persistent key-
value stores using cross-referencing logs. In Gunawi
and Reed [23], pages 967–979.

[26] John Iacono and Mihai Patrascu. Using hashing to solve
the dictionary problem (in external memory). CoRR,
abs/1104.2799, 2011.

[27] William Jannen, Michael A. Bender, Martin Farach-
Colton, Rob Johnson, Bradley C. Kuszmaul, and Don-
ald E. Porter. Lazy analytics: Let other queries do the
work for you. In Nitin Agrawal and Sam H. Noh, editors,
HotStorage. USENIX Association, 2016.

[28] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael A. Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. Betrfs: A right-
optimized write-optimized file system. In Jiri Schindler
and Erez Zadok, editors, USENIX FAST, pages 301–315.
USENIX Association, 2015.

[29] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael A. Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. Betrfs: Write-
optimization in a kernel file system. TOS, 11(4):18:1–
18:29, 2015.

USENIX Association 2020 USENIX Annual Technical Conference 61

[30] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young ri Choi. Slm-db: Single-
level key-value store with persistent memory. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 191–205, Boston, MA, 2019. USENIX
Association.

[31] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Kolt-
sidas. Reaping the performance of fast NVM storage
with udepot. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 1–15, Boston,
MA, 2019. USENIX Association.

[32] Bredley Kuszmaul. Tokutek White Paper: A Compari-
son Of Log-Structured Merge (LSM) And Fractal Tree
Indexing, 2014.

[33] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation of a
fast persistent key-value store. In Tim Brecht and Carey
Williamson, editors, SOSP, pages 447–461. ACM, 2019.

[34] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Wisckey: Separating keys from values in ssd-conscious
storage. In Proceedings of the 14th USENIX Confer-
ence on File and Storage Technologies (FAST 16), pages
133–148, 2016.

[35] Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, and Raju Rangaswami. Nvmkv: a scalable,
lightweight, ftl-aware key-value store. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages
207–219, 2015.

[36] Prashant Pandey, Michael A. Bender, Rob Johnson, and
Robert Patro. A general-purpose counting filter: Making
every bit count. In Salihoglu et al. [41], pages 775–787.

[37] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tucana: Design and
implementation of a fast and efficient scale-up key-value
store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 537–550, Denver, CO, 2016.
USENIX Association.

[38] Felix Putze, Peter Sanders, and Johannes Singler. Cache-
, hash-, and space-efficient bloom filters. ACM Journal
of Experimental Algorithmics, 14, 2009.

[39] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value
stores using fragmented log-structured merge trees. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, Shanghai, China, October 28-31, 2017,
pages 497–514. ACM, 2017.

[40] Ohad Rodeh. B-trees, shadowing, and clones. Transac-
tions on Storage, 2008.

[41] Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun
Yang, and Dan Suciu, editors. Proceedings of the 2017
ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-
19, 2017. ACM, 2017.

[42] Inc. Scylla. ScyllaDB: The real-time big data database,
2019.

[43] Pradeep J. Shetty, Richard P. Spillane, Ravikant R. Mal-
pani, Binesh Andrews, Justin Seyster, and Erez Zadok.
Building workload-independent storage with vt-trees. In
Proceedings of the 11th USENIX Conference on File and
Storage Technologies (FAST 13), pages 17–30, 2013.

[44] Tokutek, Inc. TokuDB, 2014. http://www.tokutek.
com.

[45] Vijay Vasudevan, Michael Kaminsky, and David G. An-
dersen. Using vector interfaces to deliver millions of
iops from a networked key-value storage server. In
Proceedings of the Third ACM Symposium on Cloud
Computing (SOCC 12), page 8. ACM, 2012.

[46] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-
trie: An lsm-tree-based ultra-large key-value store for
small data items. In Shan Lu and Erik Riedel, editors,
2015 USENIX Annual Technical Conference, USENIX
ATC ’15, July 8-10, Santa Clara, CA, USA, pages 71–82.
USENIX Association, 2015.

[47] Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhi-
wen Liu, Changsheng Xie, and Xubin He. Geardb: A
gc-free key-value store on HM-SMR drives with gear
compaction. In Arif Merchant and Hakim Weather-
spoon, editors, USENIX FAST, pages 159–171. USENIX
Association, 2019.

[48] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-
tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. Optimizing every operation in a
write-optimized file system. In Angela Demke Brown
and Florentina I. Popovici, editors, USENIX FAST, pages
1–14. USENIX Association, 2016.

[49] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-
tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. Writes wrought right, and other
adventures in file system optimization. TOS, 13(1):3:1–
3:26, 2017.

62 2020 USENIX Annual Technical Conference USENIX Association

http://www.tokutek.com
http://www.tokutek.com

[50] Yang Zhan, Alexander Conway, Yizheng Jiao, Eric
Knorr, Michael A. Bender, Martin Farach-Colton,
William Jannen, Rob Johnson, Donald E. Porter, and
Jun Yuan. The full path to full-path indexing. In Nitin
Agrawal and Raju Rangaswami, editors, USENIX FAST,
pages 123–138. USENIX Association, 2018.

[51] Yang Zhan, Alexander Conway, Yizheng Jiao, Nirjhar
Mukherjee, Ian Groombridge, Michael A. Bender, Mar-
tin Farach-Colton, William Jannen, Rob Johnson, Don-

ald E. Porter, and Jun Yuan. How to copy files. In
Sam H. Noh and Brent Welch, editors, USENIX FAST,
pages 75–89. USENIX Association, 2020.

[52] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized
and high-performance hashing index scheme for persis-
tent memory. In Andrea C. Arpaci-Dusseau and Geoff
Voelker, editors, OSDI, pages 461–476. USENIX Asso-
ciation, 2018.

USENIX Association 2020 USENIX Annual Technical Conference 63

Twizzler: a Data-Centric OS for Non-Volatile Memory

Daniel Bittman
UC Santa Cruz

Peter Alvaro
UC Santa Cruz

Pankaj Mehra
IEEE Member

Darrell D. E. Long
UC Santa Cruz

Ethan L. Miller
UC Santa Cruz
Pure Storage

Abstract
Byte-addressable, non-volatile memory (NVM) presents

an opportunity to rethink the entire system stack. We present
Twizzler, an operating system redesign for this near-future.
Twizzler removes the kernel from the I/O path, provides pro-
grams with memory-style access to persistent data using small
(64 bit), object-relative cross-object pointers, and enables sim-
ple and efficient long-term sharing of data both between appli-
cations and between runs of an application. Twizzler provides
a clean-slate programming model for persistent data, realizing
the vision of Unix in a world of persistent RAM.

We show that Twizzler is simpler,more extensible, andmore
secure than existing I/O models and implementations by build-
ing software for Twizzler and evaluating it on NVM DIMMs.
Most persistent pointer operations in Twizzler impose less
than 0.5 ns added latency. Twizzler operations are up to 13×
faster than Unix, and SQLite queries are up to 4.2× faster than
on PMDK. YCSB workloads ran 1.1–2.9× faster on Twizzler
than on native and NVM-optimized SQLite backends.

1 Introduction

Byte-addressable non-volatile memory (NVM) on the mem-
ory bus with DRAM-like latency [23, 38] will fundamentally
shift the way that we program computers. The two-tier mem-
ory hierarchy split between high-latency persistent storage and
low latency volatile memory may evolve into a single level of
large, low latency, and directly-addressable persistent memory.
Mere incremental change will leave dramatic improvements in
programmability, performance, and simplicity on the table. It
is essential that operating systems and system software evolve
to make the best use of this new technology.
These opportunities motivate us to revisit how programs

operate on persistent data. The separation of volatile memory
and high-latency persistent storage at the core of OS design
requires the OS to manage ephemeral copies of data and in-
terpose itself on persistence operations, a penalty that will
consume an increasing fraction of time as NVM performance
increases [64]. The direct-access nature of NVM invites the

use of load and store instructions to directly access persistent
data, simplifying applications by enabling persistent data ma-
nipulation without the need to transform it between in-memory
and on-storage data formats. Thus, the model that best exploits
the low latency nature of NVM is one in which persistent data
is maintained as in-memory data structures and not serialized
or explicitly loaded or unloaded. To avoid serialization, this
model must support persistent pointers that are valid in any
execution context, not just the one in which they were created.

Trying tomoldNVM into existingmodels will not enable its
fullest potential, just as SSDs did not reach their full potential
until they transcended the disk paradigm. To explore a “clean-
slate” approach, we are building Twizzler, an OS designed to
take full advantage of this new technology by rethinking the
abstractions OSes provide in the context of NVM. Twizzler
divides NVM into objects within a global object space, and
pointers are interpreted in the context of the object in which
they reside. This decouples pointers from the address space of
an individual thread, providing a data-centric programming
model rather than a process-centric one. The result is a vastly
simpler environment in which the OS’s primary function is to
support manipulating, sharing, and protecting persistent data
using few kernel interpositions.

We implemented a simple, standalone kernel that supports
a userspace for NVM-based applications, with compatibil-
ity layers for legacy programs. We wrote a set of libraries
and portability layers that provide a rich environment for ap-
plications to access persistent data that takes into account
both semantics (persistent pointers) and safety (building crash-
consistent data structures). We then performed a case-study
by writing software for Twizzler, taking into account the new
flexibility and power gained by our model and evaluating our
software for complexity and performance. We ported SQLite
to Twizzler, showing how our approach can provide significant
performance gains on existing applications as well.

In a world where in-memory data can last forever, the con-
text required to manipulate that data is best coupled with the
data rather than the process. This key insight manifests itself
in the three primary contributions of this paper:

USENIX Association 2020 USENIX Annual Technical Conference 65

• We discuss (§ 2) our vision for a data-centric OS and
the requirements that it must meet to provide low latency
memory-style access to NVM with efficient data sharing.

• We present Twizzler (§ 3) and describe its mechanisms
to meet those requirements, including decoupling tradi-
tionally linked concerns, reducing kernel involvement in
address space management, and providing a rich model
for constructing in-memory persistent data structures that
can be easily shared between programs and machines.

• We evaluate (§ 4) the ease-of-use, security advantages,
and programmability offered by our environment, for
both new and existing, ported software (SQLite), along
with performance improvements (§ 5) on NVM DIMMs.

2 The Data-Centric OS

Operating systems provide abstractions for data access that
reflect the hardware for which they were designed. Current I/O
interfaces and abstractions reflect the structure of mutually
exclusive volatile and persistent domains, the hallmarks of
which are heavy kernel involvement for persisting data, a need
for data serialization, and complexity in data sharing requiring
the overhead of pipes or the management cost of shared virtual
memory. However, the introduction of low latency and directly
attached NVM into the memory hierarchy requires that we
rethink key assumptions such as the use of virtual addresses,
the kernel’s involvement in persistent I/O, and the way that
programs operate on and share persistent data [30].
The first key characteristic of NVM is low latency: only

1.5–8× the latency of DRAM in most cases [38], so the cost
of a system call to access NVM dominates the latency of the
access itself. The second key characteristic is that the pro-
cessor can directly access persistent storage using load and
store instructions. Direct, low latency access to NVM means
that explicit serialization is a poor fit—it adds complexity, as
programmers must maintain different data formats and the
transformations between them, and the overhead is intolera-
ble due to NVM’s low latency. Hence, we should design the
semantics of the programming model around in-memory per-
sistent data structures, giving programs direct access to them
without explicit persistence calls or serialization methods.

These characteristics imply two basic requirements forOSes
to most effectively use NVM:
1. Remove the kernel from the persistence path. This

addresses both characteristics. System calls to persist data
are costly; we must provide lightweight, direct, memory-
style access for programs to operate on persistent data.

2. Design for pointers that last forever. Long-lived data
structures can directly reference persistent data, so point-
ers must have the same lifetime as the data they point to.
Virtual memory mappings are, by contrast, ephemeral
and so cannot effectively name persistent data. Persistent
data is, by definition, accessed by multiple actors, both
simultaneously and over time, and thus must be stored in

a form that is conducive to sharing without needing the
ephemeral context associated with a particular actor.

We call an OS that meets both of these requirements data-
centric, as opposed to current OSes, which are process-centric.
Operations on persistent, in-memory data structures are the
primary functions of a data-centric OS, which tries to avoid
interposing on such operations, preferring instead to intervene
only when necessary to ensure properties such as security and
isolation. To meet both of these requirements a data-centric
OS must provide effective abstractions for identifying data
independent of data location, constructing persistent data re-
lationships that do not depend on ephemeral context, and fa-
cilitating sharing and protection of persistent data.

2.1 Existing Interfaces
Current OS techniques do not meet these requirements—file
read and write interfaces, designed for sequential media and
later expanded for block-based media, require significant ker-
nel involvement and serialization, violating both requirements.
While support for these interfaces can be useful for legacy ap-
plications, as we will demonstrate, providing the programmer
with abstractions designed for NVM both reduces complexity
and improves performance.
The mmap call attempts to hide storage behind a memory

interface through hidden data copies. But, with NVM, these
copies are wasteful, and mmap still has significant kernel in-
volvement and the need for explicit msync calls. “Direct Ac-
cess” (DAX) tries to retrofit mmap for NVM by removing the
redundant copy, but this fails to address requirement two! Oper-
ating on persistent data through mmap requires the programmer
to use either fixed virtual addresses, which presents an infea-
sible coordination problem as we scale across machines, or
virtual addresses directly, which are ephemeral and require
the context of the process that created them.
Attempting to shoehorn NVM programming atop POSIX

interfaces (including mmap) results in complexity that arises
from combining multiple partial solutions. Given some feature
desired by an application, the NVM framework can provide an
integrated solution that meshes well with the existing support
for persistent data structure manipulation and access, or it can
fall-back to POSIX resulting in the programmer needing to
understand two different “feature namespaces” and their inter-
actions. An example of this is naming, where a programmer
may need to turn to the filesystem to manage names in a com-
pletely orthogonal way to how the NVM frameworks handles
data references. We will discuss another example, security, in
our case study (§ 4).
Additionally, models that layer NVM programming atop

existing interfaces often fail to facilitate effective persistent
data sharing and protection. PMDK, an NVM programming li-
brary, makes design choices that limit scalability, since its data
objects are not self-contained and do not have a large enough
ID space, resulting in the need to coordinate object IDs across

66 2020 USENIX Annual Technical Conference USENIX Association

machines [10]. For the same reason, although single-address
space OSes [12] somewhat address our first requirement, they
do not consider both requirements at once, nor do they provide
an effective and scalable solution to long-term data references
due to that same coordination complexity [9].

2.2 A Data-Centric Approach
We cannot store virtual addresses in persistent data, so we
need a new way to name a word of persistent memory: a per-
sistent pointer. The persistent pointer encodes a persistent
identification of data (§ 3.3) instead of an ephemeral address,
allowing any thread to access the desired word of memory
regardless of address space. This approach dramatically im-
proves programmability, as programmers need notworry about
the complexity of referring to persistent data with ephemeral
constructs, improving data sharing across programs and runs
of a program. Twizzler still makes use of virtual memory hard-
ware to provide isolation and translation, but persistent data
structures should not be written in terms of virtual addresses.

The Death of the Process. Processes as a first class OS ab-
straction are, like virtual addresses, unnecessary; a traditional
process couples threads of control to a virtual address space,
a security role, and kernel state. However, with the kernel re-
moved from persistent data access, much of that kernel state
(e.g. file descriptors) is unnecessary, leading to a decoupling
of mechanisms: nothing fundamentally connects a virtual ad-
dress space (how threads access data) and a security context
(what data they may access). Instead, a data-centric OS can re-
place the process abstraction with security contexts, allowing
greater flexibility for how security policy is managed.

The process abstraction is just one example. Persistent data
access plays a key role in OS abstraction design, and we need
to avoid complexity arising from combining old and new inter-
faces. Hence, we need to consider the wide-reaching effects of
changing the persistence model on all aspects of the system,
not just I/O interfaces. NVM gives us an opportunity to de-
sign an OS around the requirements of the target programming
model instead of trying to mold support libraries around exist-
ing interfaces. While it is important that we provide support
for legacy applications, it is these applications that should be
relegated to support libraries; new applications built for the
programming model should get first-class OS support.

Targeting these Constraints with Twizzler. The conse-
quences of meeting the requirements of these hardware trends
define a bounded design space for data-centric OSes. We have
chosen a point in that space and built Twizzler, our approach
to providing applications with efficient and effective access to
NVM. In the following section we will discuss how our four
primary abstractions—a low level persistent object model, a
persistent pointer design, an address space mechanism called
views, and a security context mechanism—achieve these goals
of removing the kernel from the persistent data access path.

3 The Design of Twizzler

Twizzler is a stand-alone kernel and userspace runtime that pro-
vides execution support for programs. It provides, as first-class
abstractions, a notion of threads, address spaces, persistent
objects, and security contexts. A program typically executes
as a number of threads in a single address space (providing
backwards compatibility with existing programming models),
into which persistent objects are mapped on-demand. Instead
of providing a process abstraction, Twizzler provides views
(§ 3.2) of the object space, which enable a program to map
objects for access, and security contexts (§ 3.4) which define
a thread’s access rights to objects in the system. Twizzler
provides persistent pointers (§ 3.3) for programs, as well as
primitives to ensure crash-consistency (§ 3.5). The thread
abstraction is similar to modern OSes; the kernel provides
scheduling, synchronization, and management primitives. Fig-
ure 1 shows an overview of the system organization and how
different parts of the system operate on data objects.

Twizzler’s kernel acts much like an Exokernel [28,41], pro-
viding sufficient services for a userspace library OS, called
libtwz, to provide an execution environment for applications.
The primary job of libtwz is to manage mappings of per-
sistent objects into the address space (§ 3.2) and deal with
persistent pointers (§ 3.3). Twizzler also exposes a standard
library that provides higher level interfaces beyond raw access
to memory. For example, software that better fits message-
passing semantics can use library routines that implement
message-passing atop shared memory. Twizzler’s standard
library provides additional higher level interfaces, including
streams, logging, event notification, and many others. Applica-
tions use these to easily build composable tools and pipelines
for operating on in-memory data structures without the per-
formance loss and complexity of explicit I/O.
We provide POSIX support with twix, a library that emu-

lates Linux syscalls. We modified musl [1], a C library which
all programs link to, replacing invocations of the syscall
instruction with calls into twix, which internally tracks Unix
state like file descriptors. This is handled entirely in userspace;
calls to read and write often reduce to calls to memcpy.

application

musl* (libc)

libtwz

twix

Twizzler kernel

view management,
pointer translation,
consistency primitives

object & thread
management, trusted
computing base

* modified musl to change linux syscalls into function calls

Linux syscall
emulation

data
object

userspace
kernelspace

POSIX access
(read/write)

direct access
(memory-style)

metadata & FOT
management

create, delete, etc.
physical mapping

Figure 1: Twizzler system overview. Applications link to musl
(a C library), twix (our Linux syscall emulation library), and
libtwz (our standard library).

USENIX Association 2020 USENIX Annual Technical Conference 67

3.1 Object Management

Twizzler organizes data into objects, which may be persistent.
Each object is identified by a unique 128 bit object ID (though
larger IDs would be possible). Objects provide contiguous re-
gions of memory that organize semantically related data with
similar lifetime. Applications access objects via mapping ser-
vices (discussed in the next section) by mapping each object
into a contiguous range in the address space, though the ad-
dress space itself may be densely or sparsely mapped. Objects
can be anywhere from 4 KiB (the size of a page) to 1 GiB;
the upper bound on object size is a prototype implementation
choice, and not fundamental to the design.

Twizzler uses objects as the unit of access control, building
off a read/write/execute permissions model which mirrors that
of memory management units in modern processors. This is a
direct consequence of avoiding the kernel for persistent data
access—it can set policy by programming the MMU, but must
leave enforcement up to the hardware which, in-turn, defines
what protections are possible.

An object, from the programmer’s perspective, is flexible in
its contents—for example, it could contain anywhere from a
single B-tree node to the entire B-tree. Often, an object would
contain the entire tree, since the entire tree is typically subject
to the same access semantics by programs, and there are over-
heads associated with objects that can be amortized over larger
spaces. Data and data structures that are too large for one ob-
ject or require different access permissions can span multiple
objects with references between them. We demonstrate the
benefits of this flexibility in Section 4.

The kernel provides services for object management, such
as creating and deleting objects. Objects are created by the
create system call, which returns an object ID. A program
may also optionally provide an existing object ID to the
create call, stating that the new object should be a copy of
the existing one, for which Twizzler uses copy-on-write. The
new ID is a number that is unlikely to collide with existing IDs
in the 128 bit ID space, and can be assigned using a technique
that supports this requirement (random, hashing, etc.). Some
forms of ID assignment support a form of access control: a pro-
gram can only access an object whose ID it knows. Twizzler
provides object naming as well, discussed in Section 3.3.

Objects may be be deleted via the delete system call. Like
Unix’s unlink, objects are reference counted, where a ref-
erence refers to a mapping in an address space. Once the
reference count reaches zero, the object may be deleted.

3.2 Address Space Management

Although virtual addresses are the wrong abstraction to use for
persistent data access, we do leverage virtual address hardware
in modern processors for isolation and protection. Twizzler
provides access to persistent objects by mapping them into the
virtual address space behind-the-scenes (via libtwz). This

generates many mapping operations to access persistent data,
so requiring system calls would be costly. Additionally, our
kernel avoidance necessitates an increased address space man-
agement responsibility for userspace. For example, executable
loading and mapping is handled largely without the kernel.
To support userspace manipulation of address spaces, the

kernel and userspace share an object (called a “view”) that
defines an address space layout. The view is just a normal
object, and so standard access control mechanisms apply to
enforce isolation. When applications map objects into their
address space, they update the view to specify that a particular
object should be addressable at a specific location. The kernel
then reads the object and determines the requested layout of
the virtual address space. The view object is laid out like a
page-table, where each entry in the table corresponds to a
slot in the virtual address space. Each table entry contains
an object ID and read, write, and execute protection bits to
further protect object access (like PROT_⁎ in mmap).

When a page-fault occurs, the fault handler tries to handle
the fault by either doing copy-on-write, checking permissions,
or by trying to map an object into a slot if the view object
requested one. If it cannot handle the fault (due to a protection
error or an empty entry in the view object), it elevates the fault
to userspace where libtwz handles it, possibly by killing
the thread, or possibly by mapping an object if the slot is
“on-demand”. When the kernel maps an object into a slot, it
updates the address space’s page-tables appropriately.
When threads add entries to a view object they need not

inform the kernel—when a fault occurs, the kernel will read
the entry as needed. However, when changing or deleting an
entry, threads must inform the kernel so it can update existing
page table entries. We provide two system calls for views. The
set_view call allows a thread to change to a new view, which
might be used to execute a new program or jump across pro-
grams to, for example, accomplish a protected task. Twizzler’s
access control system prevents this from happening arbitrar-
ily. The second system call is invalidate_view, which lets
a thread inform the kernel of changed or deleted entries.

3.3 Persistent Pointers
Section 2 discussed the needs for references that outlive
ephemeral actors. Twizzler provides cross-object persistent
pointers so that a pointer refers not to a virtual address but to
an offset within an object by encoding an object-id:offset
tuple. This enables a pointer to refer to persistent data, but
it also allows objects to have external pointers that refer to
data in any object in the global object space. We highlight
cross-object pointers’ power and flexibility by demonstrating
their ability to express inter-object relationships in Section 4.

To efficiently encode this tuple, we use indirection through
a per-object foreign object table (FOT), located at a known
offset within each object. The FOT is an array of entries that
each stores an object ID (or a name that resolves into an object

68 2020 USENIX Annual Technical Conference USENIX Association

 offset2
A

B

C

1

2

3 flags

flags

flags Object B

data

Pointer Foreign Object Table

Figure 2: Pointer translation via the FOT. The pointer and the
FOT are both contained in the same object (not shown).

ID, as we will see below) and flags. A cross-object pointer is
stored as a 64 bit FOT_idx:offset value, where the FOT_idx
is an index into the FOT. This provides us with both large
offsets and large object IDs, since the IDs are not stored within
the pointer itself. If an object wishes to point to data within
itself (an intra-object pointer), it stores 0 in FOT_idx. When
dereferencing, Twizzler uses the FOT_idx part of the pointer
as an index into the FOT, retrieving an object ID. The combi-
nation of a FOT and a cross-object pointer logically forms an
object-id:offset pair, as shown in Figure 2.
Our design (discussed in prior work [9, 10]) differs from

existing frameworks [6, 13, 18, 19, 57, 58] because of the indi-
rection. Frameworks like PMDK store entire object IDs within
pointers, increasing pointer size and reducing flexibility by
removing the possibility of late-binding (discussed below).
Additionally, Twizzler extends the namespace of data objects
beyond one machine, as machine-independent data references
are a natural consequence of cross-object pointers. Existing
solutions are limited in this scalability. They either limit the
ID space (necessary for storing IDs in pointers) and thus resort
to complex coordination or serialization when sharing, or they
require additional state (e.g. per-process or per-machine ID
tables) that must be shared along with the data, forcing the
receiving machine to “fix-up” references. Worse still, the fix-
up is application-specific, since the object IDs are within any
pointer, not in a generically known location. Our per-object
FOT results in self-contained objects that are easier to share,
thus interacting better with remote shared memory systems.

Part of our motivation for this FOT indirection was to allow
a large ID space without increasing pointer size. PMDK, by
contrast, increases pointer size to 128 bits for each pointer.
Twizzler has no additional space overhead per-pointer, instead
adding a 32-byte overhead per FOT entry. The number of FOT
entries, however, is typically much smaller than the number
of pointers since pointers to the same external object can all
use the same FOT entry. As we will see in Section 5, this has
a dramatic benefit to performance.

FOT Entries and Late-Binding. The FOT entry’s flags
field has bits for read, write, and execute protections. The
protections are requests; Twizzler implements separate access
control on objects. This allows some pointers to refer to data
with a read-only reference while others can be used for writing,
reducing stray writes (a single ID can repeat in the FOT with
different protections). The FOT entries also enable atomic
updates that apply to all pointers using that FOT entry.
Instead of requiring programmers to refer to objects via

IDs only, we allow names in FOT entries. These entries may

contain a pointer to an in-object string table that contains a
name. Names enable late-binding [19], a vital aspect of sys-
tems, allowing references to objects which change over time,
e.g. shared library versions. Names are passed to a resolving
function (specified in the FOT entry). Allowing a program to
specify how its names are resolved increases the flexibility of
the system beyond supporting Unix paths. Twizzler provides
a default name resolver that uses Unix-like paths.

The implementation of naming is orthogonal to Twizzler’s
design. We allow a range of name resolution methods within
the system stack and allow objects to specify their own name
resolution functions for flexibility. For example, objects could
be organized by both a relational database and a hierarchical
namer similar to conventional file systems. Non-hierarchical
file systems are well studied [3,31,32,54,55], but these systems
do not easily cooperate atop a single data space. Since Twizzler
uses a flat namespace as its “native” object naming scheme, it
enables the required cooperation.
Pointer Translation. Current processors provide only a vir-
tual memory abstraction, so applications must do some extra
work to dereference a pointer, translating a pointer from its
persistent form into a virtual address. This does not affect
the stored pointer, which is still persistent and independent of
any translation or address space. Thus multiple applications,
possibly with different address space layouts, can translate the
same pointer at the same time without coordination.

Pointer translation occurs with the help of two libtwz func-
tions: ptr_lea (load effective address) and ptr_store. When
a program dereferences a pointer, it first calls ptr_lea. The
pointer is resolved into an object-ID and offset pair through
a lookup in the FOT, after which libtwz determines if the
referenced object is already mapped (by maintaining per-view
metadata). If not, it picks an empty slot in the view and maps
the object there (a cheap operation that does not invoke the ker-
nel). Once mapped, libtwz combines the object’s temporary
virtual base address with the offset, and returns the new pointer.
The ptr_store function does the opposite of ptr_lea—it
turns a virtual pointer into a persistent one. While these are
done manually in our implementation, we plan to implement
compiler support to emit these calls automatically.
FOT management is handled by libtwz. While a lookup

in the FOT is a simple array-indexing operation, a store may
require adding to the FOT. To avoid duplicate entries, libtwz
walks the FOT looking for a compatible entry. If one is not
found, it atomically reserves a new entry and fills it (flush-
ing cache-lines to persist it) before storing the pointer. The
ptr_store operation is less common than ptr_load, and in
the future we may include additional caching metadata that
would speed-up the FOT walk (such as storing recent IDs).

Translating pointers has a small overhead (§ 5) and the
result can be cached. Twizzler improves performance via a
per-object cache of prior translations. The common case, intra-
object pointers, does not require an external lookup and is
implemented as a simple bitwise-or operation.

USENIX Association 2020 USENIX Annual Technical Conference 69

3.4 Security and Access Control

Twizzler’s focus on memory-based objects requires that we de-
sign the security model around hardware-based enforcement,
where the MMU checks each access. This design is inevitable
in a data-centric OS, since the kernel is not involved in every
memory access. The kernel merely specifies the access rights
when mapping an object and then relies on the hardware to
enforce those rights with a low overhead.
A key design choice we make is late-binding on security.

Applications request access to an object with permissions that
they desire; if they access the object in only allowed ways
(e.g., only reading a read-only object), no fault occurs. This
is because when we map an object (via a view), the kernel is
not immediately involved, and so cannot check access rights
for a particular access at the time the mapping is setup. Per-
forming an access rights check on time of first access does not
make sense either, as it associates a specific access (that might
be allowed) with a permissions error. For example, if a pro-
gram reads object A, and that program is allowed to read A, it
should be allowed to perform the read even if it requested read-
write access to the object. This late-binding enables simpler
programs that need not worry about elevating access rights
through remapping data objects. Programs can make progress
without knowing in advance the permissions of the objects
they might access, thus enabling the reuse of the OS’s access
control mechanism in applications. We will show the flexibil-
ity of this in Section 4, wherein we add access control to a
program by changing only a few lines of code.

Threads run in a security context [8,25,44], which contains
a list of access rights for objects and allows the kernel to de-
termine the access rights of programs. Using these contexts,
Twizzler is able to provide analogues to groups and owners
in Unix while providing more fine-grained access control
if necessary. Unlike past exploration into security contexts,
data-centric OSes offer an advantage in simplicity. A security
context abstraction in a Unix-like OS needs to maintain ac-
cess rights to a set of fundamentally different things (such as
paths, virtual memory locations, and system calls). Instead,
Twizzler’s security contexts specify access rights to an object
via IDs instead of virtual addresses. This also makes security
contexts persistent, allowing us to use them as the primary
way we assign security roles to threads.

Security contexts are implemented via virtualization hard-
ware that maps virtual memory to an intermediate “object
space” which specifies the access rights, which is then mapped
to physical memory [9]. This reduces the number of page-table
structures and mappings, as threads in the same security con-
text can share the same page-tables for each object.

3.5 Crash Consistency

Twizzler provides primitives for building crash-consistent data
structures. At a low level, it provides a mechanism for writing

back cache-lines and appropriate fences. Applications use
these primitives today outside of Twizzler to build up larger,
more complex support for crash-consistent data structures.

Our goal is to provide low level primitives without restrict-
ing programs or prematurely prescribing particular solutions.
There is a wealth of research on crash-consistent data struc-
tures for NVM [15,16, 24, 46, 50–53, 65], but it is still in flux.
Of course, Twizzler manages system data structures, such as
FOT entries, views, etc., in a crash-consistent manner using
the aforementioned primitives, locking, and fencing.
Twizzler also provides a transactional-persistent logging

mechanism. Programmers can write TXSTART–TXEND blocks
to denote transactions and TXRECORD statements to record pre-
changed values. This is similar to the mechanism provided by
PMDK [58]. If applications need more complex transactions
using different logging mechanisms, they can use libraries.

Twizzler provides a mechanism for restarting threads when
power is restored following a crash. Since views are persistent
objects, all mapped objects during a thread’s execution are
known across power cycles, and are mapped back in. The
thread is then started at a special _resume entry point, allowing
the program to handle the power failure in an application-
specific manner with access to the state of the program (data
segment, heap, etc.) as it was when power was cut.

3.6 Implementation
Twizzler’s kernel is similar to many microkernels, providing
a small set of key primitives. It is 5,500 lines of architecture-
independent code and 5,700 lines of architecture-dependent
CPU driver code. The primary complexity in the system is
implemented in userspace, as the design of the programming
model greatly simplifies the kernel. Twizzler is open-source;
more information can be found at https://twizzler.io.
We also built a prototype of Twizzler by modifying the

FreeBSD 11.0 kernel before implementing our standalone ker-
nel. This was done both to more rapidly verify our design and
to provide a prototyping environment for developers to write
code for Twizzler in a familiar environment. We added Twiz-
zler services to FreeBSD by adding system calls, modifying
the fault-handling logic, and distinguishing Twizzler threads
from FreeBSD threads. This is also a testament to the simplic-
ity of the kernel in our model, since FreeBSD was relatively
easy to modify to support the Twizzler userspace. However,
the FreeBSD prototype is limited by its need to coordinate
with FreeBSD’s Unix services, thus the standalone kernel is
more efficient and simpler, and provides a better environment
for researching kernel design changes in the face of NVM.

4 Evaluation

Our primary goals for evaluating Twizzler were:
1. Show that Twizzler meets the needs of a data-centric OS

in enabling programs to directly access persistent data.

70 2020 USENIX Annual Technical Conference USENIX Association

https://twizzler.io

2. Demonstrate that the programming model we defined
provides sufficient power to easily and effectively build
real applications with NVM in mind.

3. Measure the performance of our system to understand
where we gain and lose performance.

We approached these goals two ways: porting existing soft-
ware (SQLite) and writing new software for Twizzler. The first
demonstrates both the generality of the programming environ-
ment (legacy software can be easily ported) and the potential
performance gains to be had even for legacy software. The sec-
ond demonstrates the true power of Twizzler’s programming
model and allows us to explore the consequences of our design
choices fully without being constrained by legacy designs.
We built three pieces of new software: a hash-table based

key-value store (KVS), a red-black tree data structure, and a
logging daemon. Each had different characteristics and goals,
and together they demonstrate the flexibility that Twizzler of-
fers in allowing simple implementation, nearly-free access
control, and the ability to directly express complex relation-
ships between objects. Using our KVS and red-black tree code,
we ported SQLite (a widely used SQL implementation) to
Twizzler along with a YCSB [17,29] driver (a common bench-
mark), allowing us to explore Twizzler’s model in a larger,
existing program that would let us study the performance of
Twizzler in a complex system that stores and processes data.
We present the performance of SQLite and our new software,
along with microbenchmarks, in Section 5.

4.1 Case Study: Key-Value Store
We implemented a multi-threaded hash-table based key-value
store (KVS), called twzkv, to study cross-object pointers and
our late-binding of access control. Our KVS supports insert,
lookup, and delete of values by key (both of arbitrary size),
and hands out direct pointers to persistent data during lookup.
During insert, it copies data into a data region before indexing
the inserted key and value. We built twzkv in multiple phases
to study how our system handles changing requirements.
We built twzkv in roughly 250 lines of C. Handing out

direct pointers into data was trivial to implement with cross-
object pointers, requiring only a call to ptr_lea during lookup.
The initial implementation maintains two objects, one for data
and one for the index. The complexity typically involved when
storing both index and data in a single, flat file is not justified
in a programming model where we can express inter-object
relationships directly at near-zero cost in complexity or perfor-
mance. In our case, a pointer from the index object to the data
object (such as an entry in the hash table) can be written with
a single call to ptr_store. This, combined with the simple
requirements for an in-memory NVMKVS, resulted in a small
implementation that was nonetheless a usable KVS.

Extending Requirements. Next, we added functionality to
protect values with access control. We wanted to keep handing
out direct pointers to data during lookup and to keep twzkv a

Index (I0) Index (I1)Data (D0) Data (D1)

Figure 3: Cross-object pointers in twzkv.

library (as opposed to a service). Meeting these goals on an
existing system would be difficult without adding significant
complexity, such as reimplementing a lot of Twizzler’s pointer
framework or implementing manual, redundant access control.

In Twizzler, implementing access control in twzkv involved
having the index refer to data in multiple data objects, assign-
ing those objects different access rights, and allocating from
those objects depending on desired access rights. We were
able to implement this while preserving the original code due
to the transparent nature of Twizzler’s cross-object pointers.
Now, when inserting, the application indicates the data object
into which to copy the data, as shown in Figure 3.
By supporting multiple data objects, twzkv can leverage

the OS’s access control, sidestepping complexity. Unrestricted
data can go in D0 (Figure 3), whereas restricted data can go in
D1. Since each object has distinct access control, a user can
set the objects’ access rights, then decide where to insert data
according to policy. The indexes point to the correct locations
regardless of the access restrictions of the data objects, and
twzkv still hands out direct pointers, but a user that is restricted
from accessing data in D1 will not be able to dereference the
pointer. A further extension is to support secondary indices,
as shown in Figure 3, enabling alternative lookup methods
and limiting data discovery with index object access control.
This extension is easy to implement on Twizzler.

Comparison to Unix Implementation. To compare with
existing techniques, we built a similar KVS using only Unix
features (called unixkv). It also separates index and data, but
it must manually compute and construct pointers. Supporting
multiple data objects was complex in unixkv, because we had
to store and process file paths in the index and store references
to paths for pointers, increasing overhead and code complex-
ity by 36%—a lot for an implementation with relatively few
pointers—just to reimplement Twizzler’s support. The extra
complexity also included code to manually open, map, and
grow files, much of which Twizzler handles internally. De-
velopment time was extended by bugs that were not present
when developing twzkv, due to the manual pointer process-
ing. While twzkv gains transparent access control, unixkv
does not due to the lack of on-demand object mapping and
late-binding of security. Instead, unixkv needs to know object
permissions before mapping, a restriction that limits the ability
to reuse OS access control, something that twzkv could lever-
age through late-binding on security (§ 3.4)1. Other frame-
works like PMDK that do not integrate access control and
late-binding into their models have similar limitations.

1unixkv could trap segmentation faults to do this, but that would be
application-specific, difficult, and would reimplement Twizzler functionality.

USENIX Association 2020 USENIX Annual Technical Conference 71

4.2 Case Study: Red-Black Tree

To evaluate the process of writing persistent, “pointer-heavy”
data structures,we implemented a red-black tree in C using nor-
mal pointers (ramrbt) in 100 lines of code, and evolved it for
persistent memory in two ways: manually writing base+offset
style pointers, as current systems require (unixrbt), and us-
ing Twizzler (twzrbt). Porting existing data structure code
to persistent memory will be common during the adoption
of NVM, and much of the complexity therein comes from
dealing with persisting virtual addresses [47].
In developing unixrbt, we found 83 locations where we

had to perform pointer arithmetic for converting between per-
sistent and virtual addresses. Consider an expression such as
root->left->right = foo. Inserting calls to translate this
directly results in L(L(root)->left)->right = C(foo),
where L converts to a virtual address and C converts back,
which is heavily obfuscated and took more development time
than writing ramrbt in the first place due to debugging.
We built twzrbt like unixrbt, annotating pointer stores

and dereferences. However, unixrbt used an application-
specific solution for pointer management; if other applications
wanted to use the data structures created by unixrbt, they
would have to know the implementation details of the pointer
system (or share the implementation, thus reimplementing
much of Twizzler’s library). Additionally, due to Twizzler en-
abling improved system-wide support for cross-object pointers,
these transformations can be made automatic.

Unlike twzrbt, unixrbt’s tree is limited to a single persis-
tent object; a limitation that prevents the tree from growing
arbitrarily, does not allow it to directly encode references to
data outside the tree object, and does not gain it the bene-
fits of cross-object data references that were discussed above
for twzkv. Adding support for this to unixrbt would require
modifying the core data structures to include paths and sig-
nificantly altering the code, increasing its length by at least a
factor of 2, whereas twzrbt gets this functionality for free.

Another advantage of twzrbt is reduced support code com-
pared to unixrbt; unixrbt needed code to manage and grow
files and mappings, while we implemented twzrbt as simple
data structure code with Twizzler managing that complexity.
The additional error handling code and pointer validity checks
in unixrbt (handled automatically in Twizzler) increased de-
velopment time and implementation complexity.

4.3 Porting SQLite

We ported SQLite to Twizzler to demonstrate our support
for existing software and to evaluate the performance of a
SQLite backend designed for Twizzler. We used our POSIX
support framework, a combination of musl and our library
twix, to support much of SQLite’s POSIX use. We took a
modified version of SQLite called SQLightning that replaced
SQLite’s storage backend with a memory-mapped KVS called

LMDB [14]. We chose this port because LMDB is imple-
mented with mmap’d files as the primary access method and
hands out direct pointers to data as one would expect from an
effectively designed NVM KVS2. Since LMDB’s SQLight-
ning port already replaces the storage backend with calls to
LMDB, we ported SQLite to Twizzler by taking our KVS and
red-black tree code and implementing enough of the LMDB in-
terface for SQLite to run using Twizzler as a backend. Outside
of the B-tree source file few changes were needed for SQLite
to run on Twizzler. We further ported our modified SQLite
backend to PMDK to compare directly with a commonly used
NVM programming library that supports persistent pointers.
We also ported a C++ YCSB driver [29], which required

porting the C++ standard template library (STL). Since we had
already ported a standard C library, the C++ STL was easily
ported, demonstrating the ease of porting software to Twizzler.
We have also ported some existing Unix utilities (such as bash
and busybox), which largely require only recompiling to run
on Twizzler. Of course, to gain all of the benefits of Twizzler,
programs will be need to be written with NVM in mind (but
this is true regardless of the target OS).
Our implementation of the LMDB interface corroborated

our experience from the KVS case study: much of the com-
plexity in storage interfaces and implementations comes from
the separation between storage and memory. This has been
studied before (as we will elucidate in Section 6), but the
advent of NVM changes the game significantly by allowing
programmers to think directly via in-memory data structures.
The result is that interfaces like cursors in a KVS become
redundant. We implemented to this interface for LMDB, but
the functions were largely wrappers around storing a pointer
to a B-tree node and traversing the tree directly without sep-
arate loads and copies. The result was an extremely simple
implementation (500 LoC) that still met the required interface.
Future software for NVM can use Twizzler’s programming
model to more effectively write software that eschews the need
for complexity forced by the two-tier storage hierarchy.

4.4 Discussion
Although these implementations were simple, they represent
the applications and data structures we expect in a data-centric
system. Pointers we can directly use in our programming lan-
guages make computing over persistent data almost transpar-
ent, allowing simple implementations that are nevertheless
easy to evolve as requirements change.

Not only does twzkv have access control, but it enables con-
current access via cross-object pointers. Applications can load
indexes for multiple databases without needing to worry about
address space layout and without writing complex pointer
management code that would be required by an implemen-
tation using mmap. We were able to provide access control
without a single line of code in twzkv dedicated to checking

2These are not persistent pointers, however, unlike Twizzler’s.

72 2020 USENIX Annual Technical Conference USENIX Association

or enforcing access rights. Instead, we relied on the system’s
access control, something not possible with other frameworks
that do not support late-binding of access rights and do not
consider security as part of their programming model. Twiz-
zler thus removes the need for applications to manage their
own access control, which increases the security of the system
by divesting programmers from the responsibility of getting
it right. Similar functionality for current systems would tradi-
tionally require separation of the library and application into a
client-server model, but that additional overhead is unneeded
here and inappropriate on a persistent memory system.
Although twzrbt and twzkv had different densities of

pointer operations, twzrbt being “pointer-heavy” and twzkv
being “pointer-light”, Twizzler improved the complexity of
both over manual implementation and improved flexibility
over existing persistent pointer methods. Using a system-wide
standardized approach to pointer translations not only enables
better compiler and hardware support, but it also improves
interoperability; because they share a common framework,
twzkv could use the red-black tree code and data with ease,
and even interact with the SQLite database even though they
were written separatelywithout that goal inmind. The position-
independence afforded by this model enables both compos-
ability and concurrency, while also simplifying programming
on persistent data to a natural expression of data structures.

Non-Shared-Memory Programs. To push the limits of our
model and show that Twizzler does not constrain program-
mers into a shared-memory model, we implemented a log-
ging framework (similar to syslogd). The logging daemon,
logboi, can receive log messages either synchronously or
asynchronously. In both cases, the interface is the same, but
synchronous logging uses shared-memory abstractions while
asynchronous logging relies on message-passing semantics.

For synchronous logging the thread switches security con-
texts, which is made possible by decoupling address spaces
and security. The call to the logging framework then updates
the log and returns. An asynchronous logging event sends
data to the logging thread via a stream object (a standard API
provided by Twizzler) that logboi and the application share.
The choice of asynchronous or synchronous is left to the pro-
grammer; synchronous can have lower latency and predictable
behavior while asynchronous offloads processing to logboi.

5 Performance

Our evaluation’s primary focus is on the benefits of the pro-
gramming model, showing new functionality with reduced
complexity at an acceptable overhead. Nevertheless, there are
many cases where we see significant improvement (such as
SQLite) because the programming model has less overhead,
and our pointer design is space efficient and fast to translate.
We measured the performance of our KVS and red-black

tree, performed microbenchmarks, and evaluated the Twizzler

Table 1: Latency of common Twizzler operations.
Pointer Resolution Action Average Latency (ns)
Uncached FOT translation 27.9 ± 0.1
Cached FOT translation 3.2 ± 0.1
Intra-object translation 0.4 ± 0.1

Mapping object overhead 49.4 ± 0.2

port of SQLite against Linux (Ubuntu 19.10) instances of
SQLite, SQLightning, and our port of SQLite to PMDK. Tests
ran on an Intel Xeon Gold 5218 CPU running at 2.30 GHz
with 192 GB ofDRAM and 128 GB of Intel Persistent DIMMs.
We compiled all tests against the musl C library instead of
glibc because Twizzler uses musl to support Unix programs.

All Linux tests used the NOVA filesystem [69] (a filesystem
optimized for NVM) on the NVDIMMs, mounted in DAX
mode. This enabled direct access to the persistent memory
without a page-cache interposing on accesses.

5.1 Microbenchmarks
Table 1 shows common Twizzler functions’ latencies, includ-
ing pointer translation. The overhead shown for resolving
pointers does not include dereferencing the final result, since
that is required regardless of how a pointer is resolved. The
first row shows the latency for resolving pointers to objects the
first time. Twizzler makes a further optimization by caching
the results of translations for a given FOT entry. Each succes-
sive time that FOT entry is used to resolve a pointer, the result
of the original translation is returned immediately, improving
the latency as shown on the “cached” row of Table 1. Note that
the low latency of these results is expected; the performance
critical case of these functions’ use is repeated calls, and since
these operations are simple, they fit within the processor cache.
Twizzler translates intra-object pointers by first checking

if the pointer is internal and, if so, adding the object’s base
address to it—the same operation required for application-
specific persistent pointers. The expanded programming
model offered by Twizzler makes this overhead minor rel-
ative to the high costs for persistent data access on current
systems, which have high-latency for equivalent operations.

We compared our pointer translation to Unix functions. Re-
solving an external pointer with an ID corresponds roughly
to a call to open("id"), which has a latency of 1036±15 ns.
The comparison is not exact, of course; the pointer resolution
also maps objects, and the call to openmust handle file system
semantics. However, the direct-access nature of NVM results
in pointer translation achieving the same goal as opening a
file does today. The pointer operations in Twizzler accom-
plish much of the same functionality as the heavier-weight
I/O system calls on Unix with more utility and less overhead.
A more direct comparison is object mapping, which has

low latency compared to mmap (658.7± 12.7 ns—a 13.3×
speedup) though the two have similar functionality. Since map-

USENIX Association 2020 USENIX Annual Technical Conference 73

A B C D E F
YCSB Workload Specification

0.0

0.5

1.0

1.5

2.0

Tr
an

sa
ct

io
n

Ra
te

(n
or

m
al

ize
d)

SQL-Native
SQL-LMDB

SQL-PMDK
SQL-Twizzler

Figure 4: YCSB throughput, normalized (higher is better).

ping occurs entirely in userspace, cache pollution is reduced.
While both mmap and Twizzler’s mapping require page-faults
to occur before the data is actually mapped, this overhead is
similar in Twizzler and Unix, and so is not shown.

5.2 SQLite
We ran four variants of SQLite, three on Linux and one on
Twizzler, and compared their performance: “SQL-Native” (un-
modified SQLite), “SQL-LMDB” (SQLite using LMDB as
the storage backend), “SQL-PMDK” (SQLite using our red-
black tree on PMDK), and “SQL-Twizzler” (our port of SQLite
running on Twizzler). SQL-Native was run in mmap mode so
that both it and SQL-LMDB used mmap to access data. We
ran each on the same hardware and normalized the results.
Figure 4 shows the three variants’ throughput under stan-

dard YCSB workloads. The performance improvement of the
LMDB and Twizzler variants over SQL-Native is likely due
to handing SQLite direct pointers to data. However, in the
Twizzler case we get an additional benefit of operating on data
structures directly while LMDB has an abstraction cost.

Figure 5 shows the latency of queries on a one million row
table. This is common data processing—loading and then
examining data in a variety of ways. We measured the per-
formance of calculating the mean and median, sorting rows,
finding a specific row, building an index, and probing the index.
SQL-Twizzler had similar performance to SQL-LMDB and
SQL-Native despite comparing its extremely simple storage
backend to optimized B-tree backends (that benefit from scan
operations). As a more direct comparison, SQL-Twizzler sig-
nificantly out-performed SQL-PMDK in most tests. PMDK’s
pointer operations are more expensive than Twizzler’s, requir-
ing up to two hash table lookups per translation [5]. Addition-
ally, PMDK’s pointers are 128 bits, while Twizzler does not
increase pointer size. Increased pointer size results in signifi-
cantly worse cache performance, especially in a pointer-heavy
data structure like a persistent red-black tree.

5.3 Key Value Store
We compared twzkv to unixkv by inserting one million dis-
tinct key-value pairs, followed by looking up each in-order.

Sort Mean Median Index Find Probe
Query Operation

0

1

2

3

4

Qu
er

yL
at

en
cy

(n
or

m
al

ize
d)

SQL-Native
SQL-LMDB

SQL-PMDK
SQL-Twizzler

Figure 5: Query latency, normalized (lower is better).

Insert Lookup Insert (m) Lookup (m)
0

250

500

750

Na
no

se
co

nd
s unixkv twzkv

Figure 6: Latency of insert and lookup in twzkv and unixkv.
An “(m)” indicates support for multiple data objects.

The inserted items were 32-bit keys and 32-bit values, chosen
to reduce the overhead of data copying since we were focusing
on pointer translation overhead. Both were compared under
two modes, single-data-object and multiple-data-objects. Both
KVSes translated between virtual and persistent addresses
when storing and retrieving data, but for multiple-data-objects,
we allow for storing the data in an arbitrary object.

Figure 6 shows the latency of lookup and insert, demonstrat-
ing that not only is the memory-based index and data object
structure that can hand out direct data pointers sufficiently low
latency to take advantage of NVM, but the additional over-
head of cross-object pointers is minimal. Compared to unixkv,
twzkv has minimal overhead in the single-object case, and
improves lookup performance in the multiple-object case. The
minor overhead in other cases comes with improved flexibility,
simplicity, and access control support (unixkv does not sup-
port access control). Finally, multithreaded access on twzkv
and unixkv did not improve performance; despite the pointer
translations, they ran at memory bandwidth (for NVM).

5.4 Red-Black Tree
We measured the latency of insert and lookup of 1 million
32-bit integers on both unixrbt and twzrbt. The insert and
lookup latency of twzrbt was 528±3 ns and 251.8±0.5 ns,
while insert and lookup latency of unixrbt was 515±2 ns
and 213±1 ns. The modest overhead comes with significantly
improved flexibility, as unixrbt does not support cross-object
trees, and less support code (unixrbt manually implements
mapping and pointer translations). Note that even though there
is lookup overhead in twzrbt, this overhead did not predict the
results of a larger program—the SQL-Twizzler port used this
red-black tree, and saw performance benefits over block-based
implementations.

74 2020 USENIX Annual Technical Conference USENIX Association

6 Related Work

Twizzler’s design is shaped by fundamental OS research [12,
18, 26–28, 41, 42], which, while approaching similar topics
described in Section 2, often did not consider both design
requirements simultaneously, resulting in an incomplete pic-
ture for NVM. Recent research on building NVM data struc-
tures [15, 16, 22, 37, 45, 65], often focuses on building data
structures that provide failure atomicity and consistency. In
contrast, we explore how NVM affects programming models.
We draw from recent work on providing OS support for NVM
systems [11] and work providing recommendations for NVM
systems [48], integrating object-oriented techniques and sim-
plified kernel design to provide high-performance OS support
for applications running on a single-level store [4, 61].

Multics was one of the first systems to use segments to par-
tition memory and support relocation [6,19]. It used segments
to support location independence, but still stored them in a file
system, requiring manual linkage rather than the automated
linkage in Twizzler. Nonetheless, Multics demonstrated that
the use of segmenting formemorymanagement can be a viable
approach, though its symbolic addresses were slow.
The core of Twizzler’s object space design uses concepts

from Opal [12], which used a single virtual address space
for all processes on a system, making it easier to share data
between programs. However, Opal was a single-address space
OS,which is insufficient forNVM [9,10], and it did not address
issues of file storage and name resolution. It also required a
file system, since there was no way to have a pointer refer to an
object with changing identity, whereas our approach removes
the need for an explicit file system. Other single-address space
OSes, such as Mungi [34], Nemesis [56], and Sombrero [63],
show that single address spaces have merit, but, like Opal,
did not consider how the use of NVM would alter their de-
sign choices; in particular, how the use of fixed addresses
results in a great deal of coordination that is unnecessary in
our approach. OSes such as HYDRA [68] provide functional-
ity similar to cross-object pointers; however, in Twizzler, we
extend their use from procedures-referencing-data to a more
general approach. Furthermore, they required heavy kernel
involvement, an approach incompatible with our design goals.
Single-level stores [21, 60, 62] remove the memory versus

persistent storage distinction, using a single model for data at
all levels. While well-known, “little has appeared about them
in the public literature” [60], even since the EROS paper. Our
work is partially inspired by Grasshopper [21], AS/400, and or-
thogonal persistence systems, but while these are designed to
provide an illusion of persistent memory, Twizzler is built for
real NVM and focuses on providing a truly global object space
with global references without cross-machine coordination.
Clouds [20] implemented a distributed object store in which
objects contained code, persistent data, and both volatile and
persistent heaps. Our approach uses lighter-weight objects,
allowing direct access to objects from outside, unlike Clouds.

Software persistent memory [33], designed to operate within
the constraints of existing systems, built a persistent pointer
system using explicit serialization without cross-object refer-
ences, in contrast to Twizzler. Meza [49] suggested hardware
manage a hybrid persistent-volatile store with fine-grained
movement to and from persistent storage. Since persistence in
Twizzler is to NVM, we need not interpose on movement be-
tween storage and memory, instead simply managing memory
mappings of persistent objects, reducing OS overhead.
Recently, several projects have considered the impact of

non-volatile memories on OS structure. Bailey, et al. [4] sug-
gest a single-level store design. Faraboschi, et al. [30] discuss
challenges and inevitable system organization arising from
large NVM, and we follow many of their recommendations.
The Moneta project [11] noted that removing the heavyweight
OS stack dramatically improved performance. While Moneta
focused on I/O performance, not on rethinking the system
stack, we leverage their approach to reduce OS overhead as
much as possible, even when the OS must intervene. Lee and
Won [43] considered the impact of NVM on system initializa-
tion by addressing the issue of system boot as a way to restore
the system to a known state; we may need to include similar
techniques to address the problem of system corruption.
IBM’s K42 [42] inspired the high level design of Twiz-

zler. The object-oriented approach to designing a micro or
exokernel used in K42 is an efficient design for implementing
modular OS components. Like K42, Twizzler lazily maps in
only the resources that an application needs to execute. Sim-
ilar techniques for faulting-in objects at run-time have been
studied [36]. Communication between objects in Twizzler is,
in part, implemented as protected calls, similar to K42.
Emerald [39,40] and Mesos [35] implemented networked

object mobility, which we can also support. Emerald imple-
mented a kernel, language, and compiler to allow objects mo-
bility using wrapper data structures to track metadata and
presenting objects in an object-oriented language, impacting
performance via added indirection for even simple operations.
The Twizzler object model was shaped by NV-heaps [15],

which provides memory-safe persistent objects suitable for
NVM and describes safety pitfalls in providing direct access
to NVM. While they have language primitives to enable per-
sistent structures, Twizzler provides a lower-level and unin-
hibited view of objects like Mnemosyne [65], allowing more
powerful programs to be built. Languages and libraries may
impose further restrictions on NVM use, but Twizzler itself
does not. Furthermore, Twizzler’s cross-object pointers al-
low external data references by code, whereas NV-heap’s and
DSPM’s [59] pointers are only internal. Existing work beyond
Multics on external references shows and recommends hard-
ware support [58,66], but provides a static or per-process view
of objects, unlike Twizzler, limiting scalability and flexibility.

Projects such as PMFS [24] and NOVA [69] provide a file
system for NVM. Twizzler, in contrast, provides direct NVM
access atop of a key-value interface of objects. Although Twiz-

USENIX Association 2020 USENIX Annual Technical Conference 75

zler does not supply a file system, one can be built atop it.
While NOVA and PMFS provide direct access to NVM,NOVA
adds indirection with copies. Both use mmap (which falls short
as discussed above) and, unlike Twizzler, require significant
kernel interaction when using persistent memory.
Our kernel that “gets out of the way” is influenced by sys-

tems such as Exokernel [28] and SPIN [7], both of which drew
on Mach [2]. In Exokernel, much of the OS is implemented in
userspace, with the kernel providing only resource protection.
Our approach is similar in some respects, but goes further in
providing a single unified namespace for all objects, making it
simpler to develop programs that can leverage NVM to make
their state persistent. In contrast, SPIN used type-safe lan-
guages to provide protection and extensibility; our approach
cannot rely upon language-provided type safety since we want
to provide a general purpose platform.

7 Future Work

Compiler and Hardware Support. Clean-slate NVM ab-
straction reopens the possibility of coevolving OSes, compil-
ers and languages, and hardware. Standardized OS support
for cross-object pointers enables compiler support more ef-
fectively than application-specific solutions [47] or simple
libraries [58]. Twizzler’s pointer translation functions are sim-
ple enough to be automatically emitted by a compiler. Simi-
larly, designing an OS for cross-object pointers allows us to
better state our needs to hardware, which can alleviate perfor-
mance overheads for pointer translation [66, 67].

Security. Although we discussed the Twizzler security
model briefly, there is still much to do. The current model
provides access control, a basic ability to define and assign
roles based on security contexts, and simple sub-process fault
isolation through the ability to switch security contexts. We
are exploring a flexible security model that allows program-
mers to easily trade-off between security, transparency, and
performance using capability-based verification. For example,
we are implementing a call-gating mechanism that will allow
us to restrict control-flow transfers between application com-
ponents, improving the security against malicious components
and reducing the possibility of memory-corrupting bugs.

Networking and Distributed Twizzler. One of the key
principles of Twizzler is to focus the programming model
on data and away from ephemeral actors such as processes
and nodes. This is enabled by our identity-based references
that decouple location from references, and by ensuring all the
context necessary to understand these relationships is stored
with the data. Because our data relationships are independent
of the context of a particular machine, applications can more
easily share data. This easy sharing, combined with a large
ID address space, motivates a truly global object ID space.
We are building a networking stack and support for a dis-

tributed object space into Twizzler. Our networking stack is

based around extensive use of hardware virtualization in mod-
ern NICs. This design, which is in use in existing kernel-
bypass strategies, will mesh well with our core OS design of
reducing kernel interposition. At a higher level, we are con-
sidering how distributed applications change in our model.
For example, an increase in data mobility facilitated by our
location-independent data references and identities means that
we can manifest both data and code where they are needed
without complex marshalling, turning distributed computa-
tion into a rendezvous problem. We plan to build distributed
applications atop Twizzler to demonstrate this approach.
Of course, for compatibility we will provide a traditional

sockets-based networking stack. However, we can use existing
userspace libraries that, e.g., implement TCP in userspace.
Because we implemented our POSIX compatibility library
in userspace, applications can gain many benefits afforded
by kernel-bypass networking frameworks while still using
traditional socket interfaces.

8 Conclusion

Operating systems must evolve to support future trends in
memory hierarchy organization. Failing to evolve will rele-
gate new technology to outdated access models, preventing it
from reaching full potential, and making it difficult for OSes
to evolve in the future. Twizzler shows a way forward: an OS
designed around NVM that provides new, efficient, and easy to
use semantics for direct access to memory. Cross-object point-
ers in Twizzler allow programmers to easily build composable
and extensible applications with low overhead by removing the
kernel from persistent data access paths, thereby improving the
flexibility and performance. Our simpler programming model
improved performance despite the (small) pointer translation
overhead. Even a memory hierarchy with large RAM but with-
out persistent memory benefits from our design by enabling
programs to operate on large, shared, in-memory data with
ease. Our programming model is easy to work with compared
to existing systems, and we were able to both quickly proto-
type real applications with advanced access control features
and port existing software (SQLite). Twizzler will give us a
system from which we can build a full NVM-based OS around
a data-centric design and explore the future of applications,
OSes, and processor design on a new memory hierarchy.

Availability Twizzler is available at twizzler.io.

Acknowledgements

This work was supported in part by the National Science Foun-
dation (grants IIP-1266400, IIP-1841545), a grant from Intel
Corporation, and the industrial members of the UCSC Center
for Research in Storage Systems. We thank our shepherd, Yu
Hua, the anonymous reviewers, and the members of the Stor-
age Systems Research Center for their support and feedback.

76 2020 USENIX Annual Technical Conference USENIX Association

twizzler.io

References

[1] The musl C library. https://musl.libc.org/.

[2] Mike Accetta, Robert Baron, William Bolosky, David
Golub, Richard Rashid, Avadis Tevanian, and Michael
Young. Mach: A new kernel foundation for UNIX devel-
opment. In Proceedings of the Summer 1986 USENIX
Technical Conference, pages 93–112, Atlanta, GA, 1986.
USENIX.

[3] Sasha Ames, Nikhil Bobb, Kevin M. Greenan, Owen S.
Hofmann, Mark W. Storer, Carlos Maltzahn, Ethan L.
Miller, and Scott A. Brandt. LiFS: An attribute-rich file
system for storage class memories. In Proceedings of the
23rd IEEE / 14th NASA Goddard Conference on Mass
Storage Systems and Technologies, College Park, MD,
May 2006. IEEE.

[4] Katelin Bailey, Luis Ceze, Steven D. Gribble, and
Henry M. Levy. Operating system implications of fast,
cheap, non-volatile memory. In Proceedings of the 13th
Workshop on Hot Topics in Operating Systems (HotOS
’11), May 2011.

[5] Piotr Balcer. An introduction to pmemobj (part 1) -
accessing the persistent memory. https://pmem.io/
2015/06/13/accessing-pmem.html, 2015.

[6] A. Bensoussan, C. T. Clingen, and R. C. Daley. The Mul-
tics virtual memory: Concepts and design. In Proceed-
ings of the 2nd ACM Symposium on Operating Systems
Principles (SOSP ’69), 1969.

[7] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gün Sirer, Marc E. Fiuczynski, David Becker,
Craig Chambers, and Susan Eggers. Extensibility, safety,
and performance in the SPIN operating system. In Pro-
ceedings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP ’95), December 1995.

[8] Andrea Bittau, Petr Marchenko,Mark Handley, and Brad
Karp. Wedge: Splitting applications into reduced-
privilege compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’08), pages 309–322, Berkeley,
CA, USA, 2008. USENIX Association.

[9] Daniel Bittman, Peter Alvaro, Darrell D. E. Long, and
Ethan L. Miller. A tale of two abstractions: The case
for object space. In Proceedings of HotStorage ’19, July
2019.

[10] Daniel Bittman, Peter Alvaro, and Ethan L. Miller. A
persistent problem: Managing pointers in NVM. In Pro-
ceedings of the 10th Workshop on Programming Lan-
guages and Operating Systems (PLOS ’19), pages 30–37,
October 2019.

[11] Adrian M. Caulfield, Arup De, Joel Coburn, Todor
Mollov, Rajesh Gupta, and Steven Swanson. Moneta:
A high-performance storage array architecture for next-
generation, non-volatile memories. In Proceedings of
The 43rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’10), pages 385–395,
2010.

[12] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and
Edward D. Lazowska. Sharing and protection in a single-
address-space operating system. ACM Transactions on
Computer Systems, 12(4):271–307, November 1994.

[13] Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng
Shen, and Youfeng Wu. Efficient support of position
independence on non-volatile memory. In Proceedings
of the 50th Annual IEEE/ACM International Symposium
onMicroarchitecture (MICRO ’17), pages 191–203,New
York, NY, USA, 2017. ACM.

[14] Howard Chu and Symas. Lightning memory-mapped
database (part of the OpenLDAP project). https://
symas.com/lmdb/.

[15] Joel Coburn,AdrianM. Caulfield,AmeenAkel, LauraM.
Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swan-
son. NV-Heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories. In Pro-
ceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS ’11), pages 105–118, March
2011.

[16] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better I/O through byte-addressable, per-
sistent memory. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles (SOSP ’09),
pages 133–146, Big Sky, MT, October 2009.

[17] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing (SoCC ’10),
pages 143–154, New York, NY, USA, 2010. ACM.

[18] Fernando J. Corbató and Victor A. Vyssotsky. Introduc-
tion and overview of the Multics system. In Proceedings
of the November 30 — December 1, 1965, fall joint com-
puter conference, part I, pages 185–196. ACM, 1965.

[19] Robert C. Daley and Jack B. Dennis. Virtual memory,
processes, and sharing in MULTICS. Communications
of the ACM, 11(5):306–312, May 1968.

[20] Partha Dasgupta, Richard J. LeBlanc, Jr., Mustaque
Ahamad, and Umakishore Ramachandran. The Clouds

USENIX Association 2020 USENIX Annual Technical Conference 77

https://musl.libc.org/
https://pmem.io/2015/06/13/accessing-pmem.html
https://pmem.io/2015/06/13/accessing-pmem.html
https://symas.com/lmdb/
https://symas.com/lmdb/

distributed operating system. IEEE Computer, Novem-
ber 1991.

[21] Alan Dearle, Rex di Bona, James Farrow, Frans
Henskens, Anders Lindström, John Rosenberg, and Fran-
cis Vaughan. Grasshopper: An orthogonally persistent
operating system. Computer Systems, 7(3):289–312,
June 1994.

[22] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flash-
Store: High throughput persistent key-value store. In
Proceedings of the 36th Conference on Very Large
Databases (VLDB ’10), September 2010.

[23] Xiangyu Dong, Cong Xu, Norm Jouppi, and Yuan Xie.
Emerging Memory Technologies: Design, Architecture,
and Applications, chapter 2, pages 15–50. Springer,
2014.

[24] Subramanya R Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the 9th European Conference on
Computer Systems (EuroSys ’14), April 2014.

[25] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan
Milojicic, Reto Achermann, Paolo Faraboschi, Wen-mei
Hwu, Timothy Roscoe, and Karsten Schwan. SpaceJMP:
Programming with multiple virtual address spaces. In
Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’16), pages
353–368, New York, NY, USA, 2016. ACM.

[26] Dawson R Engler, Sandeep K Gupta, and M Frans
Kaashoek. AVM: Application-level virtual memory.
In Fifth Workshop on Hot Topics in Operating Systems
(HotOS ’95), pages 72–77. IEEE, 1995.

[27] Dawson R Engler and M Frans Kaashoek. Exterminate
all operating system abstractions. In Fifth Workshop
on Hot Topics in Operating Systems (HotOS ’95), pages
78–83. IEEE, 1995.

[28] Dawson R. Engler, M. Frans Kaashoek, and James
O’Toole, Jr. Exokernel: An operating system architecture
for application-level resource management. In Proceed-
ings of the 15th ACM Symposium on Operating Systems
Principles (SOSP ’95), pages 251–266, December 1995.

[29] Hewlett Packard Enterprise. YCSB-C.
https://github.com/HewlettPackard/
meadowlark/tree/master/extra/YCSB-C
https://github.com/basicthinker/YCSB-C,
2018.

[30] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and
Dejan Milojicic. Beyond processor-centric operating
systems. In 15th Workshop on Hot Topics in Operating
Systems (HotOS ’15), Kartause Ittingen, Switzerland,
May 2015. USENIX Association.

[31] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon,
and James W. O’Toole, Jr. Semantic file systems. In
Proceedings of the 13th ACM Symposium on Operat-
ing Systems Principles (SOSP ’91), pages 16–25. ACM,
October 1991.

[32] Burra Gopal and Udi Manber. Integrating content-based
access mechanisms with hierarchical file systems. In
Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation (OSDI ’99), pages 265–278,
February 1999.

[33] Jorge Guerra, Leonardo Mármol, Daniel Campello, Car-
los Crespo, Raju Rangaswami, and Jinpeng Wei. Soft-
ware persistent memory. In Proceedings of the 2012
USENIX Annual Technical Conference, 2012.

[34] Gernot Heiser, Kevin Elphinstone, Stephen Russell, and
Jerry Vochteloo. Mungi: a distributed single address-
space operating system. Technical Report 9314, School
of Computer Science and Engineering, University of
New South Wales, November 1993.

[35] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Pro-
ceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation (NSDI ’11), pages
295–308, Berkeley, CA, USA, 2011. USENIX.

[36] Antony L. Hosking and J. Eliot B. Moss. Object fault
handling for persistent programming languages: A per-
formance evaluation. In Proceedings of the Eighth An-
nual Conference on Object-oriented Programming Sys-
tems,Languages, andApplications (OOPSLA ’93), pages
288–303, New York, NY, USA, 1993. ACM.

[37] Qingda Hu, Jinglei Ren, Anirudh Badam, and Thomas
Moscibrod. Log-structured non-volatile main memory.
In Proceedings of the 2017 USENIX Annual Technical
Conference, pages 703–717, Santa Clara, CA, June 2017.

[38] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic performance measurements of
the Intel Optane DC persistent memory module. arXiv,
abs/1903.05714, 2019.

78 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/HewlettPackard/meadowlark/tree/master/extra/YCSB-C
https://github.com/HewlettPackard/meadowlark/tree/master/extra/YCSB-C
https://github.com/basicthinker/YCSB-C

[39] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew
Black. Fine-grained mobility in the Emerald system.
ACM Transactions on Computer Systems, 6(1):109–133,
February 1988.

[40] Eric Jul and Bjarne Steensgaard. Implementation of
distributed objects in Emerald. In Proceedings of Inter-
national Workshop on Object Orientation in Operating
Systems, pages 130–132. IEEE, 1991.

[41] M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Hector M. Briceño, Russell Hunt, David Maz-
ières, Thomas Pinckney, Robert Grimm, John Jannotti,
and Kenneth Mackenzie. Application performance and
flexibility on exokernel systems. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Prin-
ciples (SOSP ’97), pages 52–65, New York, NY, USA,
1997. ACM.

[42] Orran Krieger, Marc Auslander, Bryan Rosenburg,
Robert W. Wisniewski, Jimi Xenidis, Dilma Da Silva,
Michal Ostrowski, Jonathan Appavoo, Maria Butrico,
Mark Mergen, Amos Waterland, and Volkmar Uhlig.
K42: Building a complete operating system. In Pro-
ceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006 (EuroSys ’06),
pages 133–145, New York, NY, USA, 2006. ACM.

[43] Dokeun Lee and Youjip Won. Bootless boot: Reducing
device boot latency with byte addressable NVRAM. In
2013 International Conference on High Performance
Computing, November 2013.

[44] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-weight contexts: An OS abstraction
for safety and performance. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16), pages 49–64, GA, 2016.
USENIX Association.

[45] Youyou Lu, Jiwu Shu, and Long Sun. Blurred persis-
tence: Efficient transactions in persistent memory. ACM
Transactions on Storage, 12(1), January 2016.

[46] Youyou Lu, Jiwu Shu,Long Sun, andOnurMutlu. Loose-
ordering consistency for persistent memory. In Pro-
ceedings of the 32nd IEEE International Conference on
Computer Design (ICCD ’14), pages 216–223. IEEE,
2014.

[47] Virendra J. Marathe,Margo Seltzer, Steve Byan, and Tim
Harris. Persistent memcached: Bringing legacy code to
byte-addressable persistent memory. In Proceedings of
the 9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage ’17), Santa Clara, CA, 2017.
USENIX Association.

[48] Pankaj Mehra and Samuel Fineberg. Fast and flexible
persistence: The magic potion for fault-tolerance, scala-
bility and performance in online data stores. In Proceed-
ings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS ’04), January 2004.

[49] Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao,
Yuan Xie, and Onur Mutlu. A case for efficient hard-
ware/software cooperative management of storage and
memory. In 5th Workshop on Energy-Efficient Design
(WEED ’13), June 2013.

[50] DushyanthNarayanan andOrion Hodson. Whole-system
persistence. In Proceedings of the 17th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’12), pages
401–500, March 2012.

[51] Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan
Miller. Reducing NVM writes with optimized shadow
paging. In Proceedings of the 10th Workshop on Hot
Topics in Storage and File Systems (HotStorage ’18), July
2018.

[52] Yuanjiang Ni, Jishen Zhao, Heiner Litz, Daniel Bittman,
and Ethan L. Miller. SSP: Eliminating redundant writes
in failure-atomic NVRAMs via shadow sub-paging. In
Proceedings of the 52nd IEEE/ACM International Sym-
posium on Microarchitecture, October 2019.

[53] Matheus Ogleari, Ethan L. Miller, and Jishen Zhao. Steal
but no force: Efficient hardware-driven undo+redo log-
ging for persistent memory systems. In Proceedings of
the 24th International Symposium on High-Performance
Computer Architecture (HPCA 2018), February 2018.

[54] Yoann Padioleau and Olivier Ridoux. A logic file system.
In Proceedings of the 2003 USENIX Annual Technical
Conference, pages 99–112, San Antonio, TX, June 2003.

[55] Aleatha Parker-Wood, Darrell D. E. Long, Ethan L.
Miller, Philippe Rigaux, and Andy Isaacson. A file by
any other name: Managing file names with metadata. In
Proceedings of the 7th Annual International Systems and
Storage Conference (SYSTOR ’14), June 2014.

[56] Timothy Roscoe. Linkage in the Nemesis single ad-
dress space operating system. ACM SIGOPS Operating
Systems Review, 28(4):48–55, October 1994.

[57] Andy Rudoff. Persistent memory programming. In
;Login: The Usenix Magazine, volume 42, pages 34–40.
USENIX Association, 2015.

[58] Andy Rudoff et al. Persistent memory programming
library. http://pmem.io/nvml/, 2017.

USENIX Association 2020 USENIX Annual Technical Conference 79

http://pmem.io/nvml/

[59] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed shared persistent memory. In Proceedings of
the 2017 Symposium on Cloud Computing (SoCC ’17),
page 323–337, New York, NY, USA, 2017. Association
for Computing Machinery.

[60] Jonathan S. Shapiro and Jonathan Adams. Design evo-
lution of the EROS single-level store. In Proceedings of
the 2002 USENIX Annual Technical Conference, pages
59–72, Monterey, CA, June 2002. USENIX.

[61] Jonathan S. Shapiro, Jonathan M. Smith, and David J.
Farber. EROS: A fast capability system. In Proceedings
of the Seventeenth ACM Symposium on Operating Sys-
tems Principles (SOSP ’99), pages 170–185, New York,
NY, USA, 1999. ACM.

[62] Eugene Shekita and Michael Zwilling. Cricket: A
mapped, persistent object store. Technical Report 956,
University of Wisconsin, August 1990.

[63] Alan Skousen and Donald Miller. Using a single ad-
dress space operating system for distributed computing
and high performance. In Proceedings of the 18th IEEE
International Performance, Computing and Communi-
cations Conference (IPCCC ’99), pages 8–14, February
1999.

[64] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark
Gahagan, and Steven Swanson. Morpheus: Creating ap-
plication objects efficiently for heterogenous computing.
In 2016 ACM/IEEE 43rd Annual Intenational Sympo-
sium on Computer Architecture, 2016.

[65] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In Pro-
ceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS ’11), March 2011.

[66] Tiancong Wang, Sakthikumaran Sambasivam, Yan Soli-
hin, and James Tuck. Hardware supported persistent
object address translation. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO ’17), pages 800–812, New York, NY,
USA, 2017. ACM.

[67] Robert NM Watson, Jonathan Woodruff, Peter G Neu-
mann, SimonWMoore, Jonathan Anderson, David Chis-
nall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Lau-
rie, et al. Cheri: A hybrid capability-system architecture
for scalable software compartmentalization. In 2015
IEEE Symposium on Security and Privacy, pages 20–37.
IEEE, 2015.

[68] William Wulf, Ellis Cohen, William Corwin, Anita
Jones, Roy Levin, C. Pierson, and Fred Pollack. HY-
DRA: The kernel of a multiprocessor operating system.
Communications of the ACM, 17(6):337–345, June 1974.

[69] Jian Xu and Steven Swanson. Nova: A log-structured file
system for hybrid volatile/non-volatile main memories.
In Proceedings of the 14th Usenix Conference on File
and Storage Technologies (FAST ’16), pages 323–338,
Berkeley, CA, USA, 2016. USENIX Association.

80 2020 USENIX Annual Technical Conference USENIX Association

BASTION: A Security Enforcement Network Stack for Container Networks

Jaehyun Nam†, Seungsoo Lee†, Hyunmin Seo†, Phillip Porras‡,
Vinod Yegneswaran‡, and Seungwon Shin†

KAIST, Daejeon, Korea†, SRI International, CA, USA‡

Abstract
In this work, we conduct a security analysis of container

networks, identifying a number of concerns that arise from the
exposure of unnecessary network operations by containerized
applications and discuss their implications. We then present a
new high-performance security enforcement network stack,
called BASTION, which extends the container hosting platform
with an intelligent container-aware communication sandbox.
BASTION introduces (i) a network visibility service that pro-
vides fine-grained control over the visible network topology
per container application, and (ii) a traffic visibility service,
which securely isolates and forwards inter-container traffic
in a point-to-point manner, preventing the exposure of this
traffic to other peer containers. Our evaluation demonstrates
how BASTION can effectively mitigate several adversarial
attacks in container networks while improving the overall
performance up to 25.4% within single-host containers, and
17.7% for cross-host container communications.

1 Introduction

Among the leading trends in virtualization is that of container-
ized application deployment at industrial scales across private
and public cloud infrastructures. For example, Google has
been a significant adopter of container-based software de-
ployment using its container orchestrater, Kubernetes [26] to
spawn more than two billion containers per week [17]. Yelp
uses containers to migrate their code onto AWS, and launches
more than one million containers per day [56]. Netflix spawns
more than 3 million containers per week within Amazon EC2
using its Titus container management platform [25].

With this growing attention toward the large-scale instan-
tiation of containerized applications also comes a potential
for even small security cracks within the container software
ecosystem to produce hugely destructive impacts. For exam-
ple, Tripwire’s container security report [50] found that 60%
of organizations already had experiences of security incidents
in 2018, assessing that these incidents arose primarily due

to the pressures to achieve deployment speed over the risks
from deploying insecure containers. In recognition of such
risks, several efforts [10, 14, 36] have arisen to help identify
and warn of possible vulnerabilities in containers.

In addition, the shared kernel-resource model used by con-
tainers also introduces critical security concerns regarding
the ability of the host OS to maintain isolation once a single
container is infected. Indeed, many researchers (and indus-
try) have proposed strategies to address the issue of container
isolation. For example, AppArmor [1], Seccomp [40], and
SELinux [41] can provide much stronger isolation of contain-
ers by preventing various system resource abuses. In fact, sev-
eral commercial products introduce container security frame-
works [2, 44, 51], which can monitor containers at runtime
and impose dynamic policy controls.

However, while there continues to emerge a variety of ap-
proaches to secure containerized applications, less attention
has been paid to bounding these applications’ access to the
container network. Specifically, there has been significant
adoption of containers as microservices [31], in which contain-
ers are used to create complex cloud and data-center services.
Although current container platforms often utilize IP-based
access control to restrict each container’s network interactions,
there are limitations in such controls that offer opportunities
for significant container abuse.

This paper begins by discussing several of the challenges
that arise from the current reliance on the host OS net-
work stack and virtual networking features to provide robust
container-network security policies. The paper will present
five examples of inherent limitations that arise in using the
Host OS network stack to manage the communications of
container ecosystems as they are deployed today. Informed
by these existing limitations, we introduce BASTION, a new
extension to container network stack isolation and protection.
BASTION instantiates a security network stack per container,
offering isolation, performance efficiency, and a fine-grained
network security policy specification that implements the least
privileged network access for each container. This approach
also provides better network policy scalability in network pol-

USENIX Association 2020 USENIX Annual Technical Conference 81

icy management as the number for hosted containers increases,
and greater dynamic control of the container ecosystem as
containers are dynamically instantiated and removed.

BASTION is composed of a manager and per-container net-
work stacks. The manager solicits network and policy infor-
mation from active containers, and deploys a security enforce-
ment network stack into each container. Then, in the network
stack, all security enforcement is conducted through two ma-
jor security services: a network visibility service and a traffic
visibility service. Based on a set of inter-container depen-
dencies, the network visibility service mediates the container
discovery process, filtering out any access to containers and
hosts that are deemed irrelevant given the dependency map.
The traffic visibility service controls network traffic between
the container and other peer containers, while also verifying
the sources of the traffic. This service enables traffic to flow
among the containers through an efficient forwarding mech-
anism that also isolates network communications between
senders and recipients. Whenever there is any change in con-
tainer environments, the manager dynamically updates the
network stack of each container with no service interruption.

The paper explains how BASTION mitigates a range of
existing security challenges, while also demonstrating that
BASTION can improve the overall performance up to 25.4%
within the same host and 17.7% across hosts.
Contributions. Our paper contributions are as follows:
• A security assessment of container networks, illustrating

security challenges that arise in current container network
stacks and security mechanisms.
• The introduction of a novel security-enforcement network

stack for containers, which restricts the network visibility of
containers and isolates network traffic among peer containers
with high performance.
• The presentation of the prototype system, BASTION, in-

cluding an analysis of how it addresses network security chal-
lenges in current container environments.

2 Background and Motivation

Here, we provide the background of container networks and
identify how the underlying architectural limitations of cur-
rent network security services impact container environments.

2.1 Current Container Networks
Docker Platform: Docker [12] uses bridge networks to pro-
vide inter-container connectivity, by default. As an exam-
ple, Figure 1 illustrates the architecture of two microservices.
The microservice chains that compose a network service are
shown in the upper panel, while the logical networking of the
microservice containers, which are networked under separate
bridges, is depicted in the lower panel. To provide network
flow control, Docker applies network and security policies
into bridge networks using iptables [34].

Service
(A)

Web UI DB (1)

Microservice Architecture

(A)

Service
(B)

Web UI
(B)

DB (2)

DB (3)

External InterfaceContainer Networks

Web UI (A)
Service (A)

DB (1)
Web UI (B)

Service (B)
DB (2)

DB (3)

Gateway #1 Gateway #2

Host Network

Bridge #2Bridge #1

Figure 1: Overview of Docker Bridge Networking. Upper
panel: a conceptual microservice architecture involving two
independent services. Lower panel: separate bridged networks
are instantiated to manage container network flows.

Kubernetes Orchestration System: Kubernetes [26] sup-
ports the management of large numbers of Docker contain-
ers across multiple nodes (e.g., physical host servers), en-
abling cross-host container applications to work as a logical
unit. Thus, while Docker uses bridge networks for containers
within the same host (node), Kubernetes uses various overlay
networks (e.g., Flannel [11], Weave [55], Calico [49]) to pro-
vide inter-container connectivity across multiple nodes. For
example, in the Weave overlay network [55], each node has
a special bridge interface, called weave, to connect all local
containers. The weave bridges, run at each node, are logically
linked as a single network. While Kubernetes uses Docker
containers, it does not utilize Docker networking features to
manage network flow control. Rather, it separately applies net-
work policies using iptables. Calico [49] similarly applies
network and security policies using iptables. In the case
that operators want further security enforcement, they may
use Cilium [7], a security extension that conducts API-aware
access control (e.g., HTTP method) by redirecting all network
traffic to its containerized security service (envoy).

Network-privileged Containers: Besides the typical use
of containers, there are special cases in which an operator
wants to directly expose containerized services using the host
IP address (e.g., HAProxy [8], OpenVPN [28], and MemSQL
[30]). In such cases, by sharing the host namespace with a
container, the container is provided access to the host network
interfaces, and directly exposes its services. In this work, we
refer to such cases as network-privileged containers.

2.2 Challenges in Container Networks

While current container platforms mostly utilize OS-level IP-
based access control (e.g., iptables) to enforce container
network security policies, there are significant limitations in
their ability to constrain the communication privileges of
today’s container topologies. The following are five concerns
that arise from these current OS-level architectural limitations,
which motivate the BASTION design.

82 2020 USENIX Annual Technical Conference USENIX Association

Container

vNIC

Container NS

Container

vNIC

Container NS

Host Service

Host Namespace (NS)

veth veth

Bridge (or Software Switch)

Iptables-based Access Control
(1)

(2)

(3)

(4)

GW

Network-
privileged
Container

Container Network

Host Network

(5)
ExtNIC

Figure 2: Five critical challenges in container networks: (1)
Loss of container context, (2) Limitations of IP-based access
controls, (3) Network policy explosion (performance degra-
dation), (4) Unrestricted host access, and (5) No restriction
on network-privileged containers.

(1) Loss of container context: As shown in Figure 2, each
container has its own virtual interface, but this is only visible
inside of the container. Thus, container platforms effectively
create a twin virtual interface corresponding to it on a host.
This virtual interface is connected to the bridge, enabling
connectivity with others. Unfortunately, one security-relevant
problem of this design is that each packet produced by a con-
tainer will lose its association with the source container at the
moment that it transitions into the host network namespace,
which means that the packet already flows into a container
network. Hence, all decisions for further security inspection
(e.g., source verification and network flow control) and packet
forwarding should be solely made based on the packet header
information, and a malicious container can directly forge pack-
ets on behalf of any other containers, allowing lateral attacks
and traffic poisoning when any container is compromised.

(2) Limitations of IP-based access controls: The pri-
mary method for imposing network flow control among con-
tainer platforms is through iptables, an IP-based access con-
trol provided by a Linux kernel. However, the IP addresses
of containers can be dynamic, and adjustments are then re-
quired whenever containers are spun up and down. Thus, it
can be a challenge to specify security policies for containers
in terms of both performance and security, since these policies
must be updated whenever containers are re-created, and the
policy tables of iptables should be also locked during pol-
icy updates. Furthermore, although operators enforce various
security policies, container networks are still vulnerable to
layer-2 attacks, due to the limited scope of iptables.

(3) Network policy explosion: Finer grained network
policies inherently require larger sets of network policies.
Further, since each container may require different policies,
the overall number of policies will tend to increase with the
heterogeneity and size of the container ecosystem. Unfortu-
nately, iptables is a centralized mechanism for all network
interfaces in the host, which results in monolithic network
rules that can be daunting to manage and at worst produce

Figure 3: Host service access through the gateway IP address
of a container network. A container scans and accesses the
services running in the host without any restriction.

(a) Network interfaces visible by a general container

(b) Network interfaces visible by a network-privileged container

Figure 4: Network visibility according to container privileges:
upper panel - a general container sees only its own network
interfaces, lower panel - a network-privileged container shares
the network namespace with a host; thus, it can see all network
interfaces in the host.

a network policy explosion (the number of security policies
will rapidly increase as a large number of containers are de-
ployed). Consequentially, if the number of security policies in
iptables increases beyond hundreds, the container ecosys-
tem may face a significant performance degradation [37].

(4) Unrestricted host access: Each container network has
a gateway interface for external accesses, which is connected
to the host network, as shown in Figure 2. Unfortunately, an
inherent security concern arises as a container can thus access
a service launched at the host-side. In Kubernetes, containers
can even access all other hosts (nodes) through the gateway
IP addresses assigned to them. If a service running in a host
opens a certain network port, as shown in Figure 3, a container
can directly access the service through the gateway IP address.
In the worst case, a malicious container can exploit the service
in a manner that can subvert/harm the availability of the host.

(5) No restriction on network-privileged containers:
While a network-privileged container can gain a performance
advantage as its traffic does not pass through additional net-
work stacks (e.g., container networks), such a container also
raises significant concerns with respect to operational isola-
tion. As shown in Figure 4, network-privileged containers
can access not only the host network interfaces, but can also
monitor all network traffic from deployed containers in the

USENIX Association 2020 USENIX Annual Technical Conference 83

Network Threats Docker [12] Flannel [11] WeaveNet [55] Calico [49] Open vSwitch [27] Cilium [7] BASTION
L2 attack (e.g., ARP Spoofing) 4 4 4 8 s 8 8

Traffic Eavesdropping 4 4 4 8 s 8 8

L3/L4 attack (e.g., IP Spoofing) 4 4 4 4 s s 8

Host Service Access 4 4 4 8 s s 8

Host Network Namespace Abuse 4 4 4 4 4 4 8

Table 1: Potential of network attacks across container network interface plugins. Feasible (4): network attack can be successfully
executed over the container network interface plugin. Probable (s): network attack remains possible, but may be blocked with
appropriate application of network security policies. Infeasible (8): network attack is always blocked.

host and are unrestrained in their ability to inject malicious
packets into container networks. Furthermore, current security
solutions do not consider security policies for such contain-
ers; hence, operators must design and specify a secure policy
configuration for the containers by themselves.

2.3 Assumptions and Threat Model
Assumptions: Consider the case of containers connected to
each other in order to operate as microservices using Docker
or Kubernetes network configurations. Let us assume that
an attacker possesses enough skill (e.g., gaining a remote
shell to execute arbitrary commands inside a container) to
perform a remote hijacking of an Internet-accessible container
application that is operating as a part of a microservice, using
published container vulnerabilities [45,52]. For example, even
certain images provided by the official Docker hub include
known vulnerabilities [47]. Given this, we consider what an
attacker may do after getting into the subverted container.

Threat Model: The scope of threat models considered in
this work focuses on network-based lateral attacks launched
from a compromised container, rather than system-based at-
tacks that may occur within a container. Unlike network-based
attacks, system-based attacks have been actively explored in
other work, such as abusing privileged and unprivileged con-
tainers [33] and modifying Linux capabilities within a con-
tainer [53], and defense techniques based on status inspection
of namespaces [24]. Thus, we believe that an operator would
properly deploy containers with system-wide security poli-
cies, and we therefore do not consider system-wide threats
(e.g., attacks against the host kernel) in this paper.

Here, a specific attack case involves one in which a compro-
mised container is employed “as is”, as the launching point for
these lateral attacks, where no privilege escalation is required
within the container to conduct further exploitation. Also, an
attacker can acquire a base understanding of the compromised
container’s network configuration by investigating several sys-
tem files (e.g., /proc/net/arp, /proc/net/route).

2.4 Limitations of Container Network
Interface Plugins

Here, we briefly discuss the limitations of current container
networking plugins. Table 1 presents the feasibility of network

threats that abuse the above security challenges.
Docker, Flannel, WeaveNet: Docker [12], Flannel [11],

WeaveNet [55] operate on bridge-based L2 forwarding, which
is tightly coupled with the networking features and the IP-
based access control provided by the host OS. Hence, they
have the same security challenges discussed in Section 2.2
and are vulnerable to all network threats presented in Table 1.

Calico: Calico [49] employs IP-in-IP-based L3 routing,
and uses a single MAC address (EE:EE:EE:EE:EE:EE) for
all containers which makes L2 attacks infeasible. However,
it remains vulnerable to L3/4 attacks (e.g., TCP SYN floods,
DNS reflection attacks, ICMP spoofing attacks etc.). In addi-
tion, while the host-service abuse is infeasible because Calico
uses a virtual gateway IP address (169.254.1.1) for all con-
tainers, it does not provide security mechanisms that guard
against the host-network namespace abuse.

Open vSwitch: Open vSwitch (OVS) [27] provides more
flexible networking features than the host OS; thus, it might
be viewed as an alternate solution for bolstering container net-
work security. OVS can derive which virtual port a container
is connected to and this could be used to prevent spoofing
attacks. However, one critical concern is that OVS does not
support a NOT operation, meaning that we need to install
all possible flow rules from each container to other contain-
ers, which at least contain (the virtual port and the MAC/IP
addresses of a source container, the IP address and the service
port of a destination one) matching fields for source verifi-
cation and spoofing attack prevention. In addition, frequent
rule updates are inevitable (as in the case of iptables) when-
ever containers are spun up and down. While OVS may be
able to block unauthorized host IP address accesses, it still
allows containers to access host services using gateway IP
addresses since OVS is located at the host network names-
pace. Unfortunately, OVS would still need a large number of
security policies against all possible host accesses from each
container. In addition, OVS provides no protection in the case
of network-privileged containers.

Cilium: Cilium [7] operates at the L3 routing level and pro-
vides advanced network security mechanisms for implement-
ing L3-7 firewalls. In addition, L2 attacks are not feasible, as
in the case of Calico. However, other network threats remain
possible. Although Cilium provides support for a range of net-
work policies (e.g., identity and label-based policies), which
can block accesses to specific containers or hosts, the feasibil-

84 2020 USENIX Annual Technical Conference USENIX Association

ity of such network threats depend on the operator and deploy-
ment considerations. For example, even though an operator
carefully defines network policies to restrict service-to-service
communications based on container identities, containers may
still conduct L3/4-based lateral attacks to neighbors in the
same service. Network-privileged containers are beyond its
threat model, meaning that Cilium is still vulnerable to them.

BASTION: BASTION is designed as a transparent
container-network security extension that protects against
diverse security challenges discussed in Section2.2. Unlike
existing container network interface plugins that rely on
operator-defined network policies to protect containers from
various network threats, BASTION automatically discovers
inter-container dependencies from container platforms, and
provides an intelligent container-aware communication sand-
box that protects inter-container communications. In the fol-
lowing section, we will describe BASTION in greater detail.

3 BASTION Design

As we discussed in Section 2.2, many of the security limita-
tion that arise from the use of the OS network stack to service
container process are less well studied than other container se-
curity mechanisms. To address these limitations, we begin by
identifying the design considerations that BASTION addresses,
followed by a presentation of its design.

R1: Container-aware least privilege communications en-
forcement. A container’s connectivity should be a function
of the interdependencies between itself and those containers
whose communications are required to compose a service.

R2: Scalable and fine-grained network policy expression.
Network policy expression and enforcement performance
within the container network should scale well to the dy-
namism and size of modern host container topologies.

R3: Policy control over intra-container communications.
While the gateway interface plays as a key role in the commu-
nications with external networks, the network stack should
filter out the direct access of the gateway interface to prevent
the abuse of the host namespace.

R4: Policy enforcement for network-privileged contain-
ers. Network policy enforcement should be capable of fine-
grained access control over network-privilege-enabled con-
tainers that share the host network namespace for the direct
access of the host interfaces.

R5: Unauthorized eavesdropping and spoofing prevention.
Communication mediation should prevent access to third-
party packets (i.e., eavesdropping) and false packet produc-
tion (i.e., preventing both ARP spoofing and traffic injection
among local containers).

R6: Competitive performance that scales well with any
container topology. The network stack should deliver low
latency and high throughput communications while securing
container networks.

Container NS

Host NS

Host-side
container vNIC Host-side

container vNIC

Container

vNIC

Bridge

Bastion Bastion

Bastion

extNIC

E2
E

di
re

ct
 fo

rw
ar

di
ng

E2E direct forw
arding

E2E forwarding Network Visibility

Traffic Visibility

Direct ARP handler
Container-aware

Network Isolation

End-to-end Direct
Forwarding

Container NS

Container

vNIC

vethveth

iptables iptables

Bastion ManagerDocker / Kubernetes

Special IP handler

Source Verification

Visibility Maps
Container

Network Map
Inter-container

Dependency Map

Figure 5: BASTION Architecture Overview. Orange box:
BASTION network stack. Red box: manager that maintains the
global view of container networks. Green box: network visi-
bility service that restricts container reachability. Blue box:
traffic visibility service that controls inter-container traffic
while concealing irrelevant traffic from containers.

3.1 Architectural Overview

BASTION represents the opposite spectrum of prior container
network stack designs, which implement network policy en-
forcement in a centralized manner. BASTION implements a de-
centralized, per-container, network stack. That is, all BASTION
security enforcement occurs before a container’s packets are
delivered into the container network. This approach enables
BASTION to provide individualized control over the network
traffic coming from each container, mitigating the security
challenges discussed in Section 2.2.

Figure 5 illustrates the overall architecture of BASTION.
BASTION is composed of a manager, which maintains the
global network view of all containers with their security de-
pendencies, and per-container network stacks that include two
security services (i.e., network and traffic visibility services).
A BASTION network stack maintains the container network
map for the corresponding container, which includes the net-
work information of all reachable containers that have peer
dependencies (e.g., microservice composition), and an inter-
container dependency map, including the security policies on
dependent containers only (R2).

When packets arrive at the BASTION network stack, the
network visibility service proactively filters any discovery pro-
cesses of irrelevant containers by dealing with ARP requests
based on the container network map (R1, R5), and restricts
the communications between containers according to security
policies specified in the inter-container dependency map (R1).
In addition, a special IP-handler restricts unauthorized access
to special IP addresses (e.g., gateway IP addresses) (R3). The
traffic visibility service conducts secure packet-forwarding
between containers. This service first verifies the packets with
the identity of the container (R4-5), directly passing packets

USENIX Association 2020 USENIX Annual Technical Conference 85

ContainerID Network ContainerSet Interface IP address MAC address

WebApp-X1 WebService WebApp vethwepl6f964e8 10.32.0.2 96:0e:73:ef:86:fe

WebApp-X2 WebService WebApp vethweplb89dc35 10.32.0.3 6e:81:0f:a7:db:c7

Service-Y1 WebService Service vethweplb957e84 10.32.0.4 D6:bc:7b:20:32:c5

Database-Z1 WebService Database vethweplc5ee33c 10.32.0.5 42:a0:ae:b7:f5:97

< Container Network Map >

Source Destination Policy

WebApp Service Any

WebApp Database TCP:3306

Service Database TCP:3307

< Inter-container Dependency Map >

Operator

Container
Platform

Bastion Manager

Manual update

Periodic update

Figure 6: BASTION computes a container network map that
captures the network interface attributes for each hosted con-
tainer, and an inter-container dependency map that indicates
the links and dependencies between containers.

from the source container to the destination containers using
their interface information (R6). Since this direct packet for-
warding occurs at the network interface level, packets are no
longer passed through the container network (host-side), elim-
inating any chance for unauthorized network traffic exposure
(even to network-privileged ones) (R4-5).

In terms of cross-host inter-container communications, a
specialized BASTION network stack is utilized at the exter-
nal interface of each node. It only maintains the container
network map for all containers deployed in each node since
all security decisions are already made at the network stack
of each container. Thus, when it receives packets from other
nodes, it simply conducts a secure forwarding from the ex-
ternal interface to destination containers. Overlay network
composition among hosts (nodes) are beyond the coverage
of BASTION; thus, it utilizes existing overlay networks (e.g.,
WeaveNet over IPSec). BASTION also retains the existing
mechanisms of container platforms to handle inbound traffic
from external networks.

3.2 BASTION Manager
The BASTION manager performs two primary roles. It col-
lects the network information of all active containers from
container platforms and manages the BASTION network stacks
deployed to the active containers.

(1) Container Collection. The BASTION manager first
maintains two hash maps (i.e., a global container network
map and the inter-container dependency map for all contain-
ers) for the security evaluation of each container. As shown
in Figure 6, BASTION uses a container platform to retrieve
the network information for all containers, and to build the
inter-container dependency map by extracting the dependen-
cies among containers based on the retrieved information
and their ingress/egress security policies. In addition, because
containers can be dynamically spun up and down, the man-
ager periodically retrieves containers’ network information
to update the maps. While a notification-based mechanism
would provide greater efficiency, a polling-based mechanism
was selected to provide a transparent and compatible solu-

Algorithm 1 Extracting Inter-Container Dependencies
1: Input: C, which is the set of all active containers
2: for each container u ∈C do
3: for each container v ∈C where u 6= v do
4: if v ∈ u.explicitDependents then
5: puv = u.EgressPolicies ∩ v.IngressPolicies
6: add v into u.dependencyMap with puv
7: else if u.containerSet 6= v.containerSet then
8: for each service pair s ∈ Sset(v.ContainerSet) do
9: pus = u.EgressPolicies ∩ s.Port

10: add s.IP into u.dependencyMap with pus

11: for each service pair s ∈ Smicroservice do
12: pus = u.EgressPolicies ∩ s.Port
13: add s.IP into u.dependencyMap with pus

tion that can be integrated with already-deployed container
environments without any required modifications.

Extracting inter-container dependencies: BASTION au-
tomatically extracts dependencies among containers. To do
this, a container network model is defined, in which a mi-
croservice is composed of one or more container sets, and
each container set has one or more containers that play the
same role (due to scaling and load-balancing). Each container
set exposes internal service ports to communicate with other
container sets, while a microservice exposes global service
ports to redirect accesses from the outside world to some of
the internal service ports. We then define four constraints for
implicit dependencies in inter-container communications: (1)
containers with the same container set are not granted inter-
connectivity, (2) containers in different container sets only
communicate via internal service ports (explicitly exposed by
configurations), (3) containers that are unrelated to each other
may talk through global service ports, (4) all other commu-
nications are not allowed by default. Based on the container
network model, all inter-container dependencies are extracted
using Algorithm 1.

Discovering inter-container dependencies: As no con-
tainer network can be made secure without proper network
policies that restrict communications to the minimum required
access, BASTION also discovers inter-container dependencies
not explicitly defined by a container operator. During the flow
control of inter-container traffic, BASTION produces network
logs that capture the network accesses from/to containers. At
the same time, it compares these logs with the inter-container
dependency map, classifying them into three cases: legitimate
accesses, missing policies, and excessive policies.

If the pair of observed containers are not in the pre-
computed inter-container dependency map, BASTION con-
siders that there is either a missing network policy or an
invalid access. Then, it informs an operator to review the
specific flows to determine whether to produce a missing
network policy. In addition, it identifies network policies for
which no flows have been encountered. Such cases may repre-
sent an over-specification of policies that enable unnecessary

86 2020 USENIX Annual Technical Conference USENIX Association

flows for the container network’s operations. In these cases,
BASTION informs an operator to review the specific policy
that may require to be updated in the current configuration.

(2) Network Stack Management. The manager main-
tains the BASTION secure network stack for each container.
For newly spawned containers, it installs the network stacks at
their interfaces with the container network and inter-container
dependency maps. With respect to map size, each container
only requires a part of the network information to commu-
nicate with dependent neighbors. Thus, to reduce the size
of security services, BASTION filters irrelevant information
per container. The manager also performs change detection
of inter-container dependencies, automatically updating the
maps in the network stacks of the corresponding containers.

3.3 Network Visibility Service

The network visibility service restricts unnecessary connec-
tivity among containers and between containers and external
hosts. To do this, the following three security components
are introduced to handle container discovery, inter-container
communications, gateway/service-IP accesses, respectively.

3.3.1 Direct ARP Handler

For inter-container networking, container discovery is the
first step to identify other containers (communication targets).
Containers use ARP requests to identify the necessary net-
work information (i.e., MAC addresses) of target containers.
Unfortunately, this discovery process can be exploited to scan
all containers connected to the same network by malicious
containers, as current network stacks do not prevent ARP scan.
Indeed, they offer no mechanism to control non-IP-based com-
munications.

BASTION’s direct ARP handler filters out any unnecessary
container discovery that does not pertain to the present con-
tainer’s dependency map. When a container sends an ARP
request, the handler intercepts the request before it is broad-
casted, verifying if the source container has a dependency
on the destination container. This analysis is done using the
inter-container dependency map. If accessible, the handler
generates an ARP reply with the MAC address of the desti-
nation container in the container network map, and sends the
reply back to the source container (while no ARP requests
flow into the container network). If not, it drops the request.

3.3.2 Inter-container Communications Handler

Although the direct ARP handler prevents containers from
performing unbounded topology discovery, its coverage is
limited to container-level isolation. It does not address mali-
cious accesses among dependent containers. Hence, to further
restrict the reachability of containers, a second component
implements container-aware network isolation.

KEY Destination Policy
XXX 10.32.0.4 Any
YYY 10.32.0.5 TCP:3306

< Container Network Map > < Inter-container Dependency Map >
… ContainerSet Interface IP address MAC address
… Service Vethweplb95… 10.32.0.4 D6:bc:7b:20:32:c5
… Database Vethweplc5e… 10.32.0.5 42:a0:ae:b7:f5:97

Src: 10.32.0.2(5000)
Dst: 10.32.0.5(3306)

KEY: YYY (10.32.0.5)
KEY Policy
YYY TCP:3306

(1) Packet interception (2) Hash map lookup (3) Policy matches

DP:3306 = TCP:3306

Forwarding the packet
to following component

Packet coming
from the WebApp

Figure 7: Workflow of container-aware network isolation.
The WebApp container accesses a service of the Database
container in a container network shown in Figure 6, and the
container-aware network isolation in the WebApp’s network
stack inspects their dependency and security policies.

To illustrate how BASTION implements container-aware
network isolation, we consider the example in Figure 6, which
illustrates an interdependence between WebApp and Database
containers. In mediating the WebApp’s packets, as shown in
Figure 7, BASTION first checks the dependency between the
WebApp and the destination by examining the inter-container
dependency map using the destination IP address as a key. If
any policies exist in the map, it concludes that the WebApp
has a dependency on the destination - in this case the Database.
The connection is allowed if matched to the policy for the
Database, otherwise it is dropped.

BASTION implements a per-container rule partitioning strat-
egy, which simplifies rule conflict evaluation, as only the
container-relevant rules are considered, at deployment and
evaluation times. In addition, it offers a minimized policy en-
forcement performance impact, as the match set is container-
specific rather than host-global (as occurs with iptables).
This approach offers an inherent key advantage over host
global network policy rule enforcement as the number of con-
tainers increases. A natural strategy for managing large sets of
global (host layer) network security rules is to apply a global
rule optimization algorithm (e.g., aggregating the rules into
a reduced set). Unfortunately, as containers are dynamically
spun up and down, particularly within large orchestrated con-
tainer ecosystems, their corresponding security rules would
also require frequent updating. In such situations, global rule
optimization could prove less effective and even be a new
performance bottleneck over our rule partitioning strategy.

3.3.3 Gateway and Service-IP Handler

In container environments, it is possible for a subverted con-
tainer to exploit the gateway to probe services within the host
OS. To address this concern, BASTION’s gateway-IP handler
filters direct host accesses. When a network connection tar-
gets non-local container addresses, it includes the gateway
MAC address and the IP address of the actual destination.
Based on this fact, the gateway-IP handler blocks any direct
host accesses by checking if both IP and MAC addresses be-

USENIX Association 2020 USENIX Annual Technical Conference 87

Network
Interface (RX)

Network
Interface (TX)

Ingress
Traffic Control

Egress
Traffic ControlLinux Network Stack

Netfilter Module

iptables
Location to

filter packetsLocation to
capture packets

Application

Figure 8: An illustration of the network packet processing
sequence performed within the Linux kernel. While packets
are filtered after delivered into the network stack, those can
be still exposed during packet capture with nothing missed.

long to the gateway. It would be also possible that a network
flow might access the gateways of other container networks,
since these gateways are connected to the host network as
well. Hence, the gateway-IP handler also filters unauthorized
host accesses by comparing packets with the other gateways.

In Kubernetes environments, there is another special IP
address, called a service IP address that is a virtual IP address
used for the redirection to actual containers. Unfortunately,
since service IP addresses do not belong to container net-
works, they can be simply considered as external IP addresses.
Thus, BASTION additionally extracts the pairs of {service
IP address, port} and {corresponding container IP address,
port} from Kubernetes, and maintains a service map in each
BASTION network stack. Then, when a container sends a
packet with a service IP address and port, the service-IP han-
dler overwrites the service IP address and port to an actual
container IP address and port according to the service map.
As a result, all inter-container communications can be con-
ducted with the existent IP addresses, and the other security
components can process packets as intended.

3.4 Traffic Visibility Service
The traffic visibility service provides point-to-point integrity
and confidentiality among container network flows. Here, we
present how BASTION hides irrelevant traffic from containers
using two security components: source verification and end-
to-end direct forwarding.

3.4.1 Source Verification

To precisely track the actual source of inter-container traffic,
BASTION leverages the kernel metadata of incoming packets
(e.g., ingress network interface index). The BASTION network
stack of each container statically contains the network infor-
mation (i.e., IP/MAC addresses and the metadata of container-
side and host-side interfaces) of the corresponding container,
and BASTION verifies the incoming traffic by comparing not
only the packet header information but also its metadata to
the container’s information embedded in the BASTION net-
work stack. If either the packet header information or the
metadata is not matched with the container network infor-
mation, BASTION identifies the incoming traffic as spoofed

BastionBastion

Container Network

Container A Container B
Internal Interface Internal Interface

Container A’s
host-side Interface

A à BA à B

End-to-end direct forwarding

No traffic?Nothing?

Original path

Container B’s
host-side InterfaceNothing?

Figure 9: An illustration of how BASTION implements end-
to-end direct packet forwarding to bypass exposure of intra-
container traffic to other containers.

and drops it. Furthermore, even though network-privileged
containers can inject spoofed packets into other containers,
BASTION will drop their spoofed packets since the packet
metadata would not be matched with the container network
information. As a result, BASTION can effectively eliminate
the spectrum of disruption and spoofing threats.

3.4.2 End-to-end Direct Forwarding

Current network stacks cannot prevent the exposure of inter-
container traffic from other containers as the filter position is
behind the capture point, as illustrated in Figure 8. Thus, if a
malicious container has a capability to redirect the traffic of
a target container to itself, it can monitor the traffic without
restriction. In the case of network-privileged containers, they
have the full visibility of all container networks: they can
directly monitor the network traffic of others with no need to
redirect the traffic.

To implement least-privilege traffic exposure, BASTION
provides an end-to-end direct forwarding component. As
shown in Figure 9, this component performs direct packet
delivery between source and destination containers in the net-
work interface level, bypassing not only their original network
stacks (container-side) but also bridge interfaces (host-side);
thus, it can prevent eavesdropping by peer containers. As soon
as BASTION receives an incoming network connection from
a container, it retrieves the interface information of a desti-
nation from the container network map. If the destination is
a container in the same node, BASTION directly injects the
packet stream into the destination container. If the destination
is a container in another node, BASTION injects the packet
to the external interface of a host. Then, once the special
BASTION network stack of the external interface at the target
node receives the packet, it directly injects the packet stream
into the destination container. This traffic isolation prevents
any traffic disclosure by other containers, preventing even
network-privileged containers to view third-party traffic.

4 Implementation

We implement BASTION with 2.2K lines of C code and 5.1K
lines of Python code on the Linux 4.16 kernel, which include
two subsystems: a manager, and a network stack.

88 2020 USENIX Annual Technical Conference USENIX Association

Redis

(1) Container
Takeover

(2) Target
Scanning

(3) Target
Monitoring

(4) Forged
Content Injection

(5) Fake Content
Delivery

(1)

Forged
Contents

Request contents

(3)

(4)

(5)

(User)

(Guest)

Forged
contents

Original
contentsNginx

(User)

(Guest)
G

at
ew

ay
RedisNginx

Microservices

Figure 10: An example attack scenario within a Kubernetes
environment. A compromised container from one service
conducts a series of network attacks to hijack communications
between other containers in a peer service.

BASTION Manager: For container collection, the man-
ager periodically captures the attributes (e.g., NetworkSet-
tings) of active containers from the Docker engine and the
Kubernetes API server. Especially, in terms of explicit inter-
container dependencies, it utilizes specific keywords (e.g.,
“link” and “depends_on”). In the case of Kubernetes, it does
not have a way to explicitly define inter-container depen-
dencies; thus, the manager utilizes labels to define explicit
inter-container dependencies (e.g., “dependencies: container
A”). In terms of network security policies, it extracts “ingress”
and “egress” network security policies from iptables in a
host and Kubernetes.

BASTION Network Stack: The security enforcement net-
work stack for each container is implemented using eBPF [22]
and XDP [19, 21], and the security services in the network
stack inspect raw incoming packets in the xdp_md structure
provided by XDP. During the inspection, they look up two
hash maps (i.e., the container network and inter-container de-
pendency maps), and these maps are synchronized with the
maps in the corresponding management thread of the man-
ager using BPF syscalls. Then, they use three types of XDP
actions: ‘XDP_TX’ sends a packet back to the incoming con-
tainer (the direct ARP handler), ‘XDP_REDIRECT’ injects a
packet into the transmit queue of a destination (the end-to-end
direct forwarding), and ‘XDP_DROP’ drops packets.

5 Security Evaluation

This section introduces a scenario that abuses the security
holes in the current container network with real containers,
and demonstrates how BASTION mitigates network attacks.

5.1 Scenario Validation
Figure 10 illustrates two independent services that are de-
ployed along with common microservices [20, 54] in a Ku-
bernetes environment. One is a service for legitimate users,
and the other is a service for guest users. These services use
Nginx [35] and Redis [38] container images retrieved from
Docker Hub [13]. In this scenario, an attacker forges legit-
imate user requests, after infiltrating into the public-facing
Nginx server by exploiting web application vulnerabilities.

(a) Probing neighbor containers in a network (Nginx-Guest’s view)

(b) Spoofing target containers (Nginx-User’s view)

(c) Capturing redirected packets from targets (Nginx-Guest’s view)

(d) Injecting packets with forged contents (before / after)

à Redis-User

à The number of all deployed containers

The MAC address of Nginx-Guest

Nginx-User The original MAC address of Redis-User

à Nginx-Guest

Figure 11: Screenshots demonstrating the attack scenario in a
Kubernetes environment between two services.

In this attack kill chain, the attacker leverages three
network-based attacks to compromise the Nginx-Guest con-
tainer and successfully execute a man-in-the-middle attack.
In the first step, he discovers active containers around the
network through ARP-based scanning. Since all containers
are connected to an overlay network and ARP packets are
not filtered by iptables, the attacker can easily collect the
network information of containers as shown in Figure 11-
(a). Then, the attacker injects fake ARP responses into the
network to make all traffic between the Nginx-User and the
Redis-User containers passes through the Nginx-Guest. As
shown in Figure 11-(b), we can see that the MAC address of
the Redis-User in the ARP table of the Nginx-User is replaced
with that of the Nginx-Guest, and the attacker monitors all
traffic between the Nginx-User and the Redis-User (Figure
11-(c)). Lastly, the attacker replaces the response for the le-
gitimate user with forged contents by internally dropping the
packets delivered from the Redis-User and injecting forged
packets. Then, the Nginx-User returns the forged contents
back to the user instead of the original ones (Figure 11-(d)).
In the end, the user receives forged contents as the attacker
intended.

5.2 Effectiveness of Security Functions
Here, we focus on validating the effectiveness of BASTION
against a range of network-oriented attacks. For the following
experiments, we disabled some of BASTION’s security func-
tions to show the before and after differences.

Container Discovery: When a compromised container
is used to conduct peer discovery to locate other contain-
ers, as shown in Figure 11-(a), the current container network
stack allows an attacker to discover all neighboring contain-
ers. On the other hand, as shown in Figure 12, BASTION’s

USENIX Association 2020 USENIX Annual Technical Conference 89

à The number of dependent containers

Figure 12: An illustration of neighbor container discovery.
Our ARP handler and container-aware flow control only allow
the inter-dependent containers to be shown.

(a) Without the End-to-End direct forwarding (Nginx-Guest’s view)

(b) With the End-to-End direct forwarding (Nginx-Guest’s view)

Figure 13: Restricting Traffic Visibility: upper panel - an
attacker can see the traffic of the spoofed target container
without end-to-end forwarding, lower panel - the attacker
cannot see response traffic with end-to-end forwarding (only
the reverse direction is intentionally filtered for illustration).

direct ARP handler and container-aware network isolation re-
duce the reachability of each container based on its container
dependencies (R1). As a result, the infected container (i.e.,
Nginx-Guest in Figure 10) has only one dependent container
(i.e., Redis-Guest in Figure 10), and BASTION ensures that
the container observes only its gateway and that dependent.

Passive Packet Monitoring: As discussed previously, a
compromised container may be able to sniff the network
traffic of a target container. Further, when an attacker com-
promises a “network-privileged” container, the attacker is
provided access to all network traffic, with no restriction.
BASTION mitigates these concerns by implementing end-to-
end direct container traffic forwarding.

Figure 13 illustrates the utility of BASTION’s direct for-
warding. The upper panel, Figure 13-(a), shows the visible
network traffic of a target container (i.e., Nginx-User) after
spoofing the container without direct forwarding. The lower
panel, Figure 13-(b), demonstrates the use of direct forward-
ing. When direct forwarding is applied, the only visible traffic
from a given interface is that of traffic involving the container
itself (R4, R5). To highlight the differences, we intentionally
make the flow from a source to a destination visible. As a re-
sult, while the attacker can observe the source-to-destination
flow, he can no longer observe the traffic in the reverse direc-
tion. If we fully apply end-to-end forwarding for all traffic,
the attacker will see no traffic between them.

Active Packet Injection: Network-based attacks fre-
quently rely on spoofed packet injection techniques to send
malicious packets to target containers. BASTION prevents
these attacks by performing explicit source verification. To
illustrate its impact, we demonstrate before and after cases

(A-1) RST packet injection (Nginx-Guest’s view)

(A-2) Session termination due to RST packet injection (Nginx-User’s view)

(B-1) RST packet injection (Nginx-Guest’s view)

(B-2) Invisible injected RST packets (Nginx-User’s view)

Figure 14: Restriction of Packet Injection. Panel A-1 shows
the attacker injecting RST packets, and A-2 shows the victim
session terminated by attacker’s RST packet. Panel B-1 shows
the trials of RST packet injections, and B-2 shows the failure
of RST packet injection due to source verification.

from the attacker and victim perspectives. In the following
example, we enable source verification only at the IP-level
and allow an attacker to conduct ARP spoofing attacks.

Figure 14-A illustrates cases without source verification.
Here, the attacker spoofs the Nginx-User and receives the
traffic of the Nginx-User. Further, the attacker injects RST
packets to terminate the session of the Nginx-User. As soon
as the attacker injects the RST packets, as shown in panel
A-2, the Nginx-User receives the injected RST packets (see
the received times of the RST packets), causing its session to
be immediately terminated. This situation is remedied with
explicit source verification. Although the attacker tries to in-
ject RST packets, as shown in panel B-2, the RST packets are
rejected by the source verification component and prevented
from reaching the Nginx-User (R5).

6 Performance Evaluation

This section summarizes our measurement results of
BASTION’s performance overhead with respect to latencies
and throughputs between containers under various conditions.

Test Environment: We used an experimental testbed com-
prising of three machines to construct a Kubernetes envi-
ronment with the Weave overlay network and evaluate the
BASTION prototype. One system served as the Kubernetes
master node, while the others acted as container-hosting nodes.
Each system was configured with an Intel Xeon E5-2630v4
CPU, 64 GB of RAM, and an Intel 10 Gbps NIC. netperf
[18] and iperf [23] were respectively used to measure round-
trip latencies and TCP stream throughputs.

6.1 Network Stack Deployment Overhead
BASTION periodically retrieves the container information
from container platforms (1 second in our case) and deploys
the network stacks for newly detected containers.

90 2020 USENIX Annual Technical Conference USENIX Association

34.4 32.8 30.4
26.4

18.8
12.4

41.5 41.4 41.1 40.9 40.7 40.2

0

10

20

30

40

50

0 25 50 100 250 500

Th
ro

ug
hp

ut
 (G

bp
s)

Number of security policies

iptables Bastion

Figure 15: Inter-container throughput
variations with the increasing number of
security policies within a host.

21.6 22.8

17.1 17.518.2
19.9

14.4 14.5

0
4
8

12
16
20
24

Base NVSvc TVSvc Bastion

La
te

nc
y

(μ
s)

TCP UDP

Figure 16: Inter-container latency mea-
surements with different combinations of
BASTION’s services within a host.

100.1 100.5
82.8 85.491.5 92.1

75.2 77.7

0
20
40
60
80

100
120

Base NVSvc TVSvc Bastion

La
te

nc
y

(μ
s)

TCP UDP

Figure 17: Inter-container latency mea-
surements with different combinations of
BASTION’s services across hosts.

To see how long it takes to deploy a new network stack, we
measured the deployment time while creating 100 containers.
The result shows that it took 13.03 µs on average, meaning
that BASTION’s network stack would be deployed almost
right after a new container is detected, while it can take a
couple of seconds for containers to initialize their services
(i.e., pulling container images from repositories, configuring
container isolation, and starting services).

6.2 Security Policy Inspection Overhead
We compared the matching overheads with both iptables-
based access control and BASTION, and Figure 15 shows the
TCP throughputs with different numbers of security policies.
For a fair comparison, we defined the same number of policies
to each container for the overhead measurements of BASTION.

In the case of iptables, security policies for all containers
are maintained collectively in the host kernel. Thus, when
packets arrive from containers, iptables first looks up the
policies for the corresponding containers and inspects them
individually with the incoming packets. Also, iptables re-
quires a large number of field matches (at least, source and
destination IP addresses and ports for each policy) since it
is designed for general access control. As a result, as shown
in Figure 15, the throughput degraded by 23.3% with 100
policies and 64.0% with 500 policies. This trend points to
a fundamental scaling challenge with the current policy en-
forcement approach for container networks. In contrast, the
throughput degradation caused by BASTION was barely no-
ticeable as the number of policies increased (3.2% with 500
policies) (R2). Such performance gains stem from BASTION’s
matching process optimized for containers, which comprises
of a hash-based policy lookup for specific destinations and
their port matches while there is no need to match source IP
addresses and ports. Note that BASTION’s performance gain
with no security policy is because of the end-to-end direct
forwarding that bypasses the host-side Linux network stack.

6.3 Performance: Single-Host Deployment
Here, we evaluated latencies and throughputs between con-
tainers hosted in the same node to measure the overhead of

Throughput (Gbps) Base
Network
Visibility

Traffic
Visibility

Bastion

Within a host 34.4 33.7 41.8 41.5
Across hosts 4.28 4.23 4.91 4.83

Table 2: Inter-container throughput measurements for the base
case (no security) and BASTION’s services.

BASTION. Figure 16 provides the round-trip latency compar-
ison of four test cases within a single node. The base case
provides latency measurements for a default configuration
of two containers that interacted with no security services,
which were 21.6µs and 18.2µs for TCP and UDP packets re-
spectively. When we applied BASTION’s network visibility
service, the latencies slightly increased by 5.7% and 9.3% due
to the newly applied security functions requiring additional
packet processing to derive the reachability check between
containers. When we applied BASTION’s traffic visibility ser-
vice, the overall latencies were noticeably improved by 26.3%
because our secure forwarding directly fed inter-container
traffic into destination containers while bypassing the existing
container networks. Finally, we observed the overall perfor-
mance improvement with respect to the base case of 23.0%
and 25.4% for TCP and UDP packets when all BASTION secu-
rity functions were fully applied (R6). Table 2 also shows that
the overall throughput of BASTION was improved by 20.6%
compared to that of the base case within a host.

6.4 Performance: Cross-Host Deployment

Next, we measured the latencies and throughput for cross-host
container deployments. Figure 17 illustrates the measurement
results with different combinations of BASTION’s security ser-
vices. Compared to the intra-host measurements, the overall
latencies significantly increased due to physical link traver-
sal and tunneling overheads between hosts; thus, the latency
of the base case became 100.1µs and 91.5µs for TCP and
UDP packets respectively. Also, given the network impact,
the overhead caused by BASTION’s network-visibility service
receded (less than 1%). Next, when we introduced BASTION’s
traffic-visibility service, the latencies were reduced by 21.3%

USENIX Association 2020 USENIX Annual Technical Conference 91

34.50
40.02

34.40
41.50

31.92
38.52

6.04 6.61 4.28 4.83 5.87 6.16

0

10

20

30

40

50

Flannel Flannel-BN Weave Weave-BN Calico Calico-BN

Th
ro

ug
hp

ut
 (G

bp
s)

Intra-Host
Inter-Host

Figure 18: Throughput comparison with different types of
container networks. BN = (when BASTION is deployed).

on average because our secure forwarding directly passed
network packets from the source container to the destination
container via the external interfaces. Finally, when we applied
all security services, the latencies decreased by 17.7%, a sig-
nificant improvement compared to the base case (R6). These
latency improvements translated to a cross-host throughput
improvement of 12.9%, as shown in Table 2.

6.5 Performance: Networking Plugins
Lastly, we compared the throughput variations in different
types of container networks when BASTION is deployed. Fig-
ure 18 shows the TCP-stream throughputs between intra-host
and inter-host containers in three container networks (i.e.,
Flannel, WeaveNet, and Calico). From the results, we see
that the intra-host throughputs are improved 16.0% in the
Flannel network, 20.6% in the Weave network, and 20.7% in
the Calico network through BASTION. In terms of the inter-
host throughputs, we also see the performance improvements
(9.4%, 12.9%, and 4.9% respectively) through BASTION. In
sum, we ascertain the fact that BASTION can provide not only
further network isolation and security enforcement but also
better performance in various container networks.

7 Related Work

Container Security Analysis. There have been several ef-
forts [15, 16, 24, 32, 33, 53] that have analyzed the security
issues of container implementations. For example, Dua et
al. [15] analyzed various container implementations, conclud-
ing that they are yet insecure from the perspective of the
filesystem, network, and memory isolation. More specifically,
Jian et al. [24] demonstrated a Docker escape attack, which
allows an adversary to break out of the isolation of a Docker
container by exploiting a Linux kernel vulnerability. Another
research area [43, 45, 47, 48, 52] of container security focuses
on container images. Shu et al. [43] and Tak et al. [47,48] have
performed a large-scale vulnerability assessment of Docker
images on Docker Hub and shown that many images were
outdated and vulnerable. While these studies broadly point
out the security issues of containers, their goals differ from
our work. Rather, BASTION focuses on container networks.

Container Security and Isolation. Bacis et al. introduced
DockerPolicyModules (DPM) [4] that allow Docker image

maintainers to specify and ship SELinux policies within their
images. Sun et al. [46] proposed security namespaces that
enable containers to independently define security policies
and apply them to a limited scope of processes. SCONE [3]
presented a secure container mechanism for Docker contain-
ers by isolating them inside of SGX enclaves. LightVM [29]
wraps containers in lightweight virtual machines (VMs). X-
Containers [42] isolate containers that have the same con-
cerns together on top of separate library OSes. These ef-
forts are complementary to the network-focused objectives of
BASTION, and could be combined to deliver security services
that span both the system and networking services.

Container Network Security. Most container network so-
lutions [57, 58] have focused on container network perfor-
mance, with little attention to fine-grained policy enforce-
ment. A few recent studies investigated the security issues
in container networks. Bui [5], Comb et al. [9] and Chellad-
hurai et al. [6] analyzed Docker container security, finding
that Docker is vulnerable to ARP spoofing and MAC flooding
attacks in default settings. Our work extends these results by
identifying broader class of attacks, and we present system ex-
tensions that address these problems. With respect to security
policies for inter-container communications, while most solu-
tions [39,49,55] have adopted iptables, Cilium [7] provides
its own API-aware security mechanisms for L3/4/7 policies.
As we discussed previously, while Cilium pursues API-level
network security filtering to define and enforce both network-
and application-layer security policies, BASTION fundamen-
tally redesigns a network stack per container to construct an
inherently secure container networking system.

8 Conclusion

Containerization has emerged as a widely popular virtual-
ization technology that is being aggressively deployed into
large-scale enterprise and cloud environments. However, this
adoption could be stifled by critical security issues, which
remain understudied. We have analyzed the security chal-
lenges involved in the current container network stack, and
addressed these challenges by presenting BASTION, an intelli-
gent communication sandbox for securing container-network
communications, using Linux kernel features. In this work, we
raise awareness of several security problems that lie within
today’s container networks, and offer security services for
halting these problems in real-world container deployments.

Acknowledgement

We would like to thank all the anonymous reviewers of the
program committee for their valuable insights on the paper.
This work was partially funded by the National Science Foun-
dation (NSF) under Grant No. CNS-1514503.

92 2020 USENIX Annual Technical Conference USENIX Association

References

[1] AppArmor. https://gitlab.com/apparmor.

[2] Aqua. https://www.aquasec.com.

[3] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’keeffe, Mark L Stillwell,
et al. SCONE: Secure Linux Containers with Intel SGX.
In Proceedings of the Symposium on Operating Systems
Design and Implementation. USENIX, 2016.

[4] Enrico Bacis, Simone Mutti, Steven Capelli, and Stefano
Paraboschi. DockerPolicyModules: Mandatory Access
Control for Docker Containers. In Proceedings of the
Conference on Communications and Network Security.
IEEE, 2015.

[5] Thanh Bui. Analysis of Docker Security. arXiv preprint
arXiv:1501.02967, 2015.

[6] Jeeva Chelladhurai, Pethuru Raj Chelliah, and
Sathish Alampalayam Kumar. Securing Docker
Containers from Denial of Service (DoS) Attacks.
In Proceedings of the International Conference on
Services Computing. IEEE, 2016.

[7] Cilium. API-aware Networking and Security. https:
//cilium.io.

[8] CiscoCloud. HAProxy Docker Container. https://
hub.docker.com/r/ciscocloud/haproxy-consul.

[9] Theo Combe, Antony Martin, and Roberto Di Pietro.
To Docker or Not to Docker: A Security Perspective.
Proceedings of the Cloud Computing, 2016.

[10] CoreOS. Clair. https://coreos.com/clair/docs/
latest.

[11] CoreOS. Flannel. https://coreos.com/flannel.

[12] Docker. https://www.docker.com.

[13] Docker. Docker Hub. https://hub.docker.com.

[14] Docker. Docker Security Scanning. https:
//docs.docker.com/v17.12/docker-cloud/
builds/image-scan.

[15] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia.
Virtualization vs Containerization to support PaaS. In
Proceedings of the International Conference on Cloud
Engineering. IEEE, 2014.

[16] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios
Pendarakis, and Haining Wang. ContainerLeaks: Emerg-
ing Security Threats of Information Leakages in Con-
tainer Clouds. In Proceedings of the International Con-
ference on Dependable Systems and Networks. IEEE,
2017.

[17] Google. Containers at Google. https://cloud.
google.com/containers.

[18] Hewlett Packard Enterprise. Netperf. https://github.
com/HewlettPackard/netperf.

[19] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The eXpress data path: fast
programmable packet processing in the operating sys-
tem kernel. In Proceedings of the International Confer-
ence on emerging Networking EXperiments and Tech-
nologies. ACM, 2018.

[20] Instana. Stan’s Robot Shop - A Sample Microser-
vice Application. https://www.instana.com/
blog/stans-robot-shop-sample-microservice-
application.

[21] IO Visor Project. eXpress Data Path. https://www.
iovisor.org/technology/xdp.

[22] IO Visor Project. extended Berkeley Packet Filter.
https://www.iovisor.org/technology/ebpf.

[23] iPerf. Network bandwidth measurement tool. https:
//iperf.fr.

[24] Zhiqiang Jian and Long Chen. A Defense Method
against Docker Escape Attack. In Proceedings of the In-
ternational Conference on Cryptography, Security and
Privacy. ACM, 2017.

[25] Amit Joshi, Andrew Leung, Corin Dwyer, Fabio Kung,
Sargun Dhillon, Tomasz Bak, Andrew Spyker, and Tim
Bozarth. Titus, the Netflix container management plat-
form, is now open source. Netflix Technology Blog,
2018.

[26] Kubernetes. https://kubernetes.io.

[27] Linux Foundation cOLLABORATIVE Project. Open
vSwitch. https://www.openvswitch.org.

[28] Mace. Docker OpenVPN container. https://hub.
docker.com/r/mace/openvpn-as.

[29] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My VM is Lighter (and
Safer) than your Container. In Proceedings of the Sym-
posium on Operating Systems Principles. ACM, 2017.

USENIX Association 2020 USENIX Annual Technical Conference 93

https://gitlab.com/apparmor
https://www.aquasec.com
https://cilium.io
https://cilium.io
https://hub.docker.com/r/ciscocloud/haproxy-consul
https://hub.docker.com/r/ciscocloud/haproxy-consul
https://coreos.com/clair/docs/latest
https://coreos.com/clair/docs/latest
https://coreos.com/flannel
https://www.docker.com
https://hub.docker.com
https://docs.docker.com/v17.12/docker-cloud/builds/image-scan
https://docs.docker.com/v17.12/docker-cloud/builds/image-scan
https://docs.docker.com/v17.12/docker-cloud/builds/image-scan
https://cloud.google.com/containers
https://cloud.google.com/containers
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://www.instana.com/blog/stans-robot-shop-sample-microservice-application
https://www.instana.com/blog/stans-robot-shop-sample-microservice-application
https://www.instana.com/blog/stans-robot-shop-sample-microservice-application
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/ebpf
https://iperf.fr
https://iperf.fr
https://kubernetes.io
https://www.openvswitch.org
https://hub.docker.com/r/mace/openvpn-as
https://hub.docker.com/r/mace/openvpn-as

[30] MemSQL. Docker MemSQL container. https://hub.
docker.com/_/memsq.

[31] Microservice Architecture. https://microservices.
io/patterns/microservices.html.

[32] Amr A Mohallel, Julian M Bass, and Ali Dehghan-
taha. Experimenting with Docker: Linux Container
and BaseOS Attack Surfaces. In Proceedings of the
International Conference on Information Society. IEEE,
2016.

[33] NCCGroup. Abusing Privileged and Unprivileged
Linux Containers. https://www.nccgroup.trust/
uk/our-research/abusing-privileged-and-
unprivileged-linux-containers.

[34] Netfilter and IPtables. https://www.netfilter.org.

[35] Nginx. Nginx Docker Container. https://hub.
docker.com/_/nginx.

[36] RedHat. Atomic Scan - Container Vulnerability
Detection. https://developers.redhat.com/
blog/2016/05/02/introducing-atomic-scan-
container-vulnerability-detection.

[37] RedHat. Benchmarking nftables. https:
//developers.redhat.com/blog/2017/04/11/
benchmarking-nftables.

[38] Redis. Redis Docker Container. https://hub.docker.
com/_/redis.

[39] Romana. Romana v2.0. https://romana.io.

[40] Seccomp sandbox. http://man7.org/linux/man-
pages/man2/seccomp.2.html.

[41] SELinux Project. http://selinuxproject.org/
page/Main_Page.

[42] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bag-
dasaryan, Christina Delimitrou, Robbert Van Renesse,
and Hakim Weatherspoon. X-containers: Breaking
down barriers to improve performance and isolation
of cloud-native containers. In Proceedings of the Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. ACM,
2019.

[43] Rui Shu, Xiaohui Gu, and William Enck. A Study of
Security Vulnerabilities on Docker Hub. In Proceedings
of the Conference on Data and Application Security and
Privacy. ACM, 2017.

[44] StackRox. https://www.stackrox.com.

[45] StackRox. Breaking Bad: Detecting real world
container exploits. https://www.stackrox.com/
post/2018/03/breaking-bad-detecting-real-
world-container-exploits.

[46] Yuqiong Sun, David Safford, Mimi Zohar, Dimitrios
Pendarakis, Zhongshu Gu, and Trent Jaeger. Security
Namespace: Making Linux Security Frameworks Avail-
able to Containers. In Proceedings of the Security Sym-
posium. USENIX, 2018.

[47] Byungchul Tak, Canturk Isci, Sastry Duri, Nilton Bila,
Shripad Nadgowda, and James Doran. Understanding
Security Implications of Using Containers in the Cloud.
In Proceedings of the Annual Technical Conference.
USENIX, 2017.

[48] Byungchul Tak, Hyekyung Kim, Sahil Suneja, Canturk
Isci, and Prabhakar Kudva. Security Analysis of Con-
tainer Images Using Cloud Analytics Framework. In
International Conference on Web Services. Springer,
2018.

[49] Tigera. Project Calico. https://www.projectcalico.
org.

[50] Tripwire. State of Container Security Re-
port. https://www.tripwire.com/state-of-
security/devops/organizations-container-
security-incident.

[51] TwistLock. https://www.twistlock.com.

[52] TwistLock. A Busybox autocompletion vulnerability.
https://www.twistlock.com/2017/11/20/cve-
2017-16544-busybox-autocompletion-
vulnerability.

[53] TwistLock. Escaping Docker container using
waitid. https://www.twistlock.com/2017/12/
27/escaping-docker-container-using-waitid-
cve-2017-5123.

[54] Weaveworks. Sock Shop - A Microservices Demo Appli-
cation. https://microservices-demo.github.io.

[55] Weaveworks. Weave Net. https://www.weave.
works/oss/net.

[56] Yelp. How Yelp Runs Millions of Tests Every
Day. https://engineeringblog.yelp.com/2017/
04/how-yelp-runs-millions-of-tests-every-
day.html.

[57] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah,
Phillip Lopreiato, Gregoire Todeschi, KK Ramakrish-
nan, and Timothy Wood. OpenNetVM: A platform for
high performance network service chains. In Proceed-
ings of the workshop on Hot topics in Middleboxes and
Network Function Virtualization. ACM, 2016.

94 2020 USENIX Annual Technical Conference USENIX Association

https://hub.docker.com/_/memsq
https://hub.docker.com/_/memsq
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-unprivileged-linux-containers
https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-unprivileged-linux-containers
https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-unprivileged-linux-containers
https://www.netfilter.org
https://hub.docker.com/_/nginx
https://hub.docker.com/_/nginx
https://developers.redhat.com/blog/2016/05/02/introducing-atomic-scan-container-vulnerability-detection
https://developers.redhat.com/blog/2016/05/02/introducing-atomic-scan-container-vulnerability-detection
https://developers.redhat.com/blog/2016/05/02/introducing-atomic-scan-container-vulnerability-detection
https://developers.redhat.com/blog/2017/04/11/benchmarking-nftables
https://developers.redhat.com/blog/2017/04/11/benchmarking-nftables
https://developers.redhat.com/blog/2017/04/11/benchmarking-nftables
https://hub.docker.com/_/redis
https://hub.docker.com/_/redis
https://romana.io
http://man7.org/linux/man-pages/man2/seccomp.2.html
http://man7.org/linux/man-pages/man2/seccomp.2.html
http://selinuxproject.org/page/Main_Page
http://selinuxproject.org/page/Main_Page
https://www.stackrox.com
https://www.stackrox.com/post/2018/03/breaking-bad-detecting-real-world-container-exploits
https://www.stackrox.com/post/2018/03/breaking-bad-detecting-real-world-container-exploits
https://www.stackrox.com/post/2018/03/breaking-bad-detecting-real-world-container-exploits
https://www.projectcalico.org
https://www.projectcalico.org
https://www.tripwire.com/state-of-security/devops/organizations-container-security-incident
https://www.tripwire.com/state-of-security/devops/organizations-container-security-incident
https://www.tripwire.com/state-of-security/devops/organizations-container-security-incident
https://www.twistlock.com
https://www.twistlock.com/2017/11/20/cve-2017-16544-busybox-autocompletion-vulnerability
https://www.twistlock.com/2017/11/20/cve-2017-16544-busybox-autocompletion-vulnerability
https://www.twistlock.com/2017/11/20/cve-2017-16544-busybox-autocompletion-vulnerability
https://www.twistlock.com/2017/12/27/escaping-docker-container-using-waitid-cve-2017-5123
https://www.twistlock.com/2017/12/27/escaping-docker-container-using-waitid-cve-2017-5123
https://www.twistlock.com/2017/12/27/escaping-docker-container-using-waitid-cve-2017-5123
https://microservices-demo.github.io
https://www.weave.works/oss/net
https://www.weave.works/oss/net
https://engineeringblog.yelp.com/2017/04/how-yelp-runs-millions-of-tests-every-day.html
https://engineeringblog.yelp.com/2017/04/how-yelp-runs-millions-of-tests-every-day.html
https://engineeringblog.yelp.com/2017/04/how-yelp-runs-millions-of-tests-every-day.html

[58] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu,
Hongqiang Harry Liu, Matthew Rockett, Arvind
Krishnamurthy, and Thomas Anderson. Slim: OS
Kernel Support for a Low-Overhead Container Overlay

Network. In Proceedings in the Symposium on Net-
worked Systems Design and Implementation. USENIX,

2019.

USENIX Association 2020 USENIX Annual Technical Conference 95

Spool: Reliable Virtualized NVMe Storage Pool in Public Cloud Infrastructure

†‡Shuai Xue, †‡Shang Zhao, †‡Quan Chen, ‡Gang Deng, ‡Zheng Liu, ‡Jie Zhang, ‡Zhuo Song
‡Tao Ma, ‡Yong Yang, ‡Yanbo Zhou, ‡Keqiang Niu, ‡Sijie Sun, †Minyi Guo

†Department of Computer Science and Engineering, Shanghai Jiao Tong University
‡Alibaba Cloud

Abstract
Ensuring high reliability and availability of virtualized

NVMe storage systems is crucial for large-scale clouds. How-

ever, previous I/O virtualization systems only focus on im-

proving I/O performance and ignore the above challenges.

To this end, we propose Spool, a reliable NVMe virtualiza-

tion system. Spool has three key advantages: (1) It diagnoses

the device failure type and only replaces the NVMe devices

with actual media errors. Other data link errors are handled

through resetting the device controller, minimizing data loss

due to unnecessary device replacement. (2) It ensures the

consistency and correctness of the data when resetting the

controller and upgrading the storage virtualization system. (3)

It greatly reduces the restart time of the NVMe virtualization

system. The quick restart eliminates complaints from tenants

due to denial-of-service during a system upgrade and failure

recovery. Our evaluation shows that Spool provides reliable

storage services with performance loss smaller than 3%, and

it reduces restart time by 91% when compared with SPDK.

1 Introduction

In large-scale public clouds, the cores and memory are virtual-

ized and shared by multiple tenants. A single physical server

can serve up to 100 virtual machines (VMs) from either the

same or different tenants [41]. On the physical server, VMs

are managed with VM hypervisors, such as VMware [13],

KVM [25], and Xen [14]. The hypervisors are also responsi-

ble for handling the interactions between the guest operating

system in the VMs and the host operating system on the

physical server.

Virtualizing I/O devices so that tenants can share them has

attracted the attention of both industry and academia [15, 23,

31,33,40,42]. A guest VM mainly stores and accesses its data

on local devices through the I/O virtualization service with

high throughput and low latency. For instance, the Big Three

of cloud computing (Amazon EC2 I3 series [2], Azure Lsv2

series [3], and Alibaba ECS I2 series [1]) are providing the

VMM
NVMe SSD1

Host

Hardware
NVMe SSD1...

Guest3Guest2Guest1 ... Guest3Guest2Guest1 ...Guest

1

22 22

33

Figure 1: Virtualizing NVMe-based storage system.

next generation of storage optimized instances for workloads

that require high I/O throughput and low latency. These prod-

ucts are driven by local devices that eliminate the long latency

over the network [8]. At the same time, accessing data from

local devices increases the risk of a single point of failure as

the reliability of data is dependent on the reliability of the

host node.

Solid-state drives (SSDs) are often adopted as storage de-

vices due to their high throughput and low latency compared

to those of hard drives. In particular, the recent NVM Express

(NVMe) interface [9] further increases the I/O performance

of SSDs compared with the traditional SATA interface. Main-

stream storage virtualization solutions, such as Virtio [29],

support NVMe devices. Because serious performance degra-

dation is observed in I/O virtualization [22], userspace NVMe

driver in QEMU [43], Storage Performance Development

Kit (SPDK) [38], SPDK vhost-NVMe [39], and Mdev [27]

have been proposed to further improve the I/O throughput of

virtualized NVMe devices.

While prior researchers focused on improving the

read/write throughput and reducing the latency of virtual-

ized NVMe devices, they ignored the reliability problem al-

though it is equally important. In large-scale public clouds,

NVMe device failures occur due to heavy use and the need for

NVMe virtualization systems to be upgraded often to add new

features or apply new security patches. Emerging NVMe vir-

tualization systems fail to handle failure recovery and system

upgrades efficiently. To better explain this problem, Figure 1

shows an example where multiple tenants share a virtualized

NVMe storage system on a physical node.

USENIX Association 2020 USENIX Annual Technical Conference 97

With emerging virtualized storage systems, to fix an NVMe

device failure on a node, the administrator directly replaces

the failed device through either cold-plug or hot-plug. This

failure recovery mechanism results in unnecessary data loss

from the failed NVMe device. The statistics of our in-

production cloud show that only 6% of 300,000 device fail-

ures involve media errors that can only be resolved by replac-

ing with a new device. Other device failures are caused by

data link errors that can be resolved by resetting the NVMe de-

vice controller. Resetting an NVMe device’s controller would

not result in data loss from the device, and we can perform

the reset operation fast without removing the failed device

(� in Figure 1) and restarting the virtualization system (� in

Figure 1).

The standard procedure for upgrading the virtualized stor-

age system on a node is stopping the daemon process that runs

the system, updating the binary file, and then initializing the

whole software stack of the virtualization system again [17].

In this period, all the I/O devices on the node are inaccessible

due to the lack of an I/O virtualization system. Our measure-

ment shows that the software initialization procedure already

spends approximately 2.5 s probing all the I/O devices and

SPDK’s Environment Abstraction Layer (EAL) [38] (to be

discussed in detail in Section 5). This long downtime hurts

the user experience. A possible solution to reduce the impact

of the upgrade is migrating the VMs (and the corresponding

data) to other nodes [19, 41]. However, live VM migration

is too costly for regular backend updates, especially when

a large amount of backend requires updating, for example,

when applying an urgent security patch.

However, the data written by the Guest VMs may be lost

when resetting the controller or performing the upgrade (� in

Figure 1). The loss happens in the case that the data persisted

in the NVMe device (still in the submit queue) when the

reset operation or the process restart was performed. No prior

work on NVMe virtualization has considered such a reliability

problem.

To resolve the above problems, we propose Spool, a holistic

reliable virtualized NVMe storage system for public clouds

with local disks. Compared with prior NVMe virtualization

systems, Spool has the following key advantages: (1) It di-

agnoses the device failure type and only replaces the NVMe

devices with actual media errors. Other data link errors are

handled through resetting the controller, minimizing data loss

due to the unnecessary disk replacement. (2) It ensures the

consistency and correctness of the data when resetting the con-

troller and upgrading the virtualization system. (3) It greatly

reduces the restart time of the NVMe virtualization system

to approximately 100 milliseconds. The quick restart elimi-

nates complaints from tenants due to denial-of-service during

system upgrades and failure recovery.

To be more specific, Spool is comprised of a cross-process
journal for recovery, an isolation-based failure recovery com-
ponent, and a fast restart component. The cross-process jour-

LOW
PERFORMANCE

500 IOPS
2 ms LATENCY

HDD SATA NAND SSD NVMe NAND SSD NVMe V-NAND SSDHDD SATA NAND SSD NVMe NAND SSD NVMe V-NAND SSD

AFFORDABLE
PERFORMANCE

HIGH
PERFORMANCE

EXPTRME
PERFORMANCE

25 K IOPS
100 us LATENCY

400 K IOPS
100 us LATENCY

1,500 K IOPS
10 us LATENCY

Figure 2: Development of the hardware I/O performance.

nal resides in the shared memory and records the data status

from all the VMs. Even if Spool is restarted, the data in the

journal is accessible for the new Spool process. Furthermore,

an instruction merge is proposed to eliminate the inconsis-

tency of the journal with minimal overhead. An “instruction”

is a step within a transaction that updates the journal. The

failure recovery component diagnoses the NVMe device error.

Based on the error code, Spool either isolates and replaces

the devices that have media errors or resets the controller (us-

ing the journal for reliability). The restart component records

the runtime data structures of the current Spool process in

the cross-process journal. By reusing the data structures at

the restart for a system upgrade, we significantly reduce the

downtime.

To the best of our knowledge, Spool is the first holistic

virtualized system that is capable of handling hardware failure

and NVMe virtualization system upgrades reliably. Spool is

currently deployed in an in-production cloud that includes

more than 20,000 physical nodes and 200,000 NVMe-based

SSDs.

The main contributions of this paper are as follows.

• An instruction merge-based reliability mechanism.
The instruction merge eliminates data inconsistent with

the cross-process journal for recovery even if abnormal

exits occur.

• A restart optimization method. The method greatly re-

duces the downtime of Spool during the upgrade and

enables frequent system upgrades for adding new fea-

tures and applying patches without affecting the tenants.

• A hardware fault processing mechanism. The mecha-

nism diagnoses the device failure types and only replaces

the NVMe devices with media errors, minimizing data

loss due to unnecessary disk replacement.

Our experimental results show that Spool provides reliable

storage services based on a shared memory journal with less

than 3% performance loss, and it reduces the system restart

time by 91% when compared to SPDK.

2 Background and Motivation

In this section, we introduce the virtualized NVMe storage

systems and the motivation behind the design of Spool.

98 2020 USENIX Annual Technical Conference USENIX Association

Guset OS(VM)
Virtio Frontend

Virtio Frontend

Hypervisor(VMM)

Generic Block Layer

NVMe Device

Guset OS(VM)
Virtio Frontend

Virtio Frontend

Hypervisor(VMM)

Generic Block Layer

NVMe Device

(a) Virtio

Guset OS(VM)
Guest Driver

VFIO Driver

NVMe Device

Guset OS(VM)
Guest Driver

VFIO Driver

NVMe Device

(b) Passthrough based

on VFIO

Guset OS(VM)
Virtio Frontend

Hypervisor(VMM)

NVMe Device

Guset OS(VM)
Virtio Frontend

Hypervisor(VMM)

NVMe Device

VFIO Driver

Spool

SPDK Driver

(c) Spool based on

SPDK

Figure 3: Comparison of NVMe virtualization mechanisms.

2.1 Virtualized NVMe Storage Systems

The performance of an I/O device is impacted by both the stor-

age media and the I/O software stack. As shown in Figure 2,

Samsung NVMe SSD devices based on the latest V-NAND

technology have increased the IOPS to 1.5 million and re-

duced the latency to 10 microseconds. In this scenario, the tra-

ditional SATA (Serial ATA) [34] interface for storage devices

has become the performance bottleneck for such SSDs. Due

to the limitation of the Advanced Host Controller Interface

(AHCI) architectural design, the theoretical data transmis-

sion speed of the SATA interface is only 600 MB/s [34]. To

solve the I/O bottleneck brought by the interface, the NVMe

(Non-Volatile Memory Express) protocol [9] is designed and

developed using a PCIe interface instead of SATA. Currently,

NVMe supports deep queues with up to 64K commands to

devices within a single I/O queue [9].

In public clouds, instead of selling raw hardware infrastruc-

ture, cloud vendors typically offer virtualized infrastructure as

a service to maximize hardware resource utilization [16, 18].

Virtualization technology has shown its heroism, especially in

the birth of hardware virtualization technology, such as Intel

VT technology, which has greatly expanded the application

scope of virtualization technology. There are three parts to

the realization of virtualization: CPU virtualization, memory
virtualization, and I/O virtualization. Among them, I/O vir-

tualization requires more focus, and its performance directly

determines the performance of the guest VM [22, 30, 32].

There are generally three I/O virtualization mechanisms:

Virtio [29], VFIO [36], and SPDK-based userspace appli-

cations [38]. Figure 3 shows a comparison between Virtio,

VFIO, and our SPDK-based design, Spool.

As for Virtio, the frontend exists in a guest OS, while the

backend is implemented in a hypervisor, such as QEMU [12].

The frontend transfers I/O requests to the backend through the

virtqueue, implemented as ring buffers, including available
ring and used ring buffers. Available ring buffers could save

multiple I/O requests driven by the frontend and transfer them

to the backend for batch processing, which can improve the

efficiency of information exchange between the client and

Figure 4: Breakdown of NVMe hardware failures.

hypervisor. However, a problem remains that each I/O request

passes through the I/O stack twice for guest and host, whereas

in modern storage devices based on NAND flash, the through-

put and latency of VMs can only achieve 50% of the native

performance [27].

As for VFIO, VMs directly access an NVMe device

through passthrough, relying on hardware support (e.g., Intel

VT-d). A VM approaches near-native performance on both

latency and throughput with passthrough. However, a sin-

gle device can only be assigned to one guest client. On the

contrary, a host often runs multiple clients in a virtualized

environment. It is difficult to ensure that each client can get

a directly assigned device. Also, a large number of devices

are allocated to clients independently, increasing the num-

ber of hardware devices as well as the cost of the hardware

investment.

The Storage Performance Development Kit (SPDK) pro-

vides a set of tools and libraries for writing high-performance,

scalable, user-mode storage applications. The bedrock of

SPDK is a userspace, polled-mode, asynchronous, lockless

NVMe driver [38]. SPDK enables zero-copy, highly parallel

access direct to SSDs from a userspace application. User-

mode drivers help improve the stability of the host operating

system because they can only access the address space of the

processes running them, and a buggy implementation does

not cause system-wide problems. Spool is proposed based on

the SPDK NVMe driver but focuses on the reliability of the

virtualized storage system.

2.2 Reliability Problems

All the above I/O virtualization mechanisms ignore the high

availability and reliability problems, although they are equally

important in public clouds. To be more specific, state-of-the-

art SPDK-based applications result in unnecessary data loss
and poor availability when dealing with failed NVMe devices

and upgrading applications, respectively.

USENIX Association 2020 USENIX Annual Technical Conference 99

Figure 5: Breakdown of SPDK’s start time on two NVMe

SSDs.

2.2.1 Unnecessary Data Loss

If an NVMe device failure is detected on the hardware node,

the device is in the failed state. When a device failure oc-

curs on a node, all the VMs on the node are de-allocated and

migrated to a healthy node by a standard procedure [11, 41].

After that, all the data on the failing node are securely erased.

The victim tenants’ data are lost and the tenants must proac-

tively load their data on the new node again. With emerging

virtualized storage systems like SPDK, to fix an NVMe de-

vice failure on a node, the administrator directly replaces the

failed device through hot-plug.

The above method results in significant unnecessary data

loss because a single NVMe device may store data from mul-

tiple tenants, and NVMe devices have higher storage density,

more vulnerable components (e.g., a Flash Translation Layer),

and relatively higher failure rates. To demonstrate this prob-

lem in detail, we collected 300,000 NVMe device failures

in our in-production environment. Figure 4 shows the break-

down of device failures. Most of the failures, 36%, are due

to the NVMe controller failure error (NVMEFAILRESET).

BLKUPDATEERR is the block update error. LINKERR is

the PCIe interconnect link error. NAMESPACEERR is the

NVMe device’s namespace error. The pie chart shows that

only 6% of the hardware failures are due to real media errors

(MEDIAERR). Our investigation shows that most failures are

caused by errors in the data link layer (e.g., namespace error,

hardware link error, NVMe reset fail error), and these failures

can be resolved by simply resetting the NVMe controller.

In summary, the current failure recovery method with SPDK
results in significant unnecessary data loss.

2.2.2 Poor Availability

I/O virtualization systems tend to be upgraded frequently to

add new features or apply security patches. When upgrading

an I/O virtualization system, the key requirement is minimiz-

ing the I/O service downtime while ensuring the correctness

of the data. There are two methods available to cloud vendors:

VM live migration and live upgrade. Unfortunately, VM live

migration is too costly for regular backend updates, especially

when a large amount of backend requires updating, for exam-

Bypass Kernel

HARDWARENVMe

IO
worker

NVMe

KERNEL

NVMe

USERSPACE
Control
DataData
Control
Data

Restart
Optimization

SPDK User mode driver

Guest/QEMU

virtqueue

blk dev

Lvol Lvol Lvol
Storage Pool

Lvol Lvol Lvol
Storage Pool

 Failure Recovery

IO
worker

IO
worker

Spool

blk dev

block layer

virtio-blk driver
virtio-blk

device

Application

UNIX domain Socket

Journal

Figure 6: Design of Spool.

ple, when applying an urgent security patch, and for storing

optimized instances with local NVMe storage , VM live mi-

gration is not even supported by cloud vendors [11]. The only

way for us is to support the live upgrade and eliminate the

downtime as much as possible.

The I/O virtualization system must be restarted to complete

the upgrade. With SPDK, we need to initialize the DPDK

EAL library, probe the NVMe devices, and initialize the in-

ternal data structure of SPDK itself. SPDK spends a different

amount of time in the "probe devices" step when resetting the

controllers of different devices. The time required for each

step is shown in Figure 5. As can be observed from this fig-

ure, the service downtime caused by the live upgrade is up to

1,200 ms for Samsung PM963 SSD. For Intel P3600, the total

service downtime will be longer and lasts up to 2,500 ms.

In summary, the long downtime hurts the availability of the
I/O virtualization system.

2.3 Design Principle of Spool
To resolve the unnecessary data loss and poor availability

problems, we propose Spool, a holistic NVMe virtualization

system. Spool is designed based on three principles:

• It should be able to identify the causes of device fail-

ure and adopt different methods to handle each failure.

In this way, Spool eliminates most unnecessary NVMe

device replacement.

• It should be able to optimize the restart procedure during

a live upgrade so that the downtime can be minimized.

• It should be able to ensure that data access requests from

the guest OS are not lost during a controller reset and

live system upgrade.

3 Methodology of SPOOL

Figure 6 shows the design architecture of Spool, where the

blue components are new relative to SPDK. Based on Spool,

100 2020 USENIX Annual Technical Conference USENIX Association

the NVMe devices on a node are virtualized and organized

into a Storage Pool (hence, “Spool”). The virtualized NVMe

devices are divided into multiple logical volumes that are

managed through the buddy system [28]. The logical volumes

are exposed to the guest OS in the form of block devices.

As shown in the figure, the guest drivers communicate with

Spool over shared memory. Specifically, the I/O worker on

the host node polls I/O requests from the vhost virtqueue

of block devices and submits to the corresponding physical

devices. Spool is comprised of a cross-process journal, an

isolation-based failure recovery component, and a fast restart
component. Based on the three components, Spool ensures

high reliability and availability of the storage pool.

The cross-process journal records each I/O request and its

status to avoid data loss. The journal provides data access

across process lifecycles, even if Spool restarts for an upgrade

or exits abnormally. An instruction merge mechanism is pro-

posed to eliminate the possible inconsistency of the journal

itself due to an abnormal exit and to avoid the copy overhead

of atomic operations.

The restart component records the runtime data structures

of the current Spool process in shared memory. Spool catches

the termination signals including SIGTERM and SIGINT to

ensure the completion of all INFLIGHT I/O requests before

actual exit. Spool reuses the data structures at the restart,

thus significantly reducing the downtime spent on initializing

the Environment Abstraction Layer (EAL) and resetting the

device controller.

Spool diagnoses the device failure type online through self-

monitoring, analysis, and reporting technology (S.M.A.R.T.)

data [35]. For media errors, the failure recovery component

isolates the failed device so that the administrator can replace

the failed device through hot-plug. All the other NVMe de-

vices are unaffected by the failed device. For data link errors,

the recovery component resets the device’s controller directly,

thus minimizing data loss due to unnecessary disk replace-

ment.

We implement Spool based on the SPDK userspace NVMe

driver. Spool combines the advantages of Virtio and VFIO

(Figure 3). Furthermore, instead of implementing the actual

Virtio datapath, we offload the datapath from QEMU to Spool

adopting the vhost-user protocol. Adopting this protocol, the

guest OS directly interacts with Spool without QEMU’s inter-

vention. In addition, by adopting the SPDK userspace polled

driver specification [38], Spool eliminates the overhead of sys-

tem calls and data copies between kernel space and userspace

stacks on the host and achieves high I/O performance.

4 Reliable Cross-Process Journal

In this section, we describe the reliability problem in the Virtio

protocol that virtualizes the NVMe device, and we present

the design of a cross-process journal that improves reliability.

Available Ring

last_idx avail_idx

Available Ring

last_idx avail_idx

Available Ring

last_idx avail_idx

Available Ring

last_idx avail_idx

Used Ring

used_idx

Used Ring

used_idx

IO1 IO2 IO3 IO4IO1 IO2 IO3 IO4 IO2 IO3 IO4IO2 IO3 IO4IO1

Used Ring

used_idx

Used Ring

used_idx

IO2

Used Ring

used_idx

IO2

1 2

3
IO1

N
V

M
e D

evice
N

V
M

e D
evice

Figure 7: Design of Virtio block virtualization protocol.

4.1 Problem Statements
Figure 7 shows the design of the Virtio block driver that

handles I/O requests in the guest OS. The I/O requests are

processed in a producer-consumer model, where the guests

are producers and the storage virtualization system is the

consumer.

Specifically, the Virtio driver of each guest OS maintains

an available ring and a used ring to manage its I/O requests.

� When an I/O request is submitted, the descriptor chain of

the request is placed into the descriptor table. The descriptor

chain includes the metadata, buffer, and status of the request.

The metadata indicates the request type, request priority, and

the offset of read or write. The guest driver places the index

of the head of the descriptor chain into the next ring entry of

the available ring, and the available index of the available ring

(“avail_idx” in Figure 7) is increased. Then, the driver noti-

fies the storage virtualization system that there is a pending

I/O request. � Meanwhile, the storage virtualization system

running in the host obtains the several head indexes of the

pending I/O requests in the available ring, increases the last

index of the available ring (“last_idx” in Figure 7), and

submits the I/O requests to NVMe device hardware driver. �
Once a request is completed, the storage virtualization sys-

tem places the head index of the completed request in the

used ring and notifies the guest. Here, it is worth noting that

the available ring and used ring are allocated by the guest,

and the avail_idx is maintained by the guest, while both

the last_idx and used_idx are maintained by the storage

virtualization system.

The storage virtualization system may adopt either interrupt

or polling to obtain I/O requests from the guest OS. Polling

is able to fully utilize the advantages of NVMe devices to

reap significant performance benefits [27, 37, 38], and Spool

uses a dedicated I/O thread to poll I/O requests from the guest

and data from the NVMe device instead of interrupts. This

mechanism is implemented based on the SPDK userspace

NVMe driver.

In general, the storage virtualization system runs well with

the above procedure. However, if the storage virtualization

system restarts for an upgrade or the NVMe device controller

is reset, data loss may occur.

In the case of Figure 7, the storage virtualization system

obtains two I/O requests, IO1 and IO2. Then, the last_idx
is incremented from IO1 to IO3 in the available ring. If the

USENIX Association 2020 USENIX Annual Technical Conference 101

storage virtualization system restarts at this moment, the last

available index will be lost, which means that it does not

know where to proceed with I/O requests after the restart.

Even if the last available index persists, there is no way to

know whether the obtained IO1 and IO2 have been completed.

If we simply continue to process the next request based on

the last available index, the previously obtained incomplete

request will be lost.

When we reset the controller of an NVMe device, all the

admin and I/O queue pairs are cleared. Suppose that IO1 and

IO2 have been submitted but they are still in the device I/O

queue and have not been processed. Due to the lack of an

I/O request state, the submitted I/O request in the cleared I/O

queue pairs will never be checked as completion from the

NVMe device.

In summary, a journal is needed to maintain I/O consis-

tency.

4.2 Design of the Journal
We propose a cross-process journal of data that persists in

shared memory to solve the problem of data loss caused by

the storage virtualization system restart or device controller

reset. Spool persists the following data in the journal.

• Last available index (last_idx) of the available ring.

The index references to the starting descriptor index of

the latest request that the Virtio backend reads from the

available ring.

• The head index of each request in the available ring.

The index refers to the head of a descriptor chain in the

descriptor table.

With the last_idx in the journal, Spool knows which re-

quests have been processed after restarting for the upgrade and

is able to continue processing the remaining to-be-processed

requests. If a request’s starting descriptor index is referenced

between last_idx and avail_idx of the available ring, it is

a to-be-processed request.

Algorithm 1 Algorithm of cross-process journal

Require: head1: The head index of request in the available ring;
Require: head2: The head index of completed request from the driver;
Require: req[]: A ring queue to mark each I/O reqeust in the journal;
Require: aux: A temporary union variable to record multiple variables;
1: poll head1 from the available ring;
2: aux.state = START;
3: aux.last_idx = journal->last_idx+1;
4: aux.last_req_head = head1;
5: *(volatile uint64_t *)&journal->val = *(volatile uint64_t *)&aux.val;
6: req[head1] = INFLIGHT;
7: journal->state = FINISHED;
8: submit I/O request to driver;
9: poll head2 completion;

10: journal->usd_idx++;
11: req[head2] = DONE;
12: put head2 to the used ring, may goto 10 or 13;
13: update used_index of the used vring with usd_idx of journal;
14: req[head2] = NONE;

Valid
Data

State
Valid
Data

State

Write memory barrier

Valid
Data

State
Valid
Data

State

last_avail_idx++
last_req_head=head

req[head]=INFLIGHT

Valid
Data

State

last_avail_idx++
last_req_head=head

req[head]=INFLIGHT

T0: Init Phase T1: Instrs Execution T2: Valid Phase

InvalidInvalid

Valid
Data

State
Valid
Data

State

last_avail_idx++
last_req_head=head

req[head]=INFLIGHT

Valid
Data

State

last_avail_idx++
last_req_head=head

req[head]=INFLIGHT

Memory Memory Memory

ValidValid

Figure 8: Transactional execution of multiple memory access

instructions.

At the same time, when processing an I/O request in Spool,

the request is given one of three states: INFLIGHT, DONE,

or NONE. The cross-process journal uses Algorithm 1 to

manage the I/O requests. To be more specific, when Spool

gets a request from the frontend, it persists the head index

of this request and marks the request as INFLIGHT, updates

last_idx, and submits the request to the hardware driver.

Once the I/O request completes, Spool updates the persisted

used_idx in the journal and marks the request as DONE. Af-

ter that, Spool returns the result of this request to the frontend,

updates the used index of the frontend, and marks the request

as NONE.

Adopting this method, if Spool restarts, the new Spool

process can find out which request was not completed before

the restart. In this way, the new Spool process resubmits the

requests in the INFLIGHT state.

4.3 Merging Journal Update Instructions
An intuitive idea is to use shared memory as a journal to

save this information with low latency overhead. However, it

is challenging to ensure the consistency of the journal itself

because Spool must update the journal multiple times during

the processing of an I/O request.

Specifically, the process of each I/O request in Spool in-

volves updating the last available index and marking the state

of the request as INFLIGHT. During the processing, if Spool

restarts or the controller is reset between the first two instruc-

tions, this request is lost.

If we can guarantee that instruction 3 (increase last_idx)

and instruction 6 (change the request’s status) in Algorithm 1

are executed in an atomic manner, the request loss problem

can be resolved. However, only reading or writing a quadword

aligned on a 64-bit boundary is guaranteed to be carried out

atomically [7] in the memory, and the two instructions are

not atomic when operating on the cross-process journal that

resides in the memory.

To resolve the above problem, we design a multiple-

instruction transaction model to guarantee atomic execution

of the two instructions. As shown in Figure 8, each transaction

consists of three phases. In T0, the init phase, we make a copy

of the variable to be modified, such as last_idx, and in T1,

102 2020 USENIX Annual Technical Conference USENIX Association

union atomic_aux {
 struct {

uint8_t pad0;
uint8_t state;
uint16_t last_avail_idx;
uint16_t last_req_head;
uint16_t pad1;

 };
 uint64_t val;
};

val

pad0
state

last_avail_idx

last_req_head

pad1

val

pad0
state

last_avail_idx

last_req_head

pad1 8 bit

Figure 9: Aux data structure that enables the update of multi-

ple indexes using a single instruction.

the transaction will be in the START state. After all the in-

structions complete, the transaction will be in the FINISHED

state in T2. Because the state is guaranteed to be carried out

atomically, once the last available index updates, the related

request is recorded as INFLIGHT in the journal. If any failure

occurs in one transaction, we rollback the transaction to erase

all data modifications with the copy.

As shown in Figure 9, we also design an auxiliary data

structure carefully to eliminate the overhead of making a copy

in T0 using a union type. The state, last available index, and

head index of the related request are padding to 64 bits and

a union memory block with a 64-bit value. We could update

these three records within one instruction in Algorithm 1

step 5. This is a valuable trick to efficiently maintain journal

consistency.

4.4 Recovering I/O Requests from Journal
Spool uses Algorithm 2 to recover the unprocessed I/O re-

quests before the restart. With multiple journal transactions

and an auxiliary structure, the new Spool process before the

restart only needs to check the state and decide whether to

redo the transactions or not.

Algorithm 2 Algorithm for recovering I/O requests

1: if (state == START) {
2: req[last_get_req_head] = INFLIGHT;
3: state = FINISHED;
4: }
5: jstate = (last_used_idx == used_idx) ? NONE : INFLIGHT
6: change all requests with done status to jstate;
7:
8: last_used_idx = used_idx;
9: submit all requests marked as INFLIGHT;

The recovery algorithm works based on the value of the

used index of vring and the last used index in the journal. If

they are equal, Spool may crash after step 13 in Algorithm 1,

but we do not know whether step 14 completes. Therefore,

Spool tries to execute step 14 again and changes the states

of the DONE requests to NONE. Otherwise, the request’s

process may be broken between steps 10 and 12. In this

case, we do not know whether the request in the state DONE

has been submitted to the frontend. To avoid losing any I/O

request, we roll back the status of all the DONE requests to

INFLIGHT. Because the frontend always has correct data,

rte_config
rte_hugepageinfo

create attach

mmaped files

SpoolSpool

Local
Pointer

Spool

Local
Pointer

SpoolSpool

Local
Pointer

Spool

Local
Pointer

nvme_ctrlr

First start Restart

Figure 10: Boosting the restart of Spool by reusing the stable

configurations.

we synchronize the last used index in the journal with the

frontend used index. In the last step, Spool resubmits all the

requests that are in the INFLIGHT state.

Now, in Spool, the size of a single journal is only 368 bytes

because it only records the metadata and the indexes of the

requests in the available ring. Note that the above algorithm

does not take precautions against the journal wrapping around;

this is not possible because the journal is the same size as

the available ring, so the guest driver will prevent such a

condition.

5 Optimizing Spool Restart

As shown in Figure 5, when restarting a storage virtualiza-

tion system, it initializes the EAL (Environment Abstraction

Layer) in the DPDK driver and probes the NVMe devices in

the SPDK driver on the host node. The relatively long restart

time (ranging from 450 ms to 2,500 ms) hurts the availabil-

ity as the whole storage system is out of service before the

restart completes. In this section, we describe the method of

optimizing the restart procedure in Spool.

5.1 Reusing Stable Configurations

During EAL initialization, the DPDK driver reserves all the

memory in an IOVA-contiguous manner and sets up the huge

pages for memory usage, such as I/O request buffers that

are shared by the host userspace datapath and the physical

device to perform DMA transactions. To be more specific,

DPDK maps all the available huge pages to the process ad-

dress space of DPDK, reads “/proc/self/pagemap” from

the host OS to find the corresponding physical addresses of

the huge pages, and sorts and merges the physical addresses

into large contiguous chunks. After that, DPDK uses the phys-

ically continuous huge page chunks as memory segments.

This design choice enables better hardware data prefetching

and results in higher communication speed. Our experiment

shows that the whole time spent on obtaining the physical

memory layout information of huge pages is approximately

800 milliseconds, accounting for 70.9% of the total down

time for a Samsung PM963 NVMe device. In our cloud, all

the SSDs are restarted by more than 800,000 times in total

USENIX Association 2020 USENIX Annual Technical Conference 103

in a single year. More restarts are required to periodically

update the SPDK driver or apply new security patches. The

long EAL initialization results in a long restart time and poor

tenant experience.

Based on the above findings, we optimize the initialization

steps of Spool. Specifically, the new Spool process after restart

reuses the memory layout information from the current Spool

process. Figure 10 shows the way we enable memory layout

reuse. As shown in the figure, after the first startup of Spool,

we store the related information (e.g., the huge pages in use

and the virtual addresses of the huge pages) in the memory-

mapped files that reside in the memory. If Spool restarts, it

directly obtains the required information from the memory-

mapped files in the memory with short latency and oper-

ates normally. Specifically, the “rte_config” file stores the

global runtime configurations, and the “ret_hugepageinfo”

file stores the memory layout information related to the huge

page chunks used by Spool.

The above design does not guarantee that the new Spool

after the restart will still use the largest continuous physical

memory. This is because other processes may release huge

pages and form larger continuous physical memory chunks.

This design choice eliminates the long scan time of huge

pages and does not degrade the performance of Spool.

5.2 Skipping Controller Reset
When probing the NVMe devices during the restart of the

SPDK driver, more than 90% of the time is spent resetting

the controller of NVMe devices. On an Intel P3600 SSD,

the NVMe probe stage takes more than 1500 milliseconds

(Figure 5). During the reset of the controller, SPDK frees the

current admin queue, the I/O queue1 in the controller, and

creates them again for the controller after the reset.

Compared with SPDK, Spool skips the controller reset

step during restart and reuses the data structures of the con-

troller. This design is valid because the restart of Spool is

not caused by media errors or data link errors. In this case,

the data structures of the NVMe device controllers are not

broken. To achieve reuse, Spool saves the NVMe device

controller-related information in the memory-mapped file

“nvme_ctrlr”, as shown in Figure 10). After Spool restarts,

it reuses the data of the device controller.

The challenging part here is that the context of the I/O

request has disappeared with the exit of Spool. Therefore, we

need to ensure the admin queue and I/O queue are completely

clean.

In general, various signals are used to terminate one run-

ning process for an OS, such as SIGTERM, SIGINT, and

SIGKILL. The default action for all of these signals is to

cause the process to terminate. To gracefully terminate, we

1There are two types of commands in NVMe: Admin Commands are sent

to Admin Submission and Completion Queue. I/O Commands are sent to I/O

Submission and Completion Queues [9].

Devices

RESET

Event
Handle

IO hang

Storage Pool

REPORT

REMOVE DEVICE

S.M.A.R.T
Diagnosis

Sigbus ErrorHD Failure
Isolation

HARDWARE

SPDK DriverHotplug Events

ADD DEVICE

DevOps

Figure 11: Handling hardware failures in different ways.

catch the termination signals including SIGTERM and SIG-
INT to ensure the completion of all INFLIGHT I/O requests

before actually terminating. In that case, we could skip the

reset operation after restart. Regarding the SIGKILL signal,

which could not be handled in process or abnormal exit, we

reset the controller after restart as usual.

6 Hardware Fault Diagnosis and Processing

Traditionally, any NVMe device hardware failure causes the

whole machine to be offline and repaired, and all VMs on the

failing node need to be proactively migrated to a healthy node.

With emerging virtualized storage systems like SPDK, to fix

an NVMe device failure on a node, the administrator directly

replaces the failed device through hot-plug. On one hand, this

causes data loss for users, and on the other hand, it increases

operating costs.

To minimize data loss and reduce operating costs, we have

implemented a fault diagnosis to identify the type of hardware

fault and effectively avoid unnecessary hardware replacement.

6.1 Handling Hardware Failures

In large-scale cloud-based productions, hardware failures are

frequent and may cause SIGBUS error and I/O hang, as shown

in Figure 11.

Spool adopts the SPDK userspace NVMe driver to access

a local NVMe PCIe SSD. Base address register (BAR) space

for the NVMe SSD will be mapped into the user process

through VFIO, which allows the driver to perform MMIO

directly. The BAR space will be accessed by Spool while

guest VMs send I/Os to the devices. However, the BAR space

may become invalid while the device fails or is hot-removed.

At this time, it will trigger SIGBUS error and cause the host

process to crash if guest VMs still send I/O requests to the

failed device of the host.

To improve reliability, a SIGBUS handler is registered into

Spool. Once guest VMs send I/O requests to failed devices

and access illegal BAR space, the handler will capture the

SIGBUS error and remap the invalid BAR space to a dummy

virtual address so that the SIGBUS error will not be triggered

104 2020 USENIX Annual Technical Conference USENIX Association

Table 1: Experimental configuration

Host configuration
CPU & Memory 2x E5-2682v4 @2.5GHz; 128GB DDR4 Memory

NVMe devices 2 Samsung PM963 3.84TB SSDs

OS info CentOS 7 (kernel verison 3.10.327)

Guest OS configuration
CPU & Memory 4 vCPU; 8 GB

OS info CentOS 7 (kernel verison 3.10.327)

again. Then, it sets the NVMe controller state to failure and

fails all the internal requests in NVMe qpairs of the failed

device.

6.2 Failure Model
The S.M.A.R.T. diagnosis collects and analyzes S.M.A.R.T.

data to identify the failure type. S.M.A.R.T. data is disk-

level sensor data provided by the firmware of the disk driver,

including smart-log, expanded smart-log, and error-log, which

can be used to analyze internal SSD errors.

Once a hardware media error is verified, Spool proactively

fails the submitted I/O requests and returns I/O errors. After

that, all the subsequent I/O requests to the failed device will re-

turn errors to guest VMs directly. Meanwhile, the S.M.A.R.T.

diagnosis will send a report to DevOps. The hot-plug feature

in the driver layer of SPDK is utilized in Spool; hence, the

failed device can be replaced directly.

For the other hardware errors, such as a data link layer

failure, diagnosis informs Spool to reset the controller. Dur-

ing the reset process, the I/O requests from the guest VMs

hang. After the device is fixed, the INFLIGHT requests in the

journal are resubmitted automatically.

7 Evaluation of Spool

In this section, we evaluate the performance of Spool in re-

solving hardware failure and supporting live upgrades. We

first describe the experimental setup. Then, we evaluate the

reliability of Spool in fixing an NVMe device’s hardware

failure without affecting other devices and correctly tolerat-

ing system upgrades at random times. After that, we show

the effectiveness of Spool in reducing the system restart time,

followed by a discussion on the impact of Spool on the I/O per-

formance and the extra overhead caused by the cross-process

journal. Lastly, we discuss the effectiveness of Spool on an

in-production large-scale public cloud.

7.1 Experimental Setup
We evaluated Spool on a server equipped with two Intel Xeon

E5-2682 processors operating at 2.5 GHz with 128 GB mem-

ory. For the NVMe devices, we adopted a mainstream SSD

device: Samsung PM963 NVMe SSD. Table 1 summarizes

the hardware and software specifications of the experimental

platform.

For extensive evaluation, we use the Flexible I/O tester

(FIO) [6] as our performance and reliability evaluation bench-

mark. FIO is a typical I/O tool meant to be used both for

benchmark and stress/hardware verification and is widely

used in research and industry. When evaluating the I/O per-

formance, we use different parameters, as shown in Table 2,

to demonstrate metrics, including IOPS and average latency

recommended by Intel [5] and Alibaba [4]. To emulate the

real-system cloud scenario, we split each NVMe SSD into

three partitions (each partition was 100 GB) and allocated

each partition to an individual VM.

We used libaio (Linux-native asynchronous I/O facil-

ity) [21] as the FIO load generation engine. Table 2 lists

the generated FIO test cases. To obtain accurate performance,

we tested raw SSDs without any file system.

Table 2: FIO test cases

Tested metrics Test cases FIO Configuration (bs, rw, iodepth, numjobs)

Bandwidth
Read (128K, read, 128, 1)
Write (128K, write, 128, 1)

IOPS

Randread (4K, randread, 32, 4)
Mixread (4K, randread 70%, 32, 4)
Mixwrite (4K, randwrite 30%, 32, 4)
Randwrite (4K, randwrite, 32, 4)

Average
Latency

Randread (4K, randread, 1, 1)
Randwrite (4K, randwrite, 1, 1)
Read (4K, read, 1, 1)
Write (4K, write, 1, 1)

7.2 Reliability of Handling Hardware Failure
When an NVMe device suffers from hardware failure, Spool

isolates the failed device and performs device replacement

or controller reset accordingly. When handling such failure,

Spool should not affect the I/O operations on other devices of

the same node, and the VMs that are using the failed device

should receive I/O errors instead of exiting abnormally.

We designed an experiment to evaluate Spool in the above

scenario. In the experiment, we launched two VMs on a hard-

ware node equipped with two NVMe devices and configured

the two VMs to uses different NVMe devices in Spool. The

two VMs randomly read data from NVMe devices in the

beginning, and we manually removed an NVMe device and

observed the behavior of the two VMs.

Figure 12 presents the I/O performance of the two VMs

when the NVMe device (“SSD2”) was hot-removed at time

80 s. The hot remove was performed by writing a non-zero

value to “/sys/bus/pci/devices/.../remove”. Observed

from this figure, the I/O performance of VM1 that uses the

NVMe device SSD1 is not affected when SSD2 is removed.

Meanwhile, VM2 does not exit abnormally after SSD2 is

removed. Once a new SSD device replaces the failed SSD2

or the controller of SSD2 is reset correctly at time 95 s, VM2

is able to directly use SSD2 without any user interference.

Spool can successfully handle the above hardware failure

because it catches the hardware hot-plug event and diagnoses

the device failure type first. Hardware failures are handled

USENIX Association 2020 USENIX Annual Technical Conference 105

Figure 12: Handling hardware failure with Spool.

Figure 13: Data consistency at live upgrade with Spool.

in two ways: media errors are solved by hot-plugging a new

SSD, and then the storage service automatically recovers,

where the related logical devices are automatically mapped to

new devices, while data link failure is handled by controller

reset instead of replacing a SSD. On the contrary, if the tradi-

tional SPDK is used to manage SSDs, the hardware failure

can only be solved by hot-plugging new devices, resulting in

unnecessary data loss, and the storage service of SPDK needs

to be reset manually for recovery.

7.3 Reliability of Handling Random Upgrades

To validate the reliability of Spool in handling upgrades with-

out resulting in data loss, we designed an experiment that

restarts purposely stops and starts and randomly kills and
restarts Spool. In the experiment, we relied on the data ver-

ification function in FIO to check the data consistency. By

enabling the data verification function, FIO verifies the file

contents after writing 10 blocks contiguously with crc32 and

reports whether any data corruption occurred or not. If FIO

runs completely without errors, data consistency is verified.

Figure 13 shows the read and write performance to the SSD

when we restart on purpose, stop and start, and randomly

kill and restart Spool at time 10 s, 20 s, and 35 s. As can

be observed from the figure, the I/O operations to the SSD

complete correctly with Spool, even if Spool is directly killed

and restarted for an upgrade.

Spool can guarantee data consistency during upgrades due

to the cross-process journal. The journal persists the current

states of all the NVMe devices. Whenever Spool is restarted,

it is able to recover the states before the restart and continue to

complete the unprocessed I/O requests. On the contrary, with

SPDK, there is no mechanism to guarantee data consistency

for INFLIGHT I/Os.

Figure 14: Restart times of Spool and SPDK.

7.4 Reducing Restart Time

Observed from Figure 13, the downtime due to the restart is

short with Spool. In more detail, Figure 14 shows the restart

time breakdown of Spool and SPDK.

As can be observed from this figure, Spool significantly

reduces the total restart time from 1,218 ms to 115 ms on a

Samsung PM963 SSD. This significant restart time reduction

originates from the reduction of EAL initialization time and

the NVMe probe time.

SPDK suffers from a long EAL initialization time and a

long NVMe probe time because it initializes the EAL and re-

sets the controller of the device during probing at each startup.

By reusing the previous memory layout information, Spool

minimizes the EAL initialization time. And, by skipping re-

setting the device controller, Spool reduces the NVMe probe

time.

7.5 I/O Performance of Spool

It is crucial to ensure high I/O performance (i.e., high IOPS

and low latency) when guaranteeing reliability. In this subsec-

tion, we report the I/O performance of NVMe devices with

Spool in two cases: an NVMe device is only allocated to a

single VM, and an NVMe device is shared by multiple VMs.

7.5.1 Case 1: Single VM Performance

Figure 15 presents the data access latency and IOPS to an

SSD when it is virtualized with Virtio, SPDK, and Spool.

In the figure, “native” shows the performance of the SSD

measured on the host node directly; “SPDK vhost-blk” and

“SPDK vhost-scsi” show the performance of the SSD if SPDK

is used as the I/O virtualization system and the SSD is treated

as a block device or a SCSI device, respectively.

As can be observed from Figure 15, all the I/O virtualiza-

tion systems result in longer data access latency compared

with the native access due to extra layers in the virtualization

system. Meanwhile, Spool achieves similar data access la-

tency to SPDK. From the IOPS aspect, the IOPS of Randread
with Spool is 2.54x higher than Virtio and even slightly better

than the native bare metal. As mentioned in Section4, Spool

uses polling instead of interrupt to monitor the I/O requests.

Polling saves the expense of invoking the kernel interrupt

handler and eliminates context switching. These results are

consistent with prior work [27].

106 2020 USENIX Annual Technical Conference USENIX Association

(a) Average latency (b) IOPS

Figure 15: Average data access latency and IOPS of an NVMe

SSD when it is used by a single VM.

(a) Average latency (b) IOPS

Figure 16: Average data access latency and IOPS of an NVMe

SSD when it is shared by multiple VMs.

Compared with SPDK vhost-blk, the performance of our

implementation is almost the same. Because the SPDK vhost-

blk software stack is thinner than SPDK vhost-scsi, the IOPS

with SPDK vhost-scsi is lower than that with Spool.

7.5.2 Case 2: Scaling to Multiple VMs

In this experiment, we partition an SSD into three logic disks

and assign each logic disk to an individual VM. This exper-

iment tests the effectiveness of Spool in handling multiple

VMs on an NVMe device.

Figure 16 shows the IOPS and data access latency when

three VMs share an NVMe device, and each result is the

sum of those of all VMs. For the latency test, we ran each

benchmark 10 times and report the average latency for each

benchmark. As can be observed from this figure, Spool does

not degrade the I/O performance of all the benchmarks com-

pared with SPDK vhost-blk and SPDK vhost-scsi. Specifi-

cally, Spool improves the IOPS of Randread by 13% com-

pared with SPDK vhost-blk, which reduces the average data

access latency of Randread by 54% to 55% compared with

SPDK vhost-blk and SPDK vhost-scsi, respectively.

Besides, we can see that the SSD device achieves similar

IOPS when the SSD is used by a single VM and three VMs,

and we can see the average data access by comparing Fig-

ure 15(b) and Figure 16(b). The data access latency of the

benchmarks when the SSD is shared by three VMs is three

times that of case 1. This is reasonable because the backend

I/O load pressure increases linearly with the number of VMs,

so the total latency of the three VMs increases. While the I/O

load pressure of one VM has reached the throughput limit

of the Samsung PM963 specification [10], the total IOPS

of three VMs remains unchanged. The I/O performance of

Spool is slightly better than that of SPDK because Spool and

(a) Average latency (b) IOPS

Figure 17: Overhead of the cross-process journal.

SPDK use different logical volume management mechanisms.

Specifically, Spool uses the buddy system to manage logical

volumes, while SPDK uses Blobstore.

7.6 Overhead of the Cross-Process Journal
To measure the overhead of the cross-process journal, we

implement a Spool variation, Spool-NoJ that disables the

cross-process journal. Figure 17 shows the data access latency

and the IOPS of the SSD with Spool and Spool-NoJ.

As shown in Figure 17, Spool-NoJ and Spool result in

similar data access latency and IOPS. Compared with Spool-

NoJ, Spool increases the average data access latency no more

than 3%. Meanwhile, Spool reduces the IOPS by less than

0.76% compared with Spool-NoJ. The extra overhead caused

by the cross-process journal in terms of average latency and

IOPS throughput is negligible.

7.7 Deployment on an In-production Cloud
We currently deploy Spool in 210 clusters with approxi-

mately 20,000 physical machines equipped with approxi-

mately 200,000 NVMe SSDs.

On the cloud supported by Spool, we built a Platform-as-a-

Service cloud(ALI I2 series) that provides low latency, high

random IOPS, and high throughput I/O support. The maxi-

mum IOPS of single disk is 50% higher than that of competi-

tive products and the maximum IOPS of a largest specification

instance is 51% higher than that of the competitive products,

as shown in Figure 18. The in-production cloud hosts Cas-

sandra, MongoDB, Cloudera, and Redis. They are ideal for

Big Data, SQL, NoSQL databases, data warehousing, and

large transactional databases. Recently, the instance resources

of local SSD disks have helped OceanBase break the world

record for TPC-C benchmark performance test maintained by

Oracle for 9 years and becoming an important milestone in

the evolution history of global databases.

A holistic fine-grain monitoring system is crucial for clouds.

While the monitoring system is able to diagnose media errors

and other SSD failures, Spool handles the failures in different

ways. Our statistics show that the current hardware failure

rate is approximately 1.2% over a whole year. Throughout

one year, approximately 2,400 out of 200,000 SSDs suffer

from media errors. The media error is due to either media

damage or life depletion. From the system upgrade aspect,

USENIX Association 2020 USENIX Annual Technical Conference 107

(a) A single disk (b) A single instance

Figure 18: Maximum read IOPS compared with AWS and

Azure.

Figure 19: Restart time of Spool during a live upgrade.

we release a new version of Spool every six months. In total,

we upgrade Spool on more than 40,000 physical machines

every year. The purpose of the new version is to deal with two

issues: 1) releasing new features and 2) fixing online stability

during the operation and maintenance phase. Most of the new

features are related to performance, such as adding support

for multiple queues, optimizing memory DMA operation, and

optimizing memory pools.

Figure 19 shows the restart time of some selected machines

in a live upgrade in production. The x-axis is the ID of the

physical node. Due to historical reasons, Spool in the pro-

duction environment is based on the earlier version of the

DPDK driver, and the initialization memory requires 1,172

ms, accounting for 70% of the initialization of EAL (1,792

ms in total), which is almost optimized. However, the rest

of the initialization of the EAL is still 550 ms, and the total

upgrade time for 95% of the machines is within 654 ms. We

are working on updating the DPDK driver for Spool.

8 Related Work

There has been a lot of work concentrating on NVMe virtu-

alization and optimizing storage I/O stacks for modern fast

storage devices(e.g., NVMe SSDs).

Kim et al. [22] analyzed the overheads of random I/O over

storage devices in detail and mainly focused on optimizing

the I/O path by eliminating the overhead of user-level threads,

bypassing the 4KB aligned I/O routine and enhancing the

interrupt delivery delay in QEMU. In QEMU/KVM forum

2017, Zheng et al. [43] implemented a userspace NVMe driver

in QEMU through VFIO to accelerate the virtio-blk in a guest

OS at the cost of device sharing. Peng et al. [27] discussed

the importance of polling for NVMe virtualization and took

advantage of polling to achieve extreme I/O performance

while each polling thread brings 100% usage of 3 cores.

Virtio [12] is a de facto standard for para-virtualized driver

specifications including virtio-blk and virtio-scsi, which de-

fines the common mechanisms for virtual device discovery

and layouts. However, each I/O request passes through the

I/O stack twice for guest and host, causing great loss of I/O

performance. Then, a vhost acceleration method is proposed

to accelerate virtio-scsi or virtio-blk provided by the storage

performance development kit (SPDK) [38], such as kernel

vhost-scsi, userspace vhost-scsi, and vhost-blk.

While local SSDs provide higher data access bandwidth

and lower latency, storage disaggregation (e.g., ReFlex [24],

NVMe-over-Fabrics [20], [23]) enables flexible scaling and

high utilization of Flash capacity and IOPS at the cost of

interconnecting latencies over a network. The bandwidth of

NIC is the bottleneck to saturate the bandwidth of multi-

ple disks. Two NVMe SSDs may saturate the bandwidth of

emerging NIC (100GbE). Meanwhile, the upgrade of cloud

services with minimal downtime has also been widely studied.

Neamtiu et al. [26] highlighted challenges and opportunities

for upgrades to the cloud. Clark et al. [19] proposed a live

migration mechanism to temporarily move VMs to a backup

server, upgrade the system, and then moves the VMs back.

Zhang et al. [41] proposed Orthus to live upgrade the VMM

without interrupting customer VMs and significantly reduce

the total migration time and downtime. However, Orthus only

focuses on KVM and QEMU and ignores the backend ser-

vices.

9 Conclusion

This paper presented Spool, a holistic virtualized storage sys-

tem that is capable of handling hardware failure and the

NVMe virtualization system upgrades reliably. Spool sig-

nificantly reduces the restart time by 91% on a Samsung

PM963 SSD by reusing the data structures at the restart for

system upgrades. Compared with emerging virtualized stor-

age systems such as SPDK, Spool supports live upgrades

and guarantees data consistency with a shared memory-based

journal at any time. Moreover, Spool diagnoses device fail-

ure type instead of hot-plugging directly and eliminates most

unnecessary NVMe device replacement.

Acknowledgement

This work is partially sponsored by the National R&D Pro-

gram of China (No. 2018YFB1004800), the National Natural

Science Foundation of China (NSFC) (61632017, 61772480,

61872240, 61832006, 61702328). Quan Chen and Minyi Guo

are the corresponding authors. We thank Lingjun Zhu for his

help in the experiments. And we also thank Mike Mesnier for

shepherding our manuscript.

108 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Alibaba cloud instance family with local

ssds. https://www.alibabacloud.com/
help/doc-detail/25378.htm?spm=
a2c63.p38356.879954.7.158f775aPotRZi#i2.

[2] Amazon ec2 i3 instances. https://aws.amazon.com/
ec2/instance-types/i3/.

[3] Azure lsv2-series. https://docs.microsoft.com/
en-us/azure/virtual-machines/linux/sizes-
storage#lsv2-series.

[4] Block storage performance. https:
//www.alibabacloud.com/help/
doc-detail/25382.htm?spm=
a2c63.p38356.879954.28.344791f3OdgBQZ#title-
1rp-8na-22y.

[5] Evaluate performance for storage performance devel-

opment kit. https://software.intel.com/en-us/
articles/evaluate-performance-for-storage-
performance-development-kit-spdk-based-
nvme-ssd.

[6] Fio. https://fio.readthedocs.io/en/latest/.

[7] Intel® 64 and ia-32 architectures software developer’s

manual. https://www.intel.com/content/dam/
www/public/us/en/documents/manuals/64-ia-
32-architectures-software-developer-vol-
3a-part-1-manual.pdf.

[8] Local ssd. https://www.alibabacloud.com/
help/doc-detail/63138.htm?spm=
a2c63.p38356.879954.199.aa265e6dMUz7fg#concept-
g3w-qzv-tdb.

[9] Nvm express specification. http://
www.nvmexpress.org/specifications.

[10] Pm963 specifications. https://www.samsung.com/
semiconductor/ssd/enterprise-ssd/
MZQLW3T8HMLP/.

[11] Utilizing local nvme storage on azure.

https://docs.microsoft.com/en-us/
azure/virtual-machines/linux/storage-
performance#utilizing-local-nvme-storage.

[12] Virtio homepage. https://www.linux-kvm.org/
page/Virtio.

[13] Vmware homepage. https://www.vmware.com.

[14] Xen main page. https://wiki.xen.org/wiki/
Main_Page.

[15] Amro Awad, Brett Kettering, and Yan Solihin. Non-

volatile memory host controller interface performance

analysis in high-performance i/o systems. In 2015 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 145–154. IEEE,

2015.

[16] Sushil Bhardwaj, Leena Jain, and Sandeep Jain. Cloud

computing: A study of infrastructure as a service (iaas).

International Journal of engineering and information
Technology, 2(1):60–63, 2010.

[17] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang,

and Pen-Chung Yew. Live updating operating systems

using virtualization. In Proceedings of the 2nd inter-
national conference on Virtual execution environments,

pages 35–44. ACM, 2006.

[18] Quan Chen and Qian-ni Deng. Cloud computing and its

key techniques [j]. Journal of Computer Applications,

9(29):2562–2567, 2009.

[19] Christopher Clark, Keir Fraser, Steven Hand, Ja-

cob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,

and Andrew Warfield. Live migration of virtual ma-

chines. In Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation-
Volume 2, pages 273–286. USENIX Association, 2005.

[20] Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Bal-

akrishnan. Nvme-over-fabrics performance characteri-

zation and the path to low-overhead flash disaggregation.

In Proceedings of the 10th ACM International Systems
and Storage Conference, pages 1–9, 2017.

[21] William K Josephson. An introduction to libaio. 2007.

[22] Jungkil Kim, Sungyong Ahn, Kwanghyun La, and

Wooseok Chang. Improving i/o performance of nvme

ssd on virtual machines. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing, pages

1852–1857. ACM, 2016.

[23] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu

John, and Sanjeev Kumar. Flash storage disaggregation.

In Proceedings of the Eleventh European Conference on
Computer Systems, page 29. ACM, 2016.

[24] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Re-

flex: Remote flash ≈ local flash. ACM SIGARCH Com-
puter Architecture News, 45(1):345–359, 2017.

[25] Uri Lublin, Yaniv Kamay, Dor Laor, and Anthony

Liguori. Kvm: the linux virtual machine monitor. 2007.

[26] Iulian Neamtiu and Tudor Dumitraş. Cloud software

upgrades: Challenges and opportunities. In 2011 Inter-
national Workshop on the Maintenance and Evolution

USENIX Association 2020 USENIX Annual Technical Conference 109

of Service-Oriented and Cloud-Based Systems, pages

1–10. IEEE, 2011.

[27] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong,

Yu Xu, and Haibing Guan. Mdev-nvme: a nvme

storage virtualization solution with mediated pass-

through. In 2018 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 18), pages 665–676, 2018.

[28] James L Peterson and Theodore A Norman. Buddy

systems. Communications of the ACM, 20(6):421–431,

1977.

[29] Rusty Russell. virtio: towards a de-facto standard for

virtual i/o devices. ACM SIGOPS Operating Systems
Review, 42(5):95–103, 2008.

[30] Jeffrey Shafer. I/o virtualization bottlenecks in cloud

computing today. In Proceedings of the 2nd conference
on I/O virtualization, pages 5–5. USENIX Association,

2010.

[31] Sankaran Sivathanu, Ling Liu, Mei Yiduo, and Xing Pu.

Storage management in virtualized cloud environment.

In 2010 IEEE 3rd International Conference on Cloud
Computing, pages 204–211. IEEE, 2010.

[32] Yongseok Son, Hyuck Han, and Heon Young Yeom. Op-

timizing file systems for fast storage devices. In Proceed-
ings of the 8th ACM International Systems and Storage
Conference, page 8. ACM, 2015.

[33] Dejan Vučinić, Qingbo Wang, Cyril Guyot, Robert Ma-

teescu, Filip Blagojević, Luiz Franca-Neto, Damien

Le Moal, Trevor Bunker, Jian Xu, Steven Swanson, et al.

{DC} express: Shortest latency protocol for reading

phase change memory over {PCI} express. In Proceed-
ings of the 12th {USENIX} Conference on File and Stor-
age Technologies ({FAST} 14), pages 309–315, 2014.

[34] Wikipedia contributors. Serial ata — Wikipedia, the

free encyclopedia. https://en.wikipedia.org/w/
index.php?title=Serial_ATA&oldid=932414849,

2019. [Online; accessed 26-December-2019].

[35] Wikipedia contributors. S.m.a.r.t. — Wikipedia, the

free encyclopedia. https://en.wikipedia.org/

w/index.php?title=S.M.A.R.T.&oldid=931348877,

2019. [Online; accessed 8-January-2020].

[36] Alex Williamson. Vfio: A user’s perspective. In KVM
Forum, 2012.

[37] Jisoo Yang, Dave B Minturn, and Frank Hady. When

poll is better than interrupt. In FAST, volume 12, pages

3–3, 2012.
[38] Ziye Yang, James R Harris, Benjamin Walker, Daniel

Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,

Jonathan Stern, Vishal Verma, and Luse E Paul. Spdk:

A development kit to build high performance storage

applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

[39] Ziye Yang, Changpeng Liu, Yanbo Zhou, Xiaodong Liu,

and Gang Cao. Spdk vhost-nvme: Accelerating i/os in

virtual machines on nvme ssds via user space vhost

target. In 2018 IEEE 8th International Symposium
on Cloud and Service Computing (SC2), pages 67–76.

IEEE, 2018.

[40] Xiantao Zhang and Yaozu Dong. Optimizing xen vmm

based on intel® virtualization technology. In 2008 Inter-
national Conference on Internet Computing in Science
and Engineering, pages 367–374. IEEE, 2008.

[41] Xiantao Zhang, Xiao Zheng, Zhi Wang, Qi Li, Junkang

Fu, Yang Zhang, and Yibin Shen. Fast and scalable vmm

live upgrade in large cloud infrastructure. In Proceed-
ings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 93–105. ACM, 2019.

[42] Yiying Zhang and Steven Swanson. A study of appli-

cation performance with non-volatile main memory. In

2015 31st Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–10. IEEE, 2015.

[43] Fam Zheng. Userspace nvme driver in qemu. In KVM
Forum 2017, pages 25–27, 2017.

110 2020 USENIX Annual Technical Conference USENIX Association

HDDse: Enabling High-Dimensional Disk State Embedding for Generic Failure
Detection System of Heterogeneous Disks in Large Data Centers

Ji Zhang§†, Ping Huang§£, Ke Zhou§∗, Ming Xieζ, Sebastian Schelter†

§Huazhong University of Science and Technology
£Temple University, ζTencent Inc., †University of Amsterdam

Ji Zhang and Ping Huang are the co-first authors

Abstract
The reliability of a storage system is crucial in large data cen-
ters. Hard disks are widely used as primary storage devices in
modern data centers, where disk failures constantly happen.
Disk failures could lead to a serious system interrupt or even
permanent data loss. Many hard disk failure detection ap-
proaches have been proposed to solve this problem. However,
existing approaches are not generic models for heterogeneous
disks in large data centers, e.g, most of the approaches only
consider datasets consisting of disks from the same manufac-
turer (and often of the same disk models). Moreover, some
approaches achieve high detection performance in most cases
but can not deliver satisfactory results when the datasets of a
relatively small amount of disks or have new datasets which
have not been seen during training. In this paper, we propose
a novel generic disk failure detection approach for heteroge-
neous disks that can not only deliver a better detective perfor-
mance but also have good detective adaptability to the disks
which have not appeared in training, even when dealing with
imbalanced or a relatively small amount of disk datasets. We
employ a Long Short-Term Memory (LSTM) based siamese
network that can learn the dynamically changed long-term
behavior of disk healthy statues. Moreover, this structure can
generate a unified and efficient high dimensional disk state
embeddings for failure detection of heterogeneous disks. Our
evaluation results on two real-world data centers confirm
that the proposed system is effective and outperforms several
state-of-the-art approaches. Furthermore, we have success-
fully applied the proposed system to improve the reliability
of a data center and exhibit practical long-term availability.

1 Introduction
Device failure is a common problem in large data centers,
where hard disks are widely used as the primary storage de-
vices. A disk failure could lead to temporary data loss and
thus system breakdown, or even permanent data loss if the
lost data cannot be recovered by data protection schemes
(eg., replication and erasure codes) due to disk failures ex-
ceeding the designed correction capability [1]. About 80%

of system breakdowns are caused by hard drive failures in
the data center [2]. Therefore, how to ensure the reliability of
disks becomes an important issue in a storage system [3]. Al-
though there are a series of passive fault defense mechanisms
like EC (Erasure Codes) [4, 5] and RAID (Redundant Arrays
of Independent Disks) [6], many researchers have focused
on proactive disk failure detection which aims to ensure the
reliability and availability of large-scale storage systems in
advance [7–9]. Disk failure prediction is an important issue in
system researches. Timely and accurate failure prediction can
ensure the operational continuity of systems and even avoid
data loss. It is because of this common realization among the
storage research community, there have recently emerged a
decent amount of researches on disk failure prediction.

We observed six classes of approaches of disk failure de-
tection: threshold-based (TB) approaches [10, 11], distance-
based anomaly detection (DAD) approaches [12–16], shallow
machine learning (SML)-based approaches [17–29], deep
neural network (DNN)-based approaches [30–34], one-class
classification (OCC) based approaches [35–39] and transfer
learning (TL)-based approaches [1, 40–44]. However, these
approaches have their limitations as summarized in Table 1.

(1) Limited applicability. Different disk manufacturers have
different S.M.A.R.T (Self-Monitoring, Analysis, and Report-
ing Technology) values or data distribution, even in different
disk models of the same manufacturer [1, 43]. This will result
in a situation where methods (SML, DNN, OCC, TL) trained
on specific parameters only work well for the same manufac-
turer, and often even for the same models, limiting their scope
of applicability in practice.

(2) Lack of adaptability. New disk models enter gradually
to replace or augment the storage capacity, leading storage
systems to consist of disks from different vendors and/or
different models [1, 41, 42]. Facing these different types of
heterogeneous disks, the existing prediction models (DAD,
SML, DNN, OCC, TL) must be retrained to obtain more reli-
able predictions in order to adapt to the changes in the data
distribution introduced by these new disk models. Such re-

USENIX Association 2020 USENIX Annual Technical Conference 111

Table 1: Characteristics of different approaches in disk failure detection. (?) refers to certain conditions that are required, e.g., finding a
suitable source domain (i.e., another disk model) for knowledge transfer. All existing methods have certain disadvantages. We use TPR refers to
True Positive Rate, FPR refers to False Positive Rate and F-Measure to evaluate these methods (for these evaluation metrics see Section 5.1.3).

TB DAD SML DNN OCC TL HDDse

Applicability
√ √

× × × ×
√

Adaptability
√ √

× × ×
√
(?)

√

Imbalance datasets
√

× × ×
√

×
√

Minority Disk
√

× × × ×
√
(?)

√

Performance
TPR: 3%-10% 56%-70% 75%-96% 87%-98% 70%-92% 80%-97% 92%-97%
FPR: 0%-2% 0%-1% 1%-4% 0%-1% 0%-10% FPR: 0%-6% 0.2%-0.4%

F-Measure: 2%-13% 49%-58% 67%-92% 86%-93% 65%-91% 77%-93% 91%-97%

training is tedious and expensive in a large data center.

(3) Imbalanced datasets. Imbalanced data refers to a situ-
ation where the number of samples is not the same for all
the classes in a classification dataset. Most machine learning
(ML) models tend to bias the class with the largest proportion
of observations (known as majority class), which may lead
to inaccuracies. This may be particularly problematic when
we are interested in the correct classification of a “rare” class
(also known as minority class). In real world cloud storage
systems, the imbalanced ratio of positive (failure) samples
and negative (healthy) samples poses a significant threat to
the efficiency of machine learning models [2]. The most com-
monly used technique of existing methods (DAD, SML, DNN,
TL) to approach this problem are under-sampling [1, 15, 28]
and over-sampling techniques [45]. In under-sampling, the
data samples are adjusted based on the class with the lowest
sample count to keep the number of samples per class equal.
In over-sampling the samples of the sparsely populated class
are re-sampled to match the number of data samples in the
other classes. Under-sampling discards a large amount of data
while oversampling can easily cause overfitting in the model.
Moreover, these approaches might increase the training cost.

(4) Minority disk failure detection. In large-scale storage
systems, new disks gradually replace failed disks, which re-
sults in a situation where the data centers continuously contain
small amounts of new disk models. Due to a lack of sufficient
training data, some detective approaches (DAD, SML, DNN,
OCC) fail to deliver satisfactory detective performance for
these models. Although some TL methods (transfer learning
is good at transferring knowledge from the source dataset
to the target dataset) have been proposed to address this is-
sue, their performance depends on finding a suitable source
domain (in the form of another disk model) for knowledge
transfer, which might be difficult in a real world data center
(detailed in Section 3.1.2).

(5) Detective performance. The True Positive Rate (TPR),
False Positive Rate (FPR) and F-Measure (all these evaluation
metrics see Section 5.1.3 for details) are the commonly used
metrics to measure the capabilities of classification models
in disk failure detection [1, 15, 17, 19]. Most methods show
unstable performance in practical long-term use and often fail

to obtain both high TPR and low FPR.
In this paper, we propose a novel disk failure detection

system called “High-Dimensional Disk State Embedding
for Generic Failure Detection” (HDDse). It is a distance-
based anomaly detection approach using deep learning and
addresses the discussed shortcomings of the existing methods.

In summary, we provide the following contributions:
• To the best of our knowledge, we propose the first generic

disk failure detection system HDDse for heterogeneous
disks. It is not sensitive to imbalanced datasets, has wider
applicability, well detects the minority disks and exhibits
high adaptability. (Section 4.1)

• We propose a Long Short-Term Memory (LSTM)-based
siamese network to calculate the similarity of disk health
states in high-dimension space, which combines distance-
based anomaly detection and deep learning to classify disk
state in high-dimension. (Section 4.2)

• We experimentally evaluate our method on datasets from
two real world data centers. We demonstrate that HDDse
can effectively detect disk failures in long-term availabil-
ity that greatly improves the reliability and availability of
the storage system and outperforms the state-of-the-art ap-
proaches in five adopted metrics (Section 5.2 and 5.3).

2 Related Work
Existing work mostly uses the S.M.A.R.T (Self-Monitoring,
Analysis and Reporting Technology) data to build a disk fail-
ure detection model. Almost all hard disk drives and flash-
based SSDs now support S.M.A.R.T, which monitors the in-
ternal attributes of individual drives.
Threshold-based Methods (TB). All disk manufacturers use
a thresholding algorithm which triggers a failure alarm when
any single S.M.A.R.T attribute exceeds a predefined value [10,
11]. However, this approach provides only an estimated TPR
(True Positive Rate, see Section 5.1.3 for details) of 3%-10%
with a 0.1% FPR (False Positive Rate, see Section 5.1.3 for
details). The reason is that the hard disk manufacturers set
the thresholds conservatively to avoid expensive false alarm
costs, i.e., they keep the FPR to a minimum at the expense of
the TPR.
Distance-based Anomaly Detection Methods (DAD).
DAD is the method of finding data objects with behaviors that

112 2020 USENIX Annual Technical Conference USENIX Association

are very different from expectation based on some similarity
metrics. Shen et al. [15] utilize the change in the Euclidean
distance [46] between the healthy disk samples and the last
sample of a failed drive. Wang et al. [13] propose a model
for drive anomaly prediction based on Mahalanobis distance
(MD). In their subsequent study [14], they use a generalized
likelihood ratio test over the dissimilarity vector to detect disk
failures. Huang et al. [16] explore the read/write head failures
and bad sector failures using the Euclidean distance to calcu-
late the dissimilarity between each S.M.A.R.T record prior to
the failure and the failure record. Gao et al. [12] present an
incremental detection model of disk failures based on the Eu-
clidean distance to measure the local anomalies of test points
within their isolation regions optimizing the judgment of test
point anomalies.

Shallow Machine Learning based Methods (SML). Con-
ventional (shallow) machine learning methods typically re-
quire manual extraction and selection of features (eg., Support
Vector Machines (SVM [47]), Logistic Regression (LR [48])),
a critical step that is dispensed within the deep learning ap-
proach, i.e., it is automatic in deep learning approaches.
Pitakrat et al. [29] evaluate and compare the performance
of 21 machine learning algorithms for proactive disk failure
detection. Li et al. [28] propose new drive failure detection
models based on classification and regression trees. Yang et
al. [27] design a disk failure prediction model based on L1-
regularized logistic regression. Ganguly et al. [26] propose
a two-stage ensemble predictive model. Chaves et al. [25]
design a failure prediction method using a Bayesian Net-
work. Mahdisoltani et al. [23] explore a range of different
machine learning techniques (Classification and Regression
Trees (CART [49]), Random Forests (RF [50]), SVM, Neu-
ral Networks (NN [51]) and LR) and show that sector errors
can be predicted ahead of time with high accuracy using RF.
Carlos et .al [22] investigate three different machine learn-
ing models (Decision Trees, NN, and LR). Xiao et al. [21]
introduce a novel disk failure prediction model using Online
Random Forests (ORFs). Aussel et al. [24] test several learn-
ing methods, SVM, RF and Gradient-Boosted Tree (GBT)
and find that RF provides the best performance. Ananthara-
man et al. [20] experiment with two different types of ML
approaches: RF and Long Short-Term Memory (LSTM) recur-
rent neural networks. Yong et al. [19] develop a cost-sensitive
ranking-based ML model that can learn the characteristics
of faulty disks from the past and rank the disks based on
their error-proneness using the FastTree algorithm [52]. Yi et
al. [18] predict the failure order with a LambdaMART [53]
model. Xie et al. [17] propose an explanation approach de-
signed for disk failure prediction.

Deep Neural Network based Methods (DNN). DNN
method is an artificial neural network (ANN) with multiple
layers between the input and output layers. The DNN finds
the correct mathematical manipulation to turn the input into

the output, whether it be a linear relationship or a nonlinear
relationship. Xu et al. [34] introduce a method based on Re-
current Neural Networks (RNN) to assess the health statuses
of disks. Pang [33] implement a Combined Bayesian Network
(CBN) model to estimate the health degree of disks. Fernando
et al. [32] present a remaining useful life estimation approach
for disks by leveraging the capabilities of LSTM networks.
Basak et al. [31] propose a data-driven framework based on
LSTM for detection of whether a disk is going to fail in the
next 7 days. Sun et al. [30] propose a temporal Convolutional
Neural Network (CNN)-based model to predict failures.

One-Class Classification based Methods (OCC). OCC in-
volves fitting a model on the normal data and predicting
whether new data is normal or not. The imbalanced ratio
of positive (failure) disk samples and negative (healthy) disk
samples poses a significant challenge for efficient learning.
Wang et al. [38, 39] present an anomaly detection method,
which distinguishes anomalous behaviors from healthy events
in each disk. Lucas et al. [37] propose a method for fault
detection on hard disks that uses a Gaussian Mixture to model
the behavior of only healthy hard disks. They also propose
another method named GMFD [36], which applies a semi-
parametric model (GMM) to build a statistical model using
healthy disks. Francisco et al. [35] evaluate nine one-class
classifiers for fault detection in hard disks.

Transfer Learning based Methods (TL). TL is an ML tech-
nique where a model trained on one task is re-purposed on
a second related task. Transfer learning methods have been
proposed to solve the minority disk failure problem. Botezatu
et al. [43] apply a transfer learning approach to use a predic-
tion model trained on a specific disk model for a new disk
model of the same manufacturer. Francisco et al. [42] evalu-
ate several transfer learning strategies on the task of failure
prediction on hard disk drives. Their experiments state that
transfer learning methods can provide performance gains in
hard disk failure prediction models. Xie et al. [41] employ a
simple but effective transfer learning method for disk failure
detection which determines the best source from its anterior
disk models and builds a transfer learning model with the help
of the source domain. Zhang et al. [40,44] integrate both trans-
fer learning and active learning techniques to detect the disk
failure called ATAD and show its effective in cross-dataset
time series anomaly detection. Zhang et al. [1] propose a
minority disk failure prediction model named T LDFP based
on a transfer learning approach and use Kullback Leibler Di-
vergence (KLD) as an effective indicator for source domain
selection for large heterogeneous datasets.

Shortcomings of existing work. The above mentioned ap-
proaches (SML, DNN and OCC) deliver good detective per-
formance only when both training and testing data are drawn
from the same distribution [54]. A recent study [22] on het-
erogeneous disk failure prediction has pointed out that the
predictive results are not good enough for adoption in prac-

USENIX Association 2020 USENIX Annual Technical Conference 113

(a) DAD approach [12] (b) SML approach [17] (c) DNN approach [31] (d) OCC approach [35]

Figure 1: Figure 1(a), 1(b), 1(c) and 1(d) respectively show the overall F-Measure (detailed in Section 5.1.3) of the four state-of-the-art
methods using datasets of disk models from two data centers. Although the SML, DNN and OCC achieved better performance than the DAD
method in the case of datasets consisting of disks from the same disk models, the DAD approach delivers strong applicability and adaptability.

tice. Therefore, most of the experiments for these methods
only consider datasets consisting of disks from the same man-
ufacturer (and often of the same disk models) and thereby
have limited applicability. Except for the method DAD, the
methods (SML, DNN and OCC) learn the S.M.A.R.T data
distribution of the specific disk model but not the unified
detection measure, as a result, these approaches have bad pre-
dictive performance when dealing with the disk models that
have not yet appeared in previously trained models (i.e., poor
adaptability). Furthermore, all the methods (especially for
DNN and OCC) require a large number of training samples
to build robust models, which is difficult to be satisfied for
minority disks in data centers. Training models on the minor-
ity disks would dramatically increase the risk of overfitting,
and the resulting poor generalization will decrease the perfor-
mance of predictive models [1]. Although TL approaches can
handle this situation well, an important premise of this ap-
proach is that there is one or more appropriate source majority
disk models for knowledge transfer, but we find this to be a
tough assumption in practice (see Section 3.1.2). Moreover,
most of these approaches increase the training cost to process
the imbalanced datasets and could result in discarding a large
amount of data or model overfitting (mentioned in Section 1).

3 Preliminary Study and Motivation
In this section, we investigate the performance of existing
approaches in three aspects (applicability, adaptability and
minority disk failure detection) and describe our motivation
for enabling high-dimensional disk state embedding for het-
erogeneous disk failure detection.

3.1 Preliminary Study
3.1.1 Applicability and Adaptability

We analyzed the overall performance of existing proposed
approaches using different disk models from both the publicly
available S.M.A.R.T dataset Backblaze1 and the data center
of Tencent (one of the largest social network companies in the
world). Figure 1(a), 1(b), 1(c) and 1(d) respectively show the
overall detective performance of the state-of-the-art methods
(DAD [12], SML [17], DNN [31] and OC [35]) using differ-
ent datasets of disk models. For convenience, we use Data

1https://www.backblaze.com/b2/hard-drive-test-data.html

Center-Disk Manufacturers-Disk Model to denote the
dataset we use. For example, the disk model C from Seagate
in data center BackBlaze can be referred to as B-STX-C and
the disk model A from WDC in data center Tencent can be
referred to as F-WDC-A.

In each figure, the vertical and horizontal axes refer to the
disk models of training and testing dataset respectively. We
use F-Measure (detailed in Section 5.1.3) to evaluate the
performance of failure detection models. The higher the value
is (the darker in the heatmap), the better the performance is. In
the last row of each figure, we use the hybrid datasets (the first
6 disk models contain F-STX-A, B-STX-B, F-WDC-A, B-
WDC-B, F-HIT-A and B-HIT-B) for training and then detect
on different disk models. Note that the last three disk models
F-STX-C, F-WDC-C, B-HIT-C are not included in the hybrid
disk models for training. We summarize the findings from
these four figures. (1) Detection approaches (SML, DNN and
OCC) built on a specific disk model only has good results
test on the same disk model (i.e., the detective model built on
F-STX-A and detect on F-STX-A, as illustrated by the darker
diagonal lines). Moreover, DNN-based approach shows the
best performance in this case. (2) The SML, DNN and OCC
approaches built on hybrid disk model datasets decrease the
detective performance compared to a model built on the same
disk model (we call the model has poor applicability in this
case). Moreover, the performance of these approaches further
deteriorates when detecting the disk models that have not
appeared in the training datasets. (3) Although the overall
detective results of the DAD method is not good enough to
be deployed in practice, it is not sensitive to the different disk
models. In other words, the performance of cross-model disk
failure detection is very close. Besides, the DAD approach
built on hybrid disks increases the performance compared to
the model built on a single disk model (good applicability)
and shows high adaptability to disk models that have not
appeared in training. Note that we also evaluated many other
studies on these methods and got similar results and we don’t
discuss all the results here due to space limitations.

3.1.2 Minority Disk Failure Detection
In order to investigate the detection for minority disks (the
number of disks less than 1,500 [1]), for TL approach, we
use the majority disk model which has the smallest Kullback
Leibler Divergence (KLD) values with the detecting minority

114 2020 USENIX Annual Technical Conference USENIX Association

Figure 2: Minority disk failure detection using different approaches.
The TL approach achieves the best performance but it depends on
the small enough KLD value of the majority disk which is chosen
for training.

disk model from the same manufacturer to train the detective
models. The detecting minority disk models are listed on the x-
axis ordered by the calculated smallest KLD values. For other
approaches, they only trained the detective model based on
minority disk datasets. Note that KLD is a metric measuring
the divergence degree of one probability distribution from
another expected probability distribution [55]. It indicates the
disparities between two S.M.A.R.T datasets distributions. A
zero KLD value means that the distributions of these two disk
datasets are the same, while the KLD value increases as the
differences between two data distributions widen. In general,
the larger a KLD value is, the greater differences between
two disk data distributions will be and the more difficult the
knowledge transfer between two distributions will be in the
transfer learning approach [1]. Figure 2 shows the results.
The TL approach delivers the best detective performance on
minority disk failure detection especially with the training
datasets having smaller KLD values while other candidates
are difficult to handle this situation.

Table 2: Distribution characteristics of the smallest KLD value for
minority disk model in two data centers

Data Center KLD(0∼1) KLD(1∼2) KLD(2∼3) KLD(>3)
Tencent 35% 25% 23% 17%

Backblaze 32% 18% 31% 19%

In order to take an in-depth look at the feasibility of this
method in practical large storage systems, we studied the disk
quantities by the different KLD values in two data centers.
As shown in Table 2, in Tencent data center, only 35% of all
minority disk models could find a majority disk model with
small KLD value (range from 0 to 1) for training. In other
words, most minority disk models only find the majority disk
models with a KLD value greater than 1 which might result in
poor detection performance. A similar observation has been
made in the data center Backblaze. Therefore, even in such
large data centers with millions of disks, it is still difficult to
find the most suitable majority disk model with small enough
KLD value to use TL for minority disk failure detection.

3.2 Motivation
The preliminary study results above show that The DAD ap-
proach has better applicability and adaptability than other

approaches (SML, DNN, OCC), and DNN approach gives
the best detective performance. Before introducing our mo-
tivation, we first to answer the following three problems: (1)
Why the DAD approaches have good applicability and high
adaptability while DNN does not? The DAD method learns
the distance (similarity) between the normal and abnormal
disk samples in a certain space which has a commonality and
not sensitive to the disk models. However, the DNN approach
learns the distribution of S.M.A.R.T data which varies with
disk models, the performance of this approach would decrease
when the distribution changes. (2) Why the overall detective
performance of the DAD method is not as good as other ap-
proaches. We think the reason is it performs distance-based
transformation and computation in low-dimensional space but
does not learn from the dynamically changed long-term behav-
ior in high-dimension. (3) Why the DNN approach achieves
the best performance among other candidates? DNN is good
at mapping the raw low-dimensional S.M.A.R.T attributes to
high-dimensional target spaces through complex transforma-
tions that perform good expression and fitting ability and thus
achieves better performance.

Considering the above advantages of the DAD and DNN
approaches, we are motivated to apply the distance-based
anomaly detection approach and deep learning to build a gen-
eral disk failure detection system for heterogeneous disks. In
order to learn a unified measure of distance in high-dimension
space using deep learning and then easily use the distance-
based anomaly detection approach for comparison for two
input data, we applied the siamese networks [56] (commonly
used in the image recognition technology) which we will
describe in detail in the next section.

4 Proposed System HDDse
In this section, we first provide an overview of our pro-
posed system HHDse in Section 4.1. Then, we introduce
the LSTM-based siamese network for disk failure detection in
Section 4.2. Finally, we describe the sample pool and decision
maker of HDDse respectively in Section 4.3 and Section 4.4.

4.1 System Overview
Figure 3 provides an overview of our proposed novel sys-
tem HDDse which combines a sample pool, an LSTM-based
siamese network for disk failure detection, and a decision
maker. Sample pool (see Section 4.3 for details) is used to
store the S.M.A.R.T instances collected daily for each disk.
These instances are combined to form training and detecting
samples for our approach. Note that the sample pool has both
the disk S.M.A.R.T instances with ground truth (true labels
with the disk states) for training and the unlabeled instances
for detecting. LSTM-based siamese network for disk fail-
ure detection (see Section 4.2 for details) is the core part in
HDDse, the input of the network is a pair of samples from
the sample pool and the output is a binary classification result
that indicates the similarity of these two samples. In online

USENIX Association 2020 USENIX Annual Technical Conference 115

Figure 3: The overview of the proposed HDDse. It consists of
a sample pool, an LSTM-based siamese network and a Decision
Maker marked as 1, 2 and 3 respectively.

detection, since there are many results of the target detecting
samples at a continuous moment compared with other labeled
samples, each output detective result indicates for a particular
sample at different moments rather than the whole disk health
state. Therefore, Decision Maker (see Section 4.4 for details)
is a module to map these sub-results of samples to the final
whole disk healthy state.

4.2 LSTM-based Siamese Network
Many previously proposed machine learning models, such as
random forests (RFs), decision trees, SVM and DNN rely on
the phenomenon that some key attributes are distinct from
others when the disk is going to fail. Therefore, these ap-
proaches take a single snapshot of S.M.A.R.T attributes as
training data for detection, without considering the sequential
dependency between different statuses of a hard disk over
time (only rely on features extracted from one day) because
they are unable to make use of the time series data (except for
converting them to sequential features manually). However,
many researches have shown that the S.M.A.R.T of the disk
changes dynamically with a certain trend [2, 19, 21, 27, 57],
thus the current state of the disk may depend on a long-term
historical trend. In contrast to all the aforementioned methods,
we apply the LSTM to the parsing of sequential S.M.A.R.T in-
formation. LSTMs have been successfully applied to a variety
of applications, including text sentiment classification [58]
and multi-language text classification [59].

Traditional approaches to solving a classification problem,
such as SVM, random forests (RFs) or even DNN, generally
require that all the categories be known in advance (some
newly disk models entered the data center without enough
history information to classify the categories) for training.
Moreover, those approaches are not suitable for applications
where the number of samples per category is small (minority
disk models). Siamese networks are dual-branch networks
with tied shared weights, i.e., they consist of the same network
copied. This method is proposed for training a similarity met-
ric from data, which can be used for classification tasks (eg.,
face recognition) in which the categories need to be classified

Figure 4: The structure of our proposed LSTM-based Siamese
Network for Disk Failure Detection. The input is a pair of detecting
samples and output is similarity.

have not appeared during the training process, and can also
handle the situation of training samples for a single category
which is very small [60]. The symmetry of siamese networks
is important and reasonable for learning a unified measure of
distance, for example, the distance from disk state S1 to state
S2 should be equal to the distance from S2 to S1.

Therefore, we propose an LSTM-based siamese network
for disk failure detection. Figure 4 shows the structure of the
network. The training sample pairs we feed to the network
are randomly selected from the sample pool which contains
two S.M.A.R.T samples (see Section 4.3 for details) from
the same disk manufacturer denoted as < S,S′ >. We design
two LSTM networks to receive these two S.M.A.R.T samples
respectively which need to be compared for their similarity.
Note that these two LSTM networks (BiLSTM [61] refers to
bi-direction LSTM layers) shared their weights in order to
map the inputs to the same target high-dimension space for
comparison. Each LSTM consists of an input layer U , four
hidden layers H, one dense (fully connected) layer D with
128-dimensional units and an embedding layer E. In contrast
to traditional neural networks, the LSTM operates over se-
quences of input vectors. This structure is able to capture the
historical context of disk healthy statuses and makes LSTMs
suitable for tasks related to sequential detection. Note that the
dense layer is followed by an embedding layer (a fully con-
nected layer) with 256-dimensional units, and then one more
layer computing the distance metric (Euclidean distances 2)
between each siamese twin network. We employ a Sigmoid
function in the final layer to output a normalized value on the
learned high-dimensional feature space and scores the result
between the feature vectors of the input sample pair. Note that
our proposal is the first to propose an LSTM-based Siamese
network based on the peculiar features of disk failures and
has shown promising prediction outcomes.
Learning process. Let Eω(S) and Eω(S′) be the projections
of the input pair S and S′ in the embedding space computed by
the embedding layer (high-dimension space) network function
Eω. The output layer is a single unit computed by the induced
distance metric between each siamese twin. The detective

2It is interesting to explore other sophisticated distance metrics to achieve
better results.

116 2020 USENIX Annual Technical Conference USENIX Association

vector is given by:

EDω(S,S′) = fsig(
N−1

∑
i=0

βi|E i
ω(S)−E i

ω(S
′)|))

where fsig is a Sigmoid activation function. βi are additional
parameters that are learned by the model during training,
weighting the importance of the component-wise distance.
Supposing that N represents the total number of S.M.A.R.T
sample pairs over a dataset D =< Si,S′i,Yi >, where i indexes
the ith training pair and Y (Si,S′i) is the corresponding label.
We assume Y (Si,S′i) = 1 whenever Si and S′i are the same disk
state label and Y (Si,S′i) = 0 otherwise. The total loss function
is given by:

Lω(D) = λ||ω||2 +
1

2N

N−1

∑
i=0

`i
ω(Si,S′i,Yi)

We use a squared L2-norm regularization (also called ridge
regression) in this loss function to improve the ability of
model generalization. The ω are the weights of the neural
network and λ is the weight decay (this prevents the weights
from growing too large and can be seen as gradient descent
on a quadratic regularization term to prevent from the model
overfitting) set as 0.001 to train our model. The instance loss
function `i

ω comprises of terms including the similar (Y = 1)
case (Ls), and the dissimilar (Y = 0) case (Ld):

`i
ω = Yi`s(Si,S′i)+(1−Yi)`d(Si,S′i)

The loss functions for the similar and dissimilar cases are
given by:

`s(S,S′) = (EDω)
2

`d(S,S′) =

{
(m−EDω)

2, m < EDω,

0, otherwise.

m is a margin which defines how far away the dissimilarities
should be. These settings were chosen during cross validation,
grid searching over possible margin settings. Suitable margin
helps us distinguish the two input S.M.A.R.T samples better.
Therefore, the instance loss function can also be given by:

`i
ω = Yi(EDω)

2 +(1−Yi){max(m−EDω,0)}2

It is interesting to investigate the proposed loss function.
When the two samples are similar/dissimilar (Y = 1/ Y=0), if
the EDω is wrongly calculated large/small by our model, the
value of this loss function will become larger. Our goal is to
minimize it.

The parameters of our model are optimized using the Adam
optimizer [62] with a decreased decaying learning rate. The
training process was run for 150,000 epochs with learning
rate (lr) starting at 0.1 and decrease it by a factor of 2 every 50
training epochs. We use the dropout technique [63] (a dropout

Figure 5: The relationship between S.M.A.R.T instances, samples
and the input pairs in our approach. Each sample consists of 14
continuous instances and the continuous samples in a period of
seven days before actual failures are labeled as failed.

of 0.5) used on the recurrent units and between layers to
prevent overfitting. For the hyper parameter (margin m, weight
decay λ, learning rate, the unit number of fully-connected
layers) optimization, we use the grid searching to perform
hyper parameter selection.

4.3 Sample Pool for Imbalanced Datasets
Our sample pool consists of the collected S.M.A.R.T in-
stances with their corresponding confirmed labels and some
instances that need to be detected. We collect all the instances
of each disk in the data center every day. All the time data
have been discretely sampled at an interval of one day. If the
data collection starts at day T0 and a disk can fail in any day
Tf after that, a disk can have data for all such time indices t
where t varies from T0 to Tf . We can formulate this instance
as a multivariate sequential vector It = {It

0, I
t
1, I

t
2, ..., I

t
a} that

contain length-a attributes of S.M.A.R.T data at time t for
each disk. More specific information about the attributes we
use in our evaluation is given in Table 3. Besides, each input
of the LSTM consists of a fixed length (we set 14 days in our
system to learn the long-term disk state behavior) continuous
instances (referred to one sample) with its corresponding la-
bel. The first day recorded in a disk failed sample is not the
day when the disk fails, but the latest day when the collected
attribute stops changing [2, 21, 23]. We use change-point de-
tection to decide how many days samples of failed disks pre-
serve for training. Change-point detection can find an abrupt
change during a period. We observe that most attributes have
a significant change around 7 days before failures. Therefore,
for a failed disk, continuous samples in a period of 7 days (our
method has the ability to predict the failure 1-7 days in ad-
vance) before actual failure (Tf) are labeled as failed (y = 1).
For healthy disks, we label the total continuous samples as
healthy (y = 0). Note that Y = 1 (Y = 0) means the label of the
generated input pairs which is a combination of two same (dif-
ferent) labeled samples. The relationship between S.M.A.R.T
instances, samples and the input training pairs is shown in the
Figure 5. RAID arrays will not affect the operations in the
sample pool and the decision maker in Section 4.4.

As mentioned in Section 4.2, the inputs of our proposed
network are two S.M.A.R.T samples < S,S′ > in pairs. There-

USENIX Association 2020 USENIX Annual Technical Conference 117

fore, we can freely combine and label a pair of samples from
the same disk manufacturer. There are two benefits for gen-
erating this form of training datasets compared to existing
approaches which treat each S.M.A.R.T sample as a snapshot
in the training process.
Better with imbalanced datasets. It reduces the degree of
data imbalance by the simplest free combination. We use the
imbalance degree (IDe) [64] to indicate the dataset imbalance
which is defined as the ratio between the majority and minor-
ity samples (the larger value the IDe is when IDe is larger
than 1, the more imbalanced the dataset is). For an imbalanced
dataset containing a minority class sample with size A and the
IDe is α, the majority class sample size is αA. The number
of pairs with labels Y = 1 (Y = 0) n1 (n0) after combining the

input samples can be expressed as:

{
n1 =C2

A +C2
αA,

n0 =C1
A×C1

αA.
where

the C2
A (C2

αA) is the number of “similar” sample pairs gener-
ated by the minority class samples (majority class samples).
The new imbalance degree IDe′ of the input pairs is given
by: IDe′ = n1

n0
= α

2 −
1+α−A

2Aα
since A,α > 1, the value of IDe′

will be around α

2 , which effectively alleviates the original data
imbalance by a factor of two. Note that we directly arrange all
labeled samples to form the input training pairs without losing
large amounts of information (instances) in the sample pool
compared to the Under-sampling method which is commonly
used in recent researches. Although our method can alleviate
imbalanced datasets, it is difficult to eliminate. Fortunately,
extensive experimental results in Section 5 demonstrate that
the siamese network is insensitive to imbalanced datasets,
which is the same as many existing research results [65, 66].
Better with minority disk models. It forms large training sam-
ples even with the minority disk models. The number of train-
ing pairs with the minority disk models in existing methods is
P = A(1+α). However, in our method the number of training
pairs is: P!

2!(P−2)! =
P(P−1)

2 which is extremely large compared
to existing methods. Therefore, our model can increases the
number of samples greatly and make better use of deep learn-
ing algorithms to detect the failure and avoid model overfitting
(the experimental results are discussed in Section 5.2.2).

4.4 Decision Maker in HDDse
In this section, we aim to seek answers to the following two
problems: (1) Which training samples need to be arranged
to form the input pairs with the detecting sample and how
to make a decision (same state or not) for these pairs in the
online detection process. (2) How to make a disk healthy
state decision for a target disk based on the results of these
detecting samples at continuous moments?

When a sample of a target detecting disk needs to be de-
tected, we let all the labeled training samples from the same
disk manufacturer to be arranged to form the input pairs. For
accelerating the process of making a decision for each sample,
we follow four detecting steps:

Figure 6: The flowchart of the voting-based sliding window. Moving
forward until the disk health statue is reported.

Step 1. We arrange all the samples labeled as failed (y = 1)
from the same disk model (all majority and minority disks) to
form the input pairs with the target detecting sample respec-
tively. If any of these pairs are detected as similar (Y = 1), we
will mark this detecting sample as failed (y = 1), otherwise,
proceed to the next step.

Step 2. Considering the sparsity of the state of healthy disk
samples, we first randomly select 10% healthy disks of the
same disk model and arrange the samples (y = 0) collected
randomly in one-month intervals to form the input pairs with
the detecting sample. If all these pairs are detected as sim-
ilar (Y = 1), we will mark this sample as healthy (y = 0).
Otherwise, follow the third step.

Step 3. We compare with the samples labeled as failed (y = 1)
from the different disk models but the same manufacturer
with the detecting sample. If more than half of the results are
detected as similar (Y = 1), we will mark this sample as failed
(y = 1).

Step 4. Similar to step 2, the only difference is we arrange the
different disk models from the same manufacturer. Note that
when the disk model of the detecting sample did not exist in
the sample pool, we will start from step 3.

Each target detecting disk consists of several results of de-
tecting samples at continuous moments, each output result
indicates the detection for a particular sample at one moment
rather than the whole disk health state in a period. Therefore,
to improve the robustness of the detection method against
noise, we propose a voting-based sliding window (V SW)
method to make a disk healthy state decision for the final disk
state. Figure 6 shows the architecture of V SW . According to
the results of the detecting samples stored in the Decision
Maker, we define the V SW method for failure detection in
the following manner: Define a length-W time sliding win-
dow and move it forward everyday. A failure alarm will be
reported, if the window consists of V (R) consecutive results
from step 1 (step 3), otherwise, there is no failure alarm. These
parameters (W,V,R) will be optimized as hyper parameters
of the model to determine its optimal value and were chosen

118 2020 USENIX Annual Technical Conference USENIX Association

during cross validation, grid searching over possible settings.
The configuration of our real-world large scale storage system
is W = 7,V = 1,R = 2. Note that some other decision solu-
tions can be explored to improve the robustness of our method
further (eg., a weighted k-nearest neighbors approach).

5 Experimental Evaluation
In this section, we evaluate the detective performance of
HDDse. We first describe the methodology, followed by the
experimental results of effectiveness and efficiency and com-
pare HDDse against the state-of-the-art approaches with re-
spect to the evaluation metrics.

5.1 Methodology
We describe the characteristics of two real world S.M.A.R.T
datasets and the attributes selection in our experiments. Then
we introduce the experiment setup and some evaluation met-
rics used in our experiments.

5.1.1 Datasets and Attribute Selections.
Datasets. We use S.M.A.R.T datasets from two real world
data centers for evaluation. One is the publicly available data
set from “Backblaze”3, which spans a period of 58 months
consisting of 146,203 healthy disks and 8,256 failed disks.
The second proprietary dataset has been collected by Tencent
and spans 29 months consisting of 70,192 healthy disks and
2,971 failed disks. All disks in these datasets were labeled to
be either failed or healthy. Note that the data from these two
data centers are extremely imbalanced. We tried to impute the
missing S.M.A.R.T values or disks by replacing them with
the median value.
Attribute Selections. Each S.M.A.R.T instance contains
many meaningful attributes. We first select all the common
attributes of the disk manufacturers. However, we find some
attributes are irrelevant to disk failure events because they
are immutable or have not experienced noticeable abnormal
changes. Therefore, we use correlation coefficients and select
nine attributes that correlate most with disk failure. The se-
lected attributes are listed in Table 3. Each SMART attribute
entry consists of many elements. In our paper, we focus on
the three elements (ID,Normalized value,Rawvalue) in our
collected datasets. Since different attributes have different
output ranges, (which might lead to different impacts on the
detection model), we normalize the range of all S.M.A.R.T
attributes using min-max normalization, a common prepro-
cessing technology in machine learning: xnorm = x−xmin

xmax−xmin
where x is the original value of a S.M.A.R.T attribute, xmax
and xmin are the maximum and minimum value of the attribute
in the training data set, respectively. Note that we tried other
normalization methods (e.g., z-score), but achieved the best
results using min-max normalization. The hyper parameters
and attribute selections were done over the entire datasets.

3https://www.backblaze.com/b2/hard-drive-test-data.html

Table 3: The S.M.A.R.T Attributes for Our Evaluations
#ID S.M.A.R.T Attribute Name Attribute type
001 Raw Read Error Rate Normalized
004 Start/Stop Count Raw
005 Reallocated Sectors Count Raw
012 Power Cycle Count Raw
187 Reported Uncorrectable Errors Normalized
193 Load Cycle Count Normalized
196 Reallocation Event Count Raw
197 Current Pending Sector Count Raw
198 Offline Uncorrectable Sector Count Raw

5.1.2 Experiment Setup.
To simulate the detecting process of disk failure in the real
world, we use the following method to build the experimental
datasets. All disks are randomly divided into a training set and
a testing set at a ratio of 7 to 3, as in most researches [1,35,67,
68] which guarantees that the failed disks in the training set
and the testing set are completely independent. Note that the
deterioration of a failed disk is a gradual process from healthy
to failure, and not all samples of failed disks need to be used
in the training set; otherwise, those healthy samples of failed
disks which are far from the actual failure would disturb the
training of the detection model. Therefore, only the last seven
continuous samples (we detailed it in Section 4.3) before the
moment of failure of the training disks can be regarded as
failed samples and need to be added to the training dataset.
Furthermore, we obtain all results via cross-validation [69] to
decrease the variability of the detections (analogous to many
methods [1,41,70]). For the configurations and parameters of
our system HDDse, the maximum number of training epochs
is set to 1000; the learning rate is initially set to 0.1, and
we decrease it by a factor of 2 every 50 training epochs; the
coefficient of weight decay λ is set to 10−8. We train and
evaluate our method on a Linux server with 12-core 4.0GHz
CPU, 64GB RAM and 200GB HDD.

5.1.3 Evaluation Metrics.
We use the following five metrics to report the detective per-
formance in our experiments which are commonly used for
evaluating the capability of disk failure detection approaches.
TPR. True Positive Rate (also called recall) is the proportion
of failed disks that are correctly predicted. The higher the
TPR is, the better the model is.
FPR. False Positive Rate (also called false alarm rate) is the
proportion of healthy disks that are falsely predicted as failed.
The lower the FPR is, the better the model is.
AUC. We use the AUC (Area under the receiver operating
characteristic curve) value under the ROC curve (receiver
operating characteristic) to evaluate the binary classification
performance of our detection model in imbalanced datasets.
ROC is a curve plotting the TPR against the FPR where TPR
is on the y-axis and FPR is on the x-axis. Therefore, the larger
the AUC value, the higher the TPR and the lower the FPR.
AUC is the area under this curve. A higher AUC means the
model is better at distinguishing failed and healthy disks.

USENIX Association 2020 USENIX Annual Technical Conference 119

(a) Before embedding. (b) After embedding.
Figure 7: The t-SNE of the S.M.A.R.T data before and after embed-
ding using our approach. After the disk state embedding, the healthy
and failed disks are nearly clustered together and easily separated.

F-Measure. F-Measure is a balance between the two metrics
TPR and Prediction Precision (PP). PP is the proportion of
detected failed disks that are correctly detected. The higher
the F-Measure is, the better the model is.
C-MTTDL. We use Cost-based MTTDL (Mean Time To
Data Loss) to evaluate the reliability and availability of the
storage system. MTTDL [71] was proposed to approximate
the mean time to data loss with failure detection model which
is given by: MT T DL ≈ MT T F

1− kµ
µ+γ

where MT T F is the Mean

Time To Failure of a disk. k is the TPR and γ is the inverse of
how far in advance the model can detect the impending fail-
ures. µ is the inverse value of Mean Time To Repair (MTTR,
replace a new disk or transfer the data of the failing disk
to a new one). However, this metric only demonstrates the
relationship between the MTTDL and the TPR (correctly
detected) but neglects the cost of misclassification by the
approach. Too many misclassifications will result in unavail-
ability of the storage system. Therefore, we propose an end-to-
end economic analysis metric called the Cost-based MTTDL
(C−MMT DL) which considers not only the reliability but
also the misclassifications cost (considering the false positive
rate and cost of replacing disks). We will give the detailed def-
inition of C−MT T DL in Section 5.2.5. Although we propose
the C−MT T DL, it is interesting to explore other end-to-end
evaluation metrics (benefit in customer-perceived latency or
throughput from accurate prediction).

5.2 Effectiveness Comparison
In this section, we first analyze the disk state embeddings
learned by our LSTM-based Siamese Network. Then we show
the results of HDDse compared to several state-of-the-art ap-
proaches in aspects of the ability of the minority disk detec-
tion, model applicability and adaptability respectively.

5.2.1 Analysis of Disk State Embeddings
To visualize the high-dimension embedded disk statues of the
embedding layers in our approach (See Figure 4), we use the
t-Distributed Stochastic Neighbor Embedding (t-SNE) [72]
technique which can project high-dimensional embedding
spaces into 2D spaces for visualization while striving to keep
data clustered together in the high dimensional space clustered
together in the low-dimensional space as well.

For comparison, Figure 7 shows the t-SNE of the
S.M.A.R.T data attributes in low and high dimensionality re-

spectively (before and after embedding using HDDse) based
on the collected data from three disk manufacturers. In our
case, the low dimensionality is the original S.M.A.R.T at-
tributes most of the recently proposed methods (DAD, SML,
DNN, OCC and TL) leveraged (the specific attributes are
listed in Table 3). Note that the x and y axes of a particular
point have no meaning on their own and the t-SNE only at-
tempts to preserve clusters in higher dimensional space. The
data points have been colored and shaped based on disk stat-
ues and their manufacturers. It is observed the data points of
these three disk manufacturers cluster relatively closely and
the relationship between the healthy and failed disks is hard to
distinguish with a unified method shown in Figure 7(a). This
highlights the challenges in failure detection of disks based
on S.M.A.R.T attributes in heterogeneous populations. This
result is consistent with the findings of the research [70] and
results in most of the related works only considered popula-
tion consisting of the same disk models in their experiments.
As can be seen from Figure 7(b), the healthy and failed disks
are easily separated (the healthy state is above the failed
state for all the disks from different manufacturers) after the
embedding using our proposed approach. This experiment
demonstrates that our HDDse can generate a unified and ef-
ficient high-dimensional disk state embeddings for generic
disk failure detection of heterogeneous disks.

5.2.2 HHDse only Trained on Minority Disk Datasets.
As mentioned in Section 4.3, the input training pairs generated
by our method is extremely large compared to the original
samples of existing approaches. It is interesting to investigate
the detective performance of HHDse when only trained on
minority disk datasets. We compare our approach with the
other five state-of-the-art approaches: DAD [12], SML [17],
OCC [35], DNN [31] and TL [1]. For a fair comparison, the
TL approach uses the majority disk model which has the small-
est KLD value with the detecting minority disk model from
the same manufacturer to train the detective models. Minority
disk models from different data centers and manufacturers are
listed in the x-axis ordered by these calculated the smallest
KLD values. For other approaches, they only trained the de-
tective model based on minority disk datasets. As can be seen
from Figure 8(a), none of the four approaches (DAD, SML,
OCC and DNN) can deliver a high AUC value. The poor de-
tective performance is due to overfitting caused by using small
homogeneous datasets [1]. In particular, DNN achieved the
worst results because the neural network required a huge num-
ber of samples to fit a large number of weights. Besides, the
results of the TL method imply it largely depends on whether
you can find the smallest KLD value majority disk training
dataset for modeling as discussed in Section 3.1.2. It is wor-
thy to note that our HDDse achieves the best performance in
all cases. The reason is two-fold. On the one hand, the train-
ing pairs generated by our method are extremely large which
makes our model not easy to get overfitting. On the other

120 2020 USENIX Annual Technical Conference USENIX Association

(a) (b) (c)
Figure 8: (a) Performance comparison for minority disk failure detection of different approaches. HDDse delivers the highest AUC in most
cases. (b) Performance comparison for disk failure detection using hybrid disk datasets. HDDse achieves the best detection results in all cases
which shows good applicability. (c) Performance comparison for disk failure detection using different hybrid disk datasets. HDDse achieves
the best detection results even the disk models have not appeared for training which shows good adaptability.

hand, the disk state embeddings in high-dimension learned
by our designed LSTM-based Siamese Network is effective
for model classification.

5.2.3 The Applicability of HHDse
In order to investigate the model applicability of our HDDse,
we use the imbalanced datasets of ten disk models from three
disk manufacturers in two data centers to conduct this ex-
periment. We compare our approach with the other four ap-
proaches: DAD, SML, OCC and DNN. Considering the gener-
ality, those ten detecting disk models consist of three from the
data center Tencent (F-STX-E, F-WDC-F and F-Hi-F), three
from data center BackBlaze (B-STX-F, B-WDC-F, B-HIT-F)
and four minority disk models from two data centers (F-STX-
F, F-WDC-G, B-HIT-G, B-STX-G). We use all these hybrid
disk datasets to train and detect these models respectively,
and the detective results are shown in Figure 8(b). When
dealing with the disks from different manufacturers, data cen-
ters and even minority disk models, HDDse achieves higher
F-Measure values compared to other candidates. The main
reason is that our model maps low-dimensional attributes
(disk status) to a general high-dimensional space that is not
sensitive to the differences in disk models, which leads to the
detection to be performed well using a unified distance calcu-
lation. This experiment demonstrates that HDDse has good
applicability for disk failure detection in a heterogeneous
environment.

5.2.4 The Adaptability of HHDse
We evaluate the adaptability of our HHDse, e.g., how an ap-
proach can adapt to a disk model that has not appeared in
the training dataset. We use another ten disk models (note
that they are different from the ten disk models showed in
Figure 8(b)) from three disk manufacturers in two data cen-
ters to conduct this experiment. As can be seen from Fig-
ure 8(c). Data set “Hybrid” contains the same ten disk models
for training described in Figure 8(b). “Hybrid1” contains an-
other three disk models from data center Tencent (F-STX-G,
F-WDC-H and F-Hi-G) compared to “Hybrid”, dataset “Hy-
brid2” add another three from data center BackBlaze (B-STX-
H, B-WDC-G, B-Hi-H), “Hybrid3” has two more minority
disk models from data center Tencent (F-WDC-I , F-HIT-H)
than “Hybrid2” and “Hybrid4” includes all 10 disk models in

the x-axis compared to the dataset “Hybrid”. For a fair com-
parison, we use the dataset “Hybrid” to train the DAD, SML,
DNN, OCC approaches. The results are shown in Figure 8(c).
Our method using different hybrid datasets all achieved better
detective performance than other candidates. It is worthy to
note that the datasets of the detecting disk models have not
appeared for training delivers comparable performance as
those disk models contained (framed by red lines) in train-
ing data sets in the first five rows of Figure 8(c). It indicates
that our HDDse does not need to establish or maintain a new
model and owns strong adaptability that can completely adapt
to a new disk model regardless of disk manufacturers, disk
models, data centers, and minority disks. Note that we also
verified the HDDse’s performance on NVMe SSD and ob-
tained promising results, which are not included due to the
space limit.

5.2.5 Improvement of Storage System Reliability
As the above comprehensive analysis of detective results de-
scribed, we achieved better AUC and F-Measure compared to
other approaches. In this section, we will first give the defini-
tion of the economic analysis metric C−MT T DL and then
quantitatively evaluate the reliability and availability of the
system based on different approaches. C−MT T DL can be
expressed as: C−MT T DL = MT T DL

Cost ≈
MT T F

(1− kµ
µ+γ

)(CaFP+CbFN)

where MTTDL was defined in Section 5.1.3 and FP (FN)
is the number of true healthy (failed) disks that are falsely
predicted as failed (healthy). Ca and Cb are the correspond-
ing cost of these misclassifications. These two factors can be
set differently and obtain different results according to the
model maintenance requirement (cost sensitivity) in the real
world. Ca and Cb are set to 200 and 100 (dollars) respectively
in our evaluation which were estimated in Tencent data cen-
ter. C−MT T DL denotes the MTTDL per dollar cost and the
larger the better. The larger the C−MMT DL is, the better is
the reliability and availability the storage. We investigate the
C−MT T DL in based on the datasets from data center Ten-
cent. We assume all models can detect the impending failures
seven days in advance (γ = 1/(7∗24hours), the inverse value
of MT T R µ = 1/10hours and MT T F = 1,390,000 hours. All
these parameters come from data center Tencent and our ex-
periments. We list the results in Table 4, which shows our

USENIX Association 2020 USENIX Annual Technical Conference 121

approach improves the C−MT T DL by about 2 orders of
magnitudes than the other four candidates. In other words,
in addition to ensuring the detective performance of our ap-
proach HDDse, we have greatly improved the reliability of
the storage system at a lower cost.

Table 4: Improvement of C-MTTDL

Method k(T PR) FP FN Cost MTTDL (years) C-MTTDL (hours/dollar)
OCC 62.6% 8212 1062 1,748,600 397.6 1.94
DAD 45.2% 3422 1537 838,100 276.7 2.89
SML 72.6% 6159 783 1,310,100 504.10 3.37
DNN 85.3% 4791 419 1,000,100 814.13 7.13

HDDse 95.8% 103 140 34,600 1656.3 419.35

5.3 Efficiency Comparison
In this section, we evaluate the effect on training/detecting
time and the practical long-term availability of our approach
HDDse compared to the state-of-the-art approaches.

5.3.1 Training and Detecting Time
We train and evaluate all the approaches on a Linux server
with 12-core 4.0GHz CPU, 64GB RAM and 200GB HDD.
All the approaches record the total training (from start until
convergence is achieved, i.e. little changes in the performance)
and online detecting time (it is for the entire testing set). Fig-
ure 9(a) provides further time statistics for each approach.
DAD has the lowest training time and the highest detecting
due to its easy training method and large computation of
calculating distances. Our approach HDDse takes the second-
highest training time followed by the SML method (Random
Forests) and the second-highest detecting time followed by
the DAD method. This is attributed to our method generating
large training pairs compared to the original datasets that need
more time to converge. Moreover, it needs more time com-
pared to other training samples to determine the disk statue
in the detecting process (we use some sampling methods to
accelerate the process of detecting mentioned in Section 4.4).
Considering the training task in a data center and sometimes,
the detective models are updated weekly or monthly (we per-
form once a week), so the time cost of HDDse is acceptable.
Note that the time cost can be further shortened if GPU and
many model compression and acceleration technologies [73]
are used. We leave in our future work to explore other solu-
tions for optimizing the efficiency of our approach.

5.3.2 Evaluating Practical Long-Term Availability
We last simulate practical long-term availability in data cen-
ters Tencent. As we mentioned in section 4.2, S.M.A.R.T
data of the disk changes dynamically with a certain trend,
thus the distribution of S.M.A.R.T attributes changes over
time, resulting in unstable detective performance for many
approaches. However, it is important to design a stable detec-
tion approach for large data centers without additional manual
model tuning. To fairly evaluate the detective performance of
different approaches in the long term, we employ the same
accumulation strategy to update the model periodically e.g.,
once a week, using all the training data collected from the

(a) (b)
Figure 9: (a) Training and detecting time comparison for different
approaches. (b) TPR and FPR of different approaches. HDDse de-
livers higher TPR and lower FPR in a stable manner which shows
long-term availability.

beginning. Figure 9(b) shows the TPRs and FPRs of the differ-
ent detective approaches in the following 15 months. As can
be seen, HDDse shows higher TPR and lower FPR compared
to other state-of-the-art methods. It is worthy to note that
HDDse exhibits stable detective performance than other can-
didates. We attribute this to the LSTM-based network which
is well learned from the dynamically changed long-term be-
havior of disk statues. Similar to most of related works, we
are focused on the predictive accuracy, because designing an
accurate approach is the first critical step toward building a ro-
bust, highly reliable, and readily available operational storage
system. With a high-accuracy failure prediction approach in
place, we will have a high level of confidence in integrating
it into the system, which is more of a mechanism rather than
a policy. For instance, a direct application is to use the pre-
diction results to perform data backups and replace disks that
are about to fail to prevent data loss. Moreover, we can use
the predictive results to analyze the mechanism of disk sector
error and build a sector error predictive model to accelerate
the scrubbing rate of disks to find the sector errors in advance
and improve the reliability of the storage system.

6 Conclusion
Disk failures have become one prevailing reason for un-
expected system unavailability. In this paper, we propose
HDDse, an LSTM-based siamese network that can learn the
dynamically changed long-term behavior of disk healthy stat-
ues and generate a unified and efficient high dimensional disk
state embeddings from low dimensional S.M.A.R.T attributes
for disk failure detection. We evaluate our approach using two
real-world datasets to demonstrate that HDDse is effective
and outperforms several state-of-the-art approaches. Specif-
ically, HDDse has good detective adaptability to the disks
which have not appeared in training and deliver good per-
formance for the imbalance or minority disk datasets, thus
improving storage system availability. Furthermore, the pro-
posed approach improves the reliability of a data center and
exhibits long-term availability.

Acknowledgments
We thank the anonymous reviewers and our shepherd Eno
Thereska for their help in improving our paper. This work is
supported by the Innovation Group Project of the National
Natural Science Foundation of China No.61821003.

122 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Ji Zhang, Ke Zhou, Ping Huang, Xubin He, Zhili Xiao,
Bin Cheng, Yongguang Ji, and Yinhu Wang. Transfer
learning based failure prediction for minority disks in
large data centers of heterogeneous disk systems. In Pro-
ceedings of the 48th International Conference on Paral-
lel Processing, ICPP, pages 66:1–66:10. ACM, 2019.

[2] Xiaoyi Sun, Krishnendu Chakrabarty, Ruirui Huang, Yi-
quan Chen, Bing Zhao, Hai Cao, Yinhe Han, Xiaoyao
Liang, and Li Jiang. System-level hardware failure pre-
diction using deep learning. In Proceedings of the 56th
Annual Design Automation Conference 2019, DAC ’19,
pages 20:1–20:6. ACM, 2019.

[3] Saurabh Kadekodi, K. V. Rashmi, and Gregory R.
Ganger. Cluster storage systems gotta have heart: im-
proving storage efficiency by exploiting disk-reliability
heterogeneity. In 17th USENIX Conference on File
and Storage Technologies (FAST 19), pages 345–358.
USENIX Association, 2019.

[4] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey
Yekhanin. Erasure coding in windows azure storage. In
Presented as part of the 2012 USENIX Annual Technical
Conference (USENIX ATC), pages 15–26, 2012.

[5] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, and Arild et. al Skjolsvold. Windows azure storage:
A highly available cloud storage service with strong
consistency. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11,
pages 143–157. ACM.

[6] David A. Patterson, Garth Gibson, and Randy H. Katz.
A case for redundant arrays of inexpensive disks (raid).
In Proceedings of the 1988 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’88, pages 109–116. ACM.

[7] Jayanta Basak and Randy H. Katz. Significance of disk
failure prediction in datacenters, 2017.

[8] Drew D. Penney and Lizhong Chen. A survey of ma-
chine learning applied to computer architecture design,
2019.

[9] Ao Ma, Fred Douglis, Guanlin Lu, Darren Sawyer,
Surendar Chandra, and Windsor Hsu. Raidshield:
Characterizing, monitoring, and proactively protecting
against disk failures. In 13th USENIX Conference on
File and Storage Technologies (FAST 15), pages 241–
256. USENIX Association, 2015.

[10] Allen Bruce. Monitoring hard disks with smart. Linux
Journal, 117, 2004.

[11] Richard Nass. Smart failure-prediction method now
being endorsed for scsi disk drives. Electronic Design,
43, 1995.

[12] X. Gao, S. Zha, X. Li, B. Yan, X. Jing, J. Li, and J. Xu. In-
cremental prediction model of disk failures based on the
density metric of edge samples. IEEE Access, 7:114285–
114296, 2019.

[13] Yu Wang, Qiang Miao, and M. Pecht. Health monitor-
ing of hard disk drive based on mahalanobis distance.
In 2011 Prognostics and System Health Managment
Confernece, pages 1–8, 2011.

[14] Y. Wang, Q. Miao, E. W. M. Ma, K. Tsui, and M. G.
Pecht. Online anomaly detection for hard disk drives
based on mahalanobis distance. IEEE Transactions on
Reliability, 62(1):136–145, 2013.

[15] Jing Shen, Jian Wan, Se-Jung Lim, and Lifeng Yu.
Random-forest-based failure prediction for hard disk
drives. International Journal of Distributed Sensor Net-
works, 14(11), 2018.

[16] S. Huang, S. Fu, Q. Zhang, and W. Shi. Characterizing
disk failures with quantified disk degradation signatures:
An early experience. In 2015 IEEE International Sym-
posium on Workload Characterization, pages 150–159,
2015.

[17] Y. Xie, D. Feng, F. Wang, X. Tang, J. Han, and X. Zhang.
Dfpe: Explaining predictive models for disk failure pre-
diction. In 2019 35th Symposium on Mass Storage Sys-
tems and Technologies (MSST), pages 193–204, 2019.

[18] Y. Yi, J. Xiao, S. Wu, H. Li, and H. Jin. Failure order: A
missing piece in disk failure processing of data centers.
In 2019 IEEE 21st International Conference on High
Performance Computing and Communications, pages
223–230, 2019.

[19] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang,
Qingwei Lin, Yingnong Dang, Peng Li, Keceng Jiang,
Wenchi Zhang, Jian-Guang Lou, Murali Chintalapati,
and Dongmei Zhang. Improving service availability of
cloud systems by predicting disk error. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
481–494, 2018.

[20] P. Anantharaman, M. Qiao, and D. Jadav. Large scale
predictive analytics for hard disk remaining useful life
estimation. In 2018 IEEE International Congress on
Big Data (BigData Congress), pages 251–254, 2018.

[21] Jiang Xiao, Zhuang Xiong, Song Wu, Yusheng Yi, Hai
Jin, and Kan Hu. Disk failure prediction in data centers
via online learning. In Proceedings of the 47th Interna-
tional Conference on Parallel Processing, ICPP 2018,
pages 35:1–35:10. ACM, 2018.

USENIX Association 2020 USENIX Annual Technical Conference 123

[22] C. A. C. Rincón, J. Pâris, R. Vilalta, A. M. K. Cheng,
and D. D. E. Long. Disk failure prediction in heteroge-
neous environments. In 2017 International Symposium
on Performance Evaluation of Computer and Telecom-
munication Systems (SPECTS), pages 1–7, 2017.

[23] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca
Schroeder. Proactive error prediction to improve stor-
age system reliability. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17), pages 391–402.
USENIX Association, 2017.

[24] N. Aussel, S. Jaulin, G. Gandon, Y. Petetin, E. Fazli,
and S. Chabridon. Predictive models of hard drive fail-
ures based on operational data. In 2017 16th IEEE
International Conference on Machine Learning and Ap-
plications (ICMLA), pages 619–625, 2017.

[25] I. C. Chaves, M. R. P. d. Paula, L. G. M. Leite, L. P.
Queiroz, J. P. P. Gomes, and J. C. Machado. Banhfap:
A bayesian network based failure prediction approach
for hard disk drives. In 2016 5th Brazilian Conference
on Intelligent Systems (BRACIS), pages 427–432, 2016.

[26] S. Ganguly, A. Consul, A. Khan, B. Bussone, J. Richards,
and A. Miguel. A practical approach to hard disk failure
prediction in cloud platforms: Big data model for failure
management in datacenters. In IEEE Second Interna-
tional Conference on Big Data Computing Service and
Applications (BigDataService), pages 105–116, 2016.

[27] W. Yang, D. Hu, Y. Liu, S. Wang, and T. Jiang. Hard
drive failure prediction using big data. In 2015 IEEE
34th Symposium on Reliable Distributed Systems Work-
shop (SRDSW), pages 13–18, 2015.

[28] J. Li, X. Ji, Y. Jia, B. Zhu, G. Wang, Z. Li, and X. Liu.
Hard drive failure prediction using classification and
regression trees. In 2014 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works, pages 383–394, 2014.

[29] Teerat Pitakrat, André van Hoorn, and Lars Grunske. A
comparison of machine learning algorithms for proac-
tive hard disk drive failure detection. In Proceedings
of the 4th International ACM Sigsoft Symposium on Ar-
chitecting Critical Systems, ISARCS ’13, pages 1–10.
ACM, 2013.

[30] Xiaoyi Sun, Krishnendu Chakrabarty, Ruirui Huang, Yi-
quan Chen, Bing Zhao, Hai Cao, Yinhe Han, Xiaoyao
Liang, and Li Jiang. System-level hardware failure pre-
diction using deep learning. In Proceedings of the 56th
Annual Design Automation Conference 2019, DAC ’19,
pages 20:1–20:6, 2019.

[31] S. Basak, S. Sengupta, and A. Dubey. Mechanisms for
integrated feature normalization and remaining useful
life estimation using lstms applied to hard-disks. In 2019
IEEE International Conference on Smart Computing
(SMARTCOMP), pages 208–216, 2019.

[32] F. D. d. S. Lima, G. M. R. Amaral, L. G. d. M. Leite,
J. P. P. Gomes, and J. d. C. Machado. Predicting failures
in hard drives with lstm networks. In 2017 Brazilian
Conference on Intelligent Systems (BRACIS), pages 222–
227, 2017.

[33] S. Pang, Y. Jia, R. Stones, G. Wang, and X. Liu. A
combined bayesian network method for predicting drive
failure times from smart attributes. In 2016 Interna-
tional Joint Conference on Neural Networks (IJCNN),
pages 4850–4856, 2016.

[34] C. Xu, G. Wang, X. Liu, D. Guo, and T. Liu. Health
status assessment and failure prediction for hard drives
with recurrent neural networks. IEEE Transactions on
Computers, 65(11):3502–3508, 2016.

[35] F. Pereira, D. Teixeira, J. P. Gomes, and J. Machado.
Evaluating one-class classifiers for fault detection in
hard disk drives. In 2019 8th Brazilian Conference on
Intelligent Systems (BRACIS), pages 586–591, 2019.

[36] L. P. Queiroz, F. C. M. Rodrigues, J. P. P. Gomes, F. T.
Brito, I. C. Chaves, M. R. P. Paula, M. R. Salvador, and
J. C. Machado. A fault detection method for hard disk
drives based on mixture of gaussians and nonparametric
statistics. IEEE Transactions on Industrial Informatics,
13(2):542–550, 2017.

[37] Lucas P. Queiroz, João Paulo Pordeus Gomes, Francisco
Caio M. Rodrigues, Felipe T. Brito, Iago C. Chaves, Lu-
cas Goncalves de Moura Leite, and Javam C. Machado.
Fault detection in hard disk drives based on a semi para-
metric model and statistical estimators. New Generation
Computing, 36:5–19, 2017.

[38] Y. Wang, E. W. M. Ma, T. W. S. Chow, and K. Tsui.
A two-step parametric method for failure prediction in
hard disk drives. IEEE Transactions on Industrial Infor-
matics, 10(1):419–430, 2014.

[39] Y. Wang, K. Tsui, E. W. M. Ma, and M. Pecht. A fusion
approach for anomaly detection in hard disk drives. In
Proceedings of the IEEE 2012 Prognostics and System
Health Management Conference (PHM-2012 Beijing),
pages 1–5, 2012.

[40] Xu Zhang, Qingwei Lin, Yong Xu, Si Qin, Hongyu
Zhang, Bo Qiao, Yingnong Dang, Xinsheng Yang, Qian
Cheng, Murali Chintalapati, Youjiang Wu, Ken Hsieh,
Kaixin Sui, Xin Meng, Yaohai Xu, Wenchi Zhang, Furao

124 2020 USENIX Annual Technical Conference USENIX Association

Shen, and Dongmei Zhang. Cross-dataset time series
anomaly detection for cloud systems. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
1063–1076, Renton, WA, July 2019. USENIX Associa-
tion.

[41] Y. Xie, D. Feng, F. Wang, X. Zhang, J. Han, and X. Tang.
Ome: An optimized modeling engine for disk failure pre-
diction in heterogeneous datacenter. In 2018 IEEE 36th
International Conference on Computer Design (ICCD),
pages 561–564, 2018.

[42] F. L. F. Pereira, F. D. d. S. Lima, L. G. d. M. Leite,
J. P. P. Gomes, and J. d. C. Machado. Transfer learning
for bayesian networks with application on hard disk
drives failure prediction. In 2017 Brazilian Conference
on Intelligent Systems (BRACIS), pages 228–233, 2017.

[43] Mirela Madalina Botezatu, Ioana Giurgiu, Jasmina Bo-
gojeska, and Dorothea Wiesmann. Predicting disk re-
placement towards reliable data centers. In Proceedings
of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16,
pages 39–48. ACM, 2016.

[44] J. Zhang, K. Zhou, P. Huang, X. He, M. Xie, B. Cheng,
Y. Ji, and Y. Wang. Minority disk failure prediction
based on transfer learning in large data centers of hetero-
geneous disk systems. IEEE Transactions on Parallel
and Distributed Systems, 31(9):2155–2169, 2020.

[45] Charles X. Ling and Chenghui Li. Data mining for direct
marketing: Problems and solutions. In Proceedings of
the Fourth International Conference on Knowledge Dis-
covery and Data Mining, KDD’98, page 73–79. AAAI
Press, 1998.

[46] R. Larson. Elementary Linear Algebra. Cengage Learn-
ing, 2012.

[47] Corinna Cortes and Vladimir Vapnik. Support-vector
networks. Machine Learning, 20(3):273–297, 1995.

[48] David W Hosmer Jr, Stanley Lemeshow, and Rodney X
Sturdivant. Applied logistic regression, volume 398.
John Wiley & Sons, 2013.

[49] Roger Lewis. An introduction to classification and re-
gression tree (cart) analysis. 01 2000.

[50] Vladimir Svetnik, Andy Liaw, Christopher Tong, John
Culberson, Robert Sheridan, and Bradley Feuston. Ran-
dom forest: A classification and regression tool for com-
pound classification and qsar modeling. Journal of chem-
ical information and computer sciences, 43:1947–58, 11
2003.

[51] J J Hopfield. Neural networks and physical systems with
emergent collective computational abilities. Proceed-
ings of the National Academy of Sciences, 79(8):2554–
2558, 1982.

[52] Jerome H. Friedman. Greedy function approximation:
A gradient boosting machine. The Annals of Statistics,
29(5):1189–1232, 2001.

[53] Joel Coffman and Alfred C. Weaver. Learning to rank
results in relational keyword search. In CIKM ’11, 2011.

[54] S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineer-
ing, 22(10):1345–1359, 2010.

[55] S. Kullback and R. A. Leibler. On information and suffi-
ciency. The Annals of Mathematical Statistics, 22(1):79–
86, 1951.

[56] Gregory Koch, Richard Zemel, and Ruslan Salakhutdi-
nov. Siamese neural networks for one-shot image recog-
nition. In ICML deep learning workshop, volume 2.
Lille, 2015.

[57] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng.
Predicting disk failures with HMM- and hsmm-based ap-
proaches. In Advances in Data Mining. Applications and
Theoretical Aspects, 10th Industrial Conference, ICDM
2010, Berlin, Germany, July 12-14, 2010. Proceedings,
pages 390–404, 2010.

[58] H. Wang, A. Kläser, C. Schmid, and C. Liu. Action
recognition by dense trajectories. In CVPR 2011, pages
3169–3176, 2011.

[59] Peter Prettenhofer and Benno Stein. Cross-language text
classification using structural correspondence learning.
In Proceedings of the 48th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 1118–1127,
Uppsala, Sweden, 2010.

[60] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning
a similarity metric discriminatively, with application to
face verification. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05) - Volume 1 - Volume
01, CVPR ’05, page 539–546. IEEE Computer Society,
2005.

[61] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional
lstm-crf models for sequence tagging, 2015.

[62] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on
Learning Representations, 12 2014.

USENIX Association 2020 USENIX Annual Technical Conference 125

[63] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res., 15(1):1929–1958, January 2014.

[64] Albert Orriols-Puig and Ester Bernadó-Mansilla. Evo-
lutionary rule-based systems for imbalanced data sets.
Soft Comput., 13(3):213–225, 2009.

[65] D. Sun, Z. Wu, Y. Wang, Q. Lv, and B. Hu. Risk predic-
tion for imbalanced data in cyber security : A siamese
network-based deep learning classification framework.
In 2019 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8, July 2019.

[66] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan,
and Weiming Hu. Distractor-aware siamese networks
for visual object tracking. In Vittorio Ferrari, Martial
Hebert, Cristian Sminchisescu, and Yair Weiss, editors,
Computer Vision – ECCV 2018, pages 103–119, Cham,
2018. Springer International Publishing.

[67] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma.
Proactive drive failure prediction for large scale storage
systems. In IEEE 29th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–5, 2013.

[68] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin
Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng,
Li Liu, Minwei Ran, and Zekang Li. An end-to-end
automatic cloud database tuning system using deep rein-
forcement learning. In Proceedings of the 2019 Interna-

tional Conference on Management of Data, SIGMOD
’19, page 415–432, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[69] Hidetoshi Shimodaira. Improving predictive inference
under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference,
90(2):227 – 244, 2000.

[70] Ardeshir Raihanian Mashhadi, Willie Cade, and Sara
Behdad. Moving towards real-time data-driven quality
monitoring: A case study of hard disk drives. Proce-
dia Manufacturing, 26:1107 – 1115, 2018. 46th SME
North American Manufacturing Research Conference,
NAMRC 46, Texas, USA.

[71] B. Eckart, X. Chen, X. He, and S. L. Scott. Failure
prediction models for proactive fault tolerance within
storage systems. In 2008 IEEE International Symposium
on Modeling, Analysis and Simulation of Computers and
Telecommunication Systems, pages 1–8, 2008.

[72] Laurens van der Maaten and Geoffrey Hinton. Visual-
izing data using t-SNE. Journal of Machine Learning
Research, 9:2579–2605, 2008.

[73] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A
survey of model compression and acceleration for deep

neural networks. CoRR, 2017.

126 2020 USENIX Annual Technical Conference USENIX Association

Adaptive Placement for In-memory Storage Functions

Ankit Bhardwaj Chinmay Kulkarni Ryan Stutsman
University of Utah

Abstract
Fast networks and the desire for high resource utilization in
data centers and the cloud have driven disaggregation. Ap-
plication compute is separated from storage, but this leads to
high overheads when data must move over the network for
simple operations on it. Alternatively, systems could allow
applications to run application logic within storage via user-
defined functions. Unfortunately, this ties provisioning and
utilization of storage and compute resources together again.

We present a new approach to executing storage-level func-
tions in an in-memory key-value store that avoids this prob-
lem by dynamically deciding where to execute functions over
data. Users write storage functions that are logically decou-
pled from storage, but storage servers choose where to run
invocations of these functions physically. By using a server-
internal cost model and observing function execution, servers
choose to directly run inexpensive functions, while preferring
to execute functions with high CPU-cost at client machines.

We show that with this approach storage servers can reduce
network request processing costs, avoid server compute bot-
tlenecks, and improve aggregate storage system throughput.
We realize our approach on an in-memory key-value store
that executes 3.2 million strict serializable user-defined stor-
age functions per second with 100 µs response times. When
running a mix of logic from different applications, it provides
throughput better than running that logic purely at storage
servers (85% more) or purely at clients (10% more). For our
workloads, it also reduces latency (up to 2×) and transactional
aborts (up to 33%) over pure client-side execution.

1 Introduction
Today, in data centers and the cloud, compute is disaggre-
gated from storage. Separating compute and storage eases
provisioning and keeps utilization high by decoupling their al-
location. Fast networks have made this practical, but moving
all data to compute comes at a cost.

Beyond conventional, higher-level approaches like SQL,
many systems have evolved to embed more functionality
within storage servers to make storage operations more expres-
sive and to reduce inefficient data movement. For example,
some databases allow compile-time extensions [38, 47], user-
defined functions [34], and stored-procedures [19, 22, 33, 38,
48]. Among key-value and object stores, some stores offer a
fixed set of extra operators [2,43], while others allow runtime
extension with just-in-time [14, 26, 45] or ahead-of-time com-
piled user-supplied operations [26]. All of these approaches
move user operations closer to the data that they operate on.

The downside is that these approaches fix the ratio of com-
pute to storage, so compute at storage servers can quickly
become a bottleneck. The result is that the state-of-practice is
to prefer easy provisioning and high utilization while keeping
a hard network boundary between compute and storage.

However, the steady decrease in the granularity of compute
allocation and scheduling in the cloud (from virtual machines,
to containers, to serverless functions) has raised a possibility:
application compute need not be statically embedded within
storage; nor must it be the case that it is always run separately.
Storage servers that support running granular user-supplied
functions at low cost create the opportunity to dynamically
adapt where functions on stored data are executed. By shift-
ing processing of storage functions back to storage client ma-
chines, a storage server can avoid CPU-intensive operations
when under load to avoid becoming bottlenecked, choosing
instead to send data back to clients for processing. By shifting
processing onto itself, a server can eliminate data movement,
lend its spare CPU capacity to clients, and reduce its own
request processing load. Since moving user-logic into the
server reduces the number of requests clients make for data,
counter-intuitively, a server can improve its own throughput
by taking on more of client applications’ compute work.

To show the benefits of such an approach, we developed a
new scheme for executing storage functions on top of Splin-
ter [26], which is an extensible in-memory key-value store.
Beyond fast get()/put() key-value operations, applications
can push compiled, binary-code extensions containing storage
functions to Splinter. These functions can be invoked over the
network by clients with low overhead such that even opera-
tions that only perform a few microseconds of compute are
practical and efficient. Our new approach builds on Splinter to
imbue it with a profiler that tracks storage function execution.
Clients attempt to invoke their functions at servers. Servers
use an internal cost model that weighs the CPU cost to the
server if the function were to continue to run at the server
against the CPU cost to the server if the function were to
run at the client (which would result in extra remote requests
to the server for data). Functions invocations that compute
over large amounts of data are deemed beneficial and are run
at the server, since running them at the client would require
transferring large amounts of data. Functions invocations that
are compute-intensive but access little data are pushed back
to the client, where the client must perform the computation.

Beyond the server side, the framework includes a smart
storage client library that makes “pushback” cases transpar-
ent to applications. The server and the storage client library

USENIX Association 2020 USENIX Annual Technical Conference 127

both provide a binary compatible runtime, so functions are un-
aware of whether they are run at a storage server (where data
access is local) or at a client (where data access is remote).
Applications attempt to invoke their storage functions, and
the client library transparently executes any client function
invocation requests that are pushed back by the storage server
before returning the result to the application.

In our model, invocations may execute on the server, at
the client, or partially on both, so ensuring consistency is a
challenge. Our approach adapts techniques from distributed
optimistic concurrency control protocols (OCC) [3, 27, 51] to
solve this. All storage functions run within strict serializable
transactions, which ensure that clients observe the same strong
consistency regardless of where functions execute. These
transactions play a key role in the function execution model
itself; when a function’s execution is transferred from a server
to a client, its transaction’s read/write set is shipped along
with it, avoiding extra requests back to the server for data.

We demonstrate adaptive storage function placement (or
ASFP) with functions drawn from different domains includ-
ing aggregation, graph traversal, machine learning classifiers,
and authentication. We show these workloads have hetero-
geneous compute demands, often with compute-to-storage-
access ratios varying within one application’s functions. Even
so, ASFP provides throughput better than running functions
purely at storage servers (85% more) or purely at clients (10%
more), and it automatically adjusts, optimizing throughput as
workloads and server network costs vary and change.

2 Background and Motivation
Today, cloud and data center applications keep data in one set
of servers and compute over it on another. This “client-side”
function execution model serves as a baseline. Our question
is, can a system consistently beat the performance of this
client-side approach without creating server bottlenecks?

To do this, one needs a way to embed application logic
within storage to compute on data. Our approach relies on the
Splinter multi-tenant in-memory key-value store (KVS) [26].
Similar to other low-latency in-memory stores like RAM-
Cloud [40] and FaRM [12], remote clients issue get(), put(),
multiget(), and multiput() operations to a Splinter server.
Unlike most other systems, clients also send compiled exten-
sions with custom storage functions to it at runtime, which
they invoke remotely to perform operations over their data. In-
voking a storage function only incurs 1,400 cycles of overhead
and adds no other no runtime overheads. Splinter achieves
low-latency and high-throughput via kernel-bypass network-
ing; one server handles 6.5 million get() or 13.5 million
no-op invoke() requests per second over the network with
tens of microseconds of delay. It supports thousands of inter-
isolated tenants per server; each application and its storage
functions can only access and modify data that it owns.

Extensions reduce requests to storage. With them, a sin-
gle request could fetch a “user profile” object along with the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
s
 o

f
in

v
o

c
a

ti
o

n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Client Determined Onload-Offload
Server Determined Onload-Offload

Figure 1: Server-side vs client-side throughput when CPU cost
varies. Throughput is inversely related to the compute applied to two
accessed values per invocation when run server-side. When the logic
is run client-side, the server must process more requests (2 get() vs
1 invoke() request), but computation is offloaded to clients.

profiles of friends listed within that profile. Another applica-
tion could make recursive k-hop queries by traversing edge
lists stored in values or make classification requests to stored
models. Storage functions access multiple values, reducing
server request processing costs, but they are most effective
for inter-dependent data accesses since these accesses would
otherwise require multiple requests separated by a round-trip.

2.1 Understanding the Impact of Placement
Storage functions can lower server overhead, but if functions
perform too much computation, then the benefits of eliminat-
ing requests are offset as the server CPU becomes a bottleneck.
Figure 1 shows this effect. When functions are run server-side
(circles), a server performs 3.2 million invocations/second
if the functions perform no computation, but its throughput
is inversely proportional to the CPU cycles spent comput-
ing on the values (x-axis). When run client-side (squares),
the server only processes the two get() operations for each
function; the extra computation is run at clients, which have
sufficient idle CPU to perform the work. (Later, we show
that if clients do not have idle CPU capacity, our approach
shifts work to the server still so long as it is not overloaded. In
either case, a global bottleneck is avoided.) When functions
perform no computation on values, the two get() requests
incur higher server-side overhead than sending one invoke()

request, so server CPU becomes a bottleneck when servicing
the equivalent of 2.5 million invocations/second.

Sometimes pure server-side execution provides better sys-
tem throughput and other times pure client-side execution
does. The key insight of this paper is that with lightweight
performance tracking, the server can determine this cross-over
point, and it can separate invocations into those that should
be kept at the server from those that are better run at clients.

2.2 Challenges in Execution Placement
Ideally, a server could get the best of both worlds if it
could perfectly determine where to execute an invocation.
We simulate this by manually controlling where invoca-
tions run based on how much computation they do on data

128 2020 USENIX Annual Technical Conference USENIX Association

(Client Determined Onload-Offload, dashed line). Here,
clients never issue compute-heavy invocations to the server
– so, performance matches pure server-side execution for
data-intensive invocations and pure client-side execution for
compute-intensive invocations.

However, real clients (and real servers) do not know how
much computation an invocation will use a priori; different
functions vary, and even invocations of the same function
could access values and use the CPU in different ratios. Stat-
ically determining how much data or how much computa-
tion an invocation will use is undecidable in general. Static
analysis or modeling might help make good guesses, but the
analysis could be fragile and have pathologies.

Our approach is to measure rather than guess; rather than
using history, another option is to optimistically assume in-
vocations should run at the server and then try to minimize
the cost of correcting mistakes. Figure 1 shows the cost of
this conservative, “black box” approach (Server Determined

Onload-Offload, triangles). Here, clients always invoke func-
tions at the server, but the server quickly sheds invocations
that consume CPU without accessing many values. This adds
overhead for compute-intensive functions, since the server
wastes a small amount of compute before realizing the mis-
take, but these results show this only hurts throughput 3% for
compute-intensive invocations (all other invocations benefit).

Simple enhancements to this scheme are likely to work
in practice. Tracking the history of the costs of a particular
function’s last few invocations can help. If a function’s invo-
cations are determined better to be run client-side a few times
in a row, then running the next several invocations client-side
makes sense. This would work for many applications, but we
intentionally avoided such tweaks in this paper. Our approach
never relies on the history of invocations (neither across nor
within a function); optimizations that make better predictions
are likely limited to only recovering that 3% of performance.

In summary, ASFP based on optimistic onloading of appli-
cation compute to storage with pushback to clients achieves
the best of both worlds. For storage functions that access a
great deal of data, ASFP avoids data movement costs; for
functions that are compute-costly it avoids server bottlenecks.

3 ASFP Design
Applications vary in how they work with data they hold in re-
mote storage. Compute-bound applications may access little
data, so moving data to computation is efficient; for data-
intensive applications moving computation is more efficient.
Multi-tenant stores take this to an extreme: they see a diverse
set of applications with a wide variety of compute and data
needs. The key idea of ASFP is to exploit this diversity by op-
timistically colocating functions with the data they access and
then profiling storage function execution costs to dynamically
relocate invocations that would create a bottleneck.

ASFP relies on mechanisms for running storage functions
at servers, at clients, or split between both and policies to

DPDK

Queues

Task

Queue

NIC

Task

Scheduling

1

2

3

Data Tables
Rx TxRx Tx

Compute Gets/Puts

Figure 2: Splinter Request Execution. Each server core has a dedi-
cated network receive queue where clients steer requests. Each core
polls this queue and creates a task for each incoming request. Tasks
are run round-robin; storage functions can access key-value pairs
and perform custom computation on them within the server.

control the mechanisms and decide placement. The four main
mechanisms are needed for ASFP are:

Server-side Storage Functions (§3.1.1). Tenant-provided
storage functions reduce data movement. They are key for
improving server performance for data-intensive functions.
This functionality already pre-exists in Splinter.

Server-to-client Pushback (§3.1.2). ASFP uses a pushback
scheme that relocates costly function invocations back to
clients to avoid server-side bottlenecks.

Concurrency Control (§3.1.3). Since a single function in-
vocation could run partly server-side and partly client-side,
consistency becomes an issue. ASFP ensures that this does
not cause repeated effects or inconsistencies. It uses OCC
to ensure strict serializability of invocation operations, and
it integrates with OCC read/write set tracking to preserve
work for invocations that are pushed back to clients.

Client-side Runtime (§3.1.4). Clients locally execute invo-
cations that are pushed back from the server, and the ASFP
client library makes this transparent. Applications wait for
invocations to complete; the client library runs pushed back
invocations, fetching data from the server as needed.

The server’s primary objective in ASFP is to minimize
the CPU usage per function invocation and to optimize its
own throughput, which, indirectly optimizes the through-
put of the entire system. The ASFP policy relies on three
key components to do this:

Invocation Profiling. Each server tracks each function invo-
cation as it runs to account for its CPU time.

Request/Response Cost Modeling (§3.2.1). Similarly,
each server dynamically profiles networking CPU costs
to determine a CPU cost model for data movement. This
projects how much server CPU is being saved by running
each invocation at the server. If an invocation has consumed
substantially more CPU cycles at the server than the
request/response cost model projects have been saved by
running it at the server, then it is pushed back to the client.

USENIX Association 2020 USENIX Annual Technical Conference 129

Overload Trigger (§3.2.2). Even compute-bound functions
run more efficiently at the server than they do at clients since
they can avoid data movement. All invocations run at the
server if there is spare CPU capacity available, so long as
they don’t create a bottleneck at the server. Hence, pushback
is only triggered when our server deems itself overloaded.
First, we describe ASFP’s mechanisms to show how stor-

age functions, pushback, and concurrency control work; then,
we explain how its measurements and policies drive its mech-
anisms. Overall, ASFP constitutes about 7,500 lines of code
split across additions to the Splinter server and a the new
client library, which shares much of its code with the server
(available at https://github.com/utah-scs/splinter/).

3.1 ASFP Mechanisms
3.1.1 Server-side Storage Functions

ASFP is built on top of the Splinter in-memory KVS. Splinter
supports typical KVS remote get() and put() operations. It
is a good starting point because it also supports installation of
client-supplied native-code extensions. These extensions add
storage functions to the server that can be called remotely via
invoke() requests. ASFP uses invoke() requests to move
computation to data, and it extends Splinter with new profiling,
policy, and function invocation relocation functionality.

Internally, Splinter multitasks between get(), put(), and
(possibly longer-running) invoke() requests, so each incom-
ing request is converted into a task. The server runs these co-
operative tasks round-robin until they complete or yield; this
prevents head-of-line blocking when functions take awhile to
execute. Tasks handling invoke() operations maintain state
for the running storage function as a coroutine stored in the
task. Figure 2 illustrates request processing. Each server core
polls a CPU-core-specific network receive queue and creates
a task for each incoming request (1©), each of which is added
to a per-core task queue. Each queued task is run once (2©),
then the core polls its receive queue again. The core transmits
a response (3©) when a task completes and then destroys it.

Invocations run interleaved due to cooperative scheduling,
but they can also run in parallel too. Clients steer requests to
specific CPU cores to reduce overhead, but server cores steal
work from each others’ receive queues to keep throughput
high under load imbalance. Hence, pipelined invocations from
a client can run in parallel at the server.

3.1.2 Pushing invoke()s Back to Clients

ASFP lets Splinter servers selectively shed load. When a stor-
age server’s cores are overloaded, it may perform a pushback
on tasks. These tasks are terminated at the server and restarted
client-side. Figure 4 shows the state transition diagram of the
lifecycle of an invoke() request at a server. ASFP adds a new
Offload state to server-side tasks to support pushback.

For each incoming invoke() request, a server creates a task
and tries to run it to completion, sending a Result response
(top of Figure 3). However, if a server is past an overload trig-

G
e
t

C
o
m

p
u
te

V
a
lid

a
te

Server

Client

G
e
t

C
o
m

p
u
te

G
e
t

Server

Client

G
e
t

C
o
m

p
u
te

P
u
s
h
b
a
c
k G

e
t

C
o
m

p
u
te

V
a
lid

a
te

V
a
lid

a
te

G
e
t

Server-side Storage Function Execution

Pushed-back Storage Function Execution

Figure 3: Timeline of a function invocation request when run server-
side (top) and when pushed back to the client side (bottom). In this
case, offloading this relatively long-running function to the client
gives the server extra CPU resources to service other requests.

ger point (§3.2.2), then it chooses some Ready invoke() tasks
that are good candidates for client-side execution based on a
threshold function (§3.2.1), and it moves them to Offload.

When tasks in the Offload state are scheduled, a Pushback

response is generated that informs the client that it should run
the function client-side. The client runs the function, falling
back to making get() requests to the server to fetch needed
values (put()s are cached locally and installed atomically
when the invocation completes, §3.1.3). Figure 5 shows this.
If the client receives a Result response, the work of the re-
quested invocation has been done, and there is nothing left to
do. If the client receives a Pushback response, the client be-
gins to execute the function logic itself in a fashion similar to
the server. The bottom of Figure 3 shows the interactions be-
tween the server and the client when an invocation is pushed
back to the client; as shown, this avoids a bottleneck in this
case, freeing the server to process other requests at the server.

3.1.3 Consistency and Concurrency Control

Storage functions and pushback create interrelated challenges,
especially for consistency. First, invoke() tasks run concur-
rently at the server; this can happen because tasks run inter-
leaved at the server and because server cores perform work
stealing. Pushed back requests also create concurrency, since
those functions run at the client in parallel with server tasks.
Second, when tasks are pushed back, the client restarts execu-
tion of that function from the beginning – pushback has no
means to preserve the running state of a function to resume
it at the client. This means that without care, clients might
repeat operations, which would affect the concurrent behavior
of functions and make it hard to reason about consistency.

To solve these consistency issues, invocations are run as
strict serializable transactions. This makes it easy to reason
about consistency regardless of where an invocation is run.
ASFP adds OCC transactions to Splinter. When a server re-
ceives an invoke(), it creates an empty read/write set. The
server tracks the version of each value that a task sees and the
values that the tasks wishes to install in storage. If the task

130 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/utah-scs/splinter/

Pushback

Running

Ready

Committed/

Aborted

Offload

Result

Invoke

Get (Local)

Yield

Schedule

Validation

Server

Overload

State Change Request Response

Figure 4: Server-side task states for an invoke().

ReadyCreate

Awaiting

Validation

Awaiting

Data

Running

Get

(in local Read Set)

Yield

Schedule

Get (Remote)

Install

RW Set

Get

Get

ValidationResult

Pushback

State Change Request Response

Completed

Validate
Committed/

Aborted

Figure 5: Client-side task states for a pushed-back invoke().

completes on the server, validation is performed by latching
the invocation’s read/write set. For each key in the read set,
if the associated value versions remain unchanged, then its
write set is installed and the client is informed of commitment;
otherwise, the server indicates abort.

The server’s read/write set has a second purpose: by track-
ing what values an invocation has read, the server can save
work by returning those values immediately on pushback. The
client installs this read/write set locally before restarting the
function. This way, the server will never have to repeat any
work for a pushed back task: all of the values the task needs
have already been delivered to it up to the point that it was ter-
minated at the server. This is key: pushed back requests never
generate extra work for the server. This bears similarities to
reconnaissance queries in deterministic databases [50].

On completion of a pushed back task, the client sends the
write set and version metadata for the values it read to the
server where validation is performed the same as if the task
has completed server-side. This is another advantage of OCC:
the server need not keep any state about an invocation once it
is pushed back. For example, the server retains no metadata
or locks on behalf of a pushed back task. This makes any
recovery or state reclamation unnecessary on client failures.

3.1.4 Client Runtime for invoke()s

Splinter client requests consist of basic get()/put() requests
and invoke() requests that attempt to invoke a storage func-
tion within the store. Clients register extensions at the server
before invoking the functions they contain. ASFP requires
that the same extensions are registered at the client library as
well, so that they can handle pushed back invoke() requests.

On each invoke() response from the server, the client
checks a Pushback response flag. If it is set, the client per-
forms logic similar to request dispatching on the server: it
creates a task and coroutine similar to the ones used on the
server, and it places the task in a client-local task queue (Fig-
ure 5). The main difference is that the read/write set returned
from the server is used to pre-populate the read/write set of
the invocation before it starts at the client side.

Clients put Ready tasks in their task queue and run tasks
round-robin, just like the server. This lets clients make

progress on invocations while continuing to issue new op-
erations to the server.

The ASFP client library provides a binary-compatible inter-
face with the server, so identical versions of storage functions
work whether they run at the client or at the server. Splinter
extensions have a restricted get()/put() interface for inter-
acting with storage, and they have a restricted set of white-
listed library functions they can run beyond that. Extensions
on the client-side have the same restrictions, so that pushed
back invocations will run the same way in both places.

Client-side execution does run different from server-side
in one important regard: the client must access key-value
pairs remotely. This is solved by passing in handles into stor-
age functions through which they request access to data. On
the server-side the handles call get()/put() functions to
access data directly; on the client-side the handles issue re-
mote get()/put() requests. Requests to the store take about
10 µs to service, and task context switch time is just 24 cy-
cles, so tasks waiting for responses from the server enter an
Awaiting Data state. Each invocation has a unique client-
side id; whenever the client library receives a response to a
particular extension invocation, it adds the record to the local
read/write set for that invocation. Clients read through their
read set; after a “hit” in their read set or upon the completion
of a remote access, the task is returned to the Ready state.

3.2 ASFP Policies
3.2.1 invoke()s Profiling and Classification

Splinter is both multi-tenant and extensible. Together, these
mean that it must deal with different access patterns and func-
tions with varying compute-to-storage-access ratios. This also
means a server will be able to find many suitable functions
to run that can reduce its load. When overloaded, it must de-
termine which Ready tasks should be pushed back; however,
pushing back the wrong tasks can hurt its throughput.

Whether a task is beneficial to server throughput when run
server-side is determined by two things: the amount of CPU
time it uses computing on the values it accesses (which hurts
throughput) and the number of values it interacts with (which
benefits throughput, since each access run at the server elimi-

USENIX Association 2020 USENIX Annual Technical Conference 131

nates a network request that it otherwise would have had to
process). Effectively, each time a task accesses a stored value
it should be credited for the amount of server CPU it saved
by having run that operation locally. Likewise, whenever it
performs other computation that does not save server CPU
work it should be debited, since this slows request processing.

This results in a natural threshold for when tasks would be
pushed back to clients, which we call the pushback threshold.
It is defined by

c < nD− (D+ I)

where c is the amount of computation done by an invocation
so far, n is the number of values accessed by the invocation
so far, D is the request processing CPU cost, I represents
the cost to perform an invocation (beyond request processing
cost). Effectively, nD is the work the server would have done
if the client issued n get() requests. (D+ I) represents CPU
cost at the server of an invoke() request. Hence, so long as
c < nD− (D+ I), server-side work is saved by letting the
invocation remain at the server.

This inequality divides all tasks into two classes, S and C .
Tasks in S are beneficial to run at the server, and tasks in C
improve server throughput when run at clients. The inequality
does not hold when an invocation accesses zero or one values;
these invocations save the server less work than the cost of
an invoke() request. It never makes sense to run them at the
server, and it would also be unusual for a client to try to do
so. The model is simple and linear, so the server can calibrate
it inexpensively at runtime. Just by profiling the cost of an
invoke() operation and a get() operation, it can accurately
assess which invocations should be pushed back.

As discussed in Section 2.2, it is undecidable in general to
determine the class of an invocation. The input parameters to
an invoke(), the data its accesses, the server hardware, and
its cache policies/pollution all influence performance. Our
approach simply assumes all invocations should be initially
attempted server-side. Exploiting history or domain knowl-
edge would improve performance in cases where functions
are pushed back. However, we explicitly avoid relying on such
information since its effectiveness is workload dependent, and
it can only provide a few percent performance improvement
for invocations in C (and would only hurt functions in S).

3.2.2 Server Overload

The final piece of ASFP is overload detection. Functions
should always run at the server when it has idle CPU; this
still eliminates data movement costs, and it frees client CPUs
to do other work. However, when overloaded, the server must
shed load to improve throughput and control response times.

Algorithm 1 shows how the server detects overload (others
use similar approaches [39]). The server is under high load
when it receives new tasks and the requests from previous
scheduling passes have not completed. At the beginning of
a server’s round-robin pass through its set of tasks, it polls
its receive queues and creates up to B tasks, one for each

Algorithm 1: Server Overload Detection
1 Function Scheduler()

2 totalTime← 0;
3 while true do
4 t← taskQueue.Dequeue();
5 if t = DispatchTask then
6 newTasks, dispatchTime← PollRecvQueue();
7 if totalTime� dispatchTime then
8 if taskQueue.length ≥ B/k and

newTasks.length ≥ B/k then
9 taskQueue.ClassifyAndPushback();

10 taskQueue.Enqueue(newTasks);
11 end
12 taskQueue.Enqueue(t);
13 totalTime← 0;
14 end
15 else if t = RequestTask then
16 t.getPutTime, t.computeTime, t.state = t.Run();
17 totalTime += (t.getPutTime + t.computeTime);
18 if t.state /∈ {Committed, Aborted} then
19 taskQueue.Enqueue(t);
20 end
21 end
22 end

incoming request (where B is the maximum receive batch size,
which we fix at 32). Then, it compares the amount of time
spent dispatching requests in that round of scheduling (time
spent polling network queues and creating tasks) with the
time spent executing invocation tasks in that scheduling pass.
If invocation task execution time is the dominating factor,
the scheduler checks the task queue length. If it contains
at least B/k tasks and processing incoming requests would
create at least another B/k tasks, then the scheduler sets a flag
indicating the server is overloaded. Higher values of k trigger
overload more easily; k = 2 works well, and we keep it fixed
in our experiments. This guarantees that the scheduler:

1. only pushes back work if load is mainly from invoke()s;
2. keeps at least B/k tasks in the queue after pushback; and
3. only pushes back when ≥ 2B/k requests await service.

On overload, the server tests the threshold inequality (§3.2.1)
on all old Ready tasks, triggering pushback on some of them.

4 Evaluation
We compare three models for storage functions. Client-side
runs them on clients and issues get() requests to the server.
This is state-of-practice and the baseline. Server-side runs
functions on the server and represents Splinter’s approach.
Pushback is our approach, which runs functions on the server,
pushing some back to clients. We focused on these questions:
Does ASFP improve storage server throughput? For an

application mix consisting of machine learning classification
and graph-based storage functions, ASFP can improve
throughput by 10% (§4.5.3). For functions with dependent
data accesses, ASFP improves throughput by 42% (§4.2).

132 2020 USENIX Annual Technical Conference USENIX Association

(a) d = 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

(b) d = 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

(c) d = 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

Figure 6: A function with 2, 3, or 4 dependent get()s followed by varied computation lengths. ASFP improves throughput by 42% over
client-side execution. For compute-intensive invocations, ASFP throughput is within 15% of pure client-side in the worst case.

What is the cost of using ASFP? For invocations that im-
prove server throughput (those in class S), ASFP gives
the full performance benefit of server-side execution with
no measurable overhead. For compute-intensive invoca-
tions that access little data, classification and client-side
re-execution delivers performance within 15% (§4.2) of pure
client-side execution in the worst case.

How effective is the ASFP classifier? For a mix of predom-
inantly C -class invocations with significant compute vari-
ance, 87% of all C -class invocations are offloaded to
clients (§4.3). The remaining are accurately classified but
retained by the server because it has idle compute to execute
them, improving overall system throughput.

How does ASFP impact latency? For invocations in class
S , ASFP saves on round trips to the server, which reduces
latency by as much as 2× (§4.4). For invocations in class C ,
ASFP’s read/write set and server overload-based optimiza-
tions can help reduce latency by 15% compared to executing
client-side. For extremely compute-intensive invocations,
ASFP matches client-side execution.

How do ASFP and OCC interact? Beyond providing con-
sistency, OCC lets the server send back read/write sets on
pushback, improving throughput by 33% (§4.6). ASFP also
exploits idle compute at both servers and clients speeding
up transactions and reducing abort rates (§4.6.1).

4.1 Experimental Setup
Evaluation is on five machines; four as clients and one server
(unless otherwise noted) on CloudLab [13] (Table 1). All use
DPDK [11] over Ethernet. Eight of ten server cores process
requests; Splinter uses two cores for task management. Clients
also use eight cores; each core pipelines invoke() requests
up to a depth of 32 and receives responses in a closed-loop.

Using a closed-loop is helpful. ASFP demands complex,
heterogeneous workloads; an open-loop load requires careful
manual pacing of the request rate for each storage function
type. To ensure we always measure the server at saturation
(unless otherwise noted), we control client thread count in-
stead of manually tuning per-storage-function request rates.

The server held 15 GB as 120 M records (30 B keys, 100 B
values) unless otherwise noted. On pushback, clients trans-
parently ran functions locally, issuing remote record requests.

CPU Ten-core Intel E5-2640v4 at 2.4 GHz

RAM 64GB Memory (4x 16 GB DDR4-2400 DIMMs)

NIC Mellanox CX-4, 25 Gbps Ethernet

Switch Mellanox SN2410 48-port, 25 Gbps per port

OS Ubuntu 16.04, Linux 4.4.0-138, DPDK 17.08
Rust 1.29.0-nightly, 16×1 GB Hugepages

Table 1: Experimental setup. Evaluation used one machine as a
server and four as clients. All experiments were run on CloudLab.

4.2 ASFP Throughput Benefits & Costs
Benefits. ASFP combines the benefits of server- and client-
side execution; invocations with low compute-to-data access
ratios run on overloaded servers, otherwise they are offloaded
to clients. To show this, we run a microbenchmark that varies
the number of records accessed and the amount of compute
performed within an invocation.

Clients issue invoke()s that do d data-dependent get()s
followed by x cycles of compute. Figure 6 shows server
throughput when the function is run purely client-side, purely
server-side, and with adaptive pushback for d from 2 to 4.
With a small x, server-side execution prevents clients from
stalling on remote get()s. With a large x, client-side execu-
tion with remote value access avoids a server CPU bottleneck.

Here, ASFP’s simple model works well. In Figure 6 (a),
invocations that perform little compute over values stay at
the server, improving throughput over client-side execution
by 27%. Invocations using more CPU are pushed back, and
throughput tracks the client-side approach. For increasingly
CPU-intensive invocations (x > 6,000), the throughput of
pure server-side execution tends toward zero, so the benefits
of pushback over server-side execution grow (until all client
CPUs saturate, but realistic servers will service many clients).

These results show that the more data an invocation ac-
cesses, the more savings pushback provides; increasing d to
3 and 4 gives savings of up to 33% and 42%, respectively
(Figure 6 (b), (c)). The area between pushback and client-
side can be large for CPU-inexpensive functions (left side of
graphs), but the area between pushback and server-side for
CPU-expensive functions (right side) is also large since real
functions will vary even more in how much CPU they use.

USENIX Association 2020 USENIX Annual Technical Conference 133

(a) High Load (87% Pushed-back)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500 1000 1500 2000 2500 3000 3500

F
re

q
u
e
n
c
y

Invocation Computation (cycles/operation)

Requests
Pushback

(b) Medium Load (31% Pushed-back)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500 1000 1500 2000 2500 3000 3500

F
re

q
u
e
n
c
y

Invocation Computation (cycles/operation)

Requests
Pushback

(c) Low Load (3% Pushed-back)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500 1000 1500 2000 2500 3000 3500

F
re

q
u
e
n
c
y

Invocation Computation (cycles/operation)

Requests
Pushback

Figure 7: Distribution of invocations generated overlaid with those pushed back to one client under different loads. ASFP can use idle server
compute to run some of the invocations classified as C . This is why the distributions do not completely overlap.

Costs. These graphs also show ASFP’s costs. On a push-
back, there are two costs: the first is the cost of having the
server process an extra request for invoke() and validation;
the second is the computation the invocation did before it was
terminated. Most of the first cost is eliminated by shipping all
accessed values back to the client on pushback. An invoke()

only costs 9% more than a get(), and all practical functions
receive some values when they are pushed back. Hence, the
cost of the invoke() is offset by the fact that it eliminates the
need for the client to issue at least one get().

The second cost explains the gap between the client-side
and the pushback approach. This experiment is a pessimistic
case: the function first accesses all of its values, then it per-
forms compute over those values. For compute-intensive func-
tions, this means the server runs them longer before it pushes
them back; for functions where data access and computation
are intermingled, pushback would achieve performance closer
to the client-side case. Even so, in all cases where client-side
execution would outperform server-side, pushback is only
13 to 15% slower than running everything at clients.

Cost Breakdown. This 15% overhead for ASFP for C -class
functions in Figure 6 (a) has two components. The first is the
cost of suspending an invocation and sending its read/write
set back to the client, but this only accounts for 3% of the
15%. Figure 1 shows this; in it, the performance difference
between (omniscient) client-determined placement and server-
determined placement that observes each invocation is only
3% even when invocations are in C . The second component
of the overhead (12%) comes from an interplay between over-
load detection and C -class invocations. In Figure 1, the server
never executes an invocation in C to completion, even if the
server is idle, but ASFP completes invocations server-side,
regardless of class, if the server is underloaded. However,
a server’s load can shift rapidly at fine timescales. Leaving
C -class invocations onloaded is a form of speculation about
whether invocations will arrive in the near-term that will over-
load the server. This 12% is due to cases where the server
performed some C work, and it became overloaded during
that work. This effect can be seen in §4.3 Figure 7 (a) as well;
even at high load some C -class functions are run at the server.
This can be controlled; making overload detection more ag-

gressive reduces this overhead (down to 3%, if desired); the
trade-off is that the server may sit idle in more cases to ensure
it has capacity when S -class tasks arrive.

4.3 Invocation Heterogeneity
Real invocations are likely to be heterogeneous in two ways:
first, the total compute performed might vary across invoca-
tions (inter-invocation heterogeneity), and second, compute
might be clustered at points of execution instead of being
evenly distributed across data accesses (intra-invocation het-
erogeneity). To be effective, ASFP must be able to accurately
classify invocations (as S or C), as well as efficiently use both
server and client CPU under such forms of heterogeneity.

Inter-Invocation Heterogeneity. To demonstrate ASFP’s
efficiency under inter-invocation heterogeneity, we configured
one client to generate invoke()s where the number of cycles
of extra compute performed (after two dependent get()s) is
drawn from a normal distribution, N (1500,500). Figure 7 (a)
plots the distribution of the generated requests overlaid with
the distribution of those that were pushed back and completed
on the client. This figure shows two things; first, no requests
that perform less than 600 cycles of work are pushed back,
so inexpensive functions are executed at the server; second,
the two distributions do not completely overlap, so many
compute-intensive invocations still complete at the server.
With just one client, the server has some idle CPU capacity;
as a result, many of invocations in C run server-side. As the
load on the server decreases, this spare capacity increases,
allowing more C invocations to run server-side (Figure 7
(b), (c)). This shows that ASFP can be efficiently split work
between the server and client(s); any idle compute at storage
can accelerate clients and improve throughput.

Intra-invocation Heterogeneity. Figure 6 presented the
benefits and costs of ASFP when compute is performed after
all records are accessed by an invocation. Under this sce-
nario, pushed back invocations benefit from the shipped back
read/write set. However, real function invocations are likely
to perform compute at different points of execution (between
record accesses for example). Figure 8 explores such sce-
narios. ‘Pushback-y’ represents a run where invocations per-
form compute after issuing y get()s (out of a total of 4 per

134 2020 USENIX Annual Technical Conference USENIX Association

0.0

0.5

1.0

1.5

2.0

2.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side
Pushback-0

Pushback-2
Pushback-4

Figure 8: Throughput when the position of compute within an invo-
cation varies. ‘Pushback-y’ is when invocations perform compute
after issuing y get()s. ASFP is never worse than pure client-side.

0.0

100

200

300

400

500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
e
d
ia

n
 L

a
te

n
c
y
 (

 µ
s
)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

Figure 9: Effect of ASFP on median latency. ASFP improves latency
between 15% to 2× compared to pure client-side.

invoke()). ASFP throughput is always better than or equal
to pure client-side execution; for cases where compute is per-
formed early on (Pushback-0), compute inexpensive invoca-
tions (left side of the graph) get pushed back earlier, resulting
in lower gains over pure client-side execution.

4.4 ASFP Impact on Latency

Figure 9 shows median latency for an experimental setup
similar to Figure 6 (a). When compute is less than 600 cy-
cles, ASFP reduces round trips by running invocations on the
server, improving latency over pure client-side execution by
as much as 2×. As compute increases, invocations get pushed
back; ASFP’s latency is still better (15%) because these in-
vocations receive their read/write set, resulting in one less
RPC compared to client-side execution. The pure server-side
approach bottlenecks, causing its response times to spike. As
compute increases beyond 6,000 cycles, pushed-back invo-
cations cause clients to saturate, reducing server load. This
makes ASFP’s overload detection loop retain more invoca-
tions on the server, increasing median latency to track that of
pure client-side execution. Since, ASFP restarts pushed-back
invocations at clients, it can increase the latency by up to 2×
in the worst case. However, the only invocations that could
experience this worst case are ones that never access values,
since invocations that access values always execute more
quickly on the client-side after pushback due to read/write set
shipping. These functions should be rare and should not be
attempted at storage servers; clients have little reason to send
them to the server since they never access data.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

LR D-Tree R-Forest

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

e
c
o
n
d
) Server-side

Client-side
Pushback

Figure 10: Machine learning classifiers. LR and D-Tree are within
2% of pure client-side. For R-Forest, ASFP leverages idle server
compute, improving performance by 22% over pure client-side.

4.5 Realistic Applications
Beyond microbenchmarks, we applied ASFP to more realistic
functions. We use three types of functions from different do-
mains that we believe would be a possible fit for low-latency
in-memory storage services. The first is an application barely
in class S that accesses little data and performs little compute
per invocation: Facebook’s TAO social graph database [5].
The second is an application barely in class C that accesses
little data with compute requirements slightly higher than the
S /C threshold: a machine-learning based disk failure predic-
tion. The last is an application well in class C that accesses
little data and uses significant CPU: authentication [42]. To
be effective, ASFP must classify (as S or C) and place in-
vocations (on the server or the client) and improve overall
throughput. We show ASFP can do so for these functions and
for mixes of both S and C invocations.

4.5.1 Machine Learning

We use disk failure prediction [17, 28, 41, 44] for our first
application. This application consults a classifier to predict
whether a disk in a data center is about to fail. We chose
classifiers because they benefit from Splinter’s model that
supports complex but native functions; they are a realistic and
expected use; and their compute requirements vary.

We evaluated three classifiers: logistic regression (LR), a
decision tree (D-Tree) and a random forest (R-Forest) (an
ensemble of decision trees). Classifiers are trained offline
from a data set with 25 features [37]. The server holds data
points to be classified (loaded/streamed in a priori). Two
clients generate invoke()s that classify two data points each.

Figure 10 shows how the classifiers perform. All three
are in C , so client-side execution outperforms server-side. R-
Forest is the most CPU-intensive. ASFP outperforms both
pure client-side (22%) and pure server-side (2.3×) execution
because invocations are placed on both the server and the
client. LR and D-Tree are harder cases; they are nearer to
the S /C split; the extra overhead of initially running them
server-side before pushing them to the client cuts into ASFP’s
benefits. As a result, for these two classifiers, pure client-side
execution marginally outperforms ASFP (by < 2%) even con-
sidering the extra compute capacity that the server provides.

USENIX Association 2020 USENIX Annual Technical Conference 135

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Authentication extension

T
h
ro

u
g
h
p
u
t

(t
h
o
s
a
n
d
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

e
c
o
n
d
)

Server-side Client-side Pushback

Figure 11: Authentication application. Compared to running server-
side or client-side, ASFP can exploit idle cycles anywhere among
the machines, improving throughput by nearly 2×.

Figure 12: TAO/D-Tree/R-Forest Mix. ASFP correctly places invo-
cations, improving overall throughput by 10%. Solid-colored regions
of the bars show throughput due to invocations that ran server-side;
hashed regions show throughput due to those that ran client-side.

4.5.2 Authentication

Authentication is another application; it uses bcrypt [42] to
verify user identity. It uses few values, and it is computation-
ally costly (well in class C). Even so, it can still benefit from
ASFP. We ran an experiment over 128,000 records, each con-
taining a 30 B username and a 40 B salted hash (16 B salt,
24 B hash). One client issues invoke()s with a username and
a 72 B AES-encrypted password. The salted hash is applied to
the password. If the result matches the stored salted hash, then
the invocation returns success, otherwise it returns failure.

Figure 11 shows throughput. Purely server- and client-side
execution perform about 40,000 authentications/s. Both are
CPU bottlenecked; bcrypt takes about 450,000 cycles per
request. With pushback, throughput is nearly doubled over
both approaches, as expected; with ASFP, CPUs on both the
server and the client can be used to perform authentication.

4.5.3 Application Mix

Splinter is expected to run multi-tenant workloads, and push-
back is primarily beneficial in a setting where there are a wide
and heterogeneous set of invoke() requests. To create such a
scenario, we ran a mixed workload comprised of an R-Forest
classifier (class C), a D-Tree classifier (class C by a small
margin), and an implementation of Facebook’s TAO [5, 26]
data model which consists of dependent data accesses (class
S). Three client machines generated requests to the server.

Figure 12 shows how ASFP improves throughput for this
mix. The solid-colored regions of the bars show throughput

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback
Pushback-wo-rwset

Figure 13: Impact of read/write set shipping on ASFP. When turned
off, throughput suffers by 33% since pushed-back invocations load
the server by reissuing remote get() requests.

achieved from running invocations server-side. The hashed
regions of bars show throughput achieved from running in-
vocations client-side. The final bar in each group shows the
aggregate throughput of the three applications (both at clients
and the server). R-Forest requests are CPU-intensive; so, they
are bottlenecked by server CPU in pure server-side execution,
and they hurt the throughput of the other applications sharing
the server. Running functions client-side avoids this bottle-
neck and interference, raising the throughput of the other
applications. However, this runs TAO at clients as well, which
creates extra server load since it is in class S . Hence, ASFP
provides the best results. R-Forest and D-Tree are classified as
C and run (almost completely) at clients. TAO is classified as
S and runs at the server improving server throughput. Hence,
ASFP provides 10% better throughput than a conventional,
disaggregated approach. Interestingly, onloading TAO creates
CPU headroom at the server that R-Forest is able to exploit.

This workload is a challenging one for ASFP; a majority
of the TAO requests only access one data item per invocation
(60%); hence, all of the applications perform fairly well when
executed client-side. As a result, the system only experiences
modest gains when TAO is run at the server.

4.6 Concurrency Control and ASFP
Beyond providing consistency, OCC improves ASFP’s
throughput; instead of reissuing get() requests to the server
and increasing its request processing load, pushed-back re-
quests reuse their read/write set. We explore this optimization
with a setup similar to Figure 6 (a). Figure 13 shows that
disabling read/write set shipping for pushed back invocations
hurts throughput by 33% (Pushback-wo-rwset). Note, this
workload only accesses two records per invocation; invoca-
tions that access more records would benefit more.

4.6.1 ASFP Impact on Abort Rate

Moving execution between servers and clients affects transac-
tion commit latency and abort rates. To study this, we used
YCSB+T’s Closed Economy Workload [9] with four clients
generating a request distribution where 50% of the requests
are read-only and the remaining are read-modify-writes. We
added a parameter to the read-modify-write transactions to
control how much compute each one performs.

136 2020 USENIX Annual Technical Conference USENIX Association

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
T

h
ro

u
g
h
p
u
t
(M

O
P

S
) Client-side

Server-side
Pushback

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

A
b
o
rt

 R
a
te

 (
P

e
rc

e
n
ta

g
e
)

Invocation Computation (cycles/invocation)

Figure 14: Impact on abort rate. ASFP leverages idle compute to
speed up transactions, reducing read/write conflicts and abort rates.

Figure 14 shows trends similar to §4.2. ASFP speeds trans-
actions/invocations in S by placing them on the server, re-
ducing read/write conflicts and aborts. Server-side execution
would bottleneck and slow transactions/invocations in C , in-
creasing conflicts. Here, ASFP uses clients to speed invoca-
tions, reducing aborts. The conflict window of each transac-
tion is mainly determined by its latency. This relationship
can be clearly seen when comparing these results to those
in Figure 9. ASFP avoids bottlenecks, controls latency, and
reduces aborts regardless of how much compute invocations
use. We omitted results for a 90-10 read/write ratio; aborts
are always negligible (0.02%), even for invocations in C .

5 Discussion
Security. ASFP builds on Splinter’s unique function isola-
tion model that uses Rust’s type system. This software-based
scheme has a broad attack surface including Splinter’s code;
Rust (its type system, compiler, and standard library com-
prising millions of lines of code); and underlying libraries
including libc and DPDK. This model is also complicated
by micro-architectural side channels and speculative execu-
tion attacks, which continue to surface. For example, Splinter
does not include the micro-architectural state flushes needed
on protection domain switches to protect against information
leaking via Spectre v2 and other similar vulnerabilities [6,23].

ASFP is independent of Splinter’s isolation and trust model,
but there two ways that its isolation costs affect ASFP’s appli-
cability to other systems. First, its software-based isolation
has extremely low protection domain/context switch costs.
Tenant function invocations cause neither page table nor stack
switches; hence, invoke()s are only 9% more expensive than
get()s. With stronger isolation schemes, like conventional
page table switching, each invoke() would need to make
up for these costs, which can add up to several microsec-
onds of CPU. With Splinter, some functions that only access
two records improve efficiency when run server-side; if a
page table switch were needed per invocation, invocations
that accessed less than tens of records would be inefficient

server-side. The second impact of Splinter’s model is that it
supports thousands of tenants per machine with low overhead,
increasing the heterogeneity of operations it would be offered
by tenants. Overall, this means using stronger isolation primi-
tives would result in providers dedicating at least one server
core to each tenant to avoid protection domain switch costs;
this would limit the diversity of functions each server handles.
Larger-than-DRAM data & distribution. ASFP targets
low-latency in-memory storage where only small, hot records
are economical to store, which simplifies its cost model.
Records are so small that the CPU cost of copying them
(in/out of network buffers) is negligible, and neither I/O CPU
cost nor storage throughput limits need to be considered. Ad-
dressing more complex systems is an interesting problem.

ASFP is focused on one server and its clients. As-is it can
work in a sharded store where data is partitioned (e.g. by key).
In the future, we plan to extend its OCC model for distributed
transactions while factoring in data movement costs and abort
rates in deciding placement of operations.
Idle client-side CPU assumptions. ASFP assumes clients
have sufficient idle CPU to run pushed back invocations. This
relies on provisioning client capacity according to state-of-
practice: as if all invocations run client-side. When invoca-
tions are shifted server-side, this can only produce extra idle
capacity at clients and servers.
State migration. A full system would need sharding, load
balancing (similar to Slicer [4]), state migration to consolidate
load [25], and a means to deprovision idle CPUs. ASFP is
complementary; load and state must be rebalanced in any clus-
ter with or without ASFP. For the heterogeneous invocations
offered to servers, ASFP optimizes server CPU regardless of
how state is sharded across the cluster.
Restart vs. resume. Process/function migration [10, 32, 35]
is costly and complex. Resumed functions would need to
send intermediate state to clients; that additional state cap-
ture, transmission, and restoration would need to be incorpo-
rated into ASFP’s cost model. Further, restarted, pushed back
functions take no more client-side CPU than they would in
today’s client-side approaches. Worst case, a function could
be (nearly) computed at the server and repeated at a client.
In the cases we have looked at redundant work is small, so it
would be hard to offset function shipping/resuming costs.
Predicting placement. Speculatively onloading a function
only adds 3% server load even when it is always pushed back
(Figure 1). Pathological cases could access many records after
pushback. These would perform nearly the same as today’s
pure client-side approach, but history/prediction could help.
Simple approaches that track recent invocation misclassifi-
cations could be used to bias a function’s future invocations
to stay server-side. Pushback only happens on overload, so
some misclassification has little impact; the server need only
classify enough tasks correctly to mitigate overload.
Other key-value stores. ASFP can work in any extensible
store, like Redis [43]. Splinter’s kernel-bypass networking

USENIX Association 2020 USENIX Annual Technical Conference 137

simplifies cost modeling; modeling kernel TCP costs would
add complexity but would increase potential savings over our
implementation. ASFP is also targeted toward diverse, multi-
tenant workloads with heterogeneous operations that it can
place. Single-application functions added to a single-tenant
store could likely be statically classified as server- or client-
side, eliminating some benefits of dynamic profiling.
Network congestion. Congestion isn’t a problem in our high-
bandwidth setup. However, exposing transport layer informa-
tion (window sizes) to ASFP could let it choose placement to
minimize network traffic under congestion. If an invocation
accesses little data and enqueues many bytes for transmission
while the network is congested, the server could return the
data instead, forcing the client to compute the result.

6 Related Work
Adaptive pushback for Splinter builds on many ideas.
Storage Procedures, UDFs, and Database Extensions.
There are several common approaches for pushing computa-
tion to databases and data stores. SQL is ubiquitous, though
it is a poor fit for specialized computation, especially for
microsecond timescales. SQL stored procedures [34] and
UDFs [19, 22, 33, 38, 48] allow more specialized, procedu-
ral logic to be added to stores, and they can often be com-
piled for performance. Some databases also allow dynamic
libraries to be loaded as well for specialized operations [49].
Some key-value stores and object stores support similar user-
provided functions or extensions provided either at server-
start time [43] or at runtime [14, 26, 45, 53], some relying on
just-in-time compilation and some ahead-of-time compiled.

All of these approaches can ship computation to storage,
but they do not address the question of whether doing so
is beneficial for storage servers or its clients. Our approach
could be applied to stored procedures and UDFs.
Thread and Process Migration. In the 1990s, both process
and thread migration were pursued as ways to move com-
putation at a fine-grain, often to place computation near
data [10, 32, 35]. These approaches are often complex and
highly runtime-specific, since moving in-progress computa-
tion requires precise reasoning about the state it closes over.
We take a much simpler approach; rather than moving run-
ning functions, we preserve some of the work they have done
through their read/write sets and restart functions from the
beginning at clients. This assumes that invocations tend to be
short, which is true for the small timescales that we target.
Fast, Disaggregated Storage. Fast networks have led to
disaggregated storage and even disaggregated memory
[16, 30, 31]. Many works focus on building scalable in-
memory stores that move data efficiently [29], and many more
have used techniques like kernel-bypass and RDMA (both
one-sided and two-sided) to minimize the CPU cost of request
processing for fast storage [20, 21, 29, 52]. These approaches
reduce server-side CPU consumption and improve throughput
for the simple operations that these stores provide, but they

provide no way to move computation into storage when it
would improve server efficiency. FaRM [12] is an exception.
Clients can do this manually since each node in FaRM is
both a client and a server; functions can be compiled into the
storage server for custom request handlers. However, FaRM
lacks an adaptive mechanism to move invocations of these
functions between clients and remote servers.

Cell [36] is a distributed in-memory B-tree that uses
RDMA. Cell uses a similar idea to pushback. In Cell, when
clients lookup keys in the B-tree they can use one-sided
RDMA reads to fetch nodes from the B-tree and perform
the tree traversal client-side, or clients can send a request to
a server to have it do the traversal. Clients track round-trip
times to estimate queuing delay to determine whether the
server network card or server CPU is under pressure. This
lets them intelligently choose between the two approaches
to improve server throughput. Our approach is similar, but
ASFP is black box; it assumes no visibility into the functions
that clients want to run. As a result, it must track and predict
the relative client-side versus server-side cost of operations.

Offloading and migrating code has also been pursued in
other contexts like edge computing and mobile devices where
there is a large imbalance between the capabilities of devices
and where moving data over edge links incurs high cost [8,15,
18,24,46]. Our approach and Splinter are also similar to Active
Disks [1, 7] that allow application code to be downloaded to
and executed on disk- and flash-based storage devices.

7 Conclusion
Today, data center and cloud storage systems disaggregate
compute; clients must fetch data to compute on it, resulting
in wasted work. When clients can send computation to stor-
age, both clients and storage servers can benefit; however, to
be practical, storage servers need a means to avoid becom-
ing a bottleneck. ASFP does this by keeping client functions
logically decoupled from storage and deciding physical place-
ment of their invocations at runtime. By profiling invocations
and observing both the CPU costs and savings they create at
the server, storage servers can dynamically determine when
invocations should be forced back for client-side execution.

We show ASFP’s promise; servers and smart clients adapt
function placement at microsecond timescales, improving
throughput even when storage function CPU cost varies. We
show it works when running a mix of different applications’
logic, providing better throughput than running that logic
purely at storage servers (85% more) or clients (10% more).

Acknowledgments. Thanks to Mazhar Naqvi and Jacob Barzee for
contributing to ASFP, to the reviewers for their comments, and to
our shepherd, Changwoo Min. This material is based upon work
supported by the National Science Foundation under Grant No. CNS-
1750558. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
This work was also supported in part by Facebook and VMware.

138 2020 USENIX Annual Technical Conference USENIX Association

References
[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active

disks: Programming model, algorithms and evaluation.
In Proceedings of the Eighth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS VIII, pages 81–91,
New York, NY, USA, 1998. ACM.

[2] Atul Adya, Robert Grandl, Daniel Myers, and Henry
Qin. Fast Key-value Stores: An Idea Whose Time Has
Come and Gone. In Proceedings of the Workshop on
Hot Topics in Operating Systems, pages 113–119. ACM,
2019.

[3] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh
Maheshwari. Efficient Optimistic Concurrency Control
Using Loosely Synchronized Clocks. In Proceedings of
the 1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, USA, May
22-25, 1995, pages 23–34, 1995.

[4] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,
Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,
Lakshminath Bhuvanagiri, Jason Hunter, et al. Slicer:
Auto-sharding for datacenter applications. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 739–753, 2016.

[5] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. TAO: Facebook’s Distributed Data
Store for the Social Graph. In Presented as part of the
2013 USENIX Annual Technical Conference (USENIX
ATC 13), pages 49–60, San Jose, CA, 2013. USENIX.

[6] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin Von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Sys-
tematic Evaluation of Transient Execution Attacks and
Defenses. In Proceedings of the 28th USENIX Confer-
ence on Security Symposium, SEC’19, page 249–266,
USA, 2019. USENIX Association.

[7] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan
Kim, Youngmin Yi, and Gregory R. Ganger. Active
Disk Meets Flash: A Case for Intelligent SSDs. In
Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ICS
’13, pages 91–102, New York, NY, USA, 2013. ACM.

[8] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho,
Alec Wolman, Stefan Saroiu, Ranveer Chandra, and
Paramvir Bahl. MAUI: Making Smartphones Last
Longer with Code Offload. In Proceedings of the 8th

International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’10, pages 49–62, New
York, NY, USA, 2010. ACM.

[9] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe
Röhm. YCSB+ T: Benchmarking Web-scale Trans-
actional Databases. In 2014 IEEE 30th International
Conference on Data Engineering Workshops, pages 223–
230. IEEE, 2014.

[10] Fred Douglis and John Ousterhout. Transparent Pro-
cess Migration: Design Alternatives and the Sprite
Implementation. Software: Practice and Experience,
21(8):757–785, 1991.

[11] DPDK Project. Data Plane Development Kit. http:

//dpdk.org/. Accessed: 2020-01-15.

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
2014.

[13] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design
and Operation of CloudLab. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 1–14,
Renton, WA, July 2019. USENIX Association.

[14] Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno,
Arvind Krishnamurthy, and Henry M. Levy. Comet:
An Active Distributed Key-value Store. In 9th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2010, October 4-6, 2010, Vancouver,
BC, Canada, Proceedings, pages 323–336, 2010.

[15] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke,
Z. Morley Mao, and Xu Chen. COMET: Code Offload
by Migrating Execution Transparently. In Presented
as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages
93–106, Hollywood, CA, 2012. USENIX.

[16] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G Shin. Efficient Memory Dis-
aggregation with Infiniswap. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 649–667, 2017.

[17] Greg Hamerly, Charles Elkan, et al. Bayesian Ap-
proaches to Failure Prediction for Disk Drives. In ICML,
volume 1, pages 202–209, 2001.

USENIX Association 2020 USENIX Annual Technical Conference 139

http://dpdk.org/
http://dpdk.org/

[18] Mor Harchol-Balter and Allen B. Downey. Exploit-
ing Process Lifetime Distributions for Dynamic Load
Balancing. ACM Trans. Comput. Syst., 15(3):253–285,
August 1997.

[19] Guy Harrison and Steven Feuerstein. MySQL stored
procedure programming. " O’Reilly Media, Inc.", 2006.

[20] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using RDMA Efficiently for Key-value Services.
In Proceedings of the 2014 ACM Conference on SIG-
COMM, SIGCOMM ’14, pages 295–306, New York,
NY, USA, 2014. ACM.

[21] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 185–201, Savannah,
GA, 2016. USENIX Association.

[22] Robert Kallman, Hideaki Kimura, Jonathan Natkins,
Andrew Pavlo, Alexander Rasin, Stanley Zdonik, Evan
P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. H-store: A
High-performance, Distributed Main Memory Trans-
action Processing System. Proceedings of the VLDB
Endowment, 1(2):1496–1499, August 2008.

[23] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[24] Michael Kozuch and Mahadev Satyanarayanan. Internet
suspend/resume. In WMCSA, volume 2, page 40, 2002.

[25] Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert
Ricci, and Ryan Stutsman. Rocksteady: Fast Migration
for Low-latency In-memory Storage. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 390–405. ACM, 2017.

[26] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter: Bare-
Metal Extensions for Multi-Tenant Low-Latency Stor-
age. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 627–643,
Carlsbad, CA, 2018. USENIX Association.

[27] H. T. Kung and John T. Robinson. On Optimistic Meth-
ods for Concurrency Control. ACM Trans. Database
Syst., 6(2):213–226, 1981.

[28] Jing Li, Xinpu Ji, Yuhan Jia, Bingpeng Zhu, Gang Wang,
Zhongwei Li, and Xiaoguang Liu. Hard Drive Failure
Prediction Using Classification and Regression Trees. In
2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 383–394.
IEEE, 2014.

[29] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to Fast
In-Memory Key-Value Storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, Seattle, WA, 2014. USENIX
Association.

[30] Kevin Lim, Jichuan Chang, Trevor Mudge,
Parthasarathy Ranganathan, Steven K Reinhardt,
and Thomas F Wenisch. Disaggregated Memory for
Expansion and Sharing in Blade Servers. In ACM
SIGARCH computer architecture news, volume 37,
pages 267–278. ACM, 2009.

[31] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F Wenisch. System-level Implications of
Disaggregated Memory. In IEEE International Sympo-
sium on High-Performance Comp Architecture, pages
1–12. IEEE, 2012.

[32] Michael Litzkow, Todd Tannenbaum, Jim Basney, and
Miron Livny. Checkpoint and Migration of UNIX Pro-
cesses in the Condor Distributed Processing System.
Technical report, University of Wisconsin-Madison De-
partment of Computer Sciences, 1997.

[33] Microsoft, Inc. Stored Procedures (Database Engine)
- SQL Server. https://docs.microsoft.com/en-us/

sql/relational-databases/stored-procedures/

stored-procedures-database-engine?view=

sql-server-2017. Accessed: 2020-01-15.

[34] Microsoft, Inc. User-Defined Functions - SQL
Server. https://docs.microsoft.com/en-us/sql/

relational-databases/user-defined-functions/

user-defined-functions?view=sql-server-2017.
Accessed: 2020-01-15.

[35] Dejan S. Miloj́ičić, Fred Douglis, Yves Paindaveine,
Richard Wheeler, and Songnian Zhou. Process Migra-
tion. ACM Comput. Surv., 32(3):241–299, September
2000.

[36] Christopher Mitchell, Kate Montgomery, Lamont Nel-
son, Siddhartha Sen, and Jinyang Li. Balancing CPU
and Network in the Cell Distributed B-Tree Store. In
2016 USENIX Annual Technical Conference (USENIX
ATC 16), pages 451–464, Denver, CO, 2016. USENIX
Association.

140 2020 USENIX Annual Technical Conference USENIX Association

https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions?view=sql-server-2017

[37] JF Murray, GF Hughes, and K Kreutz-Delgado. Com-
parison of Machine Learning Methods for Predicting
Failures in Hard Drives. Journal of Machine Learning
Research, 6, 2005.

[38] Oracle, Inc. Oracle PL/SQL. http://www.oracle.

com/technetwork/database/features/plsql/index.

html. Accessed: 2020-01-15.

[39] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-sensitive Datacenter
Workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), Boston,
MA, 2019. USENIX Association.

[40] John Ousterhout, Parag Agrawal, David Erickson, Chris-
tos Kozyrakis, Jacob Leverich, David Mazières, Subha-
sish Mitra, Aravind Narayanan, Guru Parulkar, Mendel
Rosenblum, Stephen M. Rumble, Eric Stratmann, and
Ryan Stutsman. The Case for RAMClouds: Scalable
High-Performance Storage Entirely in DRAM. SIGOPS
Operating Systems Review, 43(4):92–105, December
2009.

[41] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André
Barroso. Failure Trends in a Large Disk Drive Popu-
lation. In Proceedings of the 5th USENIX Conference
on File and Storage Technologies, FAST ’07, pages 2–2,
Berkeley, CA, USA, 2007. USENIX Association.

[42] Niels Provos and David Mazières. A Future-Adaptable
Password Scheme. In USENIX Annual Technical Con-
ference, FREENIX Track, pages 81–91, 1999.

[43] Redis. http://redis.io/. Accessed: 2020-01-15.

[44] Felix Salfner, Maren Lenk, and Miroslaw Malek. A
Survey of Online Failure Prediction Methods. ACM
Computing Surveys (CSUR), 42(3):10, 2010.

[45] Michael A Sevilla, Noah Watkins, Ivo Jimenez, Pe-
ter Alvaro, Shel Finkelstein, Jeff LeFevre, and Carlos
Maltzahn. Malacology: A Programmable Storage Sys-
tem. In Proceedings of the 12th European Conference on
Computer Systems, Eurosys ’17, pages 175–190. ACM,
2017.

[46] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and
Lanyu Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5):637–646, 2016.

[47] Michael Stonebraker and Greg Kemnitz. The POST-
GRES Next Generation Database Management System.
Communications of the ACM, 34(10):78–92, October
1991.
.

[48] Michael Stonebraker and Ariel Weisberg. The VoltDB
Main Memory DBMS. IEEE Data Engineering Bulletin,
36(2):21–27, 2013.

[49] The PostgreSQL Global Development Group. Post-
greSQL: Documentation: 10: H.4. Extensions.
http://www.postgresql.org/docs/10/static/

external-extensions.html. Accessed: 2020-01-15.

[50] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’12, pages 1–12, New York, NY, USA,
2012. ACM.

[51] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy Transactions in
Multicore In-memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 18–32, New York, NY,
USA, 2013. ACM.

[52] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast In-memory Transaction Processing
Using RDMA and HTM. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15,
pages 87–104, New York, NY, USA, 2015. ACM.

[53] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman.
Narrowing the Gap Between Serverless and its State
with Storage Functions. In Proceedings of the ACM
Symposium on Cloud Computing, pages 1–12, 2019.

USENIX Association 2020 USENIX Annual Technical Conference 141

http://www.oracle.com/technetwork/database/features/plsql/index.html
http://www.oracle.com/technetwork/database/features/plsql/index.html
http://www.oracle.com/technetwork/database/features/plsql/index.html
http://redis.io/
http://www.postgresql.org/docs/10/static/external-extensions.html
http://www.postgresql.org/docs/10/static/external-extensions.html

NetKernel: Making Network Stack Part of
the Virtualized Infrastructure

Zhixiong Niu
Microsoft Research

Hong Xu
City University of Hong Kong

Peng Cheng
Microsoft Research

Qiang Su
City University of Hong Kong

Yongqiang Xiong
Microsoft Research

Tao Wang
New York University

Dongsu Han
KAIST

Keith Winstein
Stanford University

Abstract
This paper presents a system called NetKernel that decou-

ples the network stack from the guest virtual machine and
offers it as an independent module. NetKernel represents a
new paradigm where network stack can be managed as part of
the virtualized infrastructure. It provides important efficiency
benefits: By gaining control and visibility of the network stack,
operator can perform network management more directly and
flexibly, such as multiplexing VMs running different applica-
tions to the same network stack module to save CPU. Users
also benefit from the simplified stack deployment and better
performance. For example mTCP can be deployed without
API change to support nginx natively, and shared memory
networking can be readily enabled to improve performance of
colocated VMs. Testbed evaluation using 100G NICs shows
that NetKernel preserves the performance and scalability of
both kernel and userspace network stacks, and provides the
same isolation as the current architecture.

1 Introduction

Virtual machine (VM) is the predominant virtualization form
in today’s cloud due to its strong isolation guarantees. VMs
allow customers to run applications in a wide variety of operat-
ing systems (OSes) and configurations. VMs are also heavily
used by cloud operators to deploy internal services, such as
load balancing, proxy, VPN, etc., both in a public cloud for
tenants and in a private cloud for various business units of an
organization.

VM based virtualization largely follows traditional OS de-
sign. In particular, the TCP/IP network stack is encapsulated
inside the VM as part of the guest OS as shown in Figure 1(a).
Applications own the network stack, which is separated from
the network infrastructure that operators own; they interface
using the virtual NIC abstraction. This architecture preserves
the familiar hardware and OS abstractions so a vast array of
workloads can be easily moved into the cloud. It also provides
high flexibility to applications to customize the entire network
stack.

We argue that the current division of labor between appli-
cation and network infrastructure is becoming increasingly
inadequate, especially in a private cloud setting. The central
issue is that the network stack is controlled solely by indi-
vidual guest VM; the operator has almost zero visibility or
control. This leads to efficiency problems that manifest in vari-
ous aspects of running the cloud network. Firstly, the operator
is unable to orchestrate resource allocation at the end-points
of the network fabric, resulting in low resource utilization. It
remains difficult today for the operator to meet or define per-
formance SLAs despite much prior work [17,28,35,41,56,57],
as she cannot precisely provision resources just for the net-
work stack or control how the stack consumes these resources.
Further, resources (e.g. CPU) have to be provisioned on a
per-VM basis based on the peak traffic; it is impossible to
coordinate across VM boundaries. This degrades the over-
all utilization of the network stack since in practice traffic to
individual VMs is extremely bursty. Also, many network man-
agement tasks like monitoring, diagnosis, and troubleshooting
have to be performed in an extra layer outside the guest VMs,
which requires significant efforts in design and implemen-
tation [23, 59, 60]. They can be done more efficiently if the
network stack is opened up to the operator.

Even the simple task of maintaining or deploying a net-
work stack suffers from much inefficiency today. Numerous
new stack designs and optimizations ranging from conges-
tion control [14, 19, 50], scalability [34, 42], zerocopy data-
path [4, 34, 55, 64, 65], NIC multiqueue scheduling [63], etc.
have been proposed in our community. Yet the operator, with
sufficient expertise and resources, could not easily deploy
these solutions in a virtualized cloud to improve performance
and reduce overheads because it does not own or control the
network stack. As a result, our community is still finding
ways to deploy DCTCP in the public cloud [20, 31, 36]. On
the other hand, applications without much knowledge of the
underlying network or expertise on networking are forced to
juggle the deployment and maintenance details. For example
if one wants to deploy a new stack like mTCP [34], he faces
a host of problems such as setting up kernel bypass, testing

USENIX Association 2020 USENIX Annual Technical Conference 143

VM

Network Stack

 vNIC

APP2APP1

Networking API

VM

APP2APP1

Networking API

Network Stack

Network stack module

Provider

Tenant

(a). Existing architecture (b). Decoupling network stack from the guest

Figure 1: Decoupling network stack from the guest, and making it part of the
virtualized infrastructure.

with kernel versions and NIC drivers, and porting applications
to the new APIs. Given the intricacy of implementation and
the velocity of development, it is a daunting task for indi-
vidual users, whether tenants in a public cloud or first-party
services in a private cloud, to maintain the network stack all
by themselves.

To address these limitations, we advocate the separation
of network stack from the guest OS as a new paradigm, in
which the network stack is managed as part of the virtualized
infrastructure by the operator. As the heavy-lifting is taken
care of, applications can just use network stack as a basic
service of the infrastructure and focus on their business logic.

More concretely, as shown in Figure 1(b), we propose to
decouple the VM network stack from the guest OS. We keep
the network APIs such as BSD sockets intact, and use them
(instead of vNIC) as the abstraction boundary between appli-
cation and infrastructure. Each VM is served by an external
network stack module (NSM) that runs the network stack
chosen by the user , e.g., the kernel-bypass stack mTCP or
the improved kernel stack FastSocket [42] . Application data
are handled in the NSM, whose design and implementation
are managed by the operator. Various network stacks can be
provided as different NSMs to ensure applications with di-
verse requirements can work. This new paradigm does not
necessarily enforce a single transport design, or trade off such
flexibility of the existing architecture.

We make three specific contributions in this paper.
• We design and implement NetKernel that demonstrates

our new approach is feasible on existing KVM virtualiza-
tion platforms (§3–§5). NetKernel provides transparent
BSD socket redirection so existing applications can run
directly.

• We present NetKernel’s benefits by showcasing novel
use cases that are difficult to realize today (§6). For exam-
ple, we show that NetKernel enables multiplexing: one
NSM can serve multiple VMs at the same time and save
over 40% CPU cores without degrading performance
using traces from a production cloud.

• We conduct comprehensive testbed evaluation with com-
modity 100G NICs to show that NetKernel achieves the
same scalability and isolation as the current architecture
(§7). For example, the kernel stack NSM achieves 100G

send throughput with 3 cores; the mTCP NSM achieves
979Krps with 8 cores.

NetKernel’s official website is https://netkernel.net.

2 Motivation

Decoupling the network stack from the guest OS and making
it part of the infrastructure marks a clear departure from the
way networking is provided to VMs nowadays. In this sec-
tion we elaborate why this is a better architectural design by
presenting its benefits and tradeoffs, and contrasting it with
alternative solutions.

2.1 Benefits and Tradeoffs
We highlight the key benefits of our vision with several new
use cases that we experimentally realize with NetKernel in
§6.
Better efficiency in management for the operator. Gaining
control over the network stack, the operator can now perform
network management more efficiently. For example it can
orchestrate the resource provisioning strategies more flexibly:
For mission-critical workloads, it can dedicate CPU resources
to their NSMs to offer performance SLAs in terms of through-
put and rps (requests per second) guarantees. For elastic work-
loads, on the other hand, it can consolidate their VMs to the
same NSM (if they use the same network stack) to improve its
resource utilization. The operator can also directly implement
management functions as an integral part of user’s network
stack, compared to doing them in an extra layer outside the
guest OS.

Use case 1: Multiplexing (§6.1). Utilization of network
stack in VMs is very low most of the time in practice. Using a
real trace from a large cloud, we show that NetKernel enables
multiple VMs to be multiplexed onto one NSM to serve the
aggregated traffic and saves over 40% CPU cores for the
operator without performance degradation.
Deployment and performance gains for users. Making net-
work stack part of the virtualized infrastructure is also benefi-
cial for users in both public and private clouds. Various ker-
nel stack optimizations [42, 64], high-performance userspace
stacks [11, 18, 34, 55], and even designs using advanced hard-
ware [6, 8, 9, 43] can now be deployed and maintained trans-
parently without user involvement or application code change.
For instance, DCTCP can now be deployed across the board
easily in a public cloud. Since the BSD socket is the only
abstraction exposed to the applications, it is now feasible
to adopt new stack designs independent of the guest kernel
or the network API. Our vision also opens up new design
space by allowing the network stack to exploit visibility of
the infrastructure for performance benefits.

Use case 2: Deploying mTCP without API change (§6.2).
We show that NetKernel enables unmodified applications
in the VM to use mTCP [34] in the NSM, and improves

144 2020 USENIX Annual Technical Conference USENIX Association

https://netkernel.net

Paradigm Scenario Multiplexing New Stack Deployment
Performance Opt.
with Infrastructure

Guest-based VM 7 Require user effort 7

Host-based Container 3 Limited by host OS 3

Application-based Library OS 7 Require user effort 7

NetKernel VM + NSM 3 3 3

Table 1: Comparison of different network stack architectures depending on where the stack is. The current architecture is a guest-based paradigm where the
network stack is part of the guest OS of a VM.

performance greatly due to mTCP’s kernel bypass design.
mTCP is a userspace stack with new APIs (including modi-
fied epoll/kqueue). During the process, we also find and fix
a compatibility issue between mTCP and our NIC driver, and
save significant maintenance time and effort for users.

Use case 3: Shared memory networking (§6.3). When two
VMs of the same user are colocated on the same host, NetKer-
nel can directly detect this and copy their data via shared mem-
ory to bypass TCP stack processing and improve throughput.
This is difficult to achieve today as VMs have no knowledge
about the underlying infrastructure [40, 66].
Tradeoffs. We are conscientious of the tradeoffs our approach
brings about. For example, due to the removal of vNIC and
redirection from the VM’s own network stack, some network-
ing tools like netfilter are affected. This is acceptable since
most users wish to focus on their applications instead of tun-
ing a network stack. If they wish to gain maximum control
over the network stack they can still use VMs without NetK-
ernel. Also, additional fate-sharing may be introduced by
our approach say when multiple VMs share the same NSM.
We believe this is not serious because cloud users already
have fate-sharing with the vSwitch, hypervisor, and the com-
plete virtual infrastructure. The efficiency benefits of our ap-
proach as demonstrated outweigh the marginal increase of
fate-sharing; the success of cloud computing these years is an-
other strong testament to this tradeoff. NetKernel enforces an-
other level of indirection in order to achieve flexibility which
does not cause performance degradation in most cases as we
will show in §7, and part of it can run on hardware for more
efficiency (see §8). Lastly, one may have security concerns
with using the NSM to handle tenant traffic. Most of the se-
curity protocols such as HTTPS/TLS work at the application
layer and are not affected. One exception is IPSec. Due to
the certificate exchange issue, IPSec does not work in our
approach. However, in practice IPSec is implemented at ded-
icated gateways instead of end-hosts [62]. Thus we believe
the impact is not serious. More discussion on security can be
found in §8.

2.2 Alternative Solutions

We now discuss several alternative architectures depending on
where the network stack resides, and why they are inadequate
compared to NetKernel as summarized in Table 1. Note that
none of them provides all four key benefits as NetKernel does.

Host-based. The first alternative is a host-based paradigm
where the network stack runs on the host machine. This corre-
sponds to the container scenario in the cloud. A container is
essentially a process with namespace isolation: it shares the
host’s network stack in the hypervisor. Therefore containers
can achieve some of NetKernel’s benefits, i.e multiplexing
and performance optimization with infrastructure, since the
operator can access the hypervisor. However, container has
tight coupling with the host OS which makes the stack deploy-
ment difficult. A Windows application in a container cannot
use the Linux-based mTCP, unless the operator ports mTCP to
Windows. With NetKernel no such porting is needed: mTCP
can run in a Linux-based NSM and serve a Windows user
because the only coupling is the BSD socket APIs.

We also note that currently containers have performance
isolation problems [38] and as a result are usually constrained
to be deployed inside VMs in production settings. In fact
we find that all major public clouds [1, 2, 5] require users to
launch containers inside VMs. Thus, our work is centered
around VMs that cover the majority of usage scenarios in a
cloud. NetKernel readily benefits containers running inside
VMs as well.
Application-based. Another alternative is to move the net-
work stack upwards by taking an application-based paradigm.
A representative scenario is library OS including uniker-
nels [22, 44] and microkernels [26], where many OS services
including the network stack are packaged as libraries and com-
piled with the application in userspace. Similar to the guest-
based paradigm, users have to deploy the network stack by
themselves though the I/O performance can be improved with
unikernels [46] and microkernels. In addition, application-
based paradigm is a clean-slate approach and requires radical
changes to both the virtualization software and user appli-
cations. NetKernel can flexibly decouple the network stack
from the guest without re-writing existing applications or
hypervisor.

3 Design Philosophy

NetKernel imposes three fundamental design questions
around the separation of network stack from the guest OS:

1. How to transparently redirect socket API calls without
changing applications?

2. How to transmit the socket semantics between the VM
and NSM whose implementation of the stack may vary?

USENIX Association 2020 USENIX Annual Technical Conference 145

3. How to ensure high performance with semantics trans-
mission (e.g., 100 Gbps)?

These questions touch upon a largely uncharted territory in
the design space. Thus our main objective in this paper is to
demonstrate feasibility of our approach on existing virtualiza-
tion platforms and showcase its potential. Performance and
overhead are not our primary goals. It is also not our goal to
improve any particular network stack design.

In answering the questions above, NetKernel’s design has
the following highlights.
Transparent socket API redirection. NetKernel needs to
redirect BSD socket calls to the NSM instead of the tenant
network stack. This is done by inserting into the guest a
library called GuestLib. The GuestLib provides a new socket
type called NetKernel socket with a complete implementation
of BSD socket APIs. It replaces all TCP and UDP sockets
when they are created with NetKernel sockets, effectively
redirecting them without changing applications.
A lightweight semantics channel. Different network stacks
may run as different NSMs, so NetKernel needs to ensure
socket semantics from the VM work properly with the ac-
tual NSM stack implementation. For this purpose NetKernel
builds a lightweight socket semantics channel between VM
and its NSM. The channel relies on small fix-sized queue
elements as intermediate representations of socket semantics:
each socket API call in the VM is encapsulated into a queue
element and sent to the NSM, who would effectively trans-
late the queue element into the corresponding API call of its
network stack.
Scalable lockless queues. As NIC speed in cloud evolves
from 40G/50G to 100G [24] and higher, the NSM has to
use multiple cores for the network stack to achieve line rate.
NetKernel thus adopts scalable lockless queues to ensure VM-
NSM socket semantics transmission is not a bottleneck. Each
core services a dedicated set of queues so performance is
scalable with number of cores. More importantly, each queue
is memory shared with a software switch, so it can be lockless
with only a single producer and a single consumer to avoid
expensive lock contention [33, 34, 42].

Switching the queue elements offers important benefits
beyond lockless queues. It facilitates a flexible mapping be-
tween VM and NSM: a NSM can support multiple VMs
without adding more queues compared to binding the queues
directly between VM and NSM. In addition, it allows dy-
namic resource management: cores can be readily added to
or removed from a NSM, and a user can switch her NSM
on the fly. The CPU overhead of software switching can be
addressed by hardware offloading [24, 27], which we discuss
in §7.4 in more detail.
VM based NSM. Lastly we discuss an important design
choice regarding the NSM. The NSM can take various forms.
It may be a full-fledged VM with a monolithic kernel. Or
it can be a container or module running on the hypervisor,
which is appealing because it consumes less resource and

Tenant VM

GuestLib
(NetKernel Socket)

pNICs

NetKernel
device

Huge
pages

Huge
pages

 queues

stripped area indicates a shared memory region

mmap

BSD Socket

APP2APP1

NSM

ServiceLib

Huge
pages

Network Stack

NetKernel CoreEngine Virtual Switch or Embedded
Switch (SR-IOV)

vNIC

 queues

Figure 2: NetKernel design overview.

offers better performance. Yet it entails porting a complete
TCP/IP stack to the hypervisor. Achieving memory isolation
among containers or modules are also difficult [52]. More
importantly, it introduces another coupling between the net-
work stack and the hypervisor, which defeats the purpose
of NetKernel. Thus we choose to use a VM for NSM. VM
based NSM readily supports existing kernel and userspace
stacks from various OSes. VMs also provide good isolation
and we can dedicate resources to a NSM to guarantee per-
formance. VM based NSM is the most flexible: we can run
stacks independent of the hypervisor.

4 Design

Figure 2 depicts NetKernel’s architecture. The BSD socket
APIs are transparently redirected to a complete NetKernel
socket implementation in GuestLib in the guest kernel (§4.1).
The GuestLib can be deployed as a kernel patch and is the
only change we make to the user VM. Network stacks are
implemented by the operator on the same host as Network
Stack Modules (NSMs), which are individual VMs in our
current design. Inside the NSM, a ServiceLib interfaces with
the network stack. The NSM connects to the vSwitch, be it a
software or a hardware switch, and then the pNICs. Thus our
design also supports SR-IOV.

All socket operations and their results are translated into
NetKernel Queue Elements (NQEs) by GuestLib and Ser-
viceLib (§4.2). For NQE transmission, GuestLib and Ser-
viceLib each has a NetKernel device, or NK device in the
following, consisting of one or more sets of lockless queues.
Each queue set has a send queue and receive queue for oper-
ations with data transfer (e.g. send()), and a job queue and
completion queue for control operations without data transfer
(e.g. setsockopt()). Each NK device connects to a software
switch called CoreEngine, which runs on the hypervisor and
performs actual NQE switching (§4.3). The CoreEngine is
also responsible for various management tasks such as set-
ting up the NK devices, ensuring isolation among VMs, etc.
(§4.4) A unique set of hugepages are shared between each
VM-NSM tuple for application data exchange. A NK device
also maintains a hugepage region that is memory mapped
to the corresponding application hugepages as in Figure 2

146 2020 USENIX Annual Technical Conference USENIX Association

(§4.5). Note that as the socket API that copies data is pre-
served, misbehaving applications cannot pose security risks
on NetKernel, this is the same as original kernel design. We
discuss additional security implications of NetKernel in §8.

For ease of presentation, we assume both the user VM and
NSM run Linux, and the NSM uses the kernel stack.

4.1 Transparent Socket API Redirection
We first describe how NetKernel’s GuestLib interacts with
applications to support BSD socket semantics transparently.
Kernel space API redirection. There are essentially two ap-
proaches to redirect BSD socket calls to NSM, each with its
unique tradeoffs. One is to implement it in userspace using
LD_PRELOAD for example. The advantages are: (1) It is effi-
cient without syscall overheads and performance is high [34];
(2) It is easy to deploy without kernel modification. However,
this implies each application needs to have its own redirec-
tion service, which limits the usage scenarios. Another way
is kernel space redirection, which naturally supports multiple
applications without IPC. The flip side is that performance
may be lower due to context switching and syscall overheads.

We opt for kernel space API redirection to support most of
the usage scenarios, and leave userspace redirection as future
work. GuestLib is a kernel module deployed in the guest.
This is feasible by distributing images of para-virtualizated
guest kernels to users, a practice operators are already doing
nowadays. Note that kernel space redirection follows the
asynchronous syscall model [61] to get better performance.
NetKernel socket API. GuestLib creates a new type
of sockets—SOCK_NETKERNEL, in addition to TCP
(SOCK_STREAM) and UDP (SOCK_DGRAM) sockets. It
registers a complete implementation of BSD socket APIs to
the guest kernel. When the guest kernel receives a socket()
call to create a new TCP socket say, it replaces the socket
type with SOCK_NETKERNEL, creates a new NetKernel socket,
and initializes the socket data structure with function pointers
to NetKernel socket implementation in GuestLib. The
sendmsg() for example now points to nk_sendmsg() in
GuestLib instead of tcp_sendmsg().

4.2 A Lightweight Semantics Channel
Socket semantics are contained in NQEs and carried around
between GuestLib and ServiceLib via their respective NK
devices.

1B
op

type

1B

VM ID

1B
Queue
set ID

4B
VM

socket ID

8B

op_data

8B

data pointer

4B

size

5B

rsved

Figure 3: Structure of a NQE. Here socket ID denotes a pointer to the
sock struct in the user VM or NSM, and is used for NQE transmission
with VM ID and queue set ID in §4.3; op_data contains data necessary for
socket operations, such as ip address for bind; data pointer is a pointer
to application data in hugepages; and size is the size of pointed data in
hugepages.

Tenant VM

GuestLib
nk_bind(), nk_sendmsg(), …

Huge
pages

BSD Socket API
socket(), send(), …

NQE

(2) translate to NQE

(1) NetKernel socket

(3) response NQE

(4) return to app

NetKernel
device

Queues

Figure 4: NetKernel socket implementation in GuestLib redirects socket API
calls. GuestLib translates socket API calls to NQEs and ServiceLib translates
results into NQEs as well (not shown here).

NQE and socket semantics translation. Figure 3 shows the
structure of a NQE with a fixed size of 32 bytes. Transla-
tion happens at both ends of the semantics channel: GuestLib
encapsulates the socket semantics into NQEs and sends to
ServiceLib, which then invokes the corresponding API of its
network stack to execute the operation; the execution result is
again turned into a NQE in ServiceLib first, and then trans-
lated by GuestLib back into the corresponding response of
socket APIs.

For example in Figure 4, to handle the socket() call in
the VM, GuestLib creates a new NQE with the operation
type and information such as its VM ID for NQE transmis-
sion. The NQE is transmitted by GuestLib’s NK device. The
socket() call now blocks until a response NQE is received.
After receiving the NQE, ServiceLib parses the NQE from
its NK device, invokes the socket() of the kernel stack to
create a new TCP socket, prepares a new NQE with the ex-
ecution result, and enqueues it to the NK device. GuestLib
then receives and parses the response NQE and wakes up the
socket() call. The socket() call now returns to application
with the NetKernel socket file descriptor (fd) if a TCP socket
is created at the NSM, or with an error number consistent with
the execution result of the NSM.

We defer the handling of application data to §4.5.
Queues for NQE transmission. NQEs are transmitted via
one or more sets of queues in the NK devices. A queue set has
four independent queues: a job queue for NQEs representing
socket operations issued by the VM without data transfer, a
completion queue for NQEs with execution results of control
operations from the NSM, a send queue for NQEs represent-
ing operations issued by VM with data transfer; and a receive
queue for NQEs representing events of newly received data
from NSM. Queues of different NK devices have strict corre-
spondence: the NQE for socket() for example is put in the
job queue of GuestLib’s NK device, and sent to the job queue
of ServiceLib’s NK device.

We now present the working of I/O event notification mech-
anisms like epoll with the receive queue. Figure 5 depicts
the details. Suppose an application issues epoll_wait()
to monitor some sockets. Since all sockets are now NetK-
ernel sockets, the nk_poll() is invoked by epoll_wait()
and checks the receive queue to see if there is any NQE

USENIX Association 2020 USENIX Annual Technical Conference 147

Tenant VM

CoreEngine wakes
up the device

epoll_wait()

GuestLib

nk_poll()

recv()

nk_recvmsg()

Receive
queue

(1)

(2)

(5)

ServiceLib

Network Stack

(3)
data received

(4) NQE

(6)

(7)

NSM

Send
queue

Completion
queue

NetKernel
devices

Job
queue

Receive
queue

Send
queue

Completion
queue

Job
queue

Figure 5: The socket semantics channel with epoll as an example. GuestLib
and ServiceLib translate semantics to NQEs, and queues in the NK devices
perform NQE transmission. Job and completion queues are for socket opera-
tions and execution results, send queues are for socket operations with data,
and receive queues are for events of newly received data. Application data
processing is not shown.

for this socket. If yes, this means there are new data re-
ceived, epoll_wait() then returns and the application issues
a recv() call with the NetKernel socket fd of the event. This
points to nk_recvmsg() which parses the NQE from receive
queue for the data pointer, copies data from the hugepage
directly to the userspace, and returns.

If nk_poll() does not find any relevant NQE, it sleeps
until CoreEngine wakes up the NK device when new NQEs
arrive to its receive queue. GuestLib then parses the NQEs to
check if any sockets are in the epoll instances, and wakes up
the epoll to return to application. An epoll_wait()can also
be returned by a timeout.

4.3 NQE Switching across Lockless Queues
We now elaborate how NQEs are switched by CoreEngine
and how the NK devices interact with CoreEngine.
Scalable queue design. The queues in a NK device is
scalable: there are one dedicated queue set per vCPU for
both VM and NSM, so NetKernel performance scales with
CPU resources. Each queue set is shared memory with the
CoreEngine, essentially making it a single producer single
consumer queue without lock contention. VM and NSM may
have different numbers of queue sets.
Switching NQEs in CoreEngine. NQEs are load balanced
across multiple queue sets with the CoreEngine acting as a
switch. CoreEngine maintains a connection table as shown in
Figure 6, which maps the tuple 〈VM ID, queue set ID, socket
ID〉 to the corresponding 〈NSM ID, queue set ID, socket ID〉
and vice versa. Here a socket ID corresponds to a pointer to
the sock struct in the user VM or NSM. We call them VM
tuple and NSM tuple respectively. NQEs only contain VM
tuple information.

Using the running example of the socket() call, we can
see how CoreEngine uses the connection table. The process is
also shown in Figure 6. (1) When CoreEngine processes the
socket NQE from VM1’s queue set 1, it realizes this is a new
connection, and inserts a new entry to the table with the VM

VM1

GuestLib

NK device

CoreEngine

connection table

queue set 1

ServiceLib

NSM 1

<VM ID, queue set ID, socket ID> <NSM ID, queue set ID, socket ID>
<01, 01, 2A 3E 97 C3> <01, 01, C8 5D 42 6F>
<01, 01, FC 68 4E 02> <01, 02, ?>

…

queue set 2queue set 1

Figure 6: NQE switching with CoreEngine.

tuple from the NQE. (2) It checks which NSM should handle
it,1 performs hashing based on the three tuple to determine
which queue set (say 2) to switch to if there are multiple queue
sets, and copies the NQE to the NSM’s corresponding job
queue. CoreEngine adds the NSM ID and queue set ID to
the new entry. (3) ServiceLib gets the NQE and copies the
VM tuple to its response NQE, and adds the newly created
connection ID in the NSM to the op_data field of response
NQE. (4) CoreEngine parses the response NQE, matches
the VM tuple to the entry and adds the NSM socket ID to
complete it, and copies the response NQE to the completion
queue 1 of VM1 as instructed in the NQE. Later NQEs for
this VM connection can be processed by the correct NSM
connection and vice versa. ServiceLib pins its connections to
its vCPUs and queue sets, so processing the NQE and sending
the response NQE are done on the same CPU.

The connection table allows flexible multiplexing and de-
multiplexing with the socket ID information. For example
one NSM can serve multiple VMs using different sockets.
CoreEngine polls all queue sets to maximize performance.

4.4 Management with CoreEngine
CoreEngine acts as the control plane of NetKernel and carries
out many control tasks beyond NQE switching.
NK device and queue setup. CoreEngine allocates shared
memory for the queue sets and sets up the NK devices accord-
ingly when a VM or NSM starts up, and de-allocates when
they shut down. Queues can also be dynamically added or
removed with the number of vCPUs.
Isolation. CoreEngine sits in an ideal position to carry out
isolation among VMs. In our design CoreEngine polls each
queue set in a round-robin fashion to ensure the basic fair
sharing. Operator can implement other isolation mechanisms
to rate limit a VM in terms of bandwidth or the number of
NQEs (i.e. operations) per second, which we show in §7.3.
Note that CoreEngine isolation happens for egress; ingress
isolation at the NSM is more challenging and may have to
use physical NIC queues [21].
Busy-polling. The busy-polling design of CoreEngine re-
quires a dedicated core per machine which is an inherent

1A user VM to NSM mapping is determined either by the users/operator
offline or some load balancing scheme dynamically by CoreEngine.

148 2020 USENIX Annual Technical Conference USENIX Association

overhead of our design. We resort to this simple design as
we focus on showing feasibility and potential of NetKernel
in this work, and prior work also used dedicated cores for
software polling [40]. One can explore hardware offloading
using FPGAs for example to eliminate this overhead [23, 24].

4.5 Processing Application Data
We now discuss the last missing piece of NetKernel design:
how application data are actually processed in the system.
Sending data. Data is transmitted by hugepages shared be-
tween the VM and NSM. Their NK devices maintain a
hugepage region that is mmaped to the application hugepages.
For sending data with send(), GuestLib copies data from
userspace directly to the hugepage, and adds a data pointer
to the send NQE. It also increases the send buffer usage for
this socket similar to the send buffer size maintained by the
kernel. The send() now returns to application. ServiceLib
invokes tcp_sendmsg() provided by the kernel stack upon
receiving the send NQE. Data are obtained from hugepages,
processed by the network stack, and sent to the vNIC. A new
NQE is generated with the result of send by the NSM and
sent to GuestLib, who then decreases the send buffer usage.
Receiving data. Now for receiving packets in the NSM, a
normal network stack would send received data to userspace
applications. In order to send received data to the user VM,
ServiceLib then copies the data chunk to hugepages and create
a new NQE to the receive queue, which is then sent to the VM.
It also increases the receive buffer usage for this connection,
similar to the send buffer maintained by GuestLib described
above. The rest of the receive process is already explained
in §4.2. Note that application uses recv() to copy data from
hugepages to their own buffer.
ServiceLib. As discussed ServiceLib deals with much of data
processing at the NSM side so the network stack works in
concert with the rest of NetKernel. One thing to note is that
unlike the kernel space GuestLib, ServiceLib should live in the
same space as the network stack to ensure best performance.
We have focused on a Linux kernel stack with a kernel space
ServiceLib here. The design of a userspace ServiceLib for a
userspace stack is similar in principle. ServiceLib busy-polls
its queues for maximum performance.

4.6 Optimization
We present several optimizations employed in NetKernel.
Pipelining. NetKernel applies pipelining between VM and
NSM for performance. For example on the VM side, a send()
returns immediately after putting data to the hugepages, in-
stead of waiting for the actual send result from the NSM.
Similarly the NSM would handle accept() by accepting a
new connection and returning immediately, before the cor-
responding NQE is sent to GuestLib and then application to
process. Doing so does not break BSD socket semantics. Take

send() for example. A successful send() does not guarantee
delivery of the message [13]; it merely indicates the message
is written to socket buffer successfully. In NetKernel a suc-
cessful send() indicates the message is written to buffer in
the hugepages successfully. As explained in §4.5 the NSM
sends the result of send back to the VM to indicate if the
socket buffer usage can be decreased or not.
Interrupt-driven polling. We adopt an interrupt-driven
polling design for NQE event notification to GuestLib’s NK
device. This is to reduce the overhead of GuestLib and user
VM. When an application is waiting for events e.g. the re-
sult of the socket() call or receive data for epoll, the device
will first poll its completion queue and receive queue. If no
new NQE comes after a short time period (20µs in our experi-
ments), the device sends an interrupt to CoreEngine, notifying
that it is expecting NQE, and stops polling. CoreEngine later
wakes up the device, which goes back to polling mode to
process new NQEs from the completion queue. This is sim-
ilar in spirit to busy-polling sockets in Linux kernel [3, 10].
Interrupt-driven polling presents a favorable trade-off between
overhead and performance compared to pure polling based
or interrupt based design. It saves precious CPU cycles when
load is low and ensures the overhead of NetKernel is very
small to the user VM. Performance on the other hand is com-
petent since the response NQE is received within the polling
period in most cases for blocking calls, and when the load is
high polling automatically drives the notification mechanism.
As explained before CoreEngine and ServiceLib use busy
polling to maximize performance.
Batching. Batching is used in many parts of NetKernel for
better throughput. CoreEngine uses batching whenever pos-
sible for polling from and copying into the queues. The NK
devices also receive NQEs in a batch.

5 Implementation

Our implementation is based on QEMU KVM 2.5.0 and Linux
kernel 4.9 for both host and guest, with over 11K LoC.
GuestLib. We add the SOCK_NETKERNEL socket to the kernel
(net.h), and modify socket.c to rewrite the SOCK_STREAM
to SOCK_NETKERNEL during socket creation. We imple-
ment GuestLib as a kernel module with two components:
Guestlib_core and nk_driver. Guestlib_core is mainly for
Netkernel sockets and NQE translation, and nk_driver is
for NQE communications via queues. Guestlib_core and
nk_driver communicate with each other using function calls.
ServiceLib and NSM. We also implement ServiceLib as two
components: Servicelib_core and nk_driver. Servicelib_core
translates NQEs to network stack APIs, and the nk_driver is
identical to the one in GuestLib. For the kernel stack NSM,
Servicelib_core calls the kernel APIs directly to handle socket
operations without entering userspace. We create an indepen-
dent kthread to poll the job queue and send queue for NQEs
to avoid kernel stuck. Some BSD socket APIs can not be

USENIX Association 2020 USENIX Annual Technical Conference 149

invoked in kernel space directly. We use EXPORT_SYMBOLS to
export the functions for ServiceLib. Meanwhile, the boundary
check between kernel space and userspace is disabled. We
use per-core epoll_wait() to obtain incoming events from
the kernel stack.

We also port mTCP [12] as a userspace stack NSM. It
uses DPDK 17.08 for packet I/O. For simplicity, we main-
tain its two-thread model and per-core data structure. We
implement the NSM in mTCP’s application thread at each
core. The ServiceLib is essentially an mTCP application:
once receiving a NQE from its send queue, it accesses data
from the shared hugepage by the data pointer in the NQE
and sends it using mTCP with DPDK. For receiving, the
received data is copied into the hugepage, and ServiceLib
encapsulates the data pointer into a NQE of the receive
queue. The per-core application thread (1) translates NQEs
polled from the NK device to mTCP socket APIs, and (2)
responds NQEs to the tenant VM based on the network events
collected by mtcp_epoll_wait(). Since mTCP works in
non-blocking mode for performance, we buffer send opera-
tions at each core and set the timeout parameter to 1ms in
mtcp_epoll_wait() to avoid starvation when polling NQE
requests.
Queues and hugepages. The hugepages are implemented
based on QEMU’s IVSHMEM. The page size is 2 MB and
we use 128 pages. The queues are ring buffers implemented
as much smaller IVSHMEM devices. Together they form a
NK device which is a virtual device to the VM and NSM.
CoreEngine. The CoreEngine is a daemon with two threads
on the KVM hypervisor. One thread listens on a pre-defined
port to handle NK device (de)allocation requests, namely 8-
byte network messages of the tuples 〈ce_op, ce_data〉. When
a VM (or NSM) starts (or terminates), it sends a request to
CoreEngine for registering (or deregistering) a NK device. If
the request is successfully handled, CoreEngine responds in
the same message format. Otherwise, an error code is returned.
The other thread polls NQEs in batches from all NK devices
and switches them as described in §4.3.

6 Evaluation: New Use Cases

In the first part of evaluation, we present some new use cases
that are realized using our prototype to demonstrate the poten-
tial of NetKernel. Details of the performance and overhead
microbenchmarks are presented in §7.

6.1 Multiplexing
Here we describe a new use case where the operator can
optimize resource utilization by serving multiple bursty VMs
with one NSM.

To make things concrete we draw upon a user traffic trace
collected from a large cloud in September 2018. The trace
contains statistics of tens of thousands of application gateways

0 10 20 30 40 50 60
Time (min)

0

20

40

60

80

100

120

N
or

m
al

iz
ed

rp
s

pe
rfo

rm
an

ce

AG1 AG2 AG3

Figure 7: Traffic of three most uti-
lized application gateways (AGs) in
our trace. They are deployed as VMs.

0 10 20 30 40 50 60
Time (min)

0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

rp
s

pe
rc

or
e

Baseline Netkernel

Figure 8: Per-core rps comparison.
Baseline uses 12 cores for 3 AGs,
while NetKernel with multiplexing
only needs 9 cores.

(AGs) that handle tenant (web) traffic in order to provide load
balancing, proxy, and other services. The AGs are internally
deployed as VMs by the operator. We find that the AG’s
average utilization is very low most of the time. Figure 7
shows normalized traffic processed by three most utilized AGs
(in the same datacenter) in our trace with 1-minute intervals
for a 1-hour period. We can clearly see the bursty nature of the
traffic. Yet it is very difficult to consolidate their workloads
in current cloud because they serve different customers using
different configurations (proxy settings, LB strategies, etc.),
and there is no way to separate the application logic with the
underlying network stack. The operator has to deploy AGs
as independent VMs, reserve resources for them, and charge
customers accordingly.

NetKernel enables multiplexing across AGs running dis-
tinct services, since the common TCP stack processing is now
separated into the NSM. Using the three most utilized AGs
which have the least benefit from multiplexing as an example,
without NetKernel each needs 4 cores in our testbed to handle
their peak traffic, and the total per-core requests per second
(rps) of the system is depicted in Figure 8 as Baseline. Then
in NetKernel, we deploy 3 VMs each with 1 core to replay
the trace as the AGs, and use a kernel stack NSM with 5 cores
which is sufficient to handle the aggregate traffic. Totally 9
cores are used including CoreEngine, representing a saving
of 3 cores in this case. The per core rps is thus improved by
33% as shown in Figure 8. Each AG has exactly the same rps
performance without any packet loss.

In the general case multiplexing these AGs brings even
more gains since their peak traffic is far from their capacity.
For ease of exposition we assume the operator reserves 2
cores for each AG. A 32-core machine can host 16 AGs. If
we use NetKernel with 1 core for CoreEngine and a 2-core
NSM, we find that we can always pack 29 AGs each with 1
core for the application logic as depicted in Table 2, and the
maximum utilization of the NSM would be well under 60%
in the worst case for ∼97% of the AGs in the trace. Thus
one machine can run 13 or 81.25% more AGs now, which
means the operator can save over 40% cores for supporting
this workload. This implies salient financial gains for the
operator: according to [24] one physical core has a maximum
potential revenue of $900/yr.

150 2020 USENIX Annual Technical Conference USENIX Association

Total Cores NSM CoreEngine AGs
Baseline 32 0 0 16
NetKernel 32 2 1 29

Table 2: NetKernel multiplexes more AGs and saves over 40% cores.

6.2 Deploying mTCP without API Change
We now focus on use cases of deployment and performance
benefits for users.

Most userspace stacks use their own APIs and require appli-
cations to be ported [4, 11, 34]. For example, in mTCP an ap-
plication has to use mtcp_epoll_wait() to fetch events [34].
The semantics of these APIs are also different from socket
APIs [34]. These factors lead to expensive code changes and
make it difficult to use the stack in practice. The lack of
modern APIs also makes it difficult to support complex web
servers like nginx. mTCP also lacks some modern kernel
TCP features such as advanced loss recovery, small queue,
DSACK, etc.

With NetKernel, applications can directly take advantage
of userspace stacks without any code change. To show this,
we deploy unmodified nginx in the VM with the mTCP NSM
we implement, and benchmark its performance using ab. Both
VM and NSM use the same number of vCPUs. Table 3 depicts
that mTCP provides 1.4x–1.9x improvements over the kernel
stack NSM across various vCPU setting.

vCPUs 1 2 4
Kernel stack NSM 71.9K 133.6K 200.1K
mTCP NSM 98.1K 183.6K 379.2K

Table 3: Performance of nginx using ab with 64B html files, a concurrency
of 100, and 10M requests in total. The NSM and VM use the same number
of vCPUs.

NetKernel also mitigates the maintenance efforts required
from users. We provide another piece of evidence with mTCP
here. When compiling DPDK required by mTCP on our
testbed, we could not set the RSS (receive side scaling) key
properly to the mlx5_core driver for our NIC and mTCP
performance was very low. After discussing with mTCP de-
velopers, we were able to attribute this to the asymmetric RSS
key used in the NIC, and fixed the problem by modifying the
code in the DPDK mlx5 driver. We have submitted our fix to
mTCP community. Without NetKernel users would have to
deal with such technical complication by themselves. Now
they are taken care of transparently, saving much time and
effort for many users.

6.3 Shared Memory Networking
Inter-VM communication is well-known to suffer from high
overheads [58]. A VM’s traffic goes through its network stack,
then the vNIC and the vSwitch, even when the other VM is on
the same host. It is difficult for users and operator to optimize
for this case, because a VM has no information about where

64 128 256 512 1024 2048 4096 8192

Message Size (B)

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Baseline

NetKernel w. shared mem NSM

Figure 9: Using shared memory NSM for NetKernel for traffic between two
colocated VMs of the same user. NetKernel uses 2 cores for each VM, 2
cores for the NSM, and 1 core for CoreEngine. Baseline uses 2 core for the
sending VM, 5 cores for receiving VM, and runs TCP Cubic. Both schemes
use 8 TCP connections.

the other endpoint is. The hypervisor cannot help either as the
data has already been processed by the TCP/IP stack. With
NetKernel the NSM is part of the infrastructure, the operator
can easily detect the on-host traffic and use shared memory
to copy data for the two VMs. We build a prototype NSM
to demonstrate this idea: When a socket pair is detected as
an internal socket pair by the GuestLib, and the two VMs
belong to the same user, a shared memory NSM takes over
their traffic. This NSM simply copies the message chunks
between their hugepages and bypasses the TCP stack process-
ing. As shown in Figure 9, with 7 cores in total, NetKernel
with shared memory NSM can achieve 100Gbps, which is
∼2x of Baseline using TCP Cubic and same number of cores.

7 Evaluation: Microbenchmarks

We now present microbenchmarks of crucial aspects of NetK-
ernel: performance and multicore scalability in §7.2; isolation
of multiple VMs in §7.3; and system overhead in §7.4.

7.1 Setup

Each of our testbed servers has two Xeon E5-2698 v3 16-core
CPUs clocked at 2.3 GHz, 256 GB memory at 2133 MHz,
and a Mellanox ConnectX-4 single port 100G NIC. Hyper-
threading is disabled. We compare to the status quo where an
application uses the kernel TCP stack in its VM, referred to
as Baseline in the following. We designate NetKernel to refer
to the common setting where we use the kernel stack NSM
in our implementation. When mTCP NSM is used we explic-
itly mark the setting in the results. The same TCP parameter
settings are used for both systems. The NSM uses the same
number of vCPUs as Baseline since CPU is used almost en-
tirely by the network stack in Baseline. NetKernel allocates 1
more vCPU for the VM to run the application and ServiceLib
throughout the evaluation. Its CPU utilization is usually low:
we report the actual CPU overheads of NetKernel in §7.4. The
throughput results are measured by iperf and the rps results
are measured by ab, unless stated otherwise. The throughput
results are averaged over 5 runs each lasting 30 seconds.

USENIX Association 2020 USENIX Annual Technical Conference 151

1 2 3 4 5 6 7 8
of vCPUs

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Baseline

NetKernel

Figure 10: Send throughput of 8 TCP streams
with varying numbers of vCPUs, 8KB messages.

1 2 3 4 5 6 7 8
of vCPUs

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Baseline

NetKernel

Figure 11: Recv throughput of 8 TCP streams
with varying numbers of vCPUs, 8KB messages.

1 2 3 4 5 6 7 8
of vCPUs

0

200

400

600

800

1000

1200

R
e
q
u
e
st

s
/

se
c

(x
 1
0
3

)

Baseline

NetKernel

NetKernel w. mTCP NSM

mTCP

Figure 12: Performance of TCP short connec-
tions with multiple vCPUs. Message size 64B.

7.2 Performance and Scalability

We now look at NetKernel’s basic performance.
NQE switching and memory copy. NQEs are transmitted
by CoreEngine as a software switch. It is important that
CoreEngine offers enough horsepower to ensure performance
at 100G and higher. We measure CoreEngine throughput
which is defined as the number of 32-byte NQEs copied from
GuestLib’s NK device queues to the ServiceLib’s NK device
queues. Table 4 shows the results with varying batch sizes.
CoreEngine achieves ∼8M NQEs/s without batching. With a
small batch size of 4 or 8 throughput reaches 41.4M NQEs/s
and 65.9M NQEs/s, respectively, which is sufficient for most
applications.

We also measure the memory copy throughput between
GuestLib and ServiceLib via hugepages. A memory copy in
this experiment includes the following: (1) application in the
VM issues a send() with data; (2) GuestLib gets a pointer
from the hugepages; (3) copies the message to hugepages; (4)
prepares a NQE with the data pointer; (5) CoreEngine copies
the NQE to ServiceLib; and (6) ServiceLib obtains the data
pointer and puts it back to the hugepages. Thus it measures
the effective application-level throughput using NetKernel
(including NQE transmission) without network stack process-
ing.

We observe from Table 5 that NetKernel delivers over 100G
throughput with messages larger than 4KB: with 8KB mes-
sages 144G is achievable. Thus NetKernel provides enough
raw performance to the network stack and is not a bottleneck
to the 100G deployment in production.

Batch Size (B) 1 2 4 8 16 32 64 128 256
NQEs per second (×106) 8.0 14.4 22.3 41.4 65.9 100.2 119.6 178.2 198.5

Table 4: CoreEngine switching throughput using a single core with different
batch sizes.

Message Size (B) 64 128 256 512 1024 2048 4096 8192
Throughput (Gbps) 4.9 8.3 14.7 25.8 45.9 80.3 118.0 144.2

Table 5: Message copy throughput via hugepages with different message
sizes.

Throughput. We examine throughput performance using
the kernel stack NSM and 8 TCP streams with 8KB mes-
sages. Figures 10 and 11 show respectively the send and
receive throughput with varying number of vCPUs. NetKer-
nel achieves the same throughput performance and scalability

with Baseline. The single-core send and receive throughput
reaches 48Gbps and 17Gbps, respectively. Receive through-
put is much lower because the kernel stack’s RX processing
is much more CPU-intensive with interrupts. Note that if the
other cores of the NUMA node are not disabled, soft inter-
rupts (softirq) may be sent to those cores instead of the one
assigned to the NSM (or VM), thereby inflating the receive
throughput. Both systems achieve the line rate of 100G using
at least 3 vCPUs for send throughput as in Figure 10. For
receive, both achieve 91Gbps using 8 vCPUs as in Figure 11.
Short TCP connections. We also benchmark NetKernel’s
performance in handling short TCP connections using a cus-
tom server sending a short message as a response. The server
runs multiple worker threads that share the same listening
port. Each thread runs an epoll event loop. Our workload gen-
erates 10 million requests in total with a concurrency of 1000.
The connections are non-keepalive. The message size is 64B.
Socket option SO_REUSEPORT is always used for the kernel
stack. Figure 12 shows that NetKernel has the same multicore
scalability as Baseline: performance increases from ∼71Krps
with 1 vCPU to ∼400Krps with 8 vCPUs, i.e. 5.6x the single
core performance. To demonstrate NetKernel’s full capabil-
ity, we also run the mTCP NSM with 1, 2, 4, and 8 vCPUs.2

NetKernel with mTCP offers 167Krps, 313Krps, 562Krps,
and 979Krps respectively, and shows better scalability than
the kernel stack.

The results here show that NetKernel preserves the perfor-
mance and scalability of network stacks, including high per-
formance stacks like mTCP since our scalable queue design
can ensure NetKernel is not the bottleneck and the contention
is not severe in this situation.

7.3 Isolation

Isolation is important to ensure co-located users do not inter-
fere with each other, especially in a public cloud. It is different
from fair sharing: Isolation ensures a VM’s performance guar-
antee is met despite network dynamics, while fairness ensures
a VM obtains a fair share of the bottleneck capacity which
varies dynamically. We conduct an experiment to verify NetK-
ernel’s isolation guarantees. As discussed in §4.4, CoreEngine

2Using other numbers of vCPUs for mTCP causes stability problems even
without NetKernel.

152 2020 USENIX Annual Technical Conference USENIX Association

uses round-robin to poll each VM’s NK device for basic fair-
ness. In addition, to achieve isolation we implement token
buckets in CoreEngine to limit the bandwidth of each VM,
taking into account varying message sizes. There are 3 VMs
now: VM1 is rated limited at 1Gbps, VM2 at 500Mbps, and
VM3 has unlimited bandwidth. They arrive and depart at dif-
ferent times. They are colocated on the same host running a
kernel stack NSM using 1 vCPU. The NSM is given a 10G
VF for simplicity of showing work conservation.

Figure 13 shows the time series of each VM’s through-
put, measured by our epoll server at 100ms intervals. VM1
joins the system at time 0 and leaves at 25s. VM2 comes
later at 4.5s and leaves at 21s. VM3 joins last and stays un-
til 30s. We can observe that NetKernel throttles VM1’s and
VM2’s throughput at their respective limits correctly despite
the dynamics. VM3 is also able to use all the remaining ca-
pacity of the 10G NSM: it obtains 9Gbps after VM2 leaves
and 10Gbps after VM1 leaves at 25s. Therefore, NetKernel
is able to achieve the same isolation in today’s clouds with
bandwidth caps.

0 5 10 15 20 25 30
Time (s)

0.0

2.5

5.0

7.5

10.0

T
hr

ou
gh

pu
t

(G
bp

s)

VM 1

VM 2

VM 3

Figure 13: VM 1 is capped at 1Gbps, VM2 at 500Mbps, and VM3 uncapped.
All VMs use the same kernel stack NSM. The NSM is assigned 10Gbps
bandwidth. NetKernel isolates VM1 and VM2 successfully while allowing
VM3 to obtain the remaining capacity.

7.4 Overhead
Latency. One may wonder if NetKernel with the NQE trans-
mission would add delay to TCP processing, especially in
handling short connections. Table 6 shows the latency statis-
tics when we run ab to generate 1K concurrent connections
to our epoll server for 64B messages. A total of 5 million
requests are used. NetKernel achieves the same latency as
Baseline. Even for the mTCP NSM, NetKernel preserves its
low latency due to the much simpler TCP stack processing and
various optimization [34]. The standard deviation of mTCP la-
tency is much smaller, implying that NetKernel itself provides
stable performance to the network stacks. We also investigate
the latency without the effect of connection concurrency. To
measure microsecond granularity latency, we use a custom
HTTP client instead of ab, which reports application-level
latency from the transmission of a request to the reception
of the response. The experiments show the latency of Base-
line and the NetKernel is 61.14 µs and 89.53 µs, respectively.
The latency overhead is mostly introduced by CoreEngine in
NetKernel.
CPU. Now to quantify NetKernel’s CPU overhead, we use the
epoll server at the VM side, and run clients from a different

Min Mean Stddev Median Max
Baseline 0 16 105.6 2 7019
NetKernel 0 16 105.9 2 7019
NetKernel, mTCP NSM 3 4 0.23 4 11

Table 6: Distribution of response times (ms) for 64B messages with 5 million
requests and 1K concurrency.

machine with fixed throughput or requests per second for both
NetKernel and Baseline with kernel TCP stack. We disable all
unnecessary background system services in both the VM and
NSM, and ensure the CPU usage is almost zero without run-
ning epoll servers. During the experiments, we measure the
total number of cycles spent by the VM in Baseline, and that
spent by the VM and NSM together in NetKernel. We then
report NetKernel’s CPU usage normalized over Baseline’s for
the same performance level in Tables 7 and 8.

Throughput 20Gbps 40Gbps 60Gbps 80Gbps 100Gbps
Normalized CPU usage 1.14 1.28 1.42 1.56 1.70

Table 7: Overhead for throughput. The NSM runs the Linux kernel TCP
stack. We use 8 TCP streams with 8KB messages. NetKernel’s CPU usage is
normalized over that of Baseline.

Requests per second (rps) 100K 200K 300K 400K 500K
Normalized CPU usage 1.06 1.05 1.08 1.08 1.09

Table 8: Overhead for short TCP connections. The NSM runs the kernel TCP
stack. We use 64B messages with a concurrency of 100.

We can see that to achieve the same throughput, NetKer-
nel incurs relatively high overhead especially as throughput
increases. To put things into perspective, we also measure
CPU usage when the client runs in a docker container with
the bridge networking mode. Docker incurs 13% CPU over-
head compared to Baseline to achieve 40 Gbps throughout
whereas NetKernel’s is 28%. The overhead here is due to the
extra memory copy from the hugepages to the NSM. It can
be optimized away by implementing zerocopy between the
hugepages and the NSM, which we are working on currently.

Table 8 shows NetKernel’s overhead with short TCP con-
nections. We can observe that the overhead ranges from 5%
to 9% in all cases and is mild. As the message is only 64B
here, the results verify that the NQE transmission overhead
in NK devices is small.

8 Discussion

How can I do netfilter now? Due to the removal of vNIC
and redirection from the VM’s own TCP stack, some network-
ing tools like netfilter are affected. Though our current design
does not address them, they may be supported by adding ad-
ditional callback functions to the network stack in the NSM.
When the NSM serves multiple VMs, it then becomes chal-
lenging to apply netfilter just for packets of a specific VM.
We argue that this is acceptable since most users wish to fo-
cus on their applications instead of tuning a network stack.
NetKernel does not aim to completely replace the current ar-
chitecture. Tenants may still use the VMs without NetKernel

USENIX Association 2020 USENIX Annual Technical Conference 153

if they wish to gain maximum flexibility on the network stack
implementation.
What about troubleshooting performance issues? In cur-
rent virtualized environment, operators cannot easily deter-
mine whether a performance issue is caused by the guest
network stack or the underlying infrastructure. With NetKer-
nel operators gain much visibility of the guest network stack,
which potentially facilitates debugging the performance is-
sues. For example operators can closely monitor their NSMs
to detect problems with the network stack; they can also de-
ploy additional mechanisms in the NSMs to monitor their
datacenter network [29,49], all without disrupting users at all.
Does NetKernel increase the attack surface? It is well-
known that shared memory design might suffer from side-
channel attacks where malicious tenants could temper with
other tenants’ data on the hugepages. In this regard, NetK-
ernel limits the visibility of NK devices into the hugepage
for guest VMs: each device can only access its own address
space. This is guaranteed by enforcing the address allocation
and isolation control at CoreEngine.
How about supporting stacks with non-socket API? There
are many fast network stacks with non-socket API such as
PASTE [32], Seastar [11], and IX [18]. As NetKernel keeps
the socket API, the central challenge to support these stacks
(as NSMs) is how to resolve the semantic differences. While
this requires case-by-case porting efforts, in general the Ser-
viceLib should take care of the semantic transformation be-
tween the APIs.
Future directions. We outline a few future directions that
require immediate attention with high potential: (1) Perfor-
mance isolation. When multiple guest VMs share the same
NSM, fine-grained performance isolation is imperative. In
addition, it is necessary and interesting to design charging
policies that promote fair use of the NSM and CoreEngine; (2)
Resource efficiency. Various aspects of NetKernel’s design
can be optimized for efficiency and practicality. The CPU
overhead of CoreEngine, mostly to poll the shared memory
queues for NQE transmission, can be optimized by offloading
to hardware like FPGA and SoC.

9 Related Work

We discuss related work besides those mentioned in §2.2.
There are many novel network stack designs to improve

performance. The kernel stack continues to receive optimiza-
tion in various aspects [42, 53, 64]. Userspace stacks based
on fast packet I/O are also gaining momentum [7, 11, 34, 40,
45, 48, 55, 65]. Beyond transport layer, novel flow schedul-
ing [16] and end-host based load balancing schemes [30, 37]
are developed to reduce flow completion times. These pro-
posals are targeting specific problems of the stack, and can
be potentially deployed as NSMs in NetKernel. This paper
takes on a broader and more fundamental issue: how can we
properly re-factor the network stack, so that new designs can

be easily deployed, and operating them in cloud can be more
efficient?

Snap [47] is a microkernel networking framework that
implements a range of network functions in userspace moti-
vated by the need of rapid development and high performance
packet processing in a private cloud. As NetKernel’s design
space and design choice are significantly different, it achieves
many advantages that Snap does not target, such as multi-
plexing, porting a network stack across OSes or from kernel
to user space, enforcing different network stack for different
VMs, etc.

Lastly, our earlier position paper [51] presents the vision
of network stack as a service. Here we provide the complete
design, implementation, and evaluation of a working system
in addition to several new use cases compared to [51].

10 Conclusion

We have presented NetKernel, a system that decouples the
network stack from the guest, therefore making it part of the
virtualized infrastructure in the cloud. NetKernel improves
network management efficiency for operator, and provides
deployment and performance gains for users. We experimen-
tally demonstrated new use cases enabled by NetKernel that
are otherwise difficult to realize in the current architecture.
Through testbed evaluation with 100G NICs, we showed that
NetKernel achieves the same performance and isolation as
today’s cloud.

We focused on efficiency benefits of NetKernel in this
paper since they seem most immediate. The idea of separating
network stack from the guest VM applies to public and private
clouds as well, and brings additional benefits that are more far-
reaching. For example, it facilitates innovation by allowing
new protocols in different layers of the stack to be rapidly
prototyped and experimented. It provides a direct path for
enforcing centralized control, so network functions like failure
detection [29] and monitoring [39, 49] can be integrated into
the network stack implementation. It opens up new design
space to more freely exploit end-point coordination [25, 54],
software-hardware co-design, and programmable data planes
[15, 43]. We encourage the community to fully explore these
opportunities in the future.

Acknowledgment

We thank the anonymous ATC reviewers and our shepherd
Michio Honda for their valuable comments. The project was
supported in part by the Hong Kong RGC GRF (CityU Project
#11210818). Dongsu was supported by MSRA Collaborative
Research 2016 Grant Award. Keith was supported by a Sloan
Research Fellowship and by Google, Huawei, VMware, Drop-
box, Amazon, and Facebook.

154 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Amazon EC2 Container Service.
https://aws.amazon.com/ecs/details/.

[2] Azure Container Service.
https://azure.microsoft.com/en-us/pricing/
details/container-service/.

[3] Busy Polling: Past, Present, Future.
https://netdevconf.info/2.1/papers/
BusyPollingNextGen.pdf.

[4] F-Stack: A high performance userspace stack based on
FreeBSD 11.0 stable. http://www.f-stack.org/.

[5] Google container engine. https://cloud.google.
com/container-engine/pricing.

[6] Intel Programmable Acceleration Card with Intel Arria
10 GX FPGA. https://www.intel.com/content/
www/us/en/programmable/products/boards_and_
kits/dev-kits/altera/
acceleration-card-arria-10-gx.html.

[7] Introduction to OpenOnload-Building Application
Transparency and Protocol Conformance into
Application Acceleration Middleware.
http://www.moderntech.com.hk/sites/default/
files/whitepaper/V10_Solarflare_OpenOnload_
IntroPaper.pdf.

[8] Mellanox Smart Network Adaptors. http://www.
mellanox.com/page/programmable_network_
adapters?mtag=programmable_adapter_cards.

[9] Netronome. https://www.netronome.com/.

[10] Open Source Kernel Enhancements for Low Latency
Sockets using Busy Poll.
http://caxapa.ru/thumbs/793343/Open_Source_
Kernel_Enhancements_for_Low-.pdf.

[11] Seastar. http://www.seastar-project.org/.

[12] mTCP.
https://github.com/eunyoung14/mtcp/tree/
2385bf3a0e47428fa21e87e341480b6f232985bd,
March 2018.

[13] The Open Group Base Specifications Issue 7, 2018
edition. IEEE Std 1003.1-2017.
http://pubs.opengroup.org/onlinepubs/
9699919799/functions/contents.html, 2018.

[14] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center TCP (DCTCP). In Proc. ACM SIGCOMM,
2010.

[15] M. T. Arashloo, M. Ghobadi, J. Rexford, and D. Walker.
HotCocoa: Hardware Congestion Control Abstractions.
In Proc. ACM HotNets, 2017.

[16] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and
H. Wang. PIAS: Practical information-agnostic flow
scheduling for data center networks. In Proc. USENIX
NSDI, 2015.

[17] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards predictable datacenter networks. In
Proc. ACM SIGCOMM, 2011.

[18] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Throughput and
Low Latency. In Proc. USENIX OSDI, 2014.

[19] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson. BBR: Congestion-Based Congestion
Control. Commun. ACM, 60(2):58–66, February 2017.

[20] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik,
M. Ravi, N. McKeown, I. Abraham, and I. Keslassy.
Virtualized Congestion Control. In Proc. ACM
SIGCOMM, 2016.

[21] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,
B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A.
Docauer, J. Alpert, J. Ai, J. Olson, K. DeCabooter,
M. de Kruijf, N. Hua, N. Lewis, N. Kasinadhuni,
R. Crepaldi, S. Krishnan, S. Venkata, Y. Richter,
U. Naik, and A. Vahdat. Andromeda: Performance,
Isolation, and Velocity at Scale in Cloud Network
Virtualization. In Proc. USENIX NSDI, 2018.

[22] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An Operating System Architecture for
Application-level Resource Management. In
Proc. ACM SOSP, 1995.

[23] D. Firestone. VFP: A Virtual Switch Platform for Host
SDN in the Public Cloud. In Proc. NSDI, 2017.

[24] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, H. K. Chandrappa,
S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam,
F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar,
N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg.
Azure Accelerated Networking: SmartNICs in the
Public Cloud. In Proc. USENIX NSDI, 2018.

[25] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal,
S. Ratnasamy, and S. Shenker. pHost: Distributed
Near-optimal Datacenter Transport Over Commodity
Network Fabric. In Proc. ACM CoNEXT, 2015.

USENIX Association 2020 USENIX Annual Technical Conference 155

https://aws.amazon.com/ecs/details/
https://azure.microsoft.com/en-us/pricing/details/container-service/
https://azure.microsoft.com/en-us/pricing/details/container-service/
https://netdevconf.info/2.1/papers/BusyPollingNextGen.pdf
https://netdevconf.info/2.1/papers/BusyPollingNextGen.pdf
http://www.f-stack.org/
https://cloud.google.com/container-engine/pricing
https://cloud.google.com/container-engine/pricing
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
http://www.moderntech.com.hk/sites/default/files/whitepaper/V10_Solarflare_OpenOnload_IntroPaper.pdf
http://www.moderntech.com.hk/sites/default/files/whitepaper/V10_Solarflare_OpenOnload_IntroPaper.pdf
http://www.moderntech.com.hk/sites/default/files/whitepaper/V10_Solarflare_OpenOnload_IntroPaper.pdf
http://www.mellanox.com/page/programmable_network_adapters?mtag=programmable_adapter_cards
http://www.mellanox.com/page/programmable_network_adapters?mtag=programmable_adapter_cards
http://www.mellanox.com/page/programmable_network_adapters?mtag=programmable_adapter_cards
https://www.netronome.com/
http://caxapa.ru/thumbs/793343/Open_Source_Kernel_Enhancements_for_Low-.pdf
http://caxapa.ru/thumbs/793343/Open_Source_Kernel_Enhancements_for_Low-.pdf
http://www.seastar-project.org/
https://github.com/eunyoung14/mtcp/tree/2385bf3a0e47428fa21e87e341480b6f232985bd
https://github.com/eunyoung14/mtcp/tree/2385bf3a0e47428fa21e87e341480b6f232985bd
http://pubs.opengroup.org/onlinepubs/9699919799/functions/contents.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/contents.html

[26] D. B. Golub, D. P. Julin, R. F. Rashid, R. P. Draves,
R. W. Dean, A. Forin, J. Barrera, H. Tokuda, G. Malan,
and D. Bohman. Microkernel operating system
architecture and Mach. In Proc. the USENIX Workshop
on Micro-Kernels and Other Kernel Architectures,
1992.

[27] A. Greenberg. SDN in the Cloud. Keynote, ACM
SIGCOMM 2015.

[28] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,
W. Wu, and Y. Zhang. Secondnet: A data center
network virtualization architecture with bandwidth
guarantees. In Proc. ACM CoNEXT, 2010.

[29] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,
D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z.-W.
Lin, and V. Kurien. Pingmesh: A Large-Scale System
for Data Center Network Latency Measurement and
Analysis. In Proc. ACM SIGCOMM, 2015.

[30] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and
A. Akella. Presto: Edge-based Load Balancing for Fast
Datacenter Networks. In Proc. ACM SIGCOMM, 2015.

[31] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter,
J. Carter, and A. Akella. AC/DC TCP: Virtual
Congestion Control Enforcement for Datacenter
Networks. In Proc. ACM SIGCOMM, 2016.

[32] M. Honda, G. Lettieri, L. Eggert, and D. Santry.
PASTE: A Network Programming Interface for
Non-Volatile Main Memory. In Proc. USENIX NSDI,
2018.

[33] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM:
High performance and flexible networking using
virtualization on commodity platforms. In
Proc. USENIX NSDI, 2014.

[34] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: A Highly Scalable
User-level TCP Stack for Multicore Systems. In
Proc. USENIX NSDI, 2014.

[35] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar,
C. Kim, and A. Greenberg. Eyeq: Practical network
performance isolation at the edge. In Proc. USENIX
NSDI, 2013.

[36] G. Judd. Attaining the Promise and Avoiding the
Pitfalls of TCP in the Datacenter. In Proc. USENIX
NSDI, 2015.

[37] N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy, and
J. Rexford. CLOVE: How I Learned to Stop Worrying
About the Core and Love the Edge. In Proc. ACM
HotNets, 2016.

[38] J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani,
A. Ferreira, and A. Akella. Iron: Isolating
Network-based CPU in Container Environments. In
Proc. USENIX NSDI, 2018.

[39] A. Khandelwal, R. Agarwal, and I. Stoica. Confluo:
Distributed Monitoring and Diagnosis Stack for
High-speed Networks. In Proc. USENIX NSDI, 2019.

[40] D. Kim, T. Yu, H. Liu, Y. Zhu, J. Padhye, S. Raindel,
C. Guo, V. Sekar, and S. Seshan. FreeFlow:
Software-based Virtual RDMA Networking for
Containerized Clouds. In Proc. USENIX NSDI, 2019.

[41] K. LaCurts, J. C. Mogul, H. Balakrishnan, and
Y. Turner. Cicada: Introducing predictive guarantees for
cloud networks. In Proc. USENIX HotCloud, 2014.

[42] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi.
Scalable Kernel TCP Design and Implementation for
Short-Lived Connections. In Proc. ASPLOS, 2016.

[43] Y. Lu, G. Chen, B. Li, K. Tan, Y. Xiong, P. Cheng,
J. Zhang, E. Chen, and T. Moscibroda. Multi-Path
Transport for RDMA in Datacenters . In Proc. USENIX
NSDI, 2018.

[44] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems for
the cloud. In Proc. ASPLOS, 2013.

[45] I. Marinos, R. N. Watson, and M. Handley. Network
stack specialization for performance. In Proc. ACM
SIGCOMM, 2014.

[46] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. ClickOS and the
Art of Network Function Virtualization. In
Proc. USENIX NSDI, 2014.

[47] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld,
S. Bauer, C. Contavalli, M. Dalton, N. Dukkipati, W. C.
Evans, S. Gribble, N. Kidd, R. Kononov, G. Kumar,
C. Mauer, E. Musick, L. Olson, M. Ryan, E. Rubow,
K. Springborn, P. Turner, V. Valancius, X. Wang, and
A. Vahdat. Snap: A microkernel approach to host
networking. In Proc. ACM SOSP, 2019.

[48] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and
D. Zats. TIMELY: RTT-based Congestion Control for
the Datacenter. In Proc. ACM SIGCOMM, 2015.

[49] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
Trumpet: Timely and precise triggers in data centers. In
Proc. SIGCOMM, 2016.

156 2020 USENIX Annual Technical Conference USENIX Association

[50] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal,
S. Narayana, R. Mittal, M. Alizadeh, and
H. Balakrishnan. Restructuring Endpoint Congestion
Control. In Proc. ACM SIGCOMM, 2018.

[51] Z. Niu, H. Xu, D. Han, P. Wang, and L. Liu. Netkernel:
Network stack as a service in the cloud. In Proc. ACM
HotNets, 2017.

[52] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and
S. Shenker. NetBricks: Taking the V out of NFV. In
Proc. USENIX OSDI, 2016.

[53] S. Pathak and V. S. Pai. ModNet: A Modular Approach
to Network Stack Extension. In Proc. USENIX NSDI,
2015.

[54] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A Centralized “Zero-Queue”
Datacenter Network. In Proc. ACM SIGCOMM, 2014.

[55] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the Control Plane. In
Proc. USENIX OSDI, 2014.

[56] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica. Faircloud: Sharing the
network in cloud computing. In Proc. ACM
SIGCOMM, 2012.

[57] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul,
Y. Turner, and J. R. Santos. ElasticSwitch: Practical
Work-conserving Bandwidth Guarantees for Cloud
Computing. In Proc. ACM SIGCOMM, 2013.

[58] L. Rizzo, G. Lettieri, and V. Maffione. Speeding Up
Packet I/O in Virtual Machines. In Architectures for
Networking and Communications Systems, 2013.

[59] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam,
C. Contavalli, and A. Vahdat. Carousel: Scalable Traffic
Shaping at End Hosts. In Proc. ACM SIGCOMM, 2017.

[60] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and
B. Saha. Sharing the data center network. In
Proc. USENIX NSDI, 2011.

[61] L. Soares and M. Stumm. FlexSC: Flexible System
Call Scheduling with Exception-Less System Calls. In
Proc. USENIX OSDI, 2010.

[62] J. Son, Y. Xiong, K. Tan, P. Wang, Z. Gan, and S. Moon.
Protego: Cloud-Scale Multitenant IPsec Gateway. In
Proc. USENIX ATC, 2017.

[63] B. Stephens, A. Singhvi, A. Akella, and M. Swift.
Titan: Fair Packet Scheduling for Commodity
Multiqueue NICs. In Proc. USENIX ATC, 2017.

[64] K. Yasukata, M. Honda, D. Santry, and L. Eggert.
StackMap: Low-Latency Networking with the OS Stack
and Dedicated NICs. In Proc. USENIX ATC, 2016.

[65] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and
M. Zhang. Congestion Control for Large-Scale RDMA
Deployments. In Proc. ACM SIGCOMM, 2015.

[66] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett,
A. Krishnamurthy, and T. Anderson. Slim: OS Kernel
Support for a Low-Overhead Container Overlay
Network. In Proc. USENIX NSDI, 2019.

USENIX Association 2020 USENIX Annual Technical Conference 157

Platinum: A CPU-Efficient Concurrent Garbage Collector for Tail-Reduction of

Interactive Services

Mingyu Wu†‡, Ziming Zhao†‡, Yanfei Yang†‡, Haoyu Li†‡, Haibo Chen†‡, Binyu Zang†‡, Haibing
Guan†‡, Sanhong Li⋄, Chuansheng Lu⋄, Tongbao Zhang⋄

†Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China
‡Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

⋄Alibaba Group

Abstract

The service-oriented architecture decomposes a mono-
lithic service into single-purpose services for better modu-
larity and reliability. The interactive nature, plus the fact of
running inside a managed runtime, makes garbage collec-
tion a key to the reduction of tail latency of such services.
However, prior concurrent garbage collectors reduce stop-
the-world (STW) pauses by consuming more CPU resources,
which can affect the application performance, especially un-
der heavy workload.

Based on an in-depth analysis of representative latency-
sensitive workloads, this paper proposes Platinum, a new
concurrent garbage collector to reduce the tail latency with
moderate CPU consumption. The key idea is to construct
an isolated execution environment for concurrent mutators
to improve application latency without interfering with the
execution of GC threads. Platinum further leverages a new
hardware feature (i.e., memory protection keys) to eliminate
software overhead in previous concurrent collectors. An eval-
uation against state-of-the-art concurrent garbage collectors
shows that Platinum can significantly reduce the tail latency
of real-world interactive services (by as much as 79.3%)
while inducing moderate CPU consumption.

1 Introduction

Today’s cloud environment is an enormous beast with quan-
tities of interconnected machines. To tame the beast, devel-
opers (1) break the traditional monolithic applications into
small and interactive services and (2) implement services
atop managed languages (such as Java, C#, and Go) to build
reliable, elastic and efficient systems. Unfortunately, a ten-
sion exists between those services and managed languages.
Services are designed as single-purpose and interactive ap-
plications to achieve low latency. It typically takes several
milliseconds and even sub-millisecond to complete a request
in interactive services. Meanwhile, managed languages like

Java introduce garbage collections (GC) to manage memory
resources automatically. However, mainstream garbage col-
lectors used in interactive services will introduce stop-the-
world (STW) events, where all application threads (known
as mutators) are forced to pause so that GC threads can scan
the heap for memory reclamation. The pause time is tens to
hundreds of milliseconds, which are usually one to two mag-
nitudes of the execution time for a single request in interac-
tive services. Therefore, STW pauses will affect the latency
of services and cause the long tail problem. Prior work has
observed that STW pauses have significant effects on tail la-
tency in latency-sensitive scenarios [19, 40].

There are mainly two ways to reduce the STW pause time.
Partially-concurrent collectors, such as G1 [11] and CMS,
suggests reducing STW pauses by restricting the size of col-

lection set in which objects need to be collected. However,
this solution will introduce more frequent collections and
larger accumulated STW pause time. Mostly-concurrent col-

lectors, such as Shenandoah [13] and ZGC [33], allow muta-
tors to run in nearly all GC phases. Those collectors are quite
effective in reducing the duration of STW pauses, but it re-
quires GC threads to run constantly and spend more comput-
ing resources coordinating with mutators. In summary, both
kinds of collectors achieve shorter STW pauses by occupy-
ing more CPU slices and thereby put more pressure on muta-
tors. When the workload becomes stressful, spending more
computing resources in GC may end up with even worse ap-
plication latency.

In this paper, we present a new garbage collector which
(1) reduces the tail latency of interactive services and (2)
induces moderate CPU consumption. To achieve this, we
first study the effect of GC on various latency-sensitive in-
teractive service scenarios, including production traces in Al-
ibaba, whose business applications rely heavily on JVM. We
further analyze state-of-the-art collectors and uncover their
problems respectively: idle computing resources in stop-the-

USENIX Association 2020 USENIX Annual Technical Conference 159

world pauses of partially-concurrent collectors and consider-

able runtime overhead in mostly-concurrent collectors. We
then describe the skewed memory write behaviors of interac-
tive service applications. We also discuss the development of
hardware to show opportunities for a brand-new design.

According to the analysis, this paper proposes Platinum,
which finds a sweet-spot in the design of concurrent collec-
tors. It leverages idle cores in STW pauses and grants them
to mutators to solve the idle computing resources problem.
It then provides an isolated execution model to minimize the
synchronizations between GC threads and mutators to reduce
the runtime overhead in prior mostly-concurrent collectors. It
further exploits recently-released hardware features (MPK)
to eliminate barriers, the primary source of software over-
head in traditional mostly-concurrent collectors. With Plat-

inum, GC threads and mutators can run together with little
interference with each other, so the latency and CPU utiliza-
tion are both satisfying.

Platinum is implemented atop the Parallel Scavenge
Garbage Collector (PSGC), a STW and throughput-oriented
collector used by default in the HotSpot JVM of OpenJDK 8.
Evaluation of various interactive service benchmarks show
that Platinum significantly improves the tail latency of ap-
plications (by up to 79.3% for 99th percentile latency) com-
pared with other concurrent collectors while preserving mod-
erate CPU utilization.

The contributions of this paper include:
• A comprehensive analysis of latency-sensitive interac-

tive services, including simulated industrial workload
with production traces, to understand the effect of GC
(Section 2).

• Platinum, a concurrent garbage collector that can re-
duce the tail latency for interactive services while pre-
serving moderate CPU consumption (Section 4).

• Experiments on different latency-sensitive scenarios to
confirm that Platinum can outperform other garbage col-
lectors on tail latency and CPU utilization for interactive
services (Section 5).

2 Analysis: when interactive services meet GC

In this section, we will analyze the effect of GC in interactive
services with production traces in Alibaba.

2.1 A page is multiple services

Alibaba has one of the world’s largest e-commerce platforms.
To serve an ocean of concurrent requests from a vast num-
ber of clients at any time, Alibaba has deployed its platform
atop a large scale of machines. Traditional monolithic appli-
cations are too cumbersome and thus not suitable to be dis-
tributed to many machines due to the prohibitive cost of de-
velopment and maintenance, so the developers from Alibaba
have split them into smaller, simple-purpose, and interactive
units, namely services. A service is much smaller to simplify
the deployment process, and it can also be replicated to en-

hance the availability of the overall platform.
Due to the complex business logic in Alibaba, every oper-

ation from users require the collaboration of various services.
For example (shown in Figure 1), when a user wants to check
out, she will request for the check-out page, where all items
in the shopping cart (cart service) will be combined together
so that the most cost-effective way to purchase them with
available coupons will be automatically computed (coupon
service). In addition, the check-out page also recommends
other items according to those in the cart and the user’s
prior purchase behaviors (recommendation service). Those
services also interact with each other, and they may commu-
nicate with the cache service for high-speed data fetching.

Since those services are mostly written in Java for relia-
bility, productivity, and compatibility, all of them will be af-
fected by GC. Alibaba has provided some workarounds to
mitigate the effect of GC. For example, when the recom-
mendation service is not responsive, the page render is ca-
pable of generating a simplified web page without any rec-
ommendation information for users. Unfortunately, not all
services can benefit from those optimizations. For example,
as for the coupon service, the latest-available coupons must
be included for computation. Otherwise, the users will fail
to purchase in the most cost-effective way. We have con-
ducted a series of tests to understand the role GC plays in
those latency-critical services. Note that a garbage collector
usually includes minor GC and major GC. The minor GC
collects a part of the heap while the major GC collects the
whole heap. Since major GC rarely happens in the scenario
of interactive services, this work will focus on the effect of
minor GC.

User

Coupon Cart
Recommen

dation

cache

cache

cache

“check-out”

Figure 1: A simplified model to shape the multi-services sce-
nario in Alibaba

2.2 STW pauses: the culprit for tail latency

Since garbage collectors will pause application threads for
memory reclamation, it will significantly affect the response
time of requests in interactive services. To better understand
the effect of GC, we leverage a simulated online environment
for analysis. The simulated environment is built with 120
service instances, each of which is deployed in a container.
All services are unmodified applications extracted from the
real industrial workload in Alibaba. During testing, those ser-
vices will be fed with requests at a given throughput. In our

160 2020 USENIX Annual Technical Conference USENIX Association

setting, the cluster will handle 200 user requests per second,
and this value is chosen to stress the coupon services. All re-
quests are traces collected from the production environment.
The default garbage collector for services is CMS (Concur-
rent Mark Sweep [28]), a classic concurrent collector intro-
ducing relatively long STW pauses.

To understand the relationship between application be-
havior and GC pause time, we add a new Java option -

XX:InstrumentedPauseTime to the vanilla OpenJDK 8. When
the value is not zero, JVM will add a sleep call at the
end of GC to extend the GC pause time. The duration of
sleeping time can be adjusted by modifying the value of -

XX:InstrumentedPauseTime. We are mainly interested in the
coupon service as it is latency-sensitive. Our findings are
listed below.

Stop-The-World (STW) pauses is a killer factor for the

tail latency. We exploit a scatter plot in Figure 2 to illustrate
the relationship between GC and request latency. Points in
the scatter plot stand for the completion time of a request
(measured in the server-side), while red vertical lines stand
for the start time of GC. As Figure 2 suggests, each GC cy-
cle will follow some stragglers, which significantly affect the
tail latency. Although the request latency could be influenced
by many factors such as network, disk I/O, and other collab-
orative services, GC is the one to dominate the tail latency.
Note that this experiment actually underestimates the effect
of GC on the request latency, as the statistics are collected
from servers, which overlook the queuing time in the client-
side. One can expect more requests are affected by GC if
each request can be tracked in the upstream services, which
is unfortunately not supported in the cluster environment.

0

50

100

150

0 10 20 30

Elapsed time (s)

R
e
q

u
e
s
t

L
a
te

n
c
y
 (

m
s
)

Figure 2: The relationship between STW pauses and request
latency in the coupon service. The collector is CMS

GC pause time shows a super-linear relationship with

tail latency. During the evaluation, we change the value of
-XX:InstrumentedPauseTime for all five coupon service in-
stances from 0 to 10ms and collect the log from them. Fig-
ure 3 shows the change in the request latency for a coupon
service instance in a cumulative distribution function (CDF)
form, compared with that in the vanilla setting. The result
suggests that the increased pause time has a magnified im-
pact on the tail latency: When the GC pause is added by 10
ms, the 99th percentile latency is increased by 11.435 ms,
and the 99.9th percentile latency is enlarged by 32.950 ms.
It is because requests in clients are generated at any time,

regardless of the running state of services. When the coupon
service instance is undergoing a garbage collection, the pend-
ing requests will gradually increase and queue up. Once GC
ends, a pending request cannot be processed until the preced-
ing ones are finished. If GC pauses are extended, those new-
comers must wait for not only a longer pause but also more
pending requests, so the tail latency will increase faster than
GC pauses.

In the real-world cooperative multi-services scenario
(such as the check-out case in Alibaba), the problem can
be deteriorated because all participating services may be af-
fected by GC. For example, Mass et al. [25] have observed
that Cassandra replicas on GC will hinder the whole stor-
age system from constructing a quorum, which leads to pro-
hibitive user-experienced latency. Therefore, GC pauses is a
key factor for tail latency reduction in interactive services.

0.95

0.96

0.97

0.98

0.99

1.00

60 90 120 150

Latency (ms)

P
e
rc

e
n

ti
le

Pause+10 Vanilla

Figure 3: The CDF of request latency for the coupon service
atop CMS

2.3 Is concurrent GC helpful?

Due to the detriment of STW pauses, interactive services
usually adopt concurrent GC for better application latency.
Concurrent GC can be roughly divided into two categories:
partially-concurrent collectors and mostly-concurrent col-

lectors. Partially-concurrent collectors, such as CMS (men-
tioned above) and G1 [11], allow the co-execution for muta-
tors and GC threads in only some phases of GC. Therefore,
they still introduce STW pauses, and they provide solutions
to further reduce them. Mostly-concurrent collectors, such
as ZGC [33] and Shenandoah [13], nearly eliminate STW
pauses so that mutators can run constantly. We study those
two kinds of collectors on interactive services respectively.

Partially-concurrent GC. As shown in Figure 2, the
tail latency problem exists in partially concurrent collectors
like CMS since they still pause mutators for collection. For-
tunately, partially-concurrent collectors usually provide op-
tions to adjust the duration of pauses. For example, CMS
allows users to adjust the size of the heap area required to
be collected, while G1 can be restricted with a pre-assigned
maximum pause time. After setting those options, partially-
concurrent collectors will adjust the heap layout to meet the
requirement.

We exploit G1 to study the effect of those adjustable op-
tions. G1 is a highly-tunable partially-concurrent collector
which becomes the default one since OpenJDK 9. It is a gen-
erational collector whose heap space consists of young space

USENIX Association 2020 USENIX Annual Technical Conference 161

and old space. Its GC algorithm contains three parts: minor

GC on the young space, mixed GC on the young space and
a part of the old space, and major GC on the whole heap.
The minor GC, which is stop-the-world, happens the most
frequently. To reduce the duration of pauses, G1 provides
an option -XX:MaxGCPauseMillis for users to control them.
Therefore, we launch the coupon service on G1 by setting
the option to various values (30ms, 40ms, 60ms) and evalu-
ate the performance respectively. This evaluation is single-
point, where only one coupon service is launched to process
requests. With the single-point evaluation, the latency can be
accurately collected from the client-side, including the afore-
mentioned queuing delay. The requests are sent in a fixed
throughput to simulate a stressful scenario (4000 requests per
second in our setting), and they are still real-world traces ex-
tracted from the online environment in Alibaba. The duration
for data collection is a minute.

Table 1 shows the statistics on GC and application for
different settings. With smaller MaxGCPauseMillis, both the
minimum and the average GC pause time are reduced. How-
ever, young GC is triggered much more frequently. It is be-
cause G1 controls the GC time by tuning the size of the
young space, which serves for memory allocation requests
from mutators. Since young GC is triggered when the mem-
ory resource in the young space is exhausted, its frequency
will increase when the young space shrinks. As a result,
although the per-GC pause time is cut down by lowering
MaxGCPauseMillis, the overall time consumed by GC grows
larger. With larger overall GC pause time, more application
requests are affected, and less computing resource is avail-
able for mutators. Therefore, the tail latency problem is not
resolved but becoming much more severe: the p99 latency
with the 30ms setting is 13X of that with 60ms. Besides,
the average CPU utilization in the 30ms setting is also in-
creased by 15.3% compared with the 60ms setting. This
experiment suggests that partially-concurrent GC achieves
shorter pauses by consuming more CPU resources, which
may end up with worse tail latency.

Metrics 30ms 40ms 60ms

Minimum GC pause (ms) 21.815 21.459 39.856
Average GC pause (ms) 34.441 40.724 48.491
The number of GC 550 392 111
p99 latency (ms) 1942.09 1389.99 148.85
Average CPU utilization 51.45% 50.81% 36.17%

Table 1: The statistics on GC and the coupon application with
different settings of G1GC

Mostly-concurrent GC. Compared with partially-
concurrent GC, mostly-concurrent GC allows mutators to
execute nearly all the time. Recently released mostly-
concurrent collectors, like ZGC and Shenandoah, claim to
have reduced GC pauses to several milliseconds regardless
of the heap size. In this work, we mainly study Shenandoah1,

1We exploit Shenandoah as a baseline in this paper as it provides back-

a mostly-concurrent garbage collector released in OpenJDK
12.

We launch the coupon service atop Shenandoah and eval-
uate it with the same setting as G1. After collecting the GC
log, we conclude that Shenandoah is very effective in reduc-
ing the pauses, and the average pause time is only 18.764 ms.
However, the latency of requests is prohibitive: the p99 la-
tency is over 3 seconds, which is 1.86X even compared with
the worst case in G1 (30 ms). We observed that the time when
GC threads are active is 53.05 seconds, which means that
GC threads are active nearly all the time. Meanwhile, the av-
erage CPU utilization reaches 83.05% (the peak utilization
reaches 96.74%), which suggests that GC threads consume
much more CPU resources than other collectors, and muta-
tors do not have enough CPU slices to sustain such a high
throughput. As a result, the p99 latency with Shenandoah
is not decreased but increased when encountering stressful
workload.

To conclude, both partially-concurrent GC and mostly-
concurrent GC are making a tradeoff between the duration of
GC pauses and the CPU efficiency. Shorter GC pauses mean
that GC threads will consume more computing resources and
thus affect the performance of mutators. We instead want to
build a garbage collector with both short pauses and moder-
ate CPU efficiency to support the interactive services.

3 Implications for a new GC design

Before proposing our design, we take a closer look at the
designs of prior concurrent garbage collectors to uncover
the opportunities to build a new garbage collector for our
goals: short GC pauses and moderate CPU utilization. We
then reveal the skewed memory write behavior in interac-
tive service applications, which is crucial to our design. We
also introduce memory protection keys (MPK), a recently re-
leased hardware feature, and suggest how collectors can ben-
efit from it.

3.1 Problems in concurrent garbage collectors

According to the behavior of mutators during GC, concur-
rent garbage collectors can be roughly divided into two cate-
gories. However, both of them have problems hindering them
from achieving both satisfying GC pause time and CPU effi-
ciency.

Idle computing resources for partially-concurrent col-

lectors. STW pauses in partially-concurrent collectors re-
quire all mutators to suspend and leverage all computing re-
sources to collect objects. This design avoids interferences
between mutators and GC threads, but it also results in idle
cores during GC due to its scalability issues.

There are two reasons why garbage collectors cannot scale
well. First, the collection algorithm is somewhat similar to

ward support to OpenJDK 8, a long-time-support version which is widely
leveraged in both industries (like Alibaba) and open-sourced projects.

162 2020 USENIX Annual Technical Conference USENIX Association

graph traversal: GC threads will start from some root ob-

jects and mark all reachable ones through references among
objects. The traversal is highly unpredictable as we do not
know how many references a thread will process in advance.
Therefore, collectors are prone to load-imbalance and often
turns to work-stealing to achieve dynamic balancing. How-
ever, work-stealing is also ineffective in that it has to search
for tasks from all other threads and contend with others dur-
ing task fetching. Prior work [37] shows that work-stealing
even causes performance slowdown in extreme cases. Sec-
ond, the scalability of collectors is affected by many factors.
Recent studies have shown that the NUMA architecture [17],
synchronization protocols [16], and even the Linux schedul-
ing mechanism [38, 40] could have a significant influence on
the GC scalability. Therefore, it is difficult to come up with
a general algorithm which is scalable for various scenarios.

Given those reasons, partially-concurrent collectors ex-
ploit a conservative mechanism where the number of GC
threads is smaller than that of cores. In OpenJDK, the num-
ber of GC threads by default is about five-eighths of the total
core count. This policy also works for STW collectors like
PSGC. The developers of OpenJDK explain their choice in
the comment of the source code: For very large machines,

there are diminishing returns for large numbers of worker

threads. Instead of hogging the whole system, use a fraction

of the workers for every processor after the first 8. This de-
fault setting mitigates performance degradation as the num-
ber of cores increases and has been used in prior GC stud-
ies [40]. However, it also results in idle cores during collec-
tion. Instead of searching for a perfectly scalable collection
algorithm, we want to introduce some concurrent mutators
to leverage those idle cores while still preserving the perfor-
mance of collectors. Note that introducing concurrent muta-
tors during GC will not hurt the overall CPU efficiency much,
as the duration of STW pauses only occupies a very small
portion of the whole application’s execution time in interac-
tive services.

Considerable runtime overhead for mostly-concurrent

collectors. Unlike partially-concurrent collectors, mostly-
concurrent ones allow mutators to run simultaneously with
GC threads nearly all the time to reduce the application la-
tency. However, GC threads and mutators must synchronize
with each other as they may modify the same objects simul-
taneously, which introduces overhead for both GC threads
and mutators. Besides, mostly concurrent collectors further
introduce barriers in mutators for GC invariant checking. A
barrier is a piece of code instrumented before specific in-
structions. For example, Shenandoah exploits read barriers

for mutators, meaning that mutators need to check the invari-
ants for every single read operation on references, no matter
if GC is active. Those two factors introduce significant run-
time overhead to the runtime. Therefore, although Shenan-
doah has been optimized through aggressive Just-In-Time
(JIT) compilation, it still causes a 24% slowdown for real-

world workload compared with G1 [13].

3.2 The skewed memory write behavior

Memory behavior of applications is quite crucial to GC per-
formance and thereby affect the design of collectors. For ex-
ample, the memory behavior of big-data processing work-
load is at odds with assumptions in traditional GC algorithms
and stimulates a series of big-data-friendly garbage collec-
tors [18, 31]. To this end, we study the memory behavior of
latency-sensitive services to explore new space for garbage
collector design.

Session-based execution model. Since services are in-
teractive, their execution can be divided into many sessions.
The service will process a request when a session starts and
generate a response before the session ends. Sessions are
mostly isolated from each other: a session will not try to ac-
cess the objects created by other sessions unless those objects
are globally visible through shared data structures. Therefore,
we presume that the memory behavior of those session-based
applications will be skewed, i.e., the memory accesses within

a session will fall into a very small range where the session

allocates memory. The memory range is referred to as work-

ing set in this paper. We have conducted an in-depth analysis
to validate this hypothesis.

Memory behavior analysis. To analyze the memory be-
havior of those session-based applications, we first need to
demarcate all sessions. We add two new JVM calls, Session-

begin and Sessionend, to achieve this goal. After Sessionbe-

gin is invoked, the JVM will track all memory the session
allocates. When Sessionend is called, the JVM will print out
the size of the overall allocated memory, which is the work-
ing set size for the current session.

Our hypothesis is that session-based interactive services
share similar memory behavior. To confirm this, we have
also studied three other applications: SpecJBB2015, a sim-
ulated online supermarket, Cassandra [9], a key-value store,
and ShopCenter, another interactive service used in Alibaba.
All of them will process requests from clients in sessions and
send responses back. Note that both ShopCenter and Coupon
leverage production traces for analysis. To profile their mem-
ory behavior, we instrument Sessionbegin right before the re-
quest is processed and Sessionend when the processing fin-
ishes.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

ratio of write accesses out of the working set

ra
ti

o
 o

f
s
e
s
s
io

n
s

Cassandra Coupon ShopCenter Spark SpecJBB

Figure 4: The CDF for the memory range of write accesses
in various applications

USENIX Association 2020 USENIX Annual Technical Conference 163

Figure 4 shows the CDF curve of memory writes for three
different interactive applications. As for the coupon service,
over 99.5% sessions have less than 3% writes out of their
working sets. The working set of a session usually spans sev-
eral megabytes, which is quite small compared to the Java
heap (typically tens to hundreds of gigabytes). The other ap-
plications share similar memory behaviors. For Cassandra,
even the worst case has 72.4% writes inside its own work-
ing set. Other kinds of applications, however, do not follow
this behavior. As for Spark, a big-data processing framework,
50% sessions (a session in Spark is defined as the process the
worker handles a task assigned by the master) have more than
46% writes out of their working sets.

This experiment confirms our hypothesis that memory
writes in sessions of interactive services are skewed. The
skewed memory write behavior opens up an opportunity for
optimization: since mutators mostly update objects inside
their working sets, they can run simultaneously aside GC
threads with rare interference if GC threads avoid reclaiming
their working sets. Since previous garbage collectors do not
put the skewed memory write behavior into consideration,
this finding motivates us to design a new garbage collector
to guarantee both satisfying latency and CPU utilization.

3.3 MPK and Garbage Collectors

Since barriers in concurrent GC are costly due to its high ex-
ecution frequency, some collectors [2, 4, 10] have turned to a
virtual-memory-based mechanism for a transparent and effi-
cient solution. The virtual-memory-based mechanism lever-
ages the access permissions on the page table entries and re-
lies on hardware to check the invariants. For example, a GC
thread can mark a virtual page as being-collected by setting
its permission as read-only. Mutators writing to this page will
trigger a page fault and execute synchronization-related op-
erations in a pre-registered handler. GC threads working on
other pages will have no overhead as no page fault is trig-
gered. This method can eliminate the need for the barrier
code, and it can also be used in other areas, such as software
transactional memory [1].

Unfortunately, threads in a process will share the same per-
missions on all page table entries. In the previous example,
if a GC thread also wants to modify the being-collected page,
which should be legal, it still suffers from a page fault. Those
false page faults impede collectors to implement an efficient
protection mechanism.

Intel MPK (Memory Protection Keys) is a hardware fea-
ture available recently in the SkyLake server CPUs. With
MPK, users can categorize virtual pages into different do-

mains, which will be denoted with special bits in the cor-
responding page table entries. Furthermore, they can man-
ually grant different permissions for each domain to differ-
ent threads through a special register. This hardware feature
makes it possible to support finer-grained thread-level iso-

lation by adjusting the permissions over domains for each

thread. Previous work has studied the usage of MPK in the
security area [14, 20, 35, 43], but it could also be leveraged
for performance consideration.

4 Design

According to our analysis, we build Platinum for both satis-
fying latency and CPU efficiency.

4.1 Overview

Platinum is built atop PSGC, a STW garbage collector in
OpenJDK. Compared with concurrent collectors, PSGC is
more CPU-efficient as it always pauses mutators during GC
to achieve maximum collection throughput. Nevertheless, it
still results in idle cores due to scalability issues. Platinum

inherits the generational design from PSGC to divide the
heap into young space and old space. The young space fur-
ther consists of three sub-spaces. The eden-space (usually
the largest sub-space) serves for allocation, while the other
twos, from-space and to-space, are used to store objects sur-
viving at least one GC cycle. Only objects having lived for
long will be copied into old space. It contains two GC algo-
rithms: minor GC for the young space and major GC for the
whole heap. Platinum mainly considers the minor GC while
leaving the major GC as future work.

Figure 5 illustrates the infrastructure of Platinum. The de-
sign highlights of Platinum include:

Sufficiently leveraging computing resources. Platinum

collects the cores not used by GC threads and grants them
to mutators for better application latency, hence resolving
the idle computing resources problem in partially-concurrent
GC.

Isolated execution between GC threads and mutators

through heap partition. According to the skewed memory
behavior in interactive services, Platinum partitions the heap
space so that GC threads and mutators can focus on process-
ing objects in different parts of the heap. This design min-
imizes the synchronizations between GC threads and muta-
tors, so the coordination overhead in mostly-concurrent col-
lectors is greatly reduced in Platinum.

Hardware-assisted barrier elimination. Platinum lever-
ages the MPK hardware feature to remove the need for soft-
ware barriers adopted in prior mostly-concurrent collectors.
This design further reduces the runtime overhead and im-
proves CPU efficiency. Platinum also exploits the RTM fea-
ture to ensure the atomicity of write operations in mutators.

4.2 Platinum in steps

Similar to the minor GC algorithm in PSGC, Platinum is
copy-based: GC threads will simultaneously scan the young
space for live objects and copy them to their new address.
The process of Platinum GC is mainly in three steps:

1. Initial marking. This step is somewhat similar to the
initial marking pause in G1 [11]. In the initial marking phase
of Platinum, GC threads will scan the runtime stack of muta-

164 2020 USENIX Annual Technical Conference USENIX Association

Collection Area Pinned Allocation

Eden Space

Idle cores

GC thread Mutators

From To Old Space

Collection Area

MPK

domain 0

MPK

domain 1

Figure 5: Overview of Platinum

tors to mark live objects. Those live objects on the stack will
be treated as root objects for further object copying. This step
is stop-the-world because the values on the stack are changed
quite frequently, and we want a stable state at the beginning
of a collection. It usually takes only a few milliseconds to
finish initial marking.

2. Concurrent scavenge. After initial marking, Platinum

will invoke mutators to resume their execution while GC
threads will concurrently scan the heap to identify and copy
live objects. Thanks to the isolated execution mechanism (de-
tailed in Section 4.4), GC threads and mutators will focus on
processing objects in different areas of the heap and hardly
interfere with each other. Therefore, GC threads can directly
copy live objects without considering the behavior of muta-
tors. This step occupies the most time of the whole GC pro-
cess in Platinum.

3. Stop-the-world scavenge. When GC threads have fin-
ished their work, Platinum will pause running mutators again.
Since some objects in mutators’ working sets are not pro-
cessed by GC threads in the concurrent scavenge step, they
may contain "stale" references to objects which have been
evacuated. Therefore, Platinum should scan those objects for
correctness guarantee. Since the number of objects is quite
small, this step will not take long.

With the above three steps, Platinum can: (1). improve the
application latency because mutators are allowed to run in
most time of GC; (2). avoid consuming too much CPU re-
sources because GC threads are isolated from mutators to
retain satisfying collection throughput. Therefore, Platinum

can take into account both latency and CPU efficiency at the
same time. We will introduce the core designs of Platinum

in the rest of this section.

4.3 Idle core collection

To make Platinum effective, the application should configure
the number of GC threads to be smaller than that of cores (or
directly adopt the default setting in OpenJDK). When Plat-

inum is initialized, it will automatically bind the GC thread
into different CPU cores. Other cores with no GC threads
running will be remembered by Platinum as idle cores.

When Platinum is not active, mutators are free to run on

any cores. When GC is triggered, Platinum will constrain
mutators to only choose idle cores for execution to avoid
contending computing resources with GC threads. This is
achieved by setting the affinity values of mutators with the
sched_setaffinity interface in Linux. Those affinity values
will be reset at the end of GC. This design ensures not only
idle cores are sufficiently used by mutators but also each GC
thread monopolizes its assigned core.

4.4 Isolated execution with heap partition

To achieve isolated execution between GC threads and muta-
tors, Platinum partitions the heap into three areas during GC
(shown in Figure 5). The first area, namely collection area,
will be collected by GC threads. The collection area covers
the most part of Java heap, including from-space, to-space,
old-space, and the largest part of eden-space.

The other two areas, in contrast, are used by mutators and
thus not collected in this GC cycle. Since write operations
of mutators fall into a very small range (see Section 3.2), we
use the pinned area to include objects which are highly pos-
sible to be modified by mutators in the near future. The last
part is the allocation area, which is used by mutators to allo-
cate new objects during garbage collection. Those newly allo-
cated objects should be considered alive and only be scanned
in the next collection cycle.

Figure 6 illustrates how the three areas work in Platinum.
During normal execution, Platinum will partition the eden-
space into two areas (Figure 6a). The larger one will serve
memory allocation requests from mutators while the smaller
one will be reserved. Platinum also adopts a bump pointer to
denote how much memory has been used.

When the bump pointer reaches the end of the allocation
area, GC will be triggered, and GC threads will become ac-
tive. In the initial marking phase, Platinum will partition the
eden-space into the three areas mentioned before (Figure 6b).
The reserved area in the normal execution will become the al-

location area where concurrent mutators create new objects
during GC. The larger one will be further split into collection

area and pinned area. GC threads will only collect the col-
lection area while mutators mainly modify the pinned area
and the allocation area. Compared with the collection area,
the pinned area resides close to the bump pointer. This de-
sign choice is based on the memory allocation mechanism
in JVM: each mutators will first allocate a segment from
the global heap, and then allocate memory from the segment
until it is filled up. Therefore, Platinum locates the pinned
area adjacent to the allocation area to contain the latest seg-
ments allocated by different threads. The size of the pinned
area is preset to a fixed proportion of the whole eden-space.
The default value is 1/128, which can include segments from
tens of mutators while inducing moderate pauses during the
stop-the-world scavenge step. Platinum also allows users to
tune this value for better performance. Users can leverage
the aforementioned Sessionbegin and Sessionend API to cal-

USENIX Association 2020 USENIX Annual Technical Conference 165

Allocation Reserved

bump pointer

Mutator

(a) The heap space is divided into
two areas during normal execution

Collection Allocation

bump pointer

Pinned

Mutator GC Threads

(b) GC starts: partition the heap
into three areas for isolated execu-
tion

Allocation Allocation

bump pointer

Reserved

Mutator

(c) GC ends: re-partition the heap
into two areas

Allocation Allocation

bump pointer

Reserved

Mutator

(d) When the bump pointer
reaches the end, it will "jump"
to the start address for memory
allocation

Figure 6: The heap layout in Platinum. The colored part stands for allocated memory.

culate the working set size for their applications during pre-
run, and modify the pinned area to a proper size accordingly.

During the concurrent scavenge step, GC threads will ap-
ply range checks to determine if an object falls into the col-
lection area before accessing it, and only those in the collec-
tion area will be processed. Those range checks avoid the
case where GC threads try to copy an object which muta-
tors are modifying. Since the collection area is consecutive,
range checks can be implemented with cheap comparison in-
structions and thus introduce little overhead. As a result, GC
threads and mutators are enforced to concentrate on process-
ing objects in different areas, which eliminates the need for
synchronization and thereby mitigates the runtime overhead.
For objects not processed during concurrent scavenge, they
will be scanned and updated in the subsequent stop-the-world
scavenge step.

Before GC ends, GC threads become inactive, and Plat-

inum should reorganize the eden-space (Figure 6c). Since a
part of the space has been occupied by live objects (pinned
and allocation area), Platinum will mark it allocated. The rest
of the space will still be partitioned into two areas, while the
reserved one will reside adjacent to the pinned area in the
last GC. The bump pointer will grow from the original allo-
cation area and goes to the start address once it reaches the
end (Figure 6d). When the allocation area is exhausted, a new
GC cycle is activated.

4.5 Hardware-assisted barrier elimination

Heap partition restricts GC threads to only process objects
in the collection area and thus reduces the coordination over-
head. However, since mutators are running Java code, they
are free to access any objects in the Java heap, including
those in the collection area, which violates the isolated ex-

ecution semantic. A traditional solution proposed by prior
concurrent collectors is to leverage barriers to detect and cor-
rectly handle those operations. A barrier is a piece of code in-
strumented before specific operations for the interest of GC.
For our problem, a garbage collector can adopt write barri-

ers, which instrument range check operations before every
write. As shown in Figure 7, for a field update operation (y.x

= z), the collector should insert a range check to ensure that
the address of the field (y.x) is not in the collection area. If
the range check fails, mutators should turn to a prepared slow

path (atomic_update) to update the field atomically to ensure
correctness.

1 // barrier code start

2 if (in_collection_area(y.x)) {

3 atomic_update(y.x, z);

4 }

5 // barrier code end

6 else {

7 // Field update

8 y.x = z;

9 }

Figure 7: An example of write barriers

As mentioned in Section 3, barriers can cause significant
overhead as they are instrumented with every specific in-
struction, no matter if GC is active. For write barriers, they
must be executed before every write operation, including in-
terpreter code, JIT code, and even part of native code inside
JVM. We instead provide a hardware-assisted solution atop
MPK to eliminate the write barriers.

To leverage MPK, Platinum divides the Java heap space
into two domains: GC domain and mutator domain. The GC

domain only contains the collection area, while the mutator

domain consists of the pinned area and the allocation area.
When threads are initialized, they will be granted with corre-
sponding permissions: mutators have read-write permissions
to the mutator domain and read-only permissions to the GC
domain; GC threads have read-write permissions for both
two domains. The permissions are fixed throughout the life-
cycle of a thread. On the other hand, the address ranges for
those two domains are changed with the three areas dynam-
ically. When the collector is inactive, the whole Java heap
space belongs to the mutator domain so that mutators are
free to access any objects. When GC starts, the collection
area should be put into the GC domain. Afterward, if concur-
rent mutators’ write operations fall into the GC domain, they
will trigger page faults, and thus no software barriers are re-
quired. Thanks to MPK, Platinum can automatically detect
write operations violating the isolated execution mechanism,
and the control flow will be transferred to a customized han-
dler to correctly process those operations. Although process-
ing a page fault is more costly than executing a software bar-
rier, the possibility of triggering a page fault in interactive
services is much smaller than that for software barriers, and

166 2020 USENIX Annual Technical Conference USENIX Association

the amortized overhead can be reduced.

x x’

a a

Mutator 1 Mutator 2

COPY

(a) Object x has been copied to x’

by GC threads, while two mutators
hold a reference to different copies

x x’

a a'

Mutator 1 Mutator 2

(b) Mutator 1 cannot timely read
the modification from mutator 2,
which violates the serializability

x x’

a a'

Mutator 1 Mutator 2

(c) Shenandoah exploits an indirec-
tion pointer so that accesses to the
old object will be forwarded to the
new one

x x’

a' a'

Mutator 1 Mutator 2

RTM

(d) Platinum instead updates both
two copies atomically by putting
the updates into the same hardware
transaction

Figure 8: The dual-copy problem and solutions

4.6 Handling violated writes

When a write operation from a mutator falls into the collec-
tion area, the customized handler will take over and temporar-
ily request for read-write permissions for the GC domain.
This request is safe as the code in the handler is totally con-
trolled by Platinum. Afterward, the handler is responsible to
simulate the original write operation on the mutator’s behalf
by modifying the corresponding object in the collection area.

However, the simulation process must be deliberately de-
signed as GC threads are concurrently copying those objects.
If an object has been copied, the old one and the copied one
will co-exist in the Java heap until GC ends. Since mutators
may still have references to the old object, the consistency be-
tween the two copies must be maintained. Consider the case
in Figure 8a where object x has been copied (say x’). Sup-
pose mutator 2 gains a reference to x’ and modifies a field
a in x’ (Figure 8b), the modification should be visible to all
mutators. However, if mutator 1 still holds a reference to x

and reads its content, it can only get a stale value of a. We
refer to it as the dual-copy problem, which breaks down the
serializability of the whole program.

Prior concurrent collectors have similar problems as they
also allow mutators to run in scenarios where two copies
of the same object are both visible in the heap. They lever-
age read barriers to force mutators always to access the
newest one. The implementation of read barriers has many
variants, and one of them is to use Brook’s style indirection
pointers [5] as Shenandoah [13] does. This solution requires
adding an extra field in the header of every Java object, which
stores a pointer to the newest copy of this object. As illus-
trated in Figure 8c, x points to x’ while x’ points to itself.
In this way, when mutator 1 tries to access x, the indirection
pointer of x will guide it to access x’ instead so that it can get
the updated value of a. This solution is simple and straight-

forward, but it introduces considerable overhead, as analyzed
in Section 3.1.

Rather than using read barriers, Platinum guarantees cor-
rectness by updating both copies in the customized page fault
handler. As shown in Figure 8d, Platinum keeps the added
field in Shenandoah to store a back pointer to the old copy.
For the old object, since the original PSGC will store a for-

warding pointer in its header referring to the new object, the
added field is useless. In the above example, when updating
x’, Platinum will locate x with the back pointer and update
the value of a for both x and x’. Even though mutator 1 re-
tains a reference to x, it can still fetch the updated content
by directly reading x. This mechanism certainly doubles the
write operations, but it relies on the observation that only a
few write operations from mutators will happen in the collec-
tion area, so the overhead will be trivial.

Prior work like Sapphire [21] also exploits similar mech-
anisms, but it struggles to make the updates atomic, i.e., the
updates to both copies should be visible to mutators simulta-
neously. Fortunately, recent hardware development has pro-
vided us with new opportunities for design. Platinum em-
braces the Restricted Transactional Memory (RTM) feature
by Intel, which guarantees the atomicity of a piece of code
by wrapping it into a hardware transaction. Since RTM re-
quires that the working set of the transaction should be small
(otherwise the abort rate will dramatically increase), we only
put the update operations into the hardware transaction to
construct a very small working set (less than 100 bytes). We
have also prepared a fall-back handler in case the transac-
tion fails. The handler retries the transaction in most cases,
but it will try to grab a global lock if the transaction fails for
many times (which happens very rarely). With RTM’s help,
Platinum can update both objects atomically and return to
normal execution, which provides a strong consistency guar-
antee and introduces moderate overhead.

5 Evaluation

Platinum is implemented in the HotSpot JVM of OpenJDK
8u141 with about 7,500 LoCs. We leverage three various ap-
plications for evaluation:

SpecJBB2015. SpecJBB2015 is a business benchmark
that simulates an online supermarket to process incoming
purchasing requests. Alibaba usually exploits it as a simpli-
fied example to simulate the online production environment.

Cassandra. Cassandra is an open-sourced key-value store
which is usually leveraged as a latency-sensitive application
by prior work [7, 40]. We leverage YCSB as the testbed,
but it is executed in a closed-loop model where a client will
not send a second request until its receives the response for
its last one. This model cannot reflect the fact that requests
have to wait until prior ones are finished. Therefore, we have
modified the execution model of YCSB to open-loop, where
clients send requests in a fixed throughput regardless of the
responsiveness of servers. The version of Cassandra for our

USENIX Association 2020 USENIX Annual Technical Conference 167

evaluation is 3.11.4.
Coupon. Coupon is an online interactive service used

in Alibaba, and we use it to confirm that Platinum actually
works in real applications.

We also compare the performance of Platinum against
other mainstream garbage collectors.

CMS. Concurrent-Mark-Sweep (CMS) is a classic
partially-concurrent garbage collector. Its major GC is con-
current, and the minor GC is stop-the-world. We leave CMS
untuned to show its original performance.

G1. G1GC (G1) is a highly-tunable partially-concurrent
garbage collector which prioritizes latency over throughput.
It is designed to replace CMS in the future versions of Open-
JDK. We have manually tuned the value of MaxGCPauseMil-

lis for performance consideration. Since G1 is an experimen-
tal collector in OpenJDK 8, we also try the later OpenJDK
9 for evaluation. However, OpenJDK 9 is not supported by
the coupon service and Cassandra, and our evaluation on
SpecJBB2015 shows similar results for those two versions.
Therefore, we only report the result for OpenJDK 8.

Shenandoah. Shenandoah is a work-in-progress mostly-
concurrent garbage collector. The application latency is quite
low, but the introduction of read barriers and other concur-
rent phases strongly affect CPU utilization.

0

100

200

5000 10000 15000 20000

Throughput (reqs/sec)

p
9

9
 L

a
te

n
c
y

 (
m

s
)

CMS G1−tuned Platinum Shenandoah

(a) low-throughput

200

400

600

20000 25000 30000 35000 40000

Throughput (reqs/sec)

p
9

9
 L

a
te

n
c
y

 (
m

s
)

CMS G1−tuned Platinum Shenandoah

(b) high-throughput

Figure 9: The p99 latency results on SpecJBB2015 for differ-
ent collectors with various throughput settings.

5.1 SpecJBB2015

We use the preset mode to evaluate SpecJBB2015 atop dif-
ferent collectors to understand its performance under vari-
ous levels of throughput. In Alibaba, different throughput
settings can be used to simulate different types of work-
load. The experiment is running on a physical machine with
dual Intel Xeon Gold 6138 CPUs (80 logical cores) and
16GB Java heap size. The number of concurrent GC threads
is set as the default value (53). We tune G1 with differ-
ent MaxGCPauseMillis values and find that it reaches the
shortest per-GC pause time when the value is 50ms, so we
adopt this value for evaluation (referred to as G1-tuned). Fig-
ure 9 shows the 99th percentile latency for Platinum, CMS,
G1, and Shenandoah. The results in Figure 9a show that
Platinum always performs better than CMS under moder-
ate throughput, and the 99th percentile latency is reduced
by 38.4%-79.3%. Platinum also achieves comparable perfor-
mance against our tuned G1. The improvement in latency
mainly thanks to the mostly-concurrent collection in Plat-

inum.

When the throughput becomes higher (shown in Fig-
ure 9b), G1 reaches its limit at 25000 requests per second. As
a mostly-concurrent collector, the latency of Shenandoah is
ultra-low in low throughput but dramatically rises when the
throughput is 17000 and also reaches its limit at 25000. Note
that G1 and Shenandoah shares a similar concurrent marking
algorithm, and the main difference in their design choices
is that G1 pauses mutators during collection while Shenan-
doah allows concurrent execution. Therefore, G1 has better
GC efficiency and performs better under high throughput,
while Shenandoah induces shorter pauses and performs bet-
ter under low throughput. In contrast, Platinum can sustain
the highest throughput of all collectors, thanks to the cost-
effective isolated execution model during concurrent collec-
tion.

We also measure the CPU utilization for collectors under
three different QPS settings (5000, 15000, 25000) to repre-
sent low, moderate, and high throughput. As Table 2 shows,
the CPU utilization of Platinum is only slightly higher than
CMS and better than both G1 and Shenandoah under all set-
tings. Since we did not tune CMS for application latency, it
reaches reasonable CPU consumption but far worse tail la-
tency compared against other collectors. When the through-
put reaches 25000, both G1 and Shenandoah show consider-
able CPU consumption compared with Platinum, which re-
sults in the severe tail latency problem (Figure 9b), while the
CPU utilization in Platinum is still moderate.

Name CMS G1 Shenandoah Platinum

Specjbb (qps=5000) 14.57% 16.53% 17.85% 15.11%
Specjbb (qps=15000) 31.77% 37.25% 43.03% 32.79%
Specjbb (qps=25000) 48.79% 77.66% 77.80% 50.56%
Cassandra (qps=80000, RI) 11.87% 14.35% 14.07% 12.99%
Cassandra (qps=80000, WI) 12.10% 15.97% 14.93% 13.79%
Coupon (qps=4000) 38.47% 36.17% 83.05% 34.50%

Table 2: The CPU utilization for four garbage collectors, with
different applications

5.2 Cassandra

We evaluate Cassandra under the same settings as
SpecJBB2015. Two different types of workload are lever-
aged for evaluation: (1) read-intensive workload (RI) with
76000 reads and 4000 updates per second; (2) write-intensive
workload (WI) with 40000 reads and 40000 updates per sec-
ond. We have also tuned G1 to achieve its best performance,
and the value of MaxGCPauseMillis is 10ms. Figure 10 illus-
trates the tail latency for both scenarios with CDFs. As for
the read-intensive workload, Platinum has comparable per-
formance with Shenandoah, and improves the 99th percentile
latency by 40.5% and 40.4% for CMS and our tuned G1 re-
spectively. In Platinum, the latency for 97.2% of requests is
less than 10ms, and the number is 9.5% and 3.2% larger than
G1 and CMS. The improvement drops for write-intensive
workload, and only 91.2% of requests finish in 10ms. This
can be explained by more violated writes from mutators due

168 2020 USENIX Annual Technical Conference USENIX Association

to more update operations on the globally-visible data struc-
tures. Nevertheless, the p99 latency of Platinum is compa-
rable with our best-tuned G1 and improved by 44.9% com-
pared with CMS.

All collectors show moderate CPU consumption in Cas-
sandra. It is because Cassandra is an I/O-intensive applica-
tion and spends much more time on accessing its storage
compared with other scenarios. Since our tuned G1 reduces
the application latency by greatly shrinking the young space
and increasing the accumulated GC time, it reaches the high-
est CPU utilization among all collectors.

Table 3 further shows GC-related statistics in 30 seconds
among different collectors in the read-intensive workload. It
also shows the results for three different settings in G1. The
untuned CMS has the least overall time among all collectors
(except for G1-100ms and G1-60ms), but its average pause
time is relatively large. As for G1, when setting MaxGC-

PauseMillis from 100 to 10, the overall GC time is enlarged
by 2.5X, which results in higher CPU consumption. Com-
pared with other collectors, Platinum reaches both satisfying
average GC pause time (close to Shenandoah) and overall
GC time (close to G1-100ms).

0.97

0.98

0.99

1.00

0 25 50 75 100

Latency (ms)

P
e
rc

e
n

ti
le

CMS G1 Platinum Shenandoah

(a) Read-Intensive

0.97

0.98

0.99

1.00

0 25 50 75 100

Latency (ms)

P
e
rc

e
n

ti
le

CMS G1 Platinum Shenandoah

(b) Write-Intensive

Figure 10: The CDF results for Cassandra under two differ-
ent workload

GC settings Average pause (ms) Overall time (ms) p99 latency (ms)

CMS 28.168 366.189 38.776
G1-10ms 16.144 1037.864 38.677
G1-60ms 38.998 775.032 62.794
G1-100ms 58.739 413.583 76.732
Shenandoah 3.97 522.499 27.700
Platinum 4.66 433.335 23.061

Table 3: GC and latency statistics for Cassandra RI

5.3 Coupon

We finally show the performance of Platinum on the coupon
service. Since we do not have enough physical MPK-enabled
machines to conduct the clustered evaluation in Section 2.2,
this evaluation still exploits the single-point environment
mentioned in Section 2.3 on a 96-core machine with 16GB
Java heap. The throughput is set to 4000 requests per second
to simulate stressful throughput in the production environ-
ment. Since we have studied the performance of G1 on the
coupon service before, the value of MaxGCPauseMillis is set
to 60ms.

Figure 11 shows the CDF generated according to the re-
sponse time of requests. The results indicate that Platinum

can mitigate the long tail problem, especially for p99 latency.
Thanks to the cost-efficient garbage collection, the p99 la-
tency in Platinum is improved by 66.8% and 23.5% for CMS
and G1. Since the real-world workload also contains requests
whose response time is greatly extended by lags in other re-
mote services, Platinum cannot help to improve them much
and result in slightly better p999 latency against other col-
lectors. The application latency for Shenandoah is very large
(for example, the 99th percentile latency is 3.6s), which is
out of range in Figure 11. Compared with statistics in Ta-
ble 1, the average pause time and GC count in Platinum is
7.247ms and 162 respectively.

As for CPU utilization, Platinum consumes 34.5% of over-
all CPU resources, which is the smallest among all collectors.
The CPU consumption is 1.67% and 3.97% smaller than G1
and CMS. As for Shenandoah, the CPU is close to saturated
(83.05%), which can explain why application latency is quite
large. To conclude, the evaluation results on all three applica-
tions confirm that Platinum finds a sweet spot between low
application latency and moderate CPU utilization.

0.95

0.96

0.97

0.98

0.99

1.00

100 200 300 400

Latency (ms)

P
e
rc

e
n

ti
le

CMS G1 Platinum

Figure 11: The CDF results for the coupon service

5.4 Breakdown analysis

Varying the pinned area size. Table 4 shows the runtime
statistics of the Cassandra-WI workload with different sizes
of the pinned area. When enlarging the pinned area, the aver-
age number of page faults for each GC cycle decreases, and
the tail latency can be slightly improved. However, since the
pinned area will only be reclaimed in the next GC cycle, en-
larging its size will reduce the available memory in the eden
space and increase the overall GC time. Therefore, users can
tune the size of the pinned area to reduce the tail latency ac-
cording to the application behavior.

Area size Overall GC time (ms) Avg. page faults p99 latency (ms)

1/128 1007.327 13738 43.038
1/32 1106.951 12137 41.391
1/16 1145.982 11879 43.773
1/8 1206.859 10237 39.619

Table 4: GC-related statistics for Cassandra WI

GC Performance breakdown. This experiment breaks
the accumulated GC time of Cassandra-WI into phases. As
shown in Figure 12, mutators are allowed to run concur-
rently with GC threads most of the time (78.3%). Since the
initial marking phase only scans the thread stacks, it lasts
shortly and only takes up 1.1%. Meanwhile, the STW scav-
enge phase accounts for 15.6% to modify the stale references

USENIX Association 2020 USENIX Annual Technical Conference 169

in the pinned area and the collection area.

0.00

0.25

0.50

0.75

1.00

GC phases

F
ra

c
ti

o
n

 o
f

to
ta

l
Concurrent

Initial

Other

STW

Figure 12: Phase-level breakdown for Platinum

The performance on Spark. We also evaluate the perfor-
mance of Platinum on Spark, with its built-in PageRank ap-
plication. Our evaluation shows that the execution time with
Platinum is 7.93% longer compared with G1. Since the mem-
ory and GC behavior in Spark is much different from inter-
active services, it induces more page faults and larger stop-
the-world pauses, which is the main reason for performance
slowdown.

6 Related Work

Reducing pause time. STW pauses introduced by garbage
collections have been studied for years. For STW garbage
collectors, some work aims to reduce the pause time by
sufficiently leveraging the computing resources. Gidra et
al. [15, 16, 17] study the performance of PSGC in NUMA
machines and provide NUMA-aware optimizations. Suo et
al. [40] and Qian et al. [37] refine the work-stealing algo-
rithm to offer a more scalable minor GC algorithm. Another
line of work focuses on designing new concurrent collectors
to co-run mutators with GC threads to reduce the pauses. In
the OpenJDK HotSpot JVM, the latency-aware G1GC [11]
has recently become the default collector, and two mostly-
concurrent collectors, ZGC [33] and Shenandoah [13], are
also attractive. Stopless [36] provides real-time GC support
while preserving lock-freedom and fragmentation control.
Österlund et al. [34] improve the pause time of G1GC with
a non-blocking handshake between threads. The design of
Platinum learns from those concurrent collectors to propose
a CPU-efficient solution.

The intensive usage of language runtime in the big data
area has stimulated studies on building big-data-friendly
garbage collector with low pauses. Nguyen et al. [31, 32] put
the data objects generated by the big data systems into segre-
gated spaces where objects are managed with separated GC
algorithms. Gog et al. [18] provide a similar region-based al-
gorithm but mainly for the CLR runtime. Bruno et al. [6, 7, 8]
divide the heap into many generations and pre-tenure objects
that are believed to live long through runtime analysis. Plat-

inum is built for reducing pauses for another kind of scenario:
latency-sensitive, session-based interactive services.

Hardware-assisted GC. Hardware features also affect the
design choices of garbage collectors. Prior work has studied
on improving the performance of GC with primitives avail-
able in commodity hardware. Belay et al. [3] leverage virtu-
alization technology to escalate Java runtime to the non-root

ring 0 mode and accelerate GC with VM page management.
Ugawa et al. [42] enhance the original Sapphire garbage col-
lector with the RTM feature, and Ritson et al. [39] explore the
usage of RTM in various collectors. Wu et al. [45] extend the
area of garbage collector from normal DRAM to non-volatile
memory (NVM) and studies crash consistency issues during
GC. Platinum leverages RTM and MPK features to build a
new concurrent garbage collector.

Except for commodity hardware, there is also a trend to
build customized hardware, or GC accelerators, for various
considerations. Azul Systems has built a customized system
including CPU, chip, board, and OS to run garbage collected
JVMs efficiently. Their GC algorithm is also largely modi-
fied to leverage those customized features [10, 23, 41]. Mass
et al. [26] build a hardware GC accelerator to achieves higher
GC throughput and lower power consumption.

Runtime optimization in distributed environments.

Distributed applications are running atop multiple runtimes
on different machines. Maas et al. [25, 27] show that GC
in a single JVM can have a magnified effect on the whole
applications and proposes policies to orchestrate GC among
different JVMs. Lion et al. [24] find frequent JVM re-start
in task-based workload and provides a JVM pool to skip
the time-consuming warm-up phase. Nguyen et al. [30] op-
timize the communication between JVMs by providing an
efficient serialization protocol, while Navasca et al. [29] al-
low Java threads to directly operate on the serialized byte
streams with compiler techniques. Wang et al. [44] propose
to dynamically change the memory limits of JVMs to fit the
cloud environment. Both Fang et al. [12] and Călin et al. [22]
leverage efficient spilling to reduce the memory footprint
of large data-parallel applications. Platinum also quantifies
the effect of GC in a distributed cloud environment and pro-
poses a hardware-assisted algorithm to optimize the GC per-
formance.

7 Conclusion

Latency and CPU efficiency are both essential for interactive
services. Unfortunately, traditional garbage collectors cannot
achieve both goals at the same time. This paper provides
Platinum, a collector allowing concurrent but isolated execu-
tion of mutators and GC threads, with hardware assistance.
The evaluation shows that Platinum significantly reduces the
tail latency while preserving moderate CPU utilization com-
pared with prior concurrent garbage collectors.

8 Acknowledgement

We sincerely thank our shepherd Gilles Muller and the anony-
mous reviewers for their insightful suggestions. This work is
supported in part by the National Natural Science Foundation
of China (No. 61672345, 61925206), the HighTech Support
Program from Shanghai Committee of Science and Technol-
ogy (No. 19511121100). Haibo Chen is the corresponding
author.

170 2020 USENIX Annual Technical Conference USENIX Association

References

[1] M. Abadi, T. Harris, and M. Mehrara. Transactional memory with
strong atomicity using off-the-shelf memory protection hardware. In
Proceedings of the 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 185–196, 2009.

[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on
stock multiprocessors. In ACM SIGPLAN Notices, volume 23, pages
11–20. ACM, 1988.

[3] A. Belay, A. Bittau, A. J. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis. Dune: Safe user-level access to privileged cpu features.
In Osdi, volume 12, pages 335–348, 2012.

[4] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly parallel garbage
collection. In PLDI, volume 91, pages 157–164. Citeseer, 1991.

[5] R. A. Brooks. Trading data space for reduced time and code space in
real-time garbage collection on stock hardware. In Proceedings of the

1984 ACM Symposium on LISP and functional programming, pages
256–262. ACM, 1984.

[6] R. Bruno and P. Ferreira. Polm2: automatic profiling for object
lifetime-aware memory management for hotspot big data applications.
In Proceedings of the 18th ACM/IFIP/USENIX Middleware Confer-

ence, pages 147–160. ACM, 2017.

[7] R. Bruno, L. P. Oliveira, and P. Ferreira. Ng2c: pretenuring garbage
collection with dynamic generations for hotspot big data applications.
ACM SIGPLAN Notices, 52(9):2–13, 2017.

[8] R. Bruno, D. Patricio, J. Simão, L. Veiga, and P. Ferreira. Runtime ob-
ject lifetime profiler for latency sensitive big data applications. In Pro-

ceedings of the Fourteenth EuroSys Conference 2019, page 28. ACM,
2019.

[9] A. Cassandra. Apache cassandra. Website. Available online

at http://planetcassandra. org/what-is-apache-cassandra, page 13,
2014.

[10] C. Click, G. Tene, and M. Wolf. The pauseless gc algorithm. In Pro-

ceedings of the 1st ACM/USENIX international conference on Virtual

execution environments, pages 46–56. ACM, 2005.

[11] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage
collection. In Proceedings of the 4th international symposium on Mem-

ory management, pages 37–48. ACM, 2004.

[12] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu. Interruptible
tasks: Treating memory pressure as interrupts for highly scalable data-
parallel programs. In Proceedings of the 25th Symposium on Operat-

ing Systems Principles, pages 394–409. ACM, 2015.

[13] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin. Shenan-
doah: An open-source concurrent compacting garbage collector for
openjdk. In Proceedings of the 13th International Conference on Prin-

ciples and Practices of Programming on the Java Platform: Virtual

Machines, Languages, and Tools, page 13. ACM, 2016.

[14] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi. {IMIX}: In-
process memory isolation extension. In 27th USENIX Security Sym-

posium (USENIX Security 18), pages 83–97, 2018.

[15] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing the scala-
bility of garbage collectors on many cores. In Proceedings of the 6th

Workshop on Programming Languages and Operating Systems, page 7.
ACM, 2011.

[16] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A study of the scal-
ability of stop-the-world garbage collectors on multicores. In ACM

SIGPLAN Notices, volume 48, pages 229–240. ACM, 2013.

[17] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen. Nu-
magic: a garbage collector for big data on big numa machines. In
ACM SIGARCH Computer Architecture News, volume 43, pages 661–
673. ACM, 2015.

[18] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Ra-
malingam, M. Costa, D. G. Murray, S. Hand, and M. Isard. Broom:
Sweeping out garbage collection from big data systems. In 15th Work-

shop on Hot Topics in Operating Systems (HotOS {XV}), 2015.

[19] S. Han, S. Lee, S. S. Hahn, and J. Kim. Syncgc: A synchronized
garbage collection technique for reducing tail latency in cassandra.
In Proceedings of the 9th Asia-Pacific Workshop on Systems, page 20.
ACM, 2018.

[20] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty. Hodor: Intra-process isolation for high-throughput
data plane libraries. In 2019 {USENIX} Annual Technical Conference

({USENIX}{ATC} 19), 2019.

[21] R. L. Hudson and J. E. B. Moss. Sapphire: Copying gc without stop-
ping the world. In Proceedings of the 2001 joint ACM-ISCOPE con-

ference on Java Grande, pages 48–57. ACM, 2001.

[22] C. Iorgulescu, F. Dinu, A. Raza, W. U. Hassan, and W. Zwaenepoel.
Don’t cry over spilled records: Memory elasticity of data-parallel ap-
plications and its application to cluster scheduling. In 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), pages 97–109,
2017.

[23] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer. The collie: a wait-free
compacting collector. In ACM SIGPLAN Notices, volume 47, pages
85–96. ACM, 2012.

[24] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D. Yuan. Don’t
get caught in the cold, warm-up your jvm: Understand and eliminate
jvm warm-up overhead in data-parallel systems. In Proceedings of the

12th USENIX conference on Operating Systems Design and Implemen-

tation, pages 383–400. USENIX Association, 2016.

[25] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz. Taurus: A holis-
tic language runtime system for coordinating distributed managed-
language applications. ACM SIGOPS Operating Systems Review,
50(2):457–471, 2016.

[26] M. Maas, K. Asanović, and J. Kubiatowicz. A hardware accelerator
for tracing garbage collection. In Proceedings of the 45th Annual Inter-

national Symposium on Computer Architecture, pages 138–151. IEEE
Press, 2018.

[27] M. Maas, T. Harris, K. Asanović, and J. Kubiatowicz. Trash day: Coor-
dinating garbage collection in distributed systems. In 15th Workshop

on Hot Topics in Operating Systems (HotOS {XV}), 2015.

[28] S. Microystems. Memory management in the java hotspot™ virtual
machine, 2006.

[29] C. Navasca, C. Cai, K. Nguyen, B. Demsky, S. Lu, M. Kim, and G. H.
Xu. Gerenuk: thin computation over big native data using speculative
program transformation. In Proceedings of the 27th ACM Symposium

on Operating Systems Principles, pages 538–553. ACM, 2019.

[30] K. Nguyen, L. Fang, C. Navasca, G. Xu, B. Demsky, and S. Lu. Sky-
way: Connecting managed heaps in distributed big data systems. In
ACM SIGPLAN Notices, volume 53, pages 56–69. ACM, 2018.

[31] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and
O. Mutlu. Yak: A high-performance big-data-friendly garbage col-
lector. In Proc. the 12th USENIX Conference on Operating Systems

Design and Implementation, 2016.

USENIX Association 2020 USENIX Annual Technical Conference 171

[32] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu. Facade: A com-
piler and runtime for (almost) object-bounded big data applications. In
ASPLOS, 2015.

[33] OpenJDK. ZGC - The Z Garbage Collector.
https://openjdk.java.net/projects/zgc/, 2019.

[34] E. Österlund and W. Löwe. Block-free concurrent gc: stack scanning
and copying. In Proceedings of the 2016 ACM SIGPLAN International

Symposium on Memory Management, pages 1–12. ACM, 2016.

[35] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim. libmpk: Software
abstraction for intel memory protection keys (intel {MPK}). In
2019 {USENIX} Annual Technical Conference ({USENIX}{ATC}
19), 2019.

[36] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. Stopless: a
real-time garbage collector for multiprocessors. In Proceedings of the

6th international symposium on Memory management, pages 159–172,
2007.

[37] J. Qian, W. Srisa-an, D. Li, H. Jiang, S. Seth, and Y. Yang. Smartsteal-
ing: Analysis and optimization of work stealing in parallel garbage
collection for java vm. In Proceedings of the Principles and Practices

of Programming on The Java Platform, pages 170–181. ACM, 2015.

[38] J. Qian, W. Srisa-An, S. Seth, H. Jiang, D. Li, and P. Yi. Exploiting fifo
scheduler to improve parallel garbage collection performance. ACM

SIGPLAN Notices, 51(7):109–121, 2016.

[39] C. G. Ritson, T. Ugawa, and R. E. Jones. Exploring garbage collec-
tion with haswell hardware transactional memory. In ACM SIGPLAN

Notices, volume 49, pages 105–115. ACM, 2014.

[40] K. Suo, J. Rao, H. Jiang, and W. Srisa-an. Characterizing and optimiz-
ing hotspot parallel garbage collection on multicore systems. In Pro-

ceedings of the Thirteenth EuroSys Conference, page 35. ACM, 2018.

[41] G. Tene, B. Iyengar, and M. Wolf. C4: The continuously concurrent
compacting collector. ACM SIGPLAN Notices, 46(11):79–88, 2011.

[42] T. Ugawa, C. G. Ritson, and R. E. Jones. Transactional sapphire:
Lessons in high-performance, on-the-fly garbage collection. ACM

Transactions on Programming Languages and Systems (TOPLAS),
40(4):15, 2018.

[43] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg. {ERIM}: Secure, efficient in-process iso-
lation with protection keys ({MPK}). In 28th {USENIX} Security

Symposium ({USENIX} Security 19), pages 1221–1238, 2019.

[44] J. Wang and M. Balazinska. Elastic memory management for cloud
data analytics. In 2017 USENIX Annual Technical Conference

(USENIX ATC 17), pages 745–758, Santa Clara, CA, 2017. USENIX
Association.

[45] M. Wu, Z. Zhao, H. Li, H. Li, H. Chen, B. Zang, and H. Guan.
Espresso: Brewing java for more non-volatility with non-volatile mem-
ory. In ACM SIGPLAN Notices, volume 53, pages 70–83. ACM, 2018.

172 2020 USENIX Annual Technical Conference USENIX Association

PinK: High-speed In-storage Key-value Store with Bounded Tails
Junsu Im, Jinwook Bae, Chanwoo Chung∗, Arvind∗ and Sungjin Lee

DGIST
∗Massachusetts Institute of Technology

Abstract

Key-value store based on a log-structured merge-tree (LSM-
tree) is preferable to hash-based KV store because an LSM-
tree can support a wider variety of operations and show better
performance, especially for writes. However, LSM-tree is
difficult to implement in the resource constrained environment
of a key-value SSD (KV-SSD) and consequently, KV-SSDs
typically use hash-based schemes. We present PinK, a design
and implementation of an LSM-tree-based KV-SSD, which
compared to a hash-based KV-SSD, reduces 99th percentile
tail latency by 73%, improves average read latency by 42%
and shows 37% higher throughput. The key idea in improving
the performance of an LSM-tree in a resource constrained
environment is to avoid the use of Bloom filters and instead,
use a small amount of DRAM to keep/pin the top levels of
the LSM-tree.

1 Introduction

Offloading the key-value (KV) functionality onto a storage
device has received a lot of attention recently from both
academia and industry [11,21,24,32,49]. A representative de-
vice in this class is Samsung’s key-value SSD (KV-SSD) [24],
which directly serves KV requests. By offloading most com-
monly used operations of KV databases (e.g., RocksDB [17]),
KV-SSDs not only improve I/O latency and throughput of
KV clients, but also reduce the CPU and DRAM resource
requirements on the host-side.

The idea of KV-SSD is promising but the current propos-
als and devices often provide inconsistent tail latency and
throughput. This is because most of KV-SSDs are based on
hash [16, 21, 24, 32, 46, 49], which is attractive because it is
rather simple to implement but has some inherent limitations.
A hash-based KV-SSD maintains a hash table in the controller
DRAM, each entry of which typically contains a key (or the
signature of a key) and a pointer to the corresponding KV pair
in the flash. The hash table is used to quickly index key-value
pairs by simple table lookups. However, when the DRAM size
is not large enough to accommodate all the hash table entries,
parts of the hash table must be stored in flash. This inevitably
involves expensive flash accesses and complex hash table
management when accessing entries that are not in memory.
Even worse, if a hash collision occurs, multiple flash accesses
are required, resulting in long and unpredictable tail latency
and drop in throughput.

To understand the behavior of hash-based KV-SSDs, we

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400

Block-SSD
1GB - 3TB

KV-SSD

C
D

F

Time (microsecond)

1GB
64GB

128GB
256GB
512GB

1TB
2TB
3TB

(a) CDF of read latency

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1G
B

64G
B

128G
B

256G
B

512G
B

1TB
2TB

3TB

K
IO

P
S

KV-SSD
Block-SSD

(b) Read throughput

Figure 1: Performance comparison of KV-SSD & Block-SSD
depending on the total amount of data stored (1GB∼3TB)

conducted a set of experiments on a 4TB KV-SSD prototype
(KV-PM983 [40]). We created KV pools ranging in size from
1GB to 3TB, and chose the average key and value sizes to be
32B and 1KB, respectively [5]. Thus, a 3TB KV pool would
hold 3 billion KV pairs. We ran random GET() requests on
these KV pools for 10 minutes using KVBench [38]. No GC
occurred during our experiments.

Figure 1 shows that the KV-SSD suffered from inconsis-
tent read latency, and its throughput dropped as the number of
objects stored increased. The average read latency increased
from 149.49 µs (1GB pool) to 245.31 µs (3TB pool). We
also observed long tail latency: for the 99.99th percentile, the
tail latency increased from 323 µs to 1020 µs. Even worse,
the read throughput dropped to 64 KIOPS from 112 KIOPS.
Although we did not have access to any of the internal details
of the KV SSD design (e.g., the hash function), it is easy to
conclude that the performance and tail latency get worse in
a hash-based implementation as the total number of stored
KV pairs increases. This hypothesis was further supported
by another experiment, where we used the same setup to run
FIO [6] on a 4TB Block-SSD [41], which loads its FTL table
in DRAM for 4KB page mapping. FIO exhibited stable la-
tency and throughput, regardless of the amount of data stored.
Such severe performance variability and unpredictable I/O
behaviors make KV-SSDs less attractive than normal SSDs.

An alternative to hash is log-structured merge tree (LSM-
tree) [34]. The tail latency in such a system is bounded by
the number of levels in the tree. Since an LSM-tree indices
KV pairs in a multi-level sorted tree, it might also require
a much smaller DRAM for indexing KV pairs. LSM-tree
also supports range-queries and scans efficiently, without any
extra bookkeeping or support from KV clients [24]. Our ex-
periments, however, revealed that a conventional implemen-
tation of LSM-tree on an SSD controller failed to deliver the

USENIX Association 2020 USENIX Annual Technical Conference 173

promised benefits. In fact, it showed worse performance than
hash in some cases.

The first problem we discovered was the tail latency. Most
LSM-tree implementations use Bloom filters to skip lookups
in a tree level to improve average read latency. Owing to
the probabilistic nature of Bloom filters, however, one cannot
ensure the worst-case read latency; indeed, we observed long
tails as in hash-based KV-SSD. The second problem was high
write-amplification. Even if we use key-value separation like
Wisckey [30], compaction, an essential task of LSM-tree to
sort KV indices and balance its indexing trees, involves many
extra storage accesses. Moreover, this LSM-tree compaction
cost exacerbates the FTL’s garbage collection (GC) cost. The
third problem was that rebuilding Bloom filters and sorting
KV pairs for compaction requires lots of CPU cycles, which
overburden embedded-class microprocessors found in SSD
controllers. This lack of processor performance deteriorates
the I/O performance dramatically.

In this paper, we propose an LSM-tree-based in-storage
key-value engine, called PinK, which overcomes all the prob-
lems mentioned above. The novelty of PinK design stems
from four specific techniques it uses. At the heart of PinK is
level pinning. Instead of keeping probabilistic Bloom filters in
DRAM, PinK pins exact key-value indices of the top levels of
the tree to DRAM. This removes unnecessary flash lookups
on the pinned levels in a deterministic manner, thereby en-
abling us to provide predictable read latency with bounded
tails. Elimination of Bloom filters also reduces the resource
requirement for computing them. Second, the level pinning
helps us reduce flash I/Os caused by compaction. Since KV
indices are kept in DRAM, PinK can sort them in DRAM
without any I/Os. The pinned indices are protected by built-in
capacitors, so flushing out up-to-date indices to flash is not
necessary. (This idea is feasible only for small amount of
DRAM). Third, we discovered that the majority of GC I/Os
are induced by updating indices of LSM-tree. By delaying
index updates until the compaction phase, PinK reduces GC
I/Os greatly. Finally, by adding hardware comparators in be-
tween the SSD controller and NAND chips, and performing
KV sorting while reading KV pairs, PinK completely elimi-
nates CPU costs for compaction.

We have implemented PinK on MIT’s FPGA-based SSD
platform [22], and used the LSM-tree implementation of
LightStore [11] as our starting point, because its source code
is publicly available. Using YCSB [13] benchmarks, we have
shown that PinK outperforms existing KV-SSD designs in
several aspects. Compared to a hash-based KV-SSD, PinK
reduces 99th percentile tail latency by 73%, improves aver-
age read latency by 42% and shows 37% higher throughput.
Furthermore, compared to LightStore, PinK reduces 99th per-
centile tail latency by 22%, improves average read latency by
22% and shows 44% higher throughput.

Paper Organization: In Section 2, we explain background
closely related to this study. Section 3 analyzes the perfor-

mance of the LSM-tree algorithm in KV-SSD. Section 4
presents an overall design of PinK, along with optimization
techniques. Section 5 presents experimental results. We con-
clude in Section 6.

2 Background

2.1 NAND Flash-based SSD
A conventional Block-SSD is designed to support the stan-
dard block I/O interface. It exposes a linear array of 4KB
logical blocks which are accessed by block I/O primitives
(e.g., READ and WRITE). A flash translation layer (FTL) in
the SSD firmware is responsible for providing the block I/O
interface [3]. To hide the out-of-place update nature, the FTL
writes incoming data to free flash pages in an append-only
manner. To redirect 4 KB logical blocks to free pages, the FTL
maintains a mapping table indexed by logical block address
(LBA), and each entry points to the corresponding flash page.
The mapping table is kept in the controller DRAM and its
size is approximately 0.1% of the SSD capacity [39, 43]. For
example, for a 4TB SSD, 4GB DRAM is required. A mapping
table has to be persistent (non-volatile) and is protected by
built-in capacitors to guard against sudden power failures [7].
Similar to other log-structured systems [36], the FTL has to
perform garbage collection (GC) to reclaim free space.

2.2 KV-SSD
A KV-SSD is a new type of SSDs [24, 45] which provides
the key-value interface. KV-SSDs look like a container of
key-value objects, where each object is labeled by a unique
key and contains an associated value (i.e., data). In contrast
to a block addressed SSD, both the key and the associated
value are of variable sizes. A key can be as long as 255
bytes [45] or even be a character string, and a value can be
as big as 2MB [45]. In addition to GET() and SET(), the
basic operations to access KV objects, KV-SSDs support
a rich set of operations like iterations, range queries, and
transactions [24, 25]. A more detailed description can be
found in SNIA’s KV-SSD specification [45].

Making SSDs support the KV interface requires a redesign
of the FTL because the existing table-based translation is
not suitable for managing KV objects. A variety of KV-
SSD designs have been proposed both in academia (e.g.,
NVMKV [32], KAML [21], and BlueCache [49]) and indus-
try (e.g., Samsung’s KV-SSD prototype [24, 40]). All these
KV-SSDs are based on hash-based data structure, which we
discuss next.

2.3 Hash-based KV-SSD
A hash-based KV-SSD maintains a hash table with many
buckets in DRAM, where each bucket holds metadata (i.e., a
key and a pointer) for a specific KV object in flash [16, 21,

174 2020 USENIX Annual Technical Conference USENIX Association

32, 49]. A primary design issue of hash-based KV-SSD is the
management of a huge hash table requiring large amounts of
DRAM. Suppose that the SSD capacity is 4 TB and the key
and value sizes are on average 32B and 1KB, respectively [5].
If the number of buckets is 232 (= 242/210) and the bucket
size is 36B (32B for a key and 4B for a pointer), 144GB of
DRAM is required to hold the complete hash table. If KV-
SSDs have large enough DRAM to hold the entire hash table,
in addition to the O(1) time complexity for calculating an
index, a KV access only takes O(1) flash access to read/write
the KV pair [44]. However, as mentioned previously, SSDs
do not have as much DRAM.

To reduce DRAM usage, some use signatures [9, 16, 26, 46,
49]. Instead of an exact key, a short signature of the key is
kept in the bucket. The exact key and its value are stored in
the flash. Using signatures reduces the hash table size greatly
– if a 16-bit signature is used, 24GB of DRAM is required. But
it causes signature collision which happens when different
keys have the same signature. 24GB DRAM is still huge for
an SSD. The DRAM size can be further reduced by keeping
only popular buckets in a fixed-size DRAM (e.g., 4GB) while
storing the rest in the flash [18]. This, however, causes extra
flash reads. If a designated bucket is not available in DRAM
(i.e., hash table miss), we have to fetch the bucket from the
flash to find the location of a desired KV object. Consequently,
the table miss increases flash read costs from O(1) to O(1+α)
where α is a miss ratio. Even worse, signature collisions add
an unpredictable number of flash reads until the collision
resolves, resulting in unbounded read tail latency in the worst
case. As shown in Figure 1, this instability of the hash-based
KV-SSD deteriorates as the hash table grows.

This inconsistent performance may be due to inefficient
collision resolution policies. There are advanced hash strate-
gies, such as Cuckoo [35] and Hopscotch [19, 26], which
provide constant worst-case lookups and may avoid the tail
latency. But this benefit comes at the cost of degraded write
speed and/or frequent rehashing. Hash algorithms also cannot
efficiently support range and scan operations [24].

2.4 LSM-Tree-based KV-SSD

An LSM-tree is another data structure that is used widely
to implement persistent key-value stores. It is usually imple-
mented purely in host software and can support a wider set
of KV operations (e.g., RocksDB [17] and Cassandra [27]).
It is also used in big all-flash array (AFA) systems such as
Purity [12]. Because of its increasing popularity across a
variety of systems, many LSM-tree variants have been pro-
posed [4, 23, 47]. Recently LSM-tree has also been used in
some implementations of KV-SSDs like LightStore [11] and
iLSM-SSD [28].

LSM-tree is a hierarchical structure that consists of multiple
trees, each called a level. Each level is sorted and behaves as
a write buffer for the next level, which has a larger size. Since

LSM-tree keeps only the highest level in DRAM, its memory
requirement is much smaller than hash. Also, a KV access in
LSM-tree requires at most O(h−1) flash accesses owing to
its sorted nature, where h is the number of levels, and thus the
worst-case latency of LSM-tree is bounded. Many LSM-tree
implementations use Bloom filters to improve the average
read cost to O(1) flash access [14].

However, LSM-tree-based KV-SSDs have suffered from a
lack of CPU power for the compaction process, which is re-
quired to keep LSM-tree balanced. In addition, Bloom filters,
which is used to skip some levels probabilistically, cannot im-
prove the read tail latency. The design of PinK was motivated
by these and some additional inefficiencies in running the
conventional LSM-tree on resource-constrained KV-SSDs;
we discuss these inefficiencies in Section 3.

2.5 Hash vs LSM-Tree

NAND flash scales faster than DRAM. According to [20], the
capacity of NAND flash has increased 1.43 times per year,
while that of DRAM has increased 1.13 times. This requires
us to take into account a DRAM scalability issue in choosing
algorithms for KV-SSDs. Assuming the same trend, the hash
suffers from more degradation in read performance since
the table miss rate becomes higher as NAND flash scales
further. The LSM-tree also experiences degradation since it
uses fewer bits per KV pair for Bloom filters. However, the
read performance of the LSM-tree is more scalable due to
the space-efficient structure of Bloom filters. Monkey has
almost the same read performance when the ratio between
the size of DRAM and total data set decreases from 0.16% to
0.02% (see Figure 11(a) in [14]). Conversely, the hash suffers
from notable performance degradation when the DRAM size
does not grow relative to the data set as shown in Figure 1.
The LSM-tree also exhibits lower update costs than the hash
when the entire indices do not fit in DRAM. In the hash,
indices in the map have to be updated in place, which in turn
involves expensive read-modify-writes in the flash. On the
other hand, the LSM-tree shows cheaper update costs since
it appends new or updated entries to the flash thanks to its
leveled structure. As a result, the LSM-tree offers better write
performance when DRAM becomes less sufficient.

3 Challenges in implementing LSM-tree in a
KV-SSD

In this section, we analyze the performance and present key
technical challenges when an LSM-tree is implemented in a
resource constrained environment of an SSD controller. We
have used LightStore [11] as the baseline for an LSM-tree-
based KV-SSD which separates keys and values to speed up
writes and uses Bloom filters to speed up reads. We expect
iLSM-SSD [28] to exhibit similar read and write performance
as LightStore because it follows same concepts.

USENIX Association 2020 USENIX Annual Technical Conference 175

4 15 33 51

DRAM

Flash

2 7 52 60

1 3 7 10 33 39 51 60

L
1

L
2

L
0

Low

High

DRAM

Flash

1 2 3 4 7 10 15 33 39 51 52 60

L
1

L
2

L
0

Low

High

(a) Before L
0

is flushed

Flush

(b) After flush & compaction

GET(39)

Figure 2: LSM-tree organization (h = 3, T = 2). A rectangle
represents a KV object and the number inside is the key.

3.1 LSM-Tree Structure
The LSM-tree maintains multiple levels of sorted KV indices,
L0, L1, ..., and Lh−1, where h is the height of an LSM-tree (see
Figure 2). The level 0, L0, is kept in DRAM as a write buffer,
whereas the rest are stored in persistent media (e.g., flash). In
the LSM-tree, the levels are organized so that a lower level is
T times larger (i.e., the size factor T) than a higher one. Each
level is divided into fixed-size runs, where the size of each
run is usually the same as that of L0.

The LSM-tree has two unique properties: #1. for each level,
KV objects are unique and kept sorted by their keys; and #2.
the key range of one level may overlap the key range of other
levels due to overwrites (see Figure 2).

When a SET() request comes, a KV object is first buffered
in L0. Once L0 becomes full, buffered KV objects are flushed
out to L1. All the objects in L0 are written to L1 in an append-
only manner. Similarly, once Li becomes full, its KV objects
are evicted to Li+1. Since the key ranges of adjacent levels
may overlap, flushing out KV objects from a higher level to a
lower level has to be done in a manner not to violate Property
#1. Therefore, the LSM-tree algorithm performs a process
called compaction while flushing KV objects to a lower level.
Compaction reads objects from two adjacent levels, sorts them
in the memory, and writes the sorted objects to next lower
level as shown in Figure 2(b). Compaction incurs a huge I/O
overhead. This overhead can be mitigated by separating keys
from values and by avoiding moving values which are not
affected by compaction (see Wisckey [30]).

The LSM-tree maintains an in-memory data structure that
points to runs of levels in the flash. Each run contains a header
that holds the locations of KV objects (KV indices) in the
flash. Searching for a key at a specific level is fast. Once a
header is read from the flash, the location of a desired KV
object can be quickly found since they are sorted by key.
However, finding the desired key in the entire tree requires
looking in multiple levels because key ranges at different
levels may overlap (Property #2). In the worst case, all levels

have to be searched as shown by GET(39) in Figure 2(a). The
number of the worst-case flash lookups is O(h− 1) (Note:
L0 is excluded since it stays in DRAM). Bloom filters are
often used to avoid useless lookups on levels that do not have
desired keys [14,15]. Usually, each level or run in the tree has
its own filter.

3.2 Performance Analysis

Our PinK implementation uses the same FPGA-based hard-
ware platform as LightStore [11], which has quad-core ARM
Cortex A53 running at 1.2GHz and 4GB DRAM. This con-
troller specification is similar to those of latest SSDs with
in-storage computation capability [33, 37]. PinK is equipped
with a 256GB NAND flash card which provides 1.1 GB/s
read and 600 MB/s write throughputs, respectively, and offers
122,349 IOPS for 4KB reads and 66,843 IOPS for 4KB writes,
respectively.

To understand the weaknesses of the conventional LSM-
tree implementations, we first improved the Bloom filter im-
plementation in LightStore [11] by replacing the original one
with Monkey [14]. We leveraged AArch64 SIMD instruc-
tions in implementing Monkey. Key-value separation [30]
was employed by default.

For fast evaluation, we reduce the SSD capacity to 64GB.
The number of levels in the tree is set to 5 (h = 5) with a
size factor of 23. We assume that 64 MB of DRAM (0.1%
of 64GB) is available and it is used to keep Bloom filters for
levels. We either enable or disable Bloom filters (Monkey) to
understand its impact on performance. To characterize basic
performance, we run two extreme workloads, YCSB-Load
(100% writes) and YCSB-C (100% reads). Average key and
value sizes are 32B and 1KB. We first run YCSB-Load with
44 million (44GB) uniformly random KV-pairs, and then run
YCSB-C with 10 million Zipfian requests. Results with other
workloads can be found in §5.

To understand the impact of the LSM-tree algorithm, we
compare the performance of the LSM-tree KV-SSD with that
of a Block-SSD implemented on the same platform. The
Block-SSD employs a page-level FTL whose flat mapping
table, indexed by LBA, can be loaded entirely on DRAM. A
physical page mapped to a logical block can be found with
only one memory reference.

Figure 3(a) shows the CDF of the read latency of YCSB-C.
Without Bloom filters, the LSM-tree KV-SSD shows long
read latency over the Block-SSD. Figure 3(b) summarizes
the number of flash page reads to service a GET() request. If
GET() is directly served by L0 (i.e., a write buffer), a page read
is not necessary. Otherwise, the LSM-tree looks up lower lev-
els to fetch KV indices from the flash. The majority (98.4%)
of GET() requests touch up to the last level (L4), issuing four
page reads. This is because almost all the KV pairs (95%) are
stored on L4. When Bloom filters are enabled, it offers better
read latency, but is affected from long tails. With Bloom filter,

176 2020 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2.5 5

C
D

F

Time (ms)

Block w/o BF w/ BF

0.98

1

1.5 2 2.5 3 3.5

(a) Read latency (YCSB-C)

of flash w/o BF w/ BFpage reads
1 0.0932% 0.190%
2 0.016% 98.347%
3 0.040% 1.359%
4 1.398% 0.082%
5 98.458% 0.001%

(b) Flash page read counts (YCSB-C)

 0

 30

 60

 90

 120

 150

YCSB-C YCSB-Load

K
IO

P
S

Block
w/o BF
w/ BF

(c) I/O throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

YCSB-Load (w/ BF)

E
la

p
s
e

d
 t

im
e

 (
s
)

Compaction I/O
Compaction CPU

BF build

13.4%
13.7%

72.9%

(d) Compaction time breakdown

Figure 3: Experimental results of the conventional implementation of LSM-tree on an SSD controller

on average, one flash lookup is required for retrieving a KV
object as in Figure 3(b). Owing to its probabilistic nature,
however, 1.4% of the total GET()s still require more than one
flash lookup, which are large enough to cause long tails (see
the zoom-in figure in Figure 3(a)).

Figure 3(c) illustrates the I/O throughput. The read through-
put of the LSM-tree with Bloom filter in YCSB-C is about
half of the throughput that the Block-SSD provides. This is ex-
pected because Monkey requires two flash reads, on average,
for retrieving KV indices to serve GET().

As we can see in Figure 3(c), in YCSB-Load, we observe
serious drops in the write throughput, compared to the Block-
SSD. Even with Wisckey, compaction I/Os account for 75.5%
of the total I/Os (both reads and writes). While not included in
Figure 3(c), I/Os for GC also badly affect the write throughput.
According to our analysis (see §5.2), the write amplification
factor (WAF), which is 2.52 when only compaction I/Os oc-
cur, increases to 5.02 once GC starts to trigger. We find that
moving valid pages for GC involves cascade updates of KV
indices maintained by the LSM-tree.

The high CPU overheads of the LSM-tree also slow down
the write throughput. Due to slow speed of ARM CPUs, sort-
ing KV pairs for compaction, which involves string compar-
isons, becomes a bottleneck. As shown in Figure 3(d), it takes
almost the same time as performing compaction I/Os. The
CPU time does not include the Bloom filter reconstruction
time which will be discussed soon. The compaction over-
head has been addressed by KVell [29], but it requires a huge
DRAM to hold all indices, which is not available in KV-SSDs.

The cost of rebuilding Bloom filters is also high. Bloom
filters should be rebuilt for newly created levels after com-
paction, which requires expensive hash computations and lots
of memory accesses. In our experiment, a hash computation
is accelerated by SIMD instructions, but its negative impact
is still huge. The rebuilding overhead for Bloom filters can be
optimized as was done in [8]. Even if we assume the recon-
struction time improves significantly, say 8X-11X, as in [8],
the Bloom filter reconstruction still takes 20-25% of total
compaction time. Note that it is unclear whether such huge
improvement is achievable in ARM-based SSD controllers.
Be advised that, our LSM-tree is carefully designed so that
I/Os and computation are maximally overlapped. However,
this cannot completely hide high computation costs.

The problems we have observed can be summarized as
follows: #1. LSM-tree exhibits higher average-latency be-
cause of multi-level search, and also exhibit unpredictable tail
latency because of Bloom filters; #2. Bloom filters require
lots of computational power to reconstruct. They have to be
reconstructed after each compaction; #3. Level compaction
(excluding Bloom filter reconstruction) also requires a lot of
computation and I/O bandwidth; #4. Compaction I/Os may
trigger GC which in turn generates more I/Os, resulting in
high write amplification.

4 Design of PinK

Bloom filters are used to reduce the average read latency.
Another way of reducing the read latency would be to keep
popular KV indices in DRAM. LSM-tree by nature keeps
the recently written indices in the top levels. In PinK, we
eliminate the Bloom filters and mitigate the increased read
latency by pinning top-K levels (§4.2 and §4.3). We will show
that level-pinning requires only a small amount of DRAM.
Tail latency is already bounded to the height of the tree. An-
other benefit of level-pinning is that it eliminates the flash
I/Os required for compaction of two levels which are already
pinned in DRAM. The throughput can be further improved
by using hardware accelerators that performs compaction for
pinned and flash-resident levels (§4.4). Finally, to alleviate
the GC costs associated with compaction, we delay GC by
putting updated KV indices in L0 (§4.5). This reduces the
write amplification which affects lifetime of SSDs.

4.1 Overall Architecture

PinK supports variable-sized keys (16B∼128B) and val-
ues (1KB∼2MB), along with a rich set of KV operations
(i.e., GET(), SET(), DELETE(), SCAN(), and ITERATOR()),
except for a few features like namespaces. Like KV-SSDs,
PinK is able to guarantee durability and atomicity of KV
operations [7, 24, 42]. While the lack of space does not per-
mit us to describe the details of all the operations, we focus
on explaining key data structures and operations which are
different from the conventional LSM-tree-based KVSs.

Data Structures. Figure 4 illustrates four types of data
structures of PinK: a skiplist and level lists, which all reside in

USENIX Association 2020 USENIX Annual Technical Conference 177

Level lists

L
1

L
2

2 0 - -

1 1 33 2 - - - -

Skiplist

4 15 33 51L
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DRAM

Flash

Meta Segment Data Segment

33 39 51 60

Page
Block

33 39 51 60

Page #

Header

ValueKey

Pointer

Pointer

Start Key GET(39)
①

②

③

④

⑤

⑥

Figure 4: An overall architecture of PinK with its key data
structures in DRAM and flash. The tree hierarchy and KV
objects are identical to those of Figure 2(a). Given GET(39),
1© PinK first looks up the skiplist (L0). Since a matched
one is not found, 2© it goes down to L1, 3© reading a meta
segment from the page 0. It does not have a desired key, so 4©
PinK visits L2 and reads 5© the page 2 to get a meta segment.
Finally, 6© it can find the location of the value for the key
‘39’. Three flash reads are required to serve GET(39).

DRAM, and meta segments and data segments, which all re-
side in flash. Overall, the design of PinK is not much different
from the LSM-tree-based KVS combined with Wisckey [30],
but it is optimized to maintain compact data structures in the
controller DRAM for better performance in storage devices.
Also, the headers of each data structure are designed to be
handled easily by HW accelerators. PinK directly deals with
NAND chips to perform indexing, GC, and wear-leveling
obviating any need for a costly FTL found in most SSDs.

A skiplist corresponds to L0 in the LSM-tree algorithm and
works like a write buffer which buffers incoming KV objects
temporarily. The size of L0 is configured to be large enough
(e.g., 8MB∼64MB) to fully utilize the parallelism of multiple
NAND channels when KV objects are flushed out to the flash.
Each skiplist entry has four fields: <key size, key, value size,
value>, and all the entries are sorted by key.

Once the skiplist becomes full, buffered objects are materi-
alized to L1 as the forms of meta segments and data segments.
In L1 (and all the lower levels), keys and values are separated
into meta and data segments, respectively. A meta segment
contains keys and pointers to its associated values in data
segments. In addition to values, a data segment stores keys
and their sizes to support GC (see §4.5). The size of a meta
segment is fixed to a flash page size (e.g., 8KB ∼ 16KB),
but a data segment can be of any size – it is like a huge log
containing KV objects pointed to by meta segments.

Since meta segments are referenced by the software to look
for a KV object and by the hardware accelerators for com-
paction, they are organized to be manipulated by both of them.
A meta segment is composed of an array of <key, pointer>
pairs sorted by key, plus a header. A pointer is a 4B integer, but

a key size varies from 16B to 128B. To quickly find a variable-
size key using binary search, a meta segment header maintains
the start locations (2B each) of <key, pointer> pairs. If a meta
segment is 16KB, it contains up to 1024 <key, pointer> pairs
where at most 2KB is used as a header. For HW accelerators, a
header and <key, pointer> pairs are aligned to 16B for simple
implementation. We discuss this in §4.4 in detail.

PinK maintains another in-memory data structure, level
lists, which keep track of meta segments at every level in the
flash. If the tree has five levels (i.e., h = 5), there are four level
lists except for L0. Each level list is organized as an array of
pairs of fixed-sized pointers (4B each, 8B total); the first one
points to the physical location of a meta segment in the flash;
the second one points to a start key of that meta segment.
Note that start keys of meta segments are stored separately
in DRAM to support variable-sized keys (16-128B). This
facilitates us to implement binary search to find a desired
meta segment in a level list.

Two in-memory data structures, L0 and the level lists, are
protected by capacitors. This provides enough time for PinK
to safely flush out them to the flash in the event of power
failures or when a system is turned off. PinK also does not
need to use a write-ahead log (WAL) to provide atomicity and
durability of data.

Data Structure Size. Compared to the hash, PinK requires
much smaller DRAM for indexing KV objects. Assume that
an SSD capacity is 4TB and each meta segment is 16KB.
As in §3, the average sizes of keys and values are 32B and
1KB, respectively [5]. Each entry in a meta segment is 36B
(32B key and 4B pointers). A 16KB meta segment can hold
398 <key, pointer> pairs. In a 4TB SSD, there exist 232 1KB
objects, and thus the number of meta segments in the flash
is about 10.8M (= 232/398). Each of these must be pointed
to by some level lists. Each level list entry is 8 B, and each
entry has a corresponding start key whose average size is 32B.
Thus, only 432MB (= 10.8M×(8B + 32B)) DRAM is needed
to hold all the level lists.

4.2 Improving I/O Speed with Level Pinning

Eliminating Read Tails. Retrieving a KV object from PinK
requires multiple flash lookups. In the worst case, O(h−1)
flash lookups are required to access a KV object. Bloom filters
are typically used to avoid useless lookups on levels that do
not have desired keys [14,15]. As pointed out earlier, however,
it cannot avoid long tails and causes high CPU costs.

In order to guarantee worst-case latency and to get rid of
Bloom filters, PinK adopts level pinning. The idea of the level
pinning is straightforward. If the LSM-tree has h levels, PinK
keeps meta segments for top-k levels (k ≤ h−1) in DRAM.
This simple technique greatly reduces read tails. To process
GET(), it first searches for a key in top-k levels in DRAM.
Only when a key is not found in memory, it looks up the rest of
levels resident in the flash. With the level pinning, the number

178 2020 USENIX Annual Technical Conference USENIX Association

Level lists

L
1

L
2

- - - -

1 5 7 6 39 7 - -

Skiplist

L
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DRAM

Flash

Data Segment

7 10 15 33 4 15 33 51

Point to

different data segments

Invalid page

Meta Segment

Figure 5: The DRAM and flash layouts of PinK after L0 (in
Figure 4) is flushed out with compaction. The tree hierarchy
and KV objects are identical to those of Figure 2(b).

of the worst-case flash lookups is reduced to O(h− k−1).

Level-pinning Memory Requirement. One might think
that the level pinning would require large amounts of DRAM,
but this is not the case. In the LSM-tree, a upper level (Li) is
T times smaller than a lower level (Li+1), which implies that
the level size increases exponentially by a factor of T . In the
4TB SSD organized with 5 levels, the amount of DRAM re-
quired to pin meta segments for L1, L2, L3, and L4 are 0.91MB,
50.86MB, 2.83GB, and 161.63GB, respectively. Meta seg-
ments for L1, L2, and even L3 can be loaded in DRAM, consid-
ering a large controller DRAM of an SSD (e.g., 4GB DRAM
for 4TB SSD). The data structures of PinK do not require
large amounts of DRAM (e.g., 432MB), which enables us to
pin more levels.

Reducing Compaction I/Os. Another benefit of the level
pinning is that it eliminates flash I/Os involved in compaction.
The level pinning maintains the meta segments of specific
levels in DRAM. Thus, PinK does not need to issue any I/Os
since pinned meta segments can be updated in DRAM directly.
Dirty segments do not need to be written back to the flash
because they are protected by capacitors.

To understand its benefit, let us consider how PinK per-
forms compaction using the examples in Figures 4, and 5.
Figure 5 is the data layout after the compaction. We assume
that L1 is pinned to DRAM. Before flushing out L0, PinK
fetches the corresponding meta segments from L1 (i.e., the
page 0 in Figures 4 and 5) and sorts KV indices of L0 and
L1, which creates two sorted meta segments. The sorted meta
segments are then flushed out to L1 (i.e., the pages 3 and 4
in Figure 5). The level lists are updated accordingly. PinK
recognizes that L1 becomes full, and thus flushes out L1 to L2.
To do this, PinK reads two meta segments from each of L1 and
L2 (the pages 1∼4 in Figure 5), sorts them, and finally writes
three sorted segments to L2 (i.e., the pages 5∼7). Since L1 is
pinned, PinK eliminates 3 reads and 2 writes out of 5 reads
and 5 writes which occurs while conducting the compaction.

L1

L2

Lh-1

log(N Th-2)

log(N T)

log(N)

log(T)

log(T)

Search range

Range pointer

҆ ѳ ߏ
Ҋ

(a) level list search (b) Optimized level list search

log(N)

… …

Figure 6: Search path optimization with range pointers

4.3 Optimizing Search Path

When the LSM-tree retrieves a KV pair, it has to perform
binary search on level lists until it finds a matching meta seg-
ment for a given key. This does not cause a serious overhead
for higher levels (e.g., L1 and L2) whose level lists have few
entries. On the other hand, since level lists belonging to lower
levels (e.g., Lh−1) have many entries, the search overhead be-
comes huge. Figure 6 (a) shows how the LSM-tree performs
binary search on the level lists. Suppose L1 has N entries.
Because a level size increases by a factor of T , L2 has N ·T
entries, L3 has N ·T 2 entries, and finally Lh−1 has N ·T h−2

entries. The worst-case time complexity of computation is
thus expressed as O(h2 · log(T)). The conventional LSM-tree
with Bloom filters offers much lower computation time on
average because it is able to skip binary search operations
on unnecessary levels by performing membership tests first.
PinK does not use Bloom filters and thus, cannot exploit this

To reduce the search overhead, PinK uses two techniques.
The first one is to reduce string comparison costs by using a
prefix of a key. Recall that each entry of a level list has two
pointers, each of which points to a meta segment and a start
key string, respectively. We further include a prefix which
holds exactly the first four bytes of a start key. During binary
search, PinK compares the first four bytes of an input key
with a prefix. Only when they match, it performs a full string
comparison using the pointer to the key.

The second one is to reduce search ranges of the level lists
by borrowing fractional cascading technique [10]. Each entry
of a level list now has another 4-byte pointer, called a range
pointer. It locates the next lower level’s entry which has the
greatest start key but whose key is less than or equal to that of
the upper level entry. Given a key to search, PinK does binary
search for L1 and finds an entry, say ei

L1
, in L1’s level list. If

a meta segment pointed to by ei
L1

does not have a matched
KV index, PinK has to go down to the next level, L2. The
range pointer of ei

L1
becomes the lower search bound for L2.

Then, the range pointer of the next entry ei+1
L1

in the same level
(i.e., L1) is the upper search bound. As shown in Figure 6 (b),
using two pointers, the number of entries we have to do binary
search in L2 is reduced to T , on average, since a level size
increases by a factor of T . This can be applied for lower levels,
L3, ... , Lh−1. Thus, the average time complexity reduces to
O(h · log(T)).

USENIX Association 2020 USENIX Annual Technical Conference 179

Entry Selector

Flash Controller

Key Comparator
(==, >, <)

Li

Meta segment
Reorder Buffer

Li+1

Flash Request
Generator

flash read flash write

Li stream Li+1 stream

Newly Merged Li+1

Invalidated EntriesSoftware
Host System Bus

Write Buffer

flash
requests/acks

HW Accelerator
Compaction

Manager

Compaction
Request

Compaction
Done

W
rit

e-
ba

ck

interleaved packets

Meta segment
Reorder Buffer

Figure 7: Compaction accelerator for flash-resident levels

With prefixes and range pointers, each entry size in the
level lists increases to 16 bytes from 8 bytes. Fortunately,
the lowest level Lh−1, which has the largest entries, does not
maintain range pointers. As a result, additional DRAM is
about 43.9MB in the same setting as in §4.1.

4.4 Speeding up Compaction

While the level pinning effectively reduces the number of
I/Os for compaction, it does not remove the computation cost
for sorting KV pairs. We address this problem by offloading
some compaction tasks to a special HW accelerator in the
SSD controller. The idea behind this is that compaction is
just like merging two sorted lists of KV indices into a single
sorted list. The HW accelerator placed between the flash and
the host data bus can easily merge two flash-resident levels
as meta segments of two levels are streamed from flash at
wire speed. The accelerator writes the merged meta segments
back to the flash without CPU involvement. By using the HW
accelerator, we not only alleviate the computation overhead
but improve I/O bus utilization since no to-be-merged and
merged segments transferred over system bus. Remaining I/O
bandwidth can be utilized by DRAM and flash for other tasks
such as searching upper levels or managing pinned levels.

Figure 7 describes the architecture of the HW accelera-
tor. We briefly present how the compaction accelerator for
flash-resident levels works. The PinK software requests the
accelerator to perform compaction by providing lists of the
meta segments’ flash addresses of two levels (Li and Li+1) to
be merged and a list of flash addresses to which the merged
meta segments (Li+1) are written back. The flash request gen-
erator schedules multiple read requests to maximize the flash
bandwidth utilization. Since the packets of different flash
channels are interleaved, we need to use per-channel reorder
buffers for each level to serialize the stream of meta segments.

Once we have sorted meta segment streams from two lev-
els, the compaction engine (gray box in Fig. 7) only needs
to keep comparing the keys of two levels and emitting the
smaller one. The accelerator generates the output stream at

wire speed without any computation overhead. When two
keys match, the entry from the upper level (Li) supersedes
as it is more recent one. Note that the accelerator informs
the software the metadata of invalidated entries from Li+1 for
various purposes such as garbage collection. The generated
merged meta segment stream (Li+1) is written back to the
flash via small write buffers. Once the operation completes,
the accelerator responds with the number of flash pages con-
sumed by the newly generated Li+1 meta segments so that
the software can reclaim unused flash addresses previously
provided to the accelerator.

While not shown in detail, we have a similar accelerator
for merging pinned levels that reads from and writes back to
host DRAM. DMA engines are used instead of a flash request
generator and we do not need reorder buffers.

4.5 Optimizing Garbage Collection

The LSM-tree appends all the data to the flash. As compaction
is repeated, obsolete data, which are no longer referenced to
by the tree, are accumulated in the flash and must be erased
by GC later. There are roughly two types of obsolete data
that are created by compaction. The first type is old meta
segments. While performing compaction, PinK writes new
meta segments that replace old ones. For example, the meta
segments stored in the pages 0, 1, and 2 in Figure 5 are not
managed by the tree anymore since they contain old indices.
The second type is an outdated KV object which was updated
with a new one or removed by a client. Outdated KV indices
are discarded from the LSM-tree during compaction (see
§4.4) so that no meta segments point to them. But, their KV
data are still stored somewhere in a data segment(s).

To erase obsolete data and to keep maintaining free space,
PinK triggers GC when free space is nearly exhausted. It
selects a victim flash block, copies valid data (i.e., pages or
KV pairs) to a free block, and erases the victim. For hot-cold
separation, meta segments are isolated in different blocks
from data segments. PinK should perform GC differently
depending on the type of blocks selected as a victim.

GC for Meta Segment: If a victim block to GC is a meta-
segment block and thus has only meta segments, PinK re-
trieves a start key of a meta segment by reading its page.
Then, it looks up the level lists to see if there is any entry
pointing to it. If not, PinK skips it since that segment is obso-
lete (e.g., the page 4 in Figure 5). Otherwise (e.g., the page 5),
it moves the page (i.e., meta segment) to a free page, and then
updates the entry so that it locates a new flash page. Cleaning
meta segments is cheap because it involves valid page copies
and updates of the level lists in DRAM.

GC for Data Segment: Cleaning a data-segment block
requires more efforts. Each data segment keeps metadata
(i.e., keys and sizes) as noted in §4.1. By scanning a data
segment from the victim block, PinK extracts keys for values
to move for GC. Using these numbers, PinK looks up the

180 2020 USENIX Annual Technical Conference USENIX Association

level lists and finds associated meta segments to check the
validity (valid or not) of each value. If a meta segment is not
pinned in DRAM, it must be read from the flash. In this way,
PinK collects a list of valid values in the victim.

The simplest approach to reclaim free space, which is used
by Wisckey, is to copy valid values to free pages and to erase
the victim block. The meta segments associated with the val-
ues should be updated and flushed out to the flash so that
they point to the new locations of the values. For meta seg-
ments pinned in DRAM, no flash writes are necessary. This
approach, however, creates many updates on meta segments
in the flash. We observe that many victim values are asso-
ciated with flash-resident meta segments because they were
written long time ago and their meta segments were likely to
be demoted to lower levels. Moreover, only few values belong
to the same meta segment (e.g., 1∼2 values, on average, in
random write workloads). Thus, to move only 1∼2 values,
one meta-segment update is required.

To avoid this, PinK takes an approach that delays updates
of meta segments in the flash. PinK writes valid KV pairs to
L0 again and then just erases the victim block. Corresponding
meta segments now point to wrong flash pages erased by
GC, but this is not a problem at all. Read requests to the
rewritten KV pairs are served by higher levels, and old entries
in the meta segments will eventually be discarded during
compaction later. This approach slightly increases compaction
costs, but greatly reduces GC costs by reducing meta segment
updates. This is because victim KV pairs rewritten to L0 are
coalesced with neighboring KV pairs and then are written to
the same meta segment together.

Note that since KV pairs sitting in lower levels are moved
to L0 during GC, it possibly hurts read latency. However, it
does not affect the worst-case read latency, which is one of our
design goals, because it is bounded by the number of pinned
levels.

4.6 Durability and Scalability Issues

Durability with Limited Capacitor: We have assumed that
a built-in capacitor in the device can protect the entire DRAM.
However, unlike high-end enterprise SSDs, some SSDs do
have not enough capacitors to protect all the metadata in
DRAM. Running PinK on such devices results in a metadata
durability issue. PinK can address this issue by regularly
writing data structures that reside in DRAM (e.g., level lists,
pinned levels, and L0) into flash. L0 can be durable by logging
incoming write requests into a log area in the flash before
processing the requests. Hash-based KV-SSD also needs to
do the same task if its write buffer is not backed by capacitors.
Level lists and pinned levels become dirty after compaction
is conducted. PinK should flush out newly created level lists
as well as pinned levels to the flash to make them persistent.
Hash-based KV-SSD has to write dirty KV indices to in-flash
buckets as well whenever they are updated. The metadata

flush operation of PinK would be cheaper than that of hash-
based KV-SSD, thanks to the write-optimized structure of
LSM-tree.

DRAM Scalability: We have also assumed that the size of
DRAM scales as the size of flash in SSDs (i.e., DRAM capac-
ity is kept 0.1% of the total capacity of flash). As mentioned
in Section 2.5, the size of DRAM scales slower than that of
flash. Thus, SSDs might ship with insufficient DRAM to pin
all the top levels. This problem can be resolved by pinning
fewer levels. It increases the worst-case index lookup cost,
but PinK offers better worst-case performance than the hash
and the conventional LSM-tree. The details are discussed in
the last experiment of Section 5.2 Another option we can
consider is reducing the height of the tree so that all the levels,
except for the last one, can fit into DRAM. This sacrifices
write performance owing to increased compaction cost, but
bounds O(1) lookup cost in the worst case.

5 Experiments

We present experimental results on PinK. Particularly, we
seek to answer the following questions: (i) Does the level
pinning improves both read latency and write throughput
along with shorter tails? (ii) Is the HW sorter effective to
reduce the compaction cost? (iii) What is the impact of GC
on performance?

5.1 Experimental Setup
We have implemented PinK on our FPGA-based SSD plat-
form with quad-core ARM Cortex-A53 (Xilinx ZCU102 [48]).
The FPGA is used to implement HW accelerators and flash
chip controller. The SSD platform has a 256GB custom flash
array card. The size of a page is 8 KB, and the number of
pages per block is 256. (See §3.2 for more detailed perfor-
mance numbers.) It is connected to a host through 10 GbE
(1.25 GB/s) whose bandwidth is high enough to saturate the
maximum throughput of the flash array card. The I/O queue
depth is set to 64, which is sufficient to fully utilize the par-
allelism of 8-channel and 8-way in our flash array card. We
scale down the SSD capacity to 64GB, and DRAM for KV
indexing structures (e.g., the level lists and pinned meta seg-
ments) is set to 64MB – 0.1% of the SSD capacity.

We evaluate PinK using seven workloads from YCSB, a
realistic cloud benchmark [13]. The details of the workloads
are described in Table 1. Default key and value sizes are set

Table 1: A summary of YCSB workloads

Load A B C D E F

R:W ratio 0:100 50:50 95:5 100:0 95:5 95:5
50:50*

(*RMW)
Query type Point Range Point

Request distribution Uniform Zipfian Latest [13] Zipfian

USENIX Association 2020 USENIX Annual Technical Conference 181

 0

 10

 20

 30

 40

 50

 60

Load A B C D E F

T
h

ro
u

g
h

p
u

t
(K

IO
P

S
)

Hash
LSM-tree

PinK
PinK+HW

Figure 8: Overall throughputs of the four KV-SSD setups

to 32B and 1KB, respectively, which represent averages of
common KV workloads [5]. For evaluation, we first created
a 44GB KV pool on the 64GB SSD (‘Load’ in Table 1) –
total 44M unique KV pairs are written. Then, we ran each
workload (‘A’∼‘F’ in Table 1) which sends 10M KV requests
to the loaded data set. We initialized the SSD with the Load
phase before any other workload executed. On the host, 64
YCSB clients ran simultaneously to maximize throughput.
With 44GB data, the storage utilization was 69%. We assigned
10% of the SSD capacity (i.e., 6.4GB), for over-provisioning.

To compare with PinK, we have implemented a hash-based
KV-SSD based on what we described in §2.3. The KV-SSD
denoted by Hash uses an 8-bit signature for each KV pair to
balance a hash-table size and a signature collision rate. Note
that, in our experimental setup with a relatively small data set,
the 8-bit signature is large enough to provide a low collision
rate. It requires 320MB of the hash table, which is much larger
than the 64MB of DRAM for indexing. Therefore, Hash keeps
only popular buckets in DRAM using the LRU replacement
policy. Hash uses additional 1MB DRAM for a write buffer.

We compare Hash with two PinK configurations: one with
no HW accelerator (PinK) and the other with HW accelera-
tors (PinK+HW). The conventional LSM-tree implementation
based on LightStore [11] (LSM-tree) is included for our eval-
uation. LSM-tree is equivalent to PinK, except that it does
not employ the optimization techniques explained from §4.2
to §4.5. For PinK, PinK+HW, and LSM-tree, the number of
total levels is set to 5. PinK and PinK+HW pin top-3 levels,
k = 3. The meta segment size is the same as an 8KB page
size. With 8KB meta segments, the amounts of DRAM for the
level lists is 10MB (including both prefix and range pointers).
The rest of DRAM, 54MB, thus can be used to pin levels.
LSM-tree uses 9MB for level lists and 55MB of DRAM for
bloom filters. As in Hash, for L0 (a write buffer), 1MB DRAM
is additionally assigned to PinK, PinK+HW, and LSM-tree.

5.2 Performance Analysis
YCSB Throughput: We measured IOPS of the four KV-SSD
setups (Hash, LSM-tree, PinK, and PinK+HW) using YCSB.
Figure 8 shows the results. PinK+HW outperformed Hash and
LSM-tree, providing 37% and 44% higher throughputs, on

 1

 1.5

 2

 2.5

 3

A B C D E F

#
 o

f
fl
a
s
h
 p

a
g
e
 r

e
a
d
s Hash

LSM-tree
PinK

(a) Flash page reads per query

 0

 10

 20

 30

 40

 50

 60

 70

 80

Load A B C D E F
0

P
e
rc

e
n
ta

g
e
 (

%
)

LSM-tree
PinK

(b) Compaction I/Os

Figure 9: The impact of the level pinning on flash read I/Os
(a) and compaction I/Os (b)

average, respectively. LSM-tree suffered seriously from high
CPU overheads caused by rebuilding bloom filers as well as
sorting KV pairs. By eliminating bloom filters and reducing
compaction I/Os, PinK improved IOPS by 34%, on average,
over LSM-tree. Using the HW accelerators for sorting further
improved the performance. As depicted in Figure 8, PinK+HW
achieved 7.2% higher IOPS than PinK on average.

Those benefits of PinK were evident for the workloads with
many writes. For Load, YCSB-A, and YCSB-F, we observed
that PinK+HW improved IOPS by 56∼152% and 10∼21% over
LSM-tree and PinK, respectively. Even with the workloads
having relatively small writes (i.e., YCSB-B, D), PinK+HW
exhibited 14∼24% and 3% higher IOPS than LSM-tree and
PinK, respectively. For the read-only workload, YCSB-C, no
performance benefits were observed with PinK and PinK+HW.

One of the observations we did not expect was that PinK
significantly outperformed LSM-tree for YCSB-D which is-
sues only a small number of writes. This was due to the
somewhat unique I/O behavior of YCSB-D that read recently-
written KV pairs frequently. In PinK, recently-written KV
pairs were stored in top levels pinned to DRAM. Thus, the
majority of GET() requests were directly served by pinned
levels, avoiding flash I/Os.
LSM-tree performed worse than Hash for the write-

intensive benchmarks (Load, YCSB-A and F) owing to CPU
overheads, but exhibited higher IOPS for the read-oriented
workloads (YCSB-B, C and D). For YCSB-E with range
queries, the LSM-tree-based KV-SSDs showed much higher
IOPS than Hash, thanks to their sorted indexing structure.

Impact of Level Pinning: Figure 9 shows the impact of
the level pinning on read and write I/O counts. As shown
in Figure 9(a), PinK reduced the number of flash reads per
query by 33% and 62% over LSM-tree and Hash, respectively.
Since PinK pinned exact KV indices in DRAM, it eliminated
many flash reads.
Hash was badly affected from hash misses and collisions.

Hash maintained only signatures in DRAM. Thus, even when
it has hits on SET() requests, it had to retrieve exact keys
from flash unless designated buckets were empty. LSM-tree
exhibited two flash page reads per query: one for a KV in-
dex and the other for a value (1 KB). This is because Monkey
bloom filters [14] used in LSM-tree requires one read to fetch

182 2020 USENIX Annual Technical Conference USENIX Association

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 2.5 5

A

C
D

F

Time (ms)

PinK PinK+HW

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 2.5 5

B
Time (ms)

Hash LSM-tree

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 2.5 5

C
Time (ms)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 2.5 5

D
Time (ms)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 20

E
Time (ms)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 2.5

F
Time (ms)

Figure 10: CDF graphs of read latency of Hash, LSM-tree, PinK, and PinK+HW under YCSB

indices, on average. For YCSB-D and E, the number of reads
per query was less than 2. Since YCSB-D tends to read re-
cently written KV pairs, many of GET()s were directly served
by L0 or pinned levels. YCSB-E contained range queries, so
LSM-tree could fetch several desired KV indices by one read.

Figure 9(b) shows the percentage of compaction I/O out of
the total I/O for LSM-tree operations (both reads and writes).
By absorbing many index updates in pinned levels, it reduced
the number of compaction I/Os by 52% over LSM-tree. Ex-
cept for Load and YCSB-A with many writes, compaction
I/Os only accounted for less than 20% of the total I/Os. How-
ever, as shown in Figure 8, the negative impact of compaction
I/O ratio on the throughput was significant.

YCSB Read Latency: Figure 10 shows CDF graphs of
read response times of the four KV-SSD setups. Table 2
also lists average, 99th, 99.9th, and 99.99th percentile read
latency of Hash, LSM-tree, and PinK. As expected, PinK
and PinK+HW showed better average latency with shorter tails
compared to the others. Thanks to bloom filters, LSM-tree
performed fairly well compared to hash-based one, but had
long tails as expected. Hash suffered from long tails due
to multiple flash I/Os caused by hash misses and collisions.
YCSB-E showed longer latency than the others because it
issued range queries that carry multiple GET() commands.

Impact of Search Path Optimization: To understand the
impact of the search path optimization, we carried out ex-
periments with optimization techniques enabled one by one.
NO-OPT represents PinK with no optimization, Range is PinK
with range pointers, and ALL is with both range pointers and
prefix. We used Load and YCSB-C workloads.

Table 2: Comparison of average and tail latency (unit: µs)

Percentile A B C D E F

Hash

Average 410 573 592 501 5,628 370
99th 2,180 2,550 2,900 3,030 17,550 1,850

99.9th 4,180 4,600 5,710 5,090 25,360 3,260
99.99th 9,430 9,340 9,830 7,530 34,420 5,180

LSM-tree

Average 302 395 722 294 3,142 329
99th 640 960 1,870 890 5,790 680

99.9th 1,700 1,630 2,680 1,370 8,800 1,890
99.99th 5,250 3,140 3,450 3,210 10,740 3,750

PinK

Average 236 290 732 161 3,027 248
99th 490 700 1,820 490 5,550 540

99.9th 670 1,040 2,180 720 6,640 800
99.99th 1,300 1,800 2,370 1,060 7,590 1,540

Figure 11 (a) shows the throughputs under Load and YCSB-
C. For Load, there were slight performance drops as the
optimization technique was added. This was due to over-
heads required for managing additional data structures. These
were not significant. For YCSB-C with 100% reads, high
throughput improvements were observed. In particular, ALL
exhibited almost the same read throughput as LSM-tree. This
means that the search overheads were almost eliminated.
While LSM-tree has the same worst case computation time
of O(h2 · log(T)) as that of NO-OPT, LSM-tree has better
throughput because its Bloom filter can much improve the
average computation overhead by skipping searching of many
levels. Figure 11 (b) presents the CDF of read latency un-
der YCSB-C. We observed similar performance trends. ALL
showed almost the same read latency as LSM-tree but with
shorter tails.

Garbage Collection: With all the workloads of YCSB, GC
did not involve many valid page copies. This was because
almost all of the victim blocks were meta-segment blocks that
held invalid KV indices. To simulate a situation where GC
severely triggered, we designed another set of experiments.
We first created a KV pool with 44M unique KV pairs, and
then ran a synthetic workload that issued 100M SET()s with
uniformly random keys to overwrite existing KV pairs. WAF
reached 3.27 and became stable with little fluctuation after
90M SET()s were issued. This indirectly confirms that we
issued sufficient I/Os to induce heavy GC I/O traffic.

Figure 12 analyzes the number of page writes issued during
GC. Hash involved a smaller number of page writes for GC
than PinK. After moving valid flash pages, both Hash and
PinK have to update in-flash hash buckets or meta segments

 0

 20

 40

 60

Load YCSB-C

K
IO

P
S

LSM-tree
NO-OPT
+RANGE
+ALL

(a) Throughput

 0.95

 0.96

 0.97

 0.98

 0.99

 1

1 2 3

C
D

F

Time (ms)

LSM-tree
NO-OPT
+RANGE
+ALL

(b) Read Latency

Figure 11: Impact of search path optimizations

USENIX Association 2020 USENIX Annual Technical Conference 183

 0

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

Hash

PinK

PinK+GCOPT

#
 o

f
P

a
g
e
 W

ri
te

s
 (

8
 K

B
)

Data

GC

Compaction

KV Indices

Figure 12: Analysis of GC cost: ‘Data’ represents pages writ-
ten by SET(). ‘GC’ indicates pages written to move valid
values for GC. ‘Compaction’ represents pages written to meta
segments during compaction. ‘KV Indices’ indicates pages
written to update meta segments or in-flash hash indices.

so that they point to the new locations of the moved pages
(denoted by ‘KV Indices’ in Figure 12). Since a bucket size
of Hash (8B signatures) is smaller than that of PinK (32B
keys), more buckets are packed into a single flash page for
Hash. Thus, the number of flash page I/O for updating KV
indices becomes smaller than that of PinK. Even worse, PinK
suffered from extra compaction I/Os.
PinK+GCOPT addresses this problem by rewriting victim

KV pairs to L0, instead of directly updating meta segments
(see §4.5). This removed all flash writes associated with ‘KV
Indices’, but potentially increased compaction costs since the
indices for the victim pages in L0 will be eventually written
to meta segments again. This extra compaction cost was not
so high. We observed that victim KV pairs in L0 were likely
to be coalesced with neighboring KV pairs and their indices
were written to the same meta segment together.

Our results tell us that the compaction I/O cost of the LSM-
tree, which is considered a major reason that makes people
choose the hashing rather than the LSM-tree, is actually not a
serious problem in achieving high I/O performance.

Read Latency and LSM-tree Height (h): Until now we
have assumed that h and k are fixed to 5 and 3, respectively,
and except for the last level, the rest is pinned to DRAM.
As explained earlier (§4.2), this is a reasonable setup given
that it required DRAM as small as 0.1% of flash storage
and modern SSDs have more DRAM than that. However, to
improve write performance further [31], one might want to
increase the height of the tree. Unfortunately, as the tree gets
taller, PinK cannot pin all the higher levels to DRAM. Given
64MB DRAM, for example, for h = 6, 7, and 8, the amount
of DRAM required to pin all the levels but the last one are
176, 292, and 437MB, respectively. For h = 6 and 7, PinK
cannot pin two lowest levels, and, for h = 8, the last three
levels cannot be pinned. Even in such cases, the worst-case
read latency can be bounded, but it increases to 3 reads (for h
= 6 and 7) and 4 reads (for h = 8).

To understand its impact, using YCSB-C (100% reads), we
measured the number of flash reads per query with various
tree heights (h). Figure 13 shows the average read counts
and 99.99th percentile read counts of LSM-tree and PinK.
The average read count of LSM-tree was close to 2. Again,

 0

 2

 4

 6

 8

4 5 6 7 8

(a) Bloom filter

99.99
th

avg.

#
 o

f
fl
a

s
h

 p
a

g
e

 r
e

a
d

s

of Levels (h)

4 5 6 7 8

(b) PinK

of Levels (h)

3

3.5

4

6 7 8

Figure 13: The number of flash page reads with varying h

regardless of h, Monkey required one flash read for fetching
KV indices, on average. However, owing to its probabilistic
nature, the tail latency increased greatly, and the gap between
the tail and the average got wider as h increased.

Unlike LSM-tree, PinK exhibited stable read counts.
While the average read count increased along with h, the
worst-case read count was bounded as O(h − k − 1). For
YCSB-C, there were no huge differences between the av-
erage and the tail read counts. This is because YCSB-C had
low temporal locality and thus the majority of GET() were
served by the flash-resident last level This experimental re-
sults confirm that PinK can provide more stable read latency
even when h is set high and all the levels cannot be pinned to
DRAM.

6 Conclusion

We have presented a novel LSM-tree-based KV-SSD design,
called PinK. By pinning KV indices of top levels of the LSM-
tree to DRAM, PinK is able to guarantee the worst-case read
latency, while improving average read latency. Moreover, by
combining the level pinning with hardware accelerators, PinK
not only eliminated sorting overheads, but reduced I/O opera-
tions related to compaction greatly. Our experimental results
show that PinK outperformed existing hash-based KV-SSDs
in tail read-latency, average read-latency, and I/O throughput.
In future, we plan to explore the idea of the level pinning in
general-purpose KVS like RocksDB. We think the main chal-
lenge in realizing this idea is providing durability for pinned
levels in the host system. Using emerging technologies such
as persistent memory may offer a solution.

Acknowledgments

We would like to thank our shepherd, Dr. Rusty Sears, and
four anonymous reviewers for all their helpful comments.
We also thank Samsung Electronics for providing KV-SSD
prototypes. This work was supported by Samsung Research
Funding & Incubation Center of Samsung Electronics un-
der Project Number SRFC-IT1701-11. Arvind and Chanwoo
Chung was partially funded by NSF (CCF-1725303) and Sam-
sung Semiconductor (GRO grants). PinK source code can be
found at [1] and [2].

184 2020 USENIX Annual Technical Conference USENIX Association

References

[1] PinK HW Source Code. https://github.com/
chanwooc/lightstore-platform/tree/pink-hw.

[2] PinK SW Source Code. https://github.com/
dgist-datalab/PinK.

[3] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T.,
DAVIS, J. D., MANASSE, M. S., AND PANIGRAHY,
R. Design Tradeoffs for SSD Performance. In Pro-
ceedings of the USENIX Annual Technical Conference
(2008).

[4] ASHKIANI, S., LI, S., FARACH-COLTON, M.,
AMENTA, N., AND OWENS, J. D. GPU LSM: A
Dynamic Dictionary Data Structure for the GPU.
In Proceedings of IEEE International Parallel and
Distributed Processing Symposium (2018), pp. 430–440.

[5] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG,
S., AND PALECZNY, M. Workload Analysis of a Large-
scale Key-value Store. In Proceedings of the ACM SIG-
METRICS/PERFORMANCE Joint International Con-
ference on Measurement and Modeling of Computer
Systems (2012), pp. 53–64.

[6] AXBOE, J. FIO: Flexible I/O Tester Synthetic Bench-
mark. URL https://github.com/axboe/fio (Accessed:
2015-06-13) (2005).

[7] BAE, D.-H., JO, I., CHOI, Y. A., HWANG, J.-Y., CHO,
S., LEE, D.-G., AND JEONG, J. 2B-SSD: The Case for
Dual, Byte- and Block-addressable Solid-state Drives.
In Proceedings of the Annual International Symposium
on Computer Architecture (2018), pp. 425–438.

[8] BENDER, M. A., FARACH-COLTON, M., JOHNSON,
R., KRANER, R., KUSZMAUL, B. C., MEDJEDOVIC,
D., MONTES, P., SHETTY, P., SPILLANE, R. P., AND
ZADOK, E. Don’t Thrash: How to Cache Your Hash
on Flash. Proceedings of the VLDB Endowment 5, 11
(2012).

[9] CHANDRAMOULI, B., PRASAAD, G., KOSSMANN, D.,
LEVANDOSKI, J., HUNTER, J., AND BARNETT, M.
Faster: A Concurrent Key-value Store with In-place
Updates. In Proceedings of the ACM International Con-
ference on Management of Data (2018), ACM, pp. 275–
290.

[10] CHAZELLE, B., AND GUIBAS, L. J. Fractional Cascad-
ing: I. A Data Structuring Technique. Algorithmica 1, 1
(1986), pp. 133–162.

[11] CHUNG, C., KOO, J., IM, J., ARVIND, AND LEE, S.
LightStore: Software-defined Network-attached Key-
value Drives. In Proceedings of the International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (2019), pp. 939–953.

[12] COLGROVE, J., DAVIS, J. D., HAYES, J., MILLER,
E. L., SANDVIG, C., SEARS, R., TAMCHES, A., VACH-
HARAJANI, N., AND WANG, F. Purity: Building Fast,
Highly-Available Enterprise Flash Storage from Com-
modity Components. In Proceedings of the ACM Inter-
national Conference on Management of Data (2015),
pp. 1683–1694.

[13] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKR-
ISHNAN, R., AND SEARS, R. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
ACM symposium on Cloud computing (2010), pp. 143–
154.

[14] DAYAN, N., ATHANASSOULIS, M., AND IDREOS, S.
Monkey: Optimal Navigable Key-value Store. In Pro-
ceedings of the ACM International Conference on Man-
agement of Data (2017), pp. 79–94.

[15] DAYAN, N., AND IDREOS, S. Dostoevsky: Better Space-
time Trade-offs for LSM-tree based Key-value Stores
via Adaptive Removal of Superfluous Merging. In Pro-
ceedings of the ACM International Conference on Man-
agement of Data (2018), pp. 505–520.

[16] DEBNATH, B., SENGUPTA, S., AND LI, J. FlashStore:
High Throughput Persistent Key-value Store. Proceed-
ings of the VLDB Endowment 3, 1-2 (2010), pp. 1414–
1425.

[17] FACEBOOK, INC. RocksDB: A Persistent Key-value
Store for Fast Storage Environments. https://
rocksdb.org.

[18] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL:
A Flash Translation Layer Employing Demand-based
Selective Caching of Page-level Address Mappings. In
Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (2009), pp. 229–240.

[19] HERLIHY, M., SHAVIT, N., AND TZAFRIR, M. Hop-
scotch Hashing. In International Symposium on Dis-
tributed Computing (2008), Springer, pp. 350–364.

[20] IC KNOWLEDGE LLC. Lithovision-2020: Economics
in the 3D Era. https://semiwiki.com/wp-content/
uploads/2020/03/Lithovision-2020.pdf.

[21] JIN, Y., TSENG, H.-W., PAPAKONSTANTINOU, Y.,
AND SWANSON, S. KAML: A Flexible, High-
performance Key-value SSD. In Proceedings of the

USENIX Association 2020 USENIX Annual Technical Conference 185

https://github.com/chanwooc/lightstore-platform/tree/pink-hw
https://github.com/chanwooc/lightstore-platform/tree/pink-hw
https://github.com/dgist-datalab/PinK
https://github.com/dgist-datalab/PinK
https://rocksdb.org
https://rocksdb.org
https://semiwiki.com/wp-content/uploads/2020/03/Lithovision-2020.pdf
https://semiwiki.com/wp-content/uploads/2020/03/Lithovision-2020.pdf

IEEE International Symposium on High Performance
Computer Architecture (2017), pp. 373–384.

[22] JUN, S.-W., LIU, M., LEE, S., HICKS, J., ANKCORN,
J., KING, M., XU, S., AND ARVIND. BlueDBM: An
Appliance for Big Data Analytics. In Proceedings of
the Annual International Symposium on Computer Ar-
chitecture (2015), pp. 1–13.

[23] KAI REN, G. G. TABLEFS: Enhancing Metadata Effi-
ciency in the Local File System. In Proceedings of the
USENIX Annual Technical Conference (2013).

[24] KANG, Y., PITCHUMANI, R., MISHRA, P., KEE, Y.-S.,
LONDONO, F., OH, S., LEE, J., AND LEE, D. D. G.
Towards Building a High-performance, Scale-in Key-
value Storage System. In Proceedings of the ACM In-
ternational Conference on Systems and Storage (2019),
pp. 144–154.

[25] KIM, S.-H., KIM, J., JEONG, K., AND KIM, J.-S.
Transaction Support using Compound Commands in
Key-Value SSDs. In Proceedings of the USENIX Work-
shop on Hot Topics in Storage and File Systems (July
2019).

[26] KOURTIS, K., IOANNOU, N., AND KOLTSIDAS, I.
Reaping the Performance of Fast NVM Storage with
uDepot. In Proceedings of the USENIX Conference on
File and Storage Technologies (2019), pp. 1–15.

[27] LAKSHMAN, A., AND MALIK, P. Cassandra: A De-
centralized Structured Storage System. ACM SIGOPS
Operating Systems Review 44, 2 (2010), pp. 35–40.

[28] LEE, C.-G., KANG, H., PARK, D., PARK, S., KIM, Y.,
NOH, J., CHUNG, W., AND PARK, K. iLSM-SSD: An
Intelligent LSM-tree based Key-Value SSD for Data An-
alytics. In Proceedings of the IEEE International Sym-
posium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (2019), pp. 384–
395.

[29] LEPERS, B., BALMAU, O., GUPTA, K., AND
ZWAENEPOEL, W. KVell: The Design and Imple-
mentation of a Fast Persistent Key-Value Store. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles (2019), pp. 447–461.

[30] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. WiscKey: Separating Keys
from Values in SSD-conscious Storage. In Proceed-
ings of the USENIX Conference on File and Storage
Technologies (2016), pp. 133–148.

[31] LUO, C., AND CAREY, M. J. LSM-based Storage Tech-
niques: a Survey. The VLDB Journal (2019).

[32] MÁRMOL, L., SUNDARARAMAN, S., TALAGALA, N.,
RANGASWAMI, R., DEVENDRAPPA, S., RAMSUNDAR,
B., AND GANESAN, S. NVMKV: A Scalable and
Lightweight Flash Aware Key-value Store. In Proceed-
ings of the USENIX Conference on Hot Topics in Storage
and File Systems (2014).

[33] NGD SYSTEMS, INC. NGD Catalina NVMe SSD.
https://www.ngdsystems.com/products/, 2018.

[34] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL,
E. The Log-structured Merge-tree (LSM-tree). Acta
Informatica 33, 4 (1996), pp. 351–385.

[35] PAGH, R., AND RODLER, F. F. Cuckoo Hashing. Jour-
nal of Algorithms 51, 2 (2004), pp. 122–144.

[36] ROSENBLUM, M., AND OUSTERHOUT, J. K. The De-
sign and Implementation of a Log-structured File Sys-
tem. ACM Transactions on Computer Systems (TOCS)
10, 1 (1992), pp. 26–52.

[37] SAMSUNG ELECTORNICS. Samsung Smart SSD.
https://samsungatfirst.com/smartssd-ocp/,
2018.

[38] SAMSUNG ELECTRONICS. KV SSD Host Software
Package. https://github.com/OpenMPDK/KVSSD.

[39] SAMSUNG ELECTRONICS. Samsung
Introduces World’s Largest Capacity
(15.36TB) SSD for Enterprise Storage Sys-
tems. https://news.samsung.com/global/
samsung-now-introducing-worlds-largest-capacity-15-36tb-ssd-for-enterprise-storage-systems,
2016.

[40] SAMSUNG ELECTRONICS. Samsung Key
Value SSD enables High Performance Scaling.
https://www.samsung.com/semiconductor/
global.semi.static/Samsung_Key_Value_SSD_
enables_High_Performance_Scaling-0.pdf,
2017.

[41] SAMSUNG ELECTRONICS. 860EVO SSD Specifica-
tion. https://www.samsung.com/semiconductor/
global.semi.static/Samsung_SSD_860_EVO_
Data_Sheet_Rev1.pdf, 2018.

[42] SAMSUNG ELECTRONICS. KV SSD Firmware Intro-
duction. https://github.com/OpenMPDK/KVSSD/
wiki/presentation/kvssd_seminar_2018/kvssd_
seminar_2018_fw_introduction.pdf, 2018.

[43] SAMSUNG ELECTRONICS. 960PRO SSD Specifica-
tion. https://www.samsung.com/semiconductor/
minisite/ssd/product/consumer/ssd960/, 2019.

186 2020 USENIX Annual Technical Conference USENIX Association

https://www.ngdsystems.com/products/
https://samsungatfirst.com/smartssd-ocp/
https://github.com/OpenMPDK/KVSSD
https://news.samsung.com/global/samsung-now-introducing-worlds-largest-capacity-15-36tb-ssd-for-enterprise-storage-systems
https://news.samsung.com/global/samsung-now-introducing-worlds-largest-capacity-15-36tb-ssd-for-enterprise-storage-systems
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://github.com/OpenMPDK/KVSSD/wiki/presentation/kvssd_seminar_2018/kvssd_seminar_2018_fw_introduction.pdf
https://github.com/OpenMPDK/KVSSD/wiki/presentation/kvssd_seminar_2018/kvssd_seminar_2018_fw_introduction.pdf
https://github.com/OpenMPDK/KVSSD/wiki/presentation/kvssd_seminar_2018/kvssd_seminar_2018_fw_introduction.pdf
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/

[44] SHEEHY, J., AND SMITH, D. Bitcask: A Log-structured
Hash Table for Fast Key/value Data. Basho White Paper
(2010).

[45] SNIA. Key Value Storage API Specification Version
1.0. https://www.snia.org/tech_activities/
standards/curr_standards/kvsapi.

[46] TWITTER INC. Fatcache: Memcache on SSD. https:
//github.com/twitter/fatcache.

[47] WANG, J., ZHANG, Y., GAO, Y., AND XING, C. pLSM:
A Highly Efficient LSM-Tree Index Supporting Real-
Time Big Data Analysis. In Proceedings of IEEE Annual
Computer Software and Applications Conference (2013),
pp. 240–245.

[48] XILINX. Xilinx Zynq UltraScale+ MPSoC ZCU102
Evaluation Kit. https://www.xilinx.com/
products/boards-and-kits/ek-u1-zcu102-g.
html, 2018.

[49] XU, S., LEE, S., JUN, S.-W., LIU, M., HICKS, J.,
ET AL. Bluecache: A Scalable Distributed Flash-based
Key-value Store. Proceedings of the VLDB Endowment
10, 4 (2016), pp. 301–312.

USENIX Association 2020 USENIX Annual Technical Conference 187

https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://github.com/twitter/fatcache
https://github.com/twitter/fatcache
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

OPTIMUSCLOUD: Heterogeneous Configuration Optimization for Distributed
Databases in the Cloud

Ashraf Mahgoub
Purdue University

Alexander Medoff
Purdue University

Rakesh Kumar
Microsoft

Subrata Mitra
Adobe Research

Ana Klimovic
Google Research

Somali Chaterji
Purdue University

Saurabh Bagchi
Purdue University

Abstract
Achieving cost and performance efficiency for cloud-hosted
databases requires exploring a large configuration space, in-
cluding the parameters exposed by the database along with
the variety of VM configurations available in the cloud. Even
small deviations from an optimal configuration have signifi-
cant consequences on performance and cost. Existing systems
that automate cloud deployment configuration can select near-
optimal instance types for homogeneous clusters of virtual
machines and for stateless, recurrent data analytics workloads.
We show that to find optimal performance-per-$ cloud deploy-
ments for NoSQL database applications, it is important to
(1) consider heterogeneous cluster configurations, (2) jointly
optimize database and VM configurations, and (3) dynami-
cally adjust configuration as workload behavior changes. We
present OPTIMUSCLOUD, an online reconfiguration system
that can efficiently perform such joint and heterogeneous con-
figuration for dynamic workloads. We evaluate our system
with two clustered NoSQL systems: Cassandra and Redis,
using three representative workloads and show that OPTIMUS-
CLOUD provides 40% higher throughput/$ and 4.5× lower
99-percentile latency on average compared to state-of-the-art
prior systems, CherryPick, Selecta, and SOPHIA.

1 Introduction

Cloud deployments reduce initial infrastructure investment
costs and provide many operational benefits. An important
class of cloud deployments is NoSQL databases, which al-
low applications to scale beyond the limits of traditional
databases [17]. Popular NoSQL databases such as Cassandra,
Redis, and MongoDB, are widely used in web services, big
data services, and social media platforms. Tuning cloud-based
NoSQL databases for performance1 under cost constraints is
challenging due to several reasons.

1We use the standard metrics of throughput and (tail) latency for measur-
ing database performance. Specifically, we target maximizing throughput
normalized by price in $, i.e., performance-per-unit-$ or Perf/$ for short.

First, the search space is very large due to VM configura-
tions and database application configurations. For example,
cloud services provide many VMs that vary in their CPU-
family, number of cores, RAM size, storage, network band-
widths, etc., which affect the VM’s $ cost. At the time of
writing, AWS provides 133 instance types while Azure pro-
vides 146 and their prices vary by a factor of 5,000×. On
the NoSQL side, there are many performance-impacting con-
figuration parameters. For example, Cassandra has 25 such
parameters and sub-optimal parameter setting for one parame-
ter (e.g., the Compaction method) can degrade throughput by
3.4× from the optimal. On the cloud side too, selecting the
right VM type and size is essential to achieve the best Perf/$.

Second, there is the need for joint optimization while tak-
ing into account the dependencies between the NoSQL-level
and VM-level configurations. For example, our evaluation
shows that the optimal cache size of Cassandra for a VM type
M4.large (with 8GB of RAM) is 8× the optimal cache size
for C4.large (with 3.75GB RAM). Additionally, larger-sized
VMs do not always provide better Perf/$ [67] as they may
overprovision resources and unnecessarily increase the $ cost.

Third, there are many use cases of cloud applications where
the workload characteristics change over time, sometimes
unpredictably, necessitating reconfigurations [7,11]. A con-
figuration that is optimal for one phase of the workload can
become very poor for another phase of the workload. For
example, in Cassandra, with a large working set size, reads
demand instances with high memory, while writes demand
high compute power and fast storage.

Changing the configuration at runtime for NoSQL
databases, which are stateful applications (i.e., with persis-
tent storage), has a performance impact due to the downtime
caused to the servers being reconfigured. Therefore, for fast
changing workloads, frequent reconfiguration of the over-
all cluster could severely degrade performance [41]. Conse-
quently, deciding which subset of servers to reconfigure is vi-
tal to minimize reconfiguration performance hit and to achieve
globally optimal Perf/$ while respecting the user’s availability
requirements. However, changing the configurations of only

USENIX Association 2020 USENIX Annual Technical Conference 189

c4
.2

xl
ar

ge
($

0.
39

8/
h)

m
4.

xl
ar

ge
($

0.
20

/h
)

m
4.

2x
la

rg
e

($
0.

40
/h

)

r4
.la

rg
e

($
0.

13
3/

h)

r4
.x

la
rg

e
($

0.
26

6/
h)

r4
.2

xl
ar

ge
($

0.
53

2/
h)

0

10

20

30

40

Th
ro

ug
hp

ut
 (K

Op
s/

s) Best Config Default Config Worst Config

Figure 1: Violin plot showing performance (throughput) of Best, Default,
and Worst database configurations across different EC2 VM types.

a subset of servers naturally leads to heterogeneous clusters,
which no prior work is equipped to deal with.

Existing Solutions: State-of-the-art cloud configuration
tuners such as CherryPick [5] and Selecta [32] focus mainly
on stateless, recurring workloads, such as big-data analyt-
ics jobs, while Paris [67] relies on a carefully chosen set of
benchmarks that can be run offline to fingerprint which ap-
plication is suitable for which VM type. Due to their target
of static workloads and stateless jobs, a single cloud config-
uration is selected based on a representative workload and
then fixed throughout the operation period. However, small
workload changes can cause these “static tuners” to produce
drastically degraded configurations. For example, a 25% in-
crease in workload size with CherryPick makes the proposed
configuration 2.6× slower than optimal (Section 5.4 in [5]).
Also, in our experiments (Sec. 4.3), we find that CherryPick’s
proposed configuration for the write-heavy phase achieves
only 12% of the optimal when the workload switches to a
read-heavy phase. Hence, these prior systems are not suitable
for dynamic workloads.

SOPHIA [41] addresses database configuration tuning for
clustered NoSQL databases and can handle dynamic work-
loads. However, like the static tuner RAFIKI [40], SOPHIA’s
design focuses only on NoSQL configuration tuning and does
not consider cloud VM configurations nor dependencies be-
tween VM and NoSQL configurations. Naïvely combining
the NoSQL and VM configuration spaces causes a major in-
crease in the search space size and limits SOPHIA’s ability
to provide efficient configurations (Sec. 3.5). Further, due
to its atomic reconfiguration strategy (i.e., either reconfigure
all servers or none), it suffers from all the drawbacks of the
homogeneity constraint. Table 1 compares key features of
OPTIMUSCLOUD to various prior works in this field.

Our Solution: We introduce our system OPTIMUSCLOUD,
which jointly tunes the database and cloud (VM) configura-
tions for dynamic workloads. There are three key animat-
ing insights behind the design of OPTIMUSCLOUD. The
first is that jointly tuning the database and cloud (VM) con-
figurations for dynamic workloads is essential. To show how
important this is, we benchmark one Cassandra server with a
30-min trace from one of our three workloads (MG-RAST)

Table 1: OPTIMUSCLOUD’s key features vs. existing systems.

on 9 different EC2 VM types2. For each type, we use 300
different database configurations selected through grid search.
We show the performance in terms of Ops/s for the best, de-
fault, and worst configurations in Fig. 1. We see a big variance
in performance w.r.t. the database configurations—up to 74%
better performance over default configurations (45% on aver-
age). Further, the best configurations vary with the VM type
and size (for the 6 VM types shown here, there are 5 distinct
best DB configurations). This emphasizes the need for tuning
both types of configurations jointly to achieve the best Perf/$.
The second key insight is that in order to optimize the Perf/$
for a dynamic workload, it is necessary to perform non-atomic
reconfigurations, i.e., for only part of the cluster. Reconfigu-
ration in a distributed datastore is a sequential operation (in
which one or a few servers at a time are shutdown and then
restarted) to preserve data availability [31, 41]. This opera-
tion causes transient performance degradation or lower fault
tolerance. Reconfiguration is frequent enough for many work-
loads that this performance degradation should be avoided,
e.g., MG-RAST has a median of 430 significant switches
per day in workload characteristics. Accordingly, heteroge-
neous configurations have the advantage of minimizing the
performance hit during reconfiguration. Further, in the face
of dynamic workloads, there may only be time to reconfigure
part of the overall cluster. Also, from a cost-benefit stand-
point, maximizing performance does not need all instances
to be reconfigured (such as to a more resource-rich instance
type), rather a carefully selected subset. We give a simple
example to make this notion concrete in Section 2. The third
key insight is that for a particular NoSQL database (with its
specifics of data placement and load balancing), it is possi-
ble to create a model to map the configuration parameters to
the performance of each server. From that, it is possible to
determine the overall heterogeneous cluster’s performance.
OPTIMUSCLOUD leverages performance modeling to search
for the optimal cluster configuration.
The workflow of OPTIMUSCLOUD comprises offline training
and online prediction and reconfiguration phases as shown
in Fig. 2. At runtime, OPTIMUSCLOUD takes user require-
2MG-RAST is the largest metagenomics portal and data repository and gets
queries from across the globe which cause unpredictable read-write patterns
to the backend Cassandra.

190 2020 USENIX Annual Technical Conference USENIX Association

Figure 2: Overview of OPTIMUSCLOUD’s workflow. First, a workload predictor is trained with historical traces from the database to be tuned. Second,
a single server performance predictor is trained to map workload description, VM specs, and NoSQL application configuration to throughput. Third, a
cluster-level performance predictor is used to estimate the throughput of the heterogeneous cluster of servers. In the online phase, our optimizer uses this
predictor to evaluate the fitness of different VM/application configurations and provides the best performance within a given budget.

$0.0
$0.2
$0.4
$0.6
$0.8
$1.0
$1.2

0

4

8

12

16

Homogeneous
Static

Homogeneous
Dynamic

OptimusCloud
(With Default DB

Configs)

OptimusCloud
Full

Co
st

 ($
/h

)

Pe
rf

/$

(1
00

0x
 O

ps
/S

/$
) Bus-Tracking (Cluster-Size=6,RF=3, CL=1)

Perf/$ Cost ($/h)

+62.8%

+765%

+21.5%

Figure 3: Importance of creating heterogeneous clusters (OPTIMUS-
CLOUD Full) over homogeneous clusters (both Static and Dynamic) for
Bus-Tracking application. Tuning both application and cloud configura-
tions (OPTIMUSCLOUD Full) has benefit over tuning only the VM config-
uration (3rd bar from left). The percentage value on the top of each bar
denotes how much OPTIMUSCLOUD improves over that particular scheme.

ments of budget, availability, and consistency. It then com-
bines the performance model with a workload predictor and a
cost-benefit analyzer to decide: when the workload changes
sufficiently, what should be the new (possibly heterogeneous)
configuration. It decides what minimal set of servers should
be reconfigured.
Evaluation: We apply OPTIMUSCLOUD to two popular
NoSQL databases—Cassandra and Redis—and evaluate the
system on traces from two real-world systems, and one sim-
ulated trace from an HPC analytics job queue. All three
use cases represent dynamic workloads with different query
blends. We evaluate the Perf/$ achieved by OPTIMUSCLOUD
and compare this to three leading prior works, CherryPick [5],
Selecta [32], and SOPHIA [41]. Additionally, we compare
ourselves to the best static configuration determined with
oracle-like prediction of future workloads and the theoretical
best. OPTIMUSCLOUD achieves between 80-90% of the the-
oretical best performance for the 3 workloads and achieves
improvements between 9%-86.5%, 18%-173%, 17%-174%,
and 12%-514% in Perf/$ over Homogeneous-Static, Cherry-
Pick, Selecta, and SOPHIA respectively without degrading
P99 latency (Sec. 4). Fig. 3 shows the improvement in Perf/$
due to OPTIMUSCLOUD’s heterogeneous configurations.

We make the following novel contributions in this paper.

1. We design a performance modeling-based technique for
efficient joint optimization of database and cloud config-
urations to maximize the Perf/$ of a clustered database.

2. We design a technique to identify the minimal set of
servers in a clustered database to reconfigure (concur-
rently) to obtain a throughput benefit. This naturally
leads to heterogeneous configurations. To reduce the
much larger search space that this causes, we design for
a simplification that groups multiple servers that should
be configured to the same parameters.

3. We show that OPTIMUSCLOUD generalizes to two dis-
tinct NoSQL databases and different workloads, cluster
sizes, data volumes, and user-specified requirements for
replication and data consistency.

The rest of the paper is organized as follows. Section 2
gives the necessary background for the problem and a quanti-
tative rationale. Section 3 describes the details of OPTIMUS-
CLOUD’s design. We evaluate OPTIMUSCLOUD in Section 4
and survey related work in Section 5.

2 Background and Rationale

To evaluate the generalizability of OPTIMUSCLOUD, we se-
lect two popular NoSQL databases with very different archi-
tectures.

2.1 Cassandra
Cassandra is designed for high scalability, availability, and
fault-tolerance. To achieve these, Cassandra uses a peer-to-
peer (P2P) replication strategy, allowing multiple replicas to
handle the same request. Other popular datastores such as
DynamoDB [20] and Riak [34] implement the same P2P strat-
egy and we select Cassandra as a representative system from

USENIX Association 2020 USENIX Annual Technical Conference 191

that category. Cassandra’s replication strategy determines
where replicas are placed. The number of replicas is defined
as “Replication Factor” (RF). By default, Cassandra assigns
an equal number of tokens to each node in the cluster where
a token represents a sequence of hash values for the primary
keys that Cassandra stores. Based on this token assignment, a
Cassandra cluster can be represented as a ring topology [16].
Fig. 5 shows an example of 4 Cassandra servers and RF of 2.

2.2 Redis
Redis is an in-memory database and serves all requests from
the RAM, while it writes data to permanent storage for fault
tolerance. This design principle makes Redis an excellent
choice to be used as a cache on top of slower file systems
or datastores [54]. Redis can operate as either a stand-alone
node or in a cluster of nodes [53] where data is automati-
cally sharded across multiple Redis nodes. Our evaluation
applies to the clustered mode of Redis. When a Redis server
reaches the maximum size of its allowed memory (specified
by the maxmemory configuration parameter), it uses one of
several policies to decide how to handle new write requests.
The default policy will respond with error. Other policies will
replace existing records with the newly inserted record (the
maxmemory-policy configuration parameter specifies which
records will be evicted). The value of maxmemory needs to
be smaller than the RAM size of the VM instance and the
headroom that is needed is workload dependent (lots of writes
will need lots of temporary buffers and therefore larger head-
room). Thus, it is challenging to tune maxmemory-policy
and maxmemory parameters with changing workloads and
these two form the target of our configuration decision.

0
2
4
6
8
10
12

0
10
20
30
40
50

All C4.L 3xC4.L
1xR4.XL

2xC4.L
2xR4.XL

1xC4.L
3xR4.XL

All R4.XL

Re
ad

 (k
O

ps
/s

/$
)

W
rit

e
(k

O
ps

/s
/$

)

Cluster VM Configuration

MG-RAST (Cluster-Size=4, RF=3, CL=1)
Write Perf/$ Read Perf/$

Figure 4: Change in Perf/$ for the write (solid) and read throughput (dot-
ted) as we reconfigure the nodes from C4.large to R4.xlarge.

2.3 Example Rationale for Heterogeneous
Configurations

Here we give a motivating example for selecting subset of
servers to reconfigure. Consider a Cassandra cluster of 4
nodes with a consistency-level (CL3) = 1 and replication-
factor (RF4) = 3, i.e., any pair of nodes has a complete copy
3CL: the minimum number of Cassandra nodes that must acknowledge a
read or write operation before the operation can be considered successful

4RF: the total number of replicas for a key across a Cassandra cluster

of all the data. Also, assume that we only have two cloud
configurations: C4.large, which is compute-optimized, and
R4.xlarge, which is memory-optimized. C4.large is cheaper
than R4.xlarge by 58% [8], whereas R4.xlarge has larger
RAM (30.5GB vs 3.75GB) and serves read-heavy workloads
with higher throughput. Now we test the performance of all
possible combinations of VM configurations (All C4.L, 1
C4.L + 3R4.XL, . . . etc.) for both read-heavy and write-heavy
phases of the MG-RAST workload and show the saturation
level throughput for each configuration in Fig. 4. The "All
C4.large" configuration achieves the best write Perf/$ (41.7
KOps/s/$), however, it has the worst read Perf/$ (only 1.28
KOps/s/$) because reads of even common records spill out
of memory. Now if two servers are reconfigured to R4.xlarge,
the write Perf/$ decreases (24.4 KOps/s/$), while the read
performance increases significantly (9.7 KOps/s/$), show-
ing an improvement of 7.5× for read throughput over the
all C4.large configuration. The reason for this huge improve-
ment is Cassandra’s design by which it redirects new requests
to the fastest replica [19], directing all read requests to the
two R4.xlarge servers. Now we notice that switching more
C4.large servers to R4.xlarge does not show any improve-
ment in either reads or writes Perf/$, as the two R4x.large
servers are capable of serving the applied workload with
no queued requests. This means that switching more servers
will only reduce the Perf/$. Thus, the best Perf/$ is achieved
by configuring to all C4.large in write-heavy phases, while
configuring only 2 servers to R4x.large in read-heavy phases.
Therefore, heterogeneous configurations can achieve bet-
ter Perf/$ compared to homogeneous ones under mixed
workloads.

3 Design

3.1 Workload Representation and Prediction
OPTIMUSCLOUD uses a query-based model [4] to represent
time-varying workloads. This model characterizes the applied
workload in terms of the proportion of the different query
types and the total volume of queries, denoted by W .

We use a workload predictor to learn time-varying pat-
terns from the workload’s historical traces, and predict the
workload characteristics for a particular lookahead period.
We notate the time varying workload at a given point in time
t as W (t). The task of the workload predictor is to provide
OPTIMUSCLOUD with W (t +1) given W (t),W (t−1),... ,
W (t−h), where h is the length of history. OPTIMUSCLOUD
then iteratively predicts the workload till a lookahead time l,
i.e., W (t + i) ,∀i ∈ (1, l). We execute OPTIMUSCLOUD with
a simple Markov-Chain prediction model for both MG-RAST
and Bus-tracking workloads while we have a deterministic
fully accurate predictor for HPC. We do not claim any nov-
elty in workload prediction and OPTIMUSCLOUD is modular
enough to easily integrate more complex estimators, such as

192 2020 USENIX Annual Technical Conference USENIX Association

neural networks [37, 39].

3.2 Performance Prediction
Combining NoSQL and cloud configurations produces a mas-
sive search space, which is impractical to optimize through ex-
haustive search. However, it is well known that not all the ap-
plication parameters impact performance equally [40, 41, 62]
and therefore OPTIMUSCLOUD reduces the search time by
automatically selecting the most impactful parameters. Fur-
ther, there exist dependencies among parameters, such as the
dependency between the VM type (EC2) and Cassandra’s file-
cache-size (FCS) (Fig. 7). OPTIMUSCLOUD uses D-optimal
design [48] to optimize the offline data collection process for
training our performance model. D-optimal design answers
this question: “Given a budget of N data points to sample
for a workload, which N points are sufficient to reveal the
dependencies between configuration parameters?”. We exper-
imentally determine that the significant dependencies in our
target applications are at most pairwise and therefore we re-
strict the search to linear and quadratic parameters. We create
a set of filters for feasible combinations of parameter values
by mapping each parameter to the corresponding resource
(e.g., file-cache-size parameter is mapped to RAM). After-
ward, we check that the sum of all parameters mapped to the
same resource is within that resource limit of the VM (e.g.,
the total size of all Cassandra buffer memories should not ex-
ceed the VM instance memory). We feed to D-optimal design
the budget in terms of the number of data points that we can
collect for offline training.

After collecting the data points determined by the D-
optimal design, we train a random forest to act as a regressor
and predict the performance of a single NoSQL server for any
given set of configuration parameters, both database and VM.
The average output of the different decision trees is taken as
the final output. We choose random forest over other predic-
tion models because of its easily interpretable results [50]
and it has only two hyper-parameters to tune (max_depth and
forest_size) compared to black-box models such as DNNs.
OPTIMUSCLOUD trains a second random forest model to
predict the overall cluster performance, using the predicted
performance for each server, RF, CL and data-placement in-
formation. For both random forests, we use 20 trees and a
maximum depth of each as 5 as that gives the best result
within reasonable times.

3.3 Selection of Servers to Reconfigure
Selecting the right servers to reconfigure in a cluster is es-
sential to achieve the best Perf/$. We introduce the notion
of Complete-Sets to determine the right subset of servers
to reconfigure. We define a Complete-Set as the minimum
subset of nodes for which the union of their data records
covers all the records in the database at least once.

A,D’B,A’

D,C’C,B’C,B’ D,C’

A,D’B,A’

C4

C4 R4

R4

Cluster1

R4

C4 R4

C4

Cluster2

Writes Ops/s: 16 k
Reads Ops/s: 12.8 k

Writes Ops/s: 16.3 k
Reads Ops/s: 1.8 k

Data
Shard

NoSQL
Server

A’ is the replica
of Data Shard A

Legend

Figure 5: (RF=2, CL=1) Cluster performance depends not just on the con-
figuration of each server, but also on the relative positions of the instances
on the token ring. Cluster1 achieves 7× reads Ops/s over Cluster2 with the
same VM types and sizes.

To see why the notion of Complete-Set is important, consider
the two clusters shown in Fig. 5. Both clusters 1 and 2 use
2 C4.large and 2 R4.large and hence have the same $ cost.
However, Cluster1 achieves 7× the read Ops/s compared to
Cluster2. The reason for the better performance of Cluster1 is
that it has one Complete-Set worth of servers configured to the
memory-optimized R4.large architecture and therefore serves
all read requests efficiently. On the other hand, Cluster2’s
read performance suffers since all read requests to shard B
(or its replica B’) have to be served by one of the C4.large
servers, which has a smaller RAM and therefore serves most
of the reads from desk. Accordingly, read requests to shards
B or B’ represent a bottleneck in Cluster2 and cause a long
queuing time for the reading threads, which brings down the
performance the entire cluster for all the shards.

This means that all the servers within a Complete-Set
must be upgraded to the faster configuration for the clus-
ter performance to improve. Otherwise, the performance of
the Complete-Set will be bounded by the slowest server in the
set. OPTIMUSCLOUD partitions the cluster into one or more
Complete-Sets using the cluster’s data placement information.
To identify the Complete-Sets, we collect the data placement
information for each server of the cluster. OPTIMUSCLOUD
queries this information either from any server (such as in Cas-
sandra, using nodetool ring command) or from one of the
master servers (such as in Redis, using redis-cli cluster
info command). In Redis, identifying the Complete-Sets is
easier since data tokens are divided between the master nodes
only, while slaves have exact copies of their master’s data.
Therefore, a Complete-Set is formed by simply selecting a
single slave node for every master node.
Maintaining Data Availability: To maintain data availabil-
ity during reconfiguration of a Cassandra cluster, at least CL
replicas of each data record must be up at any point in time.
This puts an upper limit on the number of Complete-Sets
that can be reconfigured concurrently as Count(Complete-
Sets)−CL.
We show that the number of Complete-Sets in a cluster is
not dependent on the number of nodes in the cluster, but is
a constant factor. This is because when the cluster size in-
creases, the range of keys assigned to every node decreases

USENIX Association 2020 USENIX Annual Technical Conference 193

C’’
D’

E’’
A’

D’’
E’

C’’
D’

B’’ C’A’’
B’

F’’
A’

E’’ F’

A’’C’’ A’

B’’C’

1

32

A

B B’ C

1

2

4

5

6

3

A

B

C

D

E

F

D’’ E’

B’’
C’

A’’
B’

1

3 4

52

A

C D

EB

N=3
RF=3

N=6
RF=3

N=5
RF=3

C2 C3C1

Figure 6: Replication examples with 3 different cluster sizes with RF=3.
Cluster C1 has 3 nodes and each node has a complete copy of the data,
therefore each node is a Complete-Set. Cluster C2 has 6 nodes and has
the following Complete-Sets: [1,4] , [2,5] & [3,6]. Cluster C3 has 5 nodes
(not divisible by RF=3), therefore it has two Complete-Sets: [1,3 (or 4)],
[2,4 (or 5)].

and therefore the number of nodes that form a Complete-Set
increases. This means that since OPTIMUSCLOUD reconfig-
ures the instances in groups of one or more Complete-Sets
concurrently, the total time to reconfigure a cluster is a con-
stant factor independent of the cluster size. Figure 6 shows
examples of Complete-Set for different cluster sizes
Property: OPTIMUSCLOUD partitions the cluster into S
Complete-Sets, and S is independent of the cluster size N.
Proof. For a cluster of N servers with replication factor
RF , there exists a total of RF copies of each record in the
cluster, with no two copies of the same record stored in
the same server. Assuming each node in the cluster is as-
signed an equal portion of the data (which NoSQL load-
balancers try to achieve [35]), the size of a Complete-Set is
SizeCompSet = d N

RF e. Consequently, the number of Complete-
Sets in the cluster S = b N

SizecompSet
c. If RF divides N, then the

number of Complete-Sets is S = N
SizeCompSet

= RF . Else, say

N%RF = r, then S = RF
1−r/N+RF/N , which is ≈ RF since in

practice RF is not large, 3 being a practical upper bound. Thus,
the number of Complete-Sets is independent of the cluster
size and hence the reconfiguration time is also a constant.

�

Search Space Size Reduction: Heterogeneous configura-
tions make the search space size much larger than with ho-
mogeneous configurations. Consider a cluster of N nodes
and I VM options to pick from. If we are to pick a homoge-
neous cloud configuration for the cluster, we have I options.
However, if we are to pick a heterogeneous cloud configura-
tion, our search space becomes IN . If we assume balanced
data placement among the servers in the cluster (as clustered
NoSQL databases are designed for), the search space becomes
C(N+I−1, I−1) (distribute N identical balls among I boxes).
However, this search space size is still too large to perform an
exhaustive search to pick the optimal configurations. A clus-
ter of size N=20 nodes and I=15 VM options gives 1.3×109

different configurations to select from. One may use domain-
specific insights about the domain to reduce the search space
for specific applications [36] or for customized distributed
strategies [28]. However we aim for generalizability here.

We use one insight about Complete-Sets to reduce the

search space. The nodes within each Complete-Set should be
homogeneous in their configuration. Otherwise, the perfor-
mance of the Complete-Set will be equal to that of the slowest
node in the set. This means that the smallest atomic unit of
reconfiguration is one Complete-Set. This insight reduces the
search space, while still allowing different Complete-Sets to
have different configurations. Thus, the search space reduces
to C (S+ I−1, I−1)=680 configurations when S = RF = 3.
Also note that the configuration search space is constant
rather than growing with the size of the cluster.

3.4 Selecting the Reconfiguration Plan

3.4.1 Objective Function Optimization

The objective of OPTIMUSCLOUD is to find a reconfigura-
tion plan that maximizes Perf/$ of the cluster under a given
budget and with a minimum acceptable throughput. A recon-
figuration plan C is represented as a time series of a vector of
configurations (both NoSQL and VM):

C =
[
{C1,C2, · · · ,CM},{t1, t2, ..., tM}

]
(1)

Where M is the number of steps in the plan and timestamp
ti represents how long the configuration Ci is applied. The
lookahead is tL =∑

M
i=1 ti. The optimization problem is defined

as:

C∗ =C
f
(
W,C

)
Cost

(
C
)

subject to f
(
W,C

)
≥ minOps & Cost

(
C
)
≤ Budget

(2)

Here, f (W,C) is the function that maps the workload vector
W and the configuration vector C to the throughput (the clus-
ter prediction model) and C∗ is the best reconfiguration plan
selected by OPTIMUSCLOUD. The two constraints in the prob-
lem prevent us from selecting configurations that exceed the
budget or those that deliver unacceptably low performance.

The optimization problem described in Equation 2 falls un-
der the category of gradient-free optimization problems [38],
in which no gradient information is available nor can any
assumption be made regarding the form of the optimized
function. For this category of optimization problems, several
meta-heuristic search methods have been proposed, such as,
Genetic Algorithms (GA) , Tabu Search [64], and Simulated
Annealing. We use GA due to two relevant advantages. First,
constraints can be easily included in its objective function
(i.e., the fitness function). Second, it provides a good balance
between exploration and exploitation through crossover and
mutation [59]. We use Python Solid library for GA [58] and
Scikit-learn for random forests [55].

3.4.2 Cost-Benefit Analysis

Changing either NoSQL or cloud configurations at runtime
has a performance cost due to downtime caused to nodes
being reconfigured. We find that most of the performance-
impacting NoSQL parameters (83% for Cassandra) neces-
sitate a server restart and naturally, changing the VM type

194 2020 USENIX Annual Technical Conference USENIX Association

needs a restart as well. When a workload change is predicted
in the online phase, OPTIMUSCLOUD uses its performance
predictor to propose new configurations for the new work-
load. Afterward, OPTIMUSCLOUD estimates the reduction in
performance given the expected downtime duration and com-
pares that to the expected benefit of the new configurations.
OPTIMUSCLOUD selects configurations that maximize the
difference between the benefit and the cost (both in terms of
Throughput/$) . This cost-benefit analysis prevents OPTIMUS-
CLOUD from taking greedy decisions, whenever the workload
changes. Rather, it uses a long-horizon prediction of the work-
load over a time window to decide which reconfiguration
actions to instantiate and when.

The benefit of the ith step in the plan is given by:

B(i+1,i) = ∑
t∈ti+1

f
(
Wt ,Ci+1

)
− f

(
Wt ,Ci

)
(3)

where f
(
Wt ,Ci+1

)
is the predicted throughput using the new

configuration Ci+1. The configuration cost is given by:

L(i+1,i) = ∑
p∈(Ci−Ci+1)

tdown×δp× f
(
Wt ,Ci

)
(4)

where p is any Complete-Set that is being reconfigured to
move from configuration Ci to Ci+1, tdown is the expected
downtime during this reconfiguration step, and δp is the por-
tion of the cluster throughput that p contributes as estimated
by our cluster predictor. We then normalize the benefit (Equa-
tion. 3) and the cost (Equation. 4) by the difference in price
between configurations Ci and Ci+1. The value of tdown is mea-
sured empirically and its average value is 30 sec for NoSQL
configurations and 90 sec for VM configurations.

3.5 Distinctions from Closest Prior Work
We describe the substantive conceptual differences of OP-
TIMUSCLOUD from two recent, related works: Selecta and
SOPHIA. OPTIMUSCLOUD provides joint configuration tun-
ing of both NoSQL and cloud VMs, while it considers hetero-
geneous clusters to achieve the best Perf/$. In Selecta, only
heterogeneous cloud storage configurations are permissible
(i.e., HDD, SSD, or NVMe). Accordingly, the configuration
space in Selecta is much smaller and simpler to optimize us-
ing matrix factorization techniques. A simple extension of
Selecta to our large search space produces very poor perfor-
mance due to the sparsity of the generated matrix and the
dependency between NoSQL and cloud configurations as we
empirically show in Sec. 4.6.

In SOPHIA, only NoSQL parameters are configured and
no computing platform parameters such as VM configura-
tions are optimized. Even within NoSQL configurations, it
only considers homogeneous configurations. Accordingly,
SOPHIA makes a much simpler decision to either configure
the complete cluster to the new configuration, or keep the
old configuration—correspondingly its cost-benefit analysis
is also coarse-grained, at the level of the entire cluster. For

fast-changing workloads, it therefore often has to stick to the
current configuration since there is not enough time to recon-
figure the entire cluster (which needs to be done in a partly
sequential manner to preserve data availability). Similar to
Selecta, a simple extension of SOPHIA to VM options cannot
achieve the best Perf/$ for dynamic workloads, as it can only
create homogeneous configurations across all phases of the
workload. We empirically show this in Sections 4.3 and 4.7.

4 Experimental Setup and Results

In this section, we evaluate OPTIMUSCLOUD under different
experimental conditions for the 3 applications. We deploy
OPTIMUSCLOUD and the datastore clusters (Cassandra or
Redis) in Amazon EC2 in the US West (Northern California)
Region. We also deploy a separate set of nodes in the same
region to serve as workload generators (i.e., shooters). We
vary the number of shooting threads in runtime to simulate
the changes in the request rate in the workload trace. The
results are averages of 20 runs, with each run using a different
subset of the training data. Our evaluation answers four broad
questions. (1) How does OPTIMUSCLOUD compare in terms
of Perf/$ and P99 latency with three state-of-the-art systems
(which can only create homogeneous configurations) and
two oracle-based baselines? (2) What is the accuracy of each
module of OPTIMUSCLOUD, such as, the workload and the
performance predictors? (3) How do application requirements
such as RF and CL impact OPTIMUSCLOUD? (4) How does
OPTIMUSCLOUD generalize to different applications (we
use three), databases (Cassandra and Redis), and levels of
prediction errors?
Major Insights: We draw several key insights from our eval-
uation. First, the flexibility afforded by being able to re-
configure different parts of the cluster to different config-
urations is useful—all three prior protocols being compared
(and in fact, all works to date) can only create homogeneous
configurations. Further, the proactive approach of initiating
reconfiguration upon predicted workload change helps to
handle dynamic workloads and keeps latency low (Cher-
ryPick and Selecta are both reactive). Second, OPTIMUS-
CLOUD’s design reduces the heterogeneous configurations
search space significantly. Accordingly, it is able to search
efficiently and finds higher performing VM and NoSQL con-
figurations than cluster configurations selected by CherryPick,
Selecta, or SOPHIA. This improvement persists across ap-
plications (highest for the more predictable HPC analytics
workload and lowest for the MG-RAST workload) (Fig. 8,
10, 11), different (RF,CL) values (larger values of RF and
smaller values of CL) (Fig. 10), and data volumes (benefit
stays unchanged) (Fig. 8). Third, OPTIMUSCLOUD achieves
comparable or better P99 latency than the baselines, thus
showing that it does not sacrifice raw performance in search
of the performance per unit cost.

USENIX Association 2020 USENIX Annual Technical Conference 195

MG-RAST BUS-Tracking
MC-Order Lookahead RMSE MC-Order Lookahead RMSE

First 5m 43.7% First 15m 6.9%
First 10m 68.7% First 1h 7.4%

Second 5m 43.4% Second 5m 7.12%
Second 10m 68.2% Second 1h 7.4%

Table 2: (MC stands for Markov Chain). Workload prediction RMSE for MG-RAST
and Bus-tracking workloads with different lookahead periods.

4.1 Applications

Here we give the details for our three use case applications,
which together span a wide range in terms of predictabil-
ity and nature of the requests in the workload. MG-RAST
is a global-scale metagenomics portal [7], the largest of its
kind, which allows many users to simultaneously upload their
metagenomic data to the repository, apply a pipeline of com-
putationally intensive processes and optionally commit the
results back to the repository for shared use. Its workload
does not have any discernible daily or weekly pattern, as the
requests come from all across the globe and we find that the
workload can change drastically over a few minutes. A total
of 80 days of real query trace were analyzed, 60 days for
training and 20 days for testing. In production, MG-RAST
is executed with the values RF=3, CL=1 and it shows abrupt
switches in the Read-Ratio (typically from RR=0 to RR=1)
and vice versa. The frequency of these switches are 430/day
on median. This presents a challenging use case as only 5
minutes of accurate lookahead is possible.
The second workload is the Bus-Tracking application [39]
where read, scan, insert, and update operations are submitted
to a backend database. The data has strong daily and weekly
patterns to it. This workload has less frequent switches of
60/day on median. For this workload, 60 days of real query
trace were analyzed for the application (40 for training and 20
for testing). The relative proportions of the different kinds of
queries are 42.2% updates, 54.8% scans, 2.82% inserts, and
0.18% reads. As shown in Table 2, the prediction accuracy
for Bus-Tracking workload is much better compared to the
MG-RAST workload, as expected due to the more regular
patterns, and here we use a longer lookahead period of 1 hour.
The third use case is a queue of data analytics jobs such as
would be submitted to an HPC computing cluster. Here the
workload can be predicted over long time horizons (order of
an hour) by observing the jobs in the queue and leveraging
the fact that a significant fraction of the job patterns are recur-
ring. Thus, our evaluation cases span the range of patterns and
corresponding predictability of the workloads. We simulate
a shared queue of batch data analytics jobs. We modeled the
jobs on data analytics requests submitted to a real Microsoft
Cosmos cluster [26]. Each job is divided into stages and the
workload characteristics of the job change with every stage.
The job size is a random variable ∼ U(200,100K) operations.
The workload switches are 780/day on median, with a level
of concurrency of 10 jobs. We achieve accurate prediction
over a lookahead duration of 1 hour and we use that for our
setting with this use case.

Figure 7: Importance of various parameters, including pairwise com-
binations. Parameters with black solid bars are w.r.t. the right Y-
axis. EC2 configuration, the workload, and top 5 Cassandra param-
eters describe 81% of data variance, after which there is a signifi-
cant drop in importance, denoted by the red dotted line. Top param-
eters are: file_cache_size (FCS), memtable_cleanup_threshold (MCT),
memtable_heap_space (MHS), compaction_throughput (CT), and com-
paction_method (CM)

4.2 Baselines

We compare OPTIMUSCLOUD to the following baselines:
1. Homogeneous-Static: We use our cluster predictor to select
the single best configuration to use for the entire duration of
the predicted workload. The entire workload is assumed to
be known in advance, making this an impractically optimistic
baseline. Nevertheless, it is a measure of how well a statically
determined homogeneous configuration can perform when
powered by a hypothetically perfect workload predictor.
2. CherryPick: We use CherryPick’s Bayesian Optimization
(BO) to find a heterogeneous cloud configuration which max-
imize our objective metric. When the workload changes, BO
collects 20 points and selects the best cloud configuration.
This process takes about 3 minutes with parallelization on a
16-core machine. The reconfiguration is done by restarting
servers all at once, thus making data unavailable transiently.
3. Selecta: We use Selecta’s SVD prediction model to se-
lect the optimized homogeneous configuration with workload
changes. We populate the SVD matrix with the same train-
ing data as used for training of OPTIMUSCLOUD. Further,
we give a benefit to Selecta that all the workload characteris-
tics are assumed to be pre-filled in the matrix (or close to it)
so that it does not have to execute and profile the workload
that arrives at runtime, but can be looked up in the matrix.
Both CherryPick and Selecta run reactively with workload
changes and neither can change the application configuration.
They operate in a greedy manner initiating reconfiguration
whenever the workload changes, unlike OPTIMUSCLOUD that
optimizes for the workload over a lookahead time window.
4. SOPHIA: We use SOPHIA for homogeneous NoSQL con-
figurations while the VM configurations are fixed to the rec-
ommended VM types in Cassandra’s and Redis’ documenta-
tions i.e., Compute-Optimize C4.large for Cassandra [2] and
Memory-Optimized R4.large for Redis [1].
5. Theoretical-Best: This is a baseline that knows what is
the best-performing configuration for every workload. It then
switches the cluster to this configuration without any down-
time cost. Though impractical, this baseline provides a quan-
titative upper bound for any protocol and is used for normal-
ization of our results.

196 2020 USENIX Annual Technical Conference USENIX Association

0

0.5

1

1.5

2

0%
20%
40%
60%
80%

100%

Homo-
 Static

Cherry-
Pick

Selecta SOPHIA Optimus
Cloud

p9
9

La
te

nc
y

(s
ec

)

N
or

m
al

iz
ed

 O
ps

/s
/$

 MG-RAST (Cluster-Size=6, RF=3, CL=1, 16GB/server)

Normalized Ops/s/$ Latency (P99)

+86.5%
+115%

+46.9%

+212%

0

1

2

3

4

0%
20%
40%
60%
80%

100%

Homo-
 Static

Cherry-
Pick

Selecta SOPHIA Optimus
Cloud

p9
9

La
te

nc
y

(s
ec

)

N
or

m
al

iz
ed

 O
ps

/s
/$ MG-RAST (Cluster-Size=6, RF=3, CL=1, 100GB/server)

Normalized Ops/s/$ Latency (P99)

+74.5%

+17%

+58.9%

+270%

0
0.5
1
1.5
2
2.5
3
3.5

0%

20%

40%

60%

80%

100%

Homo-
 Static

Cherry
-Pick

Selecta SOPHIA Optimus
Cloud

p9
9

La
te

nc
y

(s
ec

)

N
or

m
al

iz
ed

 O
ps

/S
/$

MG-RAST (Cluster-Size=30, RF=3, CL=1, 16 GB/server)

Normalized Ops/s/$ Latency (P99)

+53.5%
+86.9% +72%

+514%

Figure 8: Evaluation of MG-RAST traces in Cassandra using OPTIMUSCLOUD vs state-of-the-art tuning systems. The primary Y-axis represents the ratio
of the normalized Ops/s/$ achieved by each system to the theoretical-best performance. OPTIMUSCLOUD achieves the highest Perf/$ and lowest P99 latency.

4.3 End-to-end System Evaluation

We evaluate how effective OPTIMUSCLOUD and each of the
baselines are in selecting the best reconfiguration plan. In
Fig. 8 we show the evaluation for the MG-RAST applica-
tion, the most challenging one for us due to its unpredictable
workload characteristics. We use a 1 hour trace from MG-
RAST and apply it to a cluster of 6 or 30 servers We show
the performance of the different plans with data volume per
server of 16GB and 100GB. The performance of each solu-
tion is normalized by that of the Theoretical-Best. OPTIMUS-
CLOUD’s plan achieves the highest Ops/s/$ and the lowest la-
tency over all baselines. OPTIMUSCLOUD achieves 86% and
74% improvement over Homogeneous-Static for the 16GB
and 100GB cases respectively. This shows there is no single
static configuration that can achieve the optimal performance
for all phases of the workload. Compared to CherryPick and
Selecta, OPTIMUSCLOUD achieves 87% and 45% improve-
ment on average. This is because both systems are striving to
create a homogeneous configuration to meet the performance
requirement and end up increasing the cost. Further, CherryP-
ick incurs the delay of performing the Bayesian optimization,
which takes 3 minutes on average and causes the cluster to
operate with sub-optimal configurations during this long de-
lay. The aggressive reconfiguration of CherryPick and Selecta
(shutting down all servers and restarting all together) causes a
significant performance hit (throughput of zero) for the cluster.
Compared to SOPHIA, OPTIMUSCLOUD achieves 212% and
270% improvement in Perf/$. This highlights the benefit of
jointly tuning VM and database configurations.

We draw several other conclusions. First, with increasing
data volume, the throughput of all protocols goes down be-
cause what would once fit in memory (R4.large has 16 GB)
now has to go to disk. But the effect on Selecta and CherryP-
ick is smaller because they use expensive and well-resourced
memory VMs. Consequently, the performance benefit of OP-
TIMUSCLOUD decreases. Second, Selecta is achieving better
performance than CherryPick, which is consistent with the
results reported in [32]. This is because of the longer response
time of CherryPick’s Bayesian Optimization versus Selecta’s
matrix lookup. In terms of latency, OPTIMUSCLOUD scales
well (comparing the N=6 to N=30), while Selecta and Cher-
ryPick both suffer (latency increases of 7.4× and 11×). This
is because the control message traffic is very large in these
two baselines as they aggressively shut down and restart all

the servers together to achieve a reconfiguration, causing the
scalability bottleneck. We also notice that SOPHIA scalability
is better than the other baselines as it performs sequential re-
configuration. OPTIMUSCLOUD achieves as low tail-latency
as Selecta and CherryPick for small scales, and lower at larger
scale due to the reason above. Homogeneous-Static has a
high latency for all cases due to its inability to adapt to dy-
namic workloads. The comparison with Selecta and CherryP-
ick shows how important it is to apply online reconfiguration
to minimize tail-latencies for fast changing workloads.

4.4 Sensitive Parameter Identification

We test the feasibility of pruning the joint configuration search
space (i.e., VM and NoSQL), while maintaining the depen-
dencies among the configuration parameters. We collect a
total of 3K data points equally from 15 different VM types.
We use D-optimal design to decide which data points to col-
lect for building the performance prediction model. Fig. 7
shows the importance of the most impactful parameters, ei-
ther singly or pairwise, as determined from the regression
model. The instance architecture (EC2) and the workload
(W(t)) are the most impactful, followed by top-5 database
configuration parameters. Note that the costs of changing dif-
ferent configuration parameters are different as it takes about
90 sec to change EC2 type, whereas changing Cassandra’s
configuration only requires around 30 sec with no impact on
the cluster’s $ cost. Expectedly, the instance architecture has
high inter-dependency with the NoSQL parameters because
the architecture controls the physical resources available to
the DBMS.

4.5 Single Server Performance Prediction

We evaluate three possible single server prediction models
for inclusion in OPTIMUSCLOUD. In each case, we use a
Random Forest using 75%:25% for training and prediction.
1. N-Solitary-Models: This builds a separate prediction model
per architecture. It predicts the performance of a given archi-
tecture/configuration combination using previously collected
data points from the same architecture.
2. Combined-Categorical: This builds a combined model
using all points from all architectures, while it represents the
architecture as a categorical parameter (with integral values).

USENIX Association 2020 USENIX Annual Technical Conference 197

Workload MG-RAST BUS HPC
Metric R2 RMSE R2 RMSE R2 RMSE

N-Solitary
-Models

0.2 3401.4 0.127 109.9 0.04 2778

Selecta -0.14 4149.3 0.66 110.6 0.932 2451

OPTIMUS
-Categorical

0.41 1334.2 0.986 21.87 0.983 1172.9

OPTIMUS
-Numerical

0.89 1260.9 0.988 19.77 0.986 1076.2

Table 3: Comparison of different Single-server prediction techniques. OPTIMUS-
CLOUD achieves better performance in terms of R2 and RMSE over all baselines.

Thus, knowledge transfer is limited across architectures.
3. Combined-Numerical: This also builds a combined model
for all architectures. However, it describes the architecture in
terms of its resources e.g., C4.large is represented as vCPU 8,
RAM 3.75 GB, Network-Bandwidth 0.62 Gbits/s. Thus this
allows extrapolating model knowledge across architectures.
We test the accuracy of each predictor using the same number
of data points (100 points per architecture) and show the result
in terms of R2 (Table 3). We see that using a separate model
per architecture gives very poor performance due to the lack
of knowledge transfer between architectures. Moreover, the
numerical representation shows a significant improvement in
prediction performance over the categorical representation
due to better knowledge transfer across architectures. Thus,
we use the Combined-Numerical model in OPTIMUSCLOUD.

Figure 9: Performance prediction error histogram for heterogeneous clus-
ters. We notice that OPTIMUSCLOUD’s error percentage is within -15% to
+15% for 70% of the test points, with R2 value of 0.91 and RMSE of 7.7
KOps/s. On the other hand, the best strawman shows poor performance
(RMSE 36 KOps/s) while Selecta performs better (RMSE 21 KOps/s).

4.6 Cluster Performance Prediction
We evaluate the accuracy of our cluster performance predic-
tion model. We use a cluster of 6 nodes with RF=3, CL=1
and investigate the impact of changing the EC2 architecture
of each Complete-Set. Thus, the cluster is partitioned into 3
Complete-Sets. We use 3 families of EC2’s 4th generation (C4,
R4, M4) and three different sizes of each family (large, xlarge,
2xlarge). We collect 330 data points covering all combinations
of assigning instance types to these 3 Complete-Sets.

In Fig. 9, we compare our model with a strawman predictor
that uses the sum of Ops/s for each individual server as the
overall cluster performance (we also tested Average, Min, and
Max and got worse performance). This strawman achieves
poor prediction performance with a low R2 value of 0.08 and
an unacceptably high RMSE of 36 KOps/s. We also com-

pare our model with the latent factor collaborative filtering
technique, SVD, used in Selecta [32], which we reimplement
using the sci-kit surprise library [30]. Selecta achieved bet-
ter R2 value of 0.69 and a lower RMSE of 21 KOps/s com-
pared to the strawman predictor. However, our model achieves
better performance due to the fact that our Random-Forest
model can use non-linear combinations of the elementary fea-
tures (up to quadratic), while SVD is confined to using linear
combinations only. The shapes of the error curves are also
different—the Selecta and the strawman curves are bathtub-
shaped indicating significant overestimation or underestima-
tion, while the OPTIMUSCLOUD curve is bell-shaped with a
mean close to zero. The bathtub curves are due to the fact that
these protocols are ignorant of the token assignment of the
cluster and consider erroneously that each node’s throughput
has the same contribution to the cluster throughput.

4.7 Evaluation with Diverse Workloads

Now we evaluate the performance for different workloads,
cluster scales, and (RF, CL) requirements.
HPC Workload: Figure 10 shows the improvement of OP-
TIMUSCLOUD over the baselines for the HPC data analytics
traces. We first change RF from 1 to 3, holding CL at 1.
Then we change CL from 1 to quorum, which is 2, holding
RF at 3. OPTIMUSCLOUD’s plan achieves the highest Perf/$
and the lowest latency over all baselines for all setups. At
RF=3, OPTIMUSCLOUD achieves 20% and 24% better Perf/$
over Homogeneous-Static configuration for CL=1 and CL=Q
respectively. This again shows the importance of dynamic re-
configuration to handle workloads with changing characteris-
tics. In comparison to CherryPick, OPTIMUSCLOUD achieves
143% and 89% better performance for CL=1 and CL=Q re-
spectively and 130% and 80% over Selecta. Compared to
SOPHIA, OPTIMUSCLOUD achieves 23% and 12.5% better
Perf/$. Notice that when RF=1 and CL=1, OPTIMUSCLOUD
can no longer perform non-atomic configurations since the
Complete-Set in this case is the entire cluster. Thus, its im-
provement over Homogeneous-Static decreases to 9%.
As RF goes up, the amount of data on each node goes up bring-
ing down the absolute performance. Homogeneous-Static is
affected more than OPTIMUSCLOUD and therefore the ben-
efit of OPTIMUSCLOUD increases. CherryPick and Selecta
are relatively unaffected by increasing RF as they had low
throughputs to begin with and they reconfigure all the nodes
at once, irrespective of RF and CL. SOPHIA benefits from
increasing RF since it can reconfigure more servers concur-
rently without degrading data availability. As CL goes up,
again CherryPick and Selecta are relatively unaffected. The
performance of OPTIMUSCLOUD goes down because the
maximum number of Complete-Sets that OPTIMUSCLOUD
can reconfigure at a time is inversely proportional to CL. Thus,
its benefit over CherryPick and Selecta reduces. However, we
note that for most of our target environments, CL is unlikely

198 2020 USENIX Annual Technical Conference USENIX Association

0

0.5

1

1.5

0
0.2
0.4
0.6
0.8

1
1.2

Homo-
 Static

Cherry
-Pick

Selecta SOPHIA Optimus
Cloud

p9
9

La
te

nc
y

(s
ec

)

N
or

m
al

iz
ed

 O
ps

/s
/$

HPC (RF=1, CL=1, Cluster-Size=6, 16GB/server)

Normalized Ops/s/$ Latency (P99)

+9%

+166% +174% +146%

0

0.5

1

1.5

2

0%
20%
40%
60%
80%

100%

Homo-
 Static

Cherry
-Pick

Selecta SOPHIA Optimus
Cloud

p9
9

La
te

nc
y (

se
c)

No
rm

al
ize

d
Op

s/
s/

$

HPC (RF=3, CL=1,Cluster-Size=6, 16GB/server)

Normalized Ops/s/$ Latency (P99)

+143%

+20% +23.2%

+130%

0

0.5

1

1.5

2

0%

20%

40%

60%

80%

100%

Homo-
 Static

Cherry
-Pick

Selecta SOPHIA Optimus
Cloud

p9
9

La
te

nc
y

(s
ec

)

N
or

m
al

iz
ed

 O
ps

/s
/$

HPC (RF=3, CL=2, Cluster-Size=6, 16GB/server)

Normalized Ops/s/$ Latency (P99)

+24%

+89%
+80%

+12.5%

Figure 10: HPC workload evaluation with 10 concurrent jobs, and varying (RF,CL) requirements

 -
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2

0%

20%

40%

60%

80%

100%

Homo-
 Static

Cherry
-Pick

Selecta SOPHIA Optimus
Cloud

p9
9

La
te

nc
y

(s
ec

)

N
or

m
al

iz
ed

 O
ps

/s
/$

Bus-Tracking (Cluster-Size=6, 16GB per server)

Normalized Ops/s/$ p99 Latency (sec)

0

+43.8%

+173%
+67.3%

+22.3%

Figure 11: Bus-Tracking workload pattern with
RF=3, CL=1

0
10
20
30
40
50

0%
20%
40%
60%
80%

100%

Homo-
 Static

Cherry
-Pick

Selecta SOPHIA Optimus
Cloud

p9
9

La
te

nc
y

(m
s)

N
or

m
al

iz
ed

 O
ps

/s
/$

Redis (HPC, Cluster-Size=6 (3 masters, 3 slaves))

Normalized Ops/s/$ Latency (P99)

+19.2% +24%
+29.1%

+138%

Figure 12: Evaluation on Redis for HPC work-
load with a cluster of 6 servers

0

5

10

15

20

0%
20%
40%
60%
80%

100%

Homo-
 Static

Cherry
-Pick

Selecta SOPHIA Optimus
Cloud

p9
9

La
te

nc
y

(m
s)

N
or

m
al

iz
ed

 O
ps

/s
/$

Redis (HPC, Cluster-Size=12 (6 masters, 6 slaves))

Normalized Ops/s/$ Latency (P99)

+22.3% +17.7% +19.2%

+121%

Figure 13: Evaluation on Redis for HPC work-
load with a cluster of 12 servers

to be higher than 1 as deployments often favor availability
and latency over consistency. In terms of latency, OPTIMUS-
CLOUD achieves the lowest P99 latency across all setups. We
also notice that SOPHIA has lower latency than other base-
lines as it performs a gradual reconfiguration of the different
server instances to maintain data availability.
Bus-Tracking Workload: This workload has strong weekly
and daily patterns, which allows the workload predictor to
provide accurate predictions for long lookahead periods. For
a 1 day-trace, the result is shown in Fig. 11. OPTIMUS-
CLOUD achieves better performance/$ over Homogeneous-
Static, CherryPick, Selecta, and SOPHIA by 46%, 178%, 67%,
and 28% respectively. As before, OPTIMUSCLOUD achieves
the lowest tail latency across all techniques. The tail latency
metric is very important for this workload as it represents a
user-facing application. We observe that OPTIMUSCLOUD
achieves higher gains in performance over CherryPick and Se-
lecta compared to the MG-RAST workload, which shows the
benefit of longer accurate predictions for OPTIMUSCLOUD.

4.8 Evaluation with Redis
Redis has a very different architecture than Cassandra and is
therefore a suitable target to evaluate the generalizability of
OPTIMUSCLOUD. Here we use Redis in clustered mode as a
distributed cache (a common use case for Redis)—if the key is
found in Redis’ memory, it is served by Redis, else, it is served
by a slower disk-based database. We apply the HPC analytics
workload to a cluster of 6 or 12 Redis servers, keeping the
replication degree as 2. We select HPC workload as it has the
shortest key-reuse-distance between the three workloads and
for which using Redis as a cache is most beneficial [10, 21].
We tune Redis’ maxmemory-policy and maxmemory param-
eters and observe that changing the cloud configurations for
more or less RAM size has an impact on the best value of both
parameters. We also found that Redis’ Perf/$ is sensitive to
workload parameters such as job size, access distribution, and

read-to-write. We start by collecting 108 data points for differ-
ent jobs with varying job sizes, access distributions, and read-
write ratios. Job size is a random variable with U(0.5M,1.5M)
operations. Access distribution is randomly selected from
Uniform, Latest, and Zipfian. Read-write ratio is a random
variable with distribution U(0,1). We experiment with traces
of 75 jobs which span a total of 5 hours. Our performance pre-
dictor achieves an R2 of 0.922 averaged over 20 runs. From
Fig. 12, we see that OPTIMUSCLOUD achieves a better Perf/$
of 19% (Homogeneous-Static), 29% (CherryPick), 24% (Se-
lecta), and 138% (SOPHIA). Also, OPTIMUSCLOUD reduces
the tail latency by 8.4X (Homogeneous-Static), 13X (Cher-
ryPick), 4.4X (Selecta), and 8.1X (SOPHIA).

We draw the following insights. First, as SOPHIA uses
an expensive cluster of R4.large (as recommended in Redis’
documentation [1]), it achieves a very low Perf/$. Second,
both CherryPick and Selecta switch from R4.large to the less
expensive C4.large and M4.large when the workload changes
(and less memory is required) and therefore achieve a higher
Perf/$. Finally, by using a heterogeneous cluster of the three
VM types as well as jointly tuning the application config-
uration, we achieve the best Perf/$ and the lowest latency
among all techniques. To test scalability, we increase the num-
ber of servers to 12 (Fig. 13) and note that the normalized
performance of each system stays approximately constant.

4.9 Tolerance to Prediction Errors

We investigate how tolerant OPTIMUSCLOUD is to errors
in both predictors—performance (throughput) and workload.
We add synthetic noise to the output of each predictor sep-
arately and then show how does the benefit of OPTIMUS-
CLOUD change with the amount of synthetic noise for the
HPC workload. The percentage of noise is represented as
a uniform random variable that is added to (or subtracted
from) the output of the predictor. For performance prediction,

USENIX Association 2020 USENIX Annual Technical Conference 199

0
5

10
15
20
25

0% 5% 10% 15% 20% 25% 50%%
 Im

pr
ov

em
en

t o
ve

r
H

om
og

en
eo

us
-S

ta
tic

% Noise

HPC (RF=3, CL=1,Cluster-Size=6, 16GB/server)

Noisy Workload Predictor Noisy Throughput Predictor

Figure 14: Impact of noisy predictions on OPTIMUSCLOUD’s improvement
over best Homogeneous-Static configurations

the noise is added to the overall throughput/$ predicted by
our multi-server model. For workload prediction, the noise
is added to the number of requests/sec in addition to the
workload change duration. As shown in Fig.14, OPTIMUS-
CLOUD’s improvement over Homogeneous-Static decreases
with increasing levels of noise, as the selected configurations
deviate from the best configurations. We note that OPTIMUS-
CLOUD is more sensitive to errors in the throughput predictor
compared to errors in the workload predictor, which is demon-
strated in the steeper downward slope in the noisy throughput
predictor curve. The reason for this high sensitivity is that
OPTIMUSCLOUD uses the throughput predictor to select the
best configuration and with increasing levels of noise, the
selected configuration more frequently deviates from the opti-
mal. As discussed earlier, a slight deviation from the optimal
configuration may cause a significant reduction in Perf/$. On
the other hand, slight errors in workload prediction causes
OPTIMUSCLOUD to reconfigure earlier or later than it opti-
mally should. However, this has less impact on performance
as long as it still switches to the best configuration.

5 Related Work
Configuration tuning for datastores: Several works [6, 31]
target online configuration tuning for replicated or geo-
replicated datastores. [27, 56] perform online reconfiguration
for NoSQL datastores. None of these works address how to
optimize for cost-performance benefits by exploiting differ-
ent cloud VM/instance types. A large body of work focused
on the best logical or physical design for static workloads in
DBMS [3,12,13,18,29,51,52,61], which are orthogonal to our
work. OtterTune [62], BerkeleyDB [60], and iTuned [24] only
optimize DBMS configuration, while OPTIMUSCLOUD opti-
mizes both NoSQL configuration and the cluster on which it
runs. Pocket [33] optimizes the storage servers for ephemeral
data analytics jobs in contrast to handling long-running jobs
that are OPTIMUSCLOUD’s focus. While OPTIMUSCLOUD
can also optimize storage, we choose to restrict our storage
servers to elastic block storage (EBS) that are separate from
the VMs and thus retain data durability.
Performance predictions: Ernest [63] predicts performance
of data analytics applications through system modeling. DB-
Seer [46] uses linear models to predict resource utilization
(e.g. Disk I/O). Myria [49, 66] gives personalized SLAs by
predicting query execution times for specific workloads. Re-

cent works [42, 43, 45] improve utilization by learning work-
load characteristics. [44] handles prediction errors for unseen
workloads. [23] uses queuing models. Rafiki [40] uses a surro-
gate model to predict performance of NoSQL datastores. No
prior work predicts performance for heterogeneous clusters.
Cache Hit-Rate Maximization: Several works target max-
imizing cache hit-rates and improving end-to-end latency,
either for a single application [14] or multi-tenant deploy-
ments [15]. However, neither VM configurations nor hetero-
geneous cluster configurations are considered to optimize
performance/$. [9, 65] propose new cache eviction policies
that can be implemented in Redis and then selected by OPTI-
MUSCLOUD for the appropriate workloads.

6 Discussion

Impact on consistency: OPTIMUSCLOUD exploits the fact
that in typical NoSQL deployments, RF>CL as availability
and low-latency are favored over consistency [22,47,57]. The
higher the difference between RF and CL, the smaller the
subset of servers that needs reconfiguration, therefore the
higher the gain of OPTIMUSCLOUD over baselines (Figure
10). For users whose primary goal is consistency and want
to use a high value for CL, one option is to also increase RF
and leverage the high gain of OPTIMUSCLOUD. However,
increasing RF also increases the total number of copies stored
in the cluster, which might negatively impact the cluster’s
write performance in exchange for higher availability.
Compatibility with other key-value stores: OPTIMUS-
CLOUD’s design assumes that the underlying key-value
store implements a protocol to identify and select the fastest
replica(s) given a new query. Cassandra achieves this using
its dynamic snitching policy, while other popular systems
have similar protocols (e.g., Elasticsearch achieves this by
its Adaptive Replica Selection policy [25]). If this feature
is not implemented in the system, a simple solution is for
OPTIMUSCLOUD to provide the system with the ordered list
of replicas, using OPTIMUSCLOUD ’s performance predictor.

7 Conclusion
For cost-optimal performance of a distributed NoSQL cloud
database, it is critical to jointly tune NoSQL and cloud con-
figurations. OPTIMUSCLOUD provides the insight that it is
optimal to create heterogeneous configurations and for this,
it determines at runtime the minimum number of servers to
reconfigure. Using a novel concept of Complete Sets, OPTI-
MUSCLOUD provides a technique to search through the large
search space brought out by heterogeneity. Configurations
found by OPTIMUSCLOUD outperform those by prior works,
CherryPick, Selecta, and SOPHIA, in both Perf/$ and tail la-
tency, across two NoSQL DBMSs, Cassandra and Redis, and
all experimental conditions.

200 2020 USENIX Annual Technical Conference USENIX Association

References

[1] 5 tips for running redis over
aws. https://redislabs.com/blog/
5-tips-for-running-redis-over-aws/. [On-
line; accessed 17-September-2019].

[2] Best practices for running apache cassandra on amazon
ec2. https://aws.amazon.com/blogs/big-data/
best-practices-for-running-apache-cassandra\
-on-amazon-ec2/. [Online; accessed 17-September-
2019].

[3] AGRAWAL, S., NARASAYYA, V., AND YANG, B. In-
tegrating vertical and horizontal partitioning into au-
tomated physical database design. In ACM SIGMOD
international conference on Management of data (2004).

[4] AKDERE, M., ÇETINTEMEL, U., RIONDATO, M., UP-
FAL, E., AND ZDONIK, S. B. Learning-based query per-
formance modeling and prediction. In 2012 IEEE 28th
International Conference on Data Engineering (2012),
IEEE, pp. 390–401.

[5] ALIPOURFARD, O., LIU, H. H., CHEN, J.,
VENKATARAMAN, S., YU, M., AND ZHANG,
M. Cherrypick: Adaptively unearthing the best
cloud configurations for big data analytics. In 14th
USENIX Symposium on Networked Systems Design and
Implementation NSDI’17 (2017), pp. 469–482.

[6] ARDEKANI, M. S., AND TERRY, D. B. A self-
configurable geo-replicated cloud storage system. In
OSDI (2014), pp. 367–381.

[7] ARGONNE NATIONAL LABORATORY. MG-RAST:
Metagenomics Analysis Server. urlhttps://www.mg-
rast.org/, 2019.

[8] AWS. Amazon EC2. https://aws.amazon.com/
ec2/pricing/on-demand/, May 2018.

[9] BECKMANN, N., CHEN, H., AND CIDON, A. {LHD}:
Improving cache hit rate by maximizing hit density. In
15th USENIX Symposium on Networked Systems Design
and Implementation NSDI’18 (2018), pp. 389–403.

[10] BEYLS, K., AND D’HOLLANDER, E. Reuse distance
as a metric for cache behavior. In Proceedings of the
IASTED Conference on Parallel and Distributed Com-
puting and systems (2001), vol. 14, pp. 350–360.

[11] CHATERJI, S., KOO, J., LI, N., MEYER, F., GRAMA,
A., AND BAGCHI, S. Federation in genomics pipelines:
techniques and challenges. Briefings in bioinformatics
20, 1 (2019), 235–244.

[12] CHAUDHURI, S., AND NARASAYYA, V. Self-tuning
database systems: a decade of progress. In Proceedings
of the 33rd international conference on Very large data
bases (2007), VLDB Endowment, pp. 3–14.

[13] CHAUDHURI, S., AND NARASAYYA, V. R. An efficient,
cost-driven index selection tool for microsoft sql server.
In VLDB (1997).

[14] CIDON, A., EISENMAN, A., ALIZADEH, M., AND
KATTI, S. Cliffhanger: Scaling performance cliffs
in web memory caches. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
NSDI’16 (2016), pp. 379–392.

[15] CIDON, A., RUSHTON, D., RUMBLE, S. M., AND
STUTSMAN, R. Memshare: a dynamic multi-tenant
key-value cache. In 2017 USENIX Annual Technical
Conference ATC’17 (2017), pp. 321–334.

[16] CLUTCH. Data replication in cassan-
dra. https://docs.datastax.com/en/
cassandra/3.0/cassandra/architecture/
archDataDistributeReplication.html, 2019.

[17] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKR-
ISHNAN, R., AND SEARS, R. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing (2010), ACM,
pp. 143–154.

[18] CURINO, C., JONES, E., ZHANG, Y., AND MADDEN,
S. Schism: a workload-driven approach to database
replication and partitioning. VLDB Endowment (2010).

[19] DATASTAX. Cassandra dynamic snitching.
https://docs.datastax.com/en/cassandra/3.0/
cassandra/architecture/archSnitchDynamic.
html, 2019.

[20] DECANDIA, G., HASTORUN, D., JAMPANI, M.,
KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,
SIVASUBRAMANIAN, S., VOSSHALL, P., AND
VOGELS, W. Dynamo: amazon’s highly available
key-value store. In ACM SIGOPS operating systems
review (2007), vol. 41, ACM, pp. 205–220.

[21] DING, C., AND ZHONG, Y. Predicting whole-program
locality through reuse distance analysis. In ACM Sigplan
Notices (2003), vol. 38, ACM, pp. 245–257.

[22] DIOGO, M., CABRAL, B., AND BERNARDINO, J. Con-
sistency models of nosql databases. Future Internet 11,
2 (2019), 43.

[23] DIPIETRO, S., CASALE, G., AND SERAZZI, G. A
queueing network model for performance prediction
of apache cassandra. In Proceedings of the 10th EAI
International Conference on Performance Evaluation
Methodologies and Tools (2017), pp. 186–193.

[24] DUAN, S., THUMMALA, V., AND BABU, S. Tuning
database configuration parameters with ituned. Proceed-
ings of the VLDB Endowment 2, 1 (2009), 1246–1257.

[25] ELASTICSEARCH. Improving Response Latency
in Elasticsearch with Adaptive Replica Selec-
tion. urlhttps://www.elastic.co/blog/improving-
response-latency-in-elasticsearch-with-adaptive-
replica-selection, 2020.

[26] FERGUSON, A. D., BODIK, P., KANDULA, S.,
BOUTIN, E., AND FONSECA, R. Jockey: guaranteed
job latency in data parallel clusters. In Proceedings

USENIX Association 2020 USENIX Annual Technical Conference 201

https://redislabs.com/blog/5-tips-for-running-redis-over-aws/
https://redislabs.com/blog/5-tips-for-running-redis-over-aws/
https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-cassandra\-on-amazon-ec2/
https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-cassandra\-on-amazon-ec2/
https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-cassandra\-on-amazon-ec2/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archDataDistributeReplication.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archDataDistributeReplication.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archDataDistributeReplication.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archSnitchDynamic.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archSnitchDynamic.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archSnitchDynamic.html

of the 7th ACM european conference on Computer
Systems (2012), ACM, pp. 99–112.

[27] GHOSH, M., WANG, W., HOLLA, G., AND GUPTA, I.
Morphus: Supporting online reconfigurations in sharded
nosql systems. IEEE Transactions on Emerging Topics
in Computing (2015).

[28] GHOSHAL, A., GRAMA, A., BAGCHI, S., AND
CHATERJI, S. An ensemble svm model for the accurate
prediction of non-canonical microrna targets. In Pro-
ceedings of the 6th ACM Conference on Bioinformatics,
Computational Biology and Health Informatics (2015),
pp. 403–412.

[29] GUPTA, H., HARINARAYAN, V., RAJARAMAN, A.,
AND ULLMAN, J. D. Index selection for olap. In IEEE
International Conference on Data Engineering (ICDE)
(1997).

[30] HUG, N. Surprise, a python library for recommender
systems. http://surpriselib.com, 2017.

[31] KEMME, B., BARTOLI, A., AND BABAOGLU, O. On-
line reconfiguration in replicated databases based on
group communication. In Dependable Systems and Net-
work (DSN) (2001), IEEE, pp. 117–126.

[32] KLIMOVIC, A., LITZ, H., AND KOZYRAKIS, C. Se-
lecta: heterogeneous cloud storage configuration for data
analytics. In 2018 USENIX Annual Technical Confer-
ence ATC’18 (2018), pp. 759–773.

[33] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A.,
PFEFFERLE, J., AND KOZYRAKIS, C. Pocket: Elas-
tic ephemeral storage for serverless analytics. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (2018), pp. 427–444.

[34] KLOPHAUS, R. Riak core: Building distributed applica-
tions without shared state. In ACM SIGPLAN Commer-
cial Users of Functional Programming (2010), ACM,
p. 14.

[35] KONSTANTINOU, I., TSOUMAKOS, D., MYTILINIS, I.,
AND KOZIRIS, N. Dbalancer: distributed load balancing
for nosql data-stores. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data (2013), ACM, pp. 1037–1040.

[36] KOO, J., ZHANG, J., AND CHATERJI, S. Tiresias:
Context-sensitive approach to decipher the presence and
strength of microrna regulatory interactions. Theranos-
tics 8, 1 (2018), 277.

[37] KOUSIOURIS, G., CUCINOTTA, T., AND VARVARIGOU,
T. The effects of scheduling, workload type and consol-
idation scenarios on virtual machine performance and
their prediction through optimized artificial neural net-
works. Journal of Systems and Software 84, 8 (2011),
1270–1291.

[38] KOZIEL, S., AND YANG, X.-S. Computational opti-
mization, methods and algorithms, vol. 356. Springer,
2011.

[39] MA, L., VAN AKEN, D., HEFNY, A., MEZERHANE, G.,
PAVLO, A., AND GORDON, G. J. Query-based work-
load forecasting for self-driving database management
systems. In Proceedings of the 2018 International Con-
ference on Management of Data (2018), ACM, pp. 631–
645.

[40] MAHGOUB, A., WOOD, P., GANESH, S., MITRA, S.,
GERLACH, W., HARRISON, T., MEYER, F., GRAMA,
A., BAGCHI, S., AND CHATERJI, S. Rafiki: A mid-
dleware for parameter tuning of nosql datastores for
dynamic metagenomics workloads. In Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference
(2017), ACM, pp. 28–40.

[41] MAHGOUB, A., WOOD, P., MEDOFF, A., MITRA, S.,
MEYER, F., CHATERJI, S., AND BAGCHI, S. SOPHIA:
Online reconfiguration of Clustered NoSQL Databases
for Time-Varying Workloads. In 2019 USENIX Annual
Technical Conference ATC’19 (2019), Usenix, pp. 223–
240.

[42] MAO, H., ALIZADEH, M., MENACHE, I., AND KAN-
DULA, S. Resource management with deep reinforce-
ment learning. In Proceedings of the 15th ACM Work-
shop on Hot Topics in Networks (2016), pp. 50–56.

[43] MAO, H., SCHWARZKOPF, M., VENKATAKRISHNAN,
S. B., MENG, Z., AND ALIZADEH, M. Learning
scheduling algorithms for data processing clusters. In
Proceedings of the ACM Special Interest Group on Data
Communication. 2019, pp. 270–288.

[44] MITRA, S., BRONEVETSKY, G., JAVAGAL, S., AND
BAGCHI, S. Dealing with the unknown: Resilience to
prediction errors. In 2015 International Conference on
Parallel Architecture and Compilation (PACT) (2015),
IEEE, pp. 331–342.

[45] MITRA, S., MONDAL, S. S., SHEORAN, N., DHAKE,
N., NEHRA, R., AND SIMHA, R. Deepplace: Learning
to place applications in multi-tenant clusters. In Proceed-
ings of the 10th ACM SIGOPS Asia-Pacific Workshop
on Systems (2019), pp. 61–68.

[46] MOZAFARI, B., CURINO, C., AND MADDEN, S. Db-
seer: Resource and performance prediction for building
a next generation database cloud. In CIDR (2013).

[47] NEGRIN, R. Thank you for your help nosql, but we got
it from here. https://www.memsql.com/blog/why-nosql-
databases-wrong-tool-for-modern-application/, 2018.

[48] OF STANDARDS, N. I., AND (NIST), T. D-optimal de-
signs. https://itl.nist.gov/div898/handbook/
pri/section5/pri521.htm, 2019.

[49] ORTIZ, J., DE ALMEIDA, V. T., AND BALAZINSKA,
M. Changing the face of database cloud services with
personalized service level agreements. In CIDR (2015).

[50] PALCZEWSKA, A., PALCZEWSKI, J., ROBINSON,
R. M., AND NEAGU, D. Interpreting random forest
classification models using a feature contribution

202 2020 USENIX Annual Technical Conference USENIX Association

http://surpriselib.com
https://itl.nist.gov/div898/handbook/pri/section5/pri521.htm
https://itl.nist.gov/div898/handbook/pri/section5/pri521.htm

method. In Integration of reusable systems. Springer,
2014, pp. 193–218.

[51] PAVLO, A., JONES, E. P., AND ZDONIK, S. On pre-
dictive modeling for optimizing transaction execution
in parallel oltp systems. VLDB Endowment (2011).

[52] RAO, J., ZHANG, C., MEGIDDO, N., AND LOHMAN,
G. Automating physical database design in a parallel
database. In ACM SIGMOD international conference
on Management of data (2002).

[53] REDIS. Redis cluster tutorial. https://redis.io/
topics/cluster-tutoriallpp, February 2015.

[54] REDIS. Using redis as an lru cache. https://redis.
io/topics/lru-cache, 2019.

[55] SCIKITLEARN. scikit-learn: Machine learning in python.
https://scikit-learn.org/stable/, 2019.

[56] SHIN, Y., GHOSH, M., AND GUPTA, I. Parqua: Online
reconfigurations in virtual ring-based nosql systems. In
2015 International Conference on Cloud and Autonomic
Computing (2015), IEEE, pp. 220–223.

[57] SINGH, V. K. Sql vs nosql databases.
https://medium.com/system-design-blog/sql-vs-
nosql-databases-6896a8cb1800, 2019.

[58] SOLID. Solid:a comprehensive gradient-free optimiza-
tion framework written in python. https://github.
com/100/Solid, 2019.

[59] SRINIVAS, M., AND PATNAIK, L. M. Genetic algo-
rithms: A survey. computer 27, 6 (1994), 17–26.

[60] SULLIVAN, D. G., SELTZER, M. I., AND PFEFFER,
A. Using probabilistic reasoning to automate software
tuning, vol. 32. ACM, 2004.

[61] VALENTIN, G., ZULIANI, M., ZILIO, D. C., LOHMAN,
G., AND SKELLEY, A. Db2 advisor: An optimizer
smart enough to recommend its own indexes. In IEEE
International Conference on Data Engineering (ICDE)
(2000).

[62] VAN AKEN, D., PAVLO, A., GORDON, G. J., AND
ZHANG, B. Automatic database management system
tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data (2017), ACM, pp. 1009–1024.

[63] VENKATARAMAN, S., YANG, Z., FRANKLIN, M.,
RECHT, B., AND STOICA, I. Ernest: efficient perfor-
mance prediction for large-scale advanced analytics. In
13th USENIX Symposium on Networked Systems Design
and Implementation NSDI’16 (2016), pp. 363–378.

[64] W, G. F., AND A, K. G. Handbook of metaheuristics,
vol. 57. Springer Science & Business Media, 2006.

[65] WALDSPURGER, C., SAEMUNDSSON, T., AHMAD, I.,
AND PARK, N. Cache modeling and optimization us-
ing miniature simulations. In 2017 USENIX Annual
Technical Conference ATC’17 (2017), pp. 487–498.

[66] WANG, J., BAKER, T., BALAZINSKA, M., HALPERIN,
D., HAYNES, B., HOWE, B., HUTCHISON, D., JAIN,
S., MAAS, R., MEHTA, P., ET AL. The myria big data

management and analytics system and cloud services.
In CIDR (2017).

[67] YADWADKAR, N. J., HARIHARAN, B., GONZALEZ,
J. E., SMITH, B., AND KATZ, R. H. Selecting the
best vm across multiple public clouds: A data-driven
performance modeling approach. In Proceedings of the
2017 Symposium on Cloud Computing (2017), ACM,
pp. 452–465.

USENIX Association 2020 USENIX Annual Technical Conference 203

https://redis.io/topics/cluster-tutorial lpp
https://redis.io/topics/cluster-tutorial lpp
https://redis.io/topics/lru-cache
https://redis.io/topics/lru-cache
https://scikit-learn.org/stable/
https://github.com/100/Solid
https://github.com/100/Solid

Serverless in the Wild: Characterizing and Optimizing
the Serverless Workload at a Large Cloud Provider

Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo Bianchini ∗

Microsoft Azure and Microsoft Research

Abstract
Function as a Service (FaaS) has been gaining popularity as
a way to deploy computations to serverless backends in the
cloud. This paradigm shifts the complexity of allocating and
provisioning resources to the cloud provider, which has to
provide the illusion of always-available resources (i.e., fast
function invocations without cold starts) at the lowest possible
resource cost. Doing so requires the provider to deeply under-
stand the characteristics of the FaaS workload. Unfortunately,
there has been little to no public information on these charac-
teristics. Thus, in this paper, we first characterize the entire
production FaaS workload of Azure Functions. We show for
example that most functions are invoked very infrequently,
but there is an 8-order-of-magnitude range of invocation fre-
quencies. Using observations from our characterization, we
then propose a practical resource management policy that
significantly reduces the number of function cold starts, while
spending fewer resources than state-of-the-practice policies.

1 Introduction
Function as a Service (FaaS) is a software paradigm that is
becoming increasingly popular. Multiple cloud providers offer
FaaS [5, 17, 21, 28] as the interface to usage-driven, stateless
(serverless) backend services. FaaS offers an intuitive, event-
based interface for developing cloud-based applications. In
contrast with the traditional cloud interface, in FaaS, users do
not explicitly provision or configure virtual machines (VMs)
or containers. FaaS users do not pay for resources they do
not use either. Instead, users simply upload the code of their
functions to the cloud; functions get executed when “triggered”
or “invoked” by events, such as the receipt of a message (e.g.,
an HTTP request) or a timer going off. The provider is then
responsible for provisioning the needed resources (e.g., a
container in which to execute each function), providing high
function performance, and billing users just for their actual
function executions (e.g., in increments of 100 milliseconds).

Obviously, providers seek to achieve high function per-
formance at the lowest possible resource cost. There are
three main aspects to how fast functions can execute and
the resources they consume. First, function execution requires
having the needed code (e.g., user code, language runtime

∗Shahrad is affiliated with Princeton University, but was at MSR during
this work. Laureano and Tresness are now with Facebook and D. E. Shaw.

libraries) in memory. A function can be started quickly when
the code is already in memory (warm start) and does not
have to be brought in from persistent storage (cold start).
Second, keeping the resources required by all functions in
memory at all times may be prohibitively expensive for the
provider, especially if function executions are short and in-
frequent. Ideally, the provider wants to give the illusion that
all functions are always warm, while spending resources as
if they were always cold. Third, functions may have widely
varying resource needs and invocation frequencies from mul-
tiple triggers. These characteristics severely complicate any
attempts to predict invocations for reducing resource usage.
For example, the wide range of invocation frequencies sug-
gests that keeping resources in memory may work well for
some functions but not others. With respect to triggers, HTTP
triggers may produce invocations at irregular intervals that
are difficult to predict, whereas timers are regular.

These observations make it clear that providing high func-
tion performance at low cost requires a deep understanding
of the characteristics of the FaaS workload. Unfortunately,
there has been no public information on the characteristics
of production workloads. Prior work [3, 15, 24, 25, 27, 44]
has focused on either (1) running benchmark functions to
assess performance and/or reverse-engineer how providers
manage resources; or (2) implementing prototype systems to
run benchmark functions. In contrast, what is needed is a com-
prehensive characterization of the users’ real FaaS workloads
on a production platform from the provider’s perspective.
Characterizing production workloads. To fill this gap, in
this paper, we first characterize the entire production FaaS
workload of Azure Functions [28]. We characterize the real
functions and their trigger types, invocation frequencies and
patterns, and resource needs. The characterization produces
many interesting observations. For example, it shows that
most functions are invoked very infrequently, but the most
popular functions are invoked 8 orders of magnitude more
frequently than the least popular ones. It also shows that
functions exhibit a variety of triggers, producing invocation
patterns that are often difficult to predict. In terms of resource
needs, the characterization shows a 4x range of function mem-
ory usage and that 50% of functions run in less than 1 second.

Researchers can use the distributions of the workload char-
acteristics we study to create realistic traces for their work.

USENIX Association 2020 USENIX Annual Technical Conference 205

Alternatively, they can use the sanitized production traces we
are making available with this paper [31].
Managing cold-start invocations. Using observations from
our characterization, we also propose a practical resource man-
agement policy for reducing the number of cold start execu-
tions while consuming no more resources than the large cloud
providers’ current policies. Specifically, AWS and Azure use
a fixed “keep-alive” policy that retains the resources in mem-
ory for 10 and 20 minutes after a function execution, respec-
tively [39, 40]. Though this policy is simple and practical,
it disregards the functions’ actual invocation frequency and
patterns, and thus behaves poorly and wastes resources.

In contrast, our policy (1) uses a different keep-alive value
for each user’s workload, according to its actual invocation
frequency and pattern; and (2) enables the provider in many
cases to pre-warm a function execution just before its invoca-
tion happens (making it a warm start). Our policy leverages a
small histogram that keeps track of the recent function inter-
invocation times. For workloads that exhibit clear invocation
patterns, the histogram makes clear how much keep-alive is
beneficial and when the pre-warming should take place. For
workloads that do not, our policy reverts back to the fixed
keep-alive policy. As the histogram must be small, for any
workloads that cannot be captured by the histogram but ex-
hibit predictable invocation patterns, our policy uses time-
series analysis to predict when to pre-warm.

We implement our policy in simulation and for the Apache
OpenWhisk [34] FaaS platform, both driven with real work-
load traces. Our simulation results show that the policy sig-
nificantly reduces the number of function cold starts, while
spending fewer resources than the fixed keep-alive policy.
Our experimental results show that the policy can be easily
implemented in real systems with minimal overheads. In fact,
we describe our recent production implementation in Azure
Functions in the end of the paper.
Contributions. In summary, our main contributions are:
• A detailed characterization of the entire production FaaS
workload at a large cloud provider;
• A new policy for reducing the number of cold start function
executions at a low resource provisioning cost;
• Extensive simulation and experimental results based on
real traces showing the benefits of the policy;
• An overview of our implementation in Azure Functions;
• A large sanitized dataset containing production FaaS traces.

2 Background
Abstraction. In FaaS, the user uploads code to the cloud, and
the provider enables a handle (e.g., a URL) for the code to
be run. The choices of which resources to allocate, when to
allocate them, and for how long to retain them, still have to
be made, but they are shifted to the cloud provider.
Triggers. Functions can be invoked in response to several
event types, called triggers [6, 29]. For clarity, in this paper
we group Azure’s many triggers into 7 classes: HTTP, Event,

Queue, Timer, Orchestration, Storage, and others. Event trig-
gers include Azure Event Hub and Azure Event Grid, and
are used for discrete or serial events, with individual or batch
processing. Queue-triggered functions respond to message
insertion in a number of message queueing solutions, such as
Azure Service Bus and Kafka. Timer triggers are similar to
cron jobs, and cause function invocations at pre-determined,
regular intervals. We grouped all triggers related to Azure
Durable Functions [30] as Orchestration. One can use these
triggers to create native, complex function chaining and or-
chestration. Finally, we grouped database and filesystem trig-
gers as Storage. These fire in response to changes in the
underlying data, and include Azure Blob Storage and Redis.
Applications. In Azure Functions, functions are logically
grouped in applications, i.e. an application may encompass
multiple functions. The application concept helps organize the
software and in packaging. The application, not the function,
is the unit of scheduling and resource allocation.
Cold starts. A cold start invocation occurs when a function
is triggered, but its application is not yet loaded in memory.
When this happens, the platform instantiates a “worker” 1 for
the application, loads all the required runtime and libraries,
and calls the function. This process can take a long time
relative to the function execution [44]. There are strategies
to reduce the time taken by each cold start, such as keeping
pre-allocated VMs or containers, instantiated virtual network
interfaces [32], or pre-loaded runtimes that can be specialized
on-demand [18]. In this paper, we focus on the complemen-
tary and orthogonal goal of reducing the number of cold starts.
Concurrency and elasticity. A running instance of an appli-
cation can respond to a configurable number of concurrent
invocations of its functions. The number depends on the na-
ture of the function, and its resource needs. Cold starts can
also happen if there is a spike in the load to an application, and
new instances have to be allocated quickly. Given full-server
instances and our real FaaS workload, only a tiny percentage
(<1%) of applications would experience this type of cold
start. For this reason, we do not consider it in this paper.
Cold start management policy. A key aspect of FaaS is the
trade-off between reducing cold starts by keeping instances
warm, and the resources (e.g., VMs, memory) they need.

Most FaaS providers use a fixed keep-alive policy for all
applications, where application instances are kept loaded in
memory for a fixed amount of time after a function execu-
tion [39, 40]. This is also the case for most open-source im-
plementations (e.g., OpenWhisk uses a 10-minute period).

This policy is simple to implement and maintain, but does
not consider the wide variety of application behaviors our
characterization unearths. Thus, it can have many cold starts
while wasting resources for many applications. Moreover, it
is easy to identify by external users, who sometimes invoke
their applications frequently enough (perhaps with dummy

1In some systems, a worker is a container, but in others it can be a VM.

206 2020 USENIX Annual Technical Conference USENIX Association

0.00

0.25

0.50

0.75

1.00

1 10 100 1000
Functions per App

C
um

ul
at

iv
e

F
ra

ct
io

n

% of Apps
% of Invocations
% of Functions

Figure 1: Distribution of the number of functions per app.

invocations) to keep them warm. This practice amplifies the
resource waste issue. In this paper, we design a better policy.

3 FaaS Workloads
We characterize the FaaS workloads seen by Azure Functions,
focusing on characteristics that are intrinsic to the applications
and functions (e.g., their arrival pattern), and not on the char-
acteristics that relate to the underlying platform (e.g., where
functions are scheduled). Throughout the characterization, we
highlight interesting observations and their implications for
cold starts and resource management.

3.1 Data Collection
We collected data on all function invocations across Azure’s
entire infrastructure between July 15th and July 28th, 2019.
We collected four related data sets:
1. Invocation counts: per function, in 1-minute bins;
2. Trigger per function;
3. Execution time per function: average, minimum, max-
imum, and count of samples, for each 30-second interval,
recorded per worker; and
4. Memory usage per application: sampled every 5 seconds
by the runtime and averaged, for each worker, each minute.
Average, minimum, maximum, and count of samples, for al-
located and resident memory.

With this paper, we are releasing a subset of our traces at
https://github.com/Azure/AzurePublicDataset.
Limitations. Given the extreme scale of Azure Functions,
the invocation counts are binned in 1-minute intervals, i.e.
our dataset does not allow the precise reconstruction of inter-
arrival times that are smaller than one minute. For this paper,
this granularity is sufficient.

For the execution time, we also do not have the complete
time distribution across all invocations. However, from the
many samples of average time, and corresponding counts, we
keep a set of weighted percentiles, where the weight of an
entry is the number of samples. For example, if we see an
average time of 100ms over 45 samples, the resulting per-
centiles are equivalent to those computed over a distribution
where 100ms are replicated 45 times. The quality of the ap-
proximation to the true distribution depends on the number
of samples in each bin, the smaller the better. We similarly

Trigger %Functions %Invocations
HTTP 55.0 35.9
Queue 15.2 33.5
Event 2.2 24.7

Orchestration 6.9 2.3
Timer 15.6 2.0
Storage 2.8 0.7
Others 2.2 1.0

Figure 2: Functions and invocations per trigger type.

obtain weighted percentiles for memory usage.
For confidentiality reasons, we cannot disclose some ab-

solute numbers, such as total number of functions and invo-
cations. Nevertheless, our characterization is useful for un-
derstanding a full FaaS workload, and for researchers and
practitioners to generate realistic FaaS workloads.

3.2 Functions, Applications, and Triggers
Functions and applications. Figure 1 shows the CDF of the
number of functions per application (top curve). We observe
that 54% of the applications only have one function, and 95%
of the applications have at most 10 functions. About 0.04%
of the applications have more than 100 functions.

The other two curves show the fraction of invocations,
and functions, corresponding to applications with up to a
certain number of functions. For example, we see that 50%
of the invocations come from applications with at most 3
functions, and 50% of the functions are part of applications
with at most 6 functions. Though we found a weak positive
correlation between the number of functions in an application
and the median number of invocations of those applications,
the number of functions in an application is not a useful signal
in resource management.

We took a closer look at the 10 applications with the most
functions. Only 4 had more than 1k functions: these, and 3 oth-
ers, had a pattern of auto-generated function names triggered
by timers or HTTP, which suggests that they were being used
for large automated testing. Of the remaining 3 applications,
two were using Azure Durable Functions for orchestrating
multiple functions, and one seems to be an API application,
where each function corresponds to one route in a large Web
or REST application. We plan to do a broader and more com-
prehensive study of application patterns in future work.
Triggers and applications. Figure 2 shows the fraction of
all functions, and all invocations, per type of trigger. HTTP
is the most popular in both dimensions. Event triggers cor-
respond to only 2.2% of the functions, but to 24.7% of the
invocations, due to their automated, and very high, invocation
rates. Queue triggers also have proportionally more invoca-
tions than functions (33.5% vs 15.2%). The opposite happens
with timer triggers. There are many functions triggered by
timers (15.6%), but they correspond to only 2% of the invo-
cations, due to the relatively low rate they fire in: 95% of the
timer-triggered functions in our dataset were triggered at most
once per minute, on average.

USENIX Association 2020 USENIX Annual Technical Conference 207

https://github.com/Azure/AzurePublicDataset

Trigger Type % Apps
HTTP (H) 64.07
Timer (T) 29.15
Queue (Q) 23.70
Storage (S) 6.83
Event (E) 5.79

Orchestration (O) 3.09
Others (o) 6.28

(a) Apps with ≥ 1 of each trigger.

Trigger
Types

Fraction of
Apps (%)

Cum. Frac.
(%)

H 43.27 43.27
T 13.36 56.63
Q 9.47 66.10

HT 4.59 70.69
HQ 4.22 74.92

E 3.01 77.92
S 2.80 80.73

TQ 2.57 83.30
HTQ 2.48 85.78
Ho 1.69 87.48
HS 1.05 88.53
HO 1.03 89.56

(b) Popular trigger combinations.

Figure 3: Trigger types in applications.

07/15 07/17 07/19 07/21 07/23 07/25 07/27 07/29
Time

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
In

vo
ca

tio
ns

Figure 4: Invocations per hour, normalized to the peak.

Figure 3 shows how applications combine functions with
different trigger types. In Figure 3(a), we show the applica-
tions with at least one trigger of the given type. We find that
64% of the applications have at least one HTTP trigger, and
29% of the applications have at least one timer trigger. As
applications can have multiple triggers, the fractions sum to
more than 100%. In Figure 3(b), we partition the applications
by their combinations of triggers. 43% of the applications
have only HTTP triggers, and 13% of the apps have only
timer triggers. Combining the two tables, we find that 15.8%
of the applications have timers and at least one other trigger
type. For predicting invocations, as we discuss later, while
timers are very predictable, 86% of the applications have
either no timers or timers combined with other triggers.

3.3 Invocation Patterns
We now look at dynamic function and application invocations.
Figure 4 shows the volume of invocations per hour, across the
entire platform, relative to the peak hourly load on July 18th.
There are clear diurnal and weekly patterns (July 20th, 21st,
27th, and 28th are weekend days), and a constant baseline of
roughly 50% of the invocations that does not show variation.
Though we did not investigate this specifically, there can be
several causes, e.g. a combination of human and machine-
generated traffic, plain high-volume applications, or the over-
lapping of callers in different time zones.

Figure 5(a) shows the CDF of the average number of invo-
cations per day, for a representative sample of both functions

10
−2

10
0

10
2

10
4

10
6

10
8

Daily Invocations

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1d12h 1h 30 15 5 1min 1s
Average Interval Between Invocations

Applications
Functions

(a) CDF of daily invocations per function and application, and the correspond-
ing average interval between invocations. Shaded regions show applications
invoked on average at most once per hour (green, 45% of apps) and at most
once per minute (yellow, 81% of apps).

0.001% 0.01% 0.1% 1% 10% 100%
Percentage of Most Popular Functions / Apps

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 In

vo
ca

tio
ns

Applications
Functions

(b) Fraction of total function invocations by the fraction of the most popular
functions and applications. Same colors as in Figure 5(a).

Figure 5: Invocations per application and per function for a
representative sample of the dataset.

and applications. The invocations for an application are the
sum over all its functions. First, we see that the number of
invocations per day varies by over 8 orders of magnitude for
functions and applications, making the resources the provider
has to dedicate to each application also highly variable.

The second observation with strong implications for re-
source allocation is that the vast majority of applications and
functions are invoked, on average, very infrequently. The
green- and yellow-shaded areas in the graph show, respec-
tively, that 45% of the applications are invoked once per hour
or less on average, and 81% of the applications are invoked
once per minute or less on average. This suggests that the
cost of keeping these applications warm, relative to their total
execution (billable) time, can be prohibitively high.

Figure 5(b) shows the other side of the workload skewness,
by looking at the cumulative fraction of invocations due to
the most popular functions and applications in the sample.
The shaded areas correspond to the same applications as in
Figure 5(a). The applications in the orange-shaded area are the
18.6% most popular, those invoked on average at least once
per minute. They represent 99.6% of all function invocations.

The invocation rates provide information on the average
inter-arrival time (IAT) of function and application invoca-
tions, but not on the distribution of these IATs. If the next
invocation time of a function can be predicted, the platform
can avoid cold starts by pre-warming the application right
before it is to be invoked, and save resources by shutting it

208 2020 USENIX Annual Technical Conference USENIX Association

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 4 6 8 10
IAT Coefficent of Variation

C
D

F

All Apps
Only Timers
At least 1 Timer
No Timers

Figure 6: CV of the IATs for subsets of applications.

down right after execution.
Inter-arrival time variability. To gain insight into the IAT
distributions of applications, we look at the coefficient of vari-
ation (CV) of each application. The CV (standard deviation
divided by the mean) provides a measure of the variability in
the IATs. We would expect timer-triggered functions to have
periodic arrivals, with a CV of 0. Human-generated invoca-
tions should approximately follow a Poisson arrival process,
with an exponential (memoryless) distribution of IATs [16].
These would ideally yield a CV of 1. CVs greater than 1
suggest significant variability.

Figure 6 shows the distribution of the CV across all applica-
tions, as well as for subsets of applications with and without
timers. It shows that the real IAT distributions are more com-
plex than the simply periodic or memoryless ones. For exam-
ple, only ∼50% of the applications with only timer-triggered
functions have a CV of 0. Multiple timers with different peri-
ods and/or phases will increase the CV. For applications with
at least one timer, this fraction is less than 30%, and across
all applications the fraction is ∼20%. Interestingly, ∼10% of
applications with no timers have CV close to 0, which means
they are quite periodic, and should be predictable. This could
be due to, for example, external callers (e.g., sensors or IoT
devices) that operate periodically. On the other hand, only a
small fraction of applications has a CV close to 1, meaning
that simple Poisson arrivals are not the norm. These results
show that there is a significant fraction of applications that
should have fairly predictable IATs, even if they do not have
timer triggers. At the same time, these numbers suggest that
for many applications predicting IATs is not trivial.

3.4 Function Execution Times
Another aspect of the workload is the function execution time,
i.e. the time functions take to execute after they are ready to
run. In other words, these numbers do not include the cold
start times. Cold start times depend on the infrastructure to a
large extent, and have been characterized in other studies [44].

Figure 7 shows the distribution of average, minimum, and
maximum execution times of all function executions on July
15th, 2019. The distributions for other days are similar. The
graph also shows a very good log-normal fit (via MLE) to
the distribution of the averages, with log mean -0.38 and σ

1ms 100ms 1s 10s 1m 10m 1h
Time(s)

C
D

F Minimum
Average
Maximum
LogNormal Fit

1.00

0.90

0.75

0.50

0.25

0.10
0.00

Figure 7: Distribution of function execution times. Min, avg,
and max are separate CDFs, and use independent sorting.

2.36. We observe that 50% of the functions execute for less
than 1s on average, and 50% of the functions have maximum
execution time shorter than ∼3s; 90% of the functions take at
most 60s, and 96% of functions take less than 60s on average.

The main implication is that the function execution times
are at the same order of magnitude as the cold start times
reported for major providers [44]. This makes avoiding and/or
optimizing cold starts extremely important for the overall
performance of a FaaS offering.

Another interesting observation is that, overall, functions
in this FaaS workload are very short compared to other cloud
workloads. For example, data from Azure [12] shows that
63% of all VM allocations last longer than 15 minutes, and
only less than 8% of the VMs last less 5 minutes or less. This
implies that FaaS imposes much more stringent requirements
on the provider to stand-up resources quickly.
Idle times. As we discuss in Section 4, an important aspect of
the workload for managing cold starts is idle time (IT), defined
as the time between the end of a function’s execution and its
next invocation. IT relates to IAT and execution time. For most
applications, the average execution time is at least 2 orders
of magnitude smaller than the average IAT. We verified for
the applications in the yellow region in Figure 5(a) – 81% of
the applications invoked at most once per minute on average –
that indeed the IT and IAT distributions are extremely similar.
Potential correlations. Different triggers had average func-
tion execution times differing by about 10×, between 200ms
and 2s at the median, but all with the same shape for the
distributions. One outlier was a class of orchestration func-
tions with median average execution times of ∼30ms, as they
simply dispatch and coordinate other functions.

3.5 Memory Usage
We finally look at the memory demands of applications. Re-
call that the application is the unit of memory allocation in the
platform we study. Figure 8 shows the memory demand dis-
tribution, across all applications running on July 15th, 2019.
We present three curves drawn from the memory data: 1st

percentile, average, and maximum allocated memory for the
application. We also plot a reasonably good Burr distribution
fit (with parameters c = 11.652, k = 0.221, and λ = 107.083)
for the average. Allocated memory is the amount of virtual

USENIX Association 2020 USENIX Annual Technical Conference 209

0.00

0.10

0.25

0.50

0.75

0.90

1.00

10 100 1000
Allocated Memory (MB)

C
D

F

1st Percentile
Average
Maximum
Burr Fit

Figure 8: Distribution of allocated memory per application.

memory reserved for the application, and may not necessarily
be all resident in physical memory. Here, we use the 1st per-
centile because there was a problem with the measurement of
the minimum, which made that data not usable. Despite the
short duration of each function execution, applications tend
to remain resident for longer. The distributions for other days
in the dataset are very similar.

Looking at the distribution of the maximum allocated
memory, 90% of the applications never consume more than
400MB, and 50% of the applications allocate at most 170MB.
Overall, there is a 4× variation in the first 90% of applica-
tions, meaning that memory is an important factor in warmup,
allocation, and keep-alive decisions for FaaS.
Potential correlations. We found no strong correlation be-
tween invocation frequency and memory allocation or be-
tween memory allocation and function execution times.

3.6 Main Takeaways
From the point of view of cold starts and resource allocation,
we now reiterate our three main observations. First, the vast
majority of functions execute on the order of a few seconds –
75% of them have a maximum execution time of 10 seconds –
so execution times are on the same order as the time it takes to
start functions cold. Thus, it is critical to reduce the number of
cold starts or make cold starts substantially faster. Eliminating
a cold start is the same as making it infinitely fast.

Second, the vast majority of applications are invoked infre-
quently – 81% of them average at most one invocation per
minute. At the same time, less than 20% of the applications
are responsible for 99.6% of all invocations. Thus, it is expen-
sive, in terms of memory footprint, to keep the applications
that receive infrequent invocations resident at all times.

Third, many applications show wide variability in their
IATs – 40% of them have a CV of their IATs higher than 1 – so
the task of predicting the next invocation can be challenging,
especially for applications that are invoked infrequently.

4 Managing Cold Starts in FaaS
We use insights from our characterization to design an adap-
tive resource management policy, called hybrid histogram

policy. The goal is to reduce the number of cold start invoca-
tions with minimum resource waste. We refer to a policy as a
set of rules that govern two parameters for each application:
— Pre-warming window. The time the policy waits, since the
last execution, before it loads the application image expecting
the next invocation. A pre-warming window = 0 means that
the policy does not unload the application after one of its
functions executes. Aggressive pre-warming (a large window)
reduces resource usage but may also cause cold starts, in case
the next invocation occurs sooner than expected.
— Keep-alive window. The time during which an application’s
image is kept alive after (1) it has been loaded to memory
(pre-warming window ≥ 0) or (2) a function execution (pre-
warming window = 0). (Note that our definition for this win-
dow differs from the keep-alive parameter in fixed keep-alive
policies, which is the same for all applications and only starts
at the end of function executions.) Longer windows have the
potential to reduce cold starts by increasing the chances of
an invocation falling into this window. However, this may
also waste resources, i.e. leave them idle, in case the next
invocation does not happen soon after loading.

A no-unloading policy would keep every application image
loaded in memory all the time (i.e., infinite keep-alive window
and pre-warming window = 0). This policy would get no cold
starts but would be too expensive to operate.

4.1 Design Challenges
Designing a practical policy poses several challenges:
1. Hard-to-predict invocations. As Figure 3 shows, many
applications are triggered by timers. A timer-aware policy
could leverage this information to pre-warm applications right
before the next invocation. However, predicting the next invo-
cation is challenging for other triggers.
2. Heterogeneous applications. As Figure 5 shows, the in-
vocation frequency and pattern vary substantially across appli-
cations. A one-size-fits-all fixed policy is certain to be a poor
choice for many applications. A better policy should adapt to
each application dynamically.
3. Applications with infrequent invocations. Some appli-
cations are invoked very infrequently, so an adaptive policy
would take some time to learn their invocation patterns. The
same applies for applications that it sees for the first time.
4. Tracking overhead. Adapting the policy to each applica-
tion means tracking each application individually. For this
reason, the cost to track the information for each application
should be small. For example, we need to consider the size of
the data structures that will keep this state.
5. Execution overhead. Since function executions can be
very short (i.e., more than 50% of executions take less than
1 second), running the policy and updating its state need
to be fast. This is especially critical considering providers
charge users only during their function execution times (e.g.,
based on CPU, memory). For instance, we cannot take 100
ms to update a policy for each 10 ms-long execution. Due

210 2020 USENIX Annual Technical Conference USENIX Association

Application loaded

Function execution
Warm Start

Keep alive Keep alive

Warm Start

Pre-warm Keep alive Pre-warm Keep alive

Cold Start

Pre-warm Pre-warm

Cold Start

Keep alive Pre-warm

Figure 9: Timelines showing a warm start with keep alives
and no pre-warming (top); a warm start following a pre-warm
(middle); and two cold starts, before a pre-warm, and after a
keep alive (bottom).

to these overheads, expensive prediction techniques, such as
time-series analysis, cannot be used for all applications.

4.2 Hybrid Histogram Policy
Overview. Our hybrid histogram policy addresses all the
above challenges. To address challenges #1 and #2, our pol-
icy adjusts to the invocation frequencies and patterns of each
individual application. It identifies the application’s invoca-
tion pattern, removes/unloads the application right after each
function execution ends, reloads/pre-warms the application
right before a potential next invocation (after a “pre-warming
window” elapses), and keeps it alive for a period (until a “keep-
alive window” elapses). The pre-warming window starts after
each function execution, and the keep-alive window starts af-
ter each pre-warming. If the pre-warming window is 0, we do
not unload the application after an execution, and the end of
the execution still starts a new keep-alive window. We explain
how exactly we compute the length of these windows below.

Figure 9 shows the pre-warming and keep-alive windows in
three scenarios. In the top scenario, the pre-warming window
is 0, and an invocation that happens before the keep-alive
window ends is a warm start. The end of the execution starts a
new keep-alive window. In the middle, the next invocation is a
warm start, as the application is re-loaded after a pre-warming
window. The end of the execution starts a new pre-warming
window. In the bottom scenario, there are two cold starts:
the first resulting from an invocation arriving before the pre-
warming window elapsed, and the second from an invocation
arriving after the keep-alive period elapsed.

The policy comprises three main components: (1) a range-
limited histogram for capturing each application’s “idle” times
(ITs); (2) a standard keep-alive approach for when the his-
togram is not representative, i.e. there are too few ITs or the IT
behavior is changing (again, note that this differs from a fixed
keep-alive policy); and (3) a time-series forecast component
for when the histogram does not capture most ITs. Figure 10

Update
app’s IT

distribution

Time-series forecast
(ARIMA)

Use IT distribution
(histogram)

Be conservative
(standard keep-alive)

Too many
OOB ITs

N

Y

Pattern
representative

Y

N

New invocation

(Pre-warming window, Keep-alive window)

Figure 10: Overview of the hybrid histogram policy.

Fr
eq

u
en

cy

Idle Time (IT)

Pre-warm Keep-alive

5th
p

er
ce

n
ti

le

99
th

p
er

ce
n

ti
le

Figure 11: Example application idle time (IT) distribution
used to select pre-warming times and keep-alive windows.

overviews our policy and its components. Ultimately, the pol-
icy defines the pre-warming and keep-alive windows for each
application. Next, we describe each component in turn.
Range-limited histogram. To address challenges #4 and #5,
the centerpiece of our policy is a compact histogram data
structure that tracks the IT distribution for each application.
Each entry/bin of the histogram counts the number of ITs of
the corresponding length that have occurred. We use 1-minute
bins, which strikes a good balance between metadata size
and the resolution needed for policy actions. Keep-alive time
scales are in orders of minutes for FaaS platforms. We use the
same scale for pre-warming. In addition, the histogram tracks
ITs of up to a configurable duration (e.g., 4 hours). Any ITs
longer than this are considered “out of bounds” (OOBs).

Given the ITs that are within bounds, our policy identifies
the head and tail of the IT distribution. We use the head to
select the pre-warming window for the application, and the
tail to select the keep-alive window. To exclude outliers, we
set the head and tail by default to the 5th- and 99th-percentiles
of the IT distribution. (When one of these percentiles falls
within a bin, we “round” it to the next lower value for the head
or the next higher value for the tail.) These two configurable
thresholds strike a balance between managing cold starts and
resource costs. Figure 11 shows the histogram for a sample
application, and the head and tail markers. To give the policy a
little room for error, our implementation uses a 10% “margin”
by default, i.e. it reduces the pre-warming window by 10%
and increases the keep-alive window by 10%.

Figure 12 shows nine real IT distributions over a week. The
three histograms in the left column show cases where both
head and tail cutoffs are easy to identify. These distributions
produce the ideal situation: long pre-warm windows and short

USENIX Association 2020 USENIX Annual Technical Conference 211

0

1

N
or

m
al

iz
e

Fr
eq

u
en

cy

0 10 20 30 0 10 20 30

Binned IT (minutes)
0 10 20 30

0

1

0

1

Figure 12: Nine normalized IT distributions from real FaaS
workloads over a week.

keep-alive windows. The center cases show no head cutoff
as the head marker rounded down to 0. In these cases, the
pre-warming window is 0 and the policy does not kill the
application after a function execution.
Standard keep-alive when the pattern is uncertain. The
histogram might not be representative of an application’s be-
havior when (1) it has not observed enough ITs for the applica-
tion, or (2) when the application is transitioning to a different
IT regime (e.g., change from a consistent pattern to an entirely
new one). When the histogram is not representative, we revert
to a standard keep-alive approach: pre-warming window =
0 and keep-alive window = range of the histogram (e.g., 4
hours). This conservative choice of keep-alive window seeks
to minimize the number of cold starts while the histogram is
learning a new pattern. Our policy reverts back to using the
histogram when it becomes representative (again).

We decide whether a histogram is representative by com-
puting the CV of its bin counts. A histogram that has a single
bin with a high count and all others 0 would have a high
CV, whereas a histogram where all bins have the same value
would have CV = 0. The histogram is most effective in the for-
mer case, where there is a large concentration of ITs (left and
center of Figure 12). It is not as effective when ITs are spread
widely (right of Figure 12). Thus, if the CV is lower than a
threshold, we use the standard keep-alive approach. To track
the CV efficiently, we use Welford’s online algorithm [45].
Time-series analysis when histogram is not large enough.
A compact histogram cannot represent ITs larger than its
range. Thus, applications with very infrequent invocations
(challenge #3) may exhibit many out-of-bounds ITs. For these
applications, our policy uses time-series analysis to predict
the next IT. Specifically, we use ARIMA modeling [11].

With an IT prediction, our policy sets the pre-warm window
to elapse just before the next invocation and a short keep-alive
window. In more detail, we used the auto_arima implemen-
tation from the pmdarima package [2], which automatically

searches for the ARIMA parameters (p,d,q) that produce the
best fit. As applications using ARIMA are invoked very in-
frequently, we update the model for each of them after every
invocation. To give the prediction some room more inaccu-
racy, we include a (configurable) margin of 15%. For example,
if the predicted IT is 5 hours, we set the pre-warming window
to 4.25 hours (5 hours minus 15%) and the keep-alive window
to 1.5 hours (15% of 5 hours in each side of the IT prediction).
Justification. Like other FaaS cold start policies, our policy
eagerly frees up memory when it is not needed. An alternative
would have been to leverage standard (lazy) caching policies,
which free up cache space only on-demand. Section 7 explains
the differences between these types of policies that justify our
approach. Our policy uses a standard keep-alive with a long
window, when it does not have accurate IT data about the
application, to conservatively prevent cold starts. A shorter
window would lower cost but would incur more cold starts.
We prefer our approach because it often quickly reduces mem-
ory usage greatly, after the histogram becomes active for the
application. Instead of using a histogram, we could attempt
to predict the next invocation or idle time using time-series
analysis or other prediction models. We experimented with
some models, including ARIMA, but found them to be inac-
curate or excessively expensive for the bulk of invocations.
The histogram is accurate, compact, and fast to update. So,
we rely on ARIMA only for the applications that cannot be
represented with a compact histogram. Producing an ARIMA
model is expensive, but can be off the critical path. Moreover,
these applications involve only a small percentage of invoca-
tions, so computation needs are kept small. Nevertheless, we
can easily replace ARIMA with another model.

4.3 Implementation in Apache OpenWhisk
We implement our policy in Apache OpenWhisk [34], which
is the open-source FaaS platform that powers IBM’s Cloud
Functions [21]. It is written in Scala.
OpenWhisk architecture. Figure 13 shows the architecture
of OpenWhisk [35]. It exposes a REST interface (imple-
mented using Nginx) for users to interact with the FaaS plat-
form. A user can create new functions (actions in OpenWhisk
terminology), submit new invocations (activations in Open-
Whisk terminology), or query their status. Here, we focus on
function invocation and container management. Invocation
requests are forwarded to the Controller component, who de-
cides which Invoker should execute each function instance.
This logic is implemented in the Load Balancer, which con-
siders the health and available capacity of the Invokers, as
well as the history of prior executions. The Controller sends
the function invocation request to the selected Invoker via the
distributed messaging component (implemented using Kafka).
The Invoker receives the invocation request, starts the function
in a Docker container, and manages its runtime (including
when to stop the container). By default, each Invoker imple-
ments a fixed 10-minute keep-alive policy, and informs the

212 2020 USENIX Annual Technical Conference USENIX Association

REST
Interface

Controller

Load
Balancer

Distributed
Messaging

Invoker

Distributed
Database

ContainerContainerContainer
ContainerContainerContainer

ContainerContainerContainer

Invoker Invoker

Figure 13: OpenWhisk architecture.

Controller when it unloads a container.
Implementing our policy. We modify the following Open-
Whisk components to implement the hybrid policy:
1. Controller: Since all invocations pass through the Load
Balancer, it is the ideal place to manage histograms and other
metadata required for the hybrid policy. We add new logic
to the Load Balancer to implement the hybrid policy and to
update the keep-alive and pre-warm parameters after each
invocation. We also modify the Load Balancer to publish the
pre-warming messages.
2. API: We send the latest keep-alive parameter for a function
to the corresponding Invoker alongside the invocation request.
To do this, we add a field to the ActivationMessage API,
specifying the keep-alive duration in minutes.
3. Invoker: The Invoker unloads Docker containers that have
timed-out in the ContainerProxy module. We modify this
module to unload containers based on the keep-alive parame-
ter received from ActivationMessage.

5 Evaluation
5.1 Methodology
Simulator. Evaluating our policy requires (1) long executions
to assess applications with infrequent invocations, and (2) ex-
ploring a large space of configurations. To limit the evaluation
time, we use simulations. We build a simulator that allows us
to compare various policies using real invocation traces.

The simulator generates an array of invocation times for
each unique application. It then infers whether each invoca-
tion would be a cold start. By default, the first invocation is
always assumed to be a cold start. The simulator keeps track
of when each application image is loaded and aggregates the
wasted memory time for the application, i.e. the time when
the application’s image was kept in memory without actually
executing any functions. We conservatively simulate function
execution times equal to 0 to quantify the worst-case wasted
resource time. We do not have memory usage data for all
applications, so we also simulate that applications use the
same amount and focus on the wasted memory time.

0 25 50 75 100
App Cold Start (%)

0.00

0.25

0.50

0.75

1.00

CD
F No Unloading

120-min
90-min
60-min
45-min
30-min
20-min
10-min
5-min

Figure 14: Cold start behavior of the fixed keep-alive policy,
as a function of the keep-alive length.

Real experiments. To show that our policy can be easily im-
plemented in real systems with minimal overheads, we use
our OpenWhisk implementation (Section 4.3). Our setup con-
sists of 19 VMs. One VM with 8 cores and 8GB of memory
hosts containers for the Controller and other main compo-
nents, including Nginx and Kafka. Each of the remaining 18
VMs has 2 cores and 4GB of memory, hosting an Invoker to
actually run the functions in Docker containers.
Workloads. As input to our simulations, we use the first week
of the trace from Section 3. For the real experiments, we
use a scaled-down version of the trace. We randomly select
applications with mid-range popularity. As we run the full
system, we limit each OpenWhisk execution to only 8 hours.
As we show in Section 5.3, the experimental and simulation
results show the same trends in both cold start and memory
consumption behaviors.

5.2 Simulation Results
Understanding the fixed keep-alive policy. We start evalu-
ating the policy used by most providers: the fixed keep-alive
policy. We first assess how the length of the keep-alive af-
fects the cold starts. Figure 14 shows the distribution of cold
start percentage experienced by all applications for various
lengths. For comparison, we also include a No unloading pol-
icy, which corresponds to each application only experiencing
the initial cold start. Even the No unloading policy has ∼3.5%
of applications with 100% cold starts; these applications have
only one invocation in the entire week.

We see significant cold start reduction going from a 10-
minute keep-alive to 1-hour. The 75th-percentile application
experiences cold starts 50.3% of the time for the 10-minute
keep-alive. This number goes down to 25% for 1-hour. The
cold start improvement is more pronounced in the last quartile
of the distribution, since applications with infrequent invoca-
tions are those that benefit the most. From now on, we will
focus on this metric (i.e., 75th-percentile) to report cold starts.

While a longer keep-alive reduces cold starts significantly,

USENIX Association 2020 USENIX Annual Technical Conference 213

0 20 40 60 80 100
3rd Quartile App Cold Start (%)

80

90

100

110

120

130
No

rm
al

ize
d

W
as

te
d

M
em

or
y

Ti
m

e
(%

)

~1.5X

~2.5X

Hybrid
4-hr
3-hr
2-hr
1-hr

Fixed
120-min
90-min
60-min
45-min
30-min
20-min
10-min
5-min

Figure 15: Trade-off between cold starts and wasted memory
time for the fixed keep-alive policy and our hybrid policy.

it also increases the resources wasted significantly. The red
markers in Figure 15 show the trade-off between cold starts
and memory wasted, where we normalize the wasted memory
time to the 10-minute keep-alive. The red curve near the red
markers approximates the Pareto curve. The figure shows, for
example, that a fixed 2-hour keep-alive has almost 30% higher
wasted memory time than the 10-minute baseline. An optimal
policy would deliver the lowest cold starts with minimum cost.
We rely on these Pareto curves to evaluate the policies.
Impact of using a histogram. We now start to evaluate our
hybrid policy with the impact of the histogram and its range.
The green markers in Figure 15 show the cold start percentage
and wasted memory time of our histogram for various ranges.
The figure shows how our policy reduces the cold starts sig-
nificantly with lower memory waste. In fact, the 10-minute
fixed keep-alive policy involves ∼2.5x more cold starts at the
75th-percentile while using the same amount of memory as
our histogram with a range of 4 hours. From a different per-
spective, the fixed 2-hour keep-alive policy provides roughly
the same percentage of cold starts as the 4-hour histogram
range, but consumes about 50% more resources. Overall, the
hybrid policies form a parallel, more optimal Pareto frontier
(green curve) than the fixed policies (red curve).
Impact of the histogram cutoff percentiles. Our policy uses
two cutoff percentiles to exclude outliers in the head and tail
of the IT distribution. Figure 16 shows the sensitivity study
that we used to determine suitable cutoff values. The figure
shows that, by setting the head and tail cutoffs to the 5th- and
99th-percentiles of the IT distribution (labeled Hybrid[5,99]
in the figure), the cold start percentage does not degrade no-
ticeably whereas the wasted memory time goes down by 15%,
compared to the case with no cutoff (Hybrid[0,100]).

Impact of unloading and pre-warming. Complementing
our adaptive keep-alive with pre-warming allows unloading
of an application right after execution and pre-warming right
before the next invocation. This reduces the wasted memory
time of application images. Figure 17 shows this, where using

0 25 50 75 100
App Cold Start (%)

0.00

0.25

0.50

0.75

1.00

CD
F

No Unloading
Hybrid [0,100]
Hybrid [5,100]
Hybrid [1,99]
Hybrid [5,99]
Hybrid [1,95]
Hybrid [5,95]
10-min Fixed

Hybrid
[0,100]

Hybrid
[5,100]

Hybrid
[1,99]

Hybrid
[5,99]

Hybrid
[1,95]

Hybrid
[5,95]

0

20

40

60

80

100

No
rm

al
ize

d
W

as
te

d
M

em
or

y
Ti

m
e

(%
) 10-min Fixed

Figure 16: Wasted memory time can be significantly reduced
by excluding outliers from the IT distribution.

0 25 50 75 100
App Cold Start (%)

0.00

0.25

0.50

0.75

1.00

CD
F

No Unloading
Hybrid No PW, KA:99th
Hybrid with PW, PW:1st, KA:99th
Hybrid with PW, PW:5th, KA:99th
10-min Fixed

Hybrid
No PW,
KA:99th

Hybrid
with PW,

PW:1st, KA:99th

Hybrid
with PW,

PW:5th, KA:99th

0

20

40

60

80

100

120

No
rm

al
ize

d
W

as
te

d
M

em
or

y
Ti

m
e

(%
)

10-min Fixed

Figure 17: Pre-warming reduces the wasted memory time
significantly. The cost is slight increase in cold starts.

0 25 50 75 100
App Cold Start (%)

0.00

0.25

0.50

0.75

1.00

CD
F

No Unloading
CV=10
CV=5
CV=2
CV=0

0 20 40 60 80 100
3rd Quartile App Cold Start (%)

80

85

90

95

100

105

No
rm

al
ize

d
W

as
te

d
M

em
or

y
Ti

m
e

(%
)

10-min Fixed

CV
10
5
2
0

Figure 18: Trade-off between cold starts and memory wasted,
as a function of the CV threshold, using a 4-hour range.

similar keep-alive (KA) configurations with and without pre-
warming (PW) has significantly different wasted memory
time. The cost, however, is adding a small number of cold
starts from unexpected invocations. We can control this trade-
off by adjusting the histogram head cutoff percentile.
Impact of checking the histogram representativeness. Our
policy checks whether the histogram is representative before
using it. If the histogram is not representative (i.e., the CV
of its bin counts is lower than a threshold), it uses a standard
keep-alive approach where applications stay loaded for the
same length as the histogram range. We study the impact of
different CV thresholds in Figure 18. The figure shows the ap-
plication cold start distributions (left) and the Pareto frontier
(right). We see significant gains using a small CV threshold
larger than 0. We opt for CV=2 as our default threshold. In-
creasing the CV further has negligible cold start reduction
with higher resource costs.
Impact of using time-series analysis. Another feature of
our hybrid policy is to use ARIMA modeling for applications

214 2020 USENIX Annual Technical Conference USENIX Association

0 2 4 6 8 10
Percentage of Always-Cold Applications

Hybrid

Hybrid
without
ARIMA

Fixed

1
invocation

Figure 19: Percentage of applications that always experience
cold starts, as a function of policy.

that have many ITs outside the range of the histogram. To
evaluate its impact, we now focus on the percentage of ap-
plications that show 100% cold starts. Figure 19 shows this
percentage when using (1) the fixed keep-alive policy, (2) the
hybrid policy without ARIMA, and (3) the full hybrid policy
(including ARIMA). All of them use 4 hours for the fixed
keep-alive and the histogram range. During the week-long
simulation window, 0.64% of invocations were handled by
ARIMA, and 9.3% of applications used ARIMA at least once.
Using ARIMA reduces the percentage of applications that
experience 100% cold starts by about 50%, i.e. from 10.5% to
5.2% of all applications. A significant portion of these applica-
tions have only one invocation during the entire week and no
predictive model can help them. Excluding these applications,
the same reduction becomes 75%, i.e. from 6.9% to 1.7% of
all applications. This shows that ARIMA provides benefits
for applications that cannot benefit from a fixed keep-alive or
a histogram-based policy.
Summary. Our hybrid policy can reduce the number of cold
starts significantly while minimizing the memory cost. We
achieve these positive results despite having deliberately de-
signed our policy for simplicity and practicality: (1) histogram
bins have a resolution of 1-minute, (2) histograms have a max-
imum range, (3) they do not require any pre-processing or
complicated model updates, and (4) when the histogram does
not work well, we resort to simple and effective alternatives.

5.3 Experimental results
We ran two experiments with 68 randomly selected mid-range
popularity applications from our workload on our 19-VM
OpenWhisk deployment: one experiment with the default 10-
minute fixed keep-alive policy of OpenWhisk, and another
with our hybrid policy and a 4-hour histogram range. Each
experiment ran for 8 hours. During the 8-hour period, there are
a total of 12,383 function invocations. We use FaaSProfiler [1,
38] to automate trace replay and result analysis.

Figure 20 compares the cold start behavior of the hybrid
and 10-minute fixed keep-alive policies. The significant cold
start reductions follow the same trend as our simulations
(left graph of Figure 16). On average and across the 18 In-
voker VMs, the hybrid policy reduced memory consumption
of worker containers by 15.6%, which is also consistent with
our simulation results (right graph of Figure 16). Moreover,

0 25 50 75 100
App Cold Start (%)

0.00

0.25

0.50

0.75

1.00

CD
F

Hybrid
Fixed (10-min)

Figure 20: Cold start behavior of fixed keep-alive and hybrid
policies in OpenWhisk.

the hybrid policy reduced the average and 99-percentile func-
tion execution time 32.5% and 82.4%, respectively. This is
due to a secondary effect in OpenWhisk, where the language
runtime bootstrap time is eliminated for warm containers.
Policy overhead. We measure the (1) additional latency in-
duced by our implementation and (2) the impact of our policy
on the scalability of the OpenWhisk controller. The Scala
code that implements our policy in the Controller adds an av-
erage of only 835.7µs (σ = 245.5µs) to the end-to-end latency.
This overhead is negligible compared to the existing latency of
OpenWhisk components: the (in-memory) language runtime
initiation takes O(10ms) and the container initiation takes
O(100ms) for cold containers [38]. For the uncommon cases
where ARIMA is required (0.7% of invocations), the initial
forecast involves building the model, which takes an aver-
age of 26.9ms, whereas subsequent forecasts take an average
of 5.3ms. Since ARIMA works for applications that would
normally experience cold starts, these overheads represent a
relatively small cost compared to the cold start overhead.

In terms of scalability, CPU utilization is the limiting fac-
tor for the Controller. Our policy adds only a 4-6% higher
utilization for a range of benchmarking request rates (10rps
to 300rps), compared to OpenWhisk’s default policy.

6 Production Implementation
We have implemented our policy in Azure Functions for
HTTP-triggered applications; its main elements will be rolling
out to production in stages starting this month. Here, we
overview the implementation.

Azure Functions has a controller that communicates with
function-execution workers through HTTP, and a database
for persisting system state. The controller gets asynchronous
updates from the workers at fixed intervals; we use these to
populate the histogram. We keep the histogram in memory
(bucket of 240 integers per application, or 960 bytes) and do
hourly backups to the database. We start a new histogram per
day in the database so we can track changes in application’s
invocation pattern, and remove histograms older than 2 weeks.
We can potentially use these daily histograms in a weighted
fashion to give more importance to recent records.

USENIX Association 2020 USENIX Annual Technical Conference 215

When an application changes state from executing to idle,
we use the aggregated histogram to compute its pre-warm in-
terval and schedule an event for that time (minus 90 seconds).
Pre-warming loads function dependencies and performs JIT
where applicable. Some steps, like JIT of the function code,
happen when the actual invocation comes in as the function’s
code cannot be executed as part of warmup to preserve execu-
tion semantics. Each worker maintains the keep-alive duration
separately, depending on how long it has been idle for. We
make all policy decisions asynchronously, off the critical path
to minimize the latency impact on the invocation. This in-
cludes updating the in-memory histogram, backing up the
histogram to the database, scheduling pre-warming events,
and controlling the workers’ keep alive intervals.

7 Related Work
There is a fast-increasing number of studies on different as-
pects of serverless computing. The most relevant for our paper
are those that characterize FaaS platforms and applications,
and those that propose and optimize FaaS serving systems.
FaaS characterization. A few studies [7,15,24–26,44] have
characterized the main commercial FaaS providers, but only
from the perspective of external users. They typically reverse-
engineer aspects of FaaS offerings, by running benchmark
functions to collect various externally visible metrics. Our
characterization is orthogonal to these works, as we provide
a longitudinal characterization of the entire workload of a
large cloud provider from the provider’s perspective. Our
characterization is the first of its kind.

Another class of studies looks at the ways developers are
using FaaS offerings, by looking at public application reposi-
tories [41]. While valuable, this approach cannot offer insights
on the aggregate workload seen by a provider.
Optimizing FaaS serving. Another set of relevant work con-
siders optimizing different aspects of FaaS systems. Van Eyk
et al. [42] identify performance-related challenges, including
scheduling policies that minimize cold starts. They also iden-
tify the lack of execution traces from real FaaS platforms as a
major obstacle to addressing the challenges they identified.

For optimizing each cold start, Mohan et al. [32] find that
pre-allocating virtual network interfaces that are later bound
to new function containers can significantly reduce cold start
times. SOCK [33] proposes to optimize the loading of Python
functions in OpenLambda by smart caching of sets of libraries,
and by using lightweight isolation mechanisms for functions.
SAND [3] uses application-level sandboxing to prevent the
cold start latency for subsequent function invocations within
an application. Azure Functions warms all functions within
an application together; thus this was not a concern for us. Re-
playable Execution [43] proposes checkpointing and sharing
of memory among containers to speed up the startup times
of a JVM-based FaaS system. Kaffes et al. [22] propose a
centralized core-granular scheduler. Our work on reducing
the number of cold starts and resource usage by predicting

function invocations is orthogonal to these improvements.
Other studies also use prediction to optimize different as-

pects. Work in [19, 20] proposes a policy for deciding on
function multi-tenancy, based on a predictive model of re-
source demands of each function. Without discussing design
details, EMARS [37] proposes using predictive modeling for
allocation of memory to serverless functions. Kesidis [23]
proposes to use the prediction of the resource demands of
functions to enable the provider to overbook functions on
containers. In contrast, we track invocation patterns and use
this knowledge to reduce cold starts and memory waste.
Cache management. Finally, one might think that the prob-
lem of managing cold starts is similar to managing caches
of variable-sized objects, such as Web page caches and oth-
ers [4, 8, 36]. However, there are two fundamental differences.
First, FaaS frameworks are often implemented on top of ser-
vices that charge by the time resources are allocated (e.g.,
each application is packaged as a container and deployed to a
container service). Thus, cold start policies proactively unload
applications/functions from memory, instead of waiting for
other applications/functions to need the space. Our policy is
closest to a class of TTL-based caches where new accesses
reset the TTL [9, 10]. These works did not consider tem-
poral prefetching, the equivalent of our pre-warming. Other
caching work did consider it, but with capacity-based replace-
ments [46]. Second, most caching algorithms to date have
focused on aggregate performance metrics [13, 14], such as
the weighted sum or average of per-object miss ratios. In con-
trast, we tailor our cold start management to each application
to maximize individual customer satisfaction.

8 Conclusion
In this paper, we characterized the entire production FaaS
workload of Azure Functions. The characterization unearthed
several key observations for cold start and resource manage-
ment. Based on them, we proposed a practical policy for
reducing the number of cold starts at a low resource cost. We
evaluated the policy using both simulations and a real imple-
mentation, and real workload traces. Our results showed that
the policy can achieve the same number of cold starts at much
lower resource cost, or keep the same resource cost but reduce
the number of cold starts significantly. Finally, we overviewed
our policy’s implementation in Azure Functions. We released
sanitized traces from our characterization data at [31].

Acknowledgements
We would like to thank our shepherd, George Amvrosiadis,
and the anonymous reviewers for helping us improve this
paper. We also thank Daniel Berger, Bill Bolosky, and Willy
Zwaenepoel for their comments on earlier versions of it.

References
[1] FaaSProfiler. http://parallel.princeton.edu/

FaaSProfiler.html.

216 2020 USENIX Annual Technical Conference USENIX Association

http://parallel.princeton.edu/FaaSProfiler.html
http://parallel.princeton.edu/FaaSProfiler.html

[2] Pmdarima. https://github.com/alkaline-ml/
pmdarima.

[3] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards High-
Performance Serverless Computing. USENIX ATC,
2018.

[4] Waleed Ali, Siti Mariyam Shamsuddin, Abdul Samad
Ismail, et al. A Survey of Web Caching and Prefetching.
International Journal of Advances in Soft Computing
and its Applications, 3(1), 2011.

[5] Amazon. AWS Lambda. https://aws.amazon.com/
lambda/.

[6] Amazon. Invoking AWS Lambda Functions.
https://docs.aws.amazon.com/lambda/latest/
dg/lambda-invocation.html.

[7] Timon Back and Vasilios Andrikopoulos. Using a Mi-
crobenchmark to Compare Function as a Service Solu-
tions. ESOCC, 2018.

[8] Abdullah Balamash and Marwan Krunz. An Overview
of Web Caching Replacement Algorithms. IEEE Com-
munications Surveys & Tutorials, 6(2):44–56, 2004.

[9] S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and
R. Sitaraman. Adaptive TTL-Based Caching for Con-
tent Delivery. IEEE/ACM Transactions on Networking,
26(3):1063–1077, 2018.

[10] Daniel Berger, Philipp Gland, Sahil Singla, and Florin
Ciucu. Exact Analysis of TTL Cache Networks. Perfor-
mance Evaluation, 79:2 – 23, 09 2014.

[11] George EP Box and David A Pierce. Distribution of
Residual Autocorrelations in Autoregressive-Integrated
Moving Average Time Series Models. Journal of the
American Statistical Association, 65(332), 1970.

[12] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large
Cloud Platforms. SOSP, 2017.

[13] Mostafa Dehghan, Laurent Massoulie, Don Towsley,
Daniel Sadoc Menasche, and Yong Chiang Tay. A Util-
ity Optimization Approach to Network Cache Design.
IEEE/ACM Transactions on Networking, 27(3):1013–
1027, 2019.

[14] Andrés Ferragut, Ismael Rodríguez, and Fernando Pa-
ganini. Optimizing TTL Caches Under Heavy-tailed
Demands. ACM SIGMETRICS Performance Evaluation
Review, 44(1):101–112, 2016.

[15] Kamil Figiela, Adam Gajek, Adam Zima, Beata Obrok,
and Maciej Malawski. Performance Evaluation of Het-
erogeneous Cloud Functions. Concurrency and Compu-
tation: Practice and Experience, 30(23), 2018.

[16] Robert G Gallager. Stochastic Processes: Theory for
Applications. 2013.

[17] Google. Google Cloud Functions. https://cloud.
google.com/functions/.

[18] Scott Hendrickson, Stephen Sturdevant, Tyler Harter,
Venkateshwaran Venkataramani, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. Serverless
Computation with OpenLambda. HotCloud, 2016.

[19] Mohammad Reza Hoseiny Farahabady, Javid Taheri,
Zahir Tari, and Albert Y Zomaya. A Dynamic Resource
Controller for a Lambda Architecture. ICPP, 2017.

[20] Mohammad Reza Hoseiny Farahabady, Albert Y
Zomaya, and Zahir Tari. A Model Predictive Controller
for Managing QoS Enforcements and Microarchitecture-
Level Interferences in a Lambda Platform. Transactions
on Parallel and Distributed Systems, 29(7), 2017.

[21] IBM. IBM Cloud Functions. https://www.ibm.com/
cloud/functions.

[22] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos
Kozyrakis. Centralized Core-Granular Scheduling for
Serverless Functions. SoCC, 2019.

[23] George Kesidis. Temporal Overbooking of
Lambda Functions in the Cloud. arXiv preprint
arXiv:1901.09842, 2019.

[24] Jörn Kuhlenkamp, Sebastian Werner, Maria C. Borges,
Dominik Ernst, and Daniel Wenzel. Benchmarking Elas-
ticity of FaaS Platforms as a Foundation for Objective-
Driven Design of Serverless Applications. SAC, 2020.

[25] Hyungro Lee, Kumar Satyam, and Geoffrey Fox. Evalua-
tion of Production Serverless Computing Environments.
CLOUD, 2018.

[26] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan
Ly, and Shrideep Pallickara. Serverless Computing:
An Investigation of Factors Influencing Microservice
Performance. IC2E, 2018.

[27] Garrett McGrath and Paul R Brenner. Serverless Com-
puting: Design, Implementation, and Performance. ICD-
CSW, 2017.

[28] Microsoft. Azure Functions. https://azure.
microsoft.com/en-us/services/functions/.

USENIX Association 2020 USENIX Annual Technical Conference 217

https://github.com/alkaline-ml/pmdarima
https://github.com/alkaline-ml/pmdarima
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

[29] Microsoft. Azure Functions Triggers
and Bindings Concepts. https://docs.
microsoft.com/en-us/azure/azure-functions/
functions-triggers-bindings.

[30] Microsoft. What are Durable Func-
tions? https://docs.microsoft.com/
en-us/azure/azure-functions/durable/
durable-functions-overview.

[31] Microsoft Azure and Microsoft Research. Azure
Functions Traces. https://github.com/Azure/
AzurePublicDataset.

[32] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna
Edupuganti, Naren Nayak, and Vadim Sukhomlinov. Ag-
ile Cold Starts for Scalable Serverless. HotCloud, 2019.

[33] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. SOCK: Rapid Task Provisioning with
Serverless-optimized Containers. USENIX ATC, 2018.

[34] OpenWhisk. Open Source Serverless Cloud Platform.
https://openwhisk.apache.org/.

[35] Apache OpenWhisk. How OpenWhisk works.
https://github.com/apache/openwhisk/blob/
master/docs/about.md.

[36] Stefan Podlipnig and Laszlo Böszörmenyi. A Survey of
Web Cache Replacement Strategies. ACM Computing
Surveys, 35(4):374–398, December 2003.

[37] Aakanksha Saha and Sonika Jindal. EMARS: Efficient
Management and Allocation of Resources in Serverless.
CLOUD, 2018.

[38] Mohammad Shahrad, Jonathan Balkind, and David
Wentzlaff. Architectural Implications of Function-as-a-
Service Computing. MICRO, 2019.

[39] Mikhail Shilkov. Cold Starts in AWS Lambda. https:
//mikhail.io/serverless/coldstarts/aws/.

[40] Mikhail Shilkov. Cold Starts in Azure Functions.
https://mikhail.io/serverless/coldstarts/
azure/.

[41] Josef Spillner. Quantitative Analysis of Cloud Function
Evolution in the AWS Serverless Application Reposi-
tory. arXiv preprint arXiv:1905.04800, 2019.

[42] Erwin van Eyk, Alexandru Iosup, Cristina L. Abad, Jo-
hannes Grohmann, and Simon Eismann. A SPEC RG
Cloud Group’s Vision on the Performance Challenges
of FaaS Cloud Architectures. ICPE, 2018.

[43] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Re-
playable Execution Optimized for Page Sharing for a
Managed Runtime Environment. EuroSys, 2019.

[44] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ris-
tenpart, and Michael Swift. Peeking Behind the Curtains
of Serverless Platforms. USENIX ATC, 2018.

[45] BP Welford. Note on a Method for Calculating Cor-
rected Sums of Squares and Products. Technometrics,
4(3), 1962.

[46] Hao Wu, Krishnendra Nathella, Joseph Pusdesris, Dam
Sunwoo, Akanksha Jain, and Calvin Lin. Temporal
Prefetching Without the Off-Chip Metadata. MICRO,

2019.

218 2020 USENIX Annual Technical Conference USENIX Association

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://openwhisk.apache.org/
https://github.com/apache/openwhisk/blob/master/docs/about.md
https://github.com/apache/openwhisk/blob/master/docs/about.md
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/azure/
https://mikhail.io/serverless/coldstarts/azure/

Lessons Learned from the Chameleon Testbed

Kate Keahey1 Jason Anderson2 Zhuo Zhen2 Pierre Riteau3 Paul Ruth4

Dan Stanzione5 Mert Cevik4 Jacob Colleran2 Haryadi S. Gunawi2 Cody Hammock5

Joe Mambretti6 Alexander Barnes5 François Halbach5 Alex Rocha5 Joe Stubbs5

1Argonne National Laboratory 2University of Chicago 3StackHPC Ltd
4RENCI UNC Chapel Hill 5Texas Advanced Computing Center 6Northwestern University

Abstract
The Chameleon testbed is a case study in adapting the cloud
paradigm for computer science research. In this paper, we
explain how this adaptation was achieved, evaluate it from the
perspective of supporting the most experiments for the most
users, and make a case that utilizing mainstream technology
in research testbeds can increase efficiency without compro-
mising on functionality. We also highlight the opportunity
inherent in the shared digital artifacts generated by testbeds
and give an overview of the efforts we’ve made to develop it
to foster reproducibility.

1 Introduction

The primary goal of computer science (CS) experimental
testbeds is to support CS systems research by inventing and
operating a scientific instrument on which such research can
be conducted. Like in any other experimental science, such
instrument is a critical tool: while we can conceive of all
sorts of experiments, in practice we can carry out only those
that are supported by an instrument that allows us to deploy,
capture, and record relevant phenomena. The objective of ex-
periment support can be considered along two dimensions:
supporting the broadest possible set of experiments for the
largest possible set of experimenters. The factors that influ-
ence the former include providing state-of-the-art hardware
at appropriate scales and sufficiently expressive interfaces for
allocating and configuring that hardware (i.e., deploying ex-
periments). The latter is influenced by the cost of per user and
per experiment support, but also the usability and familiarity
of interfaces that lower the entry barrier for most users.

In this paper, we describe Chameleon, a testbed for CS
research and education, and evaluate it from the perspective
of the two dimensions outlined above. Chameleon gives users
access to a broad array of state-of-the-art hardware, supports
deep reconfigurability and experimentation at scale as well as
isolation, preventing one experiment from impacting another.
Since its public availability date in July 2015, Chameleon has
supported 4,000+ users working on 600+ projects.

Unlike traditional CS experimental systems such as
Grid’5000 [1], Emulab/CloudLab [2, 3], or GENI [4], which
have generally been configured by technologies developed in-
house, Chameleon adapted the OpenStack mainstream open-
source cloud technology to provide its capabilities. This has
a range of practical benefits, such as familiar interfaces for
users and operators (or workforce development potential for
those not familiar with OpenStack, as they acquire transfer-
able skills), the opportunity to leverage the contributions from
a large development community, and the potential to con-
tribute back to that community in turn and thus influence
infrastructure used by many users worldwide. Beyond practi-
cal benefits, configuring an experimental platform as a cloud
also provides a direct answer in the debate over whether CS
systems research can be supported on clouds, including poten-
tially commercial clouds. More importantly, it also provides
a means of influencing that debate through direct mainstream
contributions, i.e., describing how a cloud needs to be config-
ured to support this type of research. A secondary contribution
of our paper is thus an articulation of a mainstream cloud con-
figuration that yields a platform suitable for systems research.

Perhaps the most important lesson learned from Chameleon
was that testbeds generate a wealth of experimental digital
artifacts compatible with the testbed – such as images, orches-
tration templates, or more recently, computational notebooks
– that can be used to re-play experiments. Testbeds are thus
“readers” for digital representations of experiments. This cre-
ates an opportunity for developing a sharing ecosystem in
which users can easily share and replicate each other’s experi-
ments and thereby another dimension in which a testbed can
support research. This dimension is influenced by how easily
experiments can be expressed in a shareable and replicable
form – and then how easily they can be discovered and pub-
lished. We introduced these mechanisms in Chameleon over
the last year; while they have been around for too short a time
to provide a comprehensive evaluation, we will discuss both
their structure and potential.

USENIX Association 2020 USENIX Annual Technical Conference 219

2 Chameleon in a Nutshell

The Chameleon testbed consists of two operating sites: one at
University of Chicago (UC) and the other at Texas Advanced
Computing Center (TACC). Our approach to hardware seeks
to balance scale (i.e., support for HPC and Big Data exper-
iments) and diversity. Scale was achieved via investment in
12 Haswell racks (2 at UC, 10 at TACC) containing a mix of
compute and storage nodes, one with IB interconnect. More
recently, they were augmented by 3 SkyLake racks (2 at UC,
1 at TACC) and 1 CascadeLake rack at TACC. The SkyLake
racks are equipped with Corsa switches enabling experimen-
tation with Software Defined Networks (SDN). The sites are
connected by a 100G network supporting experimentation
with large flows. This investment in scale is supplemented
by smaller clusters of nodes supporting specialized experi-
ment types: they include four types of GPUs (M40s, K80s,
P100s, and P100 with NVLINK), FPGAs, low-power nodes
(ARMs, Atoms, and low-power Xeons), and memory hierar-
chy nodes equipped with almost a TB of RAM memory, and
a range of NVMes, SDDs, and HDDs. Over 4 PB in global
storage capability is additionally distributed across the sites.
About a year ago a Chameleon Associate Site (contributed
on a voluntary basis) was added at Northwestern with a mod-
est allocation of nodes equipped with 100G cards, expand-
ing Chameleon’s ability to support experiments with large
networking flows. A fine-grained and rigorously up-to-date
description of hardware can be obtained from the Chameleon
Resource Discovery services [5].

Chameleon’s capabilities are designed to allow experi-
menters to allocate and configure these resources at multiple
entry levels: users can make allocations expressed as model-
based constraints, allocate by node type, or point to a specific
node, either on-demand or via advance reservations. Allocat-
able resources range over nodes, networks, and IP addresses.
Resource configuration is supported at bare metal level and
supports custom kernel boot. The latter is achieved via the
support of whole-disk images, which include a kernel, a par-
tition map, and a bootloader. Reimaging takes places as a
sequence of booting to a provisioning ramdisk via PXE, im-
age transfer to node’s disk via iSCSI, and a local boot. This
allows kernel developers to replace the kernel as needed for
experimentation; they can also use serial console access at
boot time for debugging and snapshotting to save the revised
image. In addition, Chameleon supports network stitching
and SDN experimentation via the recently introduced Bring
Your Own Controller (BYOC) [6] abstraction built on top
of the Corsa DP2000 series OpenFlow switches. Users can
create SDN networks that are isolated from each other and the
testbed management networks by dynamically provisioned
virtual forwarding contexts (VFCs), each with its own con-
troller and subset of ports/VLANs, that are then connected to
the nodes and external circuits reserved by the user.

Configuration can also be carried out at multiple entry

levels: users can reimage individual nodes and then config-
ure their experiments manually, use orchestration capabilities
to render complex (potentially distributed) experiments that
can be automatically and repeatedly deployed, or use Jupyter
notebooks in combination with one or both of these mecha-
nisms. Monitoring is supported partly by OpenStack Gnocci
service that has been augmented to provide capabilities such
as e.g., fine-grained power monitoring. The CHameleon In-
frastructure (CHI), which implements these capabilities, is
built primarily on top of the mainstream open-source Open-
Stack platform [7] (with extensions and contributions from
our team), but also integrates resource representation, version-
ing and management tools from the Grid’5000 project [1], and
network management tools from the ExoGENI [8] project.
The implementation of CHI has been described in detail in [9].

Chameleon projects are given allocations of 20,000 SUs
(one SU is a node hour) for six months; this aims to strike a
balance between what might represent a reasonable amount of
time needed to obtain a result (a very variable measure!) and
1% of 6 months’ capacity of the initial testbed deployment
(i.e., if everybody was using their allocation at the same time
the testbed could support no more than 100 projects in that
amount of time). Allocations can be recharged (more SUs) or
renewed (longer time). In addition, user’s leases on the system
(i.e., the length of time for which resources can be allocated)
are limited to at most 7 days; these can also be extended
either programmatically or via interactions with Chameleon
operators.

Figure 1 provides a rough summary of Chameleon’s growth
in hardware and utilization, as well as users and projects.
Over the almost four and a half years of its operational life
Chameleon has supported 4,331 users across 655 unique
projects representing a broad array of research and educa-
tional uses. The growth of Chameleon usage has been steady
since the project start, with about 7 new projects per month
in the first years of operations, accelerating to eleven new
projects per month in 2019. Incremental hardware invest-
ments have been keeping up with that growth. We also ob-
serve a similar trend to that already reported by [3] where
usage is lower during summer and winter breaks and peaks
during the semester and important conferences such as the
supercomputing conference series.

3 Most Experiments for Most Experimenters

We now evaluate the key decisions made in Chameleon from
the perspective of supporting the most experiments for the
most experimenters. To evaluate the former, we will look at
whether the hardware and capabilities we provide are suffi-
cient to support experiments in our community; for the latter
we will look at quantitative measures such as the numbers of
users and experiments the tested can simultaneously support
and the types of projects it attracted.

220 2020 USENIX Annual Technical Conference USENIX Association

Figure 1: Increasing usage and capacity of the testbed over
time. Monthly values are normalized to the maximum ob-
served value over time. Scalings are independent for each
metric.

3.1 Experiments
In this section we describe and evaluate both our strategy for
hardware configuration and the technical decisions we made
to provide access to this hardware such that it supports the
broadest possible set of experiments. Unless we specify oth-
erwise, the data reflects period between 09/01/15 to 12/31/19.

3.1.1 Hardware

Where resources are limited (as they inevitably are in aca-
demic testbeds) it is important that hardware investments
strike a balance between scale, i.e., support for large-scale
experimentation, such as HPC, and diversity, i.e., support for
a broad range of resources on which different research ques-
tions can be tried. Given these considerations, our hardware
investment strategy was to build up scale at the beginning of
the project (the original 12 rack Haswell deployment) and
then introduce diversity gradually with an eye towards the
types of projects that were requested the most, and the type
of resources that were utilized the most. We also held back
a “strategic reserve” of hardware investment to develop the
testbed as innovative hardware solutions emerged.

To understand how well we satisfy the need for scale we
looked at the size of lease requests for the testbed in general,
and the large Haswell partition in particular. By far the most
leases on the testbed are requests for a single node, constitut-
ing 67.19% of testbed leases (63.24% of Haswell leases) with
only 5% of requests exceeding 10 nodes (11% for Haswell).
The largest lease on the testbed was 120 nodes. Overall, this
means that our investment in scale did indeed broaden the set
of supported experiments while also allowing us to support
more simultaneous leases.

To understand how well we support the need for diverse
hardware types, we show in Figure 2 node availability against
the percentage of time that it was available, first for the overall
time since resource installation, and then during the busiest
and least busy month as measured by highest and least utiliza-

tion of the testbed as a whole (Cascade Lake was installed
very recently and is not shown). By far the most used resource
types are the four GPU types, with the two newer GPUs (GPU
P100) more in demand than the two older ones (GPU K80 and
M40), followed closely by the memory hierarchy nodes. On
the other end of the spectrum, ARMs, Atoms, and low-power
Xeons—targeting specialized power experiments—are used
the least. The large-scale resources, Haswells and Skylakes,
as well as the FPGAs, occupy the middle.

While these categorizations are roughly consistent across
specific time periods and overall, some important details are
different. For example, the availability of the GPU P100
NVLINK is less in both most and least used month than the
overall availability graph would suggest; this is due in signif-
icant part to the fact that resources are typically much less
utilized immediately after they are introduced as the knowl-
edge of their availability has yet to be absorbed. In general,
periodic usage patterns might fluctuate due to specific confer-
ence deadlines or teaching/workshop use.

One lesson learned from our experiences is the need for
adaptation. Overall, introducing diversity to the testbed grad-
ually allowed us to make changes to respond to community
demand, shaped by the evolving nature of the research needs.
For example, based on the response to our early K80 and
M40 deployments driven by emergent interest in machine
learning, and combined with less demand for a low-power
processors, we re-budgeted some of our planned investment
between those categories and also invested our “strategic re-
serve” into more GPUs. This meant that we were able to
provide ample support for low-power experimentation while
keeping up with emergent demands. Because of periodic fluc-
tuations it is hard to formulate recommendations on when
such change should be considered; based on our experiences
it is likely to occur when usage moves to the area of the graph
between the large-scale and memory hierarchy resources.

3.1.2 Capabilities

Resource Description. Much of the usefulness of the testbed
relies on the manner in which users gain access to hard-
ware. To do that, users have to describe the resources they
need. Commercial clouds offer a variety of “instances”, some-
times with vaguely described properties (e.g., “high I/O band-
width”). Experimental testbeds allow users to choose a spe-
cific hardware type and sometimes seek to ensure that all
servers of the same type have comparable performance [3,10].
In contrast, we take the view that performance variability is a
fact of life and often a research topic in itself. Our approach
therefore is to allow users to choose resources on a range of
levels: from a model description expressed as a set of con-
straints (e.g., “memory of at least X” or “X nodes situated
on the same rack”), through describing hardware type (e.g., a
Skylake node), or by referring to a specific node.

Analyzing Chameleon lease requests made between 09/16

USENIX Association 2020 USENIX Annual Technical Conference 221

Figure 2: The usage of Chameleon hardware types expressed as resource availability plotted against the percentage of time in
which it was available for (a) overall availability since resource installation, (b) the least and (c) most utilized month.

and 11/19, we find that the majority (89.24%) were created us-
ing a single constraint (the rest are leases using either no con-
straint or multiple constraints; 9.5% and 1.26%, respectively).
Of the single constraint leases, 90.18% were created by speci-
fying the hardware type and only 3.38% specify node uid (a
specific node). However, when we look at single-constraint
leases that are created more than 7 days in advance, the per-
cent of leases with node type constraint drops to 59.91%,
while the percent of leases with uid increases to 18.45%,
which shows that users who need a specific node are willing
to wait for it rather than replace it with something else.

Overall, a hardware type is clearly the most requested
quality. Specific nodes are requested relatively infrequently,
though some experimenters do need them and model-based
descriptions based on high-level constraints are rare. While it
is often tempting to think that a model-based description is
the ideal, the following anecdote illustrates the limitations of
this approach. Using a model-based request (“memory greater
than X”), one of our users was assigned an ARM node; this
led to a difficulty since although this was a correct match
for the experimental model, the user’s tooling did not work
on ARMs. In subsequent conversation with our support staff
the user was advised to browse our discovery services, found
the Chameleon memory hierarchy nodes, and concluded that
with those nodes he would be able to design a more ambitious
experiment. We derive two lessons from this: first, models are
not all that is needed for determining the right experimental
resources (logistical concerns need to be taken into account
as well); second, resource discovery phase is an essential part
of an the experimental workflow and critical to taking full
advantage of the testbed.

Allocatable Resources. Another matter of interaction with
the testbed consists of being able to obtain resources in a
timely manner. Commercial clouds use the metaphor of an
“endless resource” always available on-demand – in practice
no resource is of course endless even in commercial clouds
(e.g., the current initial limit at AWS is 256 VCPUs [11]) –

though some are sufficiently large. Thus, the ability to grace-
fully deal with availability limitations is important, particu-
larly in academic clouds where we try to maximize small
scale resource investment.

To provide such ability we introduced the abstraction of
an allocatable resource described in [12]. In brief, an allocat-
able resource allows users to manage a resource allocation
in terms of both time and resource assigned to the allocation
(i.e., when an allocation starts and ends, and well as how many
nodes belong to it). In particular, the ability to manage the
start time is sometimes referred to as “advance reservations”
and is a generalization of on-demand availability provided by
commercial clouds (i.e., on-demand is an advance reservation
with start time set to “now”). The resources can be of vari-
ous types and can be managed to fulfill different conditions;
in Chameleon currently the managed allocatable resources
consist of nodes, VLANs, and public IP addresses. The imple-
mentation of this capability and its contribution to OpenStack
was initiated by the Chameleon team.

As [12] demonstrates, allocatable resources, and advance
reservations in particular, are useful in providing access to
scarce resources: the scarcer the resource, the more likely
users are to make an advance reservation to ensure availability,
and the longer in advance this reservation is likely to be made.
In figure 3, we provide a more detailed demonstration of
this concept: we scatter plot all leases made for three types of
resources: Haswell compute nodes at TACC (largest partition),
Skylake compute nodes at UC (largest partition), and our GPU
P100 cluster (16 nodes), noting the number of nodes requested
and the reservation lead time.

We see that the GPU P100 nodes (one of the most utilized
resources per Figure 3) have by far the longest advance reser-
vation lead times even though only very few users reserve
more than one node. On the other hand, Haswell@TACC,
used for experiments at scale, show a significantly higher pro-
portion of leases with multiple nodes (with the max being 85).
While many of them are created with some lead time, it was

222 2020 USENIX Annual Technical Conference USENIX Association

Figure 3: Node counts vs. advance reservation lead time of advanced leases for (a) GPU_P100, (b) Haswell, and (c) Skylake

possible to create some large leases on-demand; they are cor-
related to summer use (low utilization) and no leases with size
in the 95th percentile were available after 2016 as the testbed
became popular. This trend is even more pronounced when
looking at the Skylake nodes, which are a scarcer resource
than Haswells (64 versus 278 for largest partition) but also
support experiments at scale. Advance reservations are thus
useful in managing two types of resource scarcity: very scarce
resources (e.g., GPU P100) will require high lead times, but
relatively abundant resources (e.g., Haswells) can become
scarce if a large reservation is requested.

The end time of a resource reservation can also be extended
programmatically, although according to our policies this can
only take place within 48 hours of lease expiration and of
course only if the resource is not reserved by another user
(a policy exception can also be requested via the help desk.).
This last consideration limits the practical usefulness of this
feature in the case of scarce resources, as it is likely that they
will have been reserved by the time the extension window
becomes active. For this reason, programmatic extension re-
quests have only been successful in relatively few cases in
practice, e.g., during the last year at UC only 5.4% leases got
extended in this way; though half of them more than once.

Separation of allocation and configuration. Unlike com-
mercial clouds where resource allocation and image deploy-
ment are one operation, Chameleon separates them to allow
users to map different images to an allocation. This capability
proved relatively popular with experimenters: 22.07% of the
allocations had more than one instance deployed, and roughly
half of those (9.17% of all the allocations) had more than
one unique instance (i.e., associated with a different image)
deployed; the average number of instances deployed within
one allocation is 1.45 (with max being 12) and of unique
instances is 1.12 (with max being 10).

Networking. Network isolation is an important property
in that it allows non-standard IP configuration, potentially dis-
ruptive services, or security experiments that analyse or inten-
tionally attack other nodes on the isolated network. Similarly
to many of the base Chameleon features, we implemented

this via standard OpenStack services; within each geographic
site, users can create Chameleon networks that are isolated
within unrestricted VLANs (i.e., no firewalls) and logically
connect any number and type of nodes.

Chameleon’s “Bring Your Own Controller” (BYOC) [6]
capability extends these isolated networks by providing direct
user control of network flows and configuration via a standard
or customized OpenFlow 1.3 controller. Though OpenStack
did not support BYOC out of the box, its modular design en-
abled us to implement the feature as a custom Neutron plugin,
which enables users to specify the IP and port of the user’s
OpenFlow controller (whether provisioned on Chameleon or
externally). Chameleon uses Corsa DP2000 series switches to
dynamically create isolated OpenFlow 1.3 network slices in
hardware operating at full performance (10 Gbps node ports
and a 100 Gbps uplink); this is in contrast to an approach
which provides coarse control of whole OpenFlow switches
from a static pool of hardware as implemented by CloudLab.
BYOC enables many experiments from basic hands-on edu-
cational experiences with OpenFlow to advanced networking
experiments that optimize performance of network traffic or
identify and remedy security breaches by analysing low-level
traffic behavior. Despite the fact that BYOC networking is
new and targeted at highly specialized and advanced users,
there have been already been 11 unique projects (representing
4% of active projects over the time period) that have deployed
OpenFlow experiments on the Chicago site alone.

Networking experiments on Chameleon are not limited to
the Chameleon testbed alone. Users can create dedicated layer
2 circuits between Chameleon networks and external facilities
such as ExoGENI, campus laboratories, public clouds, and
other Chameleon sites; creating dynamic connections of this
type is often called “stitching” [4]. ExoGENI provides a dy-
namic stitching service that connects a wide collection of par-
ticipating facilities, including Chameleon. Chameleon users
can create isolated stitched links between their networks (in-
cluding BYOC networks) and ExoGENI and can extend those
links across ExoGENI to remote facilities. In addition, mul-
tiple stitched links can be connected to a single Chameleon

USENIX Association 2020 USENIX Annual Technical Conference 223

network, enabling user-controlled wide-area multi-path rout-
ing experiments. To date, 22 unique projects (representing
8% of active projects over the feature’s life time) that rely
on network stitching have created 920 stitched links between
remote facilities using ExoGENI.

Orchestration. Once a lease is created, users can config-
ure it using Chameleon provided images, create their own
(often, but not always, derived from Chameleon provided im-
ages), or use complex appliances [13], representing concepts
such as a cluster, a cloud, or a networking experiment, that
can be deployed “with one click” and then repeated in future
deployments, similar to CloudLab profiles [3]. These experi-
ments are configured using images in conjunction with Heat
orchestration templates [14] that define how to deploy and
contextualize [15] them to create the desired integrated en-
vironment and processes. Using Heat, an active Chameleon
topology can be modified (by e.g., adding or removing nodes,
altering MTUs on the network, or changing a post-boot step
for a particular node) through changes to the underlying Heat
template; the orchestration system applies the delta without
forcing re-creation of the entire topology. The choice to de-
couple allocation and configuration made this functionality
easier: because a set of resources is allocated explicitly to a
user for a time period, any topological or software/firmware
configuration can vary without breaking the researcher’s as-
sumptions about the underlying hardware.

Consistent with our decision to make the testbed available
at various levels of access, the use of orchestration is optional
for Chameleon users. Using orchestration/Heat provides re-
peatability at the cost of an additional up-front investment
(i.e., developing an orchestration template) and thus tends to
be used in later stages of a project when experimental config-
uration is settled on. Since users often develop orchestration
templates by modifying existing ones, the Chameleon project
provides 3 complex appliances (images+Heat template) and
another 14 individually-supported complex appliances are
hosted on our appliance catalog; the most popular are MPI
bare-metal cluster (MPICH3), Ryu OpenFlow Controller, and
OpenFlow - QuickStart appliance. To date, 81 Chameleon
projects have used Heat, among those 20 were in systems, 17
in education, and 12 in networking, with the rest ranging over
a variety of topics including security, power management,
and others. The usage data since 10/16 when this feature was
introduced show a steady upward trend in orchestrated deploy-
ments: 94 (2017), 155 (2018), and 405 (2019), though more
recently users were increasingly using Jupyter notebooks or
scripting for orchestration. Overall, while orchestration is an
advanced feature and thus the uptake is slow, it is proving a
useful tool to express a range of experiments.

Configuring complex experiments, even when automated
via orchestration, can still take significant time, as packages
need to be installed, configuration scripts run, and tests ex-
ecuted. Thus, while separating allocation and configuration
proved a successful decision, users often ask for functionality

Figure 4: The cumulative distribution functions (CDFs) of
lease percent usage for the last quarter of 2018 and 2019.

that effectively recombines these actions, i.e., automatically
triggers the deployment of an orchestrated experiment when a
user’s advance reservation comes into effect. To provide it, we
introduced the automated deployment feature [16] in 01/19
that automatically triggers the deployment of experiments
orchestrated with Heat. So far it has been little used while still
being often requested; this likely points to the need for more
energetic education efforts as well potentially to the need of
extending this capability to other orchestration methods, in
particular the increasingly popular Jupyter-based approach.

Managing User Behavior. Perhaps the most significant
challenge of operating Chameleon, common to all academic
cloud resources, is ensuring fair sharing of the resource. Un-
like in HPC datacenters, where actual resource use is tied to
the submission of a specific program (such that if the pro-
gram fails the resource grant is withdrawn), access to cloud
resources is given out on an open-ended basis. Commercial
clouds create incentive to use no more than is needed by
charging for the duration of access. Academic clouds, such as
Chameleon, seek to provide a similar incentive via allocation
policies (see Section 2); this is generally less successful since
users can recharge or renew their allocation relatively easily.
In fact, we found this measure to be inadequate on its own
early in the project as users created leases to “put a hold”
on resources that then went unused, significantly reducing
testbed capacity for others. This led us to introduce the (exten-
sible) 7 day lease limit described earlier which improved fair
sharing at the cost of imposing extra overhead on experiments
that legitimately need more than 7 days. However, we still
see leases on the testbed that merely hold resources without
using them.

To manage this situation, we introduced a policy whereby
users are expected to start using their lease within a certain
amount of time from deployment. This policy is enforced by
a “lease reaper” (deployed in 09/19) that monitors the use of
a lease, sends a reminder to users not using their leases, and
terminates them if still unused after a certain period of time.

Figure 4 shows a comparison of lease usage for the last
quarter of 2018 and last quarter of 2019 (before and after

224 2020 USENIX Annual Technical Conference USENIX Association

the lease reaper was introduced). While it is natural that re-
sources in a lease may be unutilized for some time (e.g.,
between deployment of different images), we see that in 2018
(without lease reaper) a large percentage of leases is underuti-
lizing resources to a significant extent. However, in 2019 (with
lease reaper) the situation improved: it went from 40.79% to
45.95% fully-used leases and from 66.92% to 71.19% 80%-
used leases. More sophisticated ways of ascertaining if a lease
is actually being used are likely to tighten the gap between
allocated and used leases further, but at the same time become
open to “gaming” by users emulating lease usage via artificial
means, reducing their effectiveness. Thus, striking the right
balance of incentive and access to promote fair sharing in
academic environments is still an open question.

Summary. On the whole, we found that the key design
decisions we took, whether by introducing new hardware or
new capabilities, led to expanding the set of experiments avail-
able to our user community, and were thus quickly embraced.
While we still receive new feature requests, they are increas-
ingly smaller and come less often. At the same time, a signifi-
cant lesson learned in the process of operating Chameleon is
that no research testbed is ever complete because the set of
desired experiments is constantly expanding. As the research
frontier advances emergent research opportunities create the
need for new scientific instruments – or new features in exist-
ing scientific instruments – to support their exploration. While
setting aside a strategic reserve in hardware served us well,
the extent to which this phenomenon drove development was
surprising: not only did we need to adapt the system to lever-
age new opportunities in hardware (such as e.g., providing the
BYOC capability on top of the Corsa switches), we needed to
develop abstractions (such as e.g., the allocatable resources)
to integrate those extensions in the experimental workflow.
The most significant types of experiments that Chameleon
does not support yet are thus in emergent topics – for exam-
ple, on the intersection of Internet of Things (IoT) and cloud
computing as well as machine learning.

3.2 Experimenters

Supporting as many users as possible will be influenced by
two factors: how many users a testbed can sustain by manag-
ing the cost of users and experiments and how many users it
can attract by adapting itself to the needs of different commu-
nities; this section will discuss how well Chameleon was able
to achieve both.

Isolation and Automation. Providing an appropriate level
of isolation captures an important trade-off: it should be fine-
grained enough to divide the testbed efficiently between mul-
tiple experiments – but also coarse-grained enough to sat-
isfy the isolation needs of a specific experiment. Since the
granularity often goes with the level of isolation a specific
mechanism provides [12] we must be careful to not sacrifice
the required level of isolation; at the same time we want to

Figure 5: The numbers of active users and projects over time.
The trend lines average the number of users/projects over 6
month period.

serve as many users as possible. In Chameleon, we navigate
this trade-off by configuring the bulk of the testbed with CHI
while setting aside two racks (originally three) provided as
a standard OpenStack/KVM cloud. This finer-grained sys-
tem isolation that this alternative cloud provides means that
multiple user VMs can be deployed on one node instead of
allocating a whole bare metal node (though it does not provide
the performance isolation that a bare metal offers). Because
of this efficiency, we were also able to offer a different policy:
users can make open-ended deployments on the KVM parti-
tion while CHI (bare metal) leases are limited as to 7 days at
most. Last but not least, it is more suited to less-experienced
users.

Our data indicate that 209 Chameleon projects (22.94% of
all Chameleon projects) used our KVM partition at least once.
Among those projects, 12.92% are projects in CS education.
About 26.16% of our total number of users used the partition,
most of them assigned to an educational project. Most VMs
(71.52%) are deployed for an hour or less and only 3.18%
leverage the ability to claim testbed resources for more than
one week. The median daily count of deployed VMs is 344
(with max/min of 1490/29); each of those would have likely
occupied a bare metal node otherwise. All those statistics
point to significant educational use; given the number of users
and projects overall this seems a good investment for what
currently constitutes only 16% of our total Haswell system
and even smaller fraction of the overall testbed.

Supporting Volume. While isolation method determines
the unit of sharing, the largest factor in the ability to sup-
port as many users as possible is automation since it lowers
the per-user and per-experiment cost. We noted earlier that
Chameleon is a production testbed, i.e., a testbed that supports
production services that yield individual/breakable testbeds.
Consistent with this definition, we define Chameleon testbed
functions as only those experiments that are accessible to
users in an automated manner (while we also support experi-
ments requiring manual intervention from operators and spe-
cial requests, we consider them support functions, not testbed
functions). We now examine indicators of how much user
volume the testbed can support.

We first asked how many active users the testbed supported

USENIX Association 2020 USENIX Annual Technical Conference 225

Figure 6: (A) Total leases created each month. (B) Maximum
simultaneous active leases by month. The trend lines average
the number of leases over 6 month period.

overtime. We see that numbers of active users follow the
general pattern of slow and busy months (semesters versus
breaks) that we have already seen in Figure 5. However, al-
though we saw that the cumulative number of users was ris-
ing, it is interesting to note that the average number of active
users and projects grew significantly about two years after
the testbed has became available (fall of 2017). It is hard to
pinpoint this to any one reason but possibilities include a lag
that it takes for a new testbed to become established, the in-
cremental introduction of features that broadened the set of
supported experiments, and our first Chameleon User Meet-
ing held just before the trend increase. At peaks, the testbed
supported about 200 active users; this is twice as much as the
lower bound that our allocation policy is based on (Section
2); luckily not all users are living up to their allocations!

We then asked how many leases and simultaneous leases
users were able to create on a per month basis. The result for
unique leases is shown in Figure 6 (A). We see that the trends
are consistent with the number of active users reflecting the
usage patterns in a similar way and picking up around the
same time, though the growth trend is still continuing. The
result for simultaneous leases (i.e., for each month, we found
the max number of leases happening at the same time) is
shown in Figure 6 (B); we see that the testbed has sustained
up to 300 simultaneous ongoing experiments, but the trends
picked up about a year later than trends for active users and
experiment counts; it is clear that the testbed is now becoming
more saturated.

Support Cost. Another metric important in the discussion
of any testbed is support costs, specifically the time effort
required by the team. Chameleon users have submitted 3,167
technical help desk tickets, averaging roughly 13 tickets every
week and less than 1 ticket per user. On average users receive
a reply within 15 hours and their issue is completely resolved
within 2 weeks. These trended down over time: in 2019 the

average response time was 16 hours, while the resolution time
was 6 days. The costliest tickets concern hardware failures,
which are often difficult to diagnose and/or require ordering
new parts and performing maintenance. Cutting-edge or non-
standard hardware and firmware also pose problems for sup-
port staff, as documentation might not be extensive (or even
exist) and having expertise at hand is unlikely. In all cases,
an ounce of prevention is worth a pound of cure: we have
deployed or implemented an operational model integrating
early detection (e.g., daily/hourly “happy path” tests of com-
mon user flows, live-monitoring with Prometheus [17], and a
catalogue of alertable issues and resolution steps) and auto-
mated remediation (in the form of “hammers”, i.e., bots that
periodically check for and fix irregularities in testbed usage
and performance). We additionally automate most common
operator tasks, such as building new base images, deploying
patches or configuration changes to the control plane, and
taking nodes in or out of maintenance. Details of Chameleon
operations has been published in [18].

Another indicator of cost in a system where users are given
significant privileges is the cost of security management. We
employ a range of standard security practices designed to
make the system more secure: project PIs are vetted and as-
sume responsibility for users on their projects; we provide
base images configured and maintained by our team with rea-
sonable security defaults and SSH key pairs for authentication;
the management network is isolated from tenant networks;
and we use intrusion detection system (IDS) alerts across the
entire deployment. Since the system went public we’ve had
a number of security incidents; most are caused by users ei-
ther unknowingly or deliberately shirking best practices, e.g.,
using images with a known administrative password or using
outdated software with known exploits – the latter sometimes
to be compatible with benchmarks and other research soft-
ware. The most typical types of exploits result in activities
such as distributed denial of service (DDoS) attacks (~40%
incidents) or bitcoin mining (~36% incidents). Those are typ-
ically identified via IDS systems operated on sites and trigger
well-defined security procedures in response usually involv-
ing user/PI cooperation. So far, we’ve only had one incident
involving malicious users in the first quarter of 2020 which
shows that our PI vetting methods work well on the whole.
Considering the nature of attacks to date the greatest improve-
ment would probably be effected by more user training in
techniques such as setting up bastion host for when insecure
researchware has to be used as well as general training in
operational security.

Community. Chameleon users come from 168 different
institutions, the vast majority of which are US colleges and
universities from 40 states and Puerto Rico, including 11 mi-
nority serving institutions. While most of the research projects
we support are in computer science, 54 identify themselves as
being from outside of computing disciplines, primarily in life
sciences, astronomy and other fields. By analyzing project

226 2020 USENIX Annual Technical Conference USENIX Association

abstracts we see that roughly 12% of all projects relate to
cybersecurity, 20% are involved in machine learning, 10%
are in edge computing or IoT applications, 5% are doing
research work relating to containers (scheduling, virtualiza-
tion, or performance), 2% are investigating software-defined
networking. Several hundred grants are reported by users as
the source of funding; the vast majority of these are from
NSF, and within those the vast majority are spread among
all divisions within CISE. About 5% of grants are supported
by the DOE, DARPA, or the Air Force Office of Sponsored
Research. A handful of projects are supported by industry,
and several more have international support.

Publications are a complicated metric to track as they tend
to be a lagging indicator; many happen after the allocation is
complete, when there are few incentives for users to report
them to the project. Further, the primary way we capture
publication counts is through self-reporting when users seek a
renewal of their allocation; while this is an incomplete method
it still represents a useful lower bound. Through 2019, users
have self-reported about 275 publications relating to their
work on Chameleon, with many projects still active. There
are 75 referred journal articles among these, with close to 200
conference publications. The spread of publications is fairly
wide, with no clear concentrations in particular conferences
or journals. As would be expected for a testbed, growth over
time is dramatic and lagging: of the 75 journal papers, only 3
were published in the first project year, 8 in the second, 10 in
the third, 23 in the fourth, and 31 have been published so far
in the fifth year with several months remaining.

In addition to research usage, there is substantial educa-
tional use of the system. 45 projects support classroom in-
struction, often multiple classes over multiple semesters; all
but four of these projects support courses in CS departments
at 41 different schools. In total, the education projects have
used about 9% of the total time available on Chameleon to
date (roughly 675,000 node-hours), and they represent about
9% of the total projects – so an average classroom project
uses about 15,000 node-hours, matching the usage of a typical
research project.

One measure of the satisfaction of the user community is
persistence. Projects are initially allocated time on the system
for 6 months, and at the end of the year they must seek a
renewal or extension. Of the projects that have reached the
end of their initial year of allocation, about three-quarters of
all projects have sought to renew their allocations, indicating
that they find value in the use of the system. Many projects
seek multiple renewals – in fact thirty-three of the original
projects from the first year have been renewed multiple times
and counting!

4 Building a Testbed on Top of Mainstream
Cloud Implementation

When the Chameleon project started, we were presented with
the unique opportunity of building the testbed on top of the
then maturing cloud infrastructure: the first version of the
OpenStack Ironic component [19], implementing bare metal
reconfiguration (which we knew would be an indispensable
capability of the system) has been released a few months prior
to the project start, and while not yet an official part of the sys-
tem has already been used in some bare metal deployments.
The chance to base a testbed for cloud computing research
on a mainstream open source implementation held out many
possibilities, but will it be enough to support all the experi-
ments that needed to be supported in the way they needed to
be supported? After thorough evaluation of the system and
development of a few alternative risk-mitigating strategies
we decided that capabilities we needed were there—or were
within reach in that they could be developed by our team.
This section presents an analysis of the advantages and cost
of taking this approach.

One practical benefit of using OpenStack is that it provides
familiar interfaces to users and operators. The 2018 Open-
Stack User Survey [20] (most recent) included 858 OpenStack
deployments across 441 organizations and 63 countries; of
those organizations, 13% were categorized as academic or
research-oriented. Those include major scientific institutions
such as CERN [21], NeCTAR [22], and NASA JPL [23], and a
formal Scientific Special Interest Group (SIG) [24] for Open-
Stack’s use in science domains has existed since 2016 [25].
Since the introduction of the OpenStack Administrator cer-
tification three years ago, 3,000 individuals in 77 countries
have taken the test [26]. All this not only creates a base of
familiarity with OpenStack for users and operators – but also
ensures that such familiarity is a transferable skill and thus
valuable for workforce development. Finally, the Net Pro-
moter Score [27] of 41 reported by the survey (up from 25
in 2017) indicates that the OpenStack environment contin-
ues to improve in terms of usability and that users enjoy the
experience overall.

Another benefit of working with a mainstream platform
is the ability to leverage and adapt the work of a large com-
munity which helps keep our development and operations
costs down. Over 8,400 individuals have contributed code
to OpenStack, with 1,000-2,500 contributors participating
in each major release [28]. Leveraging their contributions,
over the lifetime of the project we were able to offer our
community new key features such as whole disk image boot,
multi-tenant networking, serial console integration, support
for non-x86 architectures, and user-customizable firewalls—
simply by upgrading to a new OpenStack version. Future
capabilities already possible due to upstream contributions in-
clude self-service BIOS customization and detachable remote
storage; both have been common user requests. From the

USENIX Association 2020 USENIX Annual Technical Conference 227

operator’s perspective, deploying and managing Chameleon
was made simpler and more reliable by the Kolla project,
which provides a packaging of OpenStack as Docker contain-
ers [29] and a set of highly-configurable Ansible provisioning
scripts [30] to orchestrate the setup and maintenance of the
deployment. Further, ~6,000 individuals have been involved
in reviewing all code changes [31]: thus, by using a main-
stream infrastructure we also benefit from a built-in large-
scale quality control mechanism. No less valuable has been
the access to the existing documentation and support systems
within the community: the openstack-discuss mailing list [32]
sees between 500-1000 messages each month, the OpenStack
Q&A forum [33] has over 18,000 answered questions, and on
many occasions we were able to get a workarounds or patches
for bugs within days simply by filing a ticket to the official
tracker.

The flip side of leveraging contributions of others is the
opportunity to contribute to and shape a mainstream infras-
tructure. On a practical level, this magnifies our investment in
the infrastructure and our broader impacts as any new features
and additions we make to OpenStack are also impacting com-
munities beyond the testbed. Because its hardware resources
have always been constrained relative to the demands of its
user community, Chameleon required a system for allocat-
ing and managing resources (including advance reservations),
which our team implemented by reviving and significantly
improving the OpenStack Blazar project. This attracted the
interest of others and we were subsequently able to partner
on development with contributors from NTT (Japan) and DO-
COMO Euro-Labs (Germany) who use the component in
Software Defined Networking applications. As a result of this
collaboration, Blazar became an official top-level OpenStack
component in 09/17 and has been included in each OpenStack
releases since Queens. Other significant new features devel-
oped by the Chameleon team include bare metal snapshotting
and enablement of slice creation via integration with Exo-
GENI stitching implementation; in addition, we made many
smaller contributions in the form of bug fixes and patches.

These advantages are offset by some costs. Since it solves a
complex problem, OpenStack is complex; thus operating, and
in particular extending it, requires both development skills
and deep expertise in the underlying systems and concepts,
putting pressure on operator hours and level of skill. The
most problematic manifestation of this complexity in our ex-
perience used to be OpenStack upgrades; this has improved
significantly with tools that aid operators in these tasks, such
as the aforementioned Kolla project. The size and structure
of the open source community imposes its own overhead and
requires commitments both in process and in time: patches
must be reviewed, meetings must be attended, changes must
be formally proposed and approved, and documentation and
tests must be written. These commitments are the price of ad-
mission to an open-source community that, in our experience,
ultimately returns the investment many times over in the form

of support, debugging, development, and partnership.
Looking beyond practical benefits, building on top of a

mainstream infrastructure helps settle a point of intellectual
interest in that it provides a direct answer to the question: can
clouds support CS system experimentation? While different
clouds will of course be configured differently, Chameleon
represents a configuration that satisfies this condition; we de-
scribe this configuration in this paper but it is also expressed in
practical form via code, recipes, and settings that are publicly
available and suitable for replication whether in academia or
commercially. Like the Chameleon interfaces we support, that
recipe has multiple “entry points”: users may elect to simply
install OpenStack with our contributions—they may elect to
replicate the Chameleon configuration in every detail—or
they may choose something in between. We facilitate this
by providing a packaging of Chameleon Infrastructure (CHI)
that contains not only OpenStack but also extensions includ-
ing Grid’5000 and ExoGENI additions, as well as an oper-
ational model we developed that makes clouds of this type
cost-effective to provide. This packaging, called CHI-in-a-
Box [34], has recently been installed at Northwestern Uni-
versity and augmented Chameleon capabilities by providing
modest but unique networking hardware.

5 Fostering Replicability and Sharing

Perhaps the most important lesson learned from Chameleon
is that testbeds provide not only a platform for instruments
but also generate shareable digital artifacts such as images,
orchestration templates, datasets, tools, notebooks, and others.
Those artifacts typically represent either a complete experi-
ment or an important part of one and can be used to reenact
it on the testbed on which it was created. For example, over
the lifetime of the Chameleon testbed, users created 120,000
disk images and 31,000 orchestration templates that can be
used for such purpose. This presents an opportunity: since the
generated artifacts can be used to repeat experiments, shar-
ing them should allow others to repeat experiments, introduce
variation, or extend experiments more easily. We posit that fos-
tering that sharing will contribute to the overall goal of provid-
ing a scientific instrument to advance CS systems research by
both reducing time to discovery and providing a more fertile
ground for sharing of ideas. The question arises how specifi-
cally experiments should be represented and structured—and
then how specifically they should be shared.

Chameleon has supported a variety of mechanisms to aid
repeatability over its lifetime. First, the Chameleon hardware
is versioned, which allows users to easily identify any changes
which would introduce variation. Users can also version the
images they configure, and publish them in a catalog. Since
this still requires a user to keep track of which appliances were
deployed on which testbed version, we introduced a system,
called Chameleon’s Experiment Précis [35], which captures
all the distributed events generated by a user in the testbed,

228 2020 USENIX Annual Technical Conference USENIX Association

and presents him or her with a summary (a précis) of their
experiment. Then, working with an accurate and impartial
record of their work, the user can filter or preview the events to
include only the relevant ones. The précis data can be used to
generate a description of the experiment in English, or poten-
tially an actionable description of the experiment in the form
of orchestration templates or commands that will reproduce
the experiment. Generating Heat orchestration templates in
this way is in fact the objective of an OpenStack Flame [36]
tool. Overall, the Experiment Précis is somewhat analogous
to a shell’s “history” command with the critical difference
that it captures distributed rather than local events – though
its output is less "actionable".

This raises the question of what an actionable representa-
tion of an experiment should ideally look like. Orchestration
systems such as profiles in CloudLab or Heat in Chameleon
require adhering to a strict machine-readable syntax, often
formulating that syntax in a declarative text file, or providing
a layer of indirection that allows the user to work in a higher-
order language. Furthermore, these systems are transactional,
either fulfilling the topology or not, making complex configu-
rations difficult to develop and iterate upon. Proposed work-
flow systems [37] experience similar challenges [38]. They
fundamental problem from the user perspective in these cases
is that a user must invest extra time to make an experiment
reproducible. This leads to the “reproducibility dilemma”: the
user needs to choose whether to invest time into making an ex-
periment replicable or continuing with other research. Ideally,
a system that represents an experiment would allow the ex-
perimenter to develop it gradually and interactively reflecting
the often meandering creative process, support experimental
“story-telling” for human as opposed to just machine users,
and—true to our philosophy—be an open source project in
mainstream use.

In researching solutions to this problem, we considered
computational notebooks such as Wolfram Mathematica [39]
and Jupyter Notebooks [40], which combine expository text,
executable code, and presentation of results in one human-
readable, interactive document. Jupyter’s newfound ubiquity
across the research landscape and its extensible architecture
provided fertile ground for exploration; to leverage it, we in-
tegrated Jupyter and Chameleon with the intent to reduce the
gap between designing an experiment and sharing it. As a
result, users can log in to Chameleon Jupyter server with their
testbed credentials; these credentials are implicitly bound
to the user’s isolated Jupyter Notebook server, allowing the
user to call Chameleon APIs (via the CLI interface or Python
APIs) directly within their notebook’s code blocks. This al-
lows a notebook to completely re-create a pre-existing testbed
topology. We additionally mounted Chameleon’s object store
as a virtual drive in the Jupyter application to allow shared
storage and therefore collaboration between users. The user’s
Jupyter server comes pre-installed with several libraries that
aid interfacing with an experiment on Chameleon [41] (e.g.,

creating a lease and launching an instance and then execut-
ing commands remotely via SSH). As we’ve improved the
Jupyter interface to Chameleon it has seen an increasing share
of testbed usage; over the last year 10% of our monthly active
users have been using Jupyter as their interface to the system.

While the notebook may be an appropriate way to package
an experiment without disrupting the flow of research, the
challenge of properly disseminating and discovering these
artifacts remains. At the end of 2019, we implemented the
first version of a Sharing Portal [42] to allow users to pub-
lish and discover these notebook-based artifacts. Users can
publish a set of files directly from the Jupyter interface via a
custom UI extension; the files are compacted into an archive
and published to CERN’s Zenodo [43] for long-term storage,
where they are also assigned a DOI for citation. The Sharing
Portal then maintains a reference to the published artifact
along with helpful metadata such as tags and documentation.
Other Chameleon users can search for artifacts within the
portal and “re-play” them on Chameleon with one click: an
ephemeral Jupyter server tied to the artifact is dynamically
provisioned, including additional software dependencies de-
fined by the publisher. Users can version their artifacts by
publishing a new set of files and creating a new version (and
DOI) on Zenodo. Though too early in its lifetime to provide
a quantitative analysis of its impact, we expect to continue
investing in this area going forward.

6 Related work

Some of our design decisions in Chameleon were informed
by our earlier work on experimental testbeds including Future-
Grid [44, 45] and ExoGENI [8], as well as our long standing
close collaboration with Grid’5000 [1]. In particular, we are
indebted to the latter two projects for not only providing in-
sight but also specific capabilities that were directly integrated
into the testbed; the stitching capabilities in the case of Ex-
oGENI and the resource representation and related tooling
in the case of Grid’5000. At the same time, Chameleon rep-
resents a significantly different approach from any of them
in many ways, most prominently in that it is configured for
cloud computing research (unlike ExoGENI), supports bare
metal reconfiguration (unlike FutureGrid), and is based on a
mainstream infrastructure (unlike Grid’5000).

We additionally leverage the experience gained by the rich
history of CS testbeds, ranging from those specializing in net-
working (PlanetLab [46], GENI [4], Emulab [2], OneLab [47],
CENI [48]) and wireless/IoT (ORBIT [49], FIT [50], City-
Lab [51]) to systems (CloudLab [3]) and security (Deter-
Lab [52]); Chameleon complements these systems in that it
largely focuses on a different area of research and thus sup-
ports different types of experiments. The most similar testbed
to Chameleon is CloudLab (itself another NSFFutureCloud
testbed). We differ from CloudLab primarily in specific de-
sign decisions we made in building the system, many of which

USENIX Association 2020 USENIX Annual Technical Conference 229

are described in this paper as well as in our early emphasis
on reproducibility and sharing by integration of tools like Ex-
periment Précis and Jupyter notebooks. The most significant
difference however is that we built Chameleon on top of a
mainstream cloud infrastructure for reasons described above.

Clouds are being increasingly used in science and many
of them elect to use OpenStack, e.g., Jetstream [53], Aris-
totle [54], Comet [55], Bridges [56], and NeCTAR [22] all
represent different configurations of the system. The most sig-
nificant difference from Chameleon is that these are relatively
standard cloud configurations, designed primarily to support
domain science applications rather than CS experimentation,
and differ from Chameleon significantly on key features such
as bare metal reconfiguration. However, there are significant
commonalities on the operations side ensuring that we are
able to leverage their contributions, with the OpenStack SIG
being one avenue of communication. An interesting recent ad-
dition is the CloudBank project [57], which will provide tools,
training, and credits for CS research on virtualized commer-
cial clouds; since we provide similar services via our KVM
cloud, we look forward to working with this project.

Reproducibility of CS experiments [58] is another area
in which our contributions relate to other work in the field.
Several projects have used Jupyter notebooks as a mecha-
nism for encapsulating and reproducing research [59, 60].
Managed “Notebook-as-a-Service” platforms e.g., CodeO-
cean [61], WholeTale [62], and Nextjournal [63] have further
elevated the profile and utility of Jupyter for this purpose.
Workflow solutions such as Popper [37] aim to aid repro-
ducibility in a different way and are more relevant to our
efforts on Experiment Précis. Chameleon differs from all of
these examples in that it integrates reproducibility tools in the
context of a testbed, allowing users to leverage a common-
ality of platform to replicate not only the process of experi-
mentation, but also the requisite hardware configurations and
topologies.

7 Conclusions

Chameleon represents a unique testbed in that it expresses the
capabilities needed for CS research in terms of mainstream
cloud functionality. This is an important step to understand
how such capabilities may be supported more ubiquitously,
with more discernment, and in a more cost-effective manner.
This paper discusses the specific design decisions, extensions,
and configurations that we chose in order to do so, and eval-
uates them within a framework that seeks to establish how
they influenced the set of supported experiments and how they
influenced the community of users the testbed was able to
support. Our contribution is accompanied by software that
was contributed or integrated with a mainstream open-source
cloud implementation (OpenStack) so that a cloud of this type
– or its evolutions or variations – can be supported by anyone.

The most important part of our experience is the insight

that though originally created to support the most experiments
for the most experimenters, testbeds have also become both a
generator and an essential platform for sharing digital repre-
sentations of experiments. While our understanding of digital
sharing ecosystem still evolves, and is likely to evolve for
some time, we proposed some approaches that our user com-
munity has found useful and we look forward to contributing
to this area in the future.

Acknowledgments

Results presented in this paper were obtained using the
Chameleon testbed supported by the National Science Foun-
dation. This material is based upon work supported by the
U.S. Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357.

Availability

Traces from Chameleon CHI and KVM have been publically
available at [64, 65] for the last couple of years and used in a
variety of resource management publications. Not all the data
used in this paper is reflected in those traces though we are
currently discussing revisions to both the content and format.
All the code described here is open source.

References

[1] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez,
E. Jeannot, E. Jeanvoine, A. Lèbre, D. Margery,
N. Niclausse, L. Nussbaum, O. Richard, C. Pérez,
F. Quesnel, C. Rohr, and L. Sarzyniec. Adding
Virtualization Capabilities to the Grid’5000 Testbed. In
I. I. Ivanov, M. van Sinderen, F. Leymann, and T. Shan,
editors, Cloud Computing and Services Science,
volume 367 of Communications in Computer and
Information Science, pages 3–20. Springer International
Publishing, 2013.

[2] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. ACM SIGOPS
Operating Systems Review, 36(SI):255–270, 2002.

[3] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,
E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb,
et al. The Design and Operation of CloudLab. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 1–14, 2019.

[4] M. Berman, J.S. Chase, L. Landweber, A. Nakao,
M. Ott, D. Raychaudhuri, R. Ricci, and I. Seskar.
GENI: A Federated Testbed for Innovative Network

230 2020 USENIX Annual Technical Conference USENIX Association

Experiments. Computer Networks, 61:5 – 23, 2014.
Special issue on Future Internet Testbeds – Part I.

[5] Chameleon Resource Discovery.
https://www.chameleoncloud.org/hardware/.

[6] M. Cevik, P. Ruth, K. Keahey, and P. Riteau. Wide-area
Software Defined Networking Experiments using
Chameleon. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 811–816. IEEE, 2019.

[7] OpenStack. https://www.openstack.org/.

[8] I. Baldin, J.S. Chase, Y. Xin, A. Mandal, P. Ruth,
C. Castillo, V. Orlikowski, C. Heermann, and J. Mills.
ExoGENI: A Multi-Domain Infrastructure-as-a-Service
Testbed. In McGeer et al. [4], pages 279–315. Special
issue on Future Internet Testbeds – Part I.

[9] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill,
J. Mambretti, P. Rad, and P. Ruth. Chameleon: a
Scalable Production Testbed for Computer Science
Research. In Jeffrey Vetter, editor, Contemporary High
Performance Computing: From Petascale toward
Exascale, volume 3 of Chapman & Hall/CRC
Computational Science, chapter 5, pages 123–148.
CRC Press, Boca Raton, FL, 1 edition, May 2019.

[10] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn,
R. Stutsman, and R. Ricci. Taming Performance
Variability. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
409–425, 2018.

[11] Using New vCPU-based On-demand Instance Limits
with Amazon EC2.
https://aws.amazon.com/blogs/compute/
preview-vcpu-based-instance-limits/.

[12] K. Keahey, P. Riteau, J. Anderson, and Z. Zhen.
Managing Allocatable Resources. In 2019 IEEE 12th
International Conference on Cloud Computing
(CLOUD), pages 41–49, July 2019.

[13] C.P. Sapuntzakis, D. Brumley, R. Chandra,
N. Zeldovich, J. Chow, M.S. Lam, M. Rosenblum, et al.
Virtual Appliances for Deploying and Maintaining
Software. In LISA, volume 3, pages 181–194, 2003.

[14] OpenStack Heat.
https://docs.openstack.org/heat/latest.

[15] K. Keahey and T. Freeman. Contextualization:
Providing one-click virtual clusters. In 2008 IEEE
Fourth International Conference on eScience, pages
301–308. IEEE, 2008.

[16] Chameleon Automated Deployment.
https://chameleoncloud.readthedocs.io/en/
latest/technical/complex.html#automated-
deployment.

[17] Prometheus. https://prometheus.io/.

[18] K. Keahey, J. Anderson, P. Ruth, J. Colleran,
C. Hammock, J. Stubbs, and Z. Zhen. Operational
Lessons from Chameleon. In Proceedings of the
Humans in the Loop: Enabling and Facilitating
Research on Cloud Computing, pages 1–7. 2019.

[19] OpenStack Ironic.
https://docs.openstack.org/ironic/latest.

[20] The 2018 OpenStack User Survey Report.
https://www.openstack.org/user-survey/2018-
user-survey-report/.

[21] OpenStack Operator Spotlight: CERN.
https://superuser.openstack.org/articles/
openstack-operator-spotlight-cern/.

[22] NeCTAR Cloud.
https://nectar.org.au/research-cloud/.

[23] NASA’s JPL powers planetary exploration with Red
Hat OpenStack platform. https://www.redhat.com/
en/about/press-releases/nasa%E2%80%99s-jet-
propulsion-laboratory-powers-planetary-
exploration-red-hat-openstack-platform.

[24] OpenStack Scientific SIG. https:
//wiki.openstack.org/wiki/Scientific_SIG.

[25] OpenStack Scientific Working Group Launches at
OpenStack Summit Austin.
https://superuser.openstack.org/articles/
openstack-scientific-working-group-
launches-at-openstack-summit-austin/.

[26] Mirantis Partners with OpenStack Foundation to
Support Upgraded COA Exam.
https://www.globenewswire.com/news-release/
2019/10/17/1931470/0/en/Mirantis-Partners-
With-OpenStack-Foundation-to-Support-
Upgraded-COA-Exam.html.

[27] Net Promoter Score.
https://www.netpromoter.com/know/.

[28] Stackalytics: Total Commits.
https://www.stackalytics.com/?metric=
commits&release=all.

[29] Kolla.
https://docs.openstack.org/kolla/latest/.

USENIX Association 2020 USENIX Annual Technical Conference 231

https://www.chameleoncloud.org/hardware/
https://www.openstack.org/
https://aws.amazon.com/blogs/compute/preview-vcpu-based-instance-limits/
https://aws.amazon.com/blogs/compute/preview-vcpu-based-instance-limits/
https://docs.openstack.org/heat/latest
https://chameleoncloud.readthedocs.io/en/latest/technical/complex.html#automated-deployment
https://chameleoncloud.readthedocs.io/en/latest/technical/complex.html#automated-deployment
https://chameleoncloud.readthedocs.io/en/latest/technical/complex.html#automated-deployment
https://prometheus.io/
https://docs.openstack.org/ironic/latest
https://www.openstack.org/user-survey/2018-user-survey-report/
https://www.openstack.org/user-survey/2018-user-survey-report/
https://superuser.openstack.org/articles/openstack-operator-spotlight-cern/
https://superuser.openstack.org/articles/openstack-operator-spotlight-cern/
https://nectar.org.au/research-cloud/
https://www.redhat.com/en/about/press-releases/nasa%E2%80%99s-jet-propulsion-laboratory-powers-planetary-exploration-red-hat-openstack-platform
https://www.redhat.com/en/about/press-releases/nasa%E2%80%99s-jet-propulsion-laboratory-powers-planetary-exploration-red-hat-openstack-platform
https://www.redhat.com/en/about/press-releases/nasa%E2%80%99s-jet-propulsion-laboratory-powers-planetary-exploration-red-hat-openstack-platform
https://www.redhat.com/en/about/press-releases/nasa%E2%80%99s-jet-propulsion-laboratory-powers-planetary-exploration-red-hat-openstack-platform
https://wiki.openstack.org/wiki/Scientific_SIG
https://wiki.openstack.org/wiki/Scientific_SIG
https://superuser.openstack.org/articles/openstack-scientific-working-group-launches-at-openstack-summit-austin/
https://superuser.openstack.org/articles/openstack-scientific-working-group-launches-at-openstack-summit-austin/
https://superuser.openstack.org/articles/openstack-scientific-working-group-launches-at-openstack-summit-austin/
https://www.globenewswire.com/news-release/2019/10/17/1931470/0/en/Mirantis-Partners-With-OpenStack-Foundation-to-Support-Upgraded-COA-Exam.html
https://www.globenewswire.com/news-release/2019/10/17/1931470/0/en/Mirantis-Partners-With-OpenStack-Foundation-to-Support-Upgraded-COA-Exam.html
https://www.globenewswire.com/news-release/2019/10/17/1931470/0/en/Mirantis-Partners-With-OpenStack-Foundation-to-Support-Upgraded-COA-Exam.html
https://www.globenewswire.com/news-release/2019/10/17/1931470/0/en/Mirantis-Partners-With-OpenStack-Foundation-to-Support-Upgraded-COA-Exam.html
https://www.netpromoter.com/know/
https://www.stackalytics.com/?metric=commits&release=all
https://www.stackalytics.com/?metric=commits&release=all
https://docs.openstack.org/kolla/latest/

[30] Kolla-ansible. https:
//docs.openstack.org/kolla-ansible/latest/.

[31] Stackalytics: Total Reviews.
https://www.stackalytics.com/?metric=
marks&release=all.

[32] Openstack-discuss Mailing List Archives.
http://lists.openstack.org/pipermail/
openstack-discuss/.

[33] Ask OpenStack. https://ask.openstack.org.

[34] CHI-in-a-Box. https:
//github.com/ChameleonCloud/chi-in-a-box.

[35] S. Wang, Z. Zhen, J. Anderson, and K. Keahey.
Reproducibility as Side Effect. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC’18
Poster). IEEE Press, 2018.

[36] OpenStack Flame. https://opendev.org/x/flame.

[37] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn,
J. Lofstead, K. Mohror, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. The Popper Convention: Making
Reproducible Systems Evaluation Practical. In 2017
IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 1561–1570.
IEEE, 2017.

[38] M.A. Sevilla and C. Maltzahn. Popper Pitfalls:
Experiences Following a Reproducibility Convention.
In Proceedings of the First International Workshop on
Practical Reproducible Evaluation of Computer
Systems, page 4. ACM, 2018.

[39] S. Wolfram. The Mathematica Book. Assembly
Automation, 1999.

[40] Project Jupyter. https://jupyter.org/.

[41] Python-chi: Chameleon Python library. https:
//github.com/chameleoncloud/python-chi.

[42] M. King, J. Anderson, and K. Keahey. Sharing and
Replicability of Notebook-Based Research on Open
Testbeds. In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage, and Analysis (SC’19 Poster).
IEEE Press, 2019.

[43] Zenodo. https://zenodo.org.

[44] G.C. Fox, G. von Laszewski, J. Diaz, K. Keahey,
J. Fortes, R. Figueiredo, S. Smallen, W. Smith, and
A. Grimshaw. Futuregrid: a Reconfigurable Testbed for
Cloud, HPC, and Grid Computing. In Contemporary

High Performance Computing, pages 603–635.
Chapman and Hall/CRC, 2017.

[45] G. von Laszewski, G.C. Fox, F. Wang, A.J. Younge,
A. Kulshrestha, G.G. Pike, W. Smith, J Vöckler, R.J.
Figueiredo, J. Fortes, et al. Design of the Futuregrid
Experiment Management Framework. In 2010
Gateway Computing Environments Workshop (GCE),
pages 1–10. IEEE, 2010.

[46] L. Peterson, A. Bavier, M. E Fiuczynski, and S. Muir.
Experiences Building Planetlab. In Proceedings of the
7th symposium on Operating systems design and
implementation, pages 351–366, 2006.

[47] S. Fdida, T. Friedman, and T. Parmentelat. OneLab: An
Open Federated Facility for Experimentally Driven
Future Internet Research. In New Network
Architectures, pages 141–152. Springer, 2010.

[48] Y. Xu, X. Lu, and Y. Zhang. The Development of
China’s Next Generation Network and National Service
Testbed. development, 14:3, 2015.

[49] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,
K. Ramachandran, H. Kremo, R. Siracusa, H. Liu, and
M. Singh. Overview of the ORBIT Radio Grid Testbed
for Evaluation of Next-generation Wireless Network
Protocols. In IEEE Wireless Communications and
Networking Conference, 2005, volume 3, pages
1664–1669. IEEE, 2005.

[50] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton,
T. Noel, R. Pissard-Gibollet, F. Saint-Marcel,
G. Schreiner, J. Vandaele, et al. FIT IoT-LAB: A large
scale open experimental IoT testbed. In 2015 IEEE 2nd
World Forum on Internet of Things (WF-IoT), pages
459–464. IEEE, 2015.

[51] J. Struye, B. Braem, S. Latré, and J. Marquez-Barja.
CityLab: A Flexible Large-scale Multi-technology
Wireless Smartcity Testbed. In Proceedings of the 27th
European Conference on Networks and
Communications (EUCNC), 18-21 June 2018,
Ljubljana, Slovenia, pages 374–375, 2018.

[52] J. Mirkovic and T. Benzel. Teaching Cybersecurity
with DeterLab. IEEE Security & Privacy, 10(1):73–76,
2012.

[53] C.A. Stewart, T.M. Cockerill, I. Foster, D. Hancock,
N. Merchant, E. Skidmore, D. Stanzione, J. Taylor,
S. Tuecke, G. Turner, et al. Jetstream: a
Self-provisioned, Scalable Science and Engineering
Cloud Environment. In Proceedings of the 2015
XSEDE Conference: Scientific Advancements Enabled
by Enhanced Cyberinfrastructure, page 29. ACM,
2015.

232 2020 USENIX Annual Technical Conference USENIX Association

https://docs.openstack.org/kolla-ansible/latest/
https://docs.openstack.org/kolla-ansible/latest/
https://www.stackalytics.com/?metric=marks&release=all
https://www.stackalytics.com/?metric=marks&release=all
http://lists.openstack.org/pipermail/openstack-discuss/
http://lists.openstack.org/pipermail/openstack-discuss/
https://ask.openstack.org
https://github.com/ChameleonCloud/chi-in-a-box
https://github.com/ChameleonCloud/chi-in-a-box
https://opendev.org/x/flame
https://jupyter.org/
https://github.com/chameleoncloud/python-chi
https://github.com/chameleoncloud/python-chi
https://zenodo.org

[54] R. Knepper, S. Mehringer, A. Brazier, B. Barker, and
R. Reynolds. Red Cloud and Aristotle: Campus Clouds
and Federations. In Proceedings of the Humans in the
Loop: Enabling and Facilitating Research on Cloud
Computing, pages 1–6. 2019.

[55] H. Kim and M. Parashar. CometCloud: An Autonomic
Cloud Engine. Cloud Computing: Principles and
Paradigms, pages 275–297, 2011.

[56] S. Bridges. Cancer Genomics Cloud.(June 2017).
Retrieved June, 1:2017, 2017.

[57] CloudBank. https://www.cloudbank.org/.

[58] D.G. Feitelson. From Repeatability to Reproducibility
and Corroboration. ACM SIGOPS Operating Systems
Review, 49(1):3–11, 2015.

[59] S.R. Piccolo and M.B. Frampton. Tools and Techniques
for Computational Reproducibility. GigaScience,
5(1):30, 2016.

[60] T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger,
M. Bussonnier, J. Frederic, K. Kelley, J.B. Hamrick,
J. Grout, S. Corlay, et al. Jupyter Notebooks - a
Publishing Format for Reproducible Computational
Workflows. In ELPUB, pages 87–90, 2016.

[61] Code Ocean. https://codeocean.com/.

[62] A. Brinckman, K. Chard, N. Gaffney, M. Hategan, M.B.
Jones, K. Kowalik, S. Kulasekaran, B. Ludäscher, B.D.
Mecum, J. Nabrzyski, et al. Computing environments
for reproducibility: Capturing the “Whole Tale”. Future
Generation Computer Systems, 94:854–867, 2019.

[63] Nextjournal. https://nextjournal.com.

[64] Chameleon CHI Traces, November 2019. https:
//zenodo.org/record/3709794#.XsgpCRNKiL8.

[65] Chameleon KVM Traces, November 2019. https:
//zenodo.org/record/3709958#.XsgoqRNKiL8.

USENIX Association 2020 USENIX Annual Technical Conference 233

https://www.cloudbank.org/
https://codeocean.com/
https://nextjournal.com
https://zenodo.org/record/3709794#.XsgpCRNKiL8
https://zenodo.org/record/3709794#.XsgpCRNKiL8
https://zenodo.org/record/3709958#.XsgoqRNKiL8
https://zenodo.org/record/3709958#.XsgoqRNKiL8

SPINFER: Inferring Semantic Patches for the Linux Kernel

Lucas Serrano
Sorbonne University/Inria/LIP6

Van-Anh Nguyen
Sorbonne University/Inria/LIP6

Ferdian Thung
School of Information System

Singapore Management University

Lingxiao Jiang
School of Information System

Singapore Management University

David Lo
School of Information System

Singapore Management University

Julia Lawall, Gilles Muller
Inria/Sorbonne University/LIP6

Abstract
In a large software system such as the Linux kernel, there is
a continual need for large-scale changes across many source
files, triggered by new needs or refined design decisions. In
this paper, we propose to ease such changes by suggesting
transformation rules to developers, inferred automatically
from a collection of examples. Our approach can help auto-
mate large-scale changes as well as help understand existing
large-scale changes, by highlighting the various cases that
the developer who performed the changes has taken into ac-
count. We have implemented our approach as a tool, Spinfer.
We evaluate Spinfer on a range of challenging large-scale
changes from the Linux kernel and obtain rules that achieve
86% precision and 69% recall on average.

1 Introduction

The Linux kernel is present today in all kinds of computing en-
vironments, from smartphones to supercomputers, including
both the latest hardware and “ancient” systems. This multipli-
city of targets with widely varying needs has implied that the
code base has grown steadily over the Linux kernel’s 28-year
history, reaching 18M lines of code in Linux v5.4 (Nov. 2019).
The complexity of designing an operating system kernel and
the need to continually take into account new requirements
has implied that the design of internal interfaces must be re-
visited, triggering the need for repetitive changes among the
users of these interfaces that may affect an entire subsystem,
or even the entire source tree. The size and number of the
needed changes can discourage developers from performing
them, and can introduce errors. Furthermore, when code is in-
completely transformed, the volume of the performed changes
can obscure the conditions that later developers who want to
complete the change should take into account.

Since 2008, the automatic C code transformation tool Coc-
cinelle [12] has been part of the Linux kernel developer tool-
box for automating large-scale changes in kernel code. Coc-
cinelle provides a notion of semantic patch allowing kernel de-
velopers to write transformation rules using a patch-like [16]

(i.e., diff-like) syntax, enhanced with metavariables to rep-
resent common but unspecified subterms and notation for
reasoning about control-flow paths. Given a semantic patch,
Coccinelle applies the rules automatically across the code
base. Today, Coccinelle is widely adopted by the Linux com-
munity: semantic patches are part of the Linux kernel source
tree, are invokable from the kernel build infrastructure, and
are regularly run by Intel’s Linux kernel 0-day build-testing
service [10]. Semantic patches have been written by kernel
developers to make timers more secure [5], prepare the Linux
kernel for the overflow of 32-bit time values in 2038 [6],
reduce code size [27], etc.

Kernel developers use Coccinelle by first writing a semantic
patch to perform a desired change, then applying it to the code
base using Coccinelle and manually checking the resulting
patch, and finally submitting the resulting patch for review
and integration, according to the standard kernel development
process [28]. Semantic patches have also been recognized as
providing a precise means of communication about changes;
developers include semantic patches in the commit logs of
large-scale changes, and maintainers ask for them if they are
not present, showing that semantic patches are considered to
be valuable in the review and subsequent maintenance process.
Still, there remain large-scale changes in the Linux kernel
commit history where Coccinelle has not been used. Through
discussions with Linux kernel developers we have learned that
some know that Coccinelle would be helpful to them but, as
they do not use it often, they do not remember the syntax. They
also report that this realization often comes after performing
a few manual changes. Furthermore, Coccinelle does not
help developers understand existing large-scale changes, if no
semantic patch is provided.

To better help developers, we propose to infer semantic
patches from existing change examples, represented by a col-
lection of files from before and after a change has been ap-
plied. Semantic patch inference can help developers under-
stand previous changes without looking at hundreds of change
instances. Semantic patch inference can also help developers
with little Coccinelle knowledge use semantic patches if they

USENIX Association 2020 USENIX Annual Technical Conference 235

are willing to make a few instances of the change manually.
Inferring semantic patches from real Linux kernel code

changes, however, raises some challenges. The Linux kernel
is written in C, which is a low-level language. Individual
functionalities may be implemented as multiple C statements
connected by control-flow and data-flow constraints. These
constraints must be captured from the change examples and
validated in the code to transform. A single kernel interface
may expose multiple functions and data structures that can be
used in various ways, any or all of which may be affected by
a change. Inference must thus be able to cope with multiple
change variants. Finally changes that are relevant to many files
may be tangled with noise, i.e., changes that are specific to a
particular file, and thus are not worth automating. Semantic
patch inference should be able to ignore such changes.

In this paper, we propose an approach to semantic patch
inference that scales to the needs of systems code, such as
the Linux kernel. Starting with the intraprocedural control-
flow graphs of the original and changed functions found in
the examples, our approach iteratively identifies code frag-
ments having a common structure and common control-flow
relationships across the examples, and merges them into a
rule proposition. During this iterative merging process, rules
are split as inconsistencies appear. Our approach is able to
infer semantic patches from examples that overlap, that im-
plement a family of transformations, and that may include
noise. We have implemented our approach as a tool, Spin-
fer, targeting semantic-patch inference for the Linux kernel.
Spinfer-inferred semantic patches can be read and understood,
reviewed, and automatically applied to the Linux kernel.

The contributions of this paper are as follows:

• We propose a taxonomy of challenges that must be han-
dled by transformation-rule inference tools and assess
recent work and our proposed approach according to this
taxonomy.

• We propose an approach to automatic inference of se-
mantic patches that takes control and data-flow, multiple
change instances, multiple change variants and unrelated
changes into account. We provide an implementation of
this approach for C code in the tool Spinfer.

• We evaluate Spinfer on a large set of 80 changes, af-
fecting thousands of files drawn from recent Linux ker-
nel versions, against semantic patches written by a Coc-
cinelle expert. Generated semantic patches achieve on
average 86% precision and 69% recall.

The rest of this paper is organized as follows. Section 2
presents some motivation for our work, our taxonomy and the
most closely related work. Section 3 presents our approach
and its implementation in Spinfer. Section 4 evaluates Spinfer
on 80 recent sets of changes to the Linux kernel. Finally, Sec-
tion 5 presents other related work and Section 6 concludes.

2 Background and Motivation

We first present an example of a large-scale change from the
Linux kernel development history. Based on the challenges
identified in this example, we then propose a taxonomy of
challenges for transformation-rule inference. We then assess
related approaches in terms of this taxonomy.

2.1 Motivating example
Linux kernel timers were originally initialized by a multi-
step process, involving a call to init_timer to initialize a
timer structure and two assignments to initialize the fields
function and data, describing what to do when the timer
expires. In Linux 2.6.15, released in 2006, setup_timer was
introduced to combine these operations and thus simplify the
source code. Elimination of init_timer got off to a slow
start, with 73 changes in 2008 and then little activity until
2014. In 2014-2016 there were 43, 93, and 37 changes per
year, respectively. The remaining 267 calls were removed in
2017, when it was also recognized that incremental initializa-
tion using init_timer represents a security hole.1

Figure 1 illustrates some instances of the init_timer
change.2 We examine these instances in terms of the chal-
lenges they pose for semantic patch inference.
Control-flow. The change typically involves removing three
statements, i.e., the call and the two field initializations. These
three statements are typically part of some larger block of
code, and thus do not correspond to an independent subtree
of an Abstract Syntax Tree (AST). They are not always con-
tiguous either (nicstar.c).
Data-flow. The change involves keeping the same expres-
sion for the init_timer and setup_timer first argument,
and for the structure used in the data and function field
initialization.
Multiple variants. While the examples basically perform
the same operations, at a detailed level there are a number
of variations. For example, the first two examples initialize
both the function and data fields, but in the opposite order.
Semantic-patch inference should be able to proceed in the
face of these variants and generate the needed rules. The last
example presents yet another variant that does not initialize
the data field at all, retaining the default value of 0. This
variant poses a further challenge, as it overlaps with the other
variants, in that all of the examples remove an init_timer
call and the initialization of the function field. Semantic-
patch inference has to carefully order the resulting rules such
that a rule setting the third argument of setup_timer, repre-
senting the timer data, to 0UL does not apply to code where a
value for the data field is specified.

1https://lkml.org/lkml/2017/8/16/817
2Commit b9eaf1872222. All commits cited in this paper are available

at https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git

236 2020 USENIX Annual Technical Conference USENIX Association

https://lkml.org/lkml/2017/8/16/817
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b9eaf1872222
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

drivers/s390/block/dasd.c
- init_timer(&device->timer);
- device->timer.function = dasd_device_timeout;
- device->timer.data = (unsigned long) device;
+ setup_timer(&device->timer, dasd_device_timeout,
+ (unsigned long)device);

drivers/atm/nicstar.c
- init_timer(&ns_timer);
+ setup_timer(&ns_timer, ns_poll, 0UL);
ns_timer.expires = jiffies + NS_POLL_PERIOD;

- ns_timer.data = 0UL;
- ns_timer.function = ns_poll;

drivers/net/wireless/intersil/hostap/hostap_hw.c
- init_timer(&local->passive_scan_timer);
- local->passive_scan_timer.data =
- (unsigned long) local;
- local->passive_scan_timer.function =
- hostap_passive_scan;
-
- init_timer(&local->tick_timer);
- local->tick_timer.data = (unsigned long) local;
- local->tick_timer.function = hostap_tick_timer;
+ setup_timer(&local->passive_scan_timer,
+ hostap_passive_scan, (unsigned long)local);
+ setup_timer(&local->tick_timer, hostap_tick_timer,
+ (unsigned long)local);

arch/blackfin/kernel/nmi.c
- init_timer(&ntimer);
- ntimer.function = nmi_wdt_timer;
+ setup_timer(&ntimer, nmi_wdt_timer, 0UL);

Figure 1: Variants of the init_timer change

Multiple instances. Another form of variation in the exam-
ples is the number of instances of a given change. Most of
the examples initialize only one timer, but hostap_hw.c ini-
tializes two. To concisely describe the overall change, it is
better to obtain a rule for a single timer that applies to this
code twice, rather than obtaining a rule specific for this case.

Noise. Change examples can also contain extraneous changes
from which it is not useful to infer semantic patches. A sin-
gle patch may, for example, change a function definition and
update the uses of the function accordingly. The change to
the definition is a one-time operation, so it is not useful to au-
tomate. Another possibility is the presence of other changes,
such as minor refactorings. While research on application soft-
ware has found that the latter tangled changes are frequent [9],
the Linux kernel documentation requires that developers sep-
arate their changes into one change per patch [28], and thus
we expect tangled changes to be a minor issue in our setting
in practice.

2.2 Taxonomy
Based on the above examples and study of other large-scale
changes in the Linux kernel, we have created a taxonomy,
shown in Table 1, of challenges for transformation-rule infer-

ence. This taxonomy can be used to characterize particular
change examples and to compare transformation-rule infer-
ence approaches.

Table 1: Taxonomy of challenges for transformation inference
C: Control-flow dependencies
0. No control-flow dependencies between changed terms
1. Intraprocedural dependencies between changed terms
2. Intraprocedural dependencies between changed and
unchanged terms
3. Some terms must not appear within relevant
control-flow paths
4. Interprocedural control-flow dependencies between
changed and unchanged terms
D: Data-flow dependencies
0. No data-flow dependencies between changed terms
1. Data-flow dependencies between changed terms
2. Data-flow dependencies between changed and
unchanged terms
I: Change instances per function
0. One instance
1. Multiple instances
2. Overlapping instances
V: Change variants
0. One variant
1. Multiple variants
2. Multiple variants with specific order
N: Noise (errors and unrelated changes)
0. No noise
1. Contains noise

The taxonomy considers the relationship between changed
terms in a single change instance (C and D), the ways in which
multiple change instances can appear within a single function
(I), and the possibility of change variants (V) and unrelated
changes (N, noise). For control-flow dependencies, the taxon-
omy entries range from no dependencies (C0) to changes that
requires intraprocedural dependencies to changed terms (C1)
to changes that involve dependencies between both changed
and unchanged terms across multiple functions (C4). For data-
flow dependencies, the taxonomy entries range from no de-
pendencies (D0) to data dependencies between both changed
and unchanged terms (D2). For multiple change instances,
the taxonomy entries range from one instance per function
(I0) to overlapping instances (I2). For multiple variants, the
taxonomy entries range from one variant at all change in-
stances (V0) to multiple variants that have to be considered
in a specific order (V2). For noise, the taxonomy entries have
either the absence of noise (N0) or presence of noise (N1).
Spinfer targets C1,D2, I2,V2,N1 (control-flow and data-flow
constraints, potentially overlapping change instances, multi-
ple order-dependent change variants, and the possibility of
noise in the examples).

USENIX Association 2020 USENIX Annual Technical Conference 237

2.3 Existing tools

A number of tools have previously been developed to in-
fer transformation rules or update API uses automatically.
Most of these tools target user-level applications written in
object-oriented languages, typically Java, while we target an
operating system kernel written in C. While these different
kinds of code bases raise different challenges, all of the issues
we identify with existing tools also apply to our setting.

Individual examples. Sydit [17], A4 [11], MEDITOR [30],
APPEVOLVE [7], and GENPAT [8] generate transformation
rules from individual change examples. All of these ap-
proaches except GENPAT abstract over the examples by ab-
stracting over variables. In practice, change examples mix
generic computations and computations that are specific to a
particular application. Abstracting over variables is not always
sufficient to abstract away these application-specific compu-
tations. Such approaches thus obtain low recall on anything
but the simplest examples. GENPAT [8] bases abstraction de-
cisions on the frequency of various terms in code repositories
such as GitHub. As GENPAT’s abstraction strategy is based
on the properties of a large code corpus rather than on the
change itself, it may infer transformations that are too generic,
transforming code that should not be changed, thus reducing
precision. The evaluation presented in the work on GENPAT
reflects these issues.

Approaches that abstract from individual examples may
perform incorrect transformations if the examples are not
given to the tool in the right order. For example, in the
init_timer example, if nmi.c is provided as an example
first, then all timer initialization code will be incorrectly up-
dated with the data value 0, even if another data value is
provided. APPEVOLVE addresses this issue by computing a
common core of the provided examples, and attempting to
apply the generated rules in order of their distance from this
common core. The rule generated from the nmi.c example,
however, is smaller than the others, and would thus be tested
first by such a strategy. APPEVOLVE additionally proposes to
use testing to validate the changed code, but the Linux kernel
does not provide a comprehensive suite of easy-to-run high
coverage test cases.

Several of these tools are also not able to identify change
application sites. For example, Sydit requires the user to spec-
ify the affected function, while APPEVOLVE requires the user
to specify the affected file name and line number. Manually
specifying change sites is not practical for a code base the
size of the Linux kernel.

In terms of the taxonomy, Sydit, A4, MEDITOR and
GENPAT target C0,D2, I1,V2,N0; APPEVOLVE targets
C0,D2, I1,V2,N1 but requires preliminary manual rewriting
of the change examples [29].

Multiple examples. LASE [18], REFAZER [23], and
Spdiff [1, 2] learn from multiple examples, identifying how
to abstract over these examples based on the commonalities
and differences between them.

Based on a set of change examples, LASE represents modi-
fications as a sequence of AST edits and solves the Largest
Common Subsequence Problem to find a transformation rule.
This method implies that LASE cannot learn from examples
containing unrelated changes or multiple variants, as we have
seen for init_timer. Moreover these edit subsequences do
not capture control-flow constraints and thus can generate in-
correct changes, as illustrated below. In terms of the taxonomy
LASE targets C0,D2, I0,V0,N0

REFAZER represents a transformation as a list of rewrite
rules in a domain-specific language. It clusters changes from
multiple examples and then infers one rule for each clus-
ter. Like LASE this list of rewrite rules does not incorpo-
rate control-flow constraints and thus can generate incor-
rect changes. In terms of the taxonomy REFAZER targets
C0,D2, I2,V1,N0.

Spdiff abstracts over common changes across the exam-
ples, incrementally extending a pattern until obtaining a rule
that safely describes the complete change, taking control-flow
constraints into account. It targets the Linux kernel and pro-
duces Coccinelle semantic patches. In terms of the taxonomy
Spdiff targets C2,D2, I2,V0,N0, however when tested on all of
our examples it produced no correct results. For even simple
function call replacements, we found that Spdiff spends much
time on finding more complex but actually incorrect solutions.

We can note that, with the exception of Spdiff, all exist-
ing tools do not handle control-flow relationships between
changed terms. To illustrate the impact of control flow, we
have performed an experiment on Linux kernel-like code us-
ing LASE3 (the distributed implementation of Refazer only
supports restricted subsets of Python and C#, making it diffi-
cult to test in practice). Consider the following Linux kernel
change example:4

- tport = kmalloc(sizeof(struct ti_port), GFP_KERNEL);
+ tport = kzalloc(sizeof(struct ti_port), GFP_KERNEL);
if (tport == NULL) {

dev_err(&dev->dev, "%s - out of memory\n", ...);
status = -ENOMEM;
goto free_tports;

}
- memset(tport, 0, sizeof(struct ti_port));

Thus, from examples such as this one, LASE infers a rule
that makes the following incorrect changes:

if (a)
- x = kmalloc(sizeof(*x), GFP_KERNEL);
+ x = kzalloc(sizeof(*x), GFP_KERNEL);
else

- memset(x, 0, sizeof(*x));

3LASE targets Java. We use C in the presented examples for consistency
with the rest of the paper.

4Commit 7ac9da10af7f

238 2020 USENIX Annual Technical Conference USENIX Association

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=7ac9da10af7f

and

- x = kmalloc(sizeof(*x), GFP_KERNEL);
+ y = kzalloc(sizeof(*y), GFP_KERNEL);
y = kmalloc(sizeof(*x), GFP_KERNEL);

- memset(y, 0, sizeof(*y));
memset(x, 0, sizeof(*x));

The first case shows that the inferred rule does not check
that the memset affects the result of the call to kmalloc
in the same control-flow path, thus performing an incorrect
transformation. The second case shows that the inferred rule
modifies the wrong memset, i.e., the one affecting y rather
than the one affecting x, and, worse, rearranges the variables
so that x is no longer initialized. LASE only updates the first
match in each function, and thus the second call to kmalloc
is left unchanged. The former example may be unlikely for
the specific functions of kmalloc and memset, but there is an
instance analogous to the latter example in the Linux kernel
history.5

Our approach. Given the difficulty of choosing an appro-
priate degree of abstraction from only one example, and given
the availability of multiple examples of the use of most inter-
faces in the Linux kernel, our approach relies on multiple ex-
amples. Our approach is able to infer and express both control-
flow and data-flow relationships that must be respected be-
tween fragments of code that are to be transformed. It adapts
to variations in the examples to produce multiple rules and
tolerates noise. Finally it produces transformation rules in a
readable notation that is close to C code and is familiar to
Linux kernel developers.

To the best of our knowledge, our approach is the only one
capable of handling all these challenges at the same time and
requires no rewriting of example code, making it suitable for
systems code transformations.

3 Approach and Tool Design

In this section, we first give an overview of our approach,
and then present the various steps used by our tool Spinfer to
realize this approach. Spinfer is implemented as 10.6K lines
of OCaml code. For parsing C code and mining control-flow
relationships, it reuses the infrastructure of Coccinelle [12].

3.1 Overview

Our goal is to produce Coccinelle transformation rules based
on a set of provided change examples, consisting of pairs
of functions from Before and After the change. To motivate
the steps of our approach, we first consider a semantic patch,
composed of 4 rules, that a Coccinelle expert might write
based on the init_timer examples illustrated in Section 2:

5Commit 87755c0b3af6.

@@expression T,F,D;@@
- init_timer(&T);
+ setup_timer(&T, F, D);
...

- T.data = D;
- T.function = F;

@@expression T,F,D;@@
- init_timer(&T);
+ setup_timer(&T, F, D);
...

- T.function = F;
- T.data = D;

@@expression T,F,D;@@
- T.function = F;
- T.data = D;
...

- init_timer(&T);
+ setup_timer(&T, F, D);

@@expression T,F;@@
- init_timer(&T);
+ setup_timer(&T, F, 0UL);
...

- T.function = F;

The semantic patch consists of four transformation rules for
the four different patterns of changes that occur in the exam-
ples. Each rule initially declares some metavariables, repre-
senting abstracted subterms, and then describes the changes
as a sequence of lines of code patterns annotated with - and
+, indicating code to remove and add, respectively. “...” rep-
resents a control-flow path, connecting the code matched by
the pattern before the “...” to the pattern after the “...”.
Coccinelle applies a semantic patch to C source code in terms
of the C source code’s control-flow graph (CFG). A CFG
as used by Coccinelle contains a node for each semicolon-
terminated statement in the function, as well as for each if
header, while header, etc. Coccinelle matches each rule of
a semantic patch against the CFG of each function in a C
file. When a match is found, Coccinelle transforms the code
found in each matched CFG node according to the - and +
annotations. More details about Coccinelle’s semantic patch
language SmPL are presented elsewhere [3].

We can observe that these four transformation rules share
some constituents:

• Removal of a call to init_timer: init_timer(&T);

• Removal of a data field initialization: T.data = D;

• Removal of a function field initialization:
T.function = F;

• Addition of the call setup_timer(&T, F, D);

We call these constituents abstract fragments, as they are
fragments of a semantic change and each of them has a par-
ticular role in that change. Identifying a semantic patch as an
assembly of small abstract fragments can help to solve the
challenges highlighted in the introduction. In this view:

• Control-flow dependencies are the rules to assemble
fragments together.

• Data-flow dependencies are the rules to match metavari-
ables together.

• Variants are different assemblies of abstract fragments.

• Errors and noise are very unpopular abstract fragments.

USENIX Association 2020 USENIX Annual Technical Conference 239

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=87755c0b3af6

One can thus resolve these challenges by identifying the ab-
stract fragments to consider and by determining how to as-
semble them together.

Following this observation, our approach focuses on finding
abstract semantic patch fragments that will be assembled into
one or more semantic patch rules. Each rule will match one of
the variants illustrated by the examples. We have implemented
this approach as a tool named Spinfer.

Starting from a set of examples, consisting of pairs of files
before and after some changes, Spinfer constructs a set of
transformation rules describing the changes. For this, Spinfer
first identifies sets of common removed or added terms across
the examples, then generalizes the terms in each set into a
pattern that matches all of the terms in the set, and finally
integrates these patterns into transformation rules that respect
both the control-flow and data constraints exhibited by the
examples, splitting the rules if necessary when inconsistencies
appear.

Spinfer is organized as follows:

1. Identification of abstract fragments: Spinfer first clusters
subterms from the examples having a similar structure
and generalizes each cluster into an abstract fragment
that matches all the terms in the cluster.

2. Assembling the rule-graphs: Spinfer then combines the
abstracted fragments into a semantic patch rule-graph, a
representation of a transformation rule as a graph, where
nodes represent fragments to add and remove, and where
edges are determined by control-flow dependencies ex-
hibited in the associated examples.

3. Splitting: When assembling fails or when Spinfer detects
data-flow inconsistencies, Spinfer splits existing rule-
graphs into more specific ones.

4. Rule ordering: Finally, Spinfer orders the generated rules,
removing redundant ones, to maximize precision and
recall while minimizing the number of rules for the final
semantic patch.

3.2 Identification of abstract fragments
The goal is to cluster nodes sharing similar subterms to form
abstract fragments. Given that we have no a priori knowledge
of the change variants illustrated by our examples, we must
make an arbitrary decision about the granularity at which to
investigate their subterms. Concretely, we choose the granu-
larity of individual statements in a straightline code sequence,
as well as function headers and headers of conditionals and
iterators. An example from the init_timer code would
be init_timer(&device->timer);. Such terms have the
desirable property of being complete statements and expres-
sions, with simple control-flow relationships between them.
We refer to these terms as nodes as they will later correspond

to the nodes of the control-flow graphs (CFGs) that we use to
validate the control-flow constraints.

Spinfer then proceeds with an initial clustering of the CFG-
nodes to be removed and added according to the examples.
This clustering is independent of control-flow information,
and is refined by control-flow constraints in the subsequent
step. Each cluster will be represented by the smallest abstrac-
tion that matches all members in the cluster, known as the anti-
unifier [21,22] of the cluster. Clustering code fragments using
anti-unification has already been used in REVISAR [24]
and CodeDigger [4]. However these approaches give the
same weights to all anti-unifiers, regardless of their popu-
larity, which cannot help to discriminate noise from relevant
nodes. Spinfer overcomes this limitation by using techniques
from text mining.

Node weighting: To facilitate clustering and noise detec-
tion, we want to give higher weight to anti-unifiers that are
likely to form correct abstract fragments, and lower weight to
anti-unifiers that are either too specific, manifested as rarely
occurring across the set of examples, or too generic, man-
ifested as occurring frequently within a single example, to
describe the change. This goal is very similar to the goal of the
term frequency – inverse document frequency (TF-IDF) [26]
process used in text mining to highlight words that partic-
ularly characterize the meaning of a given document in a
corpus. Spinfer requires the inverse notion, i.e., anti-unifiers
that are common to many documents (i.e., functions), but do
not occur too frequently in any given document.

Concretely, Spinfer uses a process that we call function
frequency – inverse term frequency (FF-ITF). In FF-ITF terms
are anti-unifiers and a term weight increases with the number
of functions that contains nodes matching this term (function
frequency), and decreases with the number of nodes matching
this term which appear in the same function (inverse term
frequency).

The first step is to count how many times each anti-unifier
appears. To do so, Spinfer first represents each node as a set of
anti-unifiers that can match this node, from very abstract ones,
that are likely to be shared by several nodes, to very concrete
ones; we only consider anti-unifiers that at least abstract over
local variables. Then given an anti-unifier A , a set of functions
F and a particular function f ∈F that contains the set of nodes
N f , our weight wA , f is:

FFA =
|{ f ′ ∈ F : A ∈ f ′}|

|F |

ITFA , f = log
|N f |

|{n ∈ N f : A ∈ n}|+1

wA , f = FFA × ITFA , f

This weight function is closely related to the one used in TF-
IDF. We illustrate why this weight function works with an ex-
ample on the init_timer(&ntimer); code fragment. We

240 2020 USENIX Annual Technical Conference USENIX Association

consider here only the 3 following anti-unifiers: (1) Expr;, (2)
init_timer(&ntimer); and (3) init_timer(&Expr);.
(1) is too generic and matches every statement, consequently
it will have high function frequency but a very low inverse
term frequency. Conversely (2) is too specific and proba-
bly matches only one node, so it will have a low function
frequency but a high inverse term frequency. (3) matches
init_timer function calls and nothing else, making it a
good candidate to form correct abstract fragment. It will have
both a high function frequency and a high inverse term fre-
quency, which will result in a higher weight than (1) and (2).

Noise detection: The result of the node weighting gives
a set of weighted anti-unifiers for every modified node of
each example. The next step is to separate noise from rele-
vant nodes. As noise is composed of very unpopular code
fragments, all its anti-unifiers are either too generic or have
very low function frequency, and as a consequence, have low
weights. On the contrary relevant nodes have at least one anti-
unifier with a high weight. Thus it is possible to distinguish
noise nodes from relevant nodes by looking at the weight of
their highest weighted anti-unifier.

To decide if a node is relevant, Spinfer compares the weight
of the node’s highest weighted anti-unifier to the average of
the weights of the highest weighted anti-unifier of each node.
If it is below a certain distance from this average, the node
is considered to be noise. We have performed a separate
experiment on the noise detection and looked for the distance
at which we could mark nodes as noise without producing
false positives. We found the ideal distance to be slightly less
than 3 standard deviations.

Nodes marked as noise are dropped from further processing
by Spinfer.

Clustering: In this step, we want to group together nodes
that share a common high-weighted anti-unifier. For this Spin-
fer, proceeds with the clustering of the nodes not identified
as noise. Spinfer first assigns to each node a characteristic
vector encoding the weights of all anti-unifiers for this node.
Our approach uses agglomerative hierarchical clustering with
complete linkage, described by Zhao et al. [31], on our char-
acteristic vectors. This approach has already been used for
document classification in conjunction with TF-IDF weight-
ing [31].

The number of clusters is determined using the best average
Silhouette score [25], a score estimating the quality of the
clustering, for all possible numbers of clusters. After this
procedure we obtain groups of nodes that are very similar,
and that will be transformed to abstract fragments in the next
step.

We illustrate this procedure with the init_timer change.
In each of our init_timer examples, three nodes are re-
moved and one node is added. The clusters are shown on the

Cluster (code and CFG-Diff node) Abstraction
init_timer(&device->timer); init_timer(&X0);

init_timer(&ns_timer);

device->timer.function = X0.function = X1;

dasd_device_timeout;

ns_timer.function = ns_poll;

device->timer.data = X0.data = X1;

(unsigned long) device;

ns_timer.data = 0UL;

Figure 2: Before clusters and anti-unifiers from the
init_timer examples. X0 and X1 are metavariables.

init_timer
(&X0);

X0.function
= X1;

X0.data
= X1;

Figure 3: init_timer Before fragments

left side of Figure 2. Each element of a cluster is annotated
with the example from which it comes and its position in that
example.

For each cluster, Spinfer then create its anti-unifier, that
retains the common parts of the terms in the cluster, and
abstracts the subterms that are not common to all of the terms
as metavariables, i.e., elements that can match any term. The
right side of Figure 2 shows the anti-unifier for each cluster.

Anti-unifiers represent sets of similar terms, but do not
provide any control-flow information. In order to prepare for
the next step, which constructs a semantic patch rule proposi-
tion based on control-flow constraints, Spinfer next expands
each anti-unifier into the fragment of a control-flow graph that
the anti-unifier’s constituent node fragments represent, called
an abstract fragment. An abstract fragment is composed of
at least one node that contains the abstracted pattern, and a
non-empty list of pairs of entry and exit points. Multi-node
abstract fragments are created for complex control-flow struc-
tures such as conditionals and loops. Figure 3 shows some
fragments for our init_timer example.

3.3 Assembling the semantic patch rule-graph

In order to address the first semantic patch inference challenge
of capturing control-flow constraints, Spinfer relies on the
notion of dominance [15] in CFGs. A node A dominates a
node B in a directed graph G if every path from the entry
node of G to B goes through A. A is then a dominator of
B. Similarly, a node B postdominates a node A if every path
from A to an exit node of G goes through B. B is then a
postdominator of A. This notion generalizes straightforwardly
to sets of nodes. Dominance characterizes the semantics of
Coccinelle’s “...” operator. A pattern of the form A . . . B
matches a fragment of C code if the set of terms matching

USENIX Association 2020 USENIX Annual Technical Conference 241

init_timer(...);

ns_timer.expire = ...;

ns_timer.data = ...;

ns_timer.function = ...;

setup_timer(...);

Figure 4: CFG-Diff for the nicstar.c init_timer change

init_timer
(&X0);

init_timer
(&X0);

X0.function
= X1;

init_timer
(&X0);

X0.function
= X1;

setup_timer
(X0,X1,X2);

(a) (b) (c) (d)

Figure 5: Steps in semantic patch-rule-graph construction

B postdominate the term matching A, meaning that from the
code matching A, all outgoing paths reach code matching B.

Spinfer first constructs the control-flow graph (CFG) of
each changed function in the examples, before and after the
change. Each pair of before and after CFGs is then merged
into a single CFG, referred to as a CFG-Diff. In the CFG-Diff,
removed nodes from the before CFG are colored Before (red/-
dark grey) and added nodes from the after CFG are colored
After (green/light grey). An extract of the CFG-Diff for the
nicstar.c change is shown in Figure 4.

To construct a semantic patch rule, Spinfer first constructs a
semantic patch rule-graph, incrementally adding first Before
fragments and then After fragments as long as the dominance
relations in the semantic patch rule-graph respect the dom-
inance relations in the example CFGs associated with the
fragments.

We present the semantic patch-rule-graph construction al-
gorithm in terms of the init_timer example. Spinfer starts
with an empty semantic patch rule-graph, consisting of two
special nodes, a global entry node and a global exit node, and
a directed edge from the global entry node to the global exit
node (Figure 5(a), the half-circle is the global entry node and
the full circle is the global exit node). By convention, the
global entry node dominates every node and every node post-
dominates it, and the global exit node postdominates every
node and every node dominates it.

For our example, out of the available fragments (Figure 3),
suppose that Spinfer first chooses the one representing the
init_timer calls. This fragment can be added straightfor-
wardly (Figure 5(b)) because the start node and the end node
dominate and postdominate every node, respectively. Next,
Spinfer may add the fragment representing the initialization

of the timer’s function field, below the node representing
the init_timer call. Indeed, in both Before CFGs, the call
to init_timer dominates the function field initialization,
either because of a direct connection between them, or be-
cause of a control-flow path consisting of straightline code
between them. The function field initialization likewise
postdominates the init_timer call. The resulting semantic
patch rule-graph is shown in Figure 5(c).

We defer the treatment of the initialization of the data
field to Section 3.4, and turn to the integration of the After
fragment, i.e., the abstracted call to setup_timer. While
the addition of the Before fragments relies on dominance
relations between the fragment and the nodes already in the
semantic patch rule-graph, this is not always possible for After
nodes. Indeed, there exist no dominance relations between
the Before and After nodes. When an addition is in fact a
replacement, we observe that the After node and the Before
node it is replacing share common context (non-modified)
predecessors and successors (see Figure 4). Moreover, this
context does dominate/postdominate both the deletion and
the addition. Spinfer exploits this property to insert After
fragments. For this, Spinfer replaces each entry and exit pair
of the After fragment by the nearest context predecessors and
successors, if any, and checks the domination properties on
these context nodes instead. If the properties hold then the
fragment is inserted. The context used is replaced by Merge
nodes, that are omitted in the final semantic patch.

3.4 Splitting the semantic patch rule-graph
Assembling the semantic patch rule-graph can fail, due to
inconsistencies. This situation occurs when there are multiple
change variants in the examples, our third semantic patch in-
ference challenge. One possible inconsistency is incompatible
domination properties, representing inconsistent control flow.
Another is the inability to map metavariables to terms in a
way that allows the added code to be constructed from the
removed code, representing a form of inconsistent data flow.
Spinfer splits the semantic patch rule-graph and reduces the
genericity of metavariables to address these issues.

Control-flow inconsistencies. Trying to insert the data
field initialization fragment into the rule-graph shown in
Figure 5(c), reveals a control-flow inconsistency: dasd.c
initializes the data field after the function field, while
nicstar.c initializes it before. To proceed, Spinfer chooses
an element of the data field initialization cluster, say the
one from dasd.c, and splits the cluster into one cluster of
the instances that respect the same control-flow constraints
and another cluster for the remaining instances. The latter
is deferred for later integration. At the same time, Spinfer
splits the semantic patch-rule graph into one copy derived
from the graphs whose data field initialization respects the
same control flow constraints as the dasd.c initialization

242 2020 USENIX Annual Technical Conference USENIX Association

and another copy for the rest. The latter rule-graph copy is
likewise pushed onto a stack for later treatment.

After splitting the cluster and the semantic patch rule-graph,
Spinfer can add the fragment representing data field initial-
izations that are consistent with dasd.c into the rule-graph
below the function field initialization, and then proceed to
the integration of the After fragment, as described previously.
With this rule-graph complete, Spinfer then proceeds to the
next rule-graph on the stack and the remaining fragments.

A semantic patch rule-graph split may lead to a situation,
as we have here, where a rule-graph represents only a single
example. In this case, Spinfer leaves the generated semantic
patch rule abstract, according to the metavariables motivated
by the clustering, to allow the generated semantic patch rule to
match code from other files. This extra abstraction, however,
may lead to false positives, if the rule is so generic that it
matches parts of the code that should not be transformed. In a
final step, Spinfer validates the complete generated semantic
patch on the complete example files, which may contain a
great deal of code other than that of the functions the rule was
learned from. If this validation shows that a rule causes false
positives, Spinfer specializes the rule according to the specific
code fragments that motivated its construction, resulting in a
safer, but potentially less widely applicable, semantic patch
rule.

Data-flow inconsistencies. A semantic patch rule needs to
be able to construct the After code from the information found
in the Before code, to carry out the intended change. Thus,
in a completed semantic patch rule-graph, Spinfer reassigns
the metavariables, X0, X1, etc. (see Figure 2), that were local
to each fragment, in a way that is consistent across the pro-
posed semantic patch rule. It may occur that no consistent
assignment is possible, and some metavariables may remain
in the After fragments that are not instantiated by the Before
fragments.

As an example, suppose we add the fourth example of
Figure 1 to our set of fragments. This example has no data
field initialization, and thus it will cause a split from the oth-
ers, producing a separate semantic patch rule-graph. This
rule-graph will indicate removal of the abstract fragment
init_timer(&X0); and removal of the subsequent frag-
ment X0.function = X1;, and the addition of the fragment
setup_timer(X0,X1,X2);. X2, however, represents 0UL,
which is not represented by any of the metavariables of the re-
moved code. In this situation, Spinfer agglomeratively consid-
ers subsets of the examples contributing to the semantic patch
rule-graph, to determine whether respecializing the metavari-
ables to the contents of the considered subsets can produce a
consistent metavariable assignment. In our case, there is only
one associated example, and Spinfer eliminates X2 entirely,
replacing it with 0UL in the generated semantic patch.

3.5 Rule ordering

Finally Spinfer pretty prints each semantic patch rule-graph
into a rule, and then orders the rules to form a single semantic
patch. This last step is important because graph splitting can
produce rules that subsume other rules or rules that must
be executed in a certain order to limit the number of false
positives. For instance, for the init_timer example, a rule
matching the nmi.c variant must be executed after all other
rules that could have consumed the missing data field.

To solve these issues Spinfer first looks for semantic patch
rules that subsume other rules. Let R1 and R2 be two rules and
let T P1 and T P2 be the sets of true positives and FP1 and FP2
the sets of false positives produced by applying R1 and R2
respectively, by using Coccinelle on the provided examples.
R1 is said to be subsumed by R2 if T P1 is a subset of T P2 and
FP1 is a superset of FP2. When Spinfer detects a rule that is
subsumed by others it is eliminated from the final semantic
patch. Finally, Spinfer orders the remaining semantic patch
rules, by looking at the F2 score (a combination of precision
and recall that favors high recall) of tentative semantic patches
each consisting of a pair of rules. From these results, it does a
topological sort to order the complete set of semantic patch
rules into a single semantic patch.

4 Evaluation

In this section, we evaluate Spinfer on two datasets composed
of real changes from the Linux kernel. We then illustrate
a failure case of Spinfer in which it generates an incorrect
semantic patch and explain why it was generated this way.
With this example, we illustrate how a developer can easily
fix a semantic patch to produce a correct one.

4.1 Methodology

Our first dataset is a collection of 40 sets of changes in the
Linux kernel, that have been selected to challenge Spinfer, by
focusing on the higher levels of the taxonomy. Consequently,
it is not intended to be representative of the real taxonomy
distribution of Linux kernel changes. The sets include some
changes that have been performed using Coccinelle as well
as recurring changes found in recent Linux kernel versions
v4.16-v4.19, identified using the tool patchparse [20]. We
refer to this dataset as the challenging dataset.

Our second dataset is composed of 40 sets of changes ran-
domly picked from changes to the Linux kernel in 2018. To
build this dataset we first identified 175 large-scale changes
(changes from one developer affecting at least 10 files) from
the changes performed in 2018 and then we randomly selected
40. We refer to this dataset as the 2018 dataset.

For each dataset we describe the interesting aspects of its
taxonomy and we perform two experiments:

USENIX Association 2020 USENIX Annual Technical Conference 243

The synthesis experiment learns semantic patches from the
full dataset containing all the files and evaluates the result-
ing semantic patch on the same set of files. This experiment
evaluates the degree to which Spinfer is able to capture the
changes found in the examples provided to it. It is relevant
to the user who wants to understand a previously performed
change. Without Spinfer, such a user has to read through the
entire patch and collect all of the different kinds of changes
performed, with no way to validate his understanding. Spinfer
does both the inference and validation automatically.

The transformation experiment, on the other hand, learns
semantic patches from a reduced dataset composed of the first
10 changed files, as indicated by the commit author date (ties
between files in the same commit are broken randomly), or
half of the full dataset if the full dataset contains fewer than 20
files. This experiment evaluates the resulting semantic patch
on the portion of the dataset that does not include the set
of files from which the rules were learned. This experiment
is relevant to the user who wants to change new code by
bootstrapping a semantic patch.

We recall that Spinfer targets the whole taxonomy, except
in terms of control flow where it targets only C0 and C1, but
not the higher levels. Since not all examples are in Spinfer’s
targets in terms of the taxonomy, for each experiment we
separate the analysis of the results according to whether the
examples are in Spinfer’s scope or not.

We use classic metrics that are applied for evaluation of
program transformation tools: precision, i.e., the percentage
of changes obtained by applying the inferred semantic patch
that are identical to the expected changes in the examples, and
recall, i.e., the percentage of expected changes in the examples
that are obtained by applying the inferred semantic patch. To
address the issue of noise we compare the changes performed
by the semantic patch generated by Spinfer against those
performed by a human-written semantic patch created by a
Coccinelle expert. In this way, we benefit from the intuition
of the human expert to filter out noise. As there are many
ways to write a semantic patch for the same change, we do
not directly compare the syntax of the generated semantic
patch against the human-written one, and instead focus on the
results of applying the semantic patch itself.

4.2 Experiments on the challenging dataset

The taxonomy of the changes for the challenging dataset
is shown in Figure 6. The majority of transformations in
this dataset require taking into account both control-flow and
data-flow relationships, with 21 examples requiring at least
control-flow dependencies on unchanged terms (C2), which
is outside of the scope of Spinfer (C0 or C1). Three quarters
of the transformations have multiple variants including one
quarter with variants that need to be performed in a specific
order, features that are targeted by Spinfer.

To evaluate Spinfer in terms of the correctness of the trans-

0 1 2 3 4
0

10

20

C

challenging 2018

0 1 2

D

0 1 2

I

0 1

N

0 1 2

V

Figure 6: Taxonomy of the two datasets

0
0.25
0.50
0.75

1
Synthesis

Within scope Out of scope

Transformation

Precision

0 10 20 30 40
0

0.25
0.50
0.75

1

0 10 20 30 40

Recall

Figure 7: CFG-nodes metrics for the challenging dataset

formation. We look at the ratio of correctly modified CFG-
nodes, either successfully deleted, or added to the correct
location in the CFG of the example. As Spinfer prints around
one line of semantic patch per modified node, this roughly
translates to the ratio of correct lines in the generated seman-
tic patch. Figure 7 gives the recall and precision for the node
modifications produced by the generated semantic patches,
with each bar corresponding to one set of changes. The lighter
color of the bars on the right indicates that the examples are
not in Spinfer target in terms of the taxonomy. Missing val-
ues for the transformation experiment at indices 1, 2 and 12
correspond to sets of changes with 2 modified files or fewer.
In this case, performing the transformation experiment is not
possible as Spinfer needs to learn from at least two files. Other
missing values indicate that Spinfer either did not generate
anything, or generated a semantic patch that was not appli-
cable to the evaluation dataset. These cases count as having
both a recall and a precision of 0.

On average, the semantic patches generated by Spinfer
achieve 87% precision and 81% recall for the synthesis ex-
periment, and 86% precision and 49% recall for the transfor-
mation experiment. For the part of the examples in Spinfer’s
scope in terms of the taxonomy, Spinfer obtained 88% preci-
sion and 91% recall for the synthesis experiment, and 93%
precision and 62% recall for the transformation experiment.
Precision and recall are much lower for examples outside
Spinfer’s scope, averaging 86% precision and 72% recall in

244 2020 USENIX Annual Technical Conference USENIX Association

10 30 100 300
Number of modified functions in the training dataset

10

100

1000

Ex
ec

ut
io

n
tim

e
(s

)

Figure 8: Execution time for the challenging dataset

synthesis and 81% precision and 39% recall in transformation.
These results suggest that, for the subset of examples in its

scope, Spinfer can be used to infer semantic patches that can
perform most of the needed transformations. Also, by care-
fully examining the produced semantic patches, we believe
that most of the non-exhaustive semantic patches in this sub-
set can be modified in a couple of minutes to obtain complete
ones. For examples outside Spinfer scope, Spinfer is still able
to perform some of the transformations without producing
too many false positives.

As shown in Figure 8, Spinfer’s execution time is almost
linear in the number of modified functions in the training
dataset. Spinfer takes less than 50 seconds to infer a semantic
patch for examples with 10 or fewer modified functions. We
believe that Spinfer’s execution time is quite reasonable to be
used as a tool to suggest a semantic patch.

4.3 Experiments on the 2018 dataset
Figure 6 also shows the taxonomy of the changes for the
2018 dataset. Contrary to the challenging dataset, the largest
part of the changes in the 2018 dataset do not require tak-
ing complex control flow into account (C0 and C1) and thus
fit in Spinfer’s scope. The kinds of control-flow constraints
observed are from one statement to the next, and from one
statement to some later statement that is not directly contigu-
ous. Only a few changes require taking into account negative
information (C3), such as verification that a variable is not
used in its scope before removing it, or interprocedural infor-
mation (C4). However, multiple variants (I1) and noise (N1)
are very common.

We evaluate the results in the same way as for the challeng-
ing dataset. Figure 9 gives the recall and precision for the
generated semantic patch. For the four C4 cases in the taxon-
omy the results are evaluated against the developers’ changes
directly, rather than against human-written semantic patches,
as Coccinelle does not support interprocedural control-flow
constraints.

For the 2018 dataset, the generated semantic patches
achieve 85% precision and 83% recall in synthesis, and 87%
precision and 62% recall in transformation. Looking only at
the examples in the scope of Spinfer, the generated semantic
patches obtained 92% precision and 88% recall in synthesis,

0
0.25
0.50
0.75

1
Synthesis

Within scope Out of scope

Transformation

Precision

0 10 20 30 40
0

0.25
0.50
0.75

1

0 10 20 30 40

Recall

Figure 9: CFG-nodes metrics for the 2018 dataset

and 94% precision and 65% recall in transformations, which
is very close to the results for the challenging dataset. As most
of the transformations in our randomly sampled dataset are in
Spinfer scope, these results suggest that Spinfer is adapted to
real kernel transformation situations, and can generate high
quality semantic patches that can be used by kernel developers
to perform synthesis or transformation tasks.

4.4 Analysis of a failure case
We now analyze a typical failure case that gives an intuition
for why some examples have a lower recall in transformation
than in synthesis.

A case where Spinfer does not generate a high qual-
ity semantic patch is for the elimination of the cpufreq_-
frequency_table_target function. For this transforma-
tion our human expert wrote the following semantic patch:

@@ expression policy, old_freq; @@
- cpufreq_frequency_table_target(policy, old_freq,
- CPUFREQ_RELATION_H)
+ cpufreq_table_find_index_h(policy, old_freq)

@@ expression policy, old_freq; @@
- cpufreq_frequency_table_target(policy, old_freq,
- CPUFREQ_RELATION_L)
+ cpufreq_table_find_index_l(policy, old_freq)

@@ expression policy, old_freq; @@
- cpufreq_frequency_table_target(policy, old_freq,
- CPUFREQ_RELATION_C)
+ cpufreq_table_find_index_c(policy, old_freq)

The semantic patch composed of three rules replaces the
uses of cpufreq_frequency_table_target by special-
ized cpufreq_table_find_index functions. The choice
of replacement function depends on the constant used as the
third argument of cpufreq_frequency_table_target.

For this transformation we launched Spinfer on a learning
set of only two files and, in under two seconds, Spinfer gener-
ated the following semantic patch composed of two rules:

@@ expression E0, E1, E2; @@
- E0 = cpufreq_frequency_table_target(E1, E2,
- CPUFREQ_RELATION_H);
+ E0 = cpufreq_table_find_index_h(E1, E2);

USENIX Association 2020 USENIX Annual Technical Conference 245

@@ expression E0, E1; @@
- E0 = cpufreq_frequency_table_target(&E1, E1.cur,
- CPUFREQ_RELATION_C);
+ E0 = cpufreq_table_find_index_c(&E1, E1.cur);

The generated semantic patch does not cover all the cases,
and thus it is incomplete. It illustrates two typical reasons for
the failure Spinfer: variant bias and over-specialization.

Variant bias happens when only a subset of variants is
present in the learning set. In this case the learning set
contains only instances with CPUFREQ_RELATION_H and
CPUFREQ_RELATION_C constants. Consequently Spinfer did
not see the third constant and cannot generate a rule for it.
Given this semantic patch, however, a developer can easily
find the missing constant and complete the semantic patch
with copy-pasting and small edits.

Over-specialization is present here in two forms: all rules are
assignments and the second rule contains a mandatory field
cur for the second parameter of both functions. Both of these
constraints are incorrect, but they are generated because they
are present in all examples in the learning set and because
Spinfer prefers precision over recall. Once again, fixing these
issues can be very quick for a Linux kernel developer, once
the basic outline of the semantic patch is provided.

We have illustrated two typical reasons for the failure of
Spinfer, in which our tool generates an incorrect semantic
patch for the testing set. These cases happen because Spinfer
somewhat overfits the learning set to prevent false positives.
However these kinds of failure can be easily and quickly fixed
by developers, by using their knowledge of the kernel or by
providing more examples to our tool.

5 Related Work

The most closely related works are Sydit [17], LASE [18],
APPEVOLVE [7], REFAZER [23], MEDITOR [30], A4 [11],
and GENPAT [8], that were already presented in Section 2.

A novelty of Spinfer is its focus on control-flow graphs.
CBCD [14] relies on Program Dependence Graphs (PDGs)
to find other instances of a known bug in a code base. CBCD
is limited to only one example bug, does not produce a script
for matching buggy code, and does not address how to fix
bugs. By considering commonalities among multiple exam-
ples, Spinfer can learn more general rules. By providing a
transformation script, Spinfer makes the result understand-
able to the user and even allows the user to improve the script
or adapt it to other uses. Finally, Spinfer-inferred semantic
patches both find code needing transformation and describe
how to transform it automatically.

Spinfer requires the existence of patches that illustrate a
desired change. When the developer does not know how to
make a change, he can search for examples in the commit
history. Patchparse [20] finds common changes in commit

histories of C code. SysEdMiner [19] finds such changes for
Java code. Prequel allows the developer to search for commits
that match patterns of removed and added code, making it
possible to find examples for specific changes [13]. The output
from those tools may be used with Spinfer.

6 Conclusion

This paper proposes an approach to automatically inferring
Coccinelle semantic patches from a collection of change ex-
amples written in C. Our approach considers similar code
fragments and control flows among the changes to identify
change patterns and construct transformation rules. Generated
semantic patches are easily understandable by developers and
can be used both for understanding past changes and to per-
form large scale transformation, with little to no modifications.
We have implemented our approach as a tool named Spinfer,
and evaluated it on two sets of 40 real changes from the Linux
kernel. Our evaluation shown that Spinfer is capable of han-
dling the majority of the real Linux kernel transformation
situations by generating semantic patches with high recall
and precision in only a few minutes.

We have also identified a taxonomy of challenges that
transformation-rule inference tools for systems code must
solve, based on the complexity of the control and data flow,
and the number of change instances and variants. Such a tax-
onomy provides level ground for comparing the capabilities
of different transformation-rule inference tools, and Spinfer
achieves much safer and more comprehensive results than
previous tools with respect to the properties defined in the
taxonomy. The taxonomy can also be used to guide the future
development of Spinfer and other transformation-rule infer-
ence tools. In particular, the next frontier for transformation
rule inference is to effectively take into account unmodified
terms into control-flow dependencies. Typically, for a large-
scale change, each changed function contains many times
more unmodified lines than changed lines, and the unmod-
ified lines exhibit much greater variety. A challenge is to
identify which of the unmodified lines, if any, are relevant to
controlling when a change should be performed.

Acknowledgements

This research was supported by the Singapore National Re-
search Foundation (award number: NRF2016-NRF-ANR003)
and the ANR ITrans project. We would like to thank the
anonymous reviewers and our shepherd, Baris Kasikci, for
their feedback.

Availability

Spinfer source code is publicly available at
https://gitlab.inria.fr/spinfer/spinfer.

246 2020 USENIX Annual Technical Conference USENIX Association

https://gitlab.inria.fr/spinfer/spinfer

References

[1] Jesper Andersen and Julia L. Lawall. Generic patch
inference. In ASE, pages 337–346, 2008.

[2] Jesper Andersen, Anh Cuong Nguyen, David Lo, Ju-
lia L. Lawall, and Siau-Cheng Khoo. Semantic patch
inference. In ASE, pages 382–385, 2012.

[3] Julien Brunel, Damien Doligez, René Rydhof Hansen,
Julia L. Lawall, and Gilles Muller. A foundation for
flow-based program matching using temporal logic and
model checking. In POPL, pages 114–126, 2009.

[4] Peter Bulychev and Marius Minea. An evaluation of
duplicate code detection using anti-unification. In Proc.
3rd International Workshop on Software Clones. Cite-
seer, 2009.

[5] Kees Cook. treewide: init_timer() -> setup_timer(),
October 2017. https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/commit/
?id=b9eaf1872222.

[6] Deepa Dinamani. vfs: change inode times
to use struct timespec64, May 2018. https:
//git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/commit/?id=95582b008388.

[7] Mattia Fazzini, Qi Xin, and Alessandro Orso. Auto-
mated API-Usage Update for Android Apps. In Pro-
ceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (ISSTA ’19),
page 12, 2019.

[8] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming
Zhang. Inferring program transformations from singular
examples via big code. In ASE, 2019. To appear.

[9] David Kawrykow and Martin P. Robillard. Non-
essential changes in version histories. In ICSE, pages
351–360, 2011.

[10] Michael Kerrisk. Ks2012: Kernel build/boot test-
ing, September 2012. https://lwn.net/Articles/
514278/.

[11] Maxime Lamothe, Weiyi Shang, and Tse-Hsun Chen.
A4: Automatically Assisting Android API Migrations
Using Code Examples. arXiv:1812.04894 [cs], Decem-
ber 2018. arXiv: 1812.04894.

[12] Julia Lawall and Gilles Muller. Coccinelle: 10 years of
automated evolution in the Linux kernel. In USENIX
ATC, pages 601–614, 2018.

[13] Julia Lawall, Derek Palinski, Lukas Gnirke, and Gilles
Muller. Fast and precise retrieval of forward and
back porting information for Linux device drivers. In
USENIX ATC, pages 15–26, 2017.

[14] Jingyue Li and Michael D. Ernst. CBCD: cloned buggy
code detector. In ICSE, pages 310–320, 2012.

[15] Edward S. Lowry and Cleburne W. Medlock. Ob-
ject code optimization. Communications of the ACM,
12(1):13–22, January 1969.

[16] David MacKenzie, Paul Eggert, and Richard Stallman.
Comparing and Merging Files With GNU Diff and Patch.
Network Theory Ltd, January 2003.

[17] Na Meng, Miryung Kim, and Kathryn S. McKinley.
Systematic editing: generating program transformations
from an example. In PLDI, pages 329–342, 2011.

[18] Na Meng, Miryung Kim, and Kathryn S. McKinley.
LASE: locating and applying systematic edits by learn-
ing from examples. In ICSE, pages 502–511, 2013.

[19] Tim Molderez, Reinout Stevens, and Coen De Roover.
Mining change histories for unknown systematic edits.
In Mining Software Repositories (MSR), pages 248–256,
2017.

[20] Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Un-
derstanding collateral evolution in Linux device drivers.
In EuroSys, pages 59–71, 2006.

[21] Gordon D Plotkin. A note on inductive generalization.

[22] John C. Reynolds. Transformational systems and the
algebraic structure of atomic formulas. Machine Intelli-
gence, 5(1):135––151, 1970.

[23] Reudismam Rolim, Gustavo Soares, Loris D’Antoni,
Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo
Suzuki, and Björn Hartmann. Learning syntactic pro-
gram transformations from examples. In ICSE, pages
404–415, 2017.

[24] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, and
Loris D’Antoni. Learning quick fixes from code reposi-
tories. arXiv, 2018.

[25] Peter J. Rousseeuw. Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. Journal
of Computational and Applied Mathematics, 20:53–65,
November 1987.

[26] Claude Sammut and Geoffrey I. Webb, editors. TF–IDF
(Encyclopedia of Machine Learning), pages 986–987.
Springer US, Boston, MA, 2010.

[27] Wolfram Sang. tree-wide: simplify getting .drvdata,
April 2018. https://lkml.org/lkml/2018/4/19/
547.

[28] Submitting patches: the essential guide to getting your
code into the kernel. https://www.kernel.org/doc/
html/v5.4/process/submitting-patches.html.

USENIX Association 2020 USENIX Annual Technical Conference 247

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b9eaf1872222
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b9eaf1872222
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b9eaf1872222
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95582b008388
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95582b008388
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95582b008388
https://lwn.net/Articles/514278/
https://lwn.net/Articles/514278/
https://lkml.org/lkml/2018/4/19/547
https://lkml.org/lkml/2018/4/19/547
https://www.kernel.org/doc/html/v5.4/process/submitting-patches.html
https://www.kernel.org/doc/html/v5.4/process/submitting-patches.html

[29] Ferdian Thung, Stefanus A Haryono, Lucas Serrano,
Gilles Muller, Julia Lawall, David Lo, and Lingxiao
Jiang. Automated deprecated-api usage update for an-
droid apps: How far are we? In 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 602–611. IEEE, 2020.

[30] Shengzhe Xu, Ziqi Dong, and Na Meng. Meditor: Infer-
ence and application of API migration edits. In Proceed-

ings of the 27th International Conference on Program
Comprehension, ICPC ’19, pages 335–346, Piscataway,
NJ, USA, 2019. IEEE Press.

[31] Ying Zhao and George Karypis. Evaluation of hierar-
chical clustering algorithms for document datasets. In
Proceedings of the eleventh international conference on
Information and knowledge management, pages 515–
524. ACM, 2002.

248 2020 USENIX Annual Technical Conference USENIX Association

FuZZan: Efficient Sanitizer Metadata Design for Fuzzing

Yuseok Jeon
Purdue University

Wookhyun Han
KAIST

Nathan Burow
Purdue University

Mathias Payer
EPFL

Abstract
Fuzzing is one of the most popular and effective techniques

for finding software bugs. To detect triggered bugs, fuzzers
leverage a variety of sanitizers in practice. Unfortunately,
sanitizers target long running experiments—e.g., developer
test suites—not fuzzing, where execution time is highly
variable ranging from extremely short to long. Design
decisions made for developer test suites introduce high
overhead on short lived fuzzing executions, decreasing the
fuzzer’s throughput and thereby reducing effectiveness.

The root cause of this sanitization overhead is the heavy-
weight metadata structure that is optimized for frequent
metadata operations over long executions. To address this, we
design new metadata structures for sanitizers, and propose
FuZZan to automatically select the optimal metadata structure
without any user configuration. Our new metadata structures
have the same bug detection capabilities as the ones they
replace. We implement and apply these ideas to Address
Sanitizer (ASan), which is the most popular sanitizer.

Our evaluation shows that on the Google fuzzer test suite,
FuZZan improves fuzzing throughput over ASan by 48%
starting with Google’s provided seeds (52% when starting with
empty seeds on the same applications). Due to this improved
throughput, FuZZan discovers 13% more unique paths given
the same 24 hours and finds bugs 42% faster. Furthermore,
FuZZan catches all bugs ASan does; i.e., we have not traded
precision for performance. Our findings show that sanitizer
performance overhead is avoidable when metadata structures
are designed for fuzzing, and that the performance difference
will have a meaningful difference in squashing software bugs.

1 Introduction

Fuzzing [33] is a powerful and widely used software security
testing technique that uses randomly generated inputs to find
bugs. Fuzzing has seen near ubiquitous adoption in industry,
and has discovered countless bugs. For example, the state-
of-the-art fuzzer American Fuzzy Lop (AFL) has discovered

hundreds of bugs in widely-used software [57], while Google
has found 16,000 bugs in Chrome and 11,000 bugs in over
160 other open source projects using fuzzing [10]. On its own,
fuzzing only discovers a subset of all triggered bugs, e.g., failed
assertions or memory errors causing segmentation faults. Bugs
that silently corrupt the program’s memory state, without caus-
ing a crash, are missed. To detect such bugs, fuzzers must be
paired with sanitizers that enforce security policies at runtime
by turning a silent corruption into a crash. To date, around 34
sanitizers [47] have been prototyped. So far, only the LLVM-
based sanitizers ASan, MSan, LeakSan, UBSan, and TSan
have seen wide-spread use. For brevity, we use sanitizers to
refer to such frequently used sanitizers in the rest of the paper.

Unfortunately, sanitizers are designed for developer-driven
software testing rather than fuzzing, and are consequently
optimized for minimal per-check cost, not startup/teardown of
the metadata structure. Consequently, they are based around
a shadow-memory data structure wherein the address space is
partitioned, and metadata is encoded into the “shadow” mem-
ory at a constant offset from program memory. Optimizing for
long executions makes sense in the context of developer-driven
software testing, which generally verifies correct behavior on
expected input, leading to relatively long test execution times.
Fuzzing has a more diverse set of inputs that cause both short
(i.e., invalid inputs) and long running executions with billions
of executions. For example, the Chrome developers use
Address Sanitizer (ASan) for their unit tests and long-running
integration tests [39]. However, the underlying design
decisions that make ASan a highly performant sanitizer for
long running tests result in high performance overhead—up
to 6.59×—for short executions, as observed in a fuzzing
environment1. This high overhead reduces throughput,
thereby preventing a fuzzer from finding bugs effectively.

We analyze the source of this overhead across a variety
of sanitizers, and attribute the cost to heavy-weight metadata
structures employed by these sanitizers. For example, Address
Sanitizer maps an additional 20TB of memory for each exe-

1The average time for a single execution across the first 500,000 tests for
the full Google fuzzer test suite is 0.61ms.

USENIX Association 2020 USENIX Annual Technical Conference 249

cution, Memory Sanitizer (MSan) 72TB, and Thread Sanitizer
(TSan) 97TB on a 64-bit platform. The high setup/teardown
cost of heavy-weight metadata structures is amortized over
the long execution of programs due to the low per-check cost.
In contrast, a fuzzing campaign typically consists of massive
amounts of short-lived executions, effectively transforming
what is a large one-time cost into a large runtime cost. For ex-
ample, Table 1 indicates that memory management is the main
source of overhead for ASan under fuzzing on the Google fuzz
test suite, accounting for 40.16% of the total execution time we
observe. Memory management is the key bottleneck for using
sanitizers with fuzzers, and has to date gone unaddressed.

Instead, increasing the efficiency and efficacy of fuzzing has
received significant research attention on two fronts: (i) mech-
anisms that reduce the overhead of fuzzers [27,55,57]; and (ii)
mechanisms that reduce the overhead of sanitization on longer
running tests and conflicts between sanitizers [25, 37, 38, 52,
54]. These works address fuzzers and sanitizers in isolation,
ignoring the core sanitizer design decision to optimize for long
running test cases using a heavy-weight metadata structure that
limits sanitizer performance in combination with fuzzers. Con-
sequently, optimization of sanitizer memory management for
short execution times remains an open challenge, motivated by
the need to design sanitizers that are optimal under fuzz testing.

We present FuZZan, which uses a two-pronged approach
to optimize sanitizers for short execution times, as seen under
fuzzing: (i) two new light-weight metadata structures that trade
significantly reduced startup/teardown costs 2 for moderately
higher (or equivalent) per access costs and (ii) a dynamic meta-
data structure switching technique, which dynamically selects
the optimal metadata structure during a fuzzing campaign
based on the current execution profile of the program; i.e., how
often the metadata is accessed. Each of our proposed metadata
structures is optimized for different execution patterns; i.e.,
they have different costs for creating an entry when an object
is allocated versus looking up information in the metadata
table. By observing the metadata access and memory usage
patterns at runtime, FuZZan dynamically switches to the best
metadata structure without user interaction, and tunes this
configuration throughout the fuzzing campaign.

We apply our ideas to ASan, which is the most widely
used sanitizer [43, 44, 47]. ASan focuses on memory safety
violations—arguably the most dangerous class of bugs,
accounting for 70% of vulnerabilities at Microsoft [34]—and
has already detected over 10,000 memory safety viola-
tions [9,12,50] in various applications (e.g., over 3,000 bugs in
Chrome in 3 years [50]) and the Linux kernel (e.g., over 1,000
bugs [12, 51]) by using a customized kernel address sanitizer
(KASan). We further apply FuZZan to MSan and MOpt-AFL.

FuZZan improves fuzzing throughput over ASan by 52%
when starting with empty seeds and 48% when starting with

2Compared to ASan, our min-shadow memory mode reduces the time that
startup/teardown functions spend in the kernel by 62% on the first 500,000
tests across the full Google fuzzer test suite.

Modes
ASan’s

init time
ms (%)

ASan’s
logging time

ms (%)

Memory
mgmt. time

ms (%)
page faults

Native 0.00 (0.00%) 0.00 (0.00%) 0.05 (11.49%) 2,569
ASan 0.17 (10.58%) 0.30 (18.86%) 0.63 (40.16%) 11,967

Table 1: Comparison between native and ASan executions
with a breakdown of time spent in memory management,
and time spent for ASan’s initialization and logging. Results
are aggregated over 500,000 executions of the full Google
fuzzer test suite [11]. Times are shown in milliseconds, and
% denotes the ratio to total execution time.

Google’s seed corpus, averaged across all applications in the
Google fuzzer test suite [11] as part of our input record/replay
fuzzing experiment. Due to this improved throughput, FuZZan
discovers 13% more unique paths (with an improvement in
throughput of 61% compared to ASan) given the standard 24
hour fuzz testing with widely used real-world software and a
provided corpus of starting seeds.

Crucially, FuZZan achieves this without any reduction in
bug-finding ability. Therefore, FuZZan strictly increases the
performance of ASan-enabled fuzzing, resulting in finding the
same bugs in less time than using ASan with the same fuzzer.

Our contributions are:

1. Identifying and analyzing the primary source of overhead
when sanitizers are used with fuzzing, and pinpointing
the sanitizer design decisions that cause the overhead;

2. Designing and implementing a sanitizer optimization
(FuZZan) and applying it to ASan; that is, we design
several new metadata structures along with a dynamic
metadata structure switching to choose the optimal
structure at runtime. We also validate the generality of our
design by further applying it to MSan and MOpt-AFL;

3. Evaluating FuZZan on the Google fuzzer test suite and
other widely used real-world software and showing that
FuZZan effectively improves fuzzing throughput (and
therefore discovers more unique bugs or paths given the
same amount of time).

2 Background and Analysis

We present an overview of fuzzing overhead and ASan
(our target sanitizer). Further, we detail the design conflicts
between ASan and fuzzing when used in combination.

2.1 Fuzzing overhead
Given the same input generation capabilities, a fuzzer’s
throughput (executions per second) is critical to its effective-
ness in finding bugs. Greater throughput results in more code

250 2020 USENIX Annual Technical Conference USENIX Association

and data paths being explored, and thus potentially triggers
more bugs. Running a fuzzer imposes some overhead on the
program, a major component of which is the repeated execution
of the target program’s initialization routines. These routines—
including program loading, execve, and initialization—do
not change across test cases, and hence result in repeated and
unnecessary startup costs. To reduce this overhead, many
fuzzers leverage a fork server. A fork server loads and executes
the target program to a fully-initialized state, and then clones
this process to execute each test case. This ensures that the
execution of each test case begins from an initialized state,
and removes the overhead associated with the initial startup.

Another technique for reducing process initialization costs
is in-process fuzzing, such as AFL’s persistent mode and
libFuzzer. In-process fuzzing wraps each test in one iteration
of a loop in one process, thus avoiding starting a new process
for each test. However, in-process fuzzing generally requires
manual analysis and code changes [13, 58]. Additionally,
in-process fuzzing requires the target code to be stateless
across executions as all tests share one process environment,
otherwise the execution of one test may affect subsequent
ones, potentially leading to false positives. Consequently,
testers should avoid in-process fuzzing for library code using
global variables. Bugs found from in-process fuzzing may
not be reproducible as it is not always possible to construct
a valid calling context to trigger detected bugs in the target
function, and side-effects across multiple function calls may
not be captured [32]. Because of these limitations, in-process
fuzzing is used on stateless functions in libraries, while the
fork server model (i.e., out-of-process fuzzing) remains the
most general fuzzing mode for fuzzing programs.

2.2 Address Sanitizer
All sanitizers leverage a customized metadata structure [47].
Out of many different metadata schemes, shadow memory
(both direct-mapped or multi-level shadow) is the most widely
used [4, 14–16, 29, 30, 42, 45, 48, 49, 56]. ASan enforces mem-
ory safety by encoding the accessibility of each byte in shadow
memory. Allocated (and therefore accessible) areas are marked
and padded with inaccessible red zones. In particular, direct-
mapped shadow memory encodes the validity of the entire
virtual memory space, with every 8-bytes of memory mapping
to 1-byte in shadow memory. Shadow memory encodes the
state of application memory. The 8-bit value k encodes that
the 8-k bytes of the mapped memory are accessible. The corre-
sponding shadow memory address for a byte of memory is at:

addrshadow=(addr>>3)+offset

where addr is the accessed address. Generally, ASan only
inserts redzones to the high address side of each object as the
preceding object’s redzone suffices for the low address side.
ASan also instruments each runtime memory access to check
if the accessed memory is in a red zone, and if so faults. ASan’s

effectiveness in detecting hard-to-catch memory bugs has led
to its widespread adoption. It has become best practice [47] to
use ASan (or KASan [20], the kernel equivalent) with a fuzzer
to improve the bug detection capability.

2.3 Overhead Analysis of Fuzzing with ASan

To understand ASan’s overhead with fuzzing, we analyze
the Linux kernel functions used during fuzzing campaigns.
Table 1 shows the overhead added by ASan, broken out
across ASan’s logging, ASan’s initialization, and memory
management. Our experiments measure the ratio of the time
spent in the kernel functions compared to the total execution
time for a number of target programs.

Note that memory management makes up 40.16% of
ASan’s total execution time, as opposed to 11.49% for the
base case, and that memory management is more than double
the overhead of ASan’s logging and initialization combined.
ASan’s heavy use of the virtual address space results in
4.66× page faults compared to native execution. Our memory
management overhead numbers reflect the time spent by the
kernel in the four core page table management functions:
(i) unmap_vmas (24.6%), (ii) free_pgtable (4.7%), (iii)
do_wp_page (8.2%), and (iv) sys_mmap (2.6%).

Notably, unmap_vmas and free_pgtable correspond to
73% of ASan’s measured memory management overhead
across the four core page table management functions. The
execution time for these two functions (unmap_vmas and
free_pgtable) is 10x higher than when executing without
ASan. To break this overhead down, when executing a test
under the fork server mode, a fuzzer needs to create a new
process for each test. During initialization, ASan reserves
memory space (20TB total, including 16TB of shadow
memory, and a separate 4TB for the heap on 64-bit platforms)
and then poisons the shadow memory for globals and the
heap. Accessing these pages incurs additional page faults, and
thus page table management overhead in the kernel. Note that
the large heap area causes sparse page table entries (PTEs),
which increase the number of pages used for the page table
and memory management overhead.

Existing techniques to deal efficiently with large allocations
do not help here. Lazy page allocation of the large virtual mem-
ory area used by ASan does not mitigate memory management
overhead in this case, as many of the pages are accessed when
shadow memory is poisoned. Poisoning forces a copy even for
copy-on-write pages, and thus increases page table manage-
ment cost. During execution, memory allocations and accesses
cause additional shadow memory pages to be used, again with
page faults and page table management. When the process ex-
its, the kernel clears all page table entries through unmap_vmas
and releases memory for the page table (via free_pgtables).
The cost of these two functions are correlated with the number
of physical pages used by the process. As fuzzing leads to
repeated, short executions, such bookkeeping introduces

USENIX Association 2020 USENIX Annual Technical Conference 251

considerable memory management overhead. In contrast to
these active memory management functions, sys_mmap only
accounts for 7% memory management overhead of ASan.
This is the expense for reserving all virtual memory areas.
However, large areas that are actively accessed by ASan incur
considerable additional expenses as detailed above.

For completeness, we note that our analysis finds that ASan
performs excessive “always-on” logging (18.86%) by default,
and that ASan’s initial poisoning of global variables (10.58%)
is inefficient. Combined, these additional sources of overhead
account for 29.44% overhead. We address these engineering
shortcomings in our evaluation, but they are neither our core
contributions nor the choke point in fuzzing with ASan.

3 FuZZan design

FuZZan has two design goals: (1) define new light-weight
metadata structures, and (2) automatically switch between
metadata structures depending on the runtime execution pro-
file. In this section, we present how we design each component
of FuZZan to achieve both goals, as illustrated in Figure 1.

3.1 FuZZan Metadata Structures

To minimize startup/teardown costs while maintaining
reasonable access costs, FuZZan introduces two new metadata
structures: (i) a Red Black tree (RB-tree) metadata structure,
which has low startup and teardown costs, but has high
per-access costs; and (ii) min-shadow memory, which has
medium startup/teardown costs and low per-access costs (on
par with ASan). Table 2 shows a qualitative comparison of
the different metadata schemes that we propose in this section,
see Table 4 for quantitative results. The RB-tree is optimal for
short executions with few metadata accesses as it emphasizes
low startup and teardown costs, while min-shadow memory
is best suited for executions with a mid-to-high number
of metadata accesses as it has lower per metadata access

FuZZan Min-
Shadow memory

Fuzzer

Fuzzing
Module

Metadata
structure
selector

(3) Switch to
 selected
 metadata
 structure
 (§ 3.2)

(1) Measure target program
 Behavior (§ 3.2.1)

(2) Calculate
 the best
 metadata
 structure
 (§ 3.2.2)

Dynamic feedback

FuZZan
RB-tree

ASan
shadow memorySwitch

FuZZan
sampling

Target

Figure 1: Overview of FuZZan’s architecture and workflow.

Metadata Structures Startup/
Teardown Cost Access Cost

ASan shadow memory High Low

FuZZan
Customized RB-tree Low High
Min-shadow memory Medium Low

Table 2: Comparison of metadata structures.

costs while still avoiding the full startup/teardown overhead
imposed by ASan’s shadow memory.

3.1.1 Customized RB-Tree

To optimize ASan’s metadata structure for test cases where a
fuzz testing application only executes for a very short time with
few metadata accesses, we introduce a customized RB-tree,
shown in Figure 2. Nodes in the RB-tree store the redzone for
each object. Although each metadata access operation (insert,
delete, and search) in the RB-tree is slower than its counterpart
in the shadow memory metadata structure, our RB-tree has the
following benefits: (i) low total memory overhead (leading to
low startup/teardown overhead); (ii) removal of poisoning/un-
poisoning page faults (as each RB-tree node compactly stores
the redzone addresses and these nodes are grouped together in
memory); and (iii) a faster range search than shadow memory
for operations such as memcpy. For example, in order to check
memcpy, ASan must validate each byte individually using
shadow memory. However, in our approach, we can verify
such operations through only two range queries for memcpy’s
source and destination memory address range.

In our RB-tree design, when an object is allocated (e.g.,
through malloc), the range of the object’s high address
redzone is stored in a node of the RB-tree. During a query, if
the address range of the target is lower than the start address
of the node, we search the left subtree (and vice versa). If the
address is not found in the tree, it is a safe memory access.
During redzone removal, the requested address range may
only be a subset of an existing node’s range (and not the full
range of a target node in the RB-tree). In this case, the RB-tree

Address area

 1
0x10007.. ~
0x10008..

 2
0x10008.. ~
0x10009..

 . ……..

 . ……..

...
0x02008.. ~
0x02009..

N
0xffffe.. ~
0xfffff..

Hash function
(address)

HashMap (optional)

Address Status

1 0x100.. Normal

2 0x200.. Normal

3 0x300.. Normal

Cache (optional)

Search Search
Fail

Insert/
Delete

One time
Insert/
Delete

One time
Range
Search

Figure 2: Design of FuZZan’s customized RB-tree.

252 2020 USENIX Annual Technical Conference USENIX Association

deletes the existing RB-tree node, creates new RB-tree nodes
which have non-overlapping address ranges (e.g., the left
and right side of an overlapped area), and inserts these nodes
into the RB-tree. Since we reuse ASan’s memory allocator
and memory layout (e.g., redzones between objects and a
quarantine zone for freed objects), FuZZan provides the same
detection capability as ASan.

3.1.2 Min-shadow memory

The idea behind Min-shadow memory (for executions with
a mid-to-high number of metadata accesses) is to limit the
accessible virtual address space, effectively shrinking the
size of the required shadow memory. As the size of shadow
memory is a key driver of overhead in the fuzzing environment,
this enhances performance.

Figure 3 illustrates how min-shadow memory converts a
64-bit program running in a 48-bit address space to run in a
32-bit address space window (1GB for the stack, 1GB for the
heap, and 2GB for the BSS, data, and text sections combined).
Note that pointers remain 64 bits wide and the code remains
unchanged: the mapped address space is simply restricted, al-
lowing min-shadow memory to have a partial shadow memory
map. To shrink a program’s memory space, we move the heap
(by modifying ASan’s heap allocator) and remap the stack to a
new address space. Min-shadow memory remaps parts of the
address space but programs remain 64-bit programs. To accom-
modate larger heap sizes, we create additional min-shadow

Stack

Heap (4TB)

Shadow

Bad

Shadow

BSS & Data
& Text

Stack

Heap (4TB)

Shadow

Bad

Shadow

BSS & Data
& Text

Bad

Shadow

Stack (1GB)

Heap (1GB)

BSS & Data
& Text (2GB)

20TB
(Heap +
Shadow)

4GB

16TB
(Shadow
memory)

512MB
(Shadow
memory)

Address sanitizer memory mapping

FuZZan min-shadow memory mapping

Bad

Shadow

Stack (1GB)

Heap (1GB)

BSS & Data
& Text (2GB)

Figure 3: ASan and min-shadow memory modes’ memory
mapping on 64-bit platforms. ASan (top) reserves 20TB
memory space for heap and shadow memory, conversely, min-
shadow memory mode (bottom) reserves 4512MB memory
space for heap and shadow memory. Each application’s stack,
heap, and other sections (BSS, data, and text) map to the
corresponding shadow regions. Further, the shadow memory
region is mapped inaccessible.

memory binaries with heap sizes of 4GB, 8GB, and 16GB.
Our approach allows testing 64-bit code with 64-bit

pointers without having to map shadow tables for the entire
address space. We disagree with the recommendation of the
ASan developers to compile programs as 32-bit executables,
as changing the target architecture, pointer length, and
data type sizes will hide bugs. Furthermore, min-shadow
memory provides greater flexibility compared to using the
x32 ABI [53] mode (i.e., running the processor in 64-bit mode
but using 32-bit pointers and arithmetic, limiting the program
to a virtual address space of 4GB), as min-shadow memory
can provide various heap size options.

3.2 Dynamic metadata structure switching

Dynamic metadata structure switching automatically selects
the optimal metadata scheme based on observed behavior.
At the beginning of a fuzzing campaign, dynamic metadata
structure switching assesses the initial behavior and then pe-
riodically samples behavior, adjusting the metadata structure
if necessary. Our intuition for dynamic metadata structure
switching is that, during fuzzing, metadata access patterns
and memory usage remain similar across runs and change
in phases. While the fuzzer is mutating a specific input, the
executions of the newly created inputs are similar regarding
their control flow and memory access patterns compared to
the source input. However, new coverage may lead to different
execution behaviors. We therefore design a dynamic metadata
structure switching technique that periodically and condition-
ally samples the execution and adjusts the underlying metadata
structure according to the observed execution behavior.

Dynamic metadata structure switching compiles the
program in four different ways in preparation for fuzzing:
ASan, RB-tree, min-shadow memory, and sampling mode. The
sampling mode repeatedly samples the runtime parameters
and then selects the optimal metadata structure. The selection
of the optimal metadata structure is governed by FuZZan’s
metadata structure switching policy.

3.2.1 Sampling mode

The sampling mode measures the behavior of the target
program using the min-shadow memory-1GB metadata mode
and, based on the behavior, reports the currently optimal
metadata structure. The sampling mode profiles the following
parameters: (i) the number of metadata accesses during insert,
delete, and search; and (ii) memory consumption. Note that
this information can be collected by simple counters: profiling
is therefore light-weight.

Dynamic metadata structure switching starts in sampling
mode and selects the optimal mode based on the observed
behavior. Dynamic metadata structure switching then
periodically (e.g., every 1,000 executions) and conditionally
(e.g., when the fuzzer starts mutating a new test case) samples

USENIX Association 2020 USENIX Annual Technical Conference 253

executions to select the optimal metadata structure based
on the current behavior. To reduce the cost of periodic
sampling, dynamic metadata structure switching implements
a continuous back-off strategy that gradually increases the
sampling interval as long as the metadata structure does not
change (similar to TCP’s slow-start [17]). Note that bugs may
be triggered during sampling mode. As such, we maintain
ASan’s error detection capabilities while sampling to ensure
that we do not miss any bugs.

3.2.2 Metadata structure switching policies

Our metadata structure switching policy is based on a mapping
of metadata access frequency to the corresponding metadata
structure. This heuristic is relatively simple in order to achieve
a low sampling overhead. To determine the best cutoff points,
we compile all 26 applications in Google’s fuzzer test suite
in two different ways: RB-tree and min-shadow memory.
We then test these different configurations against 50,000
recorded inputs and determine the best metadata structure
depending on the observed parameters, measuring execution
time. Profiling reveals that the frequency of metadata access
(insert, delete, and search) is the primary factor that influences
metadata structure overhead, which confirms our original
assumption. In this policy, depending on the metadata access
frequency, we select different metadata structures (based
on statistics from profiling): RB-tree if there are fewer than
1,000 accesses; and min-shadow memory if there are more
than 1,000 accesses. Additionally, if the selected heap size
goes beyond a threshold, we sequentially switch to other
modes (min-shadow memory-4G, 8G, 16G, and ASan), thus
increasing heap memory for continuous fuzzing.

4 Implementation

We implement FuZZan’s two metadata structures and
dynamic metadata structure switching mode on top of ASan
in LLVM [28] (version 7.0.0). We support and interact with
AFL [57] (version 2.52b). To address the other sources of
overhead in ASan (shown in Table 1), we also implement
two additional optimizations: (i) removal of unnecessary
initialization; and (ii) removal of unnecessary logging. Our
implementation consists of 3.5k LOC in total (mostly in
LLVM, with minor extensions to AFL).
RB-tree. The RB-tree requires modifications to ASan’s
memory access instrumentation, as our RB-tree is not based
on a shadow memory metadata structure. Thus, we modify
all memory access checks, including interceptors, to use
the appropriate RB-tree operations instead of the equivalent
shadow memory operations. As an optimization, and for
compatibility with min-shadow memory mode, the RB-tree
mode also reserves 1GB for the heap memory allocator. A
compact heap reduces memory management overhead. The
RB-tree mode is used when fuzz tests only execute for a very

short time with few metadata accesses (i.e., they allocate
relatively a small amount of memory).

Min-shadow memory. Unlike the RB-tree, we are able to
repurpose ASan’s existing memory access checks, as the
min-shadow memory metadata structure is based on a shadow
memory scheme. To shrink a 64-bit program’s address space,
we modify ASan’s internal heap setup and remap the stack
using Kroes et al.’s linker/loader tricks [22]. More specif-
ically, based on this script, we hook __libc_start_main
using “LD_PRELOAD” and then remap the stack to a new
address, update rbp and rsp, and then call the original
__libc_start_main. This allows us to reduce ASan’s
shadow map requirements from 16TB of mapped (but not
necessarily allocated) virtual memory to 512MB (1 bit of
shadow for each byte in our 4GB address space window).
We also create an additional 192MB shadow memory for
ASan’s secondary allocator and dynamic libraries (which
are remapped above the stack). Finally, we implement four
different min-shadow memory modes with increasing heap
sizes (1GB, 4GB, 8GB, and 16GB) to handle the different
memory requirements of a variety of programs.

Heap size triggers. As previously stated, min-shadow
memory is configured for different heap sizes. We therefore
use out of memory (OOM) errors to trigger callbacks that
notify FuZZan to increase the heap size.

AFL modifications. The target program is compiled once
per FuZZan mode. By default, AFL uses a random number
generator (RNG) to assign an ID to each basic block within
the target program. Unfortunately, this would result in the
same input producing different coverage maps across the set
of compiled targets, breaking AFL’s code coverage analysis.
We therefore modify AFL to use the same RNG seed across
the set of compiled targets. This ensures that the same input
produces the same coverage map across all compiled variants.

Removing unnecessary initialization. ASan makes a num-
ber of global constructor calls on program startup, performing
several do_wp_page calls for copy-on-write. These construc-
tor calls are unnecessarily repeated each time AFL executes a
new test input, leading to redundant operations. Unfortunately,
the AFL fork server is unaware of ASan’s initialization
routines. Therefore, to remove unnecessary (re-)initialization
across fuzzing runs, we modify ASan’s LLVM pass so that
global variable initialization occurs before AFL’s fork server
starts. This is achieved by adjusting the priority of global
constructors which contain ASan’s initialization function.

Removing unnecessary logging. ASan provides logging
functionality for error reporting (e.g., saving allocation sizes
and thread IDs during object allocation). Unfortunately, this
logging functionality introduces additional page faults and
performance overhead. However, this logging is unnecessary
because fuzzing inherently enables replay by storing test
inputs that trigger new behavior. Complete logging infor-
mation can be recovered by replaying a given input with a

254 2020 USENIX Annual Technical Conference USENIX Association

fully-instrumented program. We therefore identify and disable
ASan’s logging functionality (e.g., StackDepot) for fuzzing
runs, allowing it to be reenabled for reportable runs.

5 Evaluation

We provide a security and performance evaluation of FuZZan.
First, we verify that FuZZan and ASan have the same
error-detection capabilities. Second, we evaluate the efficiency
of FuZZan’s new metadata structures and dynamic metadata
structure switching mode using deterministic input from
a record/replay infrastructure to ensure fair comparisons.
Next, to consider the random nature of fuzzing and to show
FuZZan’s real-world impact, we evaluate FuZZan’s efficiency
without deterministic input. Here we evaluate the number
of code paths found by FuZZan in a 24 hour time period,
demonstrating the impact of FuZZan’s increased performance.
We also measure FuZZan’s bug finding speed by using known
bugs in Google’s fuzzer test suite to verify that FuZZan
maximizes fuzzing execution speed while providing the
exact same bug detection capabilities as ASan. Finally, we
port FuZZan to another sanitizer (MSan) [48] and another
AFL-based fuzzer (MOpt-AFL) [31] to verify its flexibility.
Evaluation setup. All of our experiments are performed on
a desktop running Ubuntu 18.04.3 LTS with a 32-core AMD
Ryzen Threadripper 2990WX, 64GB of RAM, 1TB SSD, and
Simultaneous MultiThreading (SMT) disabled (to guarantee
a single fuzzing instance is assigned to each physical core).
Across all experiments, we apply FuZZan to AFL’s fork
server mode, which is a widely-used and highly optimized
out-of-process fuzzing mode. We evaluate FuZZan on all
applications in the Google fuzzer test suite [11] and other
widely used real-world software.
Evaluation strategy. Evaluating fuzzing effectiveness is
challenging. In a recent study of how to evaluate fuzzing by
Klees et. al. [21], the authors find that the inherent randomness
of the fuzzer’s input generation can lead to seemingly large but
spurious differences in fuzzing effectiveness. However, we are
at an advantage as we do not need to compare different fuzzers
nor do we change the input generation. We therefore record the
fuzzer-generated inputs during a regular run of AFL, and then
replay these recorded inputs to compare our different ASan
optimizations to the same baseline, effectively controlling for
randomness in input generation by using the same input for all
experiments. For our experiments we record the first 500,000
executions for replay, yielding a large enough test corpus
for reasonable performance comparisons. We also undertake
a real-world fuzzing campaign (i.e., without inhibiting
fuzzing randomness by record/replay) to measure FuZZan’s
real-world impact on code path exploration. Finally, Klees
et. al. demonstrate the importance of the initial seed(s) when
evaluating fuzz testing, as performance can vary substantially
depending on what seed is used. We therefore compare two

CWD (ID) Good tests
(Pass/Total)

Bad tests
(Pass/Total)

Stack-based Buffer Overflow (121) 2,432 / 2,432 2,314 / 2,432
Heap-based Buffer Overflow (122) 1,594 / 1,594 1,328 / 1,594
Buffer Under-write (124) 682 / 682 641 / 682
Buffer Over-read (126) 524 / 524 359 / 524
Buffer Under-read (127) 682 / 682 641 / 682
Total 5,914 / 5,914 5,283 / 5,914

Table 3: Three different metadata structure modes’ detection
capability based on the Juliet Test Suite for memory corruption
CWEs. FuZZan and ASan have identical results. Good tests
have no memory corruption to check for false positives. Bad
tests are intentionally buggy to check for false negatives.

scenarios: (i) starting with the empty seed; and (ii) starting
with a set of valid seeds (we use Google’s provided seeds for
the input record/replay experiment and randomly selected
seeds of the right file type for our real-world fuzz testing).

5.1 Detection capability

We verify that FuZZan and ASan detect the same set of
bugs in three different ways. First, we use the NIST Juliet
test suite [35], which is a collection of test cases containing
common vulnerabilities based on Common Weakness
Enumeration (CWE). We use the full Juliet test suite for
memory corruption CWEs to verify FuZZan’s capability to
detect the same classes of bugs as ASan, without introducing
false positives or negatives. Second, to verify that FuZZan
and ASan also have the same detection capability under fuzz
testing, we use the Google fuzzer test suite and our recorded
input corpus. Finally, we leverage the complete set of ASan’s
public unit tests as a further sanity check.

For the Juliet test suite (Table 3), we select CWEs related to
memory corruption bugs and obtain the same detection results
from the three different modes (ASan’s shadow memory,
RB-tree, and min-shadow memory). To validate FuZZan
against ASan on the Google fuzzer test suite, we compare
AFL crash reports across the full set of target programs in
the Google fuzzer test suite with our recorded inputs (to
identify both false positives and false negatives). Note that
we force ASan to crash (the default setting under fuzz testing)
when a memory error happens as fuzzers depend on program
crashes to detect bugs. As expected, FuZZan’s different
modes all obtain the same crash results as ASan. However, we
encounter minor differences between FuZZan and ASan when
sanity-checking on the ASan unit tests. These differences are
due to internal changes we made when developing FuZZan,
such as min-shadow memory’s changed memory layout (failed
test cases include features such as fixed memory addresses).

USENIX Association 2020 USENIX Annual Technical Conference 255

Modes Empty seed Provided seed

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

Native 199 - - 274 - -
ASan 809 306 - 1,105 303 -
RB-tree 1,541 673 90 3,308 1,106 199
Min-1G 443 122 -45 632 131 -43
Min-4G 465 133 -43 666 143 -40
Min-8G 467 134 -42 685 150 -38
Min-16G 477 139 -41 710 159 -36

Table 4: Comparison between four min-shadow memory
modes, RB-tree, Native, and ASan execution overhead
during input record and replay fuzz testing with empty and
provided seed sets. The time (s) indicates the average of
all 26 applications’ execution time during testing. Positive
percentage (e.g., 20%) denotes overhead while negative
percentage indicates a speedup.

5.2 Efficiency of new metadata structures
We perform input record/replay fuzz testing to evaluate the
effectiveness of FuZZan’s new metadata structures. Doing
so isolates the effects of our metadata structures by removing
most of the randomness/variation from a typical fuzzing run.

Over the full Google fuzzer test suite, the RB-tree, without
any other optimization, shows shorter execution times than
ASan if the target application has less than 1,000 metadata
accesses; conversely, the RB-tree is slower than ASan when
the target application has more than 1,000 metadata accesses.
On average, as shown in Table 4, several applications in the
Google fuzzer test suite have more than 1,000 metadata ac-
cesses, and so RB-tree is overall slower than ASan on average.

Despite being slower on average, the RB-tree can be faster
on individual applications and inputs. For instance, FuZZan in
RB-tree mode demonstrates a 19% performance improvement
(up to 45% faster) for 15 applications (the remaining 11
applications show higher overhead compared to ASan) when
benchmarked using the inputs generated from an empty seed.
On the subset of applications for which seeds are provided, RB-
tree shows less performance improvement (17% and up to 39%
faster) for 14 applications (the remaining 12 applications show
higher overhead than ASan) when benchmarked using inputs
generated from those seeds as provided seeds help to create
valid input, lengthening execution times and thus metadata ac-
cesses. Note that RB-tree shows the best fuzzing performance
when the target application (e.g., c-ares) has less 1,000 meta-
data access. Additionally, even for applications where RB-tree
is slower across all inputs, it is still faster on inputs with few
metadata accesses. The variable performance of RB-tree,
which is highly dependent on the number of metadata accesses,
highlights the need for dynamic metadata structure switching
to automatically select the optimal metadata structure.

Min-shadow memory mode, without additional optimiza-
tion, outperforms ASan on all 26 programs (for both empty

Modes Empty seed Provided seed

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

Logging-Opt. 613 208 -24 891 225 -19
Init-Opt. 686 244 -15 987 260 -11
Logging+Init 552 177 -32 826 201 -25
Min-Shadow 443 122 -45 632 131 -43
Min-Shadow-Opt. 385 93 -52 574 109 -48
Dynamic 387 94 -52 578 111 -48

Table 5: Comparison between FuZZan’s three different
optimization modes, native min-shadow memory (1G) mode,
and min-shadow memory (1G) mode with FuZZan’s two
optimizations, and dynamic metadata structure switching (Dy-
namic) mode execution overhead during all 26 applications’
input record and replay fuzz testing.

Modes
ASan’s

init time
ms (%)

ASan’s
logging time

ms (%)

Memory
manage time

ms (%)

Page fault
#

Native 0.00 (0.00%) 0.00 (0.00%) 0.05 (11.49%) 2,569
ASan 0.17 (10.58%) 0.30 (18.86%) 0.63 (40.16%) 11,967
Min 0.10 (9.51%) 0.01 (1.33%) 0.24 (24.77%) 7,386

Min-Opt. 0.00 (0.00%) 0.00 (0.00%) 0.24 (24.71%) 6,139

Table 6: Comparison between native, ASan, min-shadow
memory (1G), two optimizations with min-shadow memory
executions with a breakdown of time spent in memory
management, and time spent for ASan’s initialization and
logging. Results are aggregated over 500,000 executions of the
full Google fuzzer test suite. Times are shown in milliseconds,
and % denotes the ratio between single execution time and
each section execution’s time.

and provided seeds), as shown in Table 4. More specifically,
the average improvement is 45% when starting with an empty
seed and 43% when starting with the provided seeds. While
different min-shadow memory heap configurations show
gradual increases in memory overhead (from 1GB to 16GB,
in line with the heap size), all of them outperform ASan (at
worst, min-shadow memory is still 36% faster than ASan with
a provided seed).

Additionally, both metadata configurations can utilize our
two engineering optimizations; i.e., removing logging and
modifying ASan’s initialization (as described in § 4). Table 5
shows that the average improvement of removing unnecessary
logging is 24% when starting with an empty seed and 19%
when starting with the provided seeds. Similarly, modifying the
initialization sequence improves performance by 15% when
starting with an empty seed and by 11% when starting with the
provided seeds. Combining the two engineering optimizations
with min-shadow memory demonstrates synergistic effects:
the combined performance is 52% (7% better than native min-
shadow memory) faster for empty seeds, and 48% (5% better
than native min-shadow memory) faster for provided seeds.

Overall, FuZZan’s metadata structures show better perfor-

256 2020 USENIX Annual Technical Conference USENIX Association

mance than ASan’s shadow memory for all 26 Google fuzzer
test suite applications. As shown in Table 6, the main reasons
for FuZZan’s improvement are: (i) the smaller memory space
reduces memory management overhead as page table manage-
ment is more lightweight and incurs fewer page faults, (ii) our
two engineering optimizations further reduce overhead and
number of page faults by removing unnecessary operations,
and (iii) the min-shadow memory mode has the same O(1)
time complexity for accessing target shadow memory as
accessing the original ASan metadata. However, we also
observe that the RB-tree is faster than min-shadow memory
for some configurations and programs (e.g., c-ares-CVE).
This motivates the need for dynamic metadata structure
switching, which observes program behavior and dynamically
selects the best metadata structure based on this behavior.

5.3 Efficiency of dynamic metadata structure

As described in § 3.2, the dynamic metadata structure
switching mode leverages runtime feedback to select the
optimal metadata structure, dynamically tuning fuzzing
performance according to runtime feedback. The intuition
behind the dynamic metadata structure switching mode is that
(i) no single metadata structure is best across all applications,
(ii) the best metadata structure is not known a priori, so the
analyst cannot pre-select the optimal metadata structure, and
(iii) fuzzing goes through phases, e.g., alternating between
longer running tests (e.g., exploring new coverage) and shorter
running tests (e.g., invalid input mutations searching for new
code paths). A consequence of the phases of fuzzing is that
the same metadata structure is not optimal for every input to
a given application. To verify the effectiveness of dynamic
metadata structure switching, which is implemented based on
these intuitions, we apply dynamic metadata structure switch-
ing mode to fuzz testing for seven widely used applications for
fuzzing and all 26 applications’ in Google’s fuzzer test suite.

Our evaluation of dynamic metadata structure switching
validates our intuitions, as shown in Figure 4. Observe that
different applications are dominated by different metadata
structures, e.g., c-ares for RB-tree and pngfix for min-
shadow memory. This is because dynamic metadata structure
switching automatically selects the optimal metadata structure
(which is unknown a priori). Because dynamic metadata
structure switching is automatic, it prevents users from
making errors such as selecting RB-tree for applications with
a large number of metadata accesses, and removes the need for
any user-driven profiling to make metadata decisions. Further,
dynamic metadata structure switching scales alongside with
the required memory of applications as it increases when the
fuzzer finds deeper test cases, as evidenced by size, pngfix,
or nm switching to different min-shadow memory modes
(4GB, 8GB, and 16GB heap sizes), without user intervention.
Without dynamic metadata structure switching, inefficient
min-shadow memory modes would be used at the beginning

c-ares vorbis pngfix size nm
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

ASan shadow memory FuZZan RB-tree

FuZZan Min-shadow-1G FuZZan Min-shadow-4G

FuZZan Min-shadow-8G FuZZan Min-shadow-16G

270 350 60 95 682

Figure 4: Evaluating the frequency of metadata structure
switching and each metadata structure selection over the first
500,000 tests each for c-ares and vorbis in Google’s fuzzer
test suite and pngfix, size, and nm. The number on each bar
indicates the total metadata switches.

of fuzzing campaigns, or users would have to pause and restart
fuzzing campaigns to change metadata modes.

As an extreme example highlighting the need for automatic
metadata switching, the nm benchmark changes metadata
structures 682 times, underscoring the infeasibility of having
a human analyst determine the single best metadata structure.

As a result of these factors, FuZZan’s dynamic metadata
structure switching mode improves performance over ASan by
52% when starting with empty seeds and 48% when starting
with non-empty seeds. Further, ASan has 306% and FuZZan
has 94% (212% less) overhead with empty seeds and ASan
has 303% and FuZZan has 111% (192% less) overhead with
non-empty seeds compared to native execution. Note that dy-
namic metadata structure switching has identical fuzzing per-
formance to using min-shadow memory with 1GB heap alone,
and improves performance over RB-tree up to 870%. Conse-
quently, automating metadata selection is not adding notice-
able overhead, while substantially improving user experience.
We recommend using dynamic metadata structure switching
mode for the following four reasons: (i) if the target application
exceeds FuZZan’s heap memory limit (1GB), dynamic meta-
data structure switching automatically increases the heap size
for the few executions that require it (a fixed heap size results in
false positive crashes due to heap memory exhaustion), (ii) pre-
venting users from selecting an incorrect metadata structure,
(iii) using only one metadata structure (e.g., min-shadow mem-
ory) may miss the opportunity to further improve throughput,
as, in some cases, RB-tree (or some future metadata structure)
may be faster than min-shadow memory; (iv) manually select-
ing a metadata structure requires extra effort (e.g., measuring
each metadata structure’s efficiency for the target application),
which dynamic metadata structure switching mode avoids by
automatically selecting the optimal metadata structure.

USENIX Association 2020 USENIX Annual Technical Conference 257

Programs
Native ASan FuZZan

exec
#

path
#

exec
#

path
#

exec
(%)

path
(%)

cxxfilt 86M 2,769 33M 2,442 51M (55%) 2,651 (9%)
file 29M 1,126 7M 763 9M (29%) 845 (11%)
nm 51M 1,272 7M 822 12M (71%) 872 (6%)
objdump 95M 883 15M 567 17M (13%) 595 (5%)
pngfix 36M 971 18M 912 33M (83%) 982 (8%)
size 52M 703 17M 626 32M (88%) 656 (5%)
tcpdump 70M 3,587 11M 1,540 20M (82%) 2,032 (32%)
Total 419M 11,311 108M 7,672 174M (61%) 8,633 (13%)

Table 7: Evaluating FuZZan’s total execution number and
unique discovered path for 24 hours fuzz testing with provided
seeds. The (M) denotes 1,000,000 (one million) and ratio (%)
is the ratio between ASan and FuZZan.

Programs
ASan
TTE
(s)

FuZZan
Type (source)TTE

(s)
rate
(%)

c-ares 45 25 46 BO (ares_create_query.c:196)
json 29 11 61 AF (fuzzer-parse_json.cpp:50)
libxml2 7,314 4,194 43 BO (CVE-2015-8317)
openssl-1.0.1f 443 336 24 BO (t1_lib.c:2586)
pcre2 7,056 4,020 43 BO (pcre2_match.c:5968)
Total 14,887 8,586 42 -

Table 8: Evaluating FuZZan’s bug finding speed. The TTE
denotes the mean time-to-exposure. The AF is assertion error
and the BO denotes buffer overflow.

5.4 Real-world fuzz testing

Our experiments validating FuZZan use a record/replay
approach to avoid any impact of randomness, allowing
meaningful comparisons to a baseline. However, real-world
fuzzing is highly stochastic, and so we also evaluate FuZZan
in the context of several real-world end-to-end fuzzing
campaigns without deterministic input record/replay. For this
experiment, we select the following widely used programs:
cxxfilt, nm, objdump, size (all from binutil-2.31), file
(version 5.35), pngfix (from libpng 1.6.38) and tcpdump
(version 4.10.0). Klees et al. [21] select and test cxxfilt,
nm, and objdump in their fuzzing evaluation study. The
remaining four programs (size, file, pngfix, and tcpdump)
are widely tested by recent fuzzing works [1, 3, 6, 26, 36, 46].
For each binary, we run a fuzzing campaign. Each campaign
is conducted for 24 hours and repeated five times. We measure
the number of total executions and discovered unique paths
when fuzzing with seeds from the seed corpus of each program
with the right type file and three different configurations:
native, ASan, and FuZZan’s dynamic metadata structure
switching mode, and report the mean over the five campaigns.

As a result, FuZZan improves throughput over ASan by
61% (up to 88%). Interestingly, FuZZan discovers 13% more
unique paths given the same 24 hours time due to improved
throughput. Our evaluation also shows that improved
throughput increases the possibility of finding more bugs in
the same amount of time, as we discuss next.

Modes time
(s)

vs.
Native

(%)

vs.
MSan
(%)

vs.
MSan
nolock

(%)
Native 146 - - -
MSan 14,074 9,575 - -
MSan-nolock 386 165 -97 -
Min-16G 335 130 -98 -13

Table 9: Comparison between Native, MSan, MSan-nolock,
and min-shadow memory execution overhead during input
record and replay fuzz testing with provided seed sets. MSan-
nolock disables lock/unlock for MSan’s logging depots. Time
(s) indicates the average of execution time. Positive percent-
ages denote overhead, negative percentages denote speedup.

5.5 Bug finding effectiveness
FuZZan increases throughput while maintaining ASan’s bug
detection capability, potentially enabling it to find more bugs.
To demonstrate this, we evaluate FuZZan’s bug finding speed
and compare it to a fuzzing campaign with ASan. In this eval-
uation, we target five applications in Google’s fuzzer test suite.
These applications are chosen because we found bugs in them
(using ASan and dynamic metadata structure switching mode)
within a 24 hour fuzzing campaign. We use the seeds provided
by the test suite and repeated each campaign five times. Note
that we do not replay recorded inputs during these campaigns,
instead letting the fuzzer generate random inputs. Table 8
shows the mean time (over five campaigns) to find each bug.
Notably, FuZZan finds all bugs up to 61% (mean 42%) faster
than ASan, and is faster in all cases. This experiment empha-
sizes our belief that throughput is paramount when fuzzing
with sanitizers.

5.6 FuZZan Flexibility

Appling FuZZan to Memory Sanitizer. Like ASan, nu-
merous sanitizers use shadow memory for their metadata
structure [47]. For example, other popular sanitizers, such
as Memory Sanitizer (MSan) [48] and Thread Sanitizer
(TSan) [42], also rely on shadow memory for metadata.
FuZZan optimizes sanitizer usage of shadow memory without
modifying the stored shadow information or how the sanitizer
uses that information. Consequently, porting our shadow
metadata improvements in FuZZan from ASan to other
sanitizers is a simple engineering exercise. To demonstrate
this, we port FuZZan to MSan. In so doing, we shrink MSan’s
memory space to implement min-shadow memory 16G for
MSan (1GB for the stack, 16GB for the heap, and 2GB for the
BSS, data, and text sections combined). We only implement
one metadata mode for our MSan proof-of-concept to validate
our claim that applies FuZZan to other shadow memory based
sanitizers is an engineering exercise.

Table 9 summarizes MSan’s performance overhead on
different modes for all 26 evaluated applications. Initially,

258 2020 USENIX Annual Technical Conference USENIX Association

min-shadow memory shows high overhead—around 96
times native. Analyzing this, we found that MSan’s fork()
interceptor locks all logging depots before fork() and sim-
ilarly unlocks them afterwards to avoid deadlocks. However,
as explained in § 4, locking/unlocking logging depots is
unnecessary for fuzzing because these logging depots exist
for bug reporting and fuzzing inherently enables replay by
storing test inputs when the fuzzer finds bugs. We thus disable
these lock/unlock functions to create the MSan-nolock mode,
which has reasonable overhead (2.6 times that of native).

FuZZan’s MSan min-shadow memory 16G mode shows
13% performance improvement compared to MSan-nolock
mode, demonstrating FuZZan’s efficacy when applied to
MSan. We expect that additional optimization and the appli-
cation of the dynamic switch mode will lead to even higher
performance improvement. We leave this engineering as future
work.
Applying FuZZan to MOpt-AFL. FuZZan is not coupled
to a particular fuzzer or fuzzer version. Most modern
fuzzers [2, 3, 31, 31] extend AFL, so our approach applies
broadly. To demonstrate this, we apply FuZZan to MOpt-
AFL [31], which is an efficient mutation scheduling scheme
to achieve better fuzzing efficiency. We modify MOpt-AFL
to add FuZZan’s profiling feedback and dynamic metadata
switching functions. To measure FuZZan’s impact on
MOpt-AFL, we select seven real-world applications (the same
set as Table 7) and fuzz them for 24 hours each, repeating the
experiment five times to control for randomness in the results.
On average, ASan-MOpt-AFL mode discovers 85% more
unique paths given the same 24 hours time due to MOpt-AFL’s
effectiveness compared to ASan. Notably, FuZZan-MOpt-
AFL mode discovers 112% more unique paths (27% higher
than ASan-MOpt-AFL) due to the improved throughput.

6 Discussion

In this section, we summarize some potential areas for future
work, a possible security extension enabled by FuZZan, and
lessons learned in designing FuZZan.
Removing conflicts between sanitizers. ASan’s shadow
memory scheme conflicts with other sanitizers that are also
based on shadow memory, e.g., MSan and TSan. Each sani-
tizer interprets the shadow memory in a mutually exclusive
manner, prohibiting the use of multiple concurrent sanitizers.
For example, ASan uses shadow memory as a metadata store,
while MSan prohibits access to the same memory range. FuZ-
Zan’s new metadata structures can be adapted to avoid this
conflict, and enable true composition of sanitizers, since we
use lightweight, independent metadata structures. Each sani-
tizer can map its own instance of our metadata structure, and all
sanitizers may coexist in a single process. However, some engi-
neering effort is required to port sanitizers to our new metadata
structures. An alternate approach would be to have one meta-

data structure that stores information for all sanitizers. Whether
having a unified metadata structure or a metadata structure per
sanitizer is more efficient is an interesting research question.
Possible security extension. Unfortunately, ASan’s virtual
memory requirements directly conflict with fuzzers’ abilities
to detect certain out-of-memory (OOM) bugs. For example,
fuzzers typically limit memory usage to detect OOM errors
when parsing malformed input. However, ASan’s large
virtual memory requirement masks OOM bugs, leaving them
undetected because of the difficulty of setting precise memory
limits. Consequently, using a compact metadata structure with
ASan not only improves performance, but also can enable an
extension of ASan’s policy to cover OOM bugs.
Lessons Learned. Our initial metadata design leveraged a
two-layered shadow memory metadata structure that split
metadata lookups into two parts: a lookup into a top-level
metadata structure, followed by a lookup into a second-level
metadata structure a la page tables. While this design vastly
reduced memory consumption and management overhead, the
additional runtime cost per metadata access of the additional
indirection resulted in the two-layer structure being slower
than ASan in all cases.

For dynamic metadata structure switching, we evaluated
two additional policies: (i) utilizing more detailed metadata
access information such as each object type’s (e.g, stack)
metadata access (e.g., insert) count and each operation’s
microbenchmark results, and (ii) running each metadata mode,
measuring their execution time, and selecting the fastest
metadata mode. In our evaluation, the additional sampling
complexity of these policies outweighed any gains from more
precisely selecting a metadata structure.

7 Related Work

7.1 Reducing Fuzzing Overhead

Several approaches reduce the overhead of fuzzing. One ap-
proach is to reduce the execution time of each iteration. AFL
supports a deferred fork server which requires a manual call to
the fork server. The analyst is encouraged to use the deferred
fork server, and manually initiate the fork server as late as pos-
sible to reduce, not only overhead from linking and libc initial-
izations, but also overhead from the initialization of the target
program. Deferred mode, however, cannot reduce the teardown
overhead of heavy metadata structures. AFL’s persistent mode
and libFuzzer eliminate the overhead from creating a new pro-
cess. However, these approaches require manual effort, and
users must know the target programs. Xu et al. [55] implement
several new OS primitives to improve the efficiency of fuzzing
on multicore platforms. Especially, by supporting a new sys-
tem call, snapshot instead of fork, they reduce the overhead
of creating a process. Moreover, they reduce the overhead
from file system contention through a dual file system service.

USENIX Association 2020 USENIX Annual Technical Conference 259

However, this approach requires kernel modifications for the
new primitives, and does not reduce the overhead of sanitizers.

Another approach is to improve fuzzing itself so that it
can find more crashes within the same amount of executions.
AFLFast [3] adopts a Markov chain model to select a seed. If in-
puts mutated from a seed explore more new paths, the seed has
higher probability to be selected. With given target source lo-
cations, AFLGo [2] selects a seed that has higher probabilities
to reach the source locations. Several approaches adopt hybrid
fuzzing, taint analysis, and machine learning to help fuzzers ex-
plore more paths. SAVIOR [8] uses hybrid fuzzing, combining
it with concolic execution to explore code blocks guarded by
complex branch conditions. RedQueen [1] uses taint analysis
and symbolic execution for the same purpose. VUzzer [40]
also uses dynamic taint analysis and mutates bytes which are
related to target branch conditions to efficiently explore paths.
TIFF [18] infers the type of the input bytes through dynamic
taint analysis and uses the type information to mutate the input.
Matryoshka [7] uses both data flow and control flow informa-
tion to explore nested branches. In addition to hybrid fuzzing
with traditional techniques such as symbolic and concolic exe-
cutions, NEUZZ [46] adapts neural network and sets the num-
ber of covered paths as an objective function to maximize cov-
ered paths. Angora [6] adapts both taint analysis and a gradient
descent algorithm to improve the number of covered paths.
These approaches do not reduce the execution time of each iter-
ation. They are therefore orthogonal to our work. Thus, we can
use these approaches to further increase fuzzing performance.

7.2 Optimizing Sanitizers

Since C/C++ programming languages are memory and type
unsafe languages, several sanitizers [47] target memory
safety violations [5, 23, 41, 48, 49] and type safety viola-
tions [14, 19, 24, 29]. Despite their broad use, sanitizers have
several limitations such as high overhead, limited detection
abilities, and incompatibility with other sanitizers.

To reduce sanitizer overhead, ASAP [52] and PartiSan [25]
disable check instrumentation on the hot path according to
their policies. The intuition of both approaches is that most
of the sanitizer’s overhead comes from checks on a few hot
code paths that are frequently executed (e.g., instrumentation
in a loop). ASAP removes check instrumentation on the hot
path based on pre-calculated profiling results at compile time.
In PartiSan [25], Lettner et al., propose runtime partitioning
to more effectively remove check instrumentation based
on runtime information during execution. However, both
approaches miss a main source of overhead when reducing the
cost of ASan during fuzzing campaigns: the overhead is due to
memory management and not due to the low overhead safety
checks. As ASAP and PartiSan target the cost of checks, they
are complementary to FuZZan. To fuzz quickly, there is an
option to generate a corpus from a normal binary, and then
feed the corpus to an ASan binary. FuZZan can also adopt this

option for fast fuzzing.

Pina et al., [38] use multi-version execution to concurrently
run sanitizer-protected processes together with native
processes, synchronizing all versions at the system-call level.
To synchronize all versions, they use a system-call buffer and
a Domain-Specific Language [37] to resolve conflicts between
different program versions. Xu et al., [54] propose Bunshin
to reduce the overhead of sanitizers and conflicts based on the
N-version system through their check distribution, sanitizer
distribution, and cost distribution policies. Since these
approaches are based on N-version systems, they increase
hardware requirements such as several dedicated cores and
at least N times of memory. Also, these approaches do not
address the fundamental problem of ASan memory overhead.

8 Conclusion

Combining a fuzzer with sanitizers is a popular and effective
approach to maximize bug finding efficacy. However,
several design choices of current sanitizers hinder fuzzing
effectiveness, increasing the runtime cost and reducing the
benefit of combining fuzzing and sanitization.

We show that the root cause of this overhead is the heavy
metadata structure used by sanitizers, and propose FuZZan to
optimize sanitizer metadata structures for fuzzing. We imple-
ment and apply these ideas to ASan. We design new metadata
structures to replace ASan’s rigid shadow memory, reducing
the memory management overhead while maintaining the
same error detection capabilities. Our dynamic metadata struc-
ture adaptively selects the most efficient metadata structure for
the current fuzzing campaign without manual configuration.

Our evaluation shows that FuZZan improves performance
over ASan 52% when starting with empty seeds (48% with
Google’s seed corpus). Based on improved throughput, FuZ-
Zan discovers 13% more unique paths given the same 24 hours
and finds bugs 42% faster. The open-source version of FuZZan
is available at https://github.com/HexHive/FuZZan.

Acknowledgments

We thank the anonymous reviewers and our shepherd Julia
Lawall for their detailed feedback. This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 850868), NSF CNS-1801601,
and ONR award N00014-18-1-2674. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of our sponsors.

260 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/HexHive/FuZZan

References

[1] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
Fuzzing with Input-to-State Correspondence. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2019.

[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2017.

[3] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as Markov chain.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2016.

[4] Derek Bruening and Qin Zhao. Practical memory
checking with Dr. Memory. In Proceedings of the
Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2011.

[5] Nathan Burow, Derrick McKee, Scott A Carr, and
Mathias Payer. CUP: Comprehensive User-Space
Protection for C/C++. In Proceedings of the Asia
Conference on Computer and Communications Security
(ASIACCS), 2018.

[6] Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. In Proceedings of the IEEE
Symposium on Security and Privacy (SP), 2018.

[7] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka:
Fuzzing Deeply Nested Branches. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2019.

[8] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong
Zhou, Yulong Zhang, Long Lu, et al. SAVIOR: Towards
Bug-Driven Hybrid Testing. In Proceedings of the IEEE
Symposium on Security and Privacy (SP), 2020.

[9] Google. Address Sanitizer Found Bugs.
https://github.com/google/sanitizers/wiki/
AddressSanitizerFoundBugs.

[10] Google. Clusterfuzz. https://google.github.io/
clusterfuzz/.

[11] Google. Fuzzer test suite. https://github.com/
google/fuzzer-test-suite.

[12] Google. Kernel Address Sanitizer (KASan), a
fast memory error detector for the Linux kernel.
https://github.com/google/kasan/wiki.

[13] Google. Libfuzzer tutorial. https://github.
com/google/fuzzer-test-suite/blob/master/
tutorial/libFuzzerTutorial.md.

[14] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer,
Cristiano Giuffrida, Herbert Bos, and Erik van der
Kouwe. TypeSan: Practical type confusion detection.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2016.

[15] Niranjan Hasabnis, Ashish Misra, and R Sekar. Light-
weight bounds checking. In Proceedings of the
International Symposium on Code Generation and
Optimization (CGO), 2012.

[16] Reed Hastings. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the USENIX
Security Symposium (SEC), 1992.

[17] Van Jacobson. Congestion avoidance and control. ACM
SIGCOMM computer communication review, 1988.

[18] Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and
Herbert Bos. TIFF: Using Input Type Inference To Im-
prove Fuzzing. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2018.

[19] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung
Lee, and Mathias Payer. HexType: Efficient Detection
of Type Confusion Errors for C++. In Proceedings of
the ACM Conference on Computer and Communications
Security (CCS), 2017.

[20] Linux kernel document. The Kernel Address Sanitizer
(KASAN). https://www.kernel.org/doc/html/
v4.14/dev-tools/kasan.html.

[21] George Klees, Andrew Ruef, Benji Cooper, Shiyi
Wei, and Michael Hicks. Evaluating fuzz testing. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2018.

[22] Taddeus Kroes, Koen Koning, Cristiano Giuffrida,
Herbert Bos, and Erik van der Kouwe. Fast and
generic metadata management with mid-fat pointers.
In Proceedings of the European Workshop on Systems
Security (EuroSec), 2017.

[23] Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing Use-after-free with Dangling Pointers
Nullification. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2015.

[24] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and
Wenke Lee. Type Casting Verification: Stopping an
Emerging Attack Vector. In Proceedings of the USENIX
Security Symposium (SEC), 2015.

USENIX Association 2020 USENIX Annual Technical Conference 261

https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://google.github.io/clusterfuzz/
https://google.github.io/clusterfuzz/
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://github.com/google/kasan/wiki
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html

[25] Julian Lettner, Dokyung Song, Taemin Park, Per Larsen,
Stijn Volckaert, and Michael Franz. PartiSan: fast and
flexible sanitization via run-time partitioning. In Pro-
ceedings of the International Symposium on Research
in Attacks, Intrusions, and Defenses (RAID), 2018.

[26] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
program-state based binary fuzzing. In Proceedings
of the Joint Meeting on Foundations of Software
Engineering (FSE), 2017.

[27] LLVM. LibFuzzer – a library for coverage-guided fuzz
testing. https://llvm.org/docs/LibFuzzer.html.

[28] LLVM. The LLVM Compiler Infrastructure Project.
http://llvm.org/.

[29] LLVM. TySan: A type sanitizer. https:
//reviews.llvm.org/D32199.

[30] Alexey Loginov, Suan Hsi Yong, Susan Horwitz, and
Thomas Reps. Debugging via run-time type checking.
In Processings of the International Conference on
Fundamental Approaches to Software Engineering
(FASE), 2001.

[31] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li,
Wei-Han Lee, Yu Song, and Raheem Beyah. MOPT:
Optimized Mutation Scheduling for Fuzzers. In Proceed-
ings of the USENIX Security Symposium (SEC), 2019.

[32] Valentin Jean Marie Manès, HyungSeok Han, Choong-
woo Han, Sang Kil Cha, Manuel Egele, Edward J
Schwartz, and Maverick Woo. The art, science, and
engineering of fuzzing: A survey. IEEE Transactions
on Software Engineering, 2019.

[33] Barton P Miller, Louis Fredriksen, and Bryan So. An
empirical study of the reliability of UNIX utilities.
Communications of the ACM, 1990.

[34] Matt Miller. Trends, challenge, and shifts in soft-
ware vulnerability mitigation. https://github.
com/Microsoft/MSRC-Security-Research/blob/
master/presentations/2019_02_BlueHatIL/
2019_01%20-%20BlueHatIL%20-%20Trends%
2C%20challenge%2C%20and%20shifts%20in%
20software%20vulnerability%20mitigation.
pdf.

[35] NIST. Juliet test suite. https://samate.nist.gov/
SARD/testsuite.php.

[36] Hui Peng, Yan Shoshitaishvili, and Mathias Payer.
T-Fuzz: fuzzing by program transformation. In
Proceedings of the IEEE Symposium on Security and
Privacy (SP), 2018.

[37] Luís Pina, Daniel Grumberg, Anastasios Andronidis, and
Cristian Cadar. A DSL approach to reconcile equivalent
divergent program executions. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2017.

[38] Luís Pina, Anastasios Andronidis, and Cristian Cadar.
FreeDA: Deploying Incompatible Stock Dynamic
Analyses in Production via Multi-Version Execution. In
Proceedings of the ACM International Conference on
Computing Frontiers (CF), 2018.

[39] The Chromium Project. Address Sanitizer
(ASan). https://www.chromium.org/developers/
testing/addresssanitizer.

[40] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian
Cojocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In Proceed-
ings of the Network and Distributed System Security
Symposium (NDSS), 2017.

[41] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer:
A fast address sanity checker. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2012.

[42] Konstantin Serebryany and Timur Iskhodzhanov.
ThreadSanitizer: data race detection in practice. In
Proceedings of the workshop on binary instrumentation
and applications (WBIA), 2009.

[43] Kostya Serebryany. Hardware Memory
Tagging to make C/C++ memory safe(r).
https://github.com/google/sanitizers/
blob/master/hwaddress-sanitizer/
HardwareMemoryTaggingtomakeC_C+
+memorysafe(r)-iSecCon2018.pdf.

[44] Kostya Serebryany. Sanitize, Fuzz, and Harden Your
C++ Code. https://www.usenix.org/sites/
default/files/conference/protected-files/
enigma_slides_serebryany.pdf.

[45] Julian Seward and Nicholas Nethercote. Using Valgrind
to Detect Undefined Value Errors with Bit-Precision.
In Proceedings of the USENIX Annual Technical
Conference (ATC), 2005.

[46] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. Neuzz: Efficient
fuzzing with neural program smoothing. In Proceedings
of the IEEE Symposium on Security and Privacy (SP),
2019.

[47] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. SoK: sanitizing for security. In Proceedings of the
IEEE Symposium on Security and Privacy (SP), 2019.

262 2020 USENIX Annual Technical Conference USENIX Association

https://llvm.org/docs/LibFuzzer.html
http://llvm.org/
https://reviews.llvm.org/D32199
https://reviews.llvm.org/D32199
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://www.chromium.org/developers/testing/addresssanitizer
https://www.chromium.org/developers/testing/addresssanitizer
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf

[48] Evgeniy Stepanov and Konstantin Serebryany. Mem-
orySanitizer: fast detector of uninitialized memory
use in C++. In Proceedings of the Annual IEEE/ACM
International Symposium on Code Generation and
Optimization (CGO), 2015.

[49] Erik Van Der Kouwe, Vinod Nigade, and Cristiano
Giuffrida. Dangsan: Scalable use-after-free detection. In
Proceedings of the European Conference on Computer
Systems (EUROSYS), 2017.

[50] Dmitry Vyukov. Address/Thread/MemorySanitizer
Slaughtering C++ bugs. https://www.slideshare.
net/sermp/sanitizer-cppcon-russia.

[51] Dmitry Vyukov. Syzbot. https://syzkaller.
appspot.com/upstream.

[52] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In Proceedings of the IEEE Symposium
on Security and Privacy (SP), 2015.

[53] Wikipedia. x32 ABI. https://en.wikipedia.org/
wiki/X32_ABI.

[54] Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee.
Bunshin: Compositing Security Mechanisms through
Diversification. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2017.

[55] Wen Xu, Sanidhya Kashyap, Changwoo Min, and
Taesoo Kim. Designing New Operating Primitives to
Improve Fuzzing Performance. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2017.

[56] Yves Younan. FreeSentry: protecting against use-
after-free vulnerabilities due to dangling pointers. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2015.

[57] Michal Zalewski. American Fuzzy Lop.
http://lcamtuf.coredump.cx/afl.

[58] Michal Zalewski. New in AFL: persistent mode.
https://lcamtuf.blogspot.com/2015/06/

new-in-afl-persistent-mode.html.

USENIX Association 2020 USENIX Annual Technical Conference 263

https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://en.wikipedia.org/wiki/X32_ABI
https://en.wikipedia.org/wiki/X32_ABI
http://lcamtuf.coredump.cx/afl
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html

PracExtractor: Extracting Configuration Good Practices from Manuals to Detect
Server Misconfigurations

Chengcheng Xiang
University of California, San Diego

Haochen Huang
University of California, San Diego

Andrew Yoo
University of Illinois Urbana-Champaign

Yuanyuan Zhou
University of California, San Diego

Shankar Pasupathy
NetApp Inc.

Abstract

Configuration has become ever so complex and error-prone
in today’s server software. To mitigate this problem, soft-
ware vendors provide user manuals to guide system admins
on configuring their systems. Usually, manuals describe not
only the meaning of configuration parameters but also good
practice recommendations on how to configure certain pa-
rameters. Unfortunately, manuals usually also have a large
number of pages, which are time-consuming for humans to
read and understand. Therefore, system admins often do not
refer to manuals but rely on their own guesswork or unre-
liable sources when setting up systems, which can lead to
configuration errors and system failures.

To understand the characteristics of configuration recom-
mendations in user manuals, this paper first collected and
studied 261 recommendations from the manuals of six large
open-source systems. Our study shows that 60% of the studied
recommendations describe specific and checkable specifica-
tions instead of merely general guidance. Moreover, almost
all (97%) of such specifications have not been checked in the
systems’ source code, and 61% of them are not equivalent to
the default settings. This implies that additional checking is
needed to ensure the recommendations are correctly applied.

Based on our characteristic study, we build a tool called
PracExtractor, which employs Natural Language Processing
(NLP) techniques to automatically extract configuration rec-
ommendations from software manuals, converts them into
specifications, and then uses the generated specifications to
detect violations in system admins’ configuration settings.
We evaluate PracExtractor with twelve widely-deployed soft-
ware systems, including one large commercial system from
a public company. In total, PracExtractor automatically ex-
tracts 338 recommendations and generates 173 specifications
with reasonable accuracy. With these generated specifications,
PracExtractor detects 1423 good practice violations from
open-source docker images. To this day, we have reported
325 violations and have got 47 of them confirmed as real
configuration issues by admins from different organizations.

1 Introduction

1.1 Motivation

Misconfiguration (error in configuration settings) has be-
come one of the major causes of failures in large-scale cloud
and Internet systems, as reported by many system vendors
[29,45,64] and service providers [20,26,32,34,37,51]. While
various fault tolerance and recovery mechanisms are effective
in handling hardware and software failures, they are less ef-
fective in handling configuration errors [27,32,37]. In 2017, a
configuration error at Level 3, an Internet backbone company,
caused a nationwide network outage [22]. On March 13th,
2019, the recent outage in Facebook was also caused by a
server configuration error, affecting millions of users [52]. In
addition to reliability, configuration errors can also lead to
security issues [59]. OWASP reports misconfiguration as one
of the top 10 most critical web security risks [38]. In 2017, a
configuration error of Amazon S3 storage exposed personal
information of 200 million U.S. voters [53].

One of the primary reasons for configuration errors is the
ever-increasing configuration complexity, especially with sys-
tem software [60]. Configuration complexity is partially re-
flected by the large and almost always increasing number
of configuration parameters, as well as their configuration
constraints and inter-dependency [31, 35, 44, 47, 63], which
inevitably increase system admins’ error rates [40, 46]. For
example, MySQL 8.0 has more than 460 configuration pa-
rameters. Similarly, Apache httpd 2.4 has more than 550
parameters. Such a high level of complexity makes system
configuration an error-prone task.

While research efforts have been attempted on reducing
configuration complexity [55, 60], it is still a long journey
to fully tame the complexity issue. Today, to assist system
admins, software vendors typically release user manuals to-
gether with their software. A manual describes in detail the
name, usages and sometimes constraints of each configura-
tion parameter. It can be in print as a PDF file or accessed
electronically as HTML/XML files, providing good guidance

USENIX Association 2020 USENIX Annual Technical Conference 265

Software Pages Software Pages

COMP-A1 8283 Httpd 1009
MySQL 5494 HBase 787
PostgreSQL 3724 Freebsd 726
CentOS 2297 Ubuntu server 413
Hadoop 2331 Zookeeper 181

Table 1: Number of pages in ten popular software’s manuals.

and reference for system admins to configure and manage
server software.

Unfortunately, system manuals are quite large, containing
hundreds or even thousands of pages. Table 1 lists the num-
bers of pages in the manuals of ten software, including one
commercial software, COMP-A 1. from a large public com-
pany. As the table shows, manuals of MySQL, PostgreSQL,
CentOS and Hadoop have 2331-5494 pages. COMP-A has
8283 pages in its technical documentation.

With such a daunting number of manual pages, system
admins find manuals hard and time-consuming to refer to
and understand. As such, system admins often do not refer
to them when configuring systems. Instead, they either rely
on their own judgment/guesswork or ask for help from other
admins [36]. Previous studies have shown that system admins
solved only a small proportion of usage problems (4% to
25%) by referring to manuals [21, 33, 36].

However, manuals still contain useful information and ig-
noring manuals can lead to configuration errors that cause
server downtime and data center outages. Figure 1 gives
six real-world configuration errors of commercial and open-
source software, in which system admins clearly do not follow
good practice recommendations in manuals. The misconfig-
ured parameters in these examples were set to incorrect values,
leading to problems of systems’ availability, performance and
security. Since these incorrect values are totally legal values
(i.e. violating no constraints in source code), they cannot be
detected by software’s own checking logic, as well as tools
that focus on checking for illegal values [63]. However, in all
these cases, the corresponding manuals actually have clearly
given recommendations on how to set these parameters. Had
these recommendations been followed by system admins,
these misconfigurations would have been avoided.

Unfortunately, good practices recommended in manuals or
other documents are not fully utilized by system admins to
avoid configuration errors mainly due to three reasons:

• Recommended practices are spread out in various parts
of manuals and cannot be easily found by system admins
due to manuals’ bulkiness and poor navigation [36].

• Many good practice recommendations are not always the
same as default settings (more details in §2). A recent

1We are required to keep the company and the product anonymous.

study shows that admins tend to go with default settings
for more than 80% of configuration parameters, and many
configuration errors were caused exactly because admins
do not change the default setting [60]. As later shown in
our evaluation (cf. Table 12), we also found many (997)
cases that system admins just went with bad defaults. Had
system admins read the recommendations in the manuals,
they could have avoided some of these mistakes.

• As shown in all the examples in Figure 1, good practices
recommended in manuals are often soft constraints, which
usually are not checked inside software. Thereby, the vi-
olations of them cannot be detected by previous tools
that were built by either inferring configuration specifica-
tion from the software’s source code [63] or just directly
reusing the source code to check configuration [61].

1.2 Our Contributions

This paper studies the research questions on whether it is use-
ful to automatically extract good practice recommendations
from manuals and use them to detect system admins’ con-
figuration issues, and if so, how to do it. We first collected
and studied 261 recommendations from six large open-source
software manuals. Our study shows that 60% of the studied
recommendations described specific, checkable specifications
instead of just general guidance. In addition, almost all (97%)
of the checkable specifications are not checked in source
codes, and 61% of them are different from the default settings
(reasons and details are discussed in §2).

Based on our characteristic study, we build a tool called
PracExtractor, which employs Natural Language Processing
(NLP) techniques to automatically extract good practice rec-
ommendations from manuals, converts them into specifica-
tions, and then uses the generated specifications to detect
violations in system admins’ configurations.

We evaluated PracExtractor with manuals of twelve widely-
deployed software systems, including one from a commer-
cial company with tens of thousands of customers. Overall,
PracExtractor automatically extracts 338 recommendations,
with a precision of 86% and a recall of 83%. PracExtractor
converts 173 recommendations into specifications with rea-
sonable accuracy. For the six “new” manuals not included in
our characteristic study, PracExtractor can achieve a precision
of 83% for recommendations and 88% for specifications.

To evaluate the capability of detecting real-world miscon-
figurations, we run PracExtractor against real-world config-
urations from top-downloaded container images on Dock-
erHub [24]. PracExtractor detects 1423 violations in 853
images. We reported 325 violations to the image maintainers
and got 47 confirmed as real configuration issues, including
six issues in images with over 1M downloads and 28 in images
with over 1K downloads.

Interestingly, in addition to detecting system admins’ con-
figuration problems, PracExtractor also detects a few incorrect

266 2020 USENIX Annual Technical Conference USENIX Association

Httpd

Parameter: EnableSendfile

Incorrect setting by admins: on

Outcome: web pages become unavailable

Fix: change the value to off

(d)

Recommendation in manual:
“Within some filesystems, it is better to disable

this feature to avoid operational problems.”

Comp-A
Parameter: export-policy

Incorrect setting by admins: none

Outcome: NFS mount permission deny

Fix: Specify a rule for export-policy

(a)

Recommendation in manual:
“Always create a rule with a policy to control

access to a volume.”

Comp-A

Parameter: security-style

Incorrect setting by admins: mix

Outcome: NFS volumes are not mounted

Fix: change security-style to unix

(b)

Recommendation in manual:
“Choose either NTFS- or UNIX-style security

unless there is a specific reason to use mix.”

(e)

HBase
Parameter: hbase.regionserver.thrift.framed

Incorrect setting by admins: false

Outcome: vulnerable to DoS attack

Fix: change the value to true

Recommendation in manual:
“Setting this to false will select the default

transport, vulnerable to DoS…”

Comp-A

Parameter: rsize

Incorrect setting by admins: 32k

Outcome: Performance slowdown

Fix: change rsize to 64k

(c)

Recommendation in manual:
“Comp-A highly recommends using 64k

rsize/wsize for better performance with NFS v4.”

Cassandra

Parameter: enable_transient_replication

Incorrect setting by admins: true

Outcome: potential service failure

Fix: change the value to false

(f)

Recommendation in manual:
“Transient replication is experimental and is not

recommended for production use.”

Figure 1: Six real-world configuration errors that were made by system admins without following recommendations from manuals.
(a)(b)(c) are from COMP-A’s customer ticket database, (d)(e)(f) are new misconfigurations our work discovered from public Docker images
and have been confirmed by multiple image maintainers [3–10].

default settings, three of which have already been confirmed
by MySQL and Cassandra developers as real bugs. Incorrect
default settings can easily cause configuration errors since
system admins are most likely to go with the default [60].

2 Characteristic Study

Before we build a tool to extract good practice recommenda-
tions from manuals, we first collected and studied 261 real-
world recommendations from manuals of six widely-deployed
systems listed in Table 2. Our study answers two questions:
(1) Is it useful to extract those recommendations from man-
uals? If they are all general advice such as “recommend to
set it to a large value”, extracting them is not very helpful
since they cannot be used as specifications for automatically
checking system admins’ settings. In contrast, if the recom-
mendations are clear specifications such as “recommend to set
this to greater than 2000”, extracting them out from manuals
can help build checkers to detect violations to them. Addi-
tionally, have developers already put in their code to check
if system admins follow these recommended practices? If
so, there is no need to extract them from manuals. Finally,
how often are these recommendations the default settings for
the corresponding configuration parameters? If they are not
default, why? (2) How difficult is it to extract good practice
recommendations from manuals? In particular, are manuals
structured enough for information extraction?

Observation 1: 157 (60%) of the studied good practice rec-
ommendations are specific instead of just general advice. We
manually studied all recommendations and categorized them

based on their contents. If a recommendation is about some-
thing that is hard to be checked automatically, it is classified
as a “general advice” (e.g. Table 3 last row). Otherwise, it
is classified as a “clear specification”, which is further cate-
gorized into value, usage, correlation, and property by what
is recommended, as explained in the caption of Table 2. An
example is given for each category in Table 3.

Table 2 shows the number of recommendations of each
category. In total, 157 (60%) of the 261 recommendations
describe clear specifications that if extracted can be used for
automatically checking system admins’ configuration settings.
The remaining 104 recommendations are general advice that
is hard to check automatically.

Observation 2: 152 (97%) of the specific good practices
recommended in manuals are not checked in source code.
For each recommendation, we manually examine the source
code of each software to see if the recommended practices are
checked in source code to warn/inform system admins upon
violations. Table 4 shows that only five out of the 157 specific
recommendations in manuals are checked in source code.

Listing 1 shows an example where a recommended practice
is checked in HBase code. In this case, if the practice is
violated by system admins, they will be warned to reexamine
the setting of this parameter more carefully.

The goal of our work is exactly to generate more checkings
like the HBase case shown in Listing 1, i.e. automatically
extract good practice specifications from manuals and build
a checker to warn system admins when their settings do not
follow the recommended practices.

Violations to good practices may not always be configura-
tion errors. However, as previous work [60, 62] has shown,

USENIX Association 2020 USENIX Annual Technical Conference 267

Software #Rec Specific General
value usage correl property total

MySQL 78 27 6 2 5 40 38
Httpd 92 25 16 8 3 52 40
PostgreSQL 49 21 1 3 3 28 21
HDFS 18 13 0 3 0 16 2
HBase 12 10 1 0 0 11 1
Spark 12 9 0 0 1 10 2
Total 261 105 24 16 12 157 104

Table 2: Characteristics of the 261 studied good practice recom-
mendations from six widely used software. “Specific”: describe a
clear specification; “value”: recommend to (not) set to one or mul-
tiple values (e.g. Table 3 row 2); “usage”: recommend to (not) use
an option, typically for command-line options without a value (e.g.
Table 3 row 3). “correlation”: recommend to set to a value smaller,
larger or equal to another parameter (e.g. Table 3 row 4). “property”:
recommend to set to a value with some property, such as in the
absolute path format(e.g. Table 3 row 5).

Category Example Practice Description in Manuals

Value It is generally not desirable to set this to a value greater than
2000.

Usage This option may be useful for diagnostic purposes, to see
the exact text of statements as received by the server, but for
security reasons is not recommended for production use.

Correlation Setting this lower than the dfs.namenode.replication.min is
not recommend and/or dangerous for production setups.

Property It is best to specify the datadir value as an absolute path.
General We recommend that this setting be kept to a high value for

maximum server performance.

Table 3: Real examples of recommendations of different types.

many system admins simply rely on guesswork or unreliable
sources (e.g. online forums) to configure complex server soft-
ware. If our checker can give a warning like Listing 1 when
the settings do not follow practices, system admins can at
least have a chance to reexamine the settings more carefully.

Observation 3: 96 (61%) of the specific good practice rec-
ommendations are not equivalent to default settings. It is
conceivable that some recommended practices might be the
default settings (after all, the vendor recommends them). If
this is the case, there is no need to extract recommended
practices from manuals. System admins simply just go with
default if they do not know how to set it better.

However, as shown in Table 5, only 61 (39%) good prac-
tices are equivalent to the default settings. For the majority
(61%) cases, recommendations are not the same as default
due to several reasons, including (a) 30 recommend multiple
different values, e.g. a range or a set of values. In real settings,
they may need to be modified to accommodate different situa-
tions, so it is worthwhile for sysadmins to double-check if the
settings follow recommendations.; (b) 30 recommend some
settings based on some conditions, e.g. “Enable A along with
B”; (c) 21 recommendations are on command line options that

Software # (%) of prac
checked in code

MySQL 1 (2.5%)
Httpd 1 (1.9%)
PostgreSQL 1 (3.6%)
HDFS 1 (6.3%)
HBase 1 (9.1%)
Spark 0 (0.0%)

Table 4: Number of good
practices checked in
source code.

if(balancedPreferencePercent
< 0.5) {

}

LOG.warn("The value of " +
DFS_DATANODE_BALANCED_SPACE
_PREFERENCE_FRACTION_KEY +
" is less than 0.5 so
volumes with less available
disk space will receive
more block allocations");

Listing 1: Example of a good
practice check in HBase’s
source code.

Software Same Multi Rela Cond No Others
-val -val -val -rec default

MySQL 14 10 1 10 4 1
Httpd 16 6 3 9 16 2
PostgreSQL 10 8 2 6 0 2
HDFS 9 1 3 3 0 0
HBase 6 3 0 1 0 1
Spark 6 2 0 1 1 0
Total 61 (39%) 30 (19%) 9 (6%) 30 (19%) 21(13%) 6 (4%)

Table 5: The number of recommendations that are the same as
the default and different categories of recommendations that
are not the same as the default (multiple-value, relative-value,
condition-recommendation, no-default, and others).

have no default values; (d) 9 recommend relative values, such
as “25% system RAM size”; (e) 6 cases have no clear reason
why the default is different. They may be potential bugs and
we have one of them confirmed as a bug by developers.

Observation 4: The six studied manuals are organized in a
similar structure. As shown in Table 6, the six manuals are
either in HTML or XML format and parameters in them are
described in a similar structure:

• Each parameter is described in one separate section.
• Parameter names are often used as the section headings.
• There is some meta-info of the parameter described in the

format of <key>:<value>, such as “Type:string”.
• Most information related to each parameter is described

in one or several paragraphs of free texts.

The per-parameter section structure makes it possible to
relate each parameter name and its description by parsing the
section structure. In addition, data types and default values can
be used to identify parameter values in plain text descriptions
which is necessary for generating specifications.

3 Design and Implementation

We design and implement PracExtractor to automatically ex-
tract recommendations from manuals, convert them into spec-
ifications and then uses them to detect violations. PracExtrac-

268 2020 USENIX Annual Technical Conference USENIX Association

Software Manual
format

Parameter
section?

Data type? Default
value?

MySQL html Yes Table Table
Httpd xml Yes No Table
PostgreSQL html Yes KV Text
HDFS xml Yes No Table
HBase html Yes No KV
Spark html Yes No Table

Table 6: Format and structure of manuals regarding how
they describe configuration parameters. “Parameter section”—
a separate section describes each individual parameter, “Data
type”/“Default value” — the format they are described in, including
table and KV (<key>:<value>).

tor faces two main challenges: (1) As manuals are written
in plain texts and have a large amount of texts unrelated to
recommendations, how to effectively filter noises and extract
only recommendations? (2) Even after we extract recommen-
dations, how to convert them into formal specifications that
can be used to automatically check for violations?

To address the first challenge, PracExtractor breaks manual
texts into sentences and extracts recommendation sentences
with two filtering steps: keyword-based filtering (coarse
grained) and syntactic-pattern-based filtering (fine grained).
PracExtractor mines the keywords and syntactic patterns from
the studied 261 recommendations.

To address the second challenge, PracExtractor first identi-
fies semantic entities (e.g. parameter name and values) in a
recommendation sentence and then convert it into a formal
specification by matching them with semantic patterns.

3.1 Preprocessing and Parsing
PracExtractor first preprocesses and parses software manu-
als into parameter name, meta-info and free-text descriptions.
The meta-info, including type and default value, is necessary
for recognizing setting entities later (cf. §3.3). One special
parameter type is enum, for which manuals usually also in-
dicate all valid values along with a parameter. PracExtractor
extracts the valid values for each parameter and uses them to
identify enum values from a sentence in §3.3.

PracExtractor parses manuals based on the observed man-
ual structure. Table 6 shows that manuals are usually written
in HTML/XML formats with separate sections for different
parameters. PracExtractor parses HTML and XML files, iden-
tifies each separate parameter section, and extracts parameter
name, meta-info and free-text description from each. PracEx-
tractor then breaks free-text descriptions into sentences.

Different manuals may still have slightly different formats
for parameter sections. To handle that, PracExtractor takes an
input of a small code snippet (format spec). A format spec
is easy to write: according to our evaluation of twelve large
manuals, they are typically fewer than 30 lines of Python code,
and each of them can be written in 0.5-2 hours. (cf. Table 14).

Word Covered
sentences

Bigram Covered
sentences

recommend 74 be recommended 34
well 26 should only 20
good 26 may want 13
appropriate 21 good idea 7
want 17 with caution 7

Table 7: 10 sample keywords (words and bigrams) collected
by PracExtractor from 261 studied recommendations and how
many recommendations each covers.

3.2 Recommendation Sentences Extraction
Most sentences in manuals do not contain recommenda-
tions. For the twelve evaluated software manuals, 696–25510
sentences are extracted from parameter sections, but only
0.4%–2.7% of them contain recommendations. To extract
these small percentage of recommendations, PracExtractor
performs two steps filtering:

Keyword-based Filtering Following the intuition that rec-
ommendations are usually described with certain keywords
(e.g. “recommend”, “suggest”), PracExtractor extracts can-
didate recommendations with keyword filtering. To find out
which words/phrases should be used as the keywords, PracEx-
tractor first breaks the studied 261 recommendation sentences
into individual words and bigrams (two consecutive words)
and uses them as the candidate keywords T . PracExtractor
then uses inverse document frequency (IDF) to rank the candi-
date keywords. IDF reflects how frequently a term t (word/bi-
gram in our case) occurs in a set of sentences set S, as:

IDF(t,S) = log
|S|

|{s ∈ S : t ∈ s}|
.

PracExtractor calculates IDF(t,R) for the studied recom-
mendations R and IDF(t,S) for all the manual sentences S.
PracExtractor ranks T based on IDF(t,R) and IDF(t,S) and
get the smallest 100 and 300 terms separately as TR and TS.
PracExtractor uses TR − TS as the final keywords. The in-
tuition behinds this is to find the words that are important
in recommendations but not normal sentences. In Table 7,
the sample keywords show that PracExtractor has effectively
found keywords related to recommendations.

Syntactic-Pattern-based Filtering Using keyword filtering
alone is not enough. After keyword-based filtering, only 7.3%
of the remaining sentences are recommendations. Many sen-
tences with the recommendation-related keywords are not true
recommendations. Figure 2 (a) and (b) gives examples that
the same keywords can be contained both in recommendation
and non-recommendation sentences.

The key difference between these recommendations and
non-recommendations in Figure 2 is their syntactic patterns.

USENIX Association 2020 USENIX Annual Technical Conference 269

Setting this parameter to true is appropriate .

csubj acomp

setting phrase keyword

The maximum recommended value is 4 GB .
amod nsubj

keyword setting phrase

attr

This is not guaranteed even with the recommended settings.
amod

keyword

nsubj

Make sure this directory contains appropriate symbolic links.

keyword

acomp

setting phrasekeyword
It is usually best not to turn it off in production.

xcomp
acomp

You need to test to decide the setting that provides the best performance.

keyword

acomp

(a) Recommendation sentences (b) Non-recommendation sentences

Figure 2: Comparison of syntactic patterns of recommendation and non-recommendation sentences that contain likely-
recommendation keywords. The patterns are labeled as undirected dependency paths from a keyword to a setting phrase, where a dependency
path consists of a sequence of syntactic relations annotated with Universal Dependencies [23]: amod – link from a noun to an adjective
modifier; nsubj – relation between a verb/noun and a prepositional phrase; attr – relation between a verb/adjective and a complement, etc.

Besides a keyword, the recommendations also contain a set-
ting phrase, a noun/verb phrase describing what setting is
recommended. Between such setting phrases and keywords,
there are certain syntactic relations (patterns), which do not
exist in non-recommendation sentences. PracExtractor lever-
age the syntactic-patterns to do fine-grained filtering.

PracExtractor first adopts the universal dependency (UD)
tree [23] to represent a sentence’s syntactic structure. A UD
tree T = (V,E) consists of vertices V and edges E, where
v ∈ V is labeled with a word’s part of speech (POS) and
e∈ E represents the syntactic dependency between two words
(cf. Figure 2). Let T ′ = (V,E ′) be an undirected correspon-
dence of T , the syntactic pattern between a keyword and a
setting phrase can be represented with an undirected path
p = (v0,e′v0,v1

,v1, ...,vn), where v0 is the keyword, vn is the
setting phrase, and e′vi−1,vi

∈ E ′ for i ∈ [1,n].
With the UD representation, PracExtractor mines the

unique patterns for recommendations from the studied 261
recommendations Srec and a set of non-recommendation sam-
ples Snot_rec that contains the keywords. For each sentence s,
PracExtractor builds T ′s = (Vs,E ′s) and extracts all paths

ρs = {(v0, e′v0,v1
, v1, ..., vn) :

v0 ∈ KEYWORDS ∧ ∀i ∈ [1,n] e′vi−1,vi
∈ E ′s

∧ ∀i ∈ [0,n] vi ∈Vs ∧ vn ∈ SETTINGPHRASES},

that starts from each keyword and ending at each setting
phrase. The keywords are from the last step and the set-
ting phrases are labeled by human inspectors. PracExtrac-
tor extracts all such paths from all recommendations and
non-recommendation samples, denoted as Prec and Pnot_rec.
PracExtractor then extracts patterns Ppattern with Algorithm 1.

With the identified syntactic patterns Ppattern, PracExtractor
classifies a new sentence s′ into a recommendation or non-
recommendation. PracExtractor traverse Ppattern and check if
any pattern matched with s′. If at least one pattern matched
then s′ is classified as a recommendation otherwise non-
recommendation. Such a matched pattern also labels the set-

Algorithm 1: Syntactic-pattern extraction algorithm
Input: Prec =

⋃
s∈Srec ρs, Pnot_rec =

⋃
s∈Snot_rec ρs

Output: a pattern set Ppattern

P′rec← [], Ppattern← /0;
for ρi ∈ Prec do

// Collect all the prefixes of ρi
for ρi, j ∈ prefix(ρi) do

P′rec.append(ρi, j);
// Traverse elements in P′rec in the order of frequency
// to extract the most general patterns
for ρi ∈ mostFrequentElement(P′rec) do

if prefix(ρi)∩Ppattern 6= /0 then
continue;

if ρi /∈ Pnot_rec then
Ppattern = Ppattern∪{ρi};

return Ppattern

ting phrase in s′ at the pattern’s end (cf. Figure 2). The setting
phrase will be used in specification generation (cf.§3.3).

3.3 Specification Generation

In §3.2, PracExtractor identifies recommendation sentences
and the setting phrases within it. PracExtractor then converts
the setting phrases into checkable, formal specifications. Ta-
ble 8 gives three example recommendations and the corre-
sponding specifications. In general, PracExtractor can gener-
ate four types of specifications, including value, correlation,
usage and property, as shown in Table 9.

A naïve way to generate specifications is to match setting
phrases with predefined regular expressions and convert them
accordingly. This can transform simple phrases with numbers
(e.g. “less than 8”), but cannot convert more complex phrases
(e.g. phrases with enum or parameter names). For instance,
a phrase could be “set to chain”, where “chain” is an enum
value in Httpd. Such software-specific words can hardly be
predefined in regular expressions and so cannot be matched.

270 2020 USENIX Annual Technical Conference USENIX Association

Sentence Specification

It is recommended to enable this option. p == true

A value between 8 to 16 is suggested. p ! [8, 16]

We suggest to set it less than ThreadsPerChild. p < ThreadsPerChild

Table 8: Examples of specifications generated by PracExtractor.
Setting phrases are marked with rectangles.

Category Specification Description Patterns Example

value/

correlation

p == v

p < v | p > v

p ! [v, v!]

p ! {v, v!}

v<value>
lesssyn | moresyn than v<value>
betweensyn v<value> to v!<value>
v<value> or v!<value>

correlation with (p, p!)

prefer (p, p!)

alongsyn with p!<para>
prefersyn p!<para>

usage use (p) usedsyn | usefulsyn

property format (p, f) f<format>

Table 9: Category of specifications PracExtractor generates
and example of patterns for each specification. “<value>” is
defined as “<bool>|<num><unit>?|<enum>|<parameter>” from Ta-
ble 10. “lesssyn” means the synonyms of “less”.

PracExtractor addresses this issue in three steps. First,
given a recommendation sentence, PracExtractor identifies
which parameter the sentence is associated with. Then,
PracExtractor uses the parameter’s meta-info (e.g. type and de-
fault value) extracted before (cf. §3.1) to identify setting enti-
ties, such as values and formats. Third, PracExtractor matches
the identified setting entities with predefined semantic pat-
terns to generate specifications.

Identify Parameter Names PracExtractor first identifies
which parameter a sentence is associated with. For a recom-
mendation sentence s in a paragraph p related to parameter
X , there are four possible cases: 1) Only X is mentioned in s.
PracExtractor determines this sentence is for X ; 2) Another
parameter Y is mentioned in s. PracExtractor checks if Y is a
subject or object to a verb like “set” or “specify” and deter-
mines the sentence is for Y if it is the case; 3) No parameter
is mentioned in s. PracExtractor further searches previous
sentences in paragraph p; 4) No parameter is mentioned in p,
PracExtractor determines the sentence is for X .

Identify Settings Entities Give the identified setting phrase
and associated parameter of a sentence, PracExtractor then
recognizes setting entities (e.g. values and formats) from
the setting phrase based on the associated parameter’s type.
Table 10 shows the seven types of setting entities that PracEx-
tractor can identify. For different types of setting entities,
PracExtractor identifies them with different syntax:

Type Setting Syntax

<bool> “enable” | “on” | “true” | “disable” | “false” | “off”

<num> [-+]?\d+(\.\d+)?

<unit> “byte” | “MB” | “ms” | “%” | “% of RAM” | …

<enum> !w " VALID_VALUES

<parameter> !w " ALL_PARAMETERS

<format> “email address” | “absolute path” | “domain name”

| …

<string> !w # !<bool> $ <num> $ <unit> $ <enum> $

<parameter> $ <format>)

Table 10: Types of setting entities PracExtractor iden-
tifies from recommendation sentences. VALID_VALUES and
ALL_PARAMETERS are from the type-info and parameter list that
PracExtractor identifies in the parsing step (cf. §3.1).

• For basic types, including <bool> and <num>, PracExtrac-
tor identifies them with regular expressions. For <num>,
PracExtractor also identifies common <unit> (e.g. “GB”,
“byte”) along with it.
• For <enum>, PracExtractor takes advantage of parameters’

type-info to identify it. The type-info of an <enum> param-
eter does not only indicate it is <enum> but also indicates
the valid values that can be set to the parameter. PracEx-
tractor has parsed these in the parsing step (cf. 3.1) and
now searches a setting phrase for the valid values.

• <parameter> is for the case that the setting phrase de-
scribes current parameter with respect to another param-
eter, such as “set A to be larger than B”. PracExtractor
identifies this by searching for valid parameter names in
the setting phrase. Note PracExtractor has extracted all
parameter names in the parsing step (cf. 3.1).

• For <format>, PracExtractor identifies common formats
(e.g. “email address”, “absolute path”) of parameters
based on word matching. PracExtractor allows users to
provide new words to extend the identifiable formats.

• All other words/phrases are identified as <string>.
PracExtractor further handles two kinds of strings that
have special meaning. First, some of them use “this value”
or “this” to refer to a value mentioned in previous sen-
tences. PracExtractor recognizes such references and iden-
tifies the actual value from previous sentences. Second,
some may use “default” to refer to parameters’ default
value. In this case, PracExtractor uses the corresponding
default value extracted from the parsing step (cf. §3.1) as
the recommended setting.

Generate Specification PracExtractor generates checkable
formal specifications by matching the setting phrases with
predefined semantic patterns. Table 9 lists the types of spec-

USENIX Association 2020 USENIX Annual Technical Conference 271

ifications that can be generated by PracExtractor, each with
an example pattern. Before blindly matching a setting phrase
with patterns, PracExtractor first considers the associated pa-
rameter’s data type. For example, if the data type is <bool>
or <enum>, there is no need to match semantic patterns like
“less than <value>”, “between <value> and <value>”, or
anything that is for <num>. Second, synonyms are also con-
sidered for these patterns. For instance “lesssyn than” can also
match with “lower than” and “smaller than”, etc.

Detect Negation PracExtractor also detects negation in a
recommendation sentence and negates a specification when
necessary. Two different types of negations are handled
by PracExtractor. First, PracExtractor finds direct negation
words, such as “not” (or abbreviation “n’t”) “none” and
“never”, in sentences. In addition, PracExtractor also detects
indirect negation words and phrases, such as “avoid”, “with
caution”, "rarely", and "seldom", etc. to identify the negation.

3.4 Violation Detection from Configurations
PracExtractor parses a configuration file and turns the settings
into key-value pairs of (parameter name, value). Although
the formats of configuration files for different software can
vary depending on the software implementation, most of them
have similar formats. The configuration files of the twelve
popular systems in our evaluation, including MySQL, Httpd,
HBase, HDFS, Spark, Squid and even the commercial system,
all follow two common and simple formats: key-value pairs
with separator like ‘=’ or ‘:’ or XML format.

Then PracExtractor checks the parsed parameter values
against extracted specifications and generates warning mes-
sages if it detects violations. PracExtractor uses the original
sentences from manuals as the warning messages. An exam-
ple warning could be “Setting dfs.safemode.replication.min
lower than dfs.replication.min is not recommended and is
dangerous for production setups”. This warning can remind
sysadmins to double-check the configurations to avoid poten-
tial mistakes, just like the one shown in Figure 1 and 3.

Most of the violations detected by PracExtractor cannot
be detected by previous works. Previous works [44, 61, 63]
mainly use configuration checking/usage logic in source code
to detect misconfigurations. However, most recommendations
(97% as in Table 4) are not checked in source code, so viola-
tions to them cannot be detected by these works.

4 Experimental Evaluation

As shown in Table 11, we evaluate PracExtractor on twelve
large software systems including eleven popular open-source
server systems and one commercial systems (COMP-A) from
a public company that serves many enterprise customers.
These systems’ manuals have 543 to 8283 pages. These man-
uals include not only the six manuals in our characteristic

study, but also six new manuals that are not studied before.
We evaluate both the precision and recall of PracExtractor
by comparing its results with recommendations identified
by human inspectors. In our evaluation, two human inspec-
tors manually and independently examined each manual to
identify recommendations.

For violation detection, we evaluate PracExtractor with real-
world settings from top-ranked container images on Dock-
erHub (200 images for each open-source systems). We run
PracExtractor against configuration files in these docker im-
ages to detect violations to the specifications extracted from
manuals. The evaluated images include both Linux-based
and Windows-based one. However, as PracExtractor currently
does not support platform-specific checking, our evaluation
does not include checking platform-related specifications. In
total, only 4 specifications are platform-related.

Recommendation and Specification Extracted As shown
in Table 11, PracExtractor extracts a total of 338 good prac-
tice recommendations (including specific and general advice)
from manuals and automatically converts 173 of them into
formal specifications that can be used to check system ad-
mins’ configuration settings. Among all software, Httpd has
the most number (81) of recommendations extracted as well
as the most number (31) of specifications generated.

Results with the six “new” manuals excluded from our
study PracExtractor works reasonably well with the six “new”
software manuals that are not included in our characteristic
study. PracExtractor extracts 117 recommendations and 59
specifications from these manuals. For example, it extracts
35 recommendations and 22 specifications for the commer-
cial software, COMP-A. The precision and recall are only
slightly lower than the one for the six studied manuals, but are
still reasonably good (with a 0.83 precision and 0.80 recall
for recommendations, and 0.88 precision and 0.66 recall for
specifications).

Violations Detected PracExtractor detects in total 1423 prac-
tice violations from 853 unique images. We manually vali-
dated all the violations. We reported 325 (that are maintained
on GitHub) of them to their maintainers and have got 47 con-
firmed as real configuration issues, including six in images
with >1M downloads and 28 in images with >1K downloads.

Table 12 shows a breakdown of all detected violations.
426 are “wrong change”, namely a parameter is explicitly
changed to a non-recommended value by system admins. 997
violations are "wrong default", namely a parameter has a
non-recommended default value but is not changed. This
also matches with the finding from a previous real-world
misconfiguration study [60] that many configurations are left
as default. In this case, system admins are afraid of changing
default settings, even though the default is not recommended
or is simply a placeholder value, which needs system admins
to explicitly change to fit their own system environments.

272 2020 USENIX Annual Technical Conference USENIX Association

Software Category Update Time # Recommendations # Specifications
of Manuals total extracted precision recall total generated precision recall

MySQL database Aug. 2019 78 61 0.90 0.78 40 30 0.88 0.75
Httpd web server Aug. 2019 92 81 0.83 0.88 52 31 0.79 0.60
PostgreSQL database Aug. 2019 49 38 0.95 0.78 28 20 0.87 0.71
HDFS distributed storage Aug. 2019 18 17 1.00 0.94 16 14 0.93 0.88
HBase distributed storage Aug. 2019 12 12 1.00 1.00 11 11 1.00 1.00
Spark distributed computing Aug. 2019 12 12 0.86 1.00 10 8 0.89 0.80
COMP-A commercial storage May 2019 49 35 0.70 0.71 37 22 1.00 0.59
Nginx proxy Jul. 2019 26 24 0.92 0.92 6 4 0.50 0.67
Flink stream processing Aug. 2019 10 6 0.67 0.60 6 4 1.00 0.67
Squid proxy Feb. 2019 22 18 0.86 0.82 13 9 0.82 0.69
Mapred distributed computing Aug. 2019 25 20 0.95 0.80 15 9 1.00 0.60
Cassandra distributed storage Aug. 2019 15 14 0.93 0.93 13 11 0.85 0.85

studied 261 221 0.89 0.85 157 114 0.87 0.73
new 147 117 0.83 0.80 90 59 0.88 0.66
overall 408 338 0.86 0.83 247 173 0.87 0.70

Table 11: Numbers of recommendations extracted and specifications generated by PracExtractor and corresponding
accuracy (precision= TruePositive

TruePositive+FalsePositive and recall= TruePositive
TruePositive+FalseNegative). Recommendations consist of both general

advice and specific ones that can be converted into specifications. “studied” refers to the software included in our characteristic
study (first 6 rows) , while “new” refers to other software not included in our study (last 6 rows) .

Software Wrong
change

Wrong
default

Software Wrong
change

Wrong
default

MySQL 20 200 Nginx 0 0
Httpd 338 200 Flink 0 0
PostgreSQL 8 0 Squid 20 0
HDFS 21 0 Mapred 0 0
HBase 0 199 Cassandra 9 398
Spark 10 0

Total Wrong change 426 Wrong default 997

Table 12: Detected good practice violations in container images
from Dockerhub. We reported 325 violations to the image owners,
and 47 of them have been confirmed as real configuration errors.
Three wrong defaults are also confirmed by MySQL and Cassandra.

Figure 3 gives three examples of real-world violations that
are detected by PracExtractor from popular container images
on DockerHub. They have been confirmed by the image own-
ers as real configuration errors or by the software developers
as real bugs. Here are the root causes:

(a) HDFS manual recommends to leave the parameter as
true to avoid registration of excluded hostnames. How-
ever, it is ignored and violated in 21 images, which can
cause security issues. We reported them and so far two
of them have been confirmed [11, 12].

(b) Cassandra manual does not recommend to enable the
experimental feature as it may cause potential failure.
However, the default setting enables it, which is a bug,
and 199 images just keep the default. The bug has been
confirmed and fixed by Cassandra in its new version [1].

(c) The default setting for this parameter in MySQL is much
larger than the recommended value in the manual, and
the default value (set by MySQL developers) is actually
incorrect. We report it to MySQL official Bugzilla and it
has been confirmed as a bug [16].

Indeed, not all the 1423 violations are configuration errors
or bugs. However, as discussed before in the real-world exam-
ple from HBase (cf. §2 Listing 1) that explicitly performs such
checks in its source code, when such violations are warned to
system admins, they at least get a chance to reexamine and
reconsider the settings more carefully.

Maintainers’ Feedback on Violations We reported 325 to
the image maintainers and so far have got 47 violations con-
firmed that they need to be changed. We list three example
confirmations in Table 13 (row 1, 2, 3). We took a further
look into the impact of these confirmed violations: 11 cause
security vulnerabilities, 31 cause unreliable services, 2 cause
performance issues and 3 cause database inconsistency.

We also got 46 other feedbacks that the maintainers hesi-
tated to fix the violations. They either think it is the upstream
vendors’ responsibility to handle the issues (Table 13 row 4,
5) or are aware of the limitations but make the settings for
particular environments (Table 13 row 6).

Lines of Customized Code for Each Manual Table 14
shows the lines of Python code (LOC) of the format spec
for each manual. It needs only 6-73 LOC for the software
manuals with hundreds and thousands of pages. Also, the
LOC is not proportional to the number of pages in manuals,
and it is only one-time effort to each software. On average,
it needs little effort (0.5-2 hours) to customize PracExtrac-

USENIX Association 2020 USENIX Annual Technical Conference 273

Cassandra

Parameter: enable_materialized_views

Default: true

Recommendation: false

Misconfiguration: keep wrong default

Violated docker images:

199 images

(b)

Recommendation in manual:
“Materialized views are considered

experimental and are not recommended for
production use.”

MySQL

(c)

Recommendation in manual:
“The maximum recommended value is 4GB

…MySQL currently cannot work with binary
log positions greater than 4GB.”

Parameter: max_binlog_cache_size

Default: 2^64

Recommendation: 4GB

Misconfiguration: keep wrong default

Violated docker images:

200 images

(a)

Recommendation in manual:
“It is recommended that this setting be left on to

prevent accidental registration of datanodes
listed in the excludes file…”

Parameter: dfs.namenode.datanode.

registration.ip-hostname-check

Default: true

Recommendation: true

Misconfiguration: false

Violated docker images:
Babbleshack/hadoop, jamesmcclain/hadoop

HDFS

Figure 3: Example of new violations detected by PracExtractor in popular images from DockerHub. The violations have been confirmed
by image maintainers [11, 12] and software vendors (Cassandra and MySQL). Cassandra has fixed (b) in its new version [1].

Image Feedback on Violation Reports from Image Maintainers

eviles/
httpd

“Ok, I’ve fixed two images: eviles/httpd, eviles/httpd-
tomcat.’ [3]

newnius/
hbase

“Thanks for pointing out this. I have added that to the default
configuration files and rebuilt the images.” [5]

oscerd/
cassandra

“Yes we can do that. I can update the configuration for 3.10 and
3.11.” [9]

vitessio/
mysql

“As a general strategy, I plan to use MySQL’s default values
unless there is a strong use-case to override.” [13]

madflojo/
cassandra

“Since we are using the upstream cassandra/latest, I’d prefer
that this issue go to them.” [14]

publicisw/
httpd

“We are aware of these limitations...This is only used on new
linux kernels, which should support this feature...” [15]

Table 13: Example of positive and less-positive (in gray back-
ground) feedback. Due to page limit, we list three for each.

tor for a new software manual, including even for the large
commercial software manual with 8283 pages.

Accuracy — False Negatives and False Positives Table 11
shows PracExtractor’s accuracy in terms of recall and pre-
cision. For recommendation extraction, PracExtractor has a
reasonable high recall, 0.83. In other words, overall, PracEx-
tractor misses only 17% of the recommendations. For spec-
ification extraction, PracExtractor’s recall is slightly lower
(0.70) (i.e. miss 30% of the specification). This is mainly
because some descriptive texts and string values are hard to
be automatically recognized and converted into specification
(cf. Table 15). This can be further improved by analyzing the
semantics of parameter names so that string values can be
better matched with parameter meanings.

PracExtractor has low false positives, too. Its overall pre-
cision is 0.86 for recommendation and 0.87 for specification.
That is, only 14% of the recommendations and 13% of the
specifications extracted by PracExtractor are false positives.
The false positives are introduced mainly due to texts are
incorrectly identified as parameter values (cf. Table 15).

Impacts of False Positives The false positives will not cause

Software Manual
pages

LOC Software Manual
pages

LOC

MySQL 5494 73 COMP-A 8283 18
Httpd 1009 10 Nginx 543 24
PostgreSQL 3724 24 Flink 6152 6
HDFS 1031 12 Squid 1391 10
HBase 787 14 Mapred 1318 12
Spark 599 6 Cassandra 913 11

Table 14: Lines of code (LOC) of format specs for the twelve
evaluated manuals.

serious impacts as they can be recognized easily. Table 16
shows three cases of false recommendations that PracExtrac-
tor extracted from the evaluated manuals. They are descrip-
tions related to the parameters but just are not recommen-
dations. For example, “there may be circumstances where
it is desirable for a configuration section’s authorization to
be combined with that of its predecessor” is a false positive,
which describes a parameter usage but gives no recommenda-
tion. Since PracExtractor includes such an original sentence
from manuals in a warning message, sysadmins who read it
can easily realize that it is not a recommendation and will not
be misguided.

Evaluation with Existing Misconfiguration Dataset We
also evaluate PracExtractor with existing configuration issues.
As there is no existing dataset for good practice violations,
we use a dataset [2] for general configuration issues used in
previous works [60, 61]. This dataset contains configuration
issues from various online forums and mailing lists. We use
the issues categorized as “error” to evaluate PracExtractor.
Out of the 63 evaluated configuration errors, PracExtractor
can detect 7 (10%) of them. We validated that these detected
errors cannot be detected by previous works [35, 61] as they
violate no constraint in source code while previous works use
code constraints to detect errors. For the undetected errors,
we found that manuals do not provide recommendations for

274 2020 USENIX Annual Technical Conference USENIX Association

Software False Negatives Software False Positives
R1 R2 R3 R4 R5

Httpd 10 11 0 Httpd 4 4
COMP-A 8 3 4 Nginx 4 0
Mapred 1 2 3 Squid 2 0

Table 15: Root causes for PracExtractor’s False Negative and
False Positive. R1 — descriptive recommendations that are not
identified, such as “it is recommended to not configure a ticket key
file”. It is hard to automatically infer that this refers to not using
SSLSessionTicketKeyFile. R2 — unknown string values that are
not identified. For example, in “it’s recommended the username
’anonymous’ is in allowed userIDs”, it is hard to recognize the com-
mon word “anonymous” as a value. R3 — sentences that are not
covered by our syntactic patterns. R4 — texts that are incorrectly
identified as parameter values. R5 — non-recommendation sentences
that are mismatched with syntactic patterns of recommendations.

the error-related parameters. With a grain of salt, this shows
that current manuals have not provided enough recommenda-
tions for avoiding many real-world misconfigurations. Further
enriching manuals with good practices may improve PracEx-
tractor’s detecting capability and also benefit system admins
who refer to manuals to resolve configuration issues.

5 Discussion

Generality. PracExtractor is reasonably general for manuals
from different software. As our evaluation on six new manuals
shows, PracExtractor can identify most (80%) recommenda-
tions from these manuals with a precision of 83%.
Human Effort. PracExtractor can easily be extended with
new format specs to accommodate future manuals. In our
evaluation, the specs for the six new software manuals are
all less than 30 lines (cf. Table 14) and were written by a
first-year graduate student, each in 0.5-2 hours.
Accuracy of Manuals. Another concern is whether manu-
als themselves deliver accurate information for PracExtractor
to extract. After all, manuals can be outdated and can have
mistakes made by the writers. In our work, we considered
these factors. First, we validated the last update time of our
evaluated manuals. As shown in Table 11, all twelve manu-
als are updated recently this year. Second, we compared the
specifications extracted from manuals against source code
and reported all differences to developers to check. If either
is wrong/obsolete, it may introduce problems. Interestingly,
in three cases, developers from MySQL and Cassandra con-
firmed that the source code is wrong (cf. Figure 3).

6 Related Work

Misconfiguration detection and troubleshooting. Many
works have been done on detecting [25, 28, 30, 61, 66, 68]

Parameter False Positive Recommendations

adaptive_hash
_index

It may be desirable to dynamically enable or disable adap-
tive hash indexing to improve query performance.

AuthMerging There may be circumstances where it is desirable for a
configuration section’s authorization to be combined with
that of its predecessor.

LimitRequest
Line

When name-based virtual hosting is used, the value for this
directive is taken from the default (first-listed) virtual host
best matching the current IP address and port combination.

Table 16: Example of false positive recommendations PracEx-
tractor extracted. They can be easily recognized by system admins
and will not misguide them to make wrong changes.

and troubleshooting [17–19, 42, 43, 54, 56, 57, 65, 69] configu-
ration errors. Almost all of these works detect configuration
errors by either checking against (a) patterns mined from tons
of configuration files, or (b) constraints inferred from source
code. Our work is complementary to these approaches. We
extract recommendations from vendor-provided manuals as
specifications, use them to detect violations, and warn system
admins to reexamine the violations. Each of the approaches
has its own strengths and weaknesses. Below, we compare
our approach with each previous one respectively.

Xu [61,63], Rabkin [44], and Nadi [35] propose approaches
to extract configuration constraints from source code using
static analysis. While it can infer simple constraints such as
parameter types, range and some simple dependencies, it is
less effective in checking against more complex constraints,
especially configuration settings that are legitimate but may
not be good or optimal. In our work, we focus on good prac-
tices recommended by vendors. If a system admin configures
a parameter with a valid setting but does not achieve the in-
tended goal (e.g performance, reliability or security goal),
previous works that focus on detecting invalid configurations
will not report any problem. In comparison, our PracExtractor
can still warn him/her about the setting if it does not follow
the good practices PracExtractor extracts from manuals.

Encore [68], PeerPressure [54] and Santolucito et al’s wo-
rk [47, 48] propose to extract configuration constraints and
good practices from existing settings. These approaches as-
sume that a large number of independent configuration sam-
ples are available for learning and the correct configurations
are the common ones. This assumption can be true for some
systems where configuration settings can be collected from
users/customers back to vendors. However, for many enter-
prise software such as database or storage systems that are
mainly deployed in enterprises (e.g. financial companies and
government), each system’s configuration settings are confi-
dential information and cannot be shared back with vendors.
As such, these approaches are less applicable. In comparison,
PracExtractor is applicable to such scenarios because it au-
tomatically extracts good practice recommendations that are
already written in vendor-provided manuals, and the check-

USENIX Association 2020 USENIX Annual Technical Conference 275

ers generated by PracExtractor can be shipped to enterprise
customers to check their configuration settings.

In addition to the above two approaches, another closely
related work is ConfSeer [41], which takes a user’s config-
uration of one or multiple parameters to search against the
vendor’s Knowledge Base (KB) articles and identifies those
highly relevant ones so that users can read those KB articles
to self-diagnose and self-correct misconfiguration (with no
need to call customer support). While this work also uses
NLP techniques, their goal is to narrow down the match so
that users do not need to read hundreds of KB articles. For a
given configuration parameter setting from a user, ConfSeer
returns a ranked list of KB articles for the user to explore,
in a way similar to a search engine like Google that tries to
return the most relevant web pages to a user’s query. In other
words, ConfSeer is an improved Google search engine for
configuration-related KB articles. In comparison, our goal is
to extract configuration recommendations from manuals and
convert them into formal and checkable specifications. Our
checker can be shipped to the customer sites to automatically
detect violations and warn system admins to reexamine their
settings to proactively avoid problems instead of waiting for
postmortem troubleshooting.

Inferring specification from text. Some past works also aim
to infer specifications from program-related texts, including
from program comments [49, 50], API documents [39, 67,
70, 71], and man pages [58]. Our work differs from previous
works both on purposes and techniques. First, instead of help-
ing developers find bugs in source code as in [49, 50, 70], our
work aims to help system admins detect misconfigurations
in their system settings. Secondly, comments and API docu-
ments have relatively uniform structures, which makes it easy
to extract information like function names and variable types.
In comparison, manuals are much less structured. The only
structure is that each parameter has its own section/chapter.
Inside a section, it is mostly free text. Thirdly, PracExtractor
extracts much more complex constraints than previous work
on man pages [58]. DASE [58] uses regular expression to
extract valid options from man pages. In comparison, PracEx-
tractor can extract option value, correlation and property from
software manuals.

7 Conclusions and Future Work

This paper focused on the usefulness and feasibility of extract-
ing good practice recommendations from software manuals
to detect configuration problems. Specifically, we first con-
ducted a characteristic study on 261 recommendations from
six large open source software manuals. Based on the obser-
vations learned, we designed and implemented a tool, called
PracExtractor, that can extract 338 recommendations and gen-
erate 173 specifications with reasonable accuracy from twelve
large software manuals, including one for a large commercial

software system. Additionally, with the generated specifica-
tions, PracExtractor have detected 1423 violations from 853
container images on DockerHub. We reported 325 of them
and so far have got 47 confirmed as real configuration issues
by the image maintainers from different organizations.

Interestingly, in addition to detecting system admins’ con-
figuration problems, PracExtractor can also help detect in-
correct default settings for configuration parameters. When a
default setting differs from a recommendation in the manual,
it may indicate that the default setting is wrong. Incorrect
default settings can easily cause configuration errors because
system admins are most likely to go with default [60]. In our
experiments, we did discover a few such software bugs, and
three of them have already been confirmed respectively by
MySQL and Cassandra.

PracExtractor is far from perfect. First, there is still much
space to further improve its accuracy based on our analysis
of false positives and false negatives (cf. Table 15). Further
semantic analysis of parameter descriptions can improve the
identification accuracy of parameter type, name and value.
Second, PracExtractor currently cannot extract specifications
with descriptive conditions, such as “set A with a large work-
load”. This may possibly be handled by further incorporating
domain knowledge of common descriptions and sub-clause
analysis techniques.

Several other directions are also valuable to explore in the
future. First, from our experience, we found that a uniform
structure (e.g. per-parameter section) and consistent word us-
age (e.g. recommend) benefit extracting recommendations a
lot. Therefore, it would be interesting to explore how manuals
may be restructured so more information can be automatically
extracted. Second, PracExtractor may be potentially used to
detect documentation drift — manuals are not updated along
with source code. By combining PracExtractor with source
code analysis tools, it is possible to compare the configura-
tions described in manuals and used in source code. Third,
while PracExtractor focuses on analyzing user manuals, the
approach may be applicable to extract good practices from
other text-based documents such as knowledge-base (KB)
articles, which are used by support engineers to troubleshoot
customer issues.

Acknowledgments

We greatly appreciate the anonymous reviewers and our shep-
herd, Scott D. Stoller, for their insightful comments and feed-
back. We thank the Opera group, the Systems and Networking
group at UCSD as well as Anita Jinda, Sam Lin and Jianmo
Ni for useful discussions and paper proofreading. We thank
Tianyin Xu for sharing a configuration issue dataset with us.
This work is supported in part by NSF grants (CNS-1814388,
CNS-1526966) and the Qualcomm Chair Endowment.

276 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Cassandra release note. https:
//gitbox.apache.org/repos/asf?p=
cassandra.git;a=blob;f=NEWS.txt;h=
ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=
HEAD.

[2] Configuration datasets. https://github.com/
tianyin/configuration_datasets.

[3] Github issue. https://github.com/eviles/docker/
issues/1.

[4] Github issue. https://github.com/sspreitzer/
docker-httpd-mirror/issues/1.

[5] Github issue. https://github.com/newnius/
Dockerfiles/issues/4/.

[6] Github issue. https://github.com/F21/hbase/
issues/2.

[7] Github issue. https://github.com/binhnv/docker-
hbase/issues/1.

[8] Github issue. https://github.com/Boostport/
hbase-phoenix-all-in-one/issues/1.

[9] Github issue. https://github.com/oscerd/
cassandra-image/issues/1.

[10] Github issue. https://github.com/femiwiki/
cassandra/issues/3.

[11] Github issue. https://github.com/Babbleshack/
docker-hadoop-yarn/issues/1.

[12] Github issue. https://github.com/jamesmcclain/
HadoopDocker/issues/8.

[13] Github issue. https://github.com/vitessio/
vitess/issues/5056.

[14] Github issue. https://github.com/madflojo/
cassandra-dockerfile/issues/1.

[15] Github issue. https://github.com/
publicisworldwide/docker-stacks/issues/31.

[16] Mysql bugzilla. https://bugs.mysql.com/
bug.php?id=94487.

[17] Bhavish Agarwal, Ranjita Bhagwan, Tathagata Das, Sid-
dharth Eswaran, Venkata N Padmanabhan, and Geof-
frey M Voelker. Netprints: Diagnosing home network
misconfigurations using shared knowledge. In NSDI,
volume 9, pages 349–364, 2009.

[18] Mona Attariyan, Michael Chow, and Jason Flinn. X-
ray: Automating root-cause diagnosis of performance
anomalies in production software. In Presented as part
of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages 307–320,
2012.

[19] Mona Attariyan and Jason Flinn. Automating configu-
ration troubleshooting with dynamic information flow
analysis. In OSDI, volume 10, pages 1–14, 2010.

[20] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis lectures
on computer architecture, 8(3):1–154, 2013.

[21] Irina Ceaparu, Jonathan Lazar, Katie Bessiere, John
Robinson, and Ben Shneiderman. Determining causes
and severity of end-user frustration. International
journal of human-computer interaction, 17(3):333–356,
2004.

[22] CNN. Here’s why you may have had internet
problems today. https://money.cnn.com/2017/
11/06/technology/business/internet-outage-
comcast-level-3/index.html, 2017.

[23] Marie-Catherine De Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre,
and Christopher D Manning. Universal stanford de-
pendencies: A cross-linguistic typology. In LREC, vol-
ume 14, pages 4585–92, 2014.

[24] Inc. Docker. Docker hub. https://hub.docker.com/,
2019.

[25] Nick Feamster and Hari Balakrishnan. Detecting bgp
configuration faults with static analysis. In Proceedings
of the 2Nd Conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 43–
56. USENIX Association, 2005.

[26] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto,
Agung Laksono, Anang D Satria, Jeffry Adityatama,
and Kurnia J Eliazar. Why does the cloud stop com-
puting?: Lessons from hundreds of service outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, pages 1–16. ACM, 2016.

[27] Peng Huang. Toward Understanding and Dealing with
Failures in Cloud-Scale Systems. PhD thesis, UC San
Diego, 2016.

[28] Peng Huang, Chuanxiong Guo, Jacob R Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing in
situ system observability for failure detection. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 1–16, 2018.

USENIX Association 2020 USENIX Annual Technical Conference 277

https://gitbox.apache.org/repos/asf?p=cassandra.git;a=blob;f=NEWS.txt;h=ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=HEAD
https://gitbox.apache.org/repos/asf?p=cassandra.git;a=blob;f=NEWS.txt;h=ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=HEAD
https://gitbox.apache.org/repos/asf?p=cassandra.git;a=blob;f=NEWS.txt;h=ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=HEAD
https://gitbox.apache.org/repos/asf?p=cassandra.git;a=blob;f=NEWS.txt;h=ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=HEAD
https://gitbox.apache.org/repos/asf?p=cassandra.git;a=blob;f=NEWS.txt;h=ead28f0ac3d8d93c1ad87a3b944c0c72345257c1;hb=HEAD
https://github.com/tianyin/configuration_datasets
https://github.com/tianyin/configuration_datasets
https://github.com/eviles/docker/issues/1
https://github.com/eviles/docker/issues/1
https://github.com/sspreitzer/docker-httpd-mirror/issues/1
https://github.com/sspreitzer/docker-httpd-mirror/issues/1
https://github.com/newnius/Dockerfiles/issues/4/
https://github.com/newnius/Dockerfiles/issues/4/
https://github.com/F21/hbase/issues/2
https://github.com/F21/hbase/issues/2
https://github.com/binhnv/docker-hbase/issues/1
https://github.com/binhnv/docker-hbase/issues/1
https://github.com/Boostport/hbase-phoenix-all-in-one/issues/1
https://github.com/Boostport/hbase-phoenix-all-in-one/issues/1
https://github.com/oscerd/cassandra-image/issues/1
https://github.com/oscerd/cassandra-image/issues/1
https://github.com/femiwiki/cassandra/issues/3
https://github.com/femiwiki/cassandra/issues/3
https://github.com/Babbleshack/docker-hadoop-yarn/issues/1
https://github.com/Babbleshack/docker-hadoop-yarn/issues/1
https://github.com/jamesmcclain/HadoopDocker/issues/8
https://github.com/jamesmcclain/HadoopDocker/issues/8
https://github.com/vitessio/vitess/issues/5056
https://github.com/vitessio/vitess/issues/5056
https://github.com/madflojo/cassandra-dockerfile/issues/1
https://github.com/madflojo/cassandra-dockerfile/issues/1
https://github.com/publicisworldwide/docker-stacks/issues/31
https://github.com/publicisworldwide/docker-stacks/issues/31
https://bugs.mysql.com/bug.php?id=94487
https://bugs.mysql.com/bug.php?id=94487
https://money.cnn.com/2017/11/06/technology/business/internet-outage-comcast-level-3/index.html
https://money.cnn.com/2017/11/06/technology/business/internet-outage-comcast-level-3/index.html
https://money.cnn.com/2017/11/06/technology/business/internet-outage-comcast-level-3/index.html
https://hub.docker.com/

[29] Weihang Jiang, Chongfeng Hu, Shankar Pasupathy,
Arkady Kanevsky, Zhenmin Li, and Yuanyuan Zhou.
Understanding customer problem troubleshooting from
storage system logs.

[30] Yu Jin, Nick Duffield, Alexandre Gerber, Patrick
Haffner, Subhabrata Sen, and Zhi-Li Zhang. Nevermind,
the problem is already fixed: proactively detecting and
troubleshooting customer dsl problems. In Proceedings
of the 6th International Conference on emerging Net-
working EXperiments and Technologies, page 7. ACM,
2010.

[31] Emre Kiciman and Yi-Min Wang. Discovering cor-
rectness constraints for self-management of system con-
figuration. In International Conference on Autonomic
Computing, 2004. Proceedings., pages 28–35. IEEE,
2004.

[32] Ben Maurer. Fail at scale: Reliability in the face of rapid
change. ACM Queue, 13(8):30, 2015.

[33] Valerie Mendoza and David G Novick. Usability over
time. In Proceedings of the 23rd annual international
conference on Design of communication: documenting
& designing for pervasive information, pages 151–158.
ACM, 2005.

[34] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and
Onur Mutlu. A large scale study of data center network
reliability. In Proceedings of the Internet Measurement
Conference 2018, pages 393–407. ACM, 2018.

[35] Sarah Nadi, Thorsten Berger, Christian Kästner, and
Krzysztof Czarnecki. Mining configuration constraints:
Static analyses and empirical results. In Proceedings
of the 36th International Conference on Software Engi-
neering, pages 140–151. ACM, 2014.

[36] David G Novick and Karen Ward. Why don’t people
read the manual? In Proceedings of the 24th annual
ACM international conference on Design of communi-
cation, pages 11–18. ACM, 2006.

[37] David Oppenheimer, Archana Ganapathi, and David A
Patterson. Why do internet services fail, and what can
be done about it? In USENIX symposium on internet
technologies and systems, volume 67. Seattle, WA, 2003.

[38] OWASP. Top 10-2017 a6-security misconfigura-
tion. https://www.owasp.org/index.php/Top_10-
2017_A6-Security_Misconfiguration, 2017.

[39] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie,
Stephen Oney, and Amit Paradkar. Inferring method
specifications from natural language api descriptions.
In Proceedings of the 34th International Conference
on Software Engineering, pages 815–825. IEEE Press,
2012.

[40] C Perrow. Normal accidents: living with high-risk tech-
nologies (basic, new york). 1984.

[41] Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-
Rotaru, Mingshi Wang, Liyuan Zhang, and Navendu
Jain. Confseer: leveraging customer support knowledge
bases for automated misconfiguration detection. Pro-
ceedings of the VLDB Endowment, 8(12):1828–1839,
2015.

[42] Andrew Quinn, David Devecsery, Peter M Chen, and
Jason Flinn. Jetstream: Cluster-scale parallelization
of information flow queries. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 451–466, 2016.

[43] Ariel Rabkin and Randy Katz. Precomputing possible
configuration error diagnoses. In Proceedings of the
2011 26th IEEE/ACM International Conference on Au-
tomated Software Engineering, pages 193–202. IEEE
Computer Society, 2011.

[44] Ariel Rabkin and Randy Katz. Static extraction of pro-
gram configuration options. In 2011 33rd International
Conference on Software Engineering (ICSE), pages 131–
140. IEEE, 2011.

[45] Ariel Rabkin and Randy Howard Katz. How hadoop
clusters break. IEEE software, 30(4):88–94, 2013.

[46] James Reason. Human error. Cambridge university
press, 1990.

[47] Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron
Shim, and Ruzica Piskac. Synthesizing configura-
tion file specifications with association rule learning.
Proceedings of the ACM on Programming Languages,
1(OOPSLA):64, 2017.

[48] Mark Santolucito, Ennan Zhai, and Ruzica Piskac. Prob-
abilistic automated language learning for configuration
files. In International Conference on Computer Aided
Verification, pages 80–87. Springer, 2016.

[49] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan
Zhou. /* icomment: Bugs or bad comments?*. In ACM
SIGOPS Operating Systems Review, volume 41, pages
145–158. ACM, 2007.

[50] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. acom-
ment: mining annotations from comments and code
to detect interrupt related concurrency bugs. In 2011
33rd International Conference on Software Engineering
(ICSE), pages 11–20. IEEE, 2011.

[51] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-
achalam, Akshay Chander, Zhe Wen, Aravind
Narayanan, Patrick Dowell, and Robert Karl. Holistic

278 2020 USENIX Annual Technical Conference USENIX Association

https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration

configuration management at facebook. In Proceedings
of the 25th Symposium on Operating Systems Principles,
pages 328–343. ACM, 2015.

[52] TechCrunch. Facebook blames a server configuration
change for yesterday’s outage. https://shorturl.at/
opuEG, 2019.

[53] virtualizationreview. Configuration error leads
to another amazon web services data breach.
https://virtualizationreview.com/articles/
2017/06/21/configuration-error-leads-to-
another-aws-data-breach.aspx, 2017.

[54] Helen J Wang, John C Platt, Yu Chen, Ruyun Zhang,
and Yi-Min Wang. Automatic misconfiguration trou-
bleshooting with peerpressure. In OSDI, volume 4,
pages 245–257, 2004.

[55] Shu Wang, Chi Li, Henry Hoffmann, Shan Lu, William
Sentosa, and Achmad Imam Kistijantoro. Understand-
ing and auto-adjusting performance-sensitive config-
urations. In Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), vol-
ume 53, pages 154–168. ACM, 2018.

[56] Yi-Min Wang, Chad Verbowski, John Dunagan,
Yu Chen, Helen J Wang, Chun Yuan, and Zheng Zhang.
Strider: A black-box, state-based approach to change
and configuration management and support. Science of
Computer Programming, 53(2):143–164, 2004.

[57] Andrew Whitaker, Richard S Cox, and Steven D Gribble.
Configuration debugging as search: Finding the needle
in the haystack. In OSDI, volume 4, pages 6–6, 2004.

[58] Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu,
and Lin Tan. Dase: Document-assisted symbolic ex-
ecution for improving automated software testing. In
Proceedings of the 37th International Conference on
Software Engineering-Volume 1, pages 620–631. IEEE
Press, 2015.

[59] Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao
Shen, Haochen Huang, Tianyin Xu, Yuanyuan Zhou,
Cindy Moore, Xinxin Jin, and Tianwei Sheng. Towards
continuous access control validation and forensics. In
Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 113–
129, 2019.

[60] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou,
Shankar Pasupathy, and Rukma Talwadker. Hey, you
have given me too many knobs!: understanding and deal-
ing with over-designed configuration in system software.

In Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering, pages 307–319. ACM,
2015.

[61] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou,
Shan Lu, Long Jin, and Shankar Pasupathy. Early detec-
tion of configuration errors to reduce failure damage. In
OSDI, pages 619–634, 2016.

[62] Tianyin Xu, Han Min Naing, Le Lu, and Yuanyuan Zhou.
How do system administrators resolve access-denied
issues in the real world? In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems,
pages 348–361. ACM, 2017.

[63] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tian-
wei Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar
Pasupathy. Do not blame users for misconfigurations.
In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 244–259. ACM,
2013.

[64] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou,
Lakshmi N Bairavasundaram, and Shankar Pasupathy.
An empirical study on configuration errors in commer-
cial and open source systems. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 159–172. ACM, 2011.

[65] Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng
Zhang, Yi-Min Wang, and Wei-Ying Ma. Automated
known problem diagnosis with event traces. In ACM
SIGOPS Operating Systems Review, volume 40, pages
375–388. ACM, 2006.

[66] Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang,
Chad Verbowski, and Arunvijay Kumar. Context-based
online configuration-error detection. In Proceedings of
the 2011 USENIX conference on USENIX annual tech-
nical conference, pages 28–28. USENIX Association,
2011.

[67] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang,
Lin Tan, Jianhua Zhao, and Feng Qin. Automatic model
generation from documentation for java api functions.
In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 380–391. IEEE,
2016.

[68] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xi-
aolan Zhang, Niyu Ge, Vasanth Bala, Tianyin Xu, and
Yuanyuan Zhou. Encore: Exploiting system envi-
ronment and correlation information for misconfigu-
ration detection. Proceedings of the Eighteenth In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 42(1):687–700, 2014.

USENIX Association 2020 USENIX Annual Technical Conference 279

https://shorturl.at/opuEG
https://shorturl.at/opuEG
https://virtualizationreview.com/articles/2017/06/21/configuration-error-leads-to-another-aws-data-breach.aspx
https://virtualizationreview.com/articles/2017/06/21/configuration-error-leads-to-another-aws-data-breach.aspx
https://virtualizationreview.com/articles/2017/06/21/configuration-error-leads-to-another-aws-data-breach.aspx

[69] Sai Zhang and Michael D Ernst. Automated diagnosis
of software configuration errors. In Proceedings of the
2013 International Conference on Software Engineering,
pages 312–321. IEEE Press, 2013.

[70] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. Infer-
ring resource specifications from natural language api
documentation. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engi-

neering, pages 307–318. IEEE Computer Society, 2009.

[71] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Se-
bastiano Panichella, and Harald Gall. Analyzing apis
documentation and code to detect directive defects. In
Proceedings of the 39th International Conference on
Software Engineering, pages 27–37. IEEE Press, 2017.

280 2020 USENIX Annual Technical Conference USENIX Association

Reverse Debugging of Kernel Failures in Deployed Systems

Xinyang Ge
Microsoft Research

Ben Niu
Microsoft

Weidong Cui
Microsoft Research

Abstract
Post-mortem diagnosis of kernel failures is crucial for op-

erating system vendors because kernel failures impact the
reliability and security of the whole system. However, de-
bugging kernel failures in deployed systems remains a chal-
lenge because developers have to speculate the conditions
leading to the failure based on limited information such as
memory dumps. In this paper, we present Kernel REPT, the
first practical reverse debugging solution for kernel failures
that is highly efficient, imposes small memory footprint and
requires no extra software layer. To meet this goal, Ker-
nel REPT employs efficient hardware tracing to record the
kernel’s control flow on each processor, recognizes the con-
trol flow of each software thread based on the context switch
history, and recovers its data flow by emulating machine in-
structions and hardware events such as interrupts and excep-
tions. We design, implement, and deploy Kernel REPT on
Microsoft Windows. We show that developers can use Ker-
nel REPT to do interactive reverse debugging and find the
root cause of real-world kernel failures. Kernel REPT also
enables automatic root-cause analysis for certain kernel fail-
ures that were hard to debug even manually. Furthermore,
Kernel REPT can proactively identify kernel bugs by check-
ing the reconstructed execution history against a set of pre-
determined invariants.

1 Introduction

Post-mortem diagnosis of software failures in deployed sys-
tems is becoming increasingly important for today’s software
development process. Many software vendors such as Mi-
crosoft and Apple have insider programs to test their latest
software before it is released to the general public. Soft-
ware developers rely more and more on debugging failures
reported from early adopters to fix critical issues before ev-
ery software release. In particular, the operating system is
of the utmost importance because it is the foundation of the
software stack and its bugs can have catastrophic impact on
the reliability and security of the whole system.

Debugging kernel failures in deployed systems has been a
challenge. The fundamental reason is that developers have to
speculate on the conditions leading up to the failure based on
the limited information available for post-mortem diagnosis
such as crashing stacks or memory dumps. The complex-
ity of the kernel makes developers’ speculation ineffective
in many cases. For example, the Windows kernel checks a
set of invariants upon returning to the user mode, and termi-
nates the system if any invariant is violated. Such a failure
leaves developers an empty call stack, which makes it almost
impossible to debug.

This motivates us to build a practical solution that enables
developers to go back in time and examine the root cause of
kernel failures in deployed systems. Reverse debugging is
not a new idea [5,10], and researchers and practitioners have
developed record and replay solutions that can precisely log
the execution of the whole system [16, 21, 22, 28]. How-
ever, existing whole-system record and replay solutions re-
quire the target operating system to run on top of emula-
tion or virtualization, use an excessive amount of memory
and storage space to support the record and replay, and in-
troduce significant performance slowdown. On contrary, a
practical reverse debugging solution for deployed systems
must be able to provide a high-fidelity execution history for
post-mortem diagnosis while meeting the requirements of
low performance overhead, small memory footprint, no addi-
tional setup of software emulation or virtualization, minimal
change to the operating system, and zero compromise on the
backward compatibility with existing applications.

In this paper, we present Kernel REPT, the first practical
solution for reverse debugging of kernel failures in deployed
systems. It is an extension of REPT [19], a reverse de-
bugging solution for user-mode applications. Kernel REPT
leverages online hardware tracing to log the control flow of
kernel executions and performs an offline binary analysis to
recover the data flow. By configuring the hardware to trace
the target kernel inside the kernel itself, Kernel REPT avoids
the extra layer of software emulation or virtualization, has
the minimal change to the target operating system, and is

USENIX Association 2020 USENIX Annual Technical Conference 281

fully compatible with existing applications. Furthermore,
hardware tracing is shown to be efficient [27].

Kernel REPT traces the kernel execution on each CPU
core instead of on each software thread as done in REPT.
This helps Kernel REPT achieve a small memory footprint
because the number of CPU cores is much less than the num-
ber of software threads in a system. In this tracing configura-
tion, one trace buffer may contain traces of multiple threads
and the trace of one thread may span multiple trace buffers.
To allow reverse debugging over the execution of a thread,
Kernel REPT requires the context switch history to assem-
ble the trace of the thread. However, Kernel REPT cannot
infer the context switch history based on the control flow or
the memory dump. Instead, Kernel REPT logs the context
switch events during runtime and uses them to reconstruct
the execution of a given thread during offline analysis. This
way Kernel REPT can provide reverse debugging over the
execution of a thread on top of the core-based tracing.

REPT performs forward and backward instruction emula-
tion to recover the program’s data flow, however, it is insuf-
ficient to just emulate the semantics of machine instructions
in Kernel REPT. This is because a processor modifies the
kernel state when a hardware event such as interrupts or ex-
ceptions occurs. To correctly recover the kernel state, Ker-
nel REPT needs to emulate the semantics of these hardware
events properly. However, these hardware events are not ex-
plicitly logged in the control flow trace, and different events
may make different changes to the kernel state. Kernel REPT
solves this problem by leveraging the kernel configuration of
hardware event handlers. For instance, Kernel REPT can tell
a page fault just happened when the page fault handler is ex-
ecuted as shown in the control flow trace.

We implement Kernel REPT and deploy it on a billion de-
vices running Microsoft Windows. Our experiments show
that Kernel REPT is efficient as it incurs less than 10% slow-
down for microbenchmarks and 2% slowdown for applica-
tions like Nginx and Chrome. Windows kernel developers
use Kernel REPT to debug real-world kernel failures and find
the root cause of some kernel bugs that have existed for a
decade and caused innumerable failures.

The usage of Kernel REPT is not limited to interactive
reverse debugging. To this end, we develop an automatic
root-cause analysis for a common class of kernel failures
where the kernel fails when it detects that certain resources
are not properly released before returning to the user mode.
This class of failures is hard to debug even manually without
Kernel REPT because the kernel stack is empty when a fail-
ure happens. Based on the execution history reconstructed
by Kernel REPT, our analysis can automatically identify the
buggy function for 136 out of 188 real-world kernel failures
of this class. This automatic root-cause analysis is deployed
as part of Microsoft’s error reporting service [24].

The reconstructed kernel execution history can enable not
only automatic root-cause analysis but also proactive bug de-

tection. A common kernel bug pattern is that the exception
handling code fails to properly release resources acquired
during the execution wrapped in the try block. We build a
hybrid analysis to proactively look for this bug pattern by
dynamically analyzing the execution in a try block and stati-
cally analyzing the code in the exception handling block. By
analyzing thousands of real-world kernel execution histories,
our hybrid analysis finds 17 new bugs in the Windows kernel,
and all of them are confirmed and fixed.

2 Overview

The goal of Kernel REPT is to reconstruct the execution his-
tory of kernel failures in deployed systems for effective post-
mortem diagnosis without incurring noticeable runtime over-
head. As an extension of REPT [19], it utilizes hardware
tracing to log the kernel’s control flow to a circular buffer at
runtime, and recovers its data flow by running binary anal-
ysis on the recorded control flow and the memory dump of
a failure. In the rest of this section, we first provide a back-
ground of REPT. Then we discuss the challenges faced by
Kernel REPT.

2.1 REPT
REPT shows a promising way to do reverse debugging for
user-mode failures in deployed systems. REPT logs a pro-
gram’s control flow into a per-thread circular buffer with low
runtime overhead via hardware tracing (e.g., Intel Processor
Trace [18]), and then recovers its data flow offline by com-
bining the control flow with the memory dump taken at the
failure point. To do so, REPT runs an iterative binary anal-
ysis that performs forward and backward instruction emula-
tion on the recorded instruction sequence to infer the pro-
gram state before every instruction based on the final state
stored in the memory dump. REPT checks for conflicts dur-
ing the execution history reconstruction and performs error
corrections based on heuristics. REPT also supports multi-
threaded programs by merging the instruction sequences of
different threads into a partially ordered single instruction se-
quence based on the fine-grained timestamps logged by the
hardware tracing, and limiting the use of concurrent shared
memory writes in the binary analysis if their exact order can-
not be determined. The reconstructed execution history is
not perfect, but it is shown that REPT achieves high accu-
racy and enables effective reverse debugging of real-world
application failures.

To illustrate how REPT works, we show an example bor-
rowed from the REPT paper [19, Figure 2] in Figure 1. This
example has 5 instructions in the control-flow trace (I1..I5).
The program state Si represents the state after the execu-
tion of instruction Ii. Therefore, the final program state S5
stored in the memory dump has rax=3, rbx=0, and [g]=3.
REPT performs backward and forward analysis iteratively

282 2020 USENIX Annual Technical Conference USENIX Association

Iteration 1 Iteration 2 Iteration 3
S0 ↑ {rax=?, rbx=?, [g]=3}→ ↑ {rax=?, rbx=?, [g]=2}

I1 lea rbx, [g] S1 ↑ {rax=?, rbx=?, [g]=3} ↓ {rax=?, rbx=g, [g]=3} ↑ {rax=?, rbx=g, [g]=2}
I2 mov rax, 1 S2 ↑ {rax=?, rbx=?, [g]=3} ↓ {rax=1, rbx=g, [g]=3} ↑ {rax=1, rbx=g, [g]=2}
I3 add rax, [rbx] S3 ↑ {rax=3, rbx=?, [g]=3} ↓ {rax=3, rbx=g, [g]=3} ↑ {rax=3, rbx=g, [g]=?}
I4 mov [rbx], rax S4 ↑ {rax=3, rbx=?, [g]=3} ↓ {rax=3, rbx=g, [g]=3} ↑ {rax=3, rbx=g, [g]=3}
I5 xor rbx, rbx S5 ↑ {rax=3, rbx=0, [g]=3} ↓ {rax=3, rbx=0, [g]=3}→

Figure 1: “This example shows how REPT’s iterative analysis recovers register and memory values when there exist irreversible
instructions with memory accesses. We use “?” to represent “unknown”, and use “g” to represent the memory address of a
global variable. Some values are in bold-face because they represent key updates in the analysis. We skip the fourth iteration
which will recover [g]’s value to be 2 due to the space constraint.” [19, Figure 2]

to recover data values. In the first iteration, REPT does not
update the global variable [g] in S3 because rbx’s value is
unknown. In the second iteration, there is a conflict for rax’s
value in S3. Its original value is 3, but the forward analysis
would infer value 4 for it (rax + [g] = 1 + 3 = 4). REPT
keeps the original value of 3 because it is from the final pro-
gram state stored in the memory dump. In the third iteration,
REPT recovers [g]’s value to be 2 based on rax’s value be-
fore and after the add instruction I3.

For the purpose of this paper, we abstract REPT as a mech-
anism that takes as the input a final machine state and its pre-
ceding instruction sequence, and outputs the recovered ma-
chine state before every instruction with high accuracy. Ker-
nel REPT leverages this data recovery mechanism to enable
reverse debugging of kernel failures.

2.2 Challenges

A straw-man solution to support reverse debugging of kernel
failures is to modify REPT to trace the kernel execution of
each software thread and run the same binary analysis on a
kernel memory dump. However, this simple solution does
not work for two reasons.

First, it incurs unacceptable memory overhead. The ker-
nel is shared by all threads on a system and allocating a
trace buffer for each of them can consume an unpredictable
amount of memory, especially when a system can have thou-
sands or even tens of thousands of threads.

Second, the kernel has to handle hardware events of which
user-mode applications are unaware. For instance, interrupts
and exceptions can change the kernel’s stack layout with-
out executing any explicit instruction. The details of these
hardware events such as the exception vector are not logged
by the hardware tracing. However, such information is im-
portant for the data flow recovery because different types of
hardware events have different architectural effects that must
be emulated.

3 Kernel REPT

In this section, we present the design of Kernel REPT. We
first describe how Kernel REPT avoids excessive memory
consumption via per-core tracing while still allowing reverse
debugging over the execution of a thread. Then we present
how Kernel REPT handles hardware events when perform-
ing the offline binary analysis to recover the data flow.

3.1 Per-Core Tracing

To minimize the memory footprint, Kernel REPT chooses to
do per-core tracing instead of per-thread tracing for the ker-
nel. That is, Kernel REPT allocates a circular trace buffer
for each logical core and logs the kernel-mode execution on
a core to its corresponding buffer. Kernel REPT does not
log the control flow of user-mode executions because the ac-
tual machine code executed in the user mode is not directly
related to the root cause of kernel failures. Per-core trac-
ing ensures that Kernel REPT’s memory usage is linear in
the number of logical cores on a system, and the number of
logical cores is fixed and small compared to the number of
software threads. This allows Kernel REPT to configure a
large trace buffer for each core when necessary without the
risk of exhausting the memory.

Per-core tracing does come with its own problems. It is
more intuitive for developers to follow the execution on a
software thread as opposed to a hardware core. On a mul-
tiprocessor system, per-core tracing may mix traces of dif-
ferent threads into one trace buffer and spread the trace of a
single thread into multiple trace buffers. This requires Ker-
nel REPT to obtain the context switch history to identify the
trace of a single thread.

Ideally, Kernel REPT should recover the context switch
history from a per-core trace by leveraging the binary analy-
sis. However, the binary analysis cannot effectively reverse
the context switch routine because the scheduling history is
neither preserved in the memory dump nor can be inferred
from the recorded instruction sequence. We show the pseudo
code of a typical context switch routine in Figure 2. The con-
text switch routine saves the register context of the previous

USENIX Association 2020 USENIX Annual Technical Conference 283

1 ; pseudo code for context switch
2 ; rdi points to the old thread
3 ; rsi points to the new thread
4 push rax ; save GPRs
5 push rbx
6 ...
7 mov KernelStack[rdi], rsp ; switch stack
8 mov rsp, KernelStack[rsi]
9 ... ; restore GPRs

10 pop rbx
11 pop rax
12 ret

Figure 2: Pseudo code for context switch. Basically, the con-
text switch routine saves the register context to the previous
thread’s stack and the stack pointer to the previous thread’s
internal data structure, and then restores the context of the
new thread by doing the opposite operations.

Type Origin Details

Interrupt User/Kernel Vector number
Exception User/Kernel Vector number

Syscall User N/A

Table 1: Information about hardware events needed for soft-
ware emulation.

thread on its stack, swaps the stack pointer, and then restores
the register context of the newly scheduled thread to resume
its execution. In this process, the context switch routine does
not save the information about the previous thread before re-
suming the execution of the new thread, and hence the binary
analysis is unable to recover the scheduling history. This also
makes the binary analysis ineffective when applied directly
to the per-core trace because the register values before a con-
text switch cannot be recovered. Therefore, Kernel REPT
chooses to log the context switch history in software.

3.2 Handling Hardware Events

The operating system manages hardware resources and has
to handle hardware events. Therefore, the architectural ef-
fects of these hardware events, which are transparent to user-
mode execution, are part of the kernel-mode execution and
must be emulated when running the binary analysis for ker-
nel data recovery.

Different hardware events have different architectural ef-
fects, and Kernel REPT has to understand the semantics of
each hardware event for emulation. We list the information
about the hardware events required for software emulation
in Table 1. Specifically, Kernel REPT has to not only tell the
type of a hardware event, but also infer whether this event
occurred in the user or kernel mode and what it was about.

To do so, Kernel REPT first infers the occurrence of a
hardware event based on the hardware trace. Given that Ker-
nel REPT only traces the kernel-mode execution, hardware
tracing will be paused when the execution returns to the user
mode, and resumed when the execution enters the kernel
mode. Therefore, the signal of tracing being resumed already
indicates the occurrence of a hardware event—a system call
or an interrupt/exception happening in the user mode. The
hardware trace logs the occurrence of an asynchronous event
during the kernel execution. Kernel REPT uses such infor-
mation to detect the occurrence of an interrupt or exception
in the kernel mode.

Next, Kernel REPT needs to infer additional information
about a hardware event such as its type and the vector num-
ber for an interrupt. The Windows kernel configures the han-
dlers for these hardware events at the boot time and never
reconfigures the settings throughout the rest of its lifetime.
Kernel REPT assumes this invariant holds for the vast ma-
jority of kernel failures under non-adversarial scenarios, and
determines the event type as well as the vector number for
interrupts/exceptions by comparing the control flow to the
kernel configuration stored in the memory dump.

Finally, Kernel REPT emulates the architectural effect of
these events according to the hardware specification. Kernel
REPT performs the emulation during the binary analysis as
if it were emulating a special instruction. However, not all
data values are available to Kernel REPT when emulating a
hardware event. For example, when emulating an exception
from the user mode, Kernel REPT does not know the user-
mode instruction that triggers the exception, so it cannot fill
up all fields of the trap frame. Similarly, Kernel REPT does
not log the parameters of system calls, so it does not nec-
essarily have the register context of a system call event if it
cannot be recovered from the memory dump. In these cases,
Kernel REPT simply marks the register and memory values
as unknown to avoid propagating stale values during the bi-
nary analysis.

4 Automatic Analyses

In this section, we present two automatic analyses enabled by
Kernel REPT. The first analysis is an automatic root-cause
analysis that can identify the buggy function for a specific
class of kernel failures. The second analysis is a hybrid anal-
ysis that can proactively detect bugs that may lead to this
class of kernel failures.

4.1 Root-Cause Analysis
A common kernel bug is that calls to do operations (e.g.,
resource acquisition) are not matched by calls to undo op-
erations (e.g., resource release). For example, if the kernel
disables interrupts before entering a critical region but fails
to re-enable interrupts after leaving the critical region, the

284 2020 USENIX Annual Technical Conference USENIX Association

system will crash eventually. Despite the simple nature of
this failure type, it is difficult to debug kernel failures caused
by these bugs simply based on a memory dump. The key
challenge is that the buggy function that missed the undo
operation may have returned a long time ago. Without an ex-
ecution history, it is hard to infer which function could be the
buggy one. Particularly, the Windows kernel checks if there
is a missing undo operation (e.g., resource not released) be-
fore it returns to the user mode. A failed check leaves devel-
opers an empty call stack, which makes it almost impossible
to debug. What makes the matter worse is that some opera-
tions allow recursion by maintaining a counter for all pend-
ing do operations (e.g., recursive lock). This requires the
developers to match the do and undo operations in a poten-
tially long history before they can identify the unmatched do
operation, which further complicates the diagnosis process.

The root-cause analysis identifies the buggy function that
misses the undo operation by searching along the execu-
tion history to find the first function where a specified value
changes between the function entry and return. For exam-
ple, to detect when the kernel fails to re-enable the inter-
rupts upon exiting a critical section, the analysis checks for
the interrupt enablement at each function entry and return,
and reports the first one that has a mismatched value. How-
ever, there are exceptions to the above analysis because some
functions are designed to just perform the do or undo opera-
tion. For example, if enabling/disabling interrupts is imple-
mented in a library function, then the function is expected to
modify the value between its entry and return. The library
functions that are designed to perform only a do or undo
operation are relatively stable across kernel versions, so we
maintain a whitelist for such functions. The root-cause anal-
ysis ignores them when searching for the buggy function.

4.2 Proactive Bug Detection

A common bug pattern that causes undo operations be-
ing missed is related to the try/catch-like primitives de-
signed to handle hardware exceptions gracefully. For exam-
ple, the Windows kernel uses Structured Exception Handling
(SEH) [9] to handle page faults when accessing a user-mode
page. An undo operation may be missed when an excep-
tion occurs if the try scope contains a do operation and the
catch scope does not have the corresponding undo opera-
tion. We show an example of this bug pattern in Figure 3.
foo calls read_user_obj in a try block to handle page
faults in case the user-mode page is not mapped with proper
permissions (line 12). read_user_obj temporarily disables
Supervisor-Mode Access Prevention (SMAP) in order to ac-
cess user-mode pages (line 4). If a page fault occurs when
read_user_obj dereferences user_ptr, the page fault han-
dler will redirect the execution back to the catch block in
foo (line 15), skipping the subsequent call to enable_smap
(line 5). The correct implementation is to apply the scope of

1 obj_t read_user_obj(int *user_ptr) {
2 obj_t obj;
3 disable_smap();
4 obj.a = *user_ptr;
5 enable_smap();
6 return obj;
7 }
8

9 int foo() {
10 obj_t obj;
11 try {
12 obj = read_user_obj(user_ptr);
13 }
14 catch {
15 return -1;
16 }
17 return 0;
18 }

Figure 3: Example code that misuses try/catch leading to a
missing undo operation.

the try block to the dereference of user_ptr instead of the
entire read_user_obj function.

Leveraging the execution history reconstructed by Kernel
REPT, we design an automatic hybrid analysis to proactively
detect bugs of this pattern. Our hybrid analysis has two steps.
First, it uses a dynamic analysis to check if there is any do
operation in a try scope based on the execution history. Sec-
ond, it uses a static analysis to check if the matching catch
scope does not have the corresponding undo operation. The
analysis identifies try and catch scopes based on the un-
wind information in the binaries [14].

The assumption behind this analysis is that a hardware ex-
ception may happen at any time within the try scope, and
missing the undo operation in the catch scope means that
the kernel would fail to restore the state if an exception hap-
pens after the do operation. Even though this assumption
may not be true for all cases, a violation implies an overuse
of the try scope that should be addressed by developers.

The hybrid analysis is accurate and effective because it
leverages execution traces from a huge number of deployed
systems. First, a try scope may include a significant amount
of execution involving multiple levels of function calls. Stat-
ically analyzing such a try scope is challenging, and our dy-
namic analysis avoids this challenge. Second, the executions
of all kernel threads (i.e., not limited to the failure thread) in a
failure report are used in the hybrid analysis. This allows the
analysis to avoid the common constraint on completeness for
dynamic analysis. Third, the code logic in the catch scope is
usually straightforward, so simple static analysis is sufficient
for checking if an expected undo operation exists.

USENIX Association 2020 USENIX Annual Technical Conference 285

5 Implementation

In this section, we describe the implementation and deploy-
ment of Kernel REPT on Microsoft Windows.

5.1 Kernel Tracing

Kernel REPT logs both the context switch history and the
control flow of the Windows kernel. To log the context
switch history, Kernel REPT leverages Event Tracing for
Windows (ETW) [4]. ETW logs the timestamp, identifiers
of both the old thread and the new thread for each context
switch event. These ETW events will be included in the
memory dump of a kernel failure.

To record the kernel’s control flow, Kernel REPT enables
Intel Processor Trace (PT) [18] on each processor core for
the kernel-mode execution at system start. We adapt the
driver from REPT to enable Intel PT for the Windows kernel.
Our driver change has roughly 2K lines of C code. We mark
the virtual memory of trace buffers as read-only to prevent
the Windows kernel from accidentally corrupting them. This
can be done because Intel PT outputs the trace directly to the
physical memory and is not subject to the page permission
we set on the virtual memory. Similar to the user-mode trac-
ing in REPT, the kernel-mode trace is stored in the memory
dump when a kernel failure is reported.

Kernel REPT currently disables multithreaded analysis for
kernel failures due to a caveat of Intel PT. The timestamp log-
ging of Intel PT cannot be configured for a specific privilege
level. Without such a privilege-level filtering, the timestamps
generated during the user-mode execution will overwrite the
kernel’s control-flow trace in the circular buffer. One possi-
ble solution is to dynamically enable and disable timestamps
in software when the processor switches between the user
and kernel mode. We leave its exploration to future work.

5.2 Trace Parsing

Intel PT encodes the control flow in a highly compact for-
mat. It requires the code binary to parse the trace to recon-
struct the control flow. Meanwhile, an operating system can
swap out kernel code pages to reclaim its underlying phys-
ical memory. This can fail the trace parsing because even
capturing the entire physical memory upon a kernel failure
can be insufficient due to the unavailability of swapped-out
code pages. One possible solution to this problem is to lock
all the kernel code pages into the physical memory, but this
will increase the memory pressure to the overall system.

In Kernel REPT, we choose to reconstruct the code pages
based on the image’s metadata stored in the memory dump
and its binary file. One disadvantage of this approach is that
it does not work for third-party drivers where the binary files
are unavailable. This is not a big issue in practice because

Time

CPU0 CPU1 CPU2 CPU3

Figure 4: An example scenario where traces of a thread are
not contiguous. Solid lines represent the execution trace of
the interesting thread. Dashed lines represent the execution
trace of other threads. Dots (•) connecting them represent
context switches. Dotted lines mean the processor was in
sleep mode and no execution trace was generated.

the code that was executed close to the failure point is usu-
ally available in the physical memory (thanks to the memory
manager’s policy).

5.3 Binary Analysis

We implement Kernel REPT’s binary analysis in 15K lines
of C++ code on top of REPT. It includes the emulation of
hardware events, the thread trace reconstruction based on
the context switch history, and the two automated analyses.
Most of the implementation is straightforward, but there are
two technical details worth mentioning here.

First, a thread’s trace may be noncontiguous with respect
to the thread’s execution. We show an example in Figure 4.
In this example, core 2 was in sleep mode for a long period
of time, and no execution trace was generated. The trace of
the target thread in its circular buffer can be obsolete and dis-
connected from the rest of the thread’s trace on other cores.
This can happen when the trace of the target thread on core 1
was overwritten by another thread, and the overwritten trace
was more recent than the trace in core 2’s trace buffer. Kernel
REPT checks for such cases based on the timestamps of con-
text switch events, and discards those disconnected traces.

Second, certain kernel instructions can be missing from
the control-flow trace when the system is running inside
a virtual machine. In a virtualized environment, guest in-
structions that can modify the system state (e.g., wrmsr) are
trapped and emulated by the hypervisor. Kernel REPT only
traces the kernel-mode execution, so its binary analysis will
be under the illusion that these instructions are skipped ac-
cording to the Intel PT trace. This can result in an inconsis-
tent state in the data flow recovery. Kernel REPT solves this

286 2020 USENIX Annual Technical Conference USENIX Association

issue by detecting VMEXIT and adding the skipped instruction
back to the instruction sequence if it is deemed as emulated
by the hypervisor. Specifically, for each asynchronous event
logged in the trace, Kernel REPT checks if there is one and
only one possible instruction between the current instruction
and the next instruction in the instruction sequence. If so,
Kernel REPT determines that the instruction is emulated by
the hypervisor, and adds it back to the instruction sequence
before running the binary analysis. This check is straightfor-
ward to implement because the hypervisor-emulated instruc-
tion is typically a non-branch instruction.

5.4 Deployment
We have deployed Kernel REPT in the ecosystem of
Microsoft Windows. The deployment of Kernel REPT
spans three parts: Windows, Windows Error Reporting
(WER) [24], and Windows Debugger [12].

On Windows, we released the kernel driver that config-
ures Intel PT tracing and the ETW context switch logger for
the kernel, and a user-mode daemon that communicates with
WER to decide when to start/stop the driver. These compo-
nents were released as part of Windows 10 version 1803.

On the WER service, we added support for requesting In-
tel PT traces for a given kernel failure. When the WER ser-
vice receives such a request, it selects devices that have re-
ported the same kernel failures in the past and are capable of
Intel PT to enable tracing for future failure reporting. The
WER service also runs the automatic root-cause analysis on
kernel failures of the specific error code [2].

On Windows Debugger, we implemented Kernel REPT’s
interactive reverse debugging by extending REPT’s debug-
ger extension. This extension allows an developer to set
breakpoints, go back and forth on the reconstructed execu-
tion history, switch to different threads, and inspect the local
and global variables.

6 Evaluation

In this section, we evaluate the performance and effective-
ness of Kernel REPT. For performance, we run both micro-
benchmarks and real-world applications with Kernel REPT
enabled to measure the runtime overhead. For effectiveness,
we evaluate Kernel REPT’s data recovery and report how it
helps developers debug real-world kernel bugs.

6.1 Performance
We evaluate the performance impact of Intel PT tracing
and context switch logging on kernel-mode execution by
running UnixBench 5.1.3 [11], ApacheBench [1] on Ng-
inx 1.17.5 [7], and JetStream 2 benchmarks [6] on Chrome
79 [3]. We choose UnixBench because it measures the
micro-level performance impact on a kernel’s key functions

Execl

File
Copy (1KB)

File
Copy (256B)

File
Copy (4KB)

Pipe Throughput

Context Switc
h

Process
Creatio

n

Syste
m

Call
0.0

2.0

4.0

6.0

8.0

10.0
Intel PT

Intel PT + CS

Figure 5: Performance overhead of running UnixBench with
Intel PT tracing and context switch logging.

such as system calls and context switches. We choose Ng-
inx and Chrome because they represent popular programs for
server and client scenarios, respectively. We run the exper-
iments on a Windows 10 (version 1903) machine equipped
with an Intel i7-6700K processor (8 logical cores) and 16GB
RAM. We allocate two separate circular buffers for each log-
ical core: a 1MB buffer for Intel PT tracing and a 128KB
buffer for context switch logging. We choose this default set-
ting empirically for experiments, but our real-world deploy-
ment allows developers to adjust the configuration as needed.

6.1.1 UnixBench

We run UnixBench on the Windows Subsystem for Linux
1 (WSL 1) [13]. WSL 1 implements Linux system calls
from the Windows kernel to run unmodified Linux ELF bi-
naries such as UnixBench. We show the performance re-
sults of UnixBench in Figure 5. For Intel PT tracing only,
the average performance overhead is 3.06% with no single
benchmark exceeding 5% overhead. With the context switch
logging enabled in addition, the average performance over-
head becomes 5.35% with the highest performance overhead
of 9.68%. In particular, three benchmarks, Execl, Context
Switch and Process Creation, have more frequent context
switches than other benchmarks. Therefore, they have higher
overhead when context switch logging is turned on.

6.1.2 Nginx

We evaluate the performance overhead of different tracing
setups on Nginx using ApacheBench. We run Nginx on
the test machine with 8 logical cores and 16GB RAM. We
use the default configuration provided by Nginx but mod-
ify worker_processes to 8 to use all the logical cores. We

USENIX Association 2020 USENIX Annual Technical Conference 287

Instructions Data Recovery

IRQL Fault (Kernel) 3,310,906 65.13%
Code Overwrite 1,151,315 73.18%
Stack Trash 315,046 65.75%
IRQL Fault (User) 9,176,219 61.56%
Stack Overflow 10,421,430 60.97%
Hardcoded Breakpoint 9,129,048 61.65%
Double Free 5,232,343 43.03%

Table 2: Kernel REPT’s data recovery rate on kernel failures
caused by notmyfault [8].

run ApacheBench on a separate client machine with 16 log-
ical cores. We use the client to make 100,000 HTTP re-
quests over 16 concurrent connections and then measure the
throughput (requests/second). We run each session 10 times
and report the average throughput. The reduction of the av-
erage throughout when the Intel PT tracing is enabled (with
or without the context switch logging) is about 2%.

6.1.3 Chrome

We run JetStream 2 benchmarks on the Chrome browser to
evaluate the performance impact on web browsing, one of
the most common client-side scenarios. There is no visible
performance slowdown when both the Intel PT tracing and
the context switch logging are enabled. We believe this is
because the benchmarks have most of their computation in
the user mode.

6.2 Effectiveness
We evaluate the effectiveness of Kernel REPT from four per-
spectives: (1) how well it can recover data; (2) how its inter-
active reverse debugging can help developers debug kernel
bugs; (3) how accurate the automatic root-cause analysis is;
(4) how well the proactive bug detection works.

6.2.1 Data Recovery

We evaluate Kernel REPT’s data recovery based on the same
metric as REPT [19]. Specifically, we measure the data re-
covery rate as the percentage of register uses (i.e., a register
used as the source operand or in the address of a memory
operand) for which the register value is recovered by Kernel
REPT. Register use is a good metric because it avoids dou-
ble counting (e.g., we only count it once when rax and rbx
are both known in an instruction mov rax,rbx) and memory
values are often loaded into registers first before being used
in an operation.

In our experiment, we trigger Windows kernel failures by
using a public utility program called notmyfault [8], which
injects a kernel driver to cause various types of failures such

1 bool get_desc(..., desc_t **p) {
2 int size;
3 bool success;
4 *p = malloc(sizeof(desc_t));
5 driver = find_driver();
6 success = (driver->op)(*p, &size);
7 return success;
8 }
9

10 void foo() {
11 desc_t *p;
12 bool success;
13 if (...) {
14 success = get_desc(..., &p));
15 } else {
16 success = get_desc(..., &p));
17 }
18 if (success) {
19 bar(p->owner->sid); // CRASH!
20 }
21 }

Figure 6: A real-world example that showcases how Kernel
REPT helps developers find bugs.

as stack overflow and double free. We pick notmyfault be-
cause its injected failures are reproducible. Our experiment
does not include the Buffer Overflow fault in notmyfault
because it cannot trigger a kernel failure on the latest Win-
dows. For each failure, we count the number instructions and
measure the data recovery rate for the crashing thread. Our
experimental results are shown in Table 2.

Kernel REPT’s data recovery rate is over 60% for all but
one failure even when some execution contains over 10 mil-
lion instructions. The Double Free case involves a series of
memory allocation/free operations. As reported in REPT,
memory allocation operations are hard to reverse because
their metadata may be completely overwritten by subsequent
free and reallocation operations. We believe this is the main
reason for the Double Free case to have a lower data recovery
rate than others.

Comparing with REPT’s data recovery on user-mode pro-
grams [19, Figure 4], we can see that Kernel REPT achieves
a similar data recovery rate for kernel failures. Note that
some recovered data may be incorrect, but we cannot directly
measure it due to the lack of a ground truth. However, we ex-
pect it to be in the same low percentage as REPT.

6.2.2 Interactive Reverse Debugging

We use a real-world case to demonstrate how Kernel REPT
can help developers debug kernel bugs through interactive
reverse debugging. This bug was introduced to the Windows
kernel more than a decade ago. It was not fixed until Ker-
nel REPT became available due to the lack of information in

288 2020 USENIX Annual Technical Conference USENIX Association

memory dumps. We show a simplified version of the code
around the bug in Figure 6. In the code snippet, foo calls
get_desc to receive a pointer to a descriptor object. De-
pending on certain conditions (line 13), the call can happen
at two places with potentially different parameters (line 14
and 16). get_desc allocates the memory for the descrip-
tor object (line 4) and finds the driver that provides the cor-
responding callback (line 5). Then, get_desc invokes the
driver’s callback function to initialize the object, which re-
turns whether the initialization succeeds and the number of
bytes being initialized (line 6). Finally, the crash happens
when foo dereferences a pointer field (owner) inside the de-
scriptor object (line 19).

To debug this kernel failure, a developer first has to de-
termine where get_desc is called (line 14 or 16). Without
Kernel REPT, a developer would need to use some auxil-
iary information to figure it out. However, with the recorded
control flow, it is straightforward to find it. The next step is
to determine the target function of the callback (line 6). This
can be challenging without the recorded control flow because
get_desc has already returned and the relevant information
may no longer be available. In fact, the actual code involves
multiple levels of indirect function calls, making the problem
even harder. With Kernel REPT, the developer can easily
reach the correct target function based on the recorded con-
trol flow. Finally, the developer has to understand how the
descriptor is mis-initialized by the callback function. In this
particular case, it turns out that the callback function does
not attempt to initialize the descriptor object at all. It just re-
turns success with the number of initialized bytes being zero.
Unfortunately, foo does not check the number of bytes being
initialized, leading to the subsequent crash caused by deref-
erencing an uninitialized pointer value. To fix this bug, the
developer changes the callback function to return an error
code indicating that the operation is not supported.

6.2.3 Root-Cause Analysis

We run the automatic root-cause analysis described in §4.1
on 377 real-world kernel failures of a specific error code [2]
reported to Microsoft over two weeks. This error code is
used by the kernel when it detects a specific resource is not
properly released upon returning to the user mode. The anal-
ysis identifies potential buggy functions in 33 kernel compo-
nents including the core OS kernel, the GUI subsystem, the
file system, and some third-party drivers. To evaluate the ac-
curacy of the root-cause analysis, we manually check each
identified buggy function either based on the source code or
the confirmation from developers. Since the source code of
third-party drivers is unavailable and it is difficult to reach
their developers, we exclude the 189 kernel failures whose
buggy functions are in a third-party driver.

We show the accuracy of the root-cause analysis for the
remaining 188 kernel failures in Table 3. The root-cause

True Blame False Blame

Try/Catch Misc. Manual Unresolved

136 12 23 17

Table 3: The accuracy of the automatic root-cause analy-
sis on 188 real-world kernel failures for which Kernel REPT
blames a function in the first-party components.

analysis correctly identifies the buggy function for 148 fail-
ures. 136 of these failures are caused by unsafe try/catch
operations and 12 of them are caused by other miscellaneous
issues (e.g., the code fails to properly clean up the state on an
error handling path). The root-cause analysis fails to identify
the true buggy function for 40 kernel failures. We manually
analyze them via interactive reverse debugging and find that
we can find the true buggy function for 23 failures. The rest
17 failures cannot be resolved due to the limited trace size or
data recovery.

While analyzing the memory dumps of the 23 failures
manually, we find that one common reason for the automatic
root-cause analysis to miss the true buggy function is that
the do and undo operation pair is tied to an object’s lifetime
instead of a function’s lifetime. For example, one way to
manage the acquisition and release of a lock is to implement
the acquire operation in a constructor function and the re-
lease operation in the corresponding destructor function. In
this case, a function can indirectly acquire the lock by cre-
ating such an object, and then passes it to another function
that releases this lock by destructing the object. If the kernel
fails to destruct the object due to programming errors, it not
only causes memory leaks but also leads to the missing undo
issue. The root cause of such programming errors can vary
case by case, and blaming the function that creates the object
and seemingly misses the destruction does not always lead
to the correct outcome. However, even in these cases, the
root-cause analysis can provide useful information to help
developers find the root cause.

6.2.4 Proactive Bug Detection

We run the proactive bug detection described in §4.2 over
2000 execution histories reconstructed from memory dumps
of real-world kernel failures. We do not limit the failure
type, and use the execution histories of all threads in a mem-
ory dump. We use memory dumps of kernel failures instead
of normal executions because they are currently the major
source of recorded real-world kernel executions.

We have found a total of 17 previously unknown kernel
bugs, and all are confirmed and fixed. For one of the bugs,
we observed an actual kernel failure caused by it a few days
after we reported it to the developer. This shows the potential
of using Kernel REPT to uncover bugs even before they are
triggered in practice.

USENIX Association 2020 USENIX Annual Technical Conference 289

7 Discussion

Kernel REPT extends REPT’s support for reverse debugging
of user-mode failures to kernel-mode failures. Therefore, it
shares two limitations with REPT. First, the reconstructed
execution history is incomplete because the circular trace
buffer only captures a fixed amount of control-flow infor-
mation before the kernel failure. Second, the reconstructed
execution history is imperfect because many instructions are
not reversible. Despite the two limitations, Kernel REPT’s
reverse debugging capability allows successful diagnosis of
many real-world kernel failures that were impossible to de-
bug before.

The automatic root-cause analysis described in §4.1 re-
quires a whitelist of functions that perform only a do or
undo operation by design. It requires manual effort to con-
struct and update the whitelist. The root-cause analysis may
have false blames due to the incompleteness of the whitelist.
In practice, we rely on developers’ feedback to keep the
whitelist up to date.

One interesting observation we have is that REPT-style re-
verse debugging is more effective for kernel-mode failures
than for user-mode failures. We believe the key reason is
that the Windows kernel operates in a more defensive man-
ner: it performs various checks of invariants in kernel state
at different times of the execution, such as checking missing
undo operations before returning to the user mode (see §4.1
for details). These checks shorten the execution between the
program defect and the program failure. This is crucial for
the effectiveness of REPT-style reverse debugging since its
reconstructed execution history is incomplete and imperfect.

8 Related Work

In this section, we discuss the previous work related to Ker-
nel REPT in three categories: record and replay, failure anal-
ysis and failure reproduction. We omit the discussion of
REPT [19] as we have covered it comprehensively in §2.1.

8.1 Record and Replay
Record and replay tools have been applied to debugging for
both user-mode applications [15, 25, 30, 33] and operating
systems [16,21–23,28,31,32,34,35]. Software-based record
and replay tools [16, 21–23, 28, 35] for operating systems
require running the whole system in a virtualized environ-
ment to log all non-deterministic inputs to the target system.
These tools are rarely deployed in production environments
because of their significant runtime overhead and compati-
bility issue. The latter is caused by the requirement for a
special setup such as installing a custom virtual machine.

Hardware-based record and replay tools [31, 32, 34] mod-
ify the underlying hardware to record the execution of a tar-
get system. For example, Flight Data Recorder (FDR) [34]

instruments the processor’s cache coherency protocol to en-
able record and replay of a multiprocessor system. The re-
quired hardware modification makes these systems expen-
sive to build and adopt in practice.

Compared to the above record and replay tools, Kernel
REPT enables effective reverse debugging for operating sys-
tems running on commodity hardware with low performance
and space overhead at runtime, making it practical for de-
ployment on real-world systems.

8.2 Failure Analysis

RETracer [20] is a triaging system for both user-mode and
kernel-mode failures. It starts with a corrupted pointer, per-
forms backward taint analysis on memory dumps, and as-
signs the blame to a function that contributes to the access
violation. RETracer uses the crashing stack as an approxi-
mate execution trace when performing backward taint anal-
ysis, so it cannot effectively analyze kernel failures with an
empty call stack.

Postmortem Symbolic Evaluation (PSE) [29] performs
static backward slicing on memory dumps to identify where
a bad pointer is originated. PSE is also limited by the infor-
mation available in the dump, and can have false positives
due to unresolved memory aliases.

SherLog [36] analyzes the log messages generated during
a failed execution to infer control and data values before the
failure point. While this approach may be useful to diag-
nose logical bugs in a program, log messages cannot be used
to diagnose low-level software bugs such as memory safety
errors. In addition, its effectiveness depends on the devel-
oper’s expertise in determining the key information to log,
which varies case by case.

Kernel REPT is complementary to the above production
failure analysis techniques. For instance, we integrated
REPT-style reverse debugging into RETracer so that the lat-
ter can run its backward taint analysis on the reconstructed
execution history to derive a more precise blame for produc-
tion failures.

8.3 Failure Reproduction

Execution Synthesis (ESD) [37] explores possible program
paths to search for inputs that can lead to the same failure.
ESD relies solely on memory dumps, and its symbolic exe-
cution [17] may not be able to solve complicated constraints
when exploring a long execution history of complex program
state. This makes it difficult to work for complex programs
such as the operating system kernel.

BugRedux [26] reproduces a production failure by instru-
menting the program to collect execution data at different
levels and employing symbolic execution to compute an in-
put leading to a similar execution. Program instrumentation

290 2020 USENIX Annual Technical Conference USENIX Association

incurs overhead even for normal executions, and symbolic
execution is known to have path explosion problems.

Kernel REPT allows developers to examine the execution
history of a kernel failure without the need to reproduce it.

9 Conclusion

We have presented the design and implementation of Kernel
REPT, the first practical solution for reverse debugging of
kernel failures in deployed systems. Kernel REPT records
the kernel’s control flow and context switch events on each
processor, and recovers its data flow on each software thread
via binary analysis. Its analysis emulates both machine in-
structions and hardware events such as interrupts and excep-
tions. In addition to the support for interactive reverse de-
bugging, we have developed two automatic analyses on top
of Kernel REPT: a root-cause analysis that can identify the
buggy function for a class of kernel failures, and a hybrid
analysis that can proactively detect bugs due to a misuse of
the try/catch primitive. We show that Kernel REPT is effi-
cient for real-world deployment and effective for debugging
real-world kernel failures.

Acknowledgments

We thank our shepherd, David Devecsery, and other review-
ers for their insightful feedback during this unprecedented
time. We are also very grateful for all the help from our
colleagues at Microsoft during the development and deploy-
ment of Kernel REPT. In particular, we thank Alan Auer-
bach, Joe Ballantyne, Harini Bandi, Abolade Gbadegesin,
Stephen Hufnagel, Mehmet Iyigun, Pedro Justo, Scott Lee,
Graham McIntyre, Timothy Misiak, Viorel Mititean, Jordi
Mola and Pin Wu for their tremendous help in making this
project a fully deployed end-to-end system.

References

[1] ApacheBench: A Complete Benchmarking and Re-
gression Testing Suite. https://httpd.apache.org/docs/
2.2/programs/ab.html.

[2] APC Index Mismatch. https://docs.microsoft.
com/en-us/windows-hardware/drivers/debugger/
bug-check-0x1--apc-index-mismatch.

[3] Chrome. https://www.google.com/chrome/.

[4] Event Tracing for Windows (ETW). https:
//docs.microsoft.com/en-us/windows/win32/etw/
about-event-tracing.

[5] GDB and Reverse Debugging. https://www.gnu.org/
software/gdb/news/reversible.html.

[6] JetStream 2. https://browserbench.org/JetStream/.

[7] Nginx. https://www.nginx.com/.

[8] NotMyFault. https://docs.microsoft.com/en-us/
sysinternals/downloads/notmyfault.

[9] Structured Exception Handling (SEH).
https://docs.microsoft.com/en-us/cpp/cpp/
structured-exception-handling-c-cpp.

[10] UndoDB: The Interactive Reverse Debugger for C/C++
on Linux and Android. https://undo.io/.

[11] UnixBench. https://github.com/kdlucas/
byte-unixbench.

[12] Windows Debugger. https://docs.microsoft.com/en-us/
windows-hardware/drivers/debugger/.

[13] Windows Subsystem for Linux (WSL). https://docs.
microsoft.com/en-us/windows/wsl/about.

[14] x64 Exception Handling. https://docs.microsoft.com/
en-us/cpp/build/exception-handling-x64.

[15] Gautam Altekar and Ion Stoica. ODR: Output-
Deterministic Replay for Multicore Debugging. In
Proceedings of the 22nd ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 193–206. ACM,
2009.

[16] Prashanth P Bungale and Chi-Keung Luk. PinOS:
A Programmable Framework for Whole-System Dy-
namic Instrumentation. In Proceedings of the 3rd In-
ternational Conference on Virtual Execution Environ-
ments (VEE), pages 137–147. ACM, 2007.

[17] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
KLEE: Unassisted and Automatic Generation of High-
coverage Tests for Complex Systems Programs. In Pro-
ceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2008.

[18] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual.

[19] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu,
Upamanyu Sharma, Ruoyu Wang, and Insu Yun.
REPT: Reverse Debugging of Failures in Deployed
Software. In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 17–32, 2018.

[20] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yan-
ick Fratantonio, and Vasileios P. Kemerlis. RETracer:
Triaging Crashes by Reverse Execution from Partial
Memory Dumps. In Proceedings of the 38th Inter-
national Conference on Software Engineering (ICSE),
2016.

USENIX Association 2020 USENIX Annual Technical Conference 291

https://httpd.apache.org/docs/2.2/programs/ab.html
https://httpd.apache.org/docs/2.2/programs/ab.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/bug-check-0x1--apc-index-mismatch
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/bug-check-0x1--apc-index-mismatch
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/bug-check-0x1--apc-index-mismatch
https://www.google.com/chrome/
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://www.gnu.org/software/gdb/news/reversible.html
https://www.gnu.org/software/gdb/news/reversible.html
https://browserbench.org/JetStream/
https://www.nginx.com/
https://docs.microsoft.com/en-us/sysinternals/downloads/notmyfault
https://docs.microsoft.com/en-us/sysinternals/downloads/notmyfault
https://docs.microsoft.com/en-us/cpp/cpp/structured-exception-handling-c-cpp
https://docs.microsoft.com/en-us/cpp/cpp/structured-exception-handling-c-cpp
https://undo.io/
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64

[21] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin,
Tim Leek, and Ryan Whelan. Repeatable Reverse En-
gineering with PANDA. In Proceedings of the 5th Pro-
gram Protection and Reverse Engineering Workshop.
ACM, 2015.

[22] George W Dunlap, Samuel T King, Sukru Cinar, Mur-
taza A Basrai, and Peter M Chen. ReVirt: Enabling
Intrusion Analysis Through Virtual-Machine Logging
and Replay. In Proceedings of the 5th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2002.

[23] George W Dunlap, Dominic G Lucchetti, Michael A
Fetterman, and Peter M Chen. Execution Replay of
Multiprocessor Virtual Machines. In Proceedings of
the 4th International Conference on Virtual Execution
Environments (VEE). ACM, 2008.

[24] Kirk Glerum, Kinshuman Kinshumann, Steve Green-
berg, Gabriel Aul, Vince Orgovan, Greg Nichols, David
Grant, Gretchen Loihle, and Galen Hunt. Debugging in
the (Very) Large: Ten Years of Implementation and Ex-
perience. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP), 2009.

[25] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu,
Zhilei Xu, Ming Wu, M Frans Kaashoek, and Zheng
Zhang. R2: An Application-Level Kernel for Record
and Replay. In Proceedings of the 8th USENIX SYmpo-
sium on Operating Systems Design and Implementation
(OSDI), 2008.

[26] Wei Jin and Alessandro Orso. BugRedux: Reproducing
Field Failures for In-House Debugging. In Proceedings
of the 34th International Conference on Software Engi-
neering (ICSE), 2012.

[27] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu.
Lazy Diagnosis of In-Production Concurrency Bugs. In
Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[28] Samuel T King, George W Dunlap, and Peter M Chen.
Debugging Operating Systems with Time-Traveling
Virtual Machines. In Proceedings of the 2005 USENIX
Annual Technical Conference (ATC), 2005.

[29] Roman Manevich, Manu Sridharan, Stephen Adams,
Manuvir Das, and Zhe Yang. PSE: Explaining Pro-
gram Failures via Postmortem Static Analysis. In Pro-
ceedings of the 12th ACM SIGSOFT 12th International
Symposium on Foundations of Software Engineering
(FSE), 2004.

[30] Ali Mashtizadeh, Tal Garfinkel, David Terei, David
Mazier̀es, and Mendel Rosenblum. Towards Practical

Default-On Multi-Core Record/Replay. In Proceedings
of the 22nd ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS), 2017.

[31] Pablo Montesinos, Luis Ceze, and Josep Torrellas. De-
Lorean: Recording and Deterministically Replaying
Shared-Memory Multiprocessor Execution Efficiently.
In Proceedings of the 35th Annual International Sym-
posium on Computer Architecture (ISCA), 2008.

[32] Satish Narayanasamy, Gilles Pokam, and Brad Calder.
Bugnet: Continuously Recording Program Execution
for Deterministic Replay Debugging. In Proceedings
of the 32nd International Symposium on Computer Ar-
chitecture (ISCA), 2005.

[33] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle
Huey, Albert Noll, and Nimrod Partush. Engineer-
ing Record and Replay for Deployability. In Proceed-
ings of the 2017 USENIX Annual Technical Conference
(ATC), 2017.

[34] Min Xu, Rastislav Bodik, and Mark D Hill. A Flight
Data Recorder for Enabling Full-System Multiproces-
sor Deterministic Replay. In Proceedings of the 30th
Annual International Symposium on Computer Archi-
tecture (ISCA). ACM, 2002.

[35] Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon,
Venkitachalam Weissman, Ganesh, and Boris Weiss-
man. Retrace: Collecting Execution Trace with Virtual
Machine Deterministic Replay. In Proceedings of the
3rd Annual Workshop on Modeling, Benchmarking and
Simulation (MoBS), 2007.

[36] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan,
Yuanyuan Zhou, and Shankar Pasupathy. SherLog:
Error Diagnosis by Connecting Clues from Run-Time
Logs. In Proceedings of the 15th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2010.

[37] Cristian Zamfir and George Candea. Execution Synthe-
sis: A Technique for Automated Debugging. In Pro-
ceedings of the 5th European Conference on Computer
Systems (EuroSys), 2010.

292 2020 USENIX Annual Technical Conference USENIX Association

Offload Annotations: Bringing Heterogeneous Computing to Existing Libraries
and Workloads

Gina Yuan, Shoumik Palkar, Deepak Narayanan, Matei Zaharia
Stanford University

Abstract
As specialized hardware accelerators such as GPUs be-

come increasingly popular, developers are looking for ways
to target these platforms with high-level APIs. One promis-
ing approach is kernel libraries such as PyTorch or cuML,
which provide interfaces that mirror CPU-only counterparts
such as NumPy or Scikit-Learn. Unfortunately, these libraries
are hard to develop and to adopt incrementally: they only
support a subset of their CPU equivalents, only work with
datasets that fit in device memory, and require developers to
reason about data placement and transfers manually. To ad-
dress these shortcomings, we present a new approach called
offload annotations (OAs) that enables heterogeneous GPU
computing in existing workloads with few or no code modifi-
cations. An annotator annotates the types and functions in a
CPU library with equivalent kernel library functions and pro-
vides an offloading API to specify how the inputs and outputs
of the function can be partitioned into chunks that fit in device
memory and transferred between devices. A runtime then
maps existing CPU functions to equivalent GPU kernels and
schedules execution, data transfers and paging. In data science
workloads using CPU libraries such as NumPy and Pandas,
OAs enable speedups of up to 1200× and a median speedup
of 6.3× by transparently offloading functions to a GPU us-
ing existing kernel libraries. In many cases, OAs match the
performance of handwritten heterogeneous implementations.
Finally, OAs can automatically page data in these workloads
to scale to datasets larger than GPU memory, which would
need to be done manually with most current GPU libraries.

1 Introduction
The public cloud has commoditized specialized hardware
such as GPUs, giving developers a new way to speed up their
applications using these new accelerators. One increasingly
popular way of doing this is to use accelerator-compatible
kernel libraries with APIs that mirror those of popular CPU
libraries. For example, in just the last two years, the Python
ecosystem has seen a rapid explosion of popular GPU li-
braries such as PyTorch [24], cuML [8] and cuDF [7], and the
RAPIDS [9] suite for data science; these libraries mirror the
APIs of popular packages such as NumPy, Scikit-Learn, and
Pandas. In keeping a familiar interface, accelerator libraries
promise a seamless path to supporting new hardware for both
new and existing applications.

Unfortunately, in reality, accelerator libraries for GPUs

are not so simple to adopt into new or existing code. First,
many of these libraries only implement a subset of function-
ality present in their CPU counterparts, e.g., because some
functions are inefficient on parallel architectures such as
GPUs [14, 15, 28]. This means that most applications must
use both CPU and accelerator libraries, thus violating the
promise of seamless integration with new hardware platforms.
In addition, small API differences mean that even supported
functions often warrant application changes. Finally, since
most accelerator libraries operate over data that fits entirely
in device memory, workloads in domains such as data science
cannot seamlessly reap the benefits of new hardware because
their working sets far outsize device memory. Developers
must manually page and transfer data between the accelerator
and CPU, or forego accelerators altogether.

In this paper, we propose offload annotations (OAs), a new
approach for incrementally integrating existing CPU libraries
with emerging accelerator libraries. With this approach, an
annotator (e.g., an application or library developer) adds an-
notations to CPU functions that specify a corresponding ac-
celerator function from an accelerator library. An underlying
runtime uses the annotations to automatically schedule func-
tions either onto the CPU or the accelerator. In our system, we
show that annotations enable end users to use both established
CPU libraries and emerging GPU libraries without having
to change their code or learn a new API. We also show that
our runtime can allow end users to invoke GPU functions
transparently even when data does not fit in accelerator mem-
ory. However, designing and leveraging annotations to offload
computation to accelerators poses a unique set of challenges.

First, applications that mix CPU and accelerator code must
be cognizant of data placement. For example, accelerator li-
braries such as PyTorch [24] can only process data resident in
device memory, and GPU-resident data has an entirely differ-
ent format than CPU-resident data. Our annotations explicitly
keep track of the device on which a particular data value re-
sides, and include a new API to let annotators specify how
to transfer data between devices. In addition, some library
functions that allocate new data, such as numpy.eye() (which
creates an identity matrix), have equivalent functions in an
accelerated library, so OAs let users explicitly identify such
functions. The runtime uses this additional information speci-
fied in OAs to ensure that data is in the correct format on each
device, helping to optimize the computation.

A second challenge in offloading functions to accelera-

USENIX Association 2020 USENIX Annual Technical Conference 293

tors is memory management. Accelerators generally have far
smaller attached memories than CPUs: this means that large
CPU-resident datasets cannot naively be copied to the accel-
erator in entirety. To address this challenge, OAs leverage
the splitting mechanism of split annotations [23], originally
used for cross function cache pipelining on the CPU, in the
new use case of paging memory. Our runtime partitions in-
puts into chunks that fit in device memory, and automatically
schedules data transfer and function invocation on partitioned
values. Values are partitioned and merged using a user-defined
splitting API. By identifying splittable functions using OAs,
developers can run existing CPU workloads across different
platforms transparently, even if the working set does not fit
in device memory. Some accelerated functions available in
libraries cannot be split into smaller computations, however,
but OAs can still offload the computation up to a certain size.

Finally, a third challenge unique to offloading functions is
determining where to execute annotated functions. Since func-
tions that execute on an accelerator must first transfer their
inputs to device memory, they have an additional associated
data transfer cost. This can negatively impact performance in
cases where the function itself executes quickly. To address
this challenge, our runtime includes a new scheduler that uses
estimates of transfer cost and compute cost to determine when
functions should be executed on the GPU vs. the CPU. We
show that simple linear cost model estimators can yield 26×
performance improvements compared to greedily executing
all supported functions on a GPU.

The adoption of annotation-based approaches has already
seen success in the past with systems such as TypeScript [12,
25]. In the TypeScript community, annotators crowdsource
and share annotations for existing libraries. Unlike approaches
that require building a complete end-to-end compiler, such as
Weld [22] or Delite [31], the annotation-based approach also
allows annotators to incrementally add support for individual
accelerated functions. We hope to see a similar community
develop around OAs to bridge existing CPU libraries with
their accelerator library equivalents.

We implemented OAs by extending the Python runtime for
split annotations, Mozart [23]. Our extended runtime, Bach,
considers the challenges unique to offloading computation
to capture device placement information and schedule com-
putation in a heterogeneous setting. We evaluate OAs by
integrating several CPU-only data processing libraries with
their GPU library equivalents: PyTorch and cuPy for NumPy,
cuDF for Pandas, and cuML for Scikit-learn. Our integration
experience demonstrates the generality of OAs for popular
data science libraries, and the minimal developer effort in-
volved that requires little to no code modifications. On data
science workloads ranging from options pricing to principal
components analysis, OAs are able to achieve up to 1200×
improvement with a median 6.3× over CPU-only code, with
few or no application changes. OAs also enable many work-
loads to use GPUs when the dataset size exceeds the GPU

Fit.
m1 = sklearn.StandardScaler()
m2 = sklearn.PCA() # or cuml.
m3 = sklearn.KNeighborsClassifier() # or cuml.
X_train = m1.fit_transform(X_train)
+ X_train = transfer(X_train, GPU)
X_train = m2.fit_transform(X_train)
+ Y_train = transfer(y_train, GPU)
m3.fit(X_train, Y_train)
+ for chunk in f:
Predict.
X_test = m1.transform(X_test)

+ X_test = transfer(X_test, GPU)
X_test = m2.transform(X_test)
result = m3.predict(X_test)

+ result = transfer(result, CPU)
plottinglib.plot(result)

Listing 1: Example data science workload using sklearn.
Lines preceeded with a + show modifications required for
using a GPU with the cuML accelerator library.

memory, which would require manually paging code with the
existing GPU computation libraries.

In summary, we make the following contributions:

• We introduce offload annotations (OAs), an interface for
heterogeneous computing with no library modifications
that allows third-party annotators to incrementally add
accelerated versions of library functions, and manages
the offload and execution of these functions on devices.
The OA interface extends split annotations with support
for representing data in different formats on different
devices and deciding when to offload a computation
based on its estimated transfer size and computation
cost.

• We describe Bach, a Python runtime that uses annota-
tions to capture a lazy task graph of program operations
and schedules execution and data transfer, including al-
locations, in order to improve application performance
while staying within the accelerator’s memory limits.

• We integrate OAs with four kernel libraries for GPU
computation, and show that they can accelerate applica-
tions by a median of 6.3× over the CPU-only version
of the library. We also compare the performance of OAs
to hand-written heterogeneous code that manually com-
bines these libraries with CPU libraries.

2 Motivating Example
To motivate the OA approach, consider the following simple
scenario: A data scientist has a machine learning workload
originally written for the CPU using sklearn. She reads the

294 2020 USENIX Annual Technical Conference USENIX Association

data from a file on disk, preprocesses the data, trains the
model, and then tests it on a real dataset (Listing 1).

As her company sends her more and more data, the data
science pipeline takes an order of magnitude longer to run.
She learns about accelerators and accelerator libraries such
as cuDF and cuML built to speed up data science workloads
using GPUs. Since the pipeline was already running on cloud
instances, the data scientist decides to move her code to an-
other instance with accelerators attached.

The online documentation for these kernel libraries
promises a seamless integration experience, offering almost
exactly the same interface as their CPU library counterparts,
but she soon discovers it is not as easy as it seems. Some of the
functions have different names, requiring her to scour the doc-
umentation for functions with the corresponding functionality.
Some functions do not have corresponding implementations
at all, and can run only with the CPU library.

Next, the data scientist analyzes the program and manu-
ally inserts data transfer statements between the GPU and
the host CPU so that data resides on the same device as the
corresponding functions. Since the inputs to the program are
usually read from another step in the pipeline, she assumes the
inputs initially reside on the CPU. Since she initializes some
of the intermediate objects herself, she allocates those directly
on the GPU. Finally, since her plotting library requires the
data to be on the CPU, she transfers the results back to the
CPU at the end of the program.

With most CPU library functions replaced with the cor-
responding GPU library functions, she is ready to run the
program, but it crashes due to insufficient GPU memory. Al-
though her dataset was small enough to fit in CPU memory,
the amount of memory attached to the GPU is significantly
smaller. She writes additional code to page the data transfers
to the GPU in the prediction phase, since the predict com-
putation can be done independently on different data batches.
The training function in the accelerator library cannot be run
in independent batches, but fortunately, her training data is
smaller than the data she predicts on, so that computation can
run as one GPU function call.

Finally, after all the developer effort required to learn and
integrate the GPU libraries, the code runs to completion, and
the data scientist receives the same results on her dataset as
when the pipeline ran only on the CPU. The performance of
her new program has also improved. Nonetheless, the data
scientist’s code is now complex (Listing 1), with many new
function calls and new control logic just to manage the GPU
computation. Furthermore, all this new logic may need to
change in the future as her workload changes or her dataset
changes in size.

3 Design Overview
With offload annotations (or OAs, Figure 1), we reduce the
developer effort for porting an existing workload to the GPU
to just importing the annotated CPU library in place of the

numpy.mul(vol, vol)
numpy.add(rsig, rate)

End User

Annotator

mul = oa(…)(torch.mul)
add = oa(…)(torch.add)

Annotated library
bach.numpy

import bach.numpy
instead of
importnumpy

Application

Bach runtime orchestrates
execution between CPU and

accelerator

Figure 1: Overview of writing and using OAs. An annotator
writes annotations to bridge a CPU library with an accelerator
library. An end user imports the new annotated library to
automatically use new accelerators in her existing code.

original CPU library. The annotator could be the kernel library
developer, the end user writing applications, or any other third-
party developer (similar to the open source contributors that
provide type definition files for libraries in TypeScript [12]).
Our system, Bach, uses the information in OAs to automati-
cally offload functions to a GPU, page large datasets, transfer
data across devices automatically, and manage allocations to
minimize data transfer for better performance.

Adding OAs to CPU libraries. First, an annotator identi-
fies a corresponding accelerator library for her CPU library
(e.g., torch for numpy). She then identifies a corresponding
accelerator function for each CPU function she wishes to an-
notate (e.g,. torch.multiply for numpy.mul). The annotator
then writes an OA for her CPU function: the OA specifies the
corresponding GPU function that should be called in place
of the CPU function, and split types for each function in-
put and output (adapted from the split types used in split
annotations [23]). Split types are an interface implemented
by an annotator that provide information about a function
input or output at runtime (e.g., the size of an array). The
annotator can also write special OAs for allocation functions
(e.g., torch.zeros for numpy.zeros), which enable data to be
allocated directly on the device where they will first be used.

OAs extend the original split type interface to provide ad-
ditional information about data placement. In particular, the
annotator must implement a new offloading API for each split
type. Most libraries only require implementing the offloading
API once per data type in the library (e.g., for ndarray in
NumPy). The offloading API specifies (1) where inputs to
a function reside before execution (e.g., in GPU memory or
CPU memory), and (2) how to transfer values from from one
device to another. Since the offloading API extends the split
annotation splitting API, it can also optionally describe how
to split and merge data for data-parallel workloads. Splitting
in OAs is used for paging data into an accelerator with limited
memory (unlike in split annotations, where splitting enables
cross-function cache pipelining on a CPU).

Once an annotator adds OAs and implements the offloading
API for the data types in the CPU library, she can share the
annotation file to allow other end users to reap their benefits.

USENIX Association 2020 USENIX Annual Technical Conference 295

Using annotated libraries. An end user integrates the an-
notated library into her code by changing the line that imports
the CPU library to import the annotated library instead (the
annotation file is just a Python module).

Generally, little to no code modification is required to use
the annotated library in place of the original CPU library. The
main difference is that Bach, our runtime, uses lazy evaluation
to optimize data transfer across many functions. OAs can
automatically evaluate lazy values in many cases (e.g., when
calling str() in Python), but an end user may have to add
evaluate()—a function automatically provided in annotated
libraries—into her code to explicitly materialize lazy values.

Bach runtime scheduler. Bach builds on split annotations’
Mozart runtime to automatically build and maintain a lazy
task graph. Internally, when a lazy value is materialized, Bach
uses OAs to automatically schedule data transfers and com-
putation, deciding the device on which to run each operation
(§5). Note that scheduling is completely packaged in our run-
time, and does not require any additional annotator or end
user code.

Although the Bach runtime defaults to greedily scheduling
operations on the GPU, the annotator may still provide custom
cost model estimators to the function annotations to assist the
runtime with making scheduling decisions. However, these
cost models are optional and are not usually required to benefit
from OAs, as shown in our evaluation.

4 Offload Annotation Interface
The offload annotation (OA) interface provides a correspond-
ing accelerator function for each function in a CPU library.
The interface also provides a mechanism to discover runtime
information about function arguments and outputs: namely,
how to split inputs into chunks that will fit in device memory,
the device on which an input is allocated before executing
annotated functions, and how inputs can be transferred be-
tween devices. This information is relayed via split types, an
abstraction from split annotations [23]. The OA interface also
includes new alloc annotations, which specify functions that
allocate new data (e.g., numpy.zeros to allocate an array of
zeros). These annotations allow further optimizations when
scheduling data transfer and are described further below.

Listing 2 shows an example of the extended offload split
type API, and Listing 3 show examples of OAs, with numpy

as the CPU library and torch as the accelerator library.

4.1 Primer: Split Types
Split types provide a mechanism that allow a runtime to dis-
cover runtime properties about a value (e.g., size of an array
or dimensions of a matrix). In split annotations, split types
are used to ensure that data is split in a consistent way across
functions to enable safe pipelining of split values. For ex-
ample, a split type will ensure that split arrays passed into a
function together still have the same lengths at runtime.

class DataFrameSplit(OffloadSpliType):
def split(start, end, value):
Splits a value to enable paging.
return value[start:end]

def merge(values):
Merges split values
return pandas.concat(values)

def size(value):
Returns number of elements in value
return len(value)

def device(value):
Specifies where this value is allocated.
Used by scheduler to decide where to run
functions.
if isinstance(value, pandas.DataFrame):
return Device.CPU

else: # if a cuDF DataFrame.
return Device.GPU

def to(value, device):
Transfers [value] to specified [device].
if device == Device.GPU:
return cudf.from_pandas(value)

else:
return value.to_pandas()

Listing 2: Example implementation of the offload split type
API for Pandas and cuDF DataFrames. The API adds two new
functions—device and to—to the original split type API.

To use split types, an annotator implements an API that the
runtime calls to interact with runtime values. In split annota-
tions, split types provide a split function to partition values
into chunks, and a merge value to merge split values together.
The API also contains a size function for discovering the
size of inputs (e.g., to determine split sizes). Listing 2 shows
an example of these functions for DataFrames. We extend
the split type API to allow our runtime to offload values onto
other devices.

When splitting and merging data in a non-trivial way, end
users must ensure the correctness of the application. Many
data science applications operating on large collections of
data, as in our workloads, are trivially parallelizable. Even
when splitting and merging is impossible due to algorithmic
correctness constraints or unavailable kernel library imple-
mentations, applications can still benefit from automatic of-
floading at smaller data sizes.

4.2 Offload Split Types
In addition to specifying how data should be split and merged,
our extended offload split types additionally specify (1) the
device on which a value is allocated, and (2) how to transfer
a value between devices.

Device API. The device method specifies the device its
input resides on. The method might check the instance type

296 2020 USENIX Annual Technical Conference USENIX Association

Offload split types for binary function inputs.
args = (NdArraySplit(), NdArraySplit())
Offload split type of return value.
ret = NdArraySplit()

OAs to provide offload split types for each
argument and return value, as well as a corresonding
accelerator function.
np.add = @oa(args, ret, func=torch.add)
np.subtract = @oa(args, ret, func=torch.sub)

Allocation function.
np.empty = @oa_alloc(NdArraySplit(), func=torch.empty)

Listing 3: Offload annotations using numpy and torch.

of the input, or properties of the input. For example, NumPy
arrays are on the CPU while CuPy arrays are on the GPU.
Torch tensors can reside on either device, and have a property
to describe where a particular value resides.

To API. The to method transfers the provided value to
the target device. This usually involves converting a CPU
library type (e.g., numpy array) to an accelerator library type
(e.g., torch tensor) using a accelerator library function (e.g.,
torch.to()). The ability to transfer values is necessary to
ensure that values reside on the device where the operation
will run.

4.3 Using Offload Split Types in Annotations
OAs assign each input and output an offload split type. Ad-
ditionally, the OA provides the name of the corresponding
accelerator library function. If the accelerator function has a
different function signature, an annotator can wrap the accel-
erator function in a lambda with an interface consistent with
the CPU function.

Example. Listing 3 shows several examples where NumPy
functions are annotated using PyTorch. The OAs assign the
two arguments of np.add and np.subtract the offload split
type NdArraySplit. This split type will define how to split,
merge, and transfer ndarray and torch.tensor values. It will
also tell Bach whether a particular value passed to these func-
tions is already on the accelerator or CPU using the device

API. The outputs of these functions also have the offload split
type NdArraySplit.

4.4 Allocation Function Annotations
One unique challenge the runtime faces is avoiding unnec-
essary data transfers, which can lead to performance degra-
dation. Consider when data is allocated on one device, and
then immediately passed to a function that can be offloaded.
In this case, it is more efficient to allocate the data directly on
the device of the following function.

To support this, OAs provide a special kind of annota-
tion, called an alloc annotation, which specify that the an-
notated function performs allocation. Like other annotated
functions, annotators provide CPU allocation functions with
an equivalent accelerator library functions (e.g., torch.zeros
for numpy.zeros). Allocation functions differ from regular
functions in one key aspect: their inputs do not need to be
annotated with offload split types. Outputs are still annotated
with a offload split type, similar to a regular function. CPU-
only split annotations did not require allocation annotations
since they did not need to avoid expensive data transfers.

Example. In Listing 3, the np.empty function allocates data:
its OA specifies a corresponding PyTorch function, but does
not provide offload split types for inputs. Its output has the
same NdArraySplit offload split type.

5 Bach Runtime
The Bach runtime uses the information in the OAs to sched-
ule and execute functions across the CPU and accelerator.
Figure 2 provides an overview of the Bach runtime.

Step 1: Construct Dataflow Graph. Bach’s first goal is to
extract a dataflow graph from the user program. To do this,
Bach uses the same approach as Mozart: when annotators ap-
ply an annotation to a function, Bach wraps it to return a lazily
evaluated placeholder object, using Python’s metaprogram-
ming facilities [23]. When placeholders objects are passed to
other annotated functions, Bach stitches these functions into
a task graph. This task graph captures dependencies between
annotated functions: an edge between two operations exists if
the output of one operation is used as an input into another.

Two scenarios trigger evaluation of the task graph. First,
Bach detects accesses to the lazy placeholder objects by inter-
cepting certain Python methods (e.g., str to convert an object
into a string, or __getitem__ to index into a collection). Inter-
nally, the placeholder object will trigger evaluation of the full
task graph required to build it, and then forward these method
invocations to the evaluated object. For example, this means
that placeholder objects will be evaluated if the user passes
them to print(). Alternatively, the user can also explicitly
call an evaluate() function to trigger execution.

Step 2: Estimate Data Size and Allocate. In order to cor-
rectly partition the data for splitting, Bach must estimate the
data size by using the size() API on the program inputs. Un-
like in Mozart, Bach can lazily allocate values to optimally
place data on the same device as the first function that uses
that value. However, if all the program inputs are lazy allo-
cations, there are no available values with which to estimate
data size. Thus Bach must allocate lazy values before starting
execution to estimate the data size.

Bach decides where to allocate each lazy value based on
the device of the first function to use the value. OAs differ
from split annotations in this regard because they need to
decide which device to run each function on. A function can

USENIX Association 2020 USENIX Annual Technical Conference 297

Evaluate

Value accessed in
unannotated function

= Allocation

= CPU

= GPU
result = m3.predict(Xtest)
plt.plot(Xtest, result)

…

❶

❷
❸

❹
❺

❻
?

?

?

Elements = 1024

Split

Merge

-- xfer GPU --

-- xfer CPU --

❶
❷

❸
❹
❺
❻

Figure 2: Overview of the steps involved in Bach’s runtime. Step 1 triggers evaluation of the dataflow graph with an access to a
lazy value. Step 2 allocates the lazily allocated nodes and estimates the program data size. Step 3 dynamically schedules the
instructions across devices, inserting data transfers and paging the inputs.

Heuristic for estimating data transfer cost.
def transfer_estimator(ty, values, device):

x = ty.size(values)
return a * x + b

Heuristic for estimating compute cost.
def compute_estimator(ty, values, device):

x = ty.size(values[0])
if device == CPU:

return a_cpu * x + b_cpu
else:

return a_gpu * x + b_gpu

Listing 4: Linear estimators for estimating data transfer and
compute cost.

run on the accelerator if it has an oa or oa_gpu annotation, and
if its inputs either can be transferred to the device or already
reside on the accelerator. All functions must be able to run on
the CPU, which is the default device.

To decide where to run this first function, Bach estimates
the data transfer costs and compute costs involved with run-
ning the function on either device and suggests the device
with the lower cost. These cost estimates are calculated us-
ing heuristic functions optionally provided by the user. The
heuristic functions are functions of the input values, their
offload split types, and the target device, and we provide a
simple linear cost model estimator (Listing 4). If cost models
are not provided or all other inputs are also lazy allocations,
Bach naively suggests the function run on the accelerator if
possible. Otherwise Bach defaults to the CPU.

Step 3: Schedule and Execute. Once the data size is esti-
mated, the operations in the task graph are converted into a
list of instructions that can be executed serially for each split
piece. To do this, the Bach runtime performs a topological

sort of the task graph to obtain a list of instructions that satisfy
data dependencies.

The device an instruction runs on is decided dynamically
right before executing the instruction. The instruction first
determines if it is eligible to run on the accelerator based on
the requirements described in the previous section. If it is
not eligible, it defaults to running on the CPU. Otherwise,
the runtime performs the same cost model analysis as when
deciding where to lazily allocate a value to determine which
device to run the instruction on. Unlike before, all the inputs
will be fully evaluated. After deciding which device to use,
the instruction transfers inputs that are on a different device
using the to() API in the offload split type for the input. Bach
discovers where inputs are prior to executing functions by
using the device() API. As before, if cost models are not
provided, Bach defaults to using the accelerator if possible.

When executing functions, Bach uses the ability to partition
data to enable paging: this allows for large, CPU-memory-
resident datasets to be streamed through device memory, even
when device memory is far smaller than the CPU memory. To
achieve this, Bach splits the inputs into chunks based on the
estimated data size and a default piece size. Inputs are split
using the split() API provided in the input’s offload split
type. For each chunk, the program executes the generated list
of instructions. The chunk is transferred to the device of the
input argument if its current device does not match the device
of the instruction. Each chunk is moved out of the device
after the functions finish executing, to free space for the next
chunk.

The final outputs are moved to the CPU by default after
execution, but the end user can elect to keep the output on the
accelerator by explicitly calling evaluate(). If paging is used
to stream data through a device, the output is always allocated
on the CPU (since it may not fit entirely in device memory).

298 2020 USENIX Annual Technical Conference USENIX Association

6 Design Discussion
As described, OAs and the Bach runtime are designed specifi-
cally for offloading computation to a single GPU using Python
kernel libraries. In this section, we discuss the possibilities
of extending OAs for use with multiple GPUs or with other
programming languages and accelerators.

Multiple GPUs. Similar to how split annotations split data-
parallel workloads across CPU cores, we can extend OAs to
automatically split computation across multiple GPUs. The
implementation would need to modify the scheduler to recog-
nize multiple GPU targets, and factor data transfer and con-
currency into scheduling decisions. We do not expect these
modifications to impact end user experience.

Non-Python programming languages. We chose to im-
plement Bach in Python since Python is one of the most
popular languages for data analysis, with a vast ecosystem of
Python GPU libraries. We believe our implementation uses
principles common to many programming languages and do
not rely on any language-specific hacks. Specifically, “an-
notations” in Python are simply functions that wrap other
functions, and the runtime logic is language-agnostic. Mozart
[23] demonstrates that the annotation framework is viable in
C++, so we imagine we could implement a similar runtime
for C++ for GPU libraries like Thrust.

Non-GPU accelerators. Any accelerator with a kernel li-
brary that closely mirrors a CPU-only library and an API to
offload data to that accelerator could potentially be suitable
for OAs. We may also be able to adapt split data in streaming
accelerators to overlap data transfer with computation like in
CUDA streams. Data transfer costs are an issue common to
many accelerators, and we could apply ideas about memory
management and data placement from OAs even if the system
cannot be used directly.

7 Library Integrations
We annotated three different CPU-only Python libraries for
data science and machine learning: NumPy, Pandas, and
Scikit-learn. The annotations used four different GPU ker-
nel libraries: CuPy, PyTorch, cuDF, and cuML. The latter two
kernel libraries are part of the RAPIDS [9] suite.

NumPy. NumPy is a library for high-level math opera-
tions on multi-dimensional arrays and matrices on the CPU.
NumPy was the most popular library in terms of number of
accelerator library equivalents. In their online documentation,
these accelerator libraries directly claim to provide a NumPy-
like API. CuPy is described as a NumPy-like API accelerated
with CUDA, while PyTorch is described as a replacement
for NumPy that leverages the power of GPUs. We integrate
NumPy with CuPy and PyTorch in two separate OA-libraries,
replacing NumPy ndarrays with CuPy ndarrays and PyTorch
tensors.

CPU-only GPU kernel LOC # Split #
library library Types Funcs

NumPy CuPy 103 1 20
NumPy PyTorch 90 1 10
Pandas cuDF 241 7 27
Scikit-learn cuML 81 2 12

Table 1: Integration effort for annotating various libraries.
Lines of code include annotations, split type transfer functions,
and splitting functions.

Pandas. Pandas is a data analytics library for operating
on structured table-like or time series data. The cuDF accel-
erator library provides a Pandas-like API. We replace Pan-
das DataFrame and Series data types with the corresponding
cuDF types.

Scikit-learn. Scikit-learn is a popular machine learning li-
brary. Machine learning is a natural fit for the GPU with its
dense linear algebra operators. The cuML library’s Python
API attempts to closely match the Scikit-learn API.

7.1 Integration Experience
From our experience, library integrations required around
130 lines of code per library (Figure 1). The most lines of
code come from implementing the offload split type API for
transferring, splitting, and combining types. However, the
split and combine API is optional if a user does not need to
page large datasets. In the simplest and most common case, an
OA requires only a single line of code per function to specify
the offload split types of inputs and outputs, and the name
of the kernel library function. These annotations resemble
boilerplate code when libraries repeat a common pattern, like
binary operations with a single output in NumPy. In more
complex function annotations, the benefit of OAs is that it
only needs to be done once in the annotated library as opposed
to every instance in every workload.

7.1.1 Straightforward Drop-In Replacements

Every library has a straightforward way to transfer data to the
appropriate device. Most accelerator library types automati-
cally reside on the GPU, so using CuPy’s ndarray or cuDF’s
DataFrame automatically transfers the data to the GPU. Scikit-
learn can use either CuPy’s ndarray or cuDF’s DataFrame as
the underlying representation. PyTorch tensors can reside on
both CPUs and GPUs, so the transfer implementation from
Numpy ndarray first converts the ndarray to a torch.Tensor

(a zero-copy cast) and then calls a method on the tensor to
transfer it to the GPU.

Just as many accelerator libraries claim to closely re-
semble the CPU libraries they attempt to replace, many
accelerator library functions are indeed a drop-in replace-
ment for the corresponding CPU library function. For ex-

USENIX Association 2020 USENIX Annual Technical Conference 299

ample, numpy.add(), cupy.add(), and torch.add() are the
same across all three libraries. Sometimes, the method names
are trivially different but represent the same functionality,
like numpy.arcsin() and torch.asin(). Scikit-learn’s API
utilizes a complex module structure that does not exist in
cuML (e.g., sklearn.decomposition.PCA vs cuml.PCA), so an-
notators sometimes must mock module structure to make
integration as seamless as possible.

7.1.2 Different Function Specifications

Even if two CPU and kernel library functions appear to be
equivalent based on name, the annotator must be careful to
ensure the function parameters and specifications are identical.
For example, the array allocation functions numpy.ones() and
torch.ones() both take a parameter dtype to specify the data
type of the array. However, NumPy can accept strings like
‘int8’ as a parameter, while PyTorch only accepts library-
defined types like torch.int8. In this case, the annotator must
write a custom wrapper that converts function parameters.

We experienced another challenge involving different func-
tion specifications when integrating Pandas with cuDF. Both
pandas.read_csv() and cudf.read_csv() read a CSV into a
DataFrame object. In Pandas, the squeeze parameter causes
the function to return a Series if the parsed data only contained
one column. To achieve the same functionality in cuDF, which
does not have this parameter, we wrote a custom function that
converted the returned DataFrame into a Series if the squeeze
parameter was included. Of the 48 parameters in v0.25.2 of
pandas.read_csv()’s documentation, others are also bound
to not exactly match the specifications in cuDF and require
special implementation.

7.1.3 Missing Functions

When a function is missing from an accelerator library,
any library annotator can annotate the library with a cus-
tom function. We implemented a custom GPU version of
the Pandas mask() function, used for replacing values in a
DataFrame based on a conditional DataFrame, by using the
series.loc[cond] = val notation from the cuDF library in-
stead. In our cuML annotations, we mimicked Scikit-learn’s
StandardScaler() model using CuPy operations for remov-
ing the mean and scaling to unit variance on the GPU. In
general, cuML’s preprocessing library is far behind Scikit-
learn’s, potentially because Scikit-learn’s functionality is easy
enough to achieve with other accelerator library functions.

In other cases, functions do not exist because the algorithm
required to provide the functionality is either impossible or
simply unsuitable for the GPU. In particular, many Pandas
functions do not work in cuDF when string operations are in-
volved, requiring the program to execute on the CPU. Though
libraries like nvStrings and cuStrings are working to close
the gap in text processing on the GPU, the state of strings on
the GPU today still requires the developer to have a deeper
understanding of its literal representation on the GPU.

Workload Ops CPU Library Max Speedup

Black-Scholes 39 NumPy1 5.7×
Black-Scholes 39 NumPy2 6.9×
Haversine 19 NumPy1 0.81×
Haversine 19 NumPy2 1.7×
Crime Index 15 Pandas 4.6×
DBSCAN 7 NumPy1/Sklearn 1200×
PCA 8 Sklearn 6.8×
TSVD 2 Sklearn 11×

Table 2: The evaluated workloads, the number of annotated
function operators, and the CPU Python libraries used by each
workload. The median speedup across workloads is 6.3× with
a maximum speedup of 1200× on DBSCAN. Annotated with
CuPy1. Annotated with PyTorch2.

7.1.4 Multi-Library Integration

Just as libraries in the Python data science ecosystem use each
other in their implementations, annotated libraries must also
be able to import and operate on other annotated libraries. In
the CPU ecosystem, Scikit-learn’s functions use the NumPy
ndarray, while in the GPU ecosystem, cuML’s functions use
the CuPy ndarray. In our annotated Scikit-learn library, we
analogously import the NdArraySplit type from our anno-
tated NumPy library to define the argument and return types
in the OAs. As OAs grow in popularity, we imagine an ecosys-
tem of increasingly-interconnected annotated libraries that
allow seamless execution across multiple devices in existing
workloads.

8 Evaluation
We ran experiments on a 56-CPU server (2× Intel E5-2690
v4) with 512GB of memory, running Linux 4.4.0. The ma-
chine has a single NVIDIA Tesla P100 GPU with 16GB of
memory and CUDA 10.2 installed. Each result is the median
of five runs, with one warm-up run omitted to initialize the
CUDA driver. Workload runtimes are measured end-to-end,
including allocation and synchronization operations at the end.
Our source code is available at https://github.com/stanford-
futuredata/offload-annotations.

8.1 Workloads
We evaluated offload annotations on a variety of workloads
adapted from common mathematical formulas, data science
library tutorials, and popular online blog posts (Table 2).

Black-Scholes [1]. Determines the theoretical value for a
large array of call or put options.

Haversine [3]. Determines the great-circle distance be-
tween points on a sphere.

Crime index [4]. Reads population and robbery data from
a file on disk and calculates a numerical crime index score.

300 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/stanford-futuredata/offload-annotations
https://github.com/stanford-futuredata/offload-annotations

DBSCAN [5]. Standardizes a dataset with 256 features
around 32 centers, and clusters the data with the DBSCAN
algorithm, analyzing the predicted labels on the CPU.

PCA [6]. Standardizes training data and reduces the di-
mensionality with PCA, then classifies the points with K-
Neighbors. Predicts the results, followed by plotting.

TSVD [10]. Applies the linear dimensionality reduction
algorithm to a synthetic dataset with 512 features.

8.2 Results
Figure 3 showcases the performance of the data science and
machine learning workloads on inputs of various sizes. We
evaluate the workloads on a CPU-only implementation, a
handwritten accelerator kernel implementation, and an anno-
tated implementation with Bach.

We verified the numerical results of the workloads for cor-
rectness against each implementation. In the machine learning
workloads, we selected parameters that produced reasonable
results given the inputs (e.g., DBSCAN predicted 32 clusters
and PCA classified points with greater than 90% accuracy).
We maintained the same parameters for each implementation
to ensure the parameters did not affect the runtime.

The results show that with less developer effort, Bach is
able to match the performance of handwritten GPU imple-
mentations, scale to larger input data sizes that normally cause
the GPU to run out of memory, and outperform CPU library
implementations. We now discuss these results in more detail.

8.2.1 Results Summary

We make three main observations.
First, Bach matches the performance of handwritten GPU

implementations in all workloads. Bach selects which CPU
library functions to offload and how to transfer data, with
minimal developer effort.

Second, Bach scales to larger input data sizes that normally
cause the handwritten GPU implementations to run out of
memory. In most workloads, Bach’s performance continues to
scale at the same rate as before the GPU implementation runs
out of memory, giving the appearance of running the same
program on a GPU with infinite memory. DBSCAN is the
only workload that cannot be split since the clustering model
must be fit on all data at once. However, this is not a significant
limitation since DBSCAN also has the largest runtime, with
Bach taking 7.5 hours to run at the largest piece size before
running out of memory, and the CPU implementation taking
considerably more for the same input size.

Third, Bach outperforms CPU implementations for almost
all workloads. One exception is Haversine Torch, which has
worse performance than the CPU implementation when pag-
ing large datasets due to the overhead from the additional data
transfers. Another exception is PCA at data sizes below 212.
We attribute this to overheads associated with initialization
and launching GPU kernels with significant launch overhead.

CPU implementations outperform Bach for other workloads
as well, but only for small input sizes when runtimes are in
milliseconds or less.

8.2.2 Runtime Distributions

Workloads that benefit from GPU acceleration are suitable
for acceleration using OAs. At a high level, the decision to
use the GPU is a tradeoff between expensive data transfers
and faster compute. The impact of OAs, and more broadly the
impact of the GPU, depends on the distribution of runtime
between data transfer, computation, and memory allocation
in each workload (Fig. 4).

Allocation. Crime Index spends 93% of its total runtime of
29.74s on allocating data. In particular, the workload reads
1GB of data into memory before performing a series of fast
numerical operations and calculating a single number, the
crime index, as an output. Managing memory allocations are
particularly important for expensive I/O operations like read-
ing files from disk. Workloads with these kinds of operations
particularly benefit from lazy allocation.

Though allocation can be fast on either device, the pri-
mary performance benefit of lazy allocation is eliminating
the additional data transfer required to move the input to the
appropriate device. At large data sizes that do not fit in GPU
memory, the initial memory must instead be allocated on the
CPU where it does fit and paged into GPU memory using
data transfers. As shown by the dotted lines in Fig. 3, beyond
a specific data size, Crime Index, Haversine Torch, and Black-
Scholes Torch all have additional overhead when paging large
data sets due to the extra initial data transfer.

When the Crime Index (Fig. 3c) dataset fits in GPU mem-
ory and the workload is able to use lazy allocation, an ad-
ditional million rows of data increases the runtime by only
50 ms, compared to 190 ms when the dataset does not fit in
GPU memory. The dataset size exceeds GPU memory beyond
227 ≈ 100 million rows. We calculated these overheads as an
average of the scaled Bach implementation runtimes for log
data sizes 21-26 and 27-31, respectively. We do not consider
data sizes below 221 to discount the small absolute scheduler
overheads that are independent of data size.

Data Transfers. Haversine CuPy and Black-Scholes CuPy
spend 52% and 60% of their total runtimes of 2.85s and 2.60s
on data transfers (Fig. 4). Both workloads apply a sequence
of fast numerical operations on large arrays initialized on
the CPU, which must be transferred to the GPU. The work-
loads output more large arrays which must be transferred
back. However, Black-Scholes still beats the CPU library im-
plementation with Bach at all sizes, meaning larger absolute
performance gains at larger input sizes.

As the less computationally-intensive workload, Haver-
sine is more significantly affected by additional data transfers
when paging large datasets, no longer beating the CPU im-
plementation at large dataset sizes. It should be noted that in

USENIX Association 2020 USENIX Annual Technical Conference 301

CPU Library GPU Library Bach

20 30
log2(data size)

10
3

10
1

10
1

10
3

R
un

tim
e

(s
ec

s)

(a) Black-Scholes (CuPy).

20 30
log2(data size)

10
3

10
1

10
1

10
3

R
un

tim
e

(s
ec

s)

(b) Black-Scholes (Torch).

20 30
log2(data size)

10
2

10
1

10
0

10
1

10
2

10
3

R
un

tim
e

(s
ec

s)

(c) Crime Index.

20 25 30
log2(data size)

10
3

10
2

10
1

10
0

10
1

10
2

R
un

tim
e

(s
ec

s)

(d) Haversine (CuPy).

20 25 30
log2(data size)

10
3

10
2

10
1

10
0

10
1

10
2

R
un

tim
e

(s
ec

s)

(e) Haversine (Torch).

10 20
log2(data size)

10
3

10
1

10
1

10
3

10
5

R
un

tim
e

(s
ec

s)

(f) DBSCAN.

5 10 15
log2(data size)

10
2

10
1

10
0

10
1

10
2

10
3

R
un

tim
e

(s
ec

s)
(g) PCA.

10 15 20
log2(data size)

10
2

10
1

10
0

10
1

10
2

R
un

tim
e

(s
ec

s)

(h) TSVD.

Figure 3: Runtime vs. input data size for the workloads in Table 2. Bach is able to match the performance of the corresponding
GPU library for most applications. The framework in parentheses refers to the GPU library used by Bach in the workload. The
dotted line represents the input data size at which the GPU runs into an out-of-memory exception; Bach is able to run workloads
past this size by paging chunks in and out of GPU memory. (Log2 piece size = 27, 27, 21, 21, 26, 22, 12, 20 from (a-h))

0.00 0.25 0.50 0.75 1.00
Fraction of time

Crime Index
DBSCAN

PCA
TSVD

Black-Scholes
Haversine

W
or

kl
oa

d

Allocation
Compute

Data Transfer
Overhead

Figure 4: Proportion of total runtime split between mem-
ory allocation, data transfer, compute time, and runtime over-
head in various workloads using Bach. Haversine and Black-
Scholes mostly consist of data transfers; PCA, DBSCAN, and
TSVD are compute-heavy; Crime Index spends the most time
on allocation. (Log2 data size = 27, 28, 27, 19, 12, from top
to bottom.)

absolute terms, the total time spent on data transfers for these
workloads is relatively small. However, it is still important
to optimize wherever possible, since the overheads can be
exacerbated at scale or the applications using these pipelines
might require real-time results.

Computation. DBSCAN and PCA, on the other end of the
spectrum, are computationally-intensive workloads that are

highly optimized for the GPU. In DBSCAN, data transfer took
less than 1% of the total runtime of 130.81s, compared to the
94% spent on compute (Fig. 4). PCA spent 95% of the total
runtime of 1.02s on compute. Machine learning models, with
their parallelizable and computationally-intensive numerical
operations, are particularly suited for the GPU.

8.2.3 Scheduling

The dynamic scheduling algorithm has minimal effect when
all program inputs can be lazily allocated. In this case, all
program inputs start out on the GPU if possible, even if the
data size is small. Even though execution would have been
been faster exclusively on the CPU, it is no longer worth
transferring the inputs back to the CPU due to the overheads
involved. This occurs in all workloads except the machine
learning workloads: DBSCAN, PCA, and TSVD.

Among the machine learning workloads, we provided cost
estimators to the TSVD workload to enable dynamic schedul-
ing. DBSCAN already optimally executes the entire program
on the GPU for all data sizes, and would not benefit from dy-
namic scheduling. We did not evaluate the dynamic scheduler
on PCA, though it exhibits a similar runtime profile to TSVD.

In the TSVD workload, we used the linear estimators in
Listing 4 as heuristics for transferring the input ndarray and
computing the model’s fit() function. In the transfer estima-
tor, we use parameters a = 1 and b = 0 to indicate that data

302 2020 USENIX Annual Technical Conference USENIX Association

transfer is proportional to the size of the data regardless of de-
vice. In the compute estimator, we selected parameters based
on the equilibrium point between and the CPU and kernel
library lines in Figure 3h. We use a_cpu = 2 and b_cpu = 0

to indicate that on the CPU, computation is highly correlated
to input size. For the GPU, we use a_gpu = 0 and b_gpu=14

to indicate that the computation is extremely cheap but incurs
kernel launch overheads.

The result of using these linear estimators is a threshold
scheduling algorithm that causes the total runtime of TSVD to
be the minimum of the CPU library implementation and GPU
library implementation (Fig. 3h). The scheduler switches from
greedy GPU scheduling to CPU-only scheduling below the
equilibrium data size 214. Below this data size, the GPU im-
plementation remains constant at around 500 ms, while the
CPU and Bach implementations become as low as 20 ms for
data size 210. Thus Bach improves the TSVD runtime by up to
480 ms with the dynamic scheduler estimators, as it otherwise
would have defaulted to using the kernel library.

It should be noted that in these workloads, the dynamic
scheduler only generates an advantage at smaller data sizes
where the overhead of GPU initialization is more pronounced.
CPU libraries also tend to benefit from cache performance
cliffs, which is why the CPU runtimes are not perfectly linear
at smaller data sizes. In these cases however, the absolute
runtime improvements from using the dynamic scheduler are
small. In general, workloads do not require the annotator to
implement any cost model at all to benefit from OAs espe-
cially at larger data sizes, where the execution is more likely
to perform better on the GPU with the greedy scheduler.

8.2.4 Discussion

Our experience integrating multiple kernel libraries with their
CPU library equivalents gave us several interesting insights
into the existing Python ecosystem for GPUs, including the
lack of GPU kernels for several CPU functions and the differ-
ences in seemingly identical kernel library implementations.

Missing GPU implementations. Black-Scholes CuPy
and PCA both contained functions without kernel li-
brary equivalents, the numpy.erf() error function and
sklearn.StandardScaler(), respectively, despite these func-
tions being trivial to run on the GPU. We addressed these
performance issues in different ways.

In Black-Scholes, we wrote a custom GPU function to an-
notate numpy.erf() and eliminate additional data transfers
that disrupted a numerical analysis pipeline that otherwise ran
completely on a GPU. We copied the implementation from
a file in CuPy’s experimental folder for SciPy routines. This
example demonstrates that regardless of whether the kernel
library developer or third-party annotator contributes to an
annotated library, annotations can make it easier to incremen-
tally add support for GPUs into an existing workload.

Though we could have implemented a custom GPU func-
tion for sklearn.StandardScaler(), we did not do so because

(a) CuPy.

(b) PyTorch.

Figure 5: The NVIDIA Visual Profiler visualization of Black-
Scholes annotated with CuPy and PyTorch, when paging large
datasets into GPU memory. (Data size = 228; Piece size = 227)

the compute time for this numerical preprocessing step was
small in comparison to the prediction part of the workload,
and the performance impact would not have been significant.

CuPy vs PyTorch. We were able to observe subtle differ-
ences between CuPy and PyTorch when integrating them with
the NumPy data science library. When paging large datasets,
annotated PyTorch incurred a higher overhead from the ad-
ditional data transfers compared to annotated CuPy. Using
the NVIDIA Visual Profiler, we observed that while PyTorch
explicitly executed the memory transfers and kernels that
we invoked, CuPy was significantly more complicated (Fig-
ure 5). In particular, CuPy made several calls to functions like
cudaHostAlloc() and cuModuleLoadData(). These extra func-
tions may have allowed CuPy to perform more efficient data
transfers when paging large datasets, incurring less overhead.

9 Limitations
Without a more sophisticated scheduling algorithm, the end
user may not get optimal performance using an OA-annotated
library since all possible annotated functions will execute on
the accelerator by default. Some functions, such as specific
machine learning algorithms or analytics operations like joins,
may be more efficient on the CPU in some cases. Although
GPU scheduling is a complex problem, we found that greedy
scheduling was effective in many applications. Though we
cannot definitively state whether a holistic scheduler is better,
we believe this problem is worth exploring and can utilize the
information captured in the runtime’s dataflow graph.

Another limitation is the need, in some cases, for the end
user to provide cost models to their workload. It is difficult
to know what constitutes a good cost model, much less an

USENIX Association 2020 USENIX Annual Technical Conference 303

optimal one. With OAs, the end user can at least more easily
evaluate different models and their downstream scheduling
decisions with little code modification. In this case, the end
user can simply change a few parameters and re-run the ap-
plication, as opposed to re-inserting data transfer statements
into the application code for each schedule. However, optimal
scheduling remains a complex problem.

OAs are also unable to apply some types of low-level op-
timizations that require changes to the accelerator library
functions. For example, the interface for CUDA streams, a
method for overlapping data transfer and compute, is unavail-
able in cuDF and has a library-specific interface in PyTorch.
Because OAs rely on diverse, existing libraries to provide op-
timized kernel implementations, indirectly calling into lower-
level CUDA libraries like cuBLAS, cuDNN, and Thrust, they
cannot coordinate calls to interfaces such as CUDA streams
across these libraries. Nonetheless, users combining these
accelerator libraries by hand would face the same limitation.

10 Related Work
OAs build on split annotations [23], which provide per-
function annotations over existing CPU-based libraries to
enable cross-function data pipelining and improved cache uti-
lization. OAs extend split annotations by considering several
new problems unique to accelerators, including data transfer
and allocation across devices, memory limits of accelerators,
and the problem of scheduling computations and transfers
across CPUs and accelerators. These problems were not con-
sidered in the design of split annotations, so they require both
an extended annotation interface (§4) and a different runtime
and scheduler (§5).

Existing accelerator libraries such as PyTorch [24],
cuDF [7], RAPIDS [9], and cuML [8] provide interfaces for
targeting GPUs that intend to mirror CPU library APIs. How-
ever, they usually cannot handle data that does not fit in the
accelerator memory, only support a subset of their CPU coun-
terparts, and invariably involve application rewrites. OAs are
a system designed to bridge these shortcomings, by leverag-
ing new accelerator implementations of library functions but
using annotations to automatically page and schedule work
across the accelerator and CPU in complex applications that
call multiple library functions.

Another popular approach for targeting heterogeneous plat-
forms is compilation, where a compiler generates code (e.g.,
CUDA) underneath an existing library interface. Several solu-
tions exist for data analytics [20–22, 27, 31, 34] and machine
learning [11, 13, 30]. As one example, Numba [2] compiles
NumPy code into an intermediate representation (IR), and
then to optimized CPU or GPU code. However, compilers
trade off good performance for high complexity: they are dif-
ficult to implement and to integrate into existing libraries, and
the generated code may not match the performance of heavily
hand-optimized kernels such as linear algebra functions [23].
In contrast, annotation-based approaches such as split annota-

tions achieved similar speedups to these compilers in many
cases with substantially less developer effort (e.g., 10× less
code than accelerating functions with Weld in the Mozart
evaluation [23]) by leveraging individual, hand-written kernel
functions and only optimizing the data movement across them.
Like split annotations, OAs propose using expert-written ker-
nels to offload computations rather than attempting to gener-
ating code that matches the performance of these kernels.

Several existing systems schedule tasks in a heterogeneous
environment [16–19, 26, 32, 33]. Our system primarily aims
to provide an interface to bridge existing CPU and GPU code.
The algorithms presented in these systems are complementary,
and can be used to schedule the task graphs produced by OAs.

Hardware-portable languages like OpenCL [29] provide a
common interface to target both CPU and accelerators. How-
ever, they require end users to write custom code in these
languages, whereas our goal is to leverage optimized CPU
and accelerator kernels that have already been written by ex-
pert developers and automatically invoke these kernels in an
application written using high-level APIs.

11 Conclusion

We have presented offload annotations (OAs), a new approach
for bridging existing CPU libraries with emerging GPU li-
braries with no library code changes. Annotators use OAs
to specify an accelerator function for a corresponding CPU
function, and to define how inputs to a function can be trans-
ferred between devices. Optionally, annotators can also anno-
tate allocation functions and provide cost model estimators
that assist the runtime in making scheduling decisions. Our
runtime, Bach, uses the information encapsulated in OAs to
automatically schedule functions in an end-user application
across devices, manage data transfer, and page large datasets.
We apply OAs to several existing to several existing CPU
libraries and show that they can improve their by up to 1200×
and a median of 6.3× by offloading work to a GPU, with little
to no code changes. We also show that OAs enable workloads
that could previously not fit in GPU memory to reap the ben-
efits of hardware acceleration, without manual effort by the
application developer.

12 Acknowledgments

We thank our shepherd, Michael Ferdman, the anonymous
ATC reviewers, and the members of Stanford Future Data
for their invaluable feedback on this work. This research was
supported in part by affiliate members and other supporters
of the Stanford DAWN project—Ant Financial, Facebook,
Google, Infosys, NEC, and VMware—as well as the NSF
under CAREER grant CNS-1651570. Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

304 2020 USENIX Annual Technical Conference USENIX Association

References
[1] Black Scholes Formula. http://

gosmej1977.blogspot.com/2013/02/
black-and-scholes-formula.html, 2013.

[2] Numba. https://numba.pydata.org, 2018.

[3] A Beginner’s Guide to Optimizing Pandas Code for
Speed. goo.gl/dqwmrG, 2019.

[4] Computational Formulas. https://oag.ca.gov/
sites/all/files/agweb/pdfs/cjsc/prof10/
formulas.pdf, 2020.

[5] Demo of DBSCAN clustering algorithm.
https://scikit-learn.org/stable/auto_

examples/cluster/plot_dbscan.html#
sphx-glr-auto-examples-cluster-plot-dbscan-py,
2020.

[6] Importance of Feature Scaling. https:
//scikit-learn.org/stable/auto_examples/
preprocessing/plot_scaling_importance.html,
2020.

[7] NVIDIA cuDF. https://github.com/rapidsai/
cudf, 2020.

[8] NVIDIA cuML. https://github.com/rapidsai/
cuml, 2020.

[9] NVIDIA RAPIDS. https://developer.nvidia.
com/rapids, 2020.

[10] Truncated Singular Value Decomposition (TSVD).
https://github.com/rapidsai/notebooks/blob/
branch-0.12/cuml/tsvd_demo.ipynb, 2020.

[11] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A System for Large-Scale Machine Learn-
ing. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–283,
2016.

[12] Christopher Anderson, Paola Giannini, and Sophia
Drossopoulou. Towards Type Inference for JavaScript.
In European conference on Object-oriented program-
ming, pages 428–452. Springer, 2005.

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An
Automated End-to-End Optimizing Compiler for Deep
Learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
578–594, 2018.

[14] Tianyi David Han and Tarek S Abdelrahman. Reducing
Branch Divergence in GPU Programs. In Proceedings
of the Fourth Workshop on General Purpose Processing
on Graphics Processing Units, page 3. ACM, 2011.

[15] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston,
and Pat Hanrahan. Interactive KD Tree GPU Ray Trac-
ing. In Proceedings of the 2007 Symposium on Inter-
active 3D Graphics and Games, pages 167–174. ACM,
2007.

[16] Víctor J Jiménez, Lluís Vilanova, Isaac Gelado, Marisa
Gil, Grigori Fursin, and Nacho Navarro. Predictive
Runtime Code Scheduling for Heterogeneous Architec-
tures. In International Conference on High-Performance
Embedded Architectures and Compilers, pages 19–33.
Springer, 2009.

[17] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman,
Chunling Hu, Brian T Lewis, and Keshav Pingali. Adap-
tive Heterogeneous Scheduling for Integrated GPUs.
In 2014 23rd International Conference on Parallel Ar-
chitecture and Compilation Techniques (PACT), pages
151–162. IEEE, 2014.

[18] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and
Yutaka Ishikawa. TimeGraph: GPU Scheduling for Real-
Time Multi-Tasking Environments. In Proc. USENIX
ATC, pages 17–30, 2011.

[19] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah,
Gangwon Jo, and Jaejin Lee. SnuCL: An OpenCL
Framework for Heterogeneous CPU/GPU Clusters. In
Proceedings of the 26th ACM International Conference
on Supercomputing, pages 341–352. ACM, 2012.

[20] HyoukJoong Lee, Kevin Brown, Arvind Sujeeth, Has-
san Chafi, Tiark Rompf, Martin Odersky, and Kunle
Olukotun. Implementing Domain-Specific Languages
for Heterogeneous Parallel Computing. IEEE Micro,
31(5):42–53, 2011.

[21] Shoumik Palkar, James Thomas, Deepak Narayanan,
Pratiksha Thaker, Rahul Palamuttam, Parimajan Negi,
Anil Shanbhag, Malte Schwarzkopf, Holger Pirk, Saman
Amarasinghe, et al. Evaluating End-to-End Optimiza-
tion for Data Analytics Applications in Weld. Proceed-
ings of the VLDB Endowment, 11(9):1002–1015, 2018.

[22] Shoumik Palkar, James J Thomas, Anil Shanbhag,
Deepak Narayanan, Holger Pirk, Malte Schwarzkopf,
Saman Amarasinghe, Matei Zaharia, and Stanford Info-
Lab. Weld: A Common Runtime for High Performance
Data Analytics. In Conference on Innovative Data Sys-
tems Research (CIDR), 2017.

USENIX Association 2020 USENIX Annual Technical Conference 305

http://gosmej1977.blogspot.com/2013/02/black-and-scholes-formula.html
http://gosmej1977.blogspot.com/2013/02/black-and-scholes-formula.html
http://gosmej1977.blogspot.com/2013/02/black-and-scholes-formula.html
https://numba.pydata.org
goo.gl/dqwmrG
https://oag.ca.gov/sites/all/files/agweb/pdfs/cjsc/prof10/formulas.pdf
https://oag.ca.gov/sites/all/files/agweb/pdfs/cjsc/prof10/formulas.pdf
https://oag.ca.gov/sites/all/files/agweb/pdfs/cjsc/prof10/formulas.pdf
 https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
 https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
 https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
https://github.com/rapidsai/cudf
https://github.com/rapidsai/cudf
https://github.com/rapidsai/cuml
https://github.com/rapidsai/cuml
https://developer.nvidia.com/rapids
https://developer.nvidia.com/rapids
https://github.com/rapidsai/notebooks/blob/branch-0.12/cuml/tsvd_demo.ipynb
https://github.com/rapidsai/notebooks/blob/branch-0.12/cuml/tsvd_demo.ipynb

[23] Shoumik Palkar and Matei Zaharia. Optimizing Data-
Intensive Computations in Existing Libraries with Split
Annotations. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, pages 291–305,
2019.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
Torch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information
Processing Systems, pages 8024–8035, 2019.

[25] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin
Bierman, and Panagiotis Vekris. Safe & Efficient Grad-
ual Typing for TypeScript. In ACM SIGPLAN Notices,
volume 50, pages 167–180. ACM, 2015.

[26] Vignesh T Ravi, Michela Becchi, Wei Jiang, Gagan
Agrawal, and Srimat Chakradhar. Scheduling Concur-
rent Applications on a Cluster of CPU-GPU Nodes. In
2012 12th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (ccgrid 2012), pages
140–147. IEEE, 2012.

[27] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-
Philippe Martin, and Dennis Fetterly. Dandelion: A
Compiler and Runtime for Heterogeneous Systems.
pages 49–68. ACM, 2013.

[28] Mark Silberstein. GPUs: High-Performance Accelera-
tors for Parallel Applications: The Multicore Transfor-
mation (Ubiquity Symposium). Ubiquity, 2014(August),
August 2014.

[29] John E. Stone, David Gohara, and Guochun Shi.
OpenCL: A Parallel Programming Standard for Het-
erogeneous Computing Systems. Computing in Science
Engineering, 12(3):66–73, 2010.

[30] Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark
Rompf, Hassan Chafi, Michael Wu, Anand Atreya, Mar-
tin Odersky, and Kunle Olukotun. OptiML: An Implic-
itly Parallel Domain-Specific Language for Machine
Learning. In Proceedings of the 28th International Con-
ference on Machine Learning (ICML-11), pages 609–
616, 2011.

[31] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee,
Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle
Olukotun. Delite: A Compiler Architecture for
Performance-Oriented Embedded Domain-Specific Lan-
guages. ACM Transactions on Embedded Computing
Systems (TECS), 13(4s):134, 2014.

[32] Lei Wang, Yong-zhong Huang, Xin Chen, and Chun-yan
Zhang. Task Scheduling of Parallel Processing in CPU-
GPU Collaborative Environments. In 2008 International
Conference on Computer Science and Information Tech-
nology, pages 228–232. IEEE, 2008.

[33] Yuan Wen, Zheng Wang, and Michael FP O’boyle.
Smart Multi-Task Scheduling for OpenCL Programs
on CPU/GPU Heterogeneous Platforms. In 2014 21st
International Conference on High Performance Com-
puting (HiPC), pages 1–10. IEEE, 2014.

[34] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,
Úlfar Erlingsson, Pradeep Kumar Gunda, and Jon Currey.
DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language.
In 8th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 08), volume 8, pages
1–14, 2008.

306 2020 USENIX Annual Technical Conference USENIX Association

HetPipe: Enabling Large DNN Training on (Whimpy) Heterogeneous GPU
Clusters through Integration of Pipelined Model Parallelism and Data Parallelism

Jay H. Park1, Gyeongchan Yun1, Chang M. Yi1, Nguyen T. Nguyen1, Seungmin Lee1,
Jaesik Choi2, Sam H. Noh1, and Young-ri Choi1

1UNIST 2KAIST

Abstract
Deep Neural Network (DNN) models have continuously been
growing in size in order to improve the accuracy and quality
of the models. Moreover, for training of large DNN models,
the use of heterogeneous GPUs is inevitable due to the short
release cycle of new GPU architectures. In this paper, we
investigate how to enable training of large DNN models on
a heterogeneous GPU cluster that possibly includes whimpy
GPUs that, as a standalone, could not be used for training.
We present a DNN training system, HetPipe (Heterogeneous
Pipeline), that integrates pipelined model parallelism (PMP)
with data parallelism (DP). In HetPipe, a group of multiple
GPUs, called a virtual worker, processes minibatches in a
pipelined manner, and multiple such virtual workers employ
data parallelism for higher performance. We also propose a
novel parameter synchronization model, which we refer to
as Wave Synchronous Parallel (WSP) to accommodate both
PMP and DP for virtual workers, and provide convergence
proof of WSP. Our experimental results on a given heteroge-
neous setting show that with HetPipe, DNN models converge
up to 49% faster compared to the state-of-the-art DP tech-
nique.

1 Introduction
Deep Neural Networks have been popularly used to solve
various problems such as image classification [16,29], speech
recognition [17], topic modeling [3], and text processing [10].
The size of DNN models (i.e., the number of parameters) have
continuously been increasing in order to improve the accuracy
and quality of models and to deal with complex features of
data [19, 47, 54, 55]. The size of input data and batches used
for training have also increased to achieve higher accuracy
and throughput [19, 26].

For training large DNN models, data parallelism [4, 31,
32, 50], which employs multiple workers using parame-
ter servers or AllReduce communication, and model paral-
lelism [12,28,30], which divides the network layers of a DNN
model into multiple partitions and assigns each partition to
a different GPU, have commonly been leveraged. Further-
more, to mitigate the critical issue of low GPU utilization of
naive model parallelism, pipelined model parallelism, where
minibatches are continuously fed to the GPUs one after the
other and processed in a pipelined manner, has recently been
proposed [19, 38].

Table 1: Heterogeneous GPUs
Year Archi. CUDA

Core
Boost

Clock (MHz)
Memory

Size (GB)
Memory BW

(GB/sec)

TITAN V 2017 Volta 5120 1455 12 653
TITAN RTX 2018 Turing 4608 1770 24 672

GeForce
RTX 2060 2019 Turing 1920 1680 6 336

Quadro P4000 2017 Pascal 1792 1480 8 243

For training DNN models, the use of GPU clusters is now
commonplace. In such an environment, the use of hetero-
geneous GPUs is inevitable due to the short release cycle
of new GPU architectures [24]. Moreover, several types of
GPUs targeted for high-end servers, workstations, and desk-
tops are being released for purchase [39–42]. Due to their
cost-effectiveness, less expensive GPUs targeted for desk-
tops and workstations, rather than high-end servers are also
commonly used for machine learning training, especially for
small and medium size clusters [14, 21, 49, 56, 57, 59]. Due
to the same reason, spot instances with different types of
GPUs that are offered by cloud service providers are being
used [2,24,36]. Table 1 shows the hardware specifications for
four different types of GPUs, along with their market release
years, that we have purchased in our institution in the short
span of the last three years. Each, at the time of purchase,
was (close to) state-of-the-art affordable with what budget we
could muster. With technology advancing in such rapid pace,
these systems have become outdated. Some of the systems
have become old technologies that, individually, are unable
to run large DNN models that are common today. Such situ-
ations with clusters of heterogeneous GPUs should now be
commonplace.

There are benefits to enabling DNN training with hetero-
geneous resources. First, it allows for large model training
with lower-class GPUs. While unable to train individually
due to their limited resources, aggregated together, they may
be used for training. These GPUs, which likely would have
been retired, become usable, possibly used to create (virtual)
workers that show similar performance as high-class GPUs.
Second, low-class GPUs can be used to improve the perfor-
mance of even high-class GPUs by incrementally adding on
the resources of the (old) lower class systems to the (new)
high-class systems. We call a group of aggregated GPUs that
could satisfy the resource constraint and be used for training a
virtual worker. Internally, such a virtual worker could leverage
pipelined model parallelism (PMP) to process a minibatch,

USENIX Association 2020 USENIX Annual Technical Conference 307

while externally, a number of virtual workers could leverage
data parallelism (DP) for higher performance.

In this paper, we explore the integration of PMP and DP
to maximize the parallelism of DNN model training. In par-
ticular, we investigate a DNN model training system, which
employs both PMP and DP, for a heterogeneous GPU cluster
that possibly includes whimpy GPUs that, as a standalone,
could not be used for training large models. Integrating DP
to PMP may sound trivial, but in fact, it is quite challenging.
In this setting, each virtual worker is continuously process-
ing multiple minibatches in a pipelined manner and thus,
all the virtual workers can be in different states. Thus, the
key question here is, what weight version should be used by
each virtual worker to synchronize with other virtual workers?
Numerous questions need to be answered to answer this ques-
tion: 1) How many new minibatches can start being processed
while waiting for global updates from the parameter server?
2) Can synchronization occur at any point of processing the
minibatches? 3) How can convergence be guaranteed when
such synchronization occurs? 4) What version of parameters
is used for the next minibatch while previous minibatches are
still executing within each virtual worker? (This question is
also considered to some extent in a prior work [38].) And so
on. Furthermore, there are also many challenges that need to
be overcome to ideally leverage a heterogeneous GPU cluster
for DNN training: How are the heterogeneous GPUs to be
divided and allocated into virtual workers? How do we reduce
virtual worker stragglers when we consider DP? How do we
partition the model to maximize the performance of PMP
using heterogeneous GPUs?

While DP [4, 31, 32, 50], PMP [19, 38], and heterogene-
ity [24, 25, 33] for training have been considered separately,
to the best of our knowledge, this is the first paper that tack-
les these issues together in attempting to answer some of the
aforementioned questions. In this work, we design a DNN
training system, HetPipe (Heterogeneous Pipeline), that inte-
grates PMP of a virtual worker, which is composed of multiple
(possibly whimpy) heterogeneous GPUs, with DP of virtual
workers using parameter servers to enable and also speed
up training of large models. HetPipe can aggregate heteroge-
neous resources from multiple GPUs to form a virtual worker
such that the performance of each virtual worker is similar to
each other, reducing the straggler problem. For HetPipe, we
propose a novel parameter synchronization model, which we
refer to as Wave Synchronous Parallel (WSP). WSP is adapted
from the Stale Synchronous Parallel (SSP) model [18] to ac-
commodate both PMP and DP for multiple virtual workers
unlike existing synchronization models. We also prove the
convergence of WSP. Note that while HetPipe would work
in a homogeneous GPU cluster in training a large model that
cannot be loaded into the memory of a single GPU, with the
rapid turnaround of newer GPU architectures, it is more likely
that one will end up with a cluster of heterogeneous GPUs.
This is the environment that we target.

We implement HetPipe by modifying TensorFlow, a com-
monly used machine learning training system. We evaluate
the performance of HetPipe for two DNN models using a het-
erogeneous GPU cluster composed of four different types of
GPUs. Our experimental results demonstrate that the perfor-
mance of HetPipe is better than that of the state-of-the-art DP
via Horovod [50] that uses AllReduce communication [45].
This is because HetPipe mitigates the straggler problem, and
also because it enables each virtual worker and the parameter
server to intra-communicate for all parameter updates, sig-
nificantly reducing communication overhead. Compared to
Horovod, the convergence of VGG-19 with a large parameter
set to a desired accuracy becomes 49% faster, and that of
ResNet-152 which is too big to be loaded in four whimpy
GPUs in our cluster becomes 39% faster by using all the
GPUs (including whimpy ones).

Strategies to leverage PMP have been explored in previous
studies [7, 19, 27, 38]. Compared to these, our study makes
forward strides in three aspects. First, we generalize PMP
of a virtual worker to be used together with DP of virtual
workers, increasing the parallelism of DNN model training.
Consequently, this results in speeding up training. Second,
we consider a heterogeneous GPU cluster, which allows the
use of GPUs, which otherwise, could not be used for training.
Finally, we present a parameter synchronization model that
guarantees convergence, of which we provide a proof, for
training models using PMP with DP. We provide a more in-
depth comparative discussion on these studies in Section 2.2.

2 Background
2.1 Data Parallelism
Training of a DNN model is processed by a forward pass
followed by a backward pass for each minibatch, which is a
subset of training samples, in a popularly used stochastic gra-
dient descent (SGD) method. For each minibatch, the weight
updates, i.e., gradients, are computed to update weights (or
parameters) w of the model.

Data parallelism (DP) utilizes multiple workers to speed
up training of a DNN model. It divides the training dataset
into subsets and assigns each worker a different subset. Each
worker has a replica of the DNN model and processes each
minibatch in the subset, thereby computing the weight updates.
Therefore, if a DNN model cannot be loaded into the memory
of a single GPU, DP cannot be used.

Among the multiple workers, the parameters are synchro-
nized using parameter servers [31] or AllReduce communica-
tions [32, 50]. For Bulk Synchronous Parallel (BSP) [1, 35],
each worker must wait for all other workers to finish the cur-
rent minibatch p before it starts to process the next minibatch
p+1 so that it can use an updated version of the weights for
minibatch p+ 1. For Asynchronous Parallel (ASP) [1, 48],
each worker need not wait for other workers to finish mini-
batch p, possibly using a stale version of the weights. With
BSP, which is possible for both the parameter servers and

308 2020 USENIX Annual Technical Conference USENIX Association

AllReduce communications, the system may suffer from high
synchronization overhead, especially in a heterogeneous GPU
cluster where each worker with a different GPU provides dif-
ferent training performance [33]. On the other hand, while
ASP, which is possible for the parameter servers, has no syn-
chronization overhead, it is known that ASP does not ensure
convergence [48, 58].

A method that takes the middle ground between BSP and
ASP is Stale Synchronous Parallel (SSP) [18]. With SSP, each
worker is allowed to proceed the training of minibatches using
a stale version of the weights that may not reflect the most re-
cent updates computed by other workers. Thus, workers need
not synchronize with other workers whenever it finishes the
processing of a minibatch. As such, parameter staleness can
occur. However, this staleness is bounded as defined by the
user and referred to as the staleness threshold. As SSP is bene-
ficial when worker performance is varied, it has been explored
especially in the context of heterogeneous systems [24].

In SSP, each worker periodically pushes the weight updates
to the parameter server. This synchronization interval is called
a clock. Thus, each worker increases its local clock by one for
every iteration, which is the training period of a minibatch.
For a given staleness threshold s where s ≥ 0, each worker
with clock c is allowed to use a stale version of the weights,
which includes all the updates from iteration 0 to c−s−1 and,
possibly, more recent updates past iteration c− s− 1. That
is, a worker can continue training of the next minibatch with
parameters whose updates may be missing from up to the s
most recent minibatches.
2.2 Model Parallelism and Pipeline Execution
Model parallelism (MP) is typically exploited for large DNN
models that are too large to be loaded into memory of a single
GPU. In particular, a DNN model composed of multiple lay-
ers is divided into k partitions and each partition is assigned
to a different GPU. Each GPU executes both the forward
and backward passes for the layers of the assigned partition.
Note that it is important to execute the forward and backward
passes of a partition on the same GPU as the activation result
computed for the minibatch during the forward pass needs
to be kept in the GPU memory until the backward pass of
the same minibatch for efficient convergence, as similarly
discussed by Narayanan and others [38]. Otherwise, consid-
erable extra overhead will incur for managing the activation
through either recomputation or memory management.

In the basic form of MP, k GPUs, individually, act as one
virtual worker to process a minibatch as follows: For each
minibatch, execution of the forward pass starts from GPU1 up
to GPUk. When each GPUi, where 1≤ i < k, completes the
forward pass of the assigned partition, it sends the computed
activations of only the last layer in its partition to GPUi+1.
Once GPUk finishes the forward pass of its partition, the
backward pass of the minibatch is executed from GPUk down
to GPU1. When each GPUi′ , where 1 < i′ ≤ k, finishes the
backward pass, it sends the computed local gradients of only

Table 2: Comparison of HetPipe with GPipe and PipeDream
GPipe PipeDream HetPipe

Heterogeneous Cluster Support No No Yes
Target Large Model Training Yes No Yes
Number of (Virtual) Workers 1 1 N

Data Parallelism Extensible Partition Virtual Workers
Proof of Convergence Analytical Empirical Analytical

the first layer in its assigned partition to GPUi′−1. This basic
form of MP results in low GPU utilization as only one GPU
is actively executing either the forward or backward pass.
Nonetheless, MP allows execution of large DNN models that
are too large for a single GPU.

To improve utilization of the GPUs in a virtual worker,
minibatches can be processed in a pipelined manner. The
subsequent minibatches are fed into the first GPU in MP (i.e.,
GPU1) one by one once the GPU completes the processing
of the previous minibatch. This allows for multiple GPUs
to simultaneously execute either the forward or backward
pass of their assigned layers for different minibatches. This is
referred to as Pipelined Model Parallelism (PMP).

This PMP strategy has been investigated in previous
studies [19, 38]. PipeDream exploits PMP of a single vir-
tual worker to avoid the parameter communication over-
head of DP [38]. Considering only homogeneous GPUs,
when PipeDream partitions a model into stages to maximize
pipeline performance, it does not take into account the mem-
ory requirement of a GPU that depends on the stage of a
pipeline. Thus, PipeDream processes a limited number of
minibatches, which is large enough to saturate the pipeline,
to reduce memory overhead. PipeDream also provides a form
of DP, but it considers DP within a virtual worker to speed up
the execution of lagging layers. No proof of single pipeline
convergence is provided in PipeDream. Note that without
a parameter synchronization model such as WSP, it is not
possible to properly run DP over multiple PipeDream virtual
workers via parameter servers or AllReduce communication.

GPipe is a scheme that leverages PMP of a single virtual
worker to support large DNN models, also in a homogeneous
GPU cluster [19]. In GPipe, a minibatch is divided into mul-
tiple microbatches that are injected into the pipeline. Using
the same weights, GPipe executes the forward passes for all
the microbatches, and then executes the backward passes for
them. When the backward pass of the last microbatch is done,
it updates the weights all together for the minibatch. GPipe in-
curs frequent pipeline flushes, possibly resulting in low GPU
utilization [38]. In GPipe, DP of multiple virtual workers can
be done using existing synchronization schemes like BSP as a
virtual worker processes one minibatch at a time. GPipe saves
on GPU memory by recomputing the activations again in the
backward pass instead of keeping the activations computed
in the forward pass in memory. We do not use this optimiza-
tion though there are no fundamental reasons forbidding it.
A comparison of HetPipe with previous studies is given in
Table 2.

USENIX Association 2020 USENIX Annual Technical Conference 309

G1

G2

G3

G4

clock0 1 2

Parameter Server

Forward BackwardPullPush

M1,4 M1,4 M2,4 M2,4 M3,4 M3,4 M4,4 M4,4 M5,4 M5,4 M6,4 M6,4 M7,4 M7,4 M8,4 M8,4 M9,4 M9,4 M10,4 M10,4 M11,4

M1,3 M2,3 M3,3 M4,4 M1,3 M2,3 M3,3 M5,3 M4,3 M6,3 M5,3 M7,3 M6,3 M8,3 M7,3 M9,3 M8,3 M10,3 M9,3 M11,3 M10,3

M1,2 M2,2 M3,2 M4,2 M1,2 M2,2 M5,2 M3,2 M6,2 M4,2 M7,2 M5,2 M8,2 M6,2 M9,2 M7,2 M10,2 M8,2 M11,2 M9,2

M1,1 M2,1 M3,1 M4,1 M1,1 M5,1 M2,1 M6,1 M3,1 M7,1 M4,1 M8,1 M5,1 M9,1 M6,1 M10,1 M7,1 M11,1 M8,1 M12,1

Wave 1Wave 0 Wave 2

Figure 1: Pipeline execution of minibatches where Mp,k indicates the execution of a minibatch p in partition k, which is executed
in GPUk and the yellow and green colors indicate the forward and backward passes, respectively.

3 System Overview
The system that we propose focuses on training a large DNN
model in a heterogeneous GPU cluster composed of various
types of GPUs that have different computation capability and
memory capacity. In such settings, for some types of GPUs
in the cluster, the DNN model of interest may be too large
to be loaded into the memory of a single GPU. The system
that we propose in this paper leverages both pipelined model
parallelism (PMP) and data parallelism (DP) to enable train-
ing of such large DNN models and, in the process, enhance
performance as well as the utilization of the heterogeneous
GPU resources of the cluster.

Figure 2 shows the architecture of the proposed cluster
system composed of H nodes. Each node comprises a homo-
geneous set of GPUs, but the GPUs (and memory capacity)
of the nodes themselves can be heterogeneous. Two key nov-
elties exist in this architecture. First, DP is supported through
a notion of a virtual worker (VW), which consists of k, pos-
sibly heterogeneous, GPUs, and encapsulates the notion of a
worker in typical DNN systems. That is, a virtual worker is
used to train the DNN model. In Figure 2, note that there are
N virtual workers with 4 GPUs each, that is, k = 4, and that
the GPUs comprising the virtual worker may be different for
each virtual worker. While in this paper we consider k to be
constant for each virtual worker, our design does not restrain
it to be so; this is simply a choice we make for simplicity.
The key aspect here is that a virtual worker allows DP by
aggregating GPUs possibly even when individual GPUs may
be resource limited.

The second novelty is that each virtual worker processes
each minibatch based on model parallelism, in a pipelined
manner, to fully utilize the GPU resources, as shown in Fig-
ure 1, to accommodate large DNN models. While PMP has
been proposed before (which we compare in Section 2.2), to
the best of our knowledge, we are the first to present PMP in
a heterogeneous setting. We refer to our system as HetPipe
as it is heterogeneous, in GPUs, across and, possibly, within
virtual workers and makes use of pipelining in virtual workers
for resource efficiency.

To train DNN models based on pipelined model parallelism
in virtual workers, the resource allocator first assigns k GPUs
to each virtual worker based on a resource allocation policy

Node 𝟏

G𝑨

G𝑨

G𝑨

G𝑨

P3

P4

VW 𝟏

VW 𝑵− 𝟏

Parameter Server

VW 𝑵

Push & Pull

P2

P1

Node 𝑯− 𝟏

G𝑩

G𝑩

G𝑩

G𝑩

Node 𝑯

G𝑪

G𝑪

G𝑪

G𝑪

Resource Allocator

Cluster Configuration
P1 P2 P3 P4

Model PartitionerDNN Model

Figure 2: System architecture (VW: Virtual Worker)

(which will be discussed in Section 8.1). Note that for allo-
cating the heterogeneous GPUs to the virtual workers, the
resource allocation policy must consider several factors such
as the performance of individual GPUs as well as the com-
munication overhead caused by sending activations and gra-
dients within a virtual worker, and synchronizing the weights
among the virtual workers and the parameter server. Then,
for the given DNN model and allocated k GPUs, the model
partitioner divides the model into k partitions for the virtual
worker such that the performance of the pipeline executed in
the virtual worker can be maximized.

As any typical DP, multiple virtual workers must periodi-
cally synchronize the global parameters via parameter servers
or AllReduce communication; in HetPipe, parameter servers
are used to maintain the global weights. Each virtual worker
has a local copy of the global weights and periodically syn-
chronizes the weights with the parameter server. Evidently,
when managing the weights within a virtual worker and across
virtual workers, two types of staleness, local staleness and
global staleness, need to be permitted to improve the perfor-
mance of DNN training. Local staleness refers to staleness
within a virtual worker. As each virtual worker processes
minibatches in a pipelined manner, there are multiple mini-
batches that are being processed in parallel. Thus, staleness is
inevitable as weights seen by a minibatch may not reflect the
updates of all of its previous minibatches.

Global staleness, on the other hand, is similar to the stale-
ness notion introduced by Ho et al. [18]. That is, the system
needs to reduce communication overhead between the param-

310 2020 USENIX Annual Technical Conference USENIX Association

eter server and (virtual) workers, and, in our case, also mitigate
the synchronization overhead caused by possibly heteroge-
neous virtual workers. Therefore, similarly to SSP [18], each
virtual worker should be allowed to proceed training without
querying the global weights for every minibatch, unless its
local copy is so old such that there are too many missing
recent updates made by other virtual workers. Note that such
staleness condition is set by the user [18].

For our system, we propose the Wave Synchronous Par-
allel (WSP) model to synchronize the weights. A wave is a
sequence of minibatches that are processed concurrently in
a virtual worker. Let the number of minibatches in a wave
be Nm. Within a wave, processing of the i-th minibatch is
allowed to proceed without waiting for the preceding mini-
batchs i′ to be completed, where 1 < i ≤ Nm and 1 ≤ i′ < i.
That is, there is no dependency among the weights used by
minibatches in the same wave. As the virtual worker does not
enforce the updates even from the first minibatch in a wave
to be reflected in the weights used by the last minibatch, the
local staleness threshold in WSP is Nm−1. Moreover, each
virtual worker only pushes the aggregated updates from all
the minibatches in a wave, instead of for every minibatch, to
the parameter server. This results in considerable reduction
in communication overhead.

As it is important that the results generated through our
proposed system configuration are correct [18, 24, 60], we
show the convergence of our methodology in Section 6.

Note that HetPipe uses parameter servers, which may incur
synchronization and communication overhead. However, Het-
Pipe mitigates such overhead by permitting global staleness
among virtual workers and executing the pipeline in each vir-
tual worker such that it continues to process minibatches that
have already been injected while waiting for the parameter up-
date. We believe HetPipe can be further optimized by taking
decentralized approaches, but leave this for future work.

4 Pipelined Model Parallelism Within a VW
Number of Minibatches in the Pipeline: In our system,
each virtual worker processes up to Nm minibatches con-
currently in a pipeline manner so that the executions of the
minibatches can overlap. Given a DNN model and k GPUs,
the maximum number of minibatches executed concurrently
in the virtual worker, Maxm, is basically determined by the
memory requirement for training the model. For a model that
requires a huge amount of memory for output activations and
weights, Maxm may be less than k. Note that in such cases,
the utilization of each GPU is unlikely to be high.

Nm, the actual number of minibatches in the pipeline will
be Nm ≤Maxm and basically determined by considering the
throughput of the pipeline. Note that Nm must be the same
in every virtual worker, and thus, Nm is set to the minimum
Maxm among all the virtual workers. Nm will affect the local
staleness that we discuss later in this section.

Model Partitioning: To train a DNN model, a set of k

GPUs is allocated to a virtual worker by a resource allocation
policy, which we discuss in Section 8.1. For now, let us as-
sume that k, the number of possibly heterogeneous GPUs, and
Nm are given. Then, a partitioning algorithm is employed to
divide multiple layers of the model into k partitions, assigning
them to the k different GPUs. The goal of the partitioning
algorithm is to maximize the performance of the pipeline,
while satisfying the memory requirement of each partition to
process Nm minibatches.

In particular, in this study, for memory, we consider the
fact that the actual memory requirement will vary depending
on the stage of the pipeline that the GPU is used for. For
example, contrast GPU4 and GPU1 in Figure 1. GPU4, the
GPU that handles the last stage of the pipeline, handles only
one minibatch at a time and is immediately done with the
minibatch as exemplified by the yellow (forward pass) and
green (backward pass) Mi,4 pairs for i = 1,2, ..., that are side-
by-side. In contrast, for GPU1, the yellow and green Mi,1 pairs
are far apart, meaning that the forward pass Mi,1 needs to hold
up memory until the backward pass Mi,1 is finished with its
execution. Thus, with GPU1, the memory requirement is high
as it needs to hold on to the results of the forward pass for all
stages of the pipeline. This variance in memory requirement
is considered in partitioning the layers.

Execution time must also be considered when partitioning
the layers. To do so, we calculate the execution time of a parti-
tion to be the sum of the computation time of all the layers in
the partition and the communication time needed for receiv-
ing the activations (in the forward pass) and local gradients
(in the backward pass). Our partitioning algorithm attempts
to minimize the maximum execution time of the partitions
within the bounds of satisfying the memory requirement.

Partition Scheduling: Once the partition is set, the parti-
tions need to be scheduled for each of the GPUs. Each GPUq
responsible for partition q may have multiple forward pass
and backward pass tasks to schedule at a time. Each GPU
schedules a task by enforcing the following conditions:

1. A forward pass task for a minibatch p will be executed
only after a forward pass task for every minibatch p′ is
done where 1≤ p′ < p.

2. Similarly, a backward pass task for a minibatch p will
be executed only after a backward pass task for every
minibatch p′ is done where 1≤ p′ < p.

3. Among multiple forward and backward pass tasks, a
FIFO scheduling policy is used.

Note that in the last partition, for a minibatch, processing a
forward pass immediately followed by a backward pass is
executed as a single task.

Considering Staleness: Given the description of pipelin-
ing, the question of staleness of weights used needs to be
considered. That is, as a minibatch is scheduled, it may be
that the layers are not using the most up-to-date weights. For
example, in Figure 1, when the forward pass M2,1, the second
minibatch, begins to be processed, it must use stale weights as

USENIX Association 2020 USENIX Annual Technical Conference 311

the first minibatch has not completed and hence, the changes
in the weights due to the first minibatch have not yet been
appropriately reflected, which is in contrast with typical pro-
cessing where minibatches are processed one at a time. We
now discuss how this staleness issue is considered.

Let local staleness be the maximum number of missing
updates from the most recent minibatches that is allowed for
a minibatch to proceed in a virtual worker. As training with
Nm minibatches can proceed in parallel in a virtual worker,
the local staleness threshold, slocal , is determined as Nm−1,
where 1≤ Nm ≤Maxm. If Nm = 1, the behavior is exactly the
same as naive model parallelism. Larger Nm may improve the
performance (i.e., throughput) of the pipeline as a larger num-
ber of concurrent minibatches are executed, but local staleness
increases, possibly affecting the convergence of training. In a
real setting, typically, Nm will not be large enough to affect
convergence as it will be bounded by the total amount of GPU
memory of a virtual worker.

Such local staleness also exists in PipeDream [38]. As
PipeDream basically employs weight stashing that uses the
latest version of weights available on each partition to exe-
cute the forward pass of a minibatch, a different version of
weights is used across partitions for the same minibatch. Un-
fortunately, PipeDream only shows empirical evidence of con-
vergence when weight stashing is used. Note that PipeDream
also discusses vertical sync, which is similar to HetPipe, but
it excludes vertical sync in its evaluations [38].

Now let wp be the weights used by minibatch p. Then, ini-
tially, we can assume that w0, the initial version of weights,
is given to the virtual worker. Then, the first (slocal +1) mini-
batches are processed in a pipelined manner with w0 = w1 =
· · ·= wslocal = wslocal+1.

To accommodate staleness in our system, when process-
ing of minibatch p completes, the virtual worker updates the
local version of the weights, wlocal as wlocal = wlocal + up,
where up is the updates computed by processing minibatch p.
Therefore, in HetPipe, weights are not updated layer by layer
and wlocal is a consistent version of weights across partitions.
When the virtual worker starts to process a new minibatch,
it makes use of the latest value of wlocal without waiting for
the other minibatches to update their weights. For example,
once the virtual worker is done for minibatch 1 and updates
wlocal with u1, it will start to process minibatch slocal +2 by
using the updated weights without waiting for minibatches 2
up to slocal +1 to be completed. Similarly, when the virtual
worker is done with minibatch slocal + 1 and updates wlocal
with uslocal+1, it will start to process minibatch 2× (slocal +1)
without waiting for the previous most recent slocal minibatches
to be completed. Therefore, except for the initial minibatches
1 to slocal + 1, for minibatch p the virtual worker will use
the version of the weights that reflects (at least) all the local
updates from minibatches 1 to p− (slocal +1). Note that for
every minibatch p, wp must be kept in GPU memory until the
backward pass for p is executed.

Note that staleness in SSP is caused by the different pro-
cessing speed of minibatches among multiple workers. Thus,
in SSP, staleness is used as a means to reduce the synchroniza-
tion and communication overhead. However, local staleness
in HetPipe is caused inherently as minibatches are processed
in a pipelined manner within a virtual worker.

5 Data Parallelism with Multiple VWs
In this section, we discuss data parallelism (DP) with virtual
workers. The first and foremost observation of DP being sup-
ported with virtual workers is that the virtual workers may be
composed of (whimpy) heterogeneous GPUs. While it is well
known that DP helps expedite DNN execution, DP, in typical
systems, is not possible if individual GPUs, that is, workers,
do not have sufficient resources to handle the DNN model,
in particular, large DNNs. By allowing a virtual worker to be
composed of multiple GPUs that are lacking in resources, our
system allows DP even with whimpy GPUs. The other key
observation in properly supporting DP with virtual workers
is that each virtual worker now retains local staleness as dis-
cussed in Section 4. Making sure that, despite such individual
staleness, we understand and show that the results obtained
from DP among virtual workers (globally) converge is an
important issue that must be addressed. The rest of the section
elaborates on this matter.

Workings of WSP: As stated in the system overview, Het-
Pipe uses parameter servers. We assume that such synchro-
nization occurs in clock units, a notion taken from SSP [18].
Precisely, a clock unit is defined as the progress of completing
one wave. Recall from Section 3 (and Figure 1) that a wave
is a sequence of slocal +1 minibatches concurrently executed
such that a virtual worker is allowed to process a later mini-
batch in a wave without updates from an earlier minibatch in
the same wave.

Similarly to SSP (which, however, considers the staleness
of weights only in DP), each virtual worker maintains a local
clock clocal , while the parameter server maintains a global
clock cglobal , which holds the minimum clocal value of all
the virtual workers. Initially, the local clocks and the global
clock are 0. At the end of every clock c, each virtual worker
completes the execution of all the minibatches in wave c.
At this point, the virtual worker computes the aggregated
updates from minibatch c× (slocal + 1) + 1 to minibatch
(c+1)×(slocal +1) and pushes the updates ũ to the parameter
server. We see that, similar to in SSP [18], ũ is synchronized
with a clock value c. For example, as shown in Figure 1 where
slocal = 3, at the end of clock 0, the virtual worker pushes the
aggregated updates of wave 0, which is composed of mini-
batches from 1 to 4, and at the end of clock 1, the aggregated
updates of wave 1, which is composed of minibatches from
5 to 8, and so on. It is important to note that in WSP, the vir-
tual worker pushes ũ to the parameter server for every wave,
instead of pushing ũ for every minibatch, which will signifi-
cantly reduce the communication overhead.

312 2020 USENIX Annual Technical Conference USENIX Association

When the parameter server receives the updates ũ from
the virtual worker, the parameter server updates the global
version of the weights as wglobal = wglobal+ ũ. Note that the
parameter server updates its cglobal to c+1 only after every
virtual worker has pushed the aggregated updates of wave c.

In WSP, each virtual worker is allowed to proceed training
without retrieving the global weights for every wave. Thus,
the virtual worker may use a weight version that, from a
global standpoint, may be stale, as the most recent updates
received by the parameter servers may not be reflected in its
local version of the weights. We discuss how global staleness
among the virtual workers is bounded.

Global Staleness Bound: Let clock distance be the differ-
ence in clocal between the fastest and slowest virtual workers
in the system. Therefore, a virtual worker with local clock
c, where c ≥ D+ 1, must use a version of the weights that
includes all the (aggregated) updates from wave 0 up to
c−D−1. Also, the weight version may include some recent
global updates from other virtual workers and some recent lo-
cal updates within the virtual worker beyond wave c−D−1.

When a virtual worker pulls the global weights at the end
of clock c to maintain this distance, it may need to wait for
other virtual workers to push their updates upon completion
of wave c−D. However, while a virtual worker waits for other
virtual workers to possibly catch up at the end of clock c, local
processing is allowed to proceed with slocal minibatches of
wave c+1 as the minibatches are executed in a pipelined man-
ner. Take, for example, the case when D = 0 and slocal = 3 in
Figure 3 (and Figure 1). As a virtual worker, VW1, completes
minibatch 4, it computes the aggregated updates ũ for wave 0
(composed of minibatches 1 to 4) and pushes ũ to the param-
eter server. VW1 now waits for the other virtual workers to
complete wave 0 before proceeding with minibatch 8. How-
ever, note that as shown in the figure, VW1 has already started
to process minibatches 5, 6 and 7, which belong to wave 1,
while its local clock is still 0. Similarly, once it completes
minibatch 8, it pushes the aggregated updates ũ for wave 1
(composed of minibatches 5 to 8) to the parameter server; in
the meantime, it has already started processing minibatches 9,
10, and 11, which belong to wave 2, while its clock is still 1.

Note that this processing of local minibatches in the virtual
worker does not violate the local staleness bound. Note also
that when D = 0, each virtual worker must wait for each other
at the end of every clock to synchronize the weights for every
wave, which is BSP-like behavior with pipelined execution in
each virtual worker.

Now let us define the global staleness bound, sglobal , to
be the maximum number of missing updates from the most
recent minibatches, globally computed by all the other virtual
workers in the system, that is allowed for a minibatch to pro-
ceed in a virtual worker. We want to identify sglobal based on
our discussion so far. This will allow each virtual worker to
determine whether it can proceed with its current minibatch.

Initially, all virtual workers start processing the first (D+1)

1

2

3

4

clock0 1 2

VW 1

VW 2

5

6

7

8

10

11

1

2

3

4

5

6

7

8

1 to 4
: Global updates reflected in 𝒘𝟏𝟏

Cannot start minibatch 12 until all the global
updates from minibatches 1 to 8 are available

9

8 to 10
: Local & global updates not reflected in 𝒘𝟏𝟏

𝒔𝒍𝒐𝒄𝒂𝒍

5 to 7
: Only local updates reflected in 𝒘𝟏𝟏

𝒔𝒈𝒍𝒐𝒃𝒂𝒍

Push
Pull

Figure 3: Local and global staleness with WSP

waves without querying the global weights from the parameter
server. Furthermore, they can start to process up to slocal
minibatches of the next wave before receiving the global
weights that include the recent updates as discussed above.
Therefore, for those initial minibatches, the virtual worker
uses w0 or a weight version that may include some recent
local updates.

For any minibatch p thereafter, that is, where p> (D+1)×
(slocal +1)+ slocal , p must use a weight version that reflects,
at the very least, all the global updates from all the other vir-
tual workers from minibatch 1 to minibatch p− (sglobal +1),
where sglobal = (D+ 1)× (slocal + 1)+ slocal − 1. The first
term of this equation is due to the fact that a virtual worker
is allowed to proceed with the next (D + 1) waves (i.e.,
(D+ 1)× (slocal + 1) minibatches), and the second term is
due to the additional slocal minibatches that can be started be-
cause of pipelined execution. Continuing with the example in
Figure 3, where D = 0 and slocal = 3, VW1 proceeds the train-
ing of minibatch 11 without the global and/or local updates
from wave 1 (minibatches 5 to 8) or the two local updates
from minibatches 9 and 10 (i.e., having sglobal = 6). Thus, it
must have a version of the weights that includes all the global
updates from minibatches 1 to 4. Actually, the weight version
used for minibatch 11 includes three local updates from mini-
batches 5, 6, and 7, along with all the global updates from
wave 0. In case of minibatch 12, it cannot start the training
until global updates up to minibatch 8 are received.

6 Convergence Analysis
In this section, we discuss the convergence property of the
WSP model. Let N be the number of virtual workers and
un,p be the update of worker n at minibatch execution p. Let
sg = sglobal and sl = slocal + 1, and following the analysis
of [18], the noisy weight parameter1 w̃n,p for worker n at
minibatch execution p, is decomposed into

w̃n,p = w0 +

[
N

∑
n′=1

p−sg−1

∑
p′=1

un′,p′

]
+

[
∑

p′∈Cn,p

un,p′

]

+

 ∑
(n′,p′)∈En,p

un′,p′

 . (1)

1In this section, we use the term ‘weight parameter’ to denote all weights
of a network. Thus, the weight parameters refer to a set of weights of net-
works.

USENIX Association 2020 USENIX Annual Technical Conference 313

Here w0 refers to the initial parameter, and the noisy weight
parameter has three other terms which respectively include

1. updates of all workers (guaranteed to be included) to
process minibatch execution p,

2. Cn,p ⊆ [p− sg, p−1]: the index set of the latest updates
of the querying worker n in the range of current global
staleness bound, and

3. En,p ⊆ ([1,N]\{n})× [p− sg, p+ sg + sl]: the index set
of extra updates of other workers in the range of the
current global staleness bound. When execution p is not
at a synchronization point, En,p = /0.

We define {ut} as the sequence of updates of each vir-
tual worker after processing each minibatch and {wt = w0 +

∑
t−slN
t ′=0 ut ′} as the reference sequence of weight parameters,

where ut := ut mod N,bt/Nc+ t mod sl , in which we loop over
the workers (t mod N) and over each update after a mini-
batch execution inside a worker (bt/Nc+ t mod sl). Here,
slN (= sl ×N) is the number of total minibatch updates in
one wave from all virtual workers. Since a virtual worker
uses a version of the weight parameter that reflects all the
local updates from minibatch 1 to p− sl for worker p, the
reference and noisy sequences at iteration t are updated up
to t− slN. The set Et and the noisy weight parameter w̃t are
defined similarly and the difference between wt and w̃t is
w̃t = wt −

[
∑i∈Rt ui

]
+
[
∑i∈Qt ui

]
where Rt is the index set

of missing updates in the reference weight parameter but not
in noisy weight parameter, and Qt is the index set of extra
updates in the noisy weight parameter but not in reference
weight parameter.

After T updates, we represent the target function as f (w) :=
1
T ∑

T
t=1 ft(w), the regret of two functions with w̃t , the pa-

rameter learned from the noisy update, and w∗, the pa-
rameter learned from the synchronized update is R[W] :=
1
T ∑

T
t=1 ft (w̃t)− f (w∗) .

Thus, when we bound the regret of the two functions, we
can bound the error of the noisy updates incurred by the
distributed pipeline staleness gradient descent. We first bound
the cardinality ofRt and Qt in the following lemma.
Lemma 1. The following two inequalities, |Rt |+ |Qt | ≤
(2sg+sl)(N−1) and min(Rt ∪Qt)≥max(1, t−(sg+sl)N),
hold.
Proof. Since Qt ⊆ Et and Rt ⊆ Et\Qt , |Rt |+ |Qt | ≤ |Et | ≤
(2sg + sl)(N−1). The second claim follows from Et ⊇Rt ∪
Qt .

With the following two assumptions, the proof of conver-
gence generally follows Qirong et al. [18]2

Assumption 1. (L-Lipschitz components) For all t, the com-
ponent function ft is convex and has bounded subdifferential
‖∇ ft(w)‖ ≤ L, in which L > 0 is a constant.
Assumption 2. (Bounded distances) For all w,w′, the dis-
tance between them is bounded D(w‖w′) ≤ M, in which
M > 0 is a constant.

2The full proof is omitted due to space, but can be found in [44].

We also denote 1
2‖w−w′‖2 as D(w‖w′). Then, we can

bound the regret of the function trained with our noisy dis-
tributed, pipeline update as in Theorem 1.

Theorem 1. Suppose w∗ is the minimizer of f (w). Let ut :=
−ηt∇ ft (w̃t) where ηt =

σ√
t with σ = M

L
√

(2sg+sl)N
, in which

M,L are the constants defined in the assumptions. Then the

regret is bounded as R[W]≤ 4ML
√

(2sg+sl)N
T .

Our theoretical results are similar with existing work on non
pipelined version of staleness update [18, 24]. However, we
reflect the new characteristics of distributed pipeline staleness
update in Lemma 1, and thus in Theorem 1.

7 Partitioning Algorithm

Recall that the goal of our partitioning algorithm is to min-
imize the maximum execution time of the partitions within
the bounds of satisfying the memory requirement. To obtain
a performance model to predict the execution time of each
layer of a model in a heterogeneous GPU, we first profile
the DNN model on each of the different types of GPUs in a
cluster, where we measure the computation time of each layer
of the model. For GPU memory usage, we measure the usage
of each layer (by using the logging feature of TensorFlow)
on only one GPU type (as it is roughly the same for all GPU
types). For profiling the memory usage on a whimpy node, we
measure the memory usage of each layer using a small batch
size and then multiply it for the target batch size. To compute
the memory requirement for a given partition, we take into
account the total memory usage to store the data to process
the layers as well as the maximum number of minibatches
concurrently assigned to the partition.

For communication time between layers in the model, we
first derive the amount of input data for each layer in the for-
ward and backward pass from the model graph. For the given
data size, we predict intra-node communication based on the
PCI-e bandwidth, then multiply it by a scaling-down constant
(which is similarly done in Paleo [46]), since in practice, it is
not possible to utilize the peak bandwidth. The scaling-down
constant is derived by running a synthetic model that sends
various sizes of data from one GPU to another GPU in the
same node. For inter-node communication (via InfiniBand),
we use linear regression to estimate the communication time
for the given data size. To build a prediction model, we collect
27 samples by training two DNN models, used in our exper-
iments, with arbitrary partitions. Note that in this work, the
heterogeneity of network performance such as slow network
links is not considered (as in [33]). However, for such cases,
we can extend our partitioning algorithm to consider different
network performance between two nodes when estimating the
communication time. Also, a model that estimates the mem-
ory requirement for each stage more accurately will be helpful
in partitioning a DNN model in a more balanced manner.

314 2020 USENIX Annual Technical Conference USENIX Association

To find the best partitions of a DNN model, we make use of
CPLEX, which is an optimizer for solving linear programming
problems [20]. The memory requirement for each partition on
the pipeline to support Nm concurrent minibatches is provided
as a constraint to the optimizer. The algorithm will return
partitions for a model with a certain batch size only if it finds
partitions that meet the memory requirement for the given
GPUs. Also, the optimizer checks all the different orders of
the given heterogeneous GPUs for a single virtual worker to
partition and place layers of the DNN model on them.

8 Experimental Results

8.1 Methodology
Heterogeneous GPU cluster: In our experiments, we use
four nodes with two Intel Xeon Octa-core E5-2620 v4 proces-
sors (2.10 GHz) connected via InfiniBand (56 Gbps). Each
node has 64 GB memory and 4 homogeneous GPUs. Each
node is configured with a different type of GPU as shown
in Table 1. Thus, the total number of GPUs in our cluster
is 16. Each GPU is equipped with PCIe-3×16 (15.75 GB/s).
Ubuntu 16.04 LTS with Linux kernel version 4.4 is used. We
implement HetPipe based on the WSP model by modifying
TensorFlow 1.12 version3 with CUDA 10.0 and cuDNN 7.4.
DNN models and datasets Our main performance metric is
throughput (images/second) of training a DNN model. We
use ResNet-152 [16], and VGG-19 [51] with ImageNet [13].
For each DNN model, batch size of 32 is used. For all other
hyperparameters, we use the default settings as specified in
the benchmark [52] of ResNet-152 and VGG-19.
Resource allocation for virtual workers: Given any hetero-
geneous GPU cluster, there can be many ways of allocating
the resources to the multiple virtual workers. For our experi-
ments, we consider allocation policies within the bounds of
our platform. Thus, given the 16 GPUs, HetPipe employs four
virtual workers, each of which is configured with four GPUs,
along the following three allocation policies.
Node Partition (NP): This policy assigns a node per virtual
worker. Thus, each virtual worker is composed of homoge-
neous GPUs. Consequently, as the nodes are heterogeneous,
partitioning of layers for a DNN model is different for each
virtual worker. NP results in minimum communication over-
head within each virtual worker as communication between
GPUs occurs within the same node via PCI-e, rather than
across multiple nodes where communication is via Infini-
Band. On the other hand, as the performance of each virtual
worker varies, a straggler may degrade performance with DP.
Equal Distribution (ED): This policy evenly distributes GPUs
from each node to every virtual worker. Thus, every virtual
worker is assigned four different GPUs, but every virtual
worker has the exact same resources. Thus, model partitioning
is the same, and thus, performance will be the same across

3Modified LOC is ∼1.5K in the TensorFlow framework and TensorFlow
benchmark codes, where most features are added as independent functions.

Table 3: Resource allocation for the three policies considered

Node Partition Equal Distribution Hybrid Distribution

VW1 VVVV VRGQ VVQQ

VW2 RRRR VRGQ VVQQ

VW3 GGGG VRGQ RRGG

VW4 QQQQ VRGQ RRGG

the virtual workers, which mitigates the straggler problem.
However, ED results in high communication overhead within
each virtual worker.
Hybrid Distribution (HD): This policy is a hybrid of NP and
ED. For our cluster, a combination of two GPU types are
allocated to each virtual worker such that their performances
in terms of aggregated computation capability and amount
of GPU memory are similar to each other. This choice is
made to mitigate the straggler problem while reducing the
communication overhead within each virtual worker. As, in
terms of computation power, V> R> G> Q and, in terms of
the amount of the GPU memory, R> V> Q> G, two virtual
workers are allocated VVQQ, while the other two are allocated
RRGG, where V, R, G and Q refers to TITAN V, TITAN RTX,
GeForce RTX 2060, and Quadro P4000, respectively.

Table 3 shows the resource allocation of each virtual worker
for the three resource allocation policies.
Parameter Placement: In our experiments, for DP, we locate
the parameter servers, each of which only handles a portion
of the model parameters, over all the nodes. For the default
placement policy, which can be used with all three of our
resource allocation policies, we place layers of the model
in round-robin fashion over all the parameter servers as in
TensorFlow [53]. For ED, however, another policy is possible,
which we refer to as ‘ED-local’. With ‘ED-local’, we place
the layers of a partition on the parameter server running on
the same node, incurring no actual network traffic across the
nodes for parameter synchronization. This is possible as the
same partition of the model can be assigned locally to the
GPU on the same node for every virtual worker. For all results
reported hereafter, the ‘default’ policy is used, except for ‘ED-
local’.

8.2 Performance of a single virtual worker
We first investigate the performance of the 7 different in-
dividual virtual workers that are possible according to the
allocation schemes in Table 3. Figure 4 shows the throughput
over various values of Nm, which is the number of minibatches
executed concurrently, in the virtual worker normalized to that
of when Nm = 1 and the maximum average GPU utilization
among the four partitions for ResNet-152 and VGG-19. The
numbers shown (in the box) along with the allocation policy
are the absolute throughput (images/sec) when Nm = 1. Note
that some results for larger Nm are not shown. This is because
the GPU memory cannot accommodate such situations and
hence, cannot be run.

USENIX Association 2020 USENIX Annual Technical Conference 315

1 2 3 4 5 6 7
Nm

1
2
3
4
5

No
rm

al
iz

ed
Im

ag
es

/s
ec

1 2 3 4 5 6 7
Nm

20
40
60
80

G
PU

-U
til

 (%
)

VVVV (96)
VRGQ (42)

RRRR (87)
VVQQ (53)

GGGG (58)
RRGG (58)

QQQQ (43)

(a) ResNet-152

1 2 3 4 5 6 7
Nm

1
2
3

No
rm

al
iz

ed
Im

ag
es

/s
ec

1 2 3 4 5 6 7
Nm

20
40
60
80

G
PU

-U
til

 (%
)

VVVV (119)
VRGQ (60)

RRRR (107)
VVQQ (116)

GGGG (62)
RRGG (68)

QQQQ (51)

(b) VGG-19

Figure 4: Normalized throughput and the maximum average GPU utilization among partitions in a single virtual worker for
various resource allocation policies as Nm is varied. The number in parenthesis is absolute throughput (images/sec) when Nm = 1
(which is equivalent to the naive MP) for each policy.

12
GPUs

16
GPUs

200

400

600

Im
ag

es
/s
ec

2

7
7

4 Horovod
NP
ED
ED-local
HD

(a) ResNet-152

16
GPUs

16
GPUs

200

400

600

Im
ag

es
/s
ec

2
5

5

2

Horovod
NP
ED
ED-local
HD

(b) VGG-19

Figure 5: Performance with the three allocation policies when
D=0 (The number on bar represents Nm)

From the results, we can see that as Nm increases, normal-
ized throughput of a virtual worker as well as the maximum
GPU utilization generally increases. Note that, though not
shown, the total GPU memory utilization tends to increase
as Nm increases. However, depending on the resource alloca-
tion scheme (which results in different partitions of a model)
as well as the DNN model, the effect of having larger Nm
varies. When a virtual worker is configured with homoge-
neous GPUs, the average GPU utilization of each partition
is similar to each other. However, when it is configured with
heterogeneous GPUs, there is a tendency that the GPU uti-
lization of the first or last partition is higher than those of the
other partitions. For this configuration, different computation
capabilities and memory capacity of the GPUs are considered
when partitioning a model. As it is possible that only a small
number of layers are assigned to some GPUs, the overall GPU
utilization may turn out to be low.

8.3 Performance of multiple virtual workers
Figure 5 shows the throughput of training each model with
the three resource allocation policies, where “Horovod” indi-
cates the state-of-the-art DP via Horovod that uses AllReduce
communication4. In these experiments, for each resource al-
location policy, Nm is set such that performance is maximized
while every virtual worker uses the same value of Nm as this
is the assumption behind HetPipe. For ResNet-152, the whole
model is too large to be loaded into a single GPU with G type,
and thus, Horovod uses only 12 GPUs.

4We use the same minibatch size for all workers of Horovod as the
minibatch size is one of the critical factors to the final performance of a
trained DNN and adaptive batch sizing will affect convergence [5].

Table 4: Performance improvement of adding whimpy GPUs
(The number in parenthesis presents the total number of con-
current minibatches in HetPipe)

Model
Single

GPU [V]
Method

4 GPUs
4[V]

8 GPUs
4[VR]

12 GPUs
4[VRQ]

16 GPUs
4[VRQG]

VGG-19 159
Horovod 164 205 265 339
HetPipe 300(5) 530(16) 572(20) 606(20)

ResNet-152 112
Horovod 233 353 415 X
HetPipe 256(5) 516(20) 538(24) 580(28)

The results in Figure 5 show that the performance of DNN
training is strongly affected by how heterogeneous GPUs
are allocated to virtual workers. From the results, we can
make the following observations: First, for VGG-19 whose
parameter size is 548MB, the performance of Horovod, which
reduces communication overhead for parameter synchroniza-
tion, is better than those of NP, ED, and HD. However, for
ResNet-152 whose parameter size is 230MB, ED and HD,
which utilize virtual workers with similar performance, show
a bit better or similar performance to Horovod (with 12 GPUs).
Second, with NP, training performance of ResNet-152 and
VGG-19 is low as Nm is bounded by the virtual worker
with the smallest GPU memory. Third, with ED-local, intra-
communication occurs between each GPU and the parameter
server, significantly reducing communication overhead across
the nodes, especially for VGG-19, the model with a large
parameter set. For VGG-19, the amount of data transferred
across the nodes per minibatch with ED-local (i.e., 103MB) is
much smaller than that with Horovod (i.e., 515MB). Thus, the
performance of ED-local (which also mitigates the straggler
problem) is 1.8× higher than Horovod. For ResNet-152, the
amount of data transferred with ED-local (i.e., 298MB) is
larger than that with Horovod (i.e., 211MB) because the sizes
of output activations to be sent between partitions are large,
even though the parameter size is relatively small. However,
the throughput of ED-local is still 40% higher than Horovod.
This is because Hetpipe allows each virtual worker to process
a large number of minibatches concurrently. Compared to
NP and HD, ED-local (or ED) usually has larger Nm in each
virtual worker, improving throughput.

316 2020 USENIX Annual Technical Conference USENIX Association

12 24 36 48 60 72
Time (hours)

0.0
0.2
0.4
0.6
0.8

To
p-

1
Ac

cu
ra

cy

Horovod
HetPipe 12GPUs
HetPipe 16GPUs

Figure 6: ResNet-152 top-1 accuracy

Next, we investigate how the throughput is improved when
whimpy GPUs are additionally used for training. Table 4
shows the throughput of VGG-19 and ResNet-152 when DP
via Horovod and HetPipe with ED-local are used over dif-
ferent sets of heterogeneous GPUs, and also when a single V
GPU is used. For these experiments, HetPipe is configured to
use four virtual workers, except for ‘4 GPUs’ where a single
virtual worker is used. In the table, the number and type of
GPUs used for each experiment are also given. From the re-
sults, we can see that the performance of both Horovod and
HetPipe increases when additional whimpy GPUs are used
for training. With additional GPUs, HetPipe can increase the
total number of concurrent minibatches processed, having up
to 2.3 times speedup. This scenario can be thought of as an
answer to when new, higher end nodes are purchased, but one
does not know what to do with existing nodes. The results
show that making use of the whimpy systems allows for faster
training of larger models.

8.4 Convergence
Our HetPipe based on the WSP model is guaranteed to con-
verge as proven in Section 6. In this section, we analyze the
convergence performance of HetPipe with ED-local using
ResNet-152 and VGG-19. For our experiments, the desired
target accuracy of ResNet-152 and VGG-19 is 74% and 67%,
respectively.

Figure 6 shows the top-1 accuracy of ResNet-152 with
Horovod (12 GPUs), HetPipe (12 GPUs), and HetPipe (16
GPUs), where D is set to 0 for HetPipe. For the experiments
with 12 GPUs, the 4 G type GPUs are not used. When the same
set of GPUs are used, convergence with HetPipe is 35% faster
than that of Horovod by reducing the straggler problem in a
heterogeneous environment and exploiting both PMP and DP.
Furthermore, by adding four more whimpy G GPUs, HetPipe
improves training performance even more, converging faster
than Horovod by 39%.

Figure 7 shows the top-1 accuracy of VGG-19 with
Horovod and HetPipe as we vary D to 0, 4, and 32. For the
experiments, all 16 GPUs are used. The figure shows that
convergence with the BSP-like configuration (i.e., D = 0)
of HetPipe is roughly 29% faster than that with Horovod.
As we increase D to 4, the straggler effect is mitigated and
the communication overhead due to parameter synchroniza-
tion is reduced. Thus, convergence is faster by 28% and 49%
compared to D = 0 and Horovod, respectively. In this experi-

24 48 72 96 120 144
Time (hours)

0.0
0.2
0.4
0.6
0.8

To
p-

1
Ac

cu
ra

cy

Horovod
HetPipe D=0
HetPipe D=4
HetPipe D=32

Figure 7: VGG-19 top-1 accuracy

ment with ED-local (where the training speed of each virtual
worker is similar), when D becomes very large (i.e., 32), the
throughput remains similar but the convergence performance
degrades by 4.7%, compared to D = 4. This is because it is
unlikely that the clock distance between the fastest and slow-
est virtual workers becomes as large as 32, but higher global
staleness can degrade the convergence performance (similarly
discussed in [18]). Note that though not shown, using larger D
has a greater effect for HetPipe with NP, ED and HD resource
allocation, and the different resource allocations only affect
the set of heterogeneous GPUs used for each virtual worker
and do not affect the convergence behavior.

We also analyze the synchronization overhead as D is var-
ied. We find that as D increases, the waiting time of a virtual
worker to receive the updated global weights decreases. In our
experiments, the average waiting time with D = 4 is found
to be 62% of that with D = 0. Furthermore, the actual idle
time is only 18% of the waiting time as the virtual worker can
continue to proceed in the pipeline while waiting.

9 Discussion
Comparison to PipeDream PipeDream [38], which is the
closest related study, optimizes PMP of a single virtual worker,
only employing DP for lagging layers within a virtual worker
in homogeneous environments. To be adapted to heteroge-
neous environments, its partitioning algorithm must be ex-
tended to consider the different performance and memory
sizes of heterogeneous GPUs, various orders of heteroge-
neous nodes used for a pipeline, and the memory requirement
of the GPUs for partitions.

We run the training of ResNet-152 using PipeDream, which
is implemented on PyTorch [37], in our heterogeneous GPU
cluster described in Section 8.1. Since the partitioning al-
gorithm does not consider heterogeneous GPUs, for each
GPU type, we profile ResNet-152, then generate partitions
of the model assuming that our cluster is configured with
homogeneous GPUs with that type, and finally, measure the
throughput of PipeDream with the partitions. All the com-
puted configurations of the pipeline result in a large number
of (i.e., 12 or 14) partitions. For example, with Q, the configu-
ration is 4-2-1-1-1-1-1-1-1-1-1-1 indicating that the model is
divided into 12 partitions where the first partition is executed
by four GPUs with DP, the second one is executed by two
GPUs with DP, and so on. For these configurations, we run
experiments with various orders of the four different nodes

USENIX Association 2020 USENIX Annual Technical Conference 317

and test using several batch sizes. (Note that we could not
run training for some configurations due to out of memory er-
rors.) The best throughput measured using PipeDream is 158.
Recall that the throughputs of Horovod (with 12 GPUs) and
HetPipe are 415 and 580, respectively. In this case, the per-
formance of PipeDream for ResNet-152 is found to be low as
a large number of partitions cause high network overhead, in
addition to the sub-optimal partitions. Therefore, with PMP
alone (i.e., single virtual worker), the performance benefit
may become limited when a model is divided into numerous
partitions. Instead of increasing partitions, running DP with
multiple virtual workers like HetPipe can improve the paral-
lelism of training and further improve performance in such
cases.

Effect of imbalanced partitions Our partitioning algo-
rithm attempts to balance partitions while satisfying the mem-
ory requirements. However, depending on the DNN model,
computed partitions may be imbalanced. For example, for a
model composed of a small number of layers, if one layer
takes much longer to execute compared to other layers, the
partitions may end up having different execution times. In
this case, the performance of the pipeline will be degraded as
in any other pipeline-based systems. Note that running DP for
the slow partition to have a similar processing rate across all
the partitions like PipeDream [38] will be a possible extension
of HetPipe.

10 Related Work

Pipelining has been leveraged to improve the performance
of machine learning systems [6, 7, 19, 32, 38]. A pipelin-
ing scheme is employed to handle expensive backpropa-
gation [7]. Pipe-SGD pipelines the processing of a mini-
batch to hide communication time in AllReduce based sys-
tems [32]. A weight prediction technique is proposed to ad-
dress the staleness issue in pipelined model parallelism [6].
Detailed comparisons of HetPipe with PipeDream [38] and
GPipe [19] are provided in Section 2.2. Note that the feature
of overlapping computation and communication, presented
in PipeDream [38], will also improve the performance of our
system. PipeDream employs the one-forward-one-backward
scheduling algorithm for pipeline execution. Sophisticated
schedulers that consider various factors such as heterogeneous
configurations, the number of partitions, and the number of
concurrent minibatches within a virtual worker, can poten-
tially improve the performance of HetPipe. Techniques to
optimize learning rates have been studied [15], which can
also be applied to HetPipe to help converge faster.

Decentralized training systems that consider heterogeneous
environments have also been studied [33, 34]. However, these
techniques do not consider integration of DP with PMP, which
allows support for large models that do not fit into single
GPU memory. In AD-PSGD, once a mini-batch is processed,
a worker updates the parameters by averaging them with only

one neighbor which is randomly selected [33]. This is done
asynchronously, allowing faster workers to continue. In the-
ory, the convergence rate of AD-PSGD is the same as SGD.
In principle, the contribution of AD-PSGD is orthogonal with
the contributions of HetPipe in that we can extend our HetPipe
further by adapting the idea of asynchronous decentralized
update in AD-PSGD when there is a bottleneck in the param-
eter server. When it comes to the experimental evaluations,
the performance of AD-PSGD is evaluated for DNN models
whose sizes are 1MB, 60MB, and 100MB, which are smaller
than the models we consider in HetPipe. For a decentralized
training system, Hop [34] considers the bounded staleness
and backup workers, and uses CIFAR-10 for performance
evaluation on a CNN model.

There have been earlier efforts to employ DP and/or MP for
model training. Project Adam uses both DP and MP to train
machine learning models on CPUs [8]. Pal et al. combine DP
and MP in a similar way as our system, but do not consider
pipelining nor heterogeneous GPUs [43]. STRADS leverages
MP to address the issues of uneven convergence of param-
eters and parameter dependencies [27]. FlexFlow considers
utilizing parallelism in various dimensions such as sample,
operator, attribute and parameters to maximize paralleliza-
tion performance [23]. Bounded staleness has been explored
where Jiang et al. present heterogeneity-aware parameter syn-
chronization algorithms based on the SSP model [24], while
Cui et al. analyze the effects of bounded staleness [11].

Hierarchical AllReduce performs the AllReduce operation
in two levels [22]. This technique does not solve the straggler
problem in a heterogeneous GPU cluster, as master GPUs in
the second level will have different GPU types. BlueConnect
is an efficient AllReduce communication library consider-
ing heterogeneous networks [9]; unfortunately, it also cannot
handle stragglers caused by heterogeneous GPUs.

11 Conclusion
In this paper, we presented a DNN training system, HetPipe,
that integrates pipelined model parallelism with data paral-
lelism. Leveraging multiple virtual workers, each of which
consists of multiple, possibly whimpy, heterogeneous GPUs,
HetPipe makes it possible to efficiently train large DNN mod-
els. We proved that HetPipe converges and presented results
showing the fast convergence of DNN models with HetPipe.

Acknowledgments
We would like to thank our shepherd Saurabh Bagchi and the
anonymous reviewers for their invaluable comments. This
work was partly supported by Samsung Research Funding &
Incubation Center of Samsung Electronics under Project Num-
ber SRFC-IT1901-14 and Institute for Information & com-
munications Technology Planning & Evaluation(IITP) grant
funded by the Korea government(MSIT) (No.2019-0-00118
and No.2019-0-00075). Young-ri Choi is the corresponding
author.

318 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A System for Large-
Scale Machine Learning. In Proceedings of the Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2016.

[2] Amazon. Amazon EC2 Pricing. https://aws.amazon.
com/ec2/pricing/.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan. La-
tent Dirichlet Allocation. Journal of Machine Learning
Research, 2003.

[4] Léon Bottou. Large-Scale Machine Learning with
Stochastic Gradient Descent. In Proceedings of COMP-
STAT, 2010.

[5] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Opti-
mization Methods for Large-Scale Machine Learning.
SIAM Review, 2018.

[6] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun
Cheng. Efficient and Robust Parallel DNN Training
through Model Parallelism on Multi-GPU Platform.
arXiv preprint arXiv:1809.02839, 2018.

[7] Xie Chen, Adam Eversole, Gang Li, Dong Yu, and
Frank Seide. Pipelined Back-Propagation for Context-
Dependent Deep Neural Networks. In Proceedings of
the Annual Conference of the International Speech Com-
munication Association, 2012.

[8] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and
Karthik Kalyanaraman. Project Adam: Building an
Efficient and Scalable Deep Learning Training System .
In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

[9] Minsik Cho, Ulrich Finkler, David Kung, and Hillery
Hunter. BlueConnect: Decomposing All-Reduce for
Deep Learning on Heterogeneous Network Hierarchy.
In Proceedings of the Conference on Systems and Ma-
chine Learning (SysML), 2019.

[10] Ronan Collobert and Jason Weston. A Unified Archi-
tecture for Natural Language Processing: Deep Neural
Networks with Multitask Learning. In Proceedings
of the International Conference on Machine Learning
(ICML), 2008.

[11] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim,
Seunghak Lee, Abhimanu Kumar, Jinliang Wei, Wei Dai,
Gregory R Ganger, Phillip B Gibbons, Garth A Gibson,
and Eric P Xing. Exploiting Bounded Staleness to Speed
Up Big Data Analytics. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2014.

[12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V Le, Mark Mao, Marc’Aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and
Andrew Y. Ng. Large Scale Distributed Deep Networks.
In Proceedings of the Advances in Neural Information
Processing Systems (NIPS), 2012.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR),
2009.

[14] Anna Veronika Dorogush, Vasily Ershov, and Andrey
Gulin. CatBoost: gradient boosting with categorical
features support. In Proceedings of the Advances in
Neural Information Processing Systems (NIPS), 2018.

[15] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[17] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath,
and Brian Kingsbury. Deep Neural Networks for Acous-
tic Modeling in Speech Recognition. IEEE Signal Pro-
cessing Magazine, 2012.

[18] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee,
Jin Kyu Kim, Phillip B Gibbons, Garth A Gibson, Greg
Ganger, and Eric P Xing. More Effective Distributed
ML via a Stale Synchronous Parallel Parameter Server.
In Proceedings of the Advances in Neural Information
Processing Systems (NIPS), 2013.

[19] Yanping Huang, Yonglong Cheng, Dehao Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, and Zhifeng
Chen. GPipe: Efficient Training of Giant Neural Net-
works using Pipeline Parallelism. In Proceedings of
the Advances in Neural Information Processing Systems
(NIPS), 2019.

USENIX Association 2020 USENIX Annual Technical Conference 319

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/

[20] IBM. CPLEX-Optimizer. https://www.ibm.com/
analytics/cplex-optimizer/.

[21] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra
Fedorova, and Gennady Pekhimenko. Priority-based
Parameter Propagation for Distributed DNN Training. In
Proceedings of the Conference on Systems and Machine
Learning (SysML), 2019.

[22] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang,
Haidong Rong, Feihu Zhou, Liqiang Xie, Zhenyu Guo,
Yuanzhou Yang, Liwei Yu, Tiegang Chen, Guangxiao
Hu, Shi Shaohuai, and Chu Xiaowen. Highly Scalable
Deep Learning Training System with Mixed-Precision:
Training ImageNet in Four Minutes. arXiv preprint
arXiv:1807.11205, 2018.

[23] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
Data and Model Parallelism for Deep Neural Networks.
In Proceedings of the Conference on Systems and Ma-
chine Learning (SysML), 2019.

[24] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu.
Heterogeneity-aware Distributed Parameter Servers. In
Proceedings of the International Conference on Man-
agement of Data (SIGMOD), 2017.

[25] Wenbin Jiang, Geyan Ye, Laurence T Yang, Jian Zhu,
Yang Ma, Xia Xie, and Hai Jin. A Novel Stochastic
Gradient Descent Algorithm Based on Grouping over
Heterogeneous Cluster Systems for Distributed Deep
Learning. In Proceedings of the IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid
(CCGrid), 2019.

[26] Tian Jin and Seokin Hong. Split-CNN: Splitting
Window-based Operations in Convolutional Neural Net-
works for Memory System Optimization. In Proceed-
ings of the International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2019.

[27] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng,
Wei Dai, Garth A Gibson, and Eric P Xing. STRADS:
A Distributed Framework for Scheduled Model Parallel
Machine Learning. In Proceedings of the European
Conference on Computer Systems (EuroSys), 2016.

[28] Alex Krizhevsky. One weird trick for paralleliz-
ing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. In Proceedings of the Advances in
Neural Information Processing Systems (NIPS), 2012.

[30] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho,
Garth A Gibson, and Eric P Xing. On Model Paralleliza-
tion and Scheduling Strategies for Distributed Machine
Learning. In Proceedings of the Advances in Neural
Information Processing Systems (NIPS), 2014.

[31] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning with the Parameter Server. In Pro-
ceedings of the Symposium on Operating Systems De-
sign and Implementation (OSDI), 2014.

[32] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr,
Nam Sung Kim, and Alexander Schwing. Pipe-SGD:
A Decentralized Pipelined SGD Framework for Dis-
tributed Deep Net Training. In Proceedings of the
Advances in Neural Information Processing Systems
(NIPS), 2018.

[33] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asyn-
chronous Decentralized Parallel Stochastic Gradient De-
scent. In Proceedings of the International Conference
on Machine Learning (ICML), 2018.

[34] Qinyi Luo, Jinkun Lin, Youwei Zhuo, and Xuehai Qian.
Hop: Heterogeneity-aware Decentralized Training. In
Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS), 2019.

[35] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan
Sparks, Shivaram Venkataraman, Davies Liu, Jeremy
Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh,
Matei Zahria, and Ameet Talwalkar. MLlib: Machine
Learning in Apache Spark. The Journal of Machine
Learning Research, 2016.

[36] Microsoft. Microsoft Azure Pricing. https://azure.
microsoft.com/en-us/pricing/.

[37] msr-fiddle. PipeDream: Generalized Pipeline Paral-
lelism for DNN Training. https://github.com/
msr-fiddle/pipedream/.

[38] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. PipeDream:
Generalized Pipeline Parallelism for DNN Training. In
Proceedings of the ACM Symposium on Operating Sys-
tems Principles (SOSP), 2019.

[39] NVIDIA. GeForce RTX 2060. https://www.nvidia.
com/en-us/geforce/graphics-cards/rtx-2060/.

[40] NVIDIA. Quadro P4000. https://www.
nvidia.com/en-us/design-visualization/
quadro-desktop-gpus/.

320 2020 USENIX Annual Technical Conference USENIX Association

https://www.ibm.com/analytics/cplex-optimizer/
https://www.ibm.com/analytics/cplex-optimizer/
https://azure.microsoft.com/en-us/pricing/
https://azure.microsoft.com/en-us/pricing/
https://github.com/msr-fiddle/pipedream/
https://github.com/msr-fiddle/pipedream/
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2060/
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2060/
https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/
https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/
https://www.nvidia.com/en-us/design-visualization/quadro-desktop-gpus/

[41] NVIDIA. TITAN RTX. https://www.nvidia.com/
en-us/titan/titan-rtx/.

[42] NVIDIA. TITAN V. https://www.nvidia.com/
en-us/titan/titan-v/.

[43] Saptadeep Pal, Eiman Ebrahimi, Arslan Zulfiqar,
Yaosheng Fu, Victor Zhang, Szymon Migacz, David
Nellans, and Puneet Gupta. Optimizing Multi-GPU
Parallelization Strategies for Deep Learning Training.
IEEE Micro, 2019.

[44] Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T.
Nguyen, Seungmin Lee, Jaesik Choi, Sam H. Noh, and
Young-ri Choi. HetPipe: Enabling Large DNN Training
on (Whimpy) Heterogeneous GPU Clusters through
Integration of Pipelined Model Parallelism and Data
Parallelism. arXiv preprint arXiv:2005.14038, 2020.

[45] Pitch Patarasuk and Xin Yuan. Bandwidth Optimal All-
reduce Algorithms for Clusters of Workstations. Journal
of Parallel and Distributed Computing, 2009.

[46] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo: A
Performance Model for Deep Neural Networks. In Pro-
ceedings of the Conference on International Conference
on Learning Representations (ICLR), 2017.

[47] Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. Regularized Evolution for Image Classifier
Architecture Search. In Proceedings of the Conference
on Association for the Advancement of Artificial Intelli-
gence (AAAI), 2019.

[48] Benjamin Recht, Christopher Re, Stephen Wright, and
Feng Niu. HOGWILD!: A Lock-Free Approach to Par-
allelizing Stochastic Gradient Descent. In Proceedings
of the Advances in Neural Information Processing Sys-
tems (NIPS), 2011.

[49] Muhammad Saqib, Sultan Daud Khan, Nabin Sharma,
and Michael Blumenstein. A Study on Detecting Drones
Using Deep Convolutional Neural Networks. In IEEE
International Conference on Advanced Video and Signal
Based Surveillance (AVSS), 2017.

[50] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in TensorFlow. arXiv
preprint arXiv:1802.05799, 2018.

[51] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[52] TensorFlow. TensorFlow benchmarks. https://
github.com/tensorflow/benchmarks/.

[53] TensorFlow. tf.train.replica_device_setter.
https://www.tensorflow.org/api_docs/python/
tf/compat/v1/train/replica_device_setter/.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention Is All You Need. In
Proceedings of the Advances in Neural Information Pro-
cessing Systems (NIPS), 2017.

[55] Minjie Wang, Chien-chin Huang, and Jinyang Li. Sup-
porting Very Large Models using Automatic Dataflow
Graph Partitioning. In Proceedings of the European
Conference on Computer Systems (EuroSys), 2019.

[56] Tian Wang, Yang Chen, Mengyi Zhang, Jie Chen, and
Hichem Snoussi. Internal Transfer Learning for Im-
proving Performance in Human Action Recognition for
Small Datasets. IEEE Access, 2017.

[57] FengLi Yu, Jing Sun, Annan Li, Jun Cheng, Cheng Wan,
and Jiang Liu. Image Quality Classification for DR
Screening Using Deep Learning. In Annual Interna-
tional Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), 2017.

[58] Shen-Yi Zhao and Wu-Jun Li. Fast Asynchronous Paral-
lel Stochastic Gradient Descent: A Lock-Free Approach
with Convergence Guarantee. In Proceedings of the Con-
ference on Association for the Advancement of Artificial
Intelligence (AAAI), 2016.

[59] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew
Pelegris, Anand Jayarajan, Amar Phanishayee, Bianca
Schroeder, and Gennady Pekhimenko. Benchmarking
and Analyzing Deep Neural Network Training. In IEEE
International Symposium on Workload Characterization
(IISWC), 2018.

[60] Martin Zinkevich, John Langford, and Alex J Smola.
Slow Learners are Fast. In Proceedings of the Advances
in Neural Information Processing Systems (NIPS), 2009.

USENIX Association 2020 USENIX Annual Technical Conference 321

https://www.nvidia.com/en-us/titan/titan-rtx/
https://www.nvidia.com/en-us/titan/titan-rtx/
https://www.nvidia.com/en-us/titan/titan-v/
https://www.nvidia.com/en-us/titan/titan-v/
https://github.com/tensorflow/benchmarks/
https://github.com/tensorflow/benchmarks/
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/replica_device_setter/
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/replica_device_setter/

AutoSys: The Design and Operation of Learning-Augmented Systems

Chieh-Jan Mike Liang‡ Hui Xue‡ Mao Yang‡ Lidong Zhou‡ Lifei Zhu∗‡ Zhao Lucis Li?‡

Zibo Wang?‡ Qi Chen‡ Quanlu Zhang‡ Chuanjie Liu◦ Wenjun Dai†
‡Microsoft Research ∗Peking University ?USTC ◦Microsoft Bing Platform †Microsoft Bing Ads

Abstract
Although machine learning (ML) and deep learning (DL)

provide new possibilities into optimizing system design and
performance, taking advantage of this paradigm shift requires
more than implementing existing ML/DL algorithms. This pa-
per reports our years of experience in designing and operating
several production learning-augmented systems at Microsoft.
AutoSys is a framework that unifies the development process,
and it addresses common design considerations including
ad-hoc and nondeterministic jobs, learning-induced system
failures, and programming extensibility. Furthermore, this
paper demonstrates the benefits of adopting AutoSys with
measurements from one production system, Web Search. Fi-
nally, we share long-term lessons stemmed from unforeseen
implications that have surfaced over the years of operating
learning-augmented systems.

1 Introduction

Learning-augmented systems represent an emerging paradigm
shift in how the industry designs modern systems in produc-
tion today [33]. They refer to systems whose design methodol-
ogy or control logic is at the intersection of traditional heuris-
tics and machine learning. Due to the interdisciplinary nature,
learning-augmented systems have long been widely consid-
ered difficult to build and require a team of engineers and data
scientists to operationalize. To this end, this paper reports
our years of experience in designing and operating learning-
augmented systems in production at Microsoft.

The need of learning-augmented system design stems from
the fact that heterogeneous and complex decision-makings
run through each stage of the modern system lifecycle. These
decisions govern how systems handle workloads to satisfy
user requirements under a particular runtime environment.

This work was done when Lifei Zhu, Zhao Lucis Li, and Zibo Wang
were interns at Microsoft Research.

Examples include in-memory cache eviction policy, query
plan formulation in databases, routing decisions by network-
ing infrastructure, job scheduling for data processing clusters,
document ranking in search engines, and so on.

Most of these decision-makings have been solved with ex-
plicit rules or heuristics based on human experience and com-
prehension. However, while heuristics perform well in gen-
eral, they can be suboptimal as modern systems evolve. First,
since many heuristics were designed at the time when com-
putation and memory resources were relatively constrained,
their optimality was often traded for execution cost. Second,
since heuristics are typically designed for some presumably
general cases, hardware/software changes and workload dy-
namics can break their intended usage or assumptions. Third,
many modern systems have grown in complexity and scale
beyond what humans can design heuristics for.

Recent advances in machine learning (ML) and deep learn-
ing (DL) have driven a shift in system design paradigm. Var-
ious efforts [6, 7, 16, 28, 34, 36, 48] have found success in
formulating certain system decision-makings into ML/DL
predictive tasks. Conceptually, from past benchmarks, ML/DL
techniques can learn factors that impact the system behavior.
For example, Cortez et al. [16] reported an 81% accuracy in
predicting average VM CPU utilization, which translates to
∼ 6×more opportunities for server oversubscription; Alipour-
fard et al. [7] reported near-optimal cloud configurations being
predicted for running analytical jobs on Amazon EC2.

AutoSys is a framework that unifies the development pro-
cess of several learning-augmented systems at Microsoft. Au-
toSys has driven decision-makings with ML/DL techniques,
for several critical performance optimization scenarios. These
scenarios range from web search engine, advertisement deliv-
ery infrastructure, content delivery network, to voice-over-IP
client. Not only do these scenarios allow us to gain insights
into the learning-augmented design, but they also reveal com-
mon design considerations that AutoSys should address.

Contributions. This paper makes the following key contribu-
tions, through reporting our years of experience in designing

USENIX Association 2020 USENIX Annual Technical Conference 323

and operating learning-augmented systems.
First, Section 2 analyzes the need for adopting the learning-

augmented design, with concrete observations from modern
systems in production. Due to its architectural similarities
to most modern systems, this paper uses web search infras-
tructure (Web Search) as the target system scenario for per-
formance optimization. We characterize sources of system
complexity and operation complexity in modern systems, to
contribute an understanding of the emergence of learning-
augmented system design in industry.

Second, Section 3 describes the AutoSys framework that
formulates a system decision-making as an optimization task.
AutoSys incorporates proven techniques to address common
design considerations in building learning-augmented sys-
tems. (1) To support scenario-specific decision-making, Au-
toSys employs a hybrid architecture – decentralizing infer-
ence plane for system-specific interactions such as actuations
and exploration, and centralizing training plane for hosting
an array of ML/DL algorithms with generalized abstractions.
(2) To handle ad-hoc and nondeterministic jobs spawned by
an optimization task, AutoSys employs a cross-layer solution
– prioritizing jobs based on their expected gains towards solv-
ing the given optimization task and executing jobs in a con-
tainer to satisfy heterogeneous job requirements in a resource-
sharing environment. (3) To handle learning-induced system
failures due to inference uncertainties, AutoSys incorporates
a rule-based engine with hard rules authored by experts to
check an inferred actuation’s commands and assumptions.

Third, we report long-term lessons stemmed from the years
of operations, and these lessons include higher-than-expected
learning costs, pitfalls of human-in-the-loop, generality, and
so on. Prior to sharing these lessons in Section 5, Section 4
quantifies benefits of the learning-augmented design, on Web
Search’s key application logic and data stores. Compared to
years of expert tuning, Web Search exhibits an 11.5% reduc-
tion in CPU utilization for a keyword-based selection engine,
3.4% improvement in relevance score for a ranking engine,
16.8% reduction in key-value lookups for a datastore cluster,
and so on. The core of AutoSys is open-sourced on GitHub
(https://github.com/Microsoft/nni).

2 Background and Motivations

As system performance drives end-user experience and rev-
enue, many modern systems are supported by large teams of
engineers and operators. This section shares concrete observa-
tions in production, which have motivated the industry to tran-
sit to the learning-augmented system design. Particularly, we
deep dive into one large-scale cloud system – the web-scale
search service, or Web Search. Web Search is architecturally
representative of modern systems, with fundamental building
blocks of networking, application logic, and data stores.

2.1 Overview of Web-Scale Search

This section describes the Web Search design with respect to
the fundamental building blocks of modern systems.

Distributed and Pipelined Infrastructure. Web Search re-
alizes a multi-stage pipeline of networked services (c.f. Fig-
ure 1), to iteratively refine the list of candidate documents
for a user search query. The first stage is Selection service
which selects relevant documents from massive web indexes
as candidates for subsequent Ranking service. It relies on both
keyword-based and semantics-based matching strategies, i.e.,
KSE and SSE. Then, Ranking service orders these documents
according to their expected relevance to the user query, by run-
ning the RE ranking engine. Finally, Re-ranking service adds
additional web contents that are relevant to the user query, and
it re-ranks search results. These additional contents are from
sources such as stock and weather, and verticals such as news
and images. Suppose the user query contains celebrity names,
search results will likely have relevant news and images.

Application Logic. We present three applications imple-
mented with rules, heuristics, and ML-based logic.

First, Selection service’s Keyword-based engine (KSE)
matches keywords in user queries and web documents, by
looking up inverted web indexes. Queries are first classified
into pre-specified categories. Each category corresponds to a
physical execution plan, or a hand-crafted sequence of sub-
plans to specify the document evaluation criteria. For example,
one sub-plan can specify whether a query keyword should
appear in the web document title/body/URL, and how many
documents should be retrieved. Sub-plan knobs determine the
trade-offs between search relevance and latency.

Second, Selection service’s semantics-based engine (SSE)
selects web documents with keywords semantically similar
to the user query. The problem can be formulated as Approxi-
mate Nearest Neighbor (ANN) search [14, 47] in the vector
space where keywords that share similar semantics are located
in close proximity. The search strategy is an iterative process,
and each step can take on one of the three possible actions:
(1) identifying some anchors in the vector space by looking
up the tree, (2) marking anchors’ one-hop neighbors in the
neighborhood graph as new anchors, and (3) terminating and
returning the best anchors that we have seen. The action se-
quence determines how fast SSE returns semantically relevant
document candidates.

Third, Ranking service’s ranking engine (RE) implements
a ranking algorithm based on high-performance Lamb-
daMART [12], which uses Gradient Boosted Decision Trees
(GBDT) [20]. GBDT is one of the sophisticated ranking algo-
rithms hosted by Web Search, and each targets different query
types, document types, languages, and query intentions. Since
GBDT combines a set of sub-models to produce the final
results, tuning RE requires data scientists to reason about how
tuning each sub-model would impact the overall performance.

324 2020 USENIX Annual Technical Conference USENIX Association

Figure 1: AutoSys drives transitions of several critical engines in Web Search to the learning-augmented design. These engines
include KSE (Keyword-based Selection Engine), SSE (Semantics-based Selection Engine), RE (Ranking Engine), RocksDB
key-value store engine, and MLTF (Multi-level Time and Frequency) key-value store engine. Since Web Search is architecturally
similar to modern systems in general, AutoSys has also been applied to other production systems at Microsoft.

Data Store. One common data structure of web indexes is
the key-value store. Web Search employs both open-sourced
RocksDB, and customized solutions such as Multi-level Time
and Frequency key-value store (MLTF). MLTF takes key ac-
cess time and frequency as signals to decide cache evictions.

The index of SSE engine is organized in a mixed structure
of space partition tree and neighborhood graph. Space parti-
tion tree is used to navigate the search to some coarse-grained
subspaces while the neighborhood graph is used to traverse
the keywords in these subspaces.

2.2 Sources of System Complexity
Heterogenous Classes of Decisions. Decision-makings in
systems can be grouped into three classes: application logic,
system algorithms, and system configurations. Each class re-
quires human experts with different skill sets and experience.

First, application logic implements features that fulfill user
requirements, so its decision-making process should adapt to
user usage. In the case of Web Search, Ranking service hosts
hundreds of lightweight and sophisticated ranking algorithms
for different user query types and document types. Optimizing
these ranking algorithms requires data scientists to have a
deep understanding of how different ML/DL capabilities can
be combined to match user preferences.

Second, the infrastructure implements system algorithms
to better support application requirements with available re-
sources. In the case of Web Search, Selection service has
algorithms responsible for compiling user queries into physi-
cal execution plans that are specific to underlying hardware
capabilities. Optimizing algorithms requires system designers
to consider the relationship between application requirements
and infrastructure capabilities.

Third, system configurations are knobs for operators to
customize systems. Optimizing knobs requires a deep under-
standing of their combined effects on system behavior [50].

Multi-Dimensional System Evaluation Metrics. Optimiz-
ing multiple metrics can be non-trivial if they have different
(and potentially conflicting) goals. For instance, Selection
service has tens of metrics in different categories: resource
usage, response latency, throughput, and search result rele-
vance. Reasoning about the trade-offs among multiple metrics
quickly becomes painstaking for humans, as the number of
evaluation metrics increases. In some cases, system designers
follow a rather conservative rule: improving some metrics
without causing other metrics to regress. In fact, any software
update in Web Search that can cause search quality degrada-
tion should not be deployed, even if it improves some crucial
metrics such as the query latency for top queries.

Modern systems can also have meta-metrics that aggregate
a set of metrics or measurements over a time period. One
example is the "weekly user satisfaction rate" of Ranking ser-
vice. To optimize these aggregated metrics, system operators
need to understand their compositions.

End-to-End and Full-Stack Optimization. Modern sys-
tems are constructed with subsystems and components to
achieve separation of concerns. Since the end-to-end system
performance represents an aggregated contribution of all com-
ponents, optimizing one component should consider how its
outputs would impact others. For example, we have observed
that Selection service may increase the number of potentially
relevant pages returned, at the risk of increasing spam pages.
If the subsequent Ranking service does not consider the pos-
sibilities of spam pages, it can hurt user satisfaction.

2.3 Sources of Operation Complexity

Environment Diversity and System Dynamics. While hard-
ware upgrades and infrastructure changes can offer new capa-
bilities, they potentially alter the existing system behavior. An
example is how we altered the in-memory caching mechanism

USENIX Association 2020 USENIX Annual Technical Conference 325

design, according to I/O throughput gaps between memory
and mass storage medium for different data sizes. Further-
more, hardware upgrades might be rolled out in phases [41],
and server resources can be shared with co-located tenants.
Therefore, it is possible that instances of a distributed system
face different resource budgets.

Modern systems have increasingly adopted tighter and
more frequent software update cycles [39]. These software
updates range from architecture, implementation, to even data.
For example, Selection service has bi-annual major revisions
to meet the increasing query volume and Web documents size,
or even to adopt new relevance algorithms. And, Re-ranking
service can introduce new data structures for new data types,
or new caching mechanisms for the storage hierarchy. Fi-
nally, software behavior can change with periodic patches,
bug fixes [54], and even the monthly index refresh.

Workload Diversity and Dynamics. Interestingly, there can
be non-trivial differences among the workloads that individ-
ual system components actually observe. The reason is that
subsystems can target different execution triggers, or depend
on the outputs of others. For example, the list of candidate
documents returned by Selection service predominately dic-
tates the workload of Ranking service. And, if a large number
of user queries do not have hits in web indexes, Ranking
service would have low utilization. The same observation is
applicable to the Re-ranking service.

Furthermore, the workload can have temporal dynamics
that are predictable and unpredictable, and an example is
where the search keyword trend can shift with national holi-
days and breaking news, respectively.

Non-Trivial System Knobs. Modern systems can expose a
large number of controllable knobs to system operators. These
knobs include software logic parameters, hardware configu-
rations, actions of an execution sequence, engine selections,
and so on. Operation complexity arises from the following
observations. A set of knobs can have dependencies [54], i.e.,
the effect of one knob depends on the setting of another knob.
In addition, knobs should be set with the prior knowledge
of runtime workloads and system specifications [52]. In the
presence of system and workload dynamics, operators need
to periodically adjust knob settings for optimal performance.
Finally, software parameters can take values of several types:
continuous numbers (e.g., 0 - 1,000), discrete numbers (e.g.,
1 and 2), and categorical values (e.g., ON and OFF).

3 AutoSys

We introduce the AutoSys framework to unify the development
of learning-augmented systems. While AutoSys has driven
performance optimization for several production systems at
Microsoft, our discussions here focus on Web Search.

Optimization Tasks. In AutoSys, a system decision-making

(a) Optimal decision is directly predicted

(b) Optimal decision is indirectly predicted

Figure 2: Heterogenous classes of decision-makings can be
formulated as ML/DL optimization tasks. This figure illus-
trates two common realizations of optimization tasks.

is formulated as an optimization task. In the case of system
performance optimization, the output of an optimization task
contains optimal values of system knobs. The input consists
of system and workload characteristics (e.g., traffic arrival
rate). During execution, an optimization task can trigger a se-
quence of jobs of the following types: (1) system exploration
jobs, (2) ML/DL model training and inferencing jobs, and (3)
optimization solver. Next, Figure 2 illustrates two use cases
of optimization tasks.

Figure 2a illustrates the first case where AutoSys predomi-
nately learns from human experts, who handcraft the training
dataset containing preferable knob settings for some system
states and workloads. In this case, the model takes in system
states and workload features as inputs, and directly infers
the optimal knob settings. As one example implementation,
AutoSys can assign a high reward for these preferable knob
settings, and the model can implement value functions to find
a policy that maximizes the reward for unforeseen inputs.

Figure 2b illustrates the second case where AutoSys pre-
dominately learns from interactive explorations with the target
system. By automatically generating system benchmark can-
didates, AutoSys collects measurements to train models. In
this case, the model takes in a knob setting and predicts the
expected value of performance metrics. Based on these model
predictions, an optimization solver can infer optimal knob
settings. An example implementation of model and solver
is regression models and gradient descent. For cases where
a sequence of step-wise actions is necessary such as Selec-
tion service’s search query plans, the solver can be based on
reinforcement learning.

3.1 Design Principles

AutoSys follows the design principles below, to address com-
mon considerations in building learning-augmented systems.

To support scenario-specific decision-makings, AutoSys
implements a hybrid architecture. Specifically, a centralized
training plane is shared across all target systems, and decen-

326 2020 USENIX Annual Technical Conference USENIX Association

Figure 3: AutoSys framework. It centralizes training plane
which hosts an array of ML/DL algorithms, and decentral-
izes inference plane for system-specific interactions such as
actuations and exploration.

tralized inference planes are deployed for each target system.
We observe that a centralized training plane promotes sharing
data and trained models among scenarios – for example, this
can help bootstrapping model training by initializing neural
network weights and model hyper-parameters. Decentralized
inference planes help distribute inference loads that grow
with the system scale, and they also allow scenario-specific
customizations such as verification rules.

To manage computation resources, AutoSys implements a
cross-layer solution. Specifically, AutoSys abstracts scenarios
as optimization tasks, and allows target systems to prioritize
jobs spawned by their tasks. Unifying learning-augmented
scenarios allows computation resources to be flexibly shared,
especially since tasks are ad-hoc and non-deterministic. First,
tasks are triggered in response to system dynamics, which
might not exhibit a regular pattern. Second, jobs are deter-
mined at runtime according to the optimization task progress.

To handle learning-induced system failures, AutoSys im-
plements a rule-based engine to validate actuations. Since
most models mathematically encode knowledge learned, ex-
isting verification tools might not be applicable. On the other
hand, rules are human-readable and human-verifiable.

3.2 Framework Overview
AutoSys executes an optimization task by spawning a number
of jobs: (1) system exploration jobs, (2) ML/DL model train-
ing and inferencing jobs, and (3) optimization solver. Figure 3
shows the overall AutoSys framework to support these jobs.

Training Plane. The training plane implements features to
support both system exploration jobs and ML/DL training
jobs. Figure 4 shows the training plane workflow. The first
step is candidate generation, which generates knob values to
benchmark for the purpose of building up the training dataset.
Considering the costs of running system benchmarks, the key
is to balance the number of candidates and the model accuracy.
Generation algorithms are wrapped in Tuner instances, and we

Figure 4: Workflow of training plane. System exploration jobs
are wrapped in a Trial object, which collects system bench-
mark outputs for training models in the Training Service.

have implemented algorithms based on TPE [9], SMAC [26],
Hyperband [30], Metis [31], and random search.

The second step is to benchmark configuration candidates.
Trial Manager abstracts each system benchmark as a Trial
object – the Trial object has fields holding (1) knob configura-
tions, (2) execution meta-data: the command to run binaries
and even ML/DL models (e.g., RE’s hyper-parameter tuning),
and metrics to log, (3) resource requirements (e.g., the number
of GPU cores). In the case of KSE, SSE, MLTF, RocksDB
engines, their Trial instances point to both the system ex-
ecutable and workload replay tool. The replay tool feeds a
pre-recorded workload trace to the executable. In contrast, RE
engine has a different goal of optimizing a ranking model’s
hyperparameters, its Trial instance contains the model and
the dataset location. And, invoking updateConfigs updates
model hyperparameters.

Table 2 presents the Trial Manager API. Invoking
startTrial submits a Trial instance to Trial Service. At any
time, updateConfigs can be called to change knob settings,
and getMetrics can be called to retrieve metric measure-
ments. A Trial can optionally assess its intermediate bench-
mark results, to decide whether it should terminate the bench-
mark early. To do so, Trial sends intermediate results to an
Assessor instance implementing early-stopping criteria. If the
criteria is met, Assessor can invoke Trial Manager’s stopJob.

The third step is model training. Upon the completion of
Trial instances, getMetrics outputs are merged with the cor-
responding knob settings to form a tabular dataset, for Train-
ing Service to train models. Historical results are optionally
stored in data store, for model re-training or data sharing
among similar scenarios.

Inference Plane. The inference plane implements features
to support ML/DL inferencing jobs and optimization solver.
Taking the current system states and workload characteristics
as inputs, these jobs infer optimal actuations. These jobs are
typically triggered by events, which are predefined by system
operators to support service level agreements. For example,
if the target system’s workload changes (e.g., an increase in
search queries per second), performance drops (e.g., a drop

USENIX Association 2020 USENIX Annual Technical Conference 327

Name Description
tuner.updateSearchSpace(args) Specify search space. args is a list of system knobs’ names, value types, and value ranges.
candidates = tuner.generateCandidates() Generate and return a list of configuration candidates.
tuner.generateModel() Train the Tuner instance’s model.

Table 1: Tuner instance API

Name Description
trial = submitTrial(args) Submit and deploy a benchmark trial. args include a configuration candidate, execution meta-data,

and scheduling meta-data.
trial.startTrial() Start a benchmark trial.
trial.stopJob() Stop a benchmark trial.
trial.updateConfigs(args) Update a trial’s configuration candidate. args is a configuration candidate.
measurements = trial.getMetrics() Return perf measurements of a trial.

Table 2: Trial Manager API

in tail latencies), or models update, inference plane initiates
optimization tasks to make system tuning decisions. Further-
more, inference plane can be configured to directly actuate
the target system, or simply inform system operators as sug-
gestions. Finally, the inference plane can relay online system
performance measurements to the training plane, for training.

3.3 Ad-hoc and Nondeterministic Jobs

In contrast to traditional systems, learning-augmented sys-
tems introduce jobs that are difficult for system operators to
provision beforehand. First, optimization tasks are ad-hoc
– they are triggered in response to adapting to system and
workload dynamics, which might not exhibit a regular pattern.
Second, optimization tasks have nondeterministic require-
ments – they spawn system exploration jobs and ML training
jobs according to the optimization progress at runtime. To this
end, AutoSys implements mechanisms to prioritize, schedule,
and execute these jobs.

Job Prioritization. The tuner can prioritize the list of can-
didates in generateCandidates, to highlight benchmarks
that are expected to subsequently improve model accuracy
the most. Unnecessary benchmarks waste time and resources,
especially for systems that require warm-up (e.g., in-memory
cache warm-up). In this mode, training plane iterates between
candidate generation, candidate prioritization, and model
training.

We illustrate some of the candidate prioritization strategies
that AutoSys Tuners have implemented. First, since the Metis
Tuner uses Gaussian process (GP) regression model, it lever-
ages GP’s capability to estimate the confidence interval of
its inference. A larger confidence interval represents lower
inference confidence. And, it prioritizes candidates by sorting
their confidence interval in descending order. Second, the TPE
Tuner maintains two mixture models to learn the distribution
of top-performing knob combinations [9]. It computes how
likely a candidate belongs to this distribution, and prioritizes
by sorting likelihood scores in descending order.

Job Scheduling. Trial Manager schedules Trials according to
priorities and available resources, and passes this information
to underlying infrastructure [3, 49]. Trials can impose hetero-
geneous resource requirements to support their corresponding
decision-making scenarios. Taking system exploration jobs
as an example – benchmarking ML/DL-learned system com-
ponents in RE benefits from access to ML/DL acceleration
hardware such as GPUs, but benchmarking MLTF KV engine
must take place with SSDs. We note that scheduling learning
jobs also have similar considerations. For learning approaches
based on neural networks, their training jobs can be sched-
uled to machines with GPUs and TPUs [1] for acceleration.
Some learning approaches such as Metis maintain a collec-
tion of ML models, and their training and inference time can
significantly benefit from multiple CPU cores.

Job Execution. In addition to natively running system explo-
ration jobs (i.e., Trial instances) on real machines, AutoSys
also supports containers such as Docker [2]. The container
image packages a Trial’s software dependencies including the
target system’s binaries and libraries. Containers benefit Au-
toSys in the following ways. First, containers can be started
and stopped to share hardware resources among multiple tar-
get systems. Second, previous efforts reported that containers
exhibit a much lower overhead than virtual machines [19].
This improves the benchmark fidelity, hence AutoSys’s train-
ing data quality. Second, the capability of deploying an image
on heterogeneous machines easily enables benchmarking a
target system under different hardware environments.

In addition to allocating short-lived containers that run only
one benchmark, AutoSys also offers long-lived containers.
For Trials with multiple benchmarks, long-lived containers
effectively amortize the cost of initializing and loading the
image. Furthermore, if consecutive benchmarking jobs need
to share states (e.g., warmed-up caches) and data (e.g., weight
sharing for tuning ML/DL model hyperparameters), contents
in memory can be retained and reused.

328 2020 USENIX Annual Technical Conference USENIX Association

Figure 5: Workflow of rule engine in inference plane.

3.4 Learning-Induced System Failures

Being stochastic in nature, ML/DL inference exhibits some de-
grees of uncertainty, and this uncertainty can lead to learning-
induced system failures or suboptimality. While failures are
not unique to learning-augmented systems [8], handling them
requires a different approach for the following reasons. First,
ML/DL models mathematically encode knowledge learned
from the training data, the meaning of their internal weights is
not interpretable to humans and common formal verification
techniques. Second, as models autonomously learn from the
training data, it is difficult to assess whether a dataset would
guarantee a model to fully learn a particular concept.

Since it is hard to formally verify ML/DL correctness, Au-
toSys opts to validate ML/DL outputs with a rule-based en-
gine. These validation rules are authored by operators, and
the rule engine functions as a blacklist. Each rule specifies
conditions of a violation to catch, and it has the following
format: (Predicate1 AND|OR Predicate2...). A predicate is
one variable value comparison with operators such as ==,
! =, >=, >, <=, and <. Conceptually, AutoSys maintains
the following two rulesets for each target system.

First, ruleset validates ML/DL actuations, or inference run-
time outputs as illustrated in Figure 5. In addition to validating
parameter value constraints, if certain system states have been
known to cause failures (from either past experience or bug
reports), system operators can prevent those configurations
from being applied. Rules can also encode knob dependencies
– an example is the multi-tenant setup where the total mem-
ory allocated to all tenants must not exceed a budget, and the
blacklist rule can be written as capacity1+capacity2 > 1024.

Second, ruleset checks the actuation feedback, or target
system outputs as illustrated in Figure 5. One use case in our
deployments is to check discrepancies between actual system
states and ML/DL inference. Specifically, if the predicted

performance (of an actuation) significantly differs from the
actual performance measurement, this feedback is relayed to
the training plane as additional training data. An example rule
is |per f .latency− per fpred.latency|> 10 in Figure 5.

3.5 Extensibility
Since tuning scenarios can vary in requirements, we design
AutoSys to be extensible through the Tuner abstraction. Tuner
is agnostic to specific candidate generation algorithms, and it
provides APIs to wrap the underlying ML/DL details (c.f. Ta-
ble 1). After a Tuner instance is instantiated, users can specify
its search space by invoking updateSearchSpace method.
The method argument is a list of system knobs’ names, value
types, and value ranges. Invoking generateCandidates gen-
erates a list of configuration candidates to be benchmarked
for model training. Then, after benchmarks complete, Au-
toSys invokes generateModel to train and update the Tuner
instance’s model in Training Service.

We have implemented Tuners based on algorithms includ-
ing TPE [9], SMAC [26], Hyperband [30], Metis [31], and
random search. Our implementation of updateSearchSpace
allows system operators to specify each parameter’s expected
value type: choice (e.g., categorical values for KSE en-
gine’s RankingStreams parameter), uniform (e.g., continu-
ous number within a range for RE engine’s LearningRate),
randint (e.g., integers between within a range for RocksDB
engine’s WriteBufferSize parameter), and so on. Finally,
for model-less algorithms such as random search, it is not
necessary to implement generateModel.

3.6 Implementation
Our current implementation comprises ∼18,205 lines of
Python code (Tuner: 5,427, Assessor: 1,392, Trial Manager:
35, Trial Service: 28),∼12,852 lines of TypeScript code (Trial
Manager: 3,283, Trial Service: 6,638), and ∼13,344 lines of
code in other languages. We have implemented Tuners for
an array of popular optimization algorithms such as TPE
(Tree-structured Parzen Estimator) [9], SMAC (Sequential
Model-based Algorithm Configuration) [26], Hyperband [30],
Metis [31], anneal, naïve evolution, grid search, and random
search. We have also implemented two early-stopping al-
gorithms based on median stop [23] and curve fitting [18].
Our current implementation supports the following Trial
Service realizations: local machine, remote servers, several
Kubernetes-based platforms, and several internal experimen-
tal platforms. We have open-sourced the core of AutoSys on
GitHub (https://github.com/Microsoft/nni).

4 Production Deployment Measurements

This section presents production measurements of Web
Search, and Table 3 summarizes key results. The goal is to

USENIX Association 2020 USENIX Annual Technical Conference 329

Search space size Tuning time Key results (vs. long-term expert tuning)
Keyword-based Selection Engine (KSE) O(1000n) 1 week Up to 33.5% and 11.5% reduction in 99-percentile

latency and CPU utilization, respectively
Semantics-based Selection Engine (SSE) Action sequences 1 week Up to 20.0% reduction in average latency
Ranking Engine (RE) O(10n) 1 week 3.4% improvement in NDCG@5
RocksDB key-value cluster (RocksDB) O(100n) 2 days Lookup latency on-par with years of expert tuning
Multi-level Time and Frequency key-value cluster (MLTF) O(100n) 1 week 16.8% reduction on avg in 99-percentile latency

Table 3: Summary of adopting learning-augmented design to tune various systems of Web Search (c.f. Section 2.1). We compare
key results to the previous practice of manual tuning by human experts over the years. n represents the number of parameters.

quantify benefits of adopting learning-augmented system de-
sign in terms of (1) tuning effort reduction and (2) system
performance improvement.

4.1 Tuning Application Logic
This subsection considers both cases of tuning application
logic in a single step and in a sequence of step-wise actions.
Specifically, we present measurements from Selection ser-
vice’s KSE engine and SSE engine.

Performance Gain for KSE Engine. KSE engine exposes
the following key knobs. Each execution plan consists of a
hand-crafted sequence of sub-plans. Each sub-plan has a cat-
egorical parameter, RankingStreams (title, body, anchor,
and URL), that specifies document fields that a query keyword
should appear in. In addition, it has an integer parameter,
MaxSeekCount (1 - 1000), that dictates the maximum number
of documents the sub-plan should examine. These parameters
determine the trade-off between Selection service effective-
ness and latency – while a large MaxSeekCount potentially
increases the number of document candidates for ranking, it
also increases the Selection service latency. Depending on the
number of execution plans, there can be up to 20 controllable
knobs and parameters.

Metrics of interests include per-query latency, CPU uti-
lization, and relevance. As Selection outputs an un-ranked
list, we use the popular NCG (Normalized Cumulative Gain)
score to quantify the overall relevance, and this is a variant of
NDCG [5] that does not consider position-based discounting.
Importantly, the higher the NCG, the more likely users will
click the corresponding search result. For KSE, the optimiza-
tion target is to reduce latency and CPU utilization, while
keeping relevance score the same.

We optimized KSE for the image and video domain. Web
Search divides the image and video domain into several seg-
ments: generic, tail (e.g., lower popularity), regions (e.g., US
market), and so on. With production workloads, we ran the
TPE (Tree-structured Parzen Estimator) Tuner for a week,
on a machine with 2.1 GHz CPU (with 8 cores) and 16 GB
RAM. Compared to years of expert-tuning, we highlight the
following improvements. For the image domain, AutoSys low-
ered KSE 99-percentile latency by another 16.9% - 33.5%,
and CPU utilization by another 9.0% - 11.0%. For the video
domain, compared to expert-tuned configurations, AutoSys

lowered KSE 99-percentile latency by another 19.4% - 29.7%,
and CPU utilization by another 10.1% - 11.5%. These im-
provements represent a Selection latency reduction up to 33
msec; for reference, many companies have reported an∼1.0%
revenue gain from reducing the end-to-end search engine la-
tency by 100 msec.

Performance Gain for SSE Engine. SSE engine optimiza-
tion concerns with deciding the action for each step of the ex-
ecution sequence. In contrast to other engines in Web Search,
SSE requires a correct ordering of actions. The problem can
be formulated as the Approximate Nearest Neighbor (ANN)
search [14, 47] in the vector space. As we mentioned before,
given a user query, each step of SSE chooses one of the three
possible actions: (1) identifying some anchors in the vector
space by looking up the tree, (2) making anchors’ one-hop
neighbors in the neighborhood graph as new anchors, and (3)
terminating and returning the best anchors that we have seen.
At each step, SSE provides the following system states and
environment features for the decision-making: the number
of distance calculations between candidates and the query so
far, the number of tree searches so far, whether top K candi-
dates have been updated in the last T actions, and the average
distance between current top K candidates and the query.

We implemented a reinforcement learning Tuner with tab-
ular based models (Q-tables). Reinforcement learning ex-
cels in discovering the action sequence that would maxi-
mize the overall reward. We define the reward of step t as
a trade-off between relevance gain and latency cost: Rt =
α× relevance_gaint −β× latency_costt (α and β are hyper-
parameters). Under Web Search production workload, we
observed that learned execution sequences are able to achieve
an average of 20.0% reduction in latency while keeping the
relevance score the same.

Additional Consideration: Actuation Granularity. While
setting up AutoSys for KSE, we encountered the question
of actuation granularity – should AutoSys generate coarse-
grained actuations (i.e., one actuation for all system in-
stances) or fine-grained actuations (i.e., one actuation for
each system instance, user segment, region, and so on)?
Coarse-grained actuations impose less computation loads,
but fine-grained actuations potentially offer higher perfor-
mance gains. Unfortunately, the real-world value of learning-
augmented design diminishes with either high learning cost

330 2020 USENIX Annual Technical Conference USENIX Association

RS MS1 MS2 MS3 MS4
Image-generic U,T,B 300 6 9,00 160
Image-tail U,T,B 484 10 6,30 130
Image-US U,T,B,C 245 50 4,80 90
Video-generic U,T,C 220 160 6,50 10
Video-tail U,T,C 125 30 6,40 180

Table 4: Optimal decisions should vary with workload di-
versity. This table illustrates the optimal configuration of
key KSE knobs for several segments of the image and video
search domain. RS and MS are the abbreviated name for Rank-
ingStreams and MaxSeekCount parameters, respectively.

or low performance gain.
To balance the trade-off, we experimented with three lev-

els of granularity: system-wide, per-instance, and per-search-
segment. Due to restrictions imposed by the production envi-
ronment, we performed exploration jobs on a random selec-
tion of 3 instances in each search segment. Results suggested
that per-search-segment granularity best balances the trade-off
for KSE. Table 4 illustrates the best-performing knob config-
urations for five popular segments, and there is a noticeable
variance in their knob settings.

4.2 Tuning ML Algorithms
This subsection considers tuning system components that host
ML/DL algorithms. Specifically, we present measurement
from Ranking service’s RE engine.

Performance Gain for RE Engine. RE engine runs a set of
decision trees, or random forest. Its key controllable knobs
include LearningRate, NumberOfLeaves, MinimumDocsPer-
Leaf, NumberOfTrees, and so on. LearningRate takes a con-
tinuous number (0.01 - 0.99), for adjusting gradient descent
speed that trades off between learning convergence time and
accuracy. NumberOfLeaves takes an integer (10 - 5,000), for
adjusting the maximum number of base tree leaves, which
relates to the model’s learning capability. MinimumDocsPer-
Leaf takes an integer (5 - 1,000), for adjusting the minimum
number of documents in a leaf. NumberOfTrees takes an in-
teger (5 - 100), for adjusting the number of decision trees.
In total, there are approximately 5×108 possible parameter
combinations in the configuration space.

The optimization metric is NDCG (c.f. Section 4.1), and
we ran the TPE (Tree-structured Parzen Estimator) Tuner
in AutoSys for one week, on a machine with 2.1 GHz CPU
(with 8 cores) and 16 GB RAM. Compared to years of expert-
tuning, we highlight the following improvements (evaluated
on a production workload containing 150K queries and 2.5M
URLs): AutoSys improved NDCG@1 (i.e., top 1 result’s
NDCG score) by another 2.9%, NDCG@2 (i.e., top 2 results’
NDCG score) by another 3.4%, NDCG@3 by another 3.4%,
NDCG@4 by another 3.4%, and NDCG@5 by another 3.4%.
We note that ranking relevance has a direct correlation with

conversion rate (e.g., ads clicking).

Additional Consideration: Human-in-the-Loop. We note
that solving the combinatorial optimization from a total of
5×108 possibilities is theoretically doable, but it might not
be practically feasible. With RE, we took advantage of hu-
man knowledge of the engine design, and reduced the value
range of several parameters during the process. Interestingly,
we have encountered cases where information from humans
unintentionally misled learning or caused unexpected conse-
quences, and Section 5 shares these cases.

4.3 Tuning Data Store

Through both RocksDB engine and MLTF engine in Re-
ranking service, we demonstrate data store optimization.

Performance Gain for RocksDB Engine. From years of
operation, Web Search operators selected the following key
knobs to optimize RocksDB read and write throughputs (in
MB per second): WriteBufferSize (1 - 96 MB), BlockSize
(128 - 2,000 KB), Level0FileNumCompactionTrigger (2 - 64),
and MaxBackgroundJobs (1 - 45). Details of these knobs
are available online [4]. We used the Metis Tuner because
gaussian process models have been shown to be effective for
tuning databases [6].

We allocated a two-day computation budget (on an 8-core
2.1 GHz CPU), for AutoSys to search for the optimal configu-
ration with respect to a 5-day trace of production Web Search
traffic. AutoSys improves the maximum write throughput to
50.36 MB per second, which matches the throughput achieved
by Web Search operators’ years of manual tuning. This re-
sult demonstrates that AutoSys can significantly reduce the
amount of human efforts.

Performance Gain for MLTF Engine. MLTF (Multi-level
Time and Frequency) KV engine has the following key knobs.
There are NumCacheLevels (1 - 10) cache levels. A cached
object can move up a level if it has been queried CachePromo-
tionThreshold (1 - 1,000) times. Top NumInevictableLevels (0
- 9) cache levels can be specified as being inevictable. Further-
more, MLTF does not immediately admit large keys with an
object size larger than AdmissionThreshold (1 - 1,000) bytes,
but it first holds them in a shadow buffer of ShadowCapacity
(1 - 10) MB. Then, keys in the shadow buffer are moved to the
cache only if they have been queried more than ShadowPro-
motionFreq (1 - 1,000) times. The dataset partition on each
server is divided into NumShards (1 - 64) shards. The met-
ric of interests is the 99-percentile query latency. Due to the
noise in latency measurements, we used the Metis Tuner. We
collected measurements from one production cluster whose
servers have a 512 MB in-memory cache and SSD.

With measurements from a 14-day window, we try to an-
swer the question, can AutoSys continuously maintain optimal
system performance over time? AutoSys generated a new con-
figuration every two hours to adapt to workload dynamics.

USENIX Association 2020 USENIX Annual Technical Conference 331

Day

La
te

nc
y

Re
du

ct
io

n
(%

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
10

20
30

40
50

Figure 6: The figure summarizes the 99-percentile latency
reduction over a 14-day window, as compared to the static de-
fault configuration. AutoSys periodically tuned MLTF every
two hours, so we have 12 actuation feedbacks per day.

Figure 6 summarizes the latency reduction for each day, as
compared to the default configuration from human operators.
We highlight the following observations. First, AutoSys low-
ered the 99-percentile latency by an average of 16.8%. Second,
if the workload changes too frequently, AutoSys might not be
able to always update the system configure in time.

Additional Consideration: System Measurement Quality.
Noise and outliers are the common factors that system engi-
neers typically consider in terms of measurement quality. In
fact, as mentioned above, they are the reason that we used
the Metis Tuner for MLTF. Interestingly, while setting up Au-
toSys for RocksDB, we encountered another factor of system
measurement quality – imbalanced measurements. In imbal-
anced datasets, data points are not roughly equally distributed
among all classes of behavior (e.g., read vs. write requests).
For example, in one RocksDB scenario, the workload trace is
significantly skewed, and writes significantly dominate reads.
As a result of using this trace for training, AutoSys optimiza-
tion tasks frequently produced actuations that sacrificed read
throughput for write throughput. These actuations might not
be acceptable in the real world.

5 Long-Term Lessons Learned

Although AutoSys addresses common design considerations
(c.f. Section 3), unforeseen implications have surfaced over
years of operation. They reveal roadblocks in the transition to
learning-augmented system design, from the perspective of
system operators.

5.1 Higher-Than-Expected Learning Costs

While we anticipated model training would incur some costs,
these costs sometimes exceed our expectations due to how
operators set up models. The common approach is to model
an entire system deployment as one black box. Since ML/DL
models directly learn from the observed system execution
behavior, operators are freed from worrying about non-trivial
component interactions and resource contentions within the

deployment. This benefit of simplicity is attractive because in-
teractions and contentions are unavoidable in modern systems
– if multiple service instances are deployed on the same server,
they would contend for computation and I/O resources, es-
pecially on over-subscribed servers. Even for single-instance
servers, instances share network resources, job dispatcher, etc.

The first unapparent trade-off of modeling an entire system
deployment as one black box is re-training cost. Compared
to traditional systems, most modern systems are designed to
be elastic. Individual instances can be created and destroyed
on demand, and they can run on heterogeneous hardware as
required. Unfortunately, any changes to the deployment setup
would invalidate model assumptions and cause the trained
model to be irrelevant. In our example above, system setup
changes include the number of co-located instances on a
server and instance migration. Re-training models for mod-
ern systems can be costly. Complex systems require complex
ML/DL models, which tend to be difficult to train and require
a large amount of training data.

The second unapparent trade-off of modeling an entire
system deployment as one black box is exploration cost. Con-
sidering optimizing the job completion time for a cluster of
hundreds (or even thousands) workers and job dispatchers,
if we consider individual nodes’ CPU utilization, the model
would already have hundreds of inputs to learn. Furthermore,
preparing training datasets for this model scale can be chal-
lenging: (1) testbeds rarely match the target system’s hyper
scale in the real world, and (2) exploratory actuations on criti-
cal systems in production are prohibitive.

To mitigate higher-than-expected learning costs, one on-
going effort is to take advantage of the target system’s soft-
ware modularity [40]. Software modularity emphasizes sep-
arating code functionality to promote maintainability. Simi-
larly, instead of modeling an entire system deployment with
a monolithic model, we modularize the learning task into
composable units of learning assignments. One realization
is to dedicate a model to learn a subsystem or a component.
Considering a content-aggregation application that queries
two local key-value stores for images and videos in series, we
can have separate latency-predicting models for these stores,
Mimage and Mvideo. And, the end-to-end latency can be com-
puted by aggregating outputs of Mimage and Mvideo. Due to the
separation, each model has less to learn and can be re-trained
independently. Furthermore, if the application is updated to
aggregate new content types, additional models (e.g., Mtext)
can be added without updating Mimage and Mvideo.

We acknowledge that software design modularity might
not always be the appropriate level of modularity, especially
that software modularity is typically based on the criteria of
code functionality and maintainability, rather than learning
complexity. This process is currently a manual trial-and-error
process for individual systems, and we are accumulating ex-
perience to standardize the methodology.

332 2020 USENIX Annual Technical Conference USENIX Association

5.2 Pitfalls of Human-in-the-Loop

Senior engineers and operators likely have a wealth of knowl-
edge and experience on the target system, which can guide
AutoSys optimization tasks. This subsection describes cases
where information from humans unintentionally misled learn-
ing or caused unexpected consequences.

First, human experts can inject biases into training datasets,
by providing a large number of labeled data points for cer-
tain search space regions. This is possible if human experts
are already familiar with these regions. As a result, models
would exhibit an uneven distribution of uncertainties. For op-
timization algorithms that tend to exploit regions with lower
uncertainties, e.g., Expected Improvement (EI) [44], decisions
would likely lean towards regions labeled by human experts.
While the academic community has investigated data bias
in the context of classification (e.g., images [46]), learning-
augmented systems also rely on regression. Our current prac-
tice is to advise operators to mix human-labeled datasets with
random exploration.

Second, human experts can write conflicting specifications
for optimization tasks. Specifically, human experts can help
AutoSys narrow down the search space by specifying the
valid value ranges of each configuration knob, and an example
is RE described in Section 4.2. At the same time, they can
specify invalid configurations for the rule engine to check
optimization task outputs. Due to human errors, if the invalid
space completely covers the valid space, any outputs would
effectively be rejected by AutoSys. Our current practice is to
run a tool to check this overlapping condition.

5.3 Closed-Loop System Control Interfaces

We have worked with many production systems that lack
closed-loop control interfaces. The closed loop refers to how
AutoSys actuates a system to achieve optimality, based on
the current system feedback. To this end, not only do modern
systems need interfaces to accept external actuations, but they
should also have well-defined interfaces that abstract system
measurements and logs in a way of facilitating learning.

We describe common issues that motivate this need. First,
some systems distribute configurable parameters and error
messages over a set of not-well documented configuration
files and logs [42]. And, directly modifying configuration
files means that the system can not enforce value checks or
provide immediate feedbacks. Second, parsing raw logs can
be time-consuming, especially if system components disagree
on a unified logging format or excessively log [27]. Third,
many system feedbacks are not natively learnable, e.g., stack
traces and core dumps.

To this end, we have been customizing closed-loop con-
trol interfaces for individual systems. Our current practice
consists of the following steps. We ensure interfaces contain
accessors for all configurable knobs and also accessors for

system metrics. The latter output system measurements in the
format of time-series values, which capture system measure-
ments since the last AutoSys actuation. Furthermore, control
interfaces implement mechanisms to remove system-specific
data outliers (e.g., Gaussian noise and spikes), to improve the
quality of system benchmark measurements as training data.

5.4 Applicability to Other Systems
This subsection summarizes our experience in applying Au-
toSys to systems other than Web Search. AutoSys works ex-
tremely well in a well-controlled learning environment where
high-quality workload traces can be easily collected from
the target system, and training can take place offline on high-
fidelity testbeds or simulators. Interestingly, many critical
scenarios already have the infrastructure to satisfy these strict
requirements for debugging purposes.

Many target systems have a more relaxed learning envi-
ronment. First, real-time exploration can be slow, especially
for systems that require warm-up (e.g., in-memory cache).
For Tuners based on Bayesian optimization or reinforcement
learning, training can take a long time. Our current practice
is to run multiple Trials for multiple concurrent benchmarks,
at each iteration of exploration. Second, online in-situ explo-
ration with production systems can be restricting and even
prohibitive. our current practice is to construct base models
offline by running exploration on testbeds or simulators, and
then fine-tune models online with live traffic. This practice
is useful, especially for systems where individual instances
exhibit different workload characteristics. Finally, Section 5.1
discusses cases of frequent model retraining, due to various
types of dynamics.

6 Related Work

There are efforts on exploring and demonstrating the poten-
tial of learning in solving certain system challenges. Building
on these efforts, AutoSys takes a step towards unifying the
development of learning-augmented systems. Anticipating
growing system scale and complexity, Self-* [22] stated a
vision of autonomic computing that satisfies a collection of
"self-*" properties, and proposed a conceptual model. Recent
efforts include learning index structures and memory access
patterns [25, 28], optimizing data query evaluations [37], sys-
tem performance tuning [7, 31], database configuration tun-
ing [6, 13], placing deep learning computational graphs onto
hardware device [35, 36], anomaly detection [21, 29, 55], etc.

There are efforts on building general-purpose predictive
service. Resource Central [16] is a predictive service to drive
Azure’s VM scheduler, and it builds random forest and XG-
Boost models from past VM telemetry, rather than interactive
explorations. Vizier [23] is a general-purpose black-box opti-
mization service, and it has enabled tasks such as parameter
tuning at Google. Vizier implements Bayesian optimization to

USENIX Association 2020 USENIX Annual Technical Conference 333

learn the search space through interactive explorations. Clip-
per [17] is a general-purpose low-latency prediction serving
system which introduces a modular architecture to simplify
model deployment across frameworks. However, these efforts
do not consider some of the challenges in operationalizing
learning-augmented systems such as interactive explorations,
learning-induced system failures, and so on.

Some AutoSys components are inspired by decades of
research and experience in the system community. Many ef-
forts heavily focus on system challenges to support learning
tasks [15, 38, 49], and Berkeley shared their views of sys-
tem challenges for artificial intelligence (AI) [45]. Related
to control interfaces, interfaces and methods for controlling
and exploring systems state are used for implementation-level
model checking (e.g., MaceMC [24] and Modist [51]). One
approach to drive automating system performance tuning
is interactive exploration. Fuzz testing has been effectively
used in generating inputs to induce unexpected software be-
havior [10, 32, 53], and there is a rich literature on software
testing and system debugging. Inspired by the idea of com-
posable AI [45], we are exploring how assembling previously
trained models can scalably model large-scale systems.

Finally, some AutoSys components are inspired by research
in the ML/DL community. Examples include online learn-
ing [11], continual learning [43], and so on.

7 Conclusion

This paper reports our years of experience in designing and
operating learning-augmented systems at Microsoft. To unify
the development process of these systems, we introduce the
AutoSys framework that addresses common design consid-
erations. Furthermore, we present production measurements
and discuss long-term lessons learned from operating one
such system, Web Search. Going forward, we will study how
learning-augmented systems should evolve models over time,
and how end-to-end and full-stack system optimization can
be safely carried out in practice.

Acknowledgments

We thank anonymous reviewers and our shepherd, Prof. Ana
Klimovic, for their extensive comments and suggestions. We
also thank our colleagues at Microsoft, for their help in deploy-
ing AutoSys: Mingqin Li (Bing Platform), Wei Li (Bing Plat-
form), Haidong Wang (Bing Platform), Yuanchi Yan (Bing
Platform), Chao Zhang (Bing), Qiang Zhang (Bing), and Wen-
jin Zhang (Bing).

References

[1] Cloud TPU. http://cloud.google.com/tpu/.

[2] Docker. http://www.docker.com.

[3] Resource Scheduling and Cluster Management for AI.
http://github.com/microsoft/pai.

[4] RocksDB Tuning Guide. http://github.com/
facebook/rocksdb/wiki/RocksDB-Tuning-Guide.

[5] AGICHTEIN, E., BRILL, E., AND DUMAIS, S. Improv-
ing Web Search Ranking by Incorporating User Behav-
ior Information. In SIGIR (2016), ACM.

[6] AKEN, D. V., PAVLO, A., GORDON, G. J., AND
ZHANG, B. Automatic Database Management Sys-
tem Tuning Through Large-scale Machine Learning. In
SIGMOD (2017), ACM.

[7] ALIPOURFARD, O., LIU, H. H., CHEN, J.,
VENKATARAMAN, S., YU, M., AND ZHANG,
M. CherryPick: Adaptively Unearthing the Best Cloud
Configurations for Big Data Analytics. In NSDI (2017),
USENIX.

[8] BENSON, T., AKELLA, A., AND SHAIKH, A. De-
mystifying Configuration Challenges and Trade-offs in
Network-based ISP Services. In SIGCOMM (2011),
ACM.

[9] BERGSTRA, J., BARDENET, R., BENGIO, Y., AND
KEGL, B. Algorithms for Hyper-Parameter Optimiza-
tion. In NIPS (2011).

[10] BIRD, D. L., AND MUNOZ, C. U. Automatic Genera-
tion of Random Self-checking Test Cases. IBM Systems
Journal (1983).

[11] BOTTOU, L., AND CUN, Y. L. Large Scale Online
Learning. In NIPS (2003).

[12] BURGES, C. J. From RankNet to LambdaRank to Lamb-
daMART: An Overview.

[13] CAO, Z., TARASOV, V., TIWARI, S., AND ZADOK,
E. Towards Better Understanding of Black-box Auto-
Tuning: A Comparative Analysis for Storage Systems.
In ATC (2018), USENIX.

[14] CHEN, Q., WANG, H., LI, M., REN, G., LI, S., ZHU, J.,
LI, J., LIU, C., ZHANG, L., AND WANG, J. SPTAG: A
Library for Fast Approximate Nearest Neighbor Search.
http://github.com/microsoft/SPTAG, 2018.

[15] CHEN, T., MOREAU, T., JIANG, Z., ZHENG, L., YAN,
E., SHEN, H., COWAN, M., WANG, L., HU, Y., CEZE,
L., GUESTRIN, C., AND KRISHNAMURTHY, A. TVM:
An Automated End-to-End Optimizing Compiler for
Deep Learning. In OSDI (2018), USENIX.

334 2020 USENIX Annual Technical Conference USENIX Association

http://cloud.google.com/tpu/
http://www.docker.com
http://github.com/microsoft/pai
http://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
http://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
http://github.com/microsoft/SPTAG

[16] CORTEZ, E., BONDE, A., MUZIO, A., RUSSINOVICH,
M., FONTOURA, M., AND BIANCHINI, R. Resource
Central: Understandingand Predicting Workloads for
Improved Resource Management in Large Cloud Plat-
forms. In SOSP (2017), ACM.

[17] CRANKSHAW, D., WANG, X., ZHOU, G., FRANKLIN,
M. J., GONZALEZ, J. E., AND STOICA, I. Clipper:
A Low-Latency Online Prediction Serving System. In
NSDI (2017), USENIX.

[18] DOMHAN, T., SPRINGENBERG, J. T., AND HUTTER, F.
Speeding up Automatic Hyperparameter Optimization
of Deep Neural Networks by Extrapolation of Learning
Curve. In IJCAI (2015).

[19] FELTER, W., FERREIRA, A., RAJAMONY, R., AND RU-
BIO, J. An Updated Performance Comparison of Virtual
Machines and Linux Containers. Tech. rep., IBM Re-
search, 2014.

[20] FRIEDMAN, J. H. Greedy Function Approximation: A
Gradient Boosting Machine. Annals of Statistics (2001).

[21] GABEL, M., SCHUSTER, A., BACHRACH, R.-G., AND
BJORNER, N. Latent Fault Detection in Large Scale
Services. In DSN (2012), IEEE.

[22] GANGER, G. R., STRUNK, J. D., AND KLOSTERMAN,
A. J. Self-* Storage: Brick-based Storage with Auto-
mated Administration. Tech. rep., CMU, 2003.

[23] GOLOVIN, D., SOLNIK, B., MOITRA, S., KOCHAN-
SKI, G., KARRO, J., AND SCULLEY, D. Google Vizier:
A Service for Black-Box Optimization. In SIGKDD
(2017), ACM.

[24] GUO, H., WU, M., ZHOU, L., HU, G., YANG, J., AND
ZHANG, L. Practical Software Model Checking via
Dynamic Interface Reduction. In SOSP (2011), ACM.

[25] HASHEMI, M., SWERSKY, K., SMITH, J. A., AYERS,
G., LITZ, H., CHANG, J., KOZYRAKIS, C., AND RAN-
GANATHAN, P. Learning Memory Access Patterns.
CoRR (2018).

[26] HUTTER, F., HOOS, H., AND LEYTON-BROWN, K. Se-
quential Model-Based Optimization for General Algo-
rithm Configuration. In LION (2011), Springer.

[27] JIANG, W., HU, C., PASUPATHY, S., KANEVSKY, A.,
LI, Z., AND ZHOU, Y. Understanding Customer Prob-
lem Troubleshooting from Storage System Logs. In
FAST (2009), USENIX.

[28] KRASKA, T., BEUTEL, A., CHI, E. H., DEAN, J., AND
POLYZOTIS, N. The Case for Learned Index Structures.
In SIGMOD (2018), ACM.

[29] LAPTEV, N., AMIZADEH, S., AND FLINT, I. Generic
and Scalable Framework for Automated Time-series
Anomaly Detection. In KDD (2015), ACM.

[30] LI, L., JAMIESON, K., DESALVO, G., ROS-
TAMIZADEH, A., AND TALWALKAR, A. Hyperband:
A Novel Bandit-Based Approach to Hyperparameter
Optimization. In ICML (2018).

[31] LI, Z. L., LIANG, C.-J. M., HE, W., ZHU, L., DAI,
W., JIANG, J., AND SUN, G. Metis: Robustly Optimiz-
ing Tail Latencies of Cloud Systems. In ATC (2018),
USENIX.

[32] LIANG, C.-J. M., LANE, N. D., BROUWERS, N.,
ZHANG, L. L., KARLSSON, B., LIU, H., LIU, Y.,
TANG, J., SHAN, X., CHANDRA, R., AND ZHAO, F.
Caiipa: Automated Large-scale Mobile App Testing
through Contextual Fuzzing. In MobiCom (2014), ACM.

[33] LIANG, C.-J. M., XUE, H., YANG, M., AND ZHOU,
L. The Case for Learning-and-System Co-design. In
SIGOPS Operating Systems Review (2019), ACM.

[34] MAO, H., NETRAVALI, R., AND ALIZADEH, M. Neural
Adaptive Video Streaming with Pensieve. In SIGCOMM
(2017), ACM.

[35] MIRHOSEINI, A., GOLDIE, A., PHAM, H., STEINER,
B., LE, Q. V., AND DEAN, J. A Hierarchical Model
for Device Placement. In ICLR (2018).

[36] MIRHOSEINI, A., PHAM, H., LE, Q. V., STEINER, B.,
LARSEN, R., ZHOU, Y., KUMAR, N., NOROUZI, M.,
BENGIO, S., AND DEAN, J. Device Placement Opti-
mization with Reinforcement Learning. CoRR (2017).

[37] MITRA, C. R. D. J. G. G. B., AND TIWARY, S. Opti-
mizing Query Evaluations using Reinforcement Learn-
ing for Web Search. In SIGIR (2018), ACM.

[38] MORITZ, P., NISHIHARA, R., WANG, S., TUMANOV,
A., LIAW, R., LIANG, E., ELIBOL, M., YANG, Z.,
PAUL, W., JORDAN, M. I., AND STOICA, I. Ray: A
Distributed Framework for Emerging AI Applications.
In OSDI (2018), USENIX.

[39] NEAMTIU, I., AND DUMITRAS, T. Cloud Software
Upgrades: Challenges and Opportunities. In MESOCA
(2011), IEEE.

[40] PARNAS, D. On the Criteria To Be Used in Decom-
posing System into Modules. In ACM Communication
(1972), ACM.

[41] PATTERSON, D. A. Technical Perspective: The Data
Center Is The Computer. ACM Communication (2008).

USENIX Association 2020 USENIX Annual Technical Conference 335

[42] RABKIN, A., AND KATZ, R. Static Extraction of Pro-
gram Configuration Options. In ICSE (2011), ACM.

[43] RING, M. B. CHILD: A First Step Towards Continual
Learning. In Machine Learning (1997), Springer.

[44] RYZHOV, I. O. On the Covergence Rates of Expected
Improvement Methods. In Operations Research (2014).

[45] STOICA, I., SONG, D., POPA, R. A., PATTERSON,
D. A., MAHONEY, M. W., KATZ, R. H., JOSEPH,
A. D., JORDAN, M., HELLERSTEIN, J. M., GONZA-
LEZ, J., GOLDBERG, K., GHODSI, A., CULLER, D. E.,
AND ABBEEL, P. A Berkeley View of Systems Chal-
lenges for AI. Tech. rep., Berkeley, 2017.

[46] TORRALBA, A., AND EFROS, A. A. Unbiased Look at
Dataset Bias. In CVPR (2011).

[47] WANG, J., AND LI, S. Query-driven Iterated Neigh-
borhood Graph Search for Large Scale Indexing. In
SIGMM (2012), ACM.

[48] WANG, M., CUI, Y., WANG, X., XIAO, S., AND JIANG,
J. Machine Learning for Networking: Workflow, Ad-
vances and Opportunities. IEEE Network (2018).

[49] XIAO, W., BHARDWAJ, R., RAMJEE, R., SIVATHANU,
M., KWATRA, N., HAN, Z., PATEL, P., PENG, X.,
ZHAO, H., ZHANG, Q., YANG, F., AND ZHOU, L. Gan-
diva: Introspective Cluster Scheduling for Deep Learn-
ing. In OSDI (2018), USENIX.

[50] XU, T., JIN, L., FAN, X., ZHOU, Y., PASUPATHY, S.,
AND TALWADKE, R. Hey, You Have Given Me Too
Many Knobs. In FSE (2015), ACM.

[51] YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN,
H., YANG, M., LONG, F., ZHANG, L., AND ZHOU, L.
MODIST: Transparent Model Checking of Unmodified
Distributed Systems. In NSDI (2009), USENIX.

[52] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVA-
SUNDARAM, L. N., AND PASUPATHY, S. An Empirical
Study on Configuration Errors in Commercial and Open
Source Systems. In SOSP (2011), ACM.

[53] ZHANG, L. L., LIANG, C.-J. M., LIU, Y., AND CHEN,
E. Systematically Testing Background Services of Mo-
bile Apps. In ASE (2017), ACM.

[54] ZHANG, S., AND ERNST, M. D. Which Configuration
Option Should I Change? In ICSE (2014), ACM.

[55] ZHANG, X., LIN, Q., XU, Y., QIN, S., ZHANG, H.,
QIAO, B., DANG, Y., YANG, X., CHENG, Q., CHIN-
TALAPATI, M., WU, Y., HSIEH, K., SUI, K., MENG,
X., XU, Y., ZHANG, W., SHEN, F., AND ZHANG, D.
Cross-dataset Time Series Anomaly Detection for Cloud
Systems. In ATC (2019), USENIX.

336 2020 USENIX Annual Technical Conference USENIX Association

Daydream: Accurately Estimating the Efficacy of Optimizations for DNN Training

Hongyu Zhu†, Amar Phanishayee⋆, Gennady Pekhimenko†

†University of Toronto & Vector Institute ⋆Microsoft Research

Abstract

Modern deep neural network (DNN) training jobs use com-
plex and heterogeneous software/hardware stacks. The effi-
cacy of software-level optimizations can vary significantly
when used in different deployment configurations. It is oner-
ous and error-prone for ML practitioners and system develop-
ers to implement each optimization separately, and determine
which ones will improve performance in their own configu-
rations. Unfortunately, existing profiling tools do not aim to
answer predictive questions such as "How will optimization
X affect the performance of my model?". We address this crit-
ical limitation, and proposes a new profiling tool, Daydream,
to help programmers efficiently explore the efficacy of DNN
optimizations. Daydream models DNN execution with a fine-
grained dependency graph based on low-level traces collected
by CUPTI [49], and predicts runtime by simulating execution
based on the dependency graph. Daydream maps the low-level
traces using DNN domain-specific knowledge and introduces
a set of graph-transformation primitives that can easily model
a wide variety of optimizations. We show that Daydream is
able to model most mainstream DNN optimization techniques
and accurately predict the efficacy of optimizations that will
result in significant performance improvements.

1 Introduction

Recent years have witnessed the co-evolution of deep neu-
ral network (DNN) algorithms and the underlying hardware
and software design. ML researchers have developed many
important models [20, 26, 27, 73] at a rapid pace, creating
a huge demand for computation power [69]. To meet the
demand for fast DNN computation, computer architects re-
spond with new, AI-optimized GPUs (e.g., NVidia Turing
architecture [56]) and various domain-specific hardware ac-
celerators from FPGAs (e.g., Microsoft Catapult [64]) to
ASICs (e.g., Google TPU [34], Amazon Inferentia [70]). How-
ever these accelerators might not be effective in improving
performance without proper software optimizations across
the full systems stack [84]. As a result, systems researchers

have proposed many optimizations, targeting different bot-
tlenecks across the system stack – for example, improving
memory utilization [29, 67], better overlapping of communi-
cation with computation [25,30,83], and increasing communi-
cation efficiency [16]. Moreover, researchers have also devel-
oped workload-centric optimizations to exploit the stochastic
nature of DNN computation. For example, precision reduc-
tion [18, 23, 42] aims to reduce runtime as well as memory
consumption, and gradient compression [40, 41] aims at re-
ducing the communication overhead in distributed training.

Despite these advances, the benefits of many proposed op-
timizations cannot be fully exploited due to two main reasons.
First, the efficacy of many proposed performance optimiza-
tions can drastically change when applied to different ML
models and deployment configurations. The hardware deploy-
ments that practitioners use might be completely different
from the hardware configurations used by optimization and
model inventors. Differences in DNN models, accelerator
type, compute capabilities, available memory, networking ca-
pabilities, and software library versions can all shift the major
runtime bottlenecks. Second, it is onerous for programmers
to implement and evaluate various optimizations to identify
the ones that actually work for their models. As a result, it is
common for users to ask what-if questions such as:

Why did my DNN training workload run slowly? Will opti-

mization X improve the performance of my model? Does GPU

memory capacity limit the performance of my model? Would

upgrading to a faster network improve training throughput?

How will my workload scale with the number of GPUs?

The central focus of this paper is to answer the following
general question for DNN training workloads: Given a model

and a deployment scenario, how can we efficiently explore

the efficacy of potential solutions? Systems researchers have
tried to explore the impact of different potential performance
bottlenecks (e.g., CPU, network, IO) in many non-ML con-
texts [5,17,43,59,60,74]. The basic approaches to explore the
what-if questions are similar: decompose the workloads into
atomic tasks, profile runtime statistics for each task, model the
what-if question, and use simulation to estimate performance.

USENIX Association 2020 USENIX Annual Technical Conference 337

These systems typically address what-if questions of the form:
"How does runtime change if a task T is N times (or even
infinitely) faster?" [17, 60]. Such questions can be simply
modeled by shrinking task runtime. While this basic approach
seems sufficient to address the central question above for
ML workloads, the diversity of DNN optimizations intro-
duces three key requirements unique to these workloads, thus
motivating the need for a novel solution.

First, we need to track dependencies at a kernel-level

abstraction i.e., one GPU kernel corresponds to one task (the
smallest unit of execution in the dependency graph). Such
fine-grained abstraction is necessary because optimizations
that improve hardware utilization typically target individual
compute kernels (e.g., mixed precision [42]). Meanwhile, ac-
curate performance estimation has to consider both CPU and
GPU runtime. Certain optimizations, e.g., kernel fusion, re-
quire potentially removing existing CPU and GPU tasks from
the dependency graph. Existing tools do not provide such
dependency tracking. It is therefore important to track kernel-
level dependencies among concurrently executing tasks.

Second, we need to map tasks to DNN layers. In con-
trast to prior works that explore what-if questions in non-
ML contexts, predicting the performance of DNN optimiza-
tions requires domain knowledge about DNNs to properly
model them. For example, MetaFlow [33] and TASO [32]
fuse DNN layers. Modeling them requires a mapping from
tasks to specific DNN layers. However, collecting kernel-level
traces on accelerators requires generic vendor-provided tools
(e.g., NVProf [48], CUPTI [49]), which have no application
specific knowledge. We therefore need to have the ability to
map low-level tasks to DNN layers.

Third, we need the ability to easily model diverse DNN

optimizations. Modeling a DNN optimization might involve
not just scaling or shrinking task durations, but also compli-
cated transformations to the dependency graph. For exam-
ple, TicTac [25] reschedules communication tasks, BlueCon-
nect [16] replaces the communication primitives to utilize
parallel network channels, and the optimization proposed by
Jung et al. [35] restructures the GPU kernel implementations.
Manually manipulating the kernel-level dependency graph
could be extremely intricate and error-prone. The system
should enable users to flexibly and effectively model such
diverse optimizations with minimal effort.

We introduce Daydream, a new system that fulfills all three
requirements described above, and achieves our goal of an-
swering potential what-if questions for DNN workloads. Con-
structing dependencies among potentially thousands of low-
level tasks is not an easy problem: tasks can be spread across
multiple execution threads (including both CPU threads and
GPU streams), thus even for simple DNN workloads, this re-
sults in thousands of tasks to be tracked. The intricacy comes
from identifying dependencies across threads. We make a key
observation about DNN training workloads: despite the large
number of tasks that need to be tracked, the number of concur-

rently executing threads is surprisingly quite limited. Based
on this observation, Daydream constructs the low-level depen-
dency graph, which provides a realistic model of overlapping
among CPU, GPU, and communication runtimes in a DNN
training workload. It uses a synchronization-free approach
to map GPU tasks onto appropriate higher-level DNN layer
abstractions. We also introduce a set of graph-transformation
rules, allowing programmers to effectively model various per-
formance optimizations. After modeling the optimization,
Daydream simulates the execution based on the new depen-
dency graph to predict the overall runtime. In our evaluation,
we show that Daydream is able to distinguish effective DNN
optimizations from those that will bring limited improvements
by accurately predicting their performance speedups.

In summary, we make the following key contributions:

• We make the observation that fine-grained tasks in DNN
training workloads are highly sequential. This greatly
simplifies dependency graph construction, over thou-
sands of tasks, as we only need to identify a limited
number of inter-thread dependencies.

• Daydream introduces the abstraction of a kernel-
granularity dependency graph that contains mappings
back to DNN specific abstractions (layers), by collect-
ing profiling data, instrumenting DNN frameworks, and
exploiting information from vendor-provided tools like
CUPTI. Daydream also provides primitives to mutate
the dependency graph in the form of simple graph trans-
formations. Taken together this enables programmers
to both (i) model a diverse set of popular optimizations
spanning kernel- and layer-level enhancements by using
simple graph-transformation primitives, and (ii) estimate
the efficacy of optimizations by simulating execution
time based on optimization-induced graph mutations.

• We extensively evaluate Daydream, with five different
optimizations on five DNN models across three distinct
applications. We show that Daydream can effectively de-
tect which optimizations provide improvements and also
accurately predict their magnitude for different DNN
models and deployments. For example, we estimate that
using mixed precision will improve the iteration time
of training BERTLARGE model by 17.2% (with <3% er-
ror), while the kernel fusion technique can improve it by
38.7% (with <7% error). We can also accurately predict
performance in distributed training with different num-
ber of workers and variable network bandwidth, based
on runtime profiles collected from a single-GPU setting.

2 DNN Training Optimizations and Tools

DNN training is an iterative algorithm, in which one itera-
tion consists of three phases: (i) forward, (ii) backward, and
(iii) weight update. The forward phase takes training data sam-
ples as input and produces output based on current weights

338 2020 USENIX Annual Technical Conference USENIX Association

Optimization Goal Strategy Technique Examples

Improving Hardware Utilization

in Single-Worker Setting

Increasing Mini-batch Size by

Reducing Memory Footprints
vDNN [67], Gist [29], Chen et al. [14]

Reducing Precision Micikevicius et al. [42], Gupta et al. [23], Das et al. [18]

Fusing Kernels/Layers FusedAdam [52], MetaFlow [33], Ashari et al. [10], TASO [32]

Improving Low-level Kernel

Implementation

Restructing Batchnorm [35], Tensor Comprehensions [72],

Kjolstad et al. [37], TVM [13]

Lowering Communication Overhead

in Distributed Training

Reducing Communication

Workloads

Deep Gradient Compression [40], AdaComm [76], Parallax [36],

TernGrad [78], QSGD [8]

Improving Communication

Efficiency/Overlap

Wait-free Backprop [83], P3 [30], BlueConnect [16], TicTac [25],

BytePS [62], Xue et al. [80]

Table 1: Representative optimizations for DNN training. We show how we can accurately estimate the performance of optimiza-
tions (shown in italics) in Section 6, and can effectively model many other optimizations (shown in bold) in Section 5.

(or parameters). The error between the forward output and
the input data labels is fed to the backward phase, which com-
putes the gradients of weights with respect to the input data.
The weight update phase then uses the gradients to update
weights accordingly. In each iteration, the input data samples
are randomly selected [11], forming a mini-batch of input.

2.1 DNN Training Optimizations

Modern DNNs have millions of parameters [24], resulting
in training times of days or even weeks [38]. To improve
DNN training performance, researchers have proposed var-
ious strategies focusing on different optimization goals. To
understand the potential what-if questions and how to design
a system to answer them, we study a list of software-level
techniques that speedup DNN training from top systems and
ML conferences in recent years. Table 1 shows our summary.

Exploiting computation power of hardware accelera-

tors. ML programmers often use large mini-batches, within
the memory budget, for better hardware utilization and faster
convergence. This motivates strategies that reduce the mem-
ory footprint of DNN training and hence enables training
with larger mini-batch sizes [14, 29, 67]. Researchers have
also proposed some generic strategies to increase hardware
utilization, including precision reduction [18, 23, 42], ker-
nel/layer fusion [10, 32, 33], and improving low-level kernel
implementation [13, 35, 37, 72]. Meanwhile, libraries such
as cuDNN [15], cuBLAS [45], MKL [75], Eigen [1], and
NCCL [46] are also constantly evolving to provide operations
and primitives that can better utilize underlying hardware.

Scalable distributed training. Data parallelism [11] is a
simple and effective strategy to improve training performance.
Using multiple accelerators significantly reduces DNN train-
ing time to hours or even minutes [44]. This success is mainly
based on the techniques that guarantee model convergence
under extremely large mini-batch size [7, 22, 81]. One of
the major performance bottlenecks for distributed training is
communication, which can be optimized by compressing traf-
fic [40, 41, 76, 78], increasing network utilization [16, 80], or

increasing the overlap between communication and computa-
tion [25,30,83]. Exploring the efficacy of these optimizations
without prediction requires a multi-machine cluster. Our pro-
posed design, Daydream, avoids the potential cost of cluster
setup (i.e. extra machines, accelerators, high-speed communi-
cation), by predicting distributed training performance with
profiles collected from a single-worker environment.

2.2 Profiling Tools for DNNs

As the full ML system stack is constantly evolving, profiling
tools play a key role in helping programmers identify the per-
formance bottlenecks under different system configurations.

Hardware profiling tools. Modern DNN training heav-
ily relies on hardware accelerators such as GPUs [56] and
TPUs [34]. To help programmers develop highly efficient
applications, hardware vendors provide profiling tools that
can expose hardware performance counters. For example,
NVProf [48] provides programmers with information includ-
ing start/end time, core utilization, memory throughput, cache
miss rate, along with hundreds of other hardware counters
for every GPU kernel. CUPTI [49] enables programmers to
extract and manipulate these counters at runtime. Nsight [47]
aims to provide details on the state of more fine-grained coun-
ters for recent GPU architectures [56]. Our proposed system,
Daydream, relies on CUPTI to collect low-level traces for
further analysis.

Framework built-in tools. For more intuitive profiling
results, it is often desirable for a profiler to show runtime
statistics for framework operations, or even DNN layers.
DNN frameworks have built-in tools to achieve this goal
by correlating the hardware counters with runtime informa-
tion collected in frameworks. TensorFlow [3], coupled with
the Cloud TPU Tool [21], can provide an execution timeline
and runtime statistics for each TensorFlow operation. Simi-
larly, other mainstream frameworks (e.g., MXNet [12] and
PyTorch [61]) provide built-in tools that can extract per-layer
or per-operation runtime from both the CPU and the GPU.
The framework built-in tools render intuitive results for pro-

USENIX Association 2020 USENIX Annual Technical Conference 339

340 2020 USENIX Annual Technical Conference USENIX Association

these primitives. These primitives include (i) task inser-
tion/removal, (ii) task selection and update, and (iii) changing
the policy for scheduling tasks. The proposed primitives are
simple yet powerful enough to represent many different opti-
mizations as we will show in Section 5. They play a key role
in realizing our goal of efficiently exploring what-if questions.

In summary, Daydream introduces the abstraction of a
kernel-granularity dependency graph that contains mappings
back to DNN specific abstractions (layers). It tracks depen-
dencies by collecting profiling data as well as instrument-
ing DNN frameworks. Daydream also provides primitives
to mutate the dependency graph in the form of simple graph
transformations. Altogether this enables programmers to both
(i) model a diverse set of popular optimizations spanning
kernel- and layer-level enhancements by using simple graph-
transformation primitives, and (ii) estimate the efficacy of opti-
mizations by simulating execution time based on optimization-
induced graph mutations.

4 Design

We describe Daydream’s design with an emphasis on how to
construct Daydream’s proposed graph abstraction: the kernel-
granularity dependency graph with mappings back to DNN
layers. We also describe the primitives for mutating this graph
to model different optimizations and how Daydream uses the
graph to estimate the efficacy of various DNN optimizations.

4.1 Overview of Daydream

Figure 2 shows the workflow of performance prediction in
Daydream. It consists of the following four phases:

Phase 1: Trace collection. Constructing a kernel-level de-
pendency graph requires low-level details for all tasks. These
details are extremely massive, differ across ML frameworks,
and can be obtained by profiling a baseline workload. Day-
dream collects low-level profiling data using CUPTI [49], a
tool which provides details for all CPU/GPU tasks includ-
ing name, start time, duration, CUDA stream ID, thread ID,
etc. We manually augment three popular frameworks (Caffe,
MXNet, PyTorch) for use with CUPTI and modify the layer
modules of these frameworks to collect timestamps of each
layer, which will be used for task-to-layer mapping, described
in Section 4.3. Through our instrumentation, we also collect
the necessary information (e.g., size of gradients) to construct
the dependency graph of distributed training via a profile
collected in a single worker setting.

Phase 2: Dependency graph construction. Daydream
constructs the dependency graph with details of tasks pro-
vided by the first phase. A dependency could be induced by
domain knowledge (e.g., a GPU task triggers a communica-
tion task), or by hardware/software implementation (e.g., a
cudaLaunchKernel API triggers the corresponding GPU task).
Based on our analysis, we identify five different types of de-
pendencies (described in Section 4.2.2), which are sufficient

for Daydream to accurately simulate baseline execution.
Phase 3: Graph transformation. To estimate the efficacy

of a given optimization, Daydream models the optimization by
transforming the dependency graph. Daydream provides a set
of primitives (e.g. selection, insertion/removal) to represent
these transformations. We design these primitives in a way
such that they are succinct (easy to use), flexible (able to
depict a wide range of optimizations), and accurate (being
able to achieve high prediction accuracy).

Algorithm 1: Daydream’s Simulation Algorithm

Input :Dependency graph: G(V,E)
Output :The start time of each task u ∈V

1 F ← /0 // initialize the frontier task set

2 P←{0} // initialize thread progress

3 foreach task u ∈V do

4 u.re f ← |{u′sparents}|
5 if u.ref = 0 then

6 F ← F ∪{u}

7 end

8 while F 6= /0 do

9 u← schedule(F) // pick a task to exec.

10 t← u.ExecutionT hread

11 F ← F−{u}
12 u.start← max(P[t],u.start)
13 P[t]← u.start +u.duration+u.gap

14 foreach c ∈ u.children do

15 c.re f ← c.re f −1
16 c.start←

max(c.start,u.start +u.duration+u.gap)
17 if c.re f = 0 then

18 F ← F ∪{c}
19 end

20 end

21 end

Phase 4: Runtime simulation. Daydream simulates the
execution of optimizations to predict runtime based on the
dependency graph. Algorithm 1 shows the simulation process,
which traverses the dependency graph and puts tasks into
execution threads. In each iteration, Daydream picks one
task from the execution frontier (i.e. tasks that are ready to
execute), dispatches it to its corresponding execution thread,
and updates the thread progress. The simulation determines
the start time of each task and records the total execution time.

4.2 Dependency Graph Construction

Constructing the dependency graph is essential to determine
the node (task) set and edge (dependency) set.

4.2.1 Task

Daydream’s kernel-level dependency graph contains the fol-
lowing four types of tasks:

GPU tasks. Each GPU task in the graph corresponds to one
GPU kernel. Daydream also views CUDA memory copies as

USENIX Association 2020 USENIX Annual Technical Conference 341

342 2020 USENIX Annual Technical Conference USENIX Association

USENIX Association 2020 USENIX Annual Technical Conference 343

improve memory-bounded GPU kernels by 2× because the
number of transferred bits is halved. With Tensor Cores in the
Volta and Turing architectures, AMP empirically yields up to
3× speedup on the most compute-intensive workloads [58].
To predict AMP performance, we simply select all the
compute-intensive (e.g., sgemm, conv) kernels and memory-
bounded (e.g., elementwise, batchnorm, RELU) kernels, and
shrink their duration by 3× and 2× respectively. We show
the pseudo code for modeling AMP in Algorithm 3.

Algorithm 2: What_If_AMP

Input :Dependency graph: G(V,E)
Output :A modified graph G(V,E) to model AMP

1 GPUTasks←{G.Select(f uncPtr(IsOnGPU))}
2 foreach u ∈ GPUTasks do

3 if ”sgemm” in u.Name or ”scudnn” in u.Name then

4 u.duration← u.duration/3
5 else

6 u.duration← u.duration/2
7 end

8 end

FusedAdam Optimizer. We use the FusedAdam opti-
mizer [52] implemented in NVidia’s Apex package [51] as
an example for the kernel fusion optimization. This optimizer
fuses all kernels in one weight update phase into one uni-
fied kernel. It is applicable to the models that use the Adam
optimizer (e.g., GNMT, BERT). Daydream uses the kernel-to-
layer mapping to identify the CPU/GPU tasks that belong to a
weight update phase. We remove all these tasks, then insert
a new GPU task whose duration is roughly estimated by the
sum of all removed compute-intensive kernels.

Reconstructing Batchnorm. Recently Jung et al. [35] pro-
posed a technique that optimizes non-convolutional layers in
state-of-the-art CNNs. It first splits each batch normalization
layer into two sub-layers, then fuses the first sub-layer with
the previous convolutional layer, and the second sub-layer
with the following activation and convolutional layers. We
remove the affected activation kernels when estimating per-
formance, since they are memory-bound kernels now fused
with compute-intensive convolutional kernels. For the batch
nomalization layers, we estimate that the GPU kernels will
be improved by 2× since this optimization halves the amount
of input data that these layers load from GPU memory.

Distributed Training. Using Daydream we can accurately
predict distributed training performance with the profile based
on the single-GPU environment. We evaluate Daydream’s
prediction based on PyTorch, which uses collective communi-
cation primitives from the NCCl library [46]. PyTorch groups
gradients from multiple layers into buckets before transfer-
ring them. Hence, to predict distributed training performance,
we need to insert one allReduce task for every bucket. The
dependencies of the inserted tasks are determined based on
the layer-to-bucket mapping (which requires additional instru-
mentation to the PyTorch framework).

Priority-Based Parameter Propagation (P3). P3 [30] is
a technique that optimizes communication overhead by slic-
ing and prioritizing. We evaluate Daydream’s prediction of
P3 based on MXNet, which uses the parameter-server mech-
anism [39]. In order to model parameter slicing, we insert
multiple push task and pull tasks between the backward and
the forward GPU tasks for each layer. The duration of the
push/pull task is calculated from the slice size and the network
bandwidth. To model the priority scheduling, we override the
schedule function with a priority queue.

5.2 Modeling Additional Optimizations

In addition to the above optimizations, we show that Day-
dream is capable of modeling an additional set of diverse
DNN optimizations.

BlueConnect. BlueConnect [16] optimizes communica-
tion by decomposing the allReduce primitives into a series
of reduce-scatter and all-gather primitives. These primitives
run concurrently as they use parallel communication chan-
nels. To predict the performance of BlueConnect, instead of
inserting regular allReduce or push/pull tasks, we need to
insert reduce-scatter and all-gather tasks, and assign them
to corresponding network channels (the duration can be esti-
mated according to formulas shown in [57]).

MetaFlow. MetaFlow [33] is a layer-fusion technique to
optimize DNN training by fusing DNN layers to simplify the
DNN topology. We select the GPU kernels of substituted
layers, remove them, and insert GPU kernels of new layers
to predict the performance of MetaFlow in Daydream. The
new layers are mostly existing layers with different dimen-
sions; their GPU kernel durations can be inferred by profiling.

vDNN. Virtualized DNN [67] reduces GPU memory con-
sumption by temporarily offloading intermediate data from
GPU memory to CPU memory. The offloaded data needs
to be prefetched back to GPU to perform execution, which
causes potential performance overhead due to PCIe traffic or
late prefetching. To predict the performance overhead using
Daydream, we only need to insert additional CUDA mem-
ory copies, and override the schedule function to implement
a custom prefetching policy.

Gist. Gist [29] reduces GPU memory consumption by stor-
ing encoded intermediate data and decoding before the data
is used. The encoding and decoding introduces performance
overhead. We insert extra encoding and decoding GPU
kernels (along with cudaLaunchKernel calls in CPU) to es-
timate the performance overhead in Daydream. The duration
of the inserted encoding/decoding kernels can be estimated
using existing element-wise kernels.

Deep Gradient Compression (DGC). DGC [40] is a tech-
nique that reduces communication overhead by compressing
the gradients. To estimate performance, we: (i) scale the
duration of communication; (ii) insert the GPU tasks of
compression and decompression. The duration of inserted

344 2020 USENIX Annual Technical Conference USENIX Association

USENIX Association 2020 USENIX Annual Technical Conference 345

346 2020 USENIX Annual Technical Conference USENIX Association

USENIX Association 2020 USENIX Annual Technical Conference 347

prediction error depends on the training workload itself. Due
to this limitation, it is hard for Daydream to accurately model
algorithmic innovations (e.g., BPPSA [77] or 2nd Order Op-
timizations [68]), because these innovations use new GPU
kernels at a massive scale, making the performance estimation
with Daydream less accurate. Estimating new GPU kernels
runtime is beyond the current scope of Daydream.

While Daydream cannot predict individual kernel runtime,
it provides a high-level structure for kernel developers to
estimate the overall performance. Developers can profile their
individual kernels, and then input the profiling results into
Daydream to accurately estimate the overall runtime. This
approach saves the engineering effort of porting the kernel
implementation into the DNN frameworks.

Concurrent Kernels Existing GPU profilers such as
CUPTI usually serialize GPU kernel execution, removing
all concurrency, making our performance estimation some-
what conservative. Despite this, we observe that the runtime
for models with concurrent execution (e.g., GNMT) can still
be predicted with high accuracy (§ 6.2). This is because the
majority of computation time goes to fully connected lay-
ers (including embedding layers), which have no concurrent
kernels executed in parallel with them. We leave a complete
solution for concurrent kernels, requiring better support from
profiling tools, as a part of future work.

8 Related Work

To help programmers understand the performance of the hard-
ware accelerators and develop highly efficient applications,
hardware vendors provide profiling tools (e.g., NVProf [48],
Nsight [47], and vTune [66]) that can reveal low-level perfor-
mance counters (e.g., cache hit rate, memory speed or clock
rate). These tools are usually designed with general applica-
tions in mind, and expose hundreds of low-level performance
counters. The fundamental limitation of all these tools is that
they do not utilize application-specific knowledge.

The new generation of profiling tools feature the
application-aware property, enabling them to deliver domain-
specific (e.g., ML-specific) insights about performance to
programmers. The Cloud TPU Tool [21] is an example of
such a profiling tool. It correlates low-level TPU metrics with
the DNN structure, and shows the performance for each DNN
layer. Similarly, MXNet [12] and PyTorch [61] also have
their own built-in profiling tools. These domain-specific tools
can highlight performance hotspots, but are less efficient in
finding optimization opportunities. In contrast, Daydream is
not only application-aware, but also optimization-aware, en-
abling Daydream to quantitatively estimate the efficacy of
different optimizations without fully implementing them.

Prior works have tried to explore what-if questions in other
contexts by using low-level traces. Curtsinger et al. proposed a
causal profiler (COZ [17]) to identify potentially unknown op-
timization opportunities by running performance simulation
with certain functions being virtually speed-up. Unlike Day-

dream, COZ does not require dependencies among functions
because it does not consider the cases where functions can be
added or deleted (which is the case for many ML optimiza-
tions). Pourghassemi et al. uses the idea of COZ to analyze
the performance for web browser applications [63]. For data
analytic frameworks, such as Spark [82], Ousterhout et al. use
dependency analysis to understand the overhead caused by
I/O, network, and stragglers [59,60]. Daydream is designed to
address a more diversified set of what-if questions, and hence
requires more powerful modeling.

Prior works address what-if questions of the form "What
if we can speedup task T by N times (or infinity)?", but they
do not study whether existing optimizations can deliver this
speedup. In the ML context, given an optimization, accurately
predicting the performance of individual tasks in the depen-
dency graph, is still an open problem. It requires additional
knowledge about the kernel implementation and the archi-
tecture design. Currently Daydream can not automatically
estimate the runtime of new GPU kernels. However, as we
show in Section 6, even with rough estimates of per-kernel
duration based on domain knowledge and reasonable assump-
tions, we can still achieve high overall prediction accuracy.

9 Conclusion

The efficacy of DNN optimizations can vary largely across
different DNN models and deployments. Daydream is a new
profiler to effectively explore the efficacy of a diverse set of
DNN optimizations. Daydream achieves this goal by using
three key ideas: (i) constructing a kernel-level dependency
graph by utilizing vendor-provided profiling tools, while track-
ing dependencies among concurrently executing tasks; (ii)
mapping low-level traces to DNN layers in a synchronization-
free manner; (iii) introducing a set of rules for programmers
to effectively describe and model different optimizations. Our
evaluation shows that using Daydream, we can effectively
model (i.e. predict runtime) the most common DNN optimiza-
tions, and accurately identify both optimizations that result in
significant performance improvements as well as those that
provide limited benefits or even slowdowns.

Acknowledgement

Daydream is a part of Project Fiddle at Microsoft Research
(MSR). We thank the MSR Lab LT, especially Ricardo Bian-
chini and Donald Kossmann, for their enthusiastic and unwa-
vering support of Project Fiddle. We also thank our shepherd,
Swaminathan Sundararaman, the anonymous ATC reviewers,
Jorgen Thelin, Shivaram Venkataraman, Deepak Narayanan,
and the EcoSystem group members, especially James Gleeson,
Geoffrey Yu, and Xiaodan (Serina) Tan for their constructive
feedback and comments. This work was also supported in
part by the NSERC Discovery grant, the Canada Foundation
for Innovation JELF grant, the Connaught Fund, and Huawei
grants.

348 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Eigen: A C++ linear algebra library. http://eigen.

tuxfamily.org/index.php?title=Main_Page.

[2] PyTorch Documentation. https://pytorch.org/

docs/stable/index.html, 2019.

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems

Design and Implementation ({OSDI} 16), pages 265–
283, 2016.

[4] ACL. Shared Task: Machine Translation
of News. http://www.statmt.org/wmt16/

translation-task.html, 2016.

[5] Marcos K Aguilera, Jeffrey C Mogul, Janet L Wiener,
Patrick Reynolds, and Athicha Muthitacharoen. Perfor-
mance debugging for distributed systems of black boxes.
In ACM SIGOPS Operating Systems Review, volume 37,
pages 74–89. ACM, 2003.

[6] Jasmin Ajanovic. PCI Express*(PCIe*) 3.0 Accelerator
Features. Intel Corporation, 10, 2008.

[7] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Ex-
tremely large minibatch SGD: training resnet-50 on im-
agenet in 15 minutes. arXiv preprint arXiv:1711.04325,
2017.

[8] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. QSGD: Communication-efficient
SGD via gradient quantization and encoding. In Ad-

vances in Neural Information Processing Systems, pages
1709–1720, 2017.

[9] AMD. AMD EPYCTM 7601. https://www.amd.com/
en/products/cpu/amd-epyc-7601, 2019.

[10] Arash Ashari, Shirish Tatikonda, Matthias Boehm,
Berthold Reinwald, Keith Campbell, John Keenleyside,
and P Sadayappan. On optimizing machine learning
workloads via kernel fusion. In ACM SIGPLAN Notices,
volume 50, pages 173–182. ACM, 2015.

[11] Léon Bottou. Large-scale machine learning with
stochastic gradient descent. In Proceedings of COMP-

STAT’2010, pages 177–186. Springer, 2010.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A Flexible and Efficient Ma-
chine Learning Library for Heterogeneous Distributed
Systems. CoRR, abs/1512.01274, 2015.

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen
Shen, Eddie Q Yan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. TVM:
end-to-end optimization stack for deep learning. arXiv

preprint arXiv:1802.04799, pages 1–15, 2018.

[14] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174, 2016.

[15] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cuDNN: Efficient primitives for deep learn-
ing. arXiv preprint arXiv:1410.0759, 2014.

[16] Minsik Cho, Ulrich Finkler, Mauricio Serrano, David
Kung, and Hillery Hunter. BlueConnect: Decomposing
all-reduce for deep learning on heterogeneous network
hierarchy. IBM Journal of Research and Development,
63(6):1–1, 2019.

[17] Charlie Curtsinger and Emery D Berger. C oz: finding
code that counts with causal profiling. In Proceedings

of the 25th Symposium on Operating Systems Principles,
pages 184–197. ACM, 2015.

[18] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudi-
gere, Dhiraj Kalamkar, Sasikanth Avancha, Kunal Baner-
jee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat
Kaul, Evangelos Georganas, et al. Mixed precision train-
ing of convolutional neural networks using integer oper-
ations. arXiv preprint arXiv:1802.00930, 2018.

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee,
2009.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[21] Google. Cloud TPU Tools. https://cloud.google.
com/tpu/docs/cloud-tpu-tools, 2018.

[22] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv

preprint arXiv:1706.02677, 2017.

[23] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,
and Pritish Narayanan. Deep learning with limited nu-
merical precision. In International Conference on Ma-

chine Learning, pages 1737–1746, 2015.

USENIX Association 2020 USENIX Annual Technical Conference 349

[24] Song Han, Huizi Mao, and William J. Dally. Deep
compression: Compressing deep neural network with
pruning, trained quantization and huffman coding. In-

ternational Conference on Learning Representations

(ICLR 2016), 2016.

[25] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and
Roy H Campbell. TicTac: Accelerating distributed deep
learning with communication scheduling. arXiv preprint

arXiv:1803.03288, 2018.

[26] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. Mask r-cnn. In Proceedings of the IEEE in-

ternational conference on computer vision, pages 2961–
2969, 2017.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[28] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4700–
4708, 2017.

[29] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia
Tang, and Gennady Pekhimenko. Gist: Efficient data en-
coding for deep neural network training. In Proceeding

of the 45st Annual International Symposium on Com-

puter Architecture, ISCA 2018, pages 776–789, 2018.

[30] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra
Fedorova, and Gennady Pekhimenko. Priority-based
Parameter Propagation for Distributed DNN Training.
In Proceedings of Machine Learning and Systems 2019,
pages 132–145. 2019.

[31] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional archi-
tecture for fast feature embedding. In Proceedings of

the 22nd ACM international conference on Multimedia,
pages 675–678. ACM, 2014.

[32] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, pages 47–
62. ACM, 2019.

[33] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu
Gao, Matei Zaharia, and Alex Aiken. Optimizing DNN
computation with relaxed graph substitutions. In Proc.

Conference on Systems and Machine Learning, SysML,
volume 19, 2019.

[34] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-
tipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance
analysis of a tensor processing unit. In Proceedings of

the 44th Annual International Symposium on Computer

Architecture, ISCA 2017, pages 1–12, New York, NY,
USA, 2017. ACM.

[35] Wonkyung Jung, Daejin Jung, Sunjung Lee, Wonjong
Rhee, Jung Ho Ahn, et al. Restructuring batch nor-
malization to accelerate CNN training. arXiv preprint

arXiv:1807.01702, 2018.

[36] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo
Cho, Eunji Jeong, Hyeonmin Ha, Sanha Lee, Joo Seong
Jeong, and Byung-Gon Chun. Parallax: Sparsity-aware
Data Parallel Training of Deep Neural Networks. In
Proceedings of the Fourteenth EuroSys Conference 2019,
page 43. ACM, 2019.

[37] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David
Lugato, and Saman Amarasinghe. The tensor algebra
compiler. Proceedings of the ACM on Programming

Languages, 1(OOPSLA):77, 2017.

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[39] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In 11th

{USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 14), pages 583–598, 2014.

350 2020 USENIX Annual Technical Conference USENIX Association

[40] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training.
arXiv preprint arXiv:1712.01887, 2017.

[41] Qu Lu, Wantao Liu, Jizhong Han, and Jinrong Guo.
Multi-stage Gradient Compression: Overcoming the
Communication Bottleneck in Distributed Deep Learn-
ing. In International Conference on Neural Information

Processing, pages 107–119. Springer, 2018.

[42] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh,
et al. Mixed precision training. arXiv preprint

arXiv:1710.03740, 2017.

[43] Barton P Miller and Cui-Qing Yang. IPS: An Interac-
tive and Automatic Performance Measurement Tool for
Parallel and Distributed Programs. In ICDCS, pages
482–489, 1987.

[44] MLPerf. MLPerf Training Results v0.6. https://

mlperf.org/training-results-0-6, 2019.

[45] NVIDIA. CUDA implementation of the standard ba-
sic linear algebra subroutines (BLAS). http://docs.
nvidia.com/cuda/cublas/index.html.

[46] NVIDIA. NVIDIA Collective Communications Library
(NCCL). https://developer.nvidia.com/nccl.

[47] NVIDIA. NVIDIA Nsight. https://developer.

nvidia.com/tools-overview.

[48] NVIDIA. NVIDIA Profiler. docs.nvidia.com/cuda/
profiler-users-guide/index.html.

[49] NVIDIA. The CUDA Profiling Tools Interface
(CUPTI). https://docs.nvidia.com/cuda/cupti/
index.html.

[50] NVIDIA. cudnn library developer guide v6.0. 2017.

[51] NVIDIA. A PyTorch Extension: Tools for easy mixed
precision and distributed training in Pytorch. https:

//github.com/NVIDIA/apex, 2018.

[52] NVIDIA. API Documentation of NVidia’s Apex
optimizers. https://nvidia.github.io/apex/

optimizers.html, 2018.

[53] NVIDIA. Cuda toolkit documentation v10.0. https:
//docs.nvidia.com/cuda/, 2018.

[54] NVIDIA. cudnn library developer guide v 7.4.1. 2018.

[55] NVIDIA. GEFORCE R© RTX 2080 Ti.
https://www.nvidia.com/en-us/geforce/

graphics-cards/rtx-2080-ti, 2018.

[56] NVIDIA. NVIDIA Turing GPU architec-
ture. https://www.nvidia.com/content/dam/

en-zz/Solutions/design-visualization/

technologies/turing-architecture/

NVIDIA-Turing-Architecture-Whitepaper.pdf,
2018.

[57] NVIDIA. Performance reported by NCCL tests.
https://github.com/NVIDIA/nccl-tests/blob/

master/doc/PERFORMANCE.md, 2018.

[58] NVIDIA. Training With Mixed Preci-
sion: Deep Learning SDK Documentation.
https://docs.nvidia.com/deeplearning/sdk/

mixed-precision-training/index.html, 2019.

[59] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy,
and Scott Shenker. Monotasks: Architecting for per-
formance clarity in data analytics frameworks. In Pro-

ceedings of the 26th Symposium on Operating Systems

Principles, pages 184–200. ACM, 2017.

[60] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott
Shenker, and Byung-Gon Chun. Making sense of perfor-
mance in data analytics frameworks. In 12th {USENIX}
Symposium on Networked Systems Design and Imple-

mentation ({NSDI} 15), pages 293–307, 2015.

[61] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in PyTorch. 2017.

[62] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed DNN
training acceleration. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, pages 16–
29. ACM, 2019.

[63] Behnam Pourghassemi, Ardalan Amiri Sani, and Aparna
Chandramowlishwaran. What-If Analysis of Page Load
Time in Web Browsers Using Causal Profiling. Pro-

ceedings of the ACM on Measurement and Analysis of

Computing Systems, 3(2):27, 2019.

[64] Andrew Putnam, Adrian M Caulfield, Eric S Chung,
Derek Chiou, Kypros Constantinides, John Demme,
Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, et al. A reconfigurable fabric for accel-
erating large-scale datacenter services. ACM SIGARCH

Computer Architecture News, 42(3):13–24, 2014.

[65] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint

arXiv:1606.05250, 2016.

USENIX Association 2020 USENIX Annual Technical Conference 351

[66] James Reinders. VTune performance analyzer essentials.
Intel Press, 2005.

[67] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W. Keckler. vDNN: Virtu-
alized Deep Neural Networks for Scalable, Memory-
efficient Neural Network Design. In The 49th Annual

IEEE/ACM International Symposium on Microarchi-

tecture, MICRO-49, pages 18:1–18:13, Piscataway, NJ,
USA, 2016. IEEE Press.

[68] Tomer Koren Kevin Regan Yoram Singer Rohan Anil,
Vineet Gupta. Second Order Optimization Made Practi-
cal. arXiv preprint arXiv:2002.09018, 2020.

[69] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. Green AI. arXiv preprint arXiv:1907.10597,
2019.

[70] Amazon Web Services. AWS Inferentia. https://aws.
amazon.com/machine-learning/inferentia.

[71] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[72] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. arXiv

preprint arXiv:1802.04730, 2018.

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Ad-

vances in neural information processing systems, pages
5998–6008, 2017.

[74] Christoph von Praun, Rajesh Bordawekar, and Calin
Cascaval. Modeling optimistic concurrency using quan-
titative dependence analysis. In Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and practice

of parallel programming, pages 185–196. ACM, 2008.

[75] Endong Wang, Qing Zhang, Bo Shen, Guangyong
Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. Intel
math kernel library. In High-Performance Computing

on the Intel R© Xeon PhiTM, pages 167–188. Springer,
2014.

[76] Jianyu Wang and Gauri Joshi. Adaptive communication
strategies to achieve the best error-runtime trade-off in
local-update SGD. arXiv preprint arXiv:1810.08313,
2018.

[77] Shang Wang, Yifan Bai, and Gennady Pekhimenko.
Bppsa: Scaling back-propagation by parallel scan algo-
rithm. In Proceedings of Machine Learning and Systems

2020, pages 451–469. 2020.

[78] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan
Wang, Yiran Chen, and Hai Li. Terngrad: Ternary gradi-
ents to reduce communication in distributed deep learn-
ing. In Advances in neural information processing sys-

tems, pages 1509–1519, 2017.

[79] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku
Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Ja-
son Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between
human and machine translation. CoRR, abs/1609.08144,
2016.

[80] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lin-
tao Zhang, and Lidong Zhou. Fast Distributed Deep
Learning over RDMA. In Proceedings of the Fourteenth

EuroSys Conference 2019, page 44. ACM, 2019.

[81] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel,
and Kurt Keutzer. Imagenet training in minutes. In
Proceedings of the 47th International Conference on

Parallel Processing, page 1. ACM, 2018.

[82] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95,
2010.

[83] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong
Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao
Xie, and Eric P Xing. Poseidon: An efficient communi-
cation architecture for distributed deep learning on GPU
clusters. In 2017 {USENIX} Annual Technical Confer-

ence ({USENIX}{ATC} 17), pages 181–193, 2017.

[84] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew
Pelegris, Anand Jayarajan, Amar Phanishayee, Bianca
Schroeder, and Gennady Pekhimenko. Benchmarking
and analyzing deep neural network training. In 2018

IEEE International Symposium on Workload Character-

ization (IISWC), pages 88–100. IEEE, 2018.

[85] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhi-
menko. Daydream: Accurately Estimating the Efficacy
of Optimizations for DNN Training. arXiv preprint

arXiv:2006.03318, 2020.

352 2020 USENIX Annual Technical Conference USENIX Association

ALERT: Accurate Learning for Energy and Timeliness

Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann, Michael Maire, Shan Lu
The University of Chicago

Abstract
An increasing number of software applications incorporate

runtime Deep Neural Networks (DNNs) to process sensor data
and return inference results to humans. Effective deployment
of DNNs in these interactive scenarios requires meeting
latency and accuracy constraints while minimizing energy, a
problem exacerbated by common system dynamics.

Prior approaches handle dynamics through either (1)
system-oblivious DNN adaptation, which adjusts DNN
latency/accuracy tradeoffs, or (2) application-oblivious
system adaptation, which adjusts resources to change
latency/energy tradeoffs. In contrast, this paper improves
on the state-of-the-art by coordinating application- and
system-level adaptation. ALERT, our runtime scheduler,
uses a probabilistic model to detect environmental volatility
and then simultaneously select both a DNN and a system
resource configuration to meet latency, accuracy, and energy
constraints. We evaluate ALERT on CPU and GPU platforms
for image and speech tasks in dynamic environments.
ALERT’s holistic approach achieves more than 13% energy
reduction, and 27% error reduction over prior approaches that
adapt solely at the application or system level. Furthermore,
ALERT incurs only 3% more energy consumption and 2%
higher DNN-inference error than an oracle scheme with
perfect application and system knowledge.

1 Introduction

1.1 Motivation
Deep neural networks (DNNs) have become a key workload
for many computing systems due to their high inference
accuracy. This accuracy, however, comes at a cost of
long latency, high energy usage, or both. Successful DNN
deployment requires meeting a variety of user-defined,
application-specific goals for latency, accuracy, and often
energy in unpredictable, dynamic environments.

Latency constraints naturally arise with DNN deployments
when inference interacts with the real world as a consumer—

processing data streamed from a sensor—or a producer—
returning a series of answers to a human. For example,
in motion tracking, a frame must be processed at camera
speed [40]; in simultaneous interpretation, translation must be
provided every 2–4 seconds [56]. Violating these deadlines
may lead to severe consequences: if a self-driving vehicle
cannot act within a small time budget, life threatening
accidents could follow [53].

Accuracy and energy requirements are also common and
may vary for different applications in different operating
environments. On one hand, low inference accuracy can lead
to software failures [67,80]. On the other hand, it is beneficial
to minimize DNN energy or resource usage to extend mobile-
battery time or reduce server-operation cost [41].

These requirements are also highly dynamic. For example,
the latency requirement for a job could vary dynamically
depending on how much time has already been consumed by
related jobs before it [53]; the power budget and the accuracy
requirement for a job may switch among different settings
depending on what type of events are currently sensed [1].
Additionally, the latency requirement may change based on
the computing system’s current context; e.g., in robotic vision
systems the latency requirement can change based on the
robot’s latency and distance from perceived pedestrians [18].

Satisfying all these requirements in a dynamic computing
environment where the inference job may compete
for resources against unpredictable, co-located jobs is
challenging. Although prior work addresses these problems
at either the application level or system level separately, each
approach by itself lacks critical information that could be used
to produce better results.

At the application level, different DNN designs—with
different depths, widths, and numeric precisions—provide
various latency-accuracy trade-offs for the same inference
task [26, 39, 42, 77, 85]. Even more dynamic schemes have
been proposed that adapt the DNN by dynamically changing
its structure at the beginning of [22, 61, 84, 89] or during
[34, 35, 49, 52, 82, 86, 88] every inference tasks.

Although helpful, these techniques are sub-optimal

USENIX Association 2020 USENIX Annual Technical Conference 353

without considering system-level adaptation options. For
example, under energy pressure, these application-level
adaptation techniques have to switch to lower-accuracy DNNs,
sacrificing accuracy for energy saving, even if the energy
goal could have been achieved by lowering the system power
setting (if there is sufficient latency budget).

At the system level, machine learning [4, 14, 15, 51, 63, 68,
69, 79] and control theory [32, 37, 44, 45, 62, 70, 74, 93] based
techniques have been proposed to dynamically assign system
resources to better satisfy system and application constraints.

Unfortunately, without considering the option of
application adaptions, these techniques also reach sub-
optimal solutions. For example, when the current DNN
offers much higher accuracy than necessary, switching to a
lower-precision DNN may offer much more energy saving
than any system-level adaptation techniques. This problem is
exacerbated because, in the DNN design space, very small
drops in accuracy enable dramatic reductions in latency, and
therefore system resource requirements.

A cross-stack solution would enable DNN applications to
meet multiple, dynamic constraints. However, offering such
a holistic solution is non-trivial. The combination of DNN
and system-resource adaptation creates a huge configuration
space, making it difficult to dynamically and efficiently
predict which combination of DNN and system settings will
meet all the requirements optimally. Furthermore, without
careful coordination, adaptations at the application and system
level may conflict and cause constraint violations, like missing
a latency deadline due to switching to higher-accuracy DNN
and lower power setting at the same time.

1.2 Contributions
This paper presents ALERT, a cross-stack runtime system for
DNN inference to meet user goals by simultaneously adapting
both DNN models and system-resource settings.
Understanding the challenges We profile DNN inference
across applications, inputs, hardware, and resource contention
confirming there is a high variation in inference time. This
leads to challenges in meeting not only latency but also energy
and accuracy requirements. Furthermore, our profiling of 42
existing DNNs for image classification confirms that different
designs offer a wide spectrum of latency, energy, and accuracy
tradeoffs. In general, higher accuracy comes at the cost of
longer latency and/or higher energy consumption. These trade-
offs offered provide both opportunities and challenges to
holistic inference management (Section 2).
Run-time inference management We design ALERT, a
DNN inference management system that dynamically selects
and adapts a DNN and a system-resource setting together
to handle changing system environments and meet dynamic
energy, latency, and accuracy requirements1 (Section 3).

1ALERT provides probabilistic, not hard guarantees, as the latter requires
much more conservative configurations, often hurting both energy and

Deadline
Accuracy Constraint
Energy Budget

DNN-Model
Selection

Resource
Selection

Inference
Computation

Input
Stream

Inference
Outputs

Inference Time,
Accuracy, and Energy

Measurement

DNN family
With Accuracy &

Latency Information

Predicted
Inference Time

Figure 1: ALERT inference system

ALERT is a feedback-based run-time. It measures
inference accuracy, latency, and energy consumption; it
checks whether the requirements on these goals are met;
and, it then outputs both system and application-level
configurations adjusted to the current requirements and
operating conditions. ALERT focuses on meeting constraints
in any two dimensions while optimizing the third; e.g.,
minimizing energy given accuracy and latency requirements
or maximizing accuracy given latency and energy budgets.

The key is estimating how DNN and system configurations
interact to affect the goals. To do so, ALERT addresses
three primary challenges: (1) the combined DNN and system
configuration space is huge, (2) the environment may change
dynamically (including input, available resources, and even
the required constraints), and (3) the predictions must be low
overhead to have negligible impact on the inference itself.

ALERT addresses these challenges with a global slow-
down factor, a random variable relating the current
runtime environment to a nominal profiling environment.
After each inference task, ALERT estimates the global
slow-down factor using a Kalman filter. The global
slow-down factor’s mean represents the expected change
compared to the profile, while the variance represents
the current volatility. The mean provides a single scalar
that modifies the predicted latency/accuracy/energy for
every DNN/system configuration—a simple mechanism
that leverages commonality among DNN architectures to
allow prediction for even rarely used configurations (tackle
challenge-1), while incorporating variance into predictions
naturally makes ALERT conservative in volatile environments
and aggressive in quiescent ones (tackle challenge-2). The
global slow-down factor and Kalman filter are efficient to
implement and low-overhead (tackle challenge-3). Thus,
ALERT combines the global slow-down factor with latency,
power, and accuracy measurements to select the DNN and
system configuration with the highest likelihood of meeting
the constraints optimally.

We evaluate ALERT using various DNNs and application
domains on different (CPU and GPU) machines under various
constraints. Our evaluation shows that ALERT overcomes
dynamic variability efficiently. Across various experimental

accuracy. Section 3.6 discusses this issue further.

354 2020 USENIX Annual Technical Conference USENIX Association

Inference Time of One Image (s)
0 0.05 0.1 0.15 0.2 0.25 0.3

E
rr

o
r

R
a
te

 (
%

)

0

5

10

15

20

25

30

35
ImageNet Classification Networks

Top5 Error-latency
Lower bound of top5 error-latency

Figure 2: Tradeoffs for 42 DNNs (CPU2).

settings, ALERT meets constraints while achieving within
93–99% of optimal energy saving or accuracy optimization.
Compared to approaches that adapt at application-level or
system-level only ALERT achieves more than 13% energy
reduction, and 27% error reduction (Section 5).

2 Understanding Deployment Challenges

We conduct an empirical study to examine the large trade-off
space offered by different DNN designs and system settings
(Sec. 2.1), and the timing variability of inference (Sec. 2.2).

Embedded CPU1 CPU2 GPU

CPU
ARM

Cortex A-15
@2.0 GHz

Core-i7
@2.2 GHz

Xeon(R)
Gold 6126
@2.60GHz

Core-i7
@2.2 GHz

GPU none none none RTX 2080
Memory DDR3 2G DDR4 16G DDR4 16G*12 DDR4 16G
LLC 2MB 9MB 19.25MB 9MB

Table 1: Hardware platforms used in our experiments

ID Task DNN Models Datasets
IMG1 Image VGG16 [78] ILSVRC2012
IMG2 Classification ResNet50 [29] (ImageNet)
NLP1 Sentence Prediction RNN Penn Treebank [59]
NLP2 Question Bert [17] Stanford Q&A

Answering Dataset (SQuAD) [71]

Table 2: ML tasks and benchmark datasets in our experiments

We use two canonical machine learning tasks, with
state-of-the-art networks and common data-sets (see Table
2) on a diverse set of hardware platforms, representing
embedded systems, laptops (CPU1), CPU servers (CPU2),
and GPU platforms (see Table 1). The two tasks, image
classification and natural language processing (NLP), are
often deployed with deadlines—e.g., for motion tracking [40]
and simultaneous interpretation [56]—and both have received
wide attention leading to a diverse set of DNN models.

2.1 Understanding the Tradeoffs
Tradeoffs from DNNs We run all 42 image classification
models provided by the Tensorflow website [76] on the

Inference Time of One Image (s)
0.06 0.08 0.1 0.12 0.14 0.16 0.18

A
v
er

a
g
e

E
n

er
g
y
 (

J
)

12.5

13

13.5

14

14.5

15

15.5

16

16.5

10098

969492
90
8886
8482

80
78

76
74

72
70

68

66
64

6260
58

56 54

52

50
48

46

44
42

40

ResNet50 @ Different Power Limit

Power limit setting (W)

Figure 3: Tradeoffs for ResNet50 at different power settings
(CPU2). (Numbers inside circles are power limit settings.)

50000 images from ImageNet [16], and measure their average
latency, accuracy (error rate), and energy consumption. The
results from CPU2 are shown in Figure 2. We can clearly see
two trends from the figure, which hold on other machines.

First, different DNN models offer a wide spectrum of
accuracy (error rate in figure), latency, and energy. As shown
in the figure, the fastest model runs almost 18× faster than
the slowest one and the most accurate model has about 7.8×
lower error rate than the least accurate. These models also
consume a wide range—more than 20×—of energy usage.

Second, there is no magic DNN that offers both the best
accuracy and the lowest latency, confirming the intuition that
there exists a tradeoff between DNN accuracy and resource
usage. Of course, some DNNs offer better tradeoffs than
others. In Figure 2, all the networks sitting above the lower-
convex-hull curve represent sub-optimal tradeoffs.

Tradeoffs from system settings We run ResNet50 under
31 power settings from 40–100W on CPU2. We consider a
sensor processing scenario with periodic inputs, setting the
period to the latency under 40W cap. We then plot the average
energy consumed for the whole period (run-time plus idle
energy) and the average inference latency in Figure 3.

The results reflect two trends, which hold on other
machines. First, a large latency/energy space is available by
changing system settings. The fastest setting (100W) is more
than 2× faster than the slowest setting (40W). The most
energy-hungry setting (64W) uses 1.3× more energy than
the least (40W). Second, there is no easy way to choose the
best setting. For example, 40W offers the lowest energy, but
highest latency. Furthermore, most of these points are sub-
optimal in terms of energy and latency tradeoffs. For example,
84W should be chosen for extremely low latency deadlines,
but all other nearby points (from 52–100) will harm latency,
energy or both. Additionally, when deadlines change or when
there is resource contention, the energy-latency curve also
changes and different points become optimal.

Summary: DNN models and system-resource settings
offer a huge trade-off space. The energy/latency tradeoff
space is not smooth (when accounting for deadlines and
idle power) and optimal operating points cannot be found
with simple gradient-based heuristics. Thus, there is a great

USENIX Association 2020 USENIX Annual Technical Conference 355

Settings (explained in Table 2)
IMG1 IMG2 NLP1 NLP2

A
v

g
.

In
fe

re
n

ce
 T

im
e

o
f

O
n

e
In

p
u

t
(s

)

10
-2

10
-1

10
0

10
1

Time Variance on Different Inputs and Hardwares

Embedded
CPU1
CPU2
GPU

Figure 4: Latency variance across inputs for different tasks
and hardware (Most tasks have 3 boxplots for 3 hardware
platforms, CPU1-2, GPU from left to right; NLP1 has an
extra boxplot for Embedded; other tasks run out of memory
on Embedded; every box shows the 25th–75th percentile;
points beyond the whiskers are >90th or <10th).

opportunity and also a great challenge in picking different
DNN models and system-resource settings to satisfy inference
latency, accuracy, and energy requirements.

2.2 Understanding Variability

To understand how DNN-inference varies across inputs,
platforms, and run-time environment and hence how (not)
helpful is off-line profiling, we run a set of experiments below,
where we feed the network one input at a time and use 1/10
of the total data for warm up, to emulate real-world scenarios.
We plot the inference latency without and with co-located
jobs in Figure 4 and 5, and we see several trends.

First, deadline violation is a realistic concern. Image
classification on video has deadlines ranging from 1 second
to the camera latency (e.g., 1/60 seconds) [40]; the two NLP
tasks, have deadlines around 1 second [64]. There is clearly no
single inference task that meets all deadlines on all hardware.

Second, the inference variation among inputs is relatively
small particularly when there are no co-located jobs (Fig. 4),
except for that in NLP1, where this large variance is mainly
caused by different input lengths. For other tasks, outlier
inputs exist but are rare.

Third, the latency and its variation across inputs are both
greatly affected by resource contention. Comparing Figure 5
with Figure 4, we can see that the co-located job has increased
both the median latency, the tail inference, and the difference
between these two for all tasks on all platforms. This trend
also applies to other contention cases.

While the discussion above is about latency, similar
conclusions apply to inference accuracy and energy: the
accuracy typically drops to close to 0 when the inference time
exceeds the latency requirement, and the energy consumption
naturally changes with inference time.

Settings (explained in Table 2)
IMG1 IMG2 NLP1 NLP2

A
v

g
.

In
fe

re
n

ce
 T

im
e

o
f

O
n

e
In

p
u

t
(s

)

10
-2

10
-1

10
0

10
1

Time Variance with Co-located Jobs

Embedded
CPU1
CPU2
GPU

Figure 5: Latency variance with co-located jobs (the memory-
intensive STREAM benchmark [60] co-located on Embedded,
CPU1-2; GPU-intensive Backprop [8] co-located on GPU)

Summary: Deadline violations are realistic concerns and
inference latency varies greatly across platforms, under
contention, and sometimes across inputs. Clearly, sticking to
one static DNN design across platforms and workloads leads
to an unpleasant trade-off: always meeting the deadline by
sacrificing accuracy or energy in most settings, or achieving
a high accuracy some times but exceeding the deadline in
others. Furthermore, it is also sub-optimal to make run-time
decisions based solely on off-line profiling, considering the
variation caused by run-time contention.

2.3 Understanding Potential Solutions
We now show how confining adaptation to a single layer (just
application or system) is insufficient. We run the ImageNet
classification on CPU1. We examine a range of latency
(0.1s-0.7s) and accuracy constraints (85%-95%), and try
meeting those constraints while minimizing energy by either
(1) configuring just the DNN (selecting a DNN from a
family, like that in Figure 2) or (2) configuring just the
system (by selecting resources to control energy–latency
tradeoffs as in Figure 3). We compare these single-layer
approaches to one that simultaneously picks the DNN and
system configuration. As we are concerned with the ideal
case, we create oracles by running 90 inputs in all possible
DNN and system configurations, from which we find the best
configuration for each input. The App-level oracle uses the
default system setting. The Sys-level oracle uses the default
(highest accuracy) DNN.

Figure 6 shows the results. As we have a three dimensional
problem—meeting accuracy and latency constraints with
minimal energy—we linearize the constraints and show them
on the x-axis (accuracy is faster changing, with latency slower,
so each latency bin contains all accuracy goals). There
are several important conclusions here. First, the App-only
approach meets all possible accuracy and latency constraints,
while the Sys-only approach cannot meet any constraints
below 0.3s. Second, across the entire constraint range, App-

356 2020 USENIX Annual Technical Conference USENIX Association

Constraint Settings (deadline × accuracy_goal)
deadline 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s

A
v
er

a
g
e

E
n

er
g
y
 (

J
)

20

40

60

80

∞

Sys-level
App-level
Combined

Figure 6: Minimize energy task with latency and accuracy
constraint @ CPU1. (∞ means unable to meet the constraints)

only consumes significantly more energy than Combined
(60% more on average). The intuition behind Combined’s
superiority is that there are discrete choices for DNNs; so
when one is selected, there are almost always energy saving
opportunities by tailoring resource usage to that DNN’s needs.

Summary: Combining DNN and system level approaches
achieves better outcomes. If left solely to the application,
energy will be wasted. If left solely to the system, many
achievable constraints will not be met.

3 ALERT Run-time Inference Management

ALERT’s runtime system navigates the large tradeoff space
created by combining DNN-level and system-level adaptation.
ALERT meets user-specified latency, accuracy, and energy
constraints and optimization goals while accounting for run-
time variations in environment or the goals themselves.

3.1 Inputs & Outputs of ALERT
ALERT’s inputs are specifications about (1) the adaption
options, including a set of DNN models D= {di | i = 1 · · ·K}
and a set of system-resource settings, expressed as different
power-caps P= {Pj | j = 1 · · ·L}; and (2) the user-specified
requirements on latency, accuracy, and energy usage, which
can take the form of meeting constraints in any two of these
three dimensions while optimizing the third. ALERT’s output
is the DNN model di ∈ D and the system-resource setting
p j ∈ P for the next inference-task input.

Formally, ALERT selects a DNN di and a system-resource
setting p j to fulfill either of these user-specified goals.

Maximizing inference accuracy q (minimizing error) for
an energy budget Egoal and inference deadline Tgoal:

argmax
i, j

qi, j s.t. ei, j ≤ Egoal∧ ti, j ≤ Tgoal (1)

Minimizing the energy use e for an accuracy goal Qgoal
and inference deadline Tgoal:

argmin
i, j

ei, j s.t. qi, j ≥Qgoal∧ ti, j ≤ Tgoal (2)

We omit the discussion of meeting energy and accuracy
constraints while minimizing latency as it is a trivial extension
of the discussed techniques and we believe it to be the least
practically useful. We also omit the problem of optimizing
all three dimensions, as it creates a feasibility problem,
leaving nothing for optimization—lowest latency and highest
accuracy are impractical to achieve simultaneously.

Generality Along the DNN-adaptation side, the input DNN
set can consist of any DNNs that offer different accuracy,
latency, and energy tradeoffs; e.g., those in Figure 3. In
particular, ALERT can work with either or both of the broad
classes of DNN adaptation approaches that have arisen
recently, including: (1) traditional DNNs where the adaptation
option should be selected prior to starting an inference task
[20,22,61,84,89] and (2) anytime DNNs that produce a series
of outputs as they execute [34, 35, 49, 52, 82, 86, 88]. These
two classes are similar in that they both vary things like the
network depth or width to create latency/accuracy tradeoffs.

On the system-resource side, ALERT uses a power cap
as the proxy to system resource usage. Since both hardware
[13] and software resource managers [33, 72, 90] can convert
power budgets into optimal performance resource allocations,
ALERT is compatible with many different schemes from both
commercial products and the research literature.

3.2 ALERT Workflow

ALERT works as a feedback controller. It follows four steps
to pick the DNN and resource settings for each input n:

1) Measurement. ALERT records the processing time,
energy usage, and computes inference accuracy for n−1.

2) Goal adjustment. ALERT updates the time goal Tgoal
if necessary, considering the potential latency-requirement
variation across inputs. In some inference tasks, a set of inputs
share one combined requirement (e.g., in the NLP1 task in
Table 2, all the words in a sentence are processed by a DNN
one by one and share one sentence-wise deadline) and hence
delays in previous input processing could greatly shorten the
available time for the next input [1,47]. Additionally, ALERT
sets the goal latency to compensate for its own, worst-case
overhead so that ALERT itself will not cause violations.

3) Feedback-based estimation. ALERT computes the
expected latency, accuracy, and energy consumption for every
combination of DNN model and power setting.

4) Picking a configuration. ALERT feeds all the updated
estimations of latency, accuracy, and energy into Eqs. 1 and 2,
and gets the desired DNN model and power-cap setting for n.

The key task is step 3: the estimation needs to be accurate
and fast. In the remainder of this section, we discuss key ideas
and the exact algorithm of our feedback-based estimation.

USENIX Association 2020 USENIX Annual Technical Conference 357

3.3 Key Ideas of ALERT Estimation

Strawman Solving Eqs. 1 and 2 would be trivially easy
if the deployment environment is guaranteed to match the
training and profiling environment: we could estimate ti, j to
be the average (or worst case, etc) inference time tprof

i, j over
a set of profiling inputs under model di and power setting
p j. However, this approach does not work given the dynamic
input, contention, and requirement variation.

Next, we present the key ideas behind how ALERT
estimates the inference latency, accuracy, and energy
consumption under model di and power setting p j.

How to estimate the inference latency ti, j? To handle the
run-time variation, a potential solution is to apply an estimator,
like a Kalman filter [55], to make dynamic predictions based
on recent history about inferences under model di and power
p j. The problem is that most models and power settings
will not have been picked recently and hence would have
no recent history to feed into the estimator. This problem is a
direct example of the challenge imposed by the large space
of combined application and system options.

Idea 1: Handle the large selection space with a single
scalar value. To make effective online estimation for
all combinations of models and power settings, ALERT
introduces a global slow-down factor ξ to capture how the
current environment differs from the profiled environment
(e.g., due to co-running processes, input variation, or other
changes). Such an environmental slow-down factor is
independent from individual model or power selection. It
can fully leverage execution history, no matter which models
and power settings were recently used; it can then be used to
estimate ti, j based on tprof

i, j for all di and p j combinations.
Applying a global slowdown factor for all combinations

of application and system-level settings is crucial for ALERT
to make quick decisions for every inference task. Although
it is possible that some perturbations may lead to different
slowdowns for different configurations, the slight loss of
accuracy here is out-weighed by the benefit of having a simple
mechanism that allows prediction even for configurations that
have not been used recently.

This idea is also novel for ALERT, as previous cross-stack
management systems all use much more complicated models
to estimate and select different setting combinations (e.g.,
using model predictive control to estimate combinations of
settings [57]). ALERT’s global slowdown factor is based
on several unique features of DNN families that accomplish
the same task with different accurarcy/latency tradeoffs. We
categorize these features as: (1) similarity of code paths
and (2) proportionality of structure. The first is based on
the observation that DNNs do not have complex conditional
code dependences, so we do not need to worry about the
case where different inputs would exercise very different
code paths. Thus, what ALERT learns about latency, accuracy,
and energy for one input will always inform it about future

inputs. The second feature refers to the fact that as DNNs in a
family scale in latency, the proportion of different operations
tend to be similar, so what ALERT learns about one DNN
in the family generally applies to other DNNs in the same
family. These properties of DNNs do not hold for many
other types of software, where different inputs or additional
functionality can invoke entirely different code paths, with
different resource requirements or responses.

How to estimate the accuracy under a deadline? Given
a deadline Tgoal, the inference accuracy delivered by model
di and power setting p j is determined by three factors, as
shown in Eq. 3: (1) whether the inference result, which takes
time ti, j, can be generated before the deadline Tgoal; (2) if yes,
the accuracy is determined by the model di;2 (3) if not, the
accuracy drops to that offered by a backup result qfail. For
traditional DNN models, without any output at the deadline, a
random guess will be used and qfail will be much worse than
qi. For anytime DNN models that output multiple results as
they are ready, the backup result is the latest output [34, 35,
49, 52, 82, 86, 88], which we discuss more in Section 3.5.

qi, j[Tgoal] =

{
qi , if ti, j ≤ Tgoal

qfail , otherwise
(3)

A potential solution to estimate accuracy qi, j at the deadline
Tgoal is to simply feed the estimated ti, j into Eq. 3. However,
this simple approach fails to account for two issues. First,
while DNNs are generally well-behaved, significant tail
effects are possible (see Figure 4). Second, Eq. 3 is not linear,
and is best understood as a step function, where a failure
to complete inference by the deadline results in a worthless
inference output (q f ail). Combined, these two issues mean
that for tail inputs, inference will produce a worthless result;
i.e., accuracy is not proportional to latency, but can easily fall
to zero for tail inputs. The tail will, of course, be increased if
there is any unexpected resource contention. Therefore, the
simple approach of using the mean latency prediction fails to
account for the non-linear affects of latency on accuracy.

Idea 2: handle the runtime variation and account for
tail behavior To handle the run-time variability mentioned in
Section 1, ALERT treats the execution time ti, j and the global
slow-down factor ξ as random variables drawn from a normal
distribution. ALERT uses a recently proposed extension to the
Kalman filter to adaptively update the noise covariance [2].
While this extension was originally proposed to produce better
estimates of the mean, a novel approach in ALERT is using
this covariance estimate as a measure of system volatility.
ALERT uses this Kalman filter extension to predict not just
the mean accuracy, but also the likelihood of meeting the
accuracy requirements in the current operating environment.
Section 5.3 shows the advantages of our extensions.

2Since it could be infeasible to calculate the exact inference accuracy at
run time, ALERT uses the average training accuracy of the selected DNN
model di, denoted as qi, as the inference accuracy, as long as the inference
computation finishes before the specified deadline.

358 2020 USENIX Annual Technical Conference USENIX Association

How to minimize energy or satisfy energy constraints?
Minimizing energy or satisfying energy constraints is
complicated, as the energy is related to, but cannot be easily
calculated by, the complexity of the selected model di and
the power cap p j. As discussed in Section 2.2, the energy
consumption includes both that used during the inference
under a given model di and that used during the inference-
idle period, waiting for the next input. Consequently, it is not
straightforward to decide which power setting to use.

Idea 3. ALERT leverages insights from previous research,
which shows that energy for latency-constrained systems
can be efficiently expressed as a mathematical optimization
problem [7,48,50,62]. These frameworks optimize energy by
scheduling available configurations in time. Time is assigned
to configurations so that the average performance hits the
desired latency target and the overall energy (including idle
energy) is minimal. The key is that while the configuration
space is large, the number of constraints is small (typically just
two). Thus, the number of configurations assigned a non-zero
time is also small (equal to the number of constraints) [48].
Given this structure, the optimization problem can be solved
using a binary search over available configurations, or even
more efficiently with a hash table [62].

The only difficulty applying prior work to ALERT is that
prior work assumed there was only a single job running
at a time, while ALERT assumes that other applications
might contend for resources. Thus, ALERT cannot assume
that there is a single system-idle state that will be used
whenever the DNN is not executing. To address this challenge,
ALERT continually estimates the system power when DNN
inference is idle (but other non-inference tasks might be
active), pDNNidle, transforming Eq. 1 is transformed into:

argmax
i, j

qi, j[Tgoal] s.t. pi, j· ti, j + pDNNidle· tDNNidle ≤ Egoal

(4)

3.4 ALERT Estimation Algorithm
Global Slow-down Factor ξ. As discussed in Idea-1, ALERT
uses ξ to reflect how the run-time environment differs from
the profiling environment. Conceptually, if the inference
task under model di and power-cap p j took time ti, j at run
time and took tprof

i, j on average to finish during profiling, the

corresponding ξ would be ti, j/t pro f
i, j . ALERT estimates ξ using

recent execution history under any model or power setting.
Specifically, after an input n−1, ALERT computes ξ(n−1)

as the ratio of the observed time t(n−1)
i, j to the profiled time

tprof
i, j , and then uses a Kalman Filter3 to estimate the mean µ(n)

and variance (σ(n))2 of ξ(n) at input n. ALERT’s formulation
is defined in Eq. 5, where K(n) is the Kalman gain variable;

3A Kalman Filter is an optimal estimator that assumes a normal
distribution and estimates a varying quantity based on multiple potentially
noisy observations [55].

R is a constant reflecting the measurement noise; Q(n) is the
process noise capped with Q(0). We set a forgetting factor of
process variance α = 0.3 [2]. ALERT initially sets K(0) = 0.5,
R = 0.001, Q(0) = 0.1, µ(0) = 1, (σ(0))2 = 0.1, following the
standard convention [55].

Q(n) = max{Q(0),αQ(n−1)+(1-α)(K(n−1)y(n−1))2}

K(n) =
(1−K(n−1))(σ(n−1))2 +Q(n)

(1−K(n−1))(σ(n−1))2 +Q(n)+R

y(n) = t(n−1)
i, j /tprof

i, j −µ(n−1)

µ(n) = µ(n−1)+K(n)y(n)

(σ(n))2 = (1−K(n−1))(σ(n−1))2 +Q(n)

(5)
Then, using ξ(n), ALERT estimates the inference time of

input n under any model di and power cap p j: t(n)i, j = ξ(n) ∗ tprof
i, j .

Probability of meeting the deadline. Given the Kalman
Filter estimation for the global slowdown factor, we can
calculate Pri, j , the probability that the inference completes
before the deadline Tgoal . ALERT computes this value using
a cumulative distribution function (CDF) based on the normal
distribution of ξ(n) estimated by the Kalman Filter:

Pri, j = Pr[ξ(n)· tprof
i, j ≤ Tgoal] =CDF(ξ(n)· tprof

i, j ,Tgoal)

=CDF(µ(n)· tprof
i, j ,σ(n),Tgoal)

(6)

Accuracy. As discussed in Idea-2, ALERT computes the
estimated inference accuracy q̂i, j[Tgoal] by considering ti, j as
a random variable that follows normal distribution with its
mean and variance computed based on that of ξ. Here qi, j
represents the inference accuracy when the DNN inference
finishes before the deadline, and q f ail is the accuracy of a
random guess:

q̂i, j[Tgoal] =E(qi, j[Tgoal] | t
(n)
i, j)

=E(qi, j[Tgoal] | ξ(n)· tprof
i, j)

=Pri, j·qi, j +(1−Pri, j)·q f ail

ξ
(n) ∼N (µ(n), (σ(n))2)

(7)

Energy. As discussed in Idea-3, ALERT predicts energy
consumption by separately estimating energy during (1) DNN
execution: estimated by multiplying the power limit by the
estimated latency and (2) between inference inputs: estimated
based on the recent history of inference idle power using
the Kalman Filter in Eq. 8. φ(n) is the predicted DNN-idle
power ratio, M(n) is process variance, S is process noise, V
is measurement noise, and W (n) is the Kalman Filter gain.
ALERT initially sets M(0) = 0.01, S = 0.0001, V = 0.001.

W (n) =
M(n−1)+S

M(n−1)+S+V
M(n) = (1−W (n))(M(n−1)+S)

φ
(n) = φ

(n−1)+W (n)(pidle/p(n−1)
i, j −φ

(n−1))

(8)

USENIX Association 2020 USENIX Annual Technical Conference 359

ALERT then predicts the energy by Eq. 9. Unlike Eq. 7 that
uses probabilistic estimates, energy estimation is calculated
without the notion of probability. The inference power is the
same no matter the inference misses or meets the deadline, as
ALERT sets power limits. Therefore it is safe to estimate the
energy by its mean without considering the distribution of its
possible latency. See our extended report [87] on estimating
energy by its worst case latency percentile.

e(n)i, j = pi, j·ξ(n)· tprof
i, j +φ

(n)· pi, j·(Tgoal− (ξ(n)· tprof
i, j)) (9)

3.5 Integrating ALERT with Anytime DNNs
An anytime DNN is an inference model that outputs a series of
increasingly accurate inference results—o1, o2, ... ok, with ot
more reliable than ot−1. A variety of recent works [35, 49, 52,
82,86,88] have proposed DNNs supporting anytime inference,
covering a variety of problem domains. ALERT easily works
with not only traditional DNNs but also Anytime DNNs. The
only change is that qfail in Eq. 3 no longer corresponds to a
random guess. That is, when the inference could not generate
its final result ok by the deadline Tgoal, an earlier result ox can
be used with a much better accuracy than that of a random
guess. The updated accuracy equation is below:

q., j =

qk , if tk, j ≤ tgoal

qk−1 , if tk−1, j ≤ tgoal < tk, j
· · ·

qfail , otherwise

(10)

Existing anytime DNNs consider latency but not energy
constraints—an anytime DNN will keep running until the
latency deadline arrives and the last output will be delivered
to the user. ALERT naturally improves Anytime DNN
energy efficiency, stopping the inference sometimes before
the deadline based on its estimation to meet not only latency
and accuracy, but also energy requirements.

Furthermore, ALERT can work with a set of traditional
DNNs and an Anytime DNN together to achieve the best
combined result. The reason is that Anytime DNNs generally
sacrifice accuracy for flexibility. When we feed a group of
traditional DNNs and one Anytime DNN to construct the
candidacy set D, with Eq. 7, ALERT naturally selects the
Anytime DNN when the environment is changing rapidly
(because the expected accuracy of an anytime DNN will be
higher given that variance), and the regular DNN, which has
slightly higher accuracy with similar computation, when it is
stable, getting the best of both worlds.

In our evaluation, we will use the nested design from [86],
which provides a generic coverage of anytime DNNs.

3.6 Limitations and Discussions
Assumptions of the Kalman Filter. ALERT’s prediction,
particularly the Kalman Filter, relies on the feedback from

recent input processing. Consequently, it requires at least one
input to react to sudden changes. Additionally, the Kalman
filter formulations assume that the underlying distributions
are normal, which may not hold in practice. If the behavior is
not Gaussian, the Kalman filter will produce bad estimations
for the mean of ξ for some amount of time.

ALERT is specifically designed to handle data that is
not drawn from a normal distribution, using the Kalman
Filter’s covariance estimation to measure system volatility
and accounting for that in the accuracy/energy estimations.
Consequently, after just 2–3 such bad predictions of means,
the estimated variance will increase, which will then trigger
ALERT to pick anytime DNN over traditional DNNs or pick a
low-latency traditional DNN over high-latency ones, because
the former has a higher expected accuracy under high variance.
So—worst case—ALERT will choose a DNN with slightly
less accuracy than what could have been used with the right
model. Users can also compensate for extremely aberrant
latency distributions by increasing the value of Q(0) in Eq.
5. Section 5.3 shows ALERT performs well even when the
distribution is not normal.

Probabilistic guarantees. ALERT provides probabilistic,
not hard, guarantees. As ALERT estimates not just average
timing, but the distributions of possible timings, it can provide
arbitrarily many nines of assurance that it will meet latency
or accuracy goals but cannot provide 100% guarantee (see
our extended report [87] on how to configure ALERT to
provide guarantees with a specific probability). Providing
100% guarantees requires the worst case execution time
(WCET), an upper bound on the highest possible latency.
ALERT does not assume the availability of such information
and hence cannot provide hard guarantees [6].

Safety guarantees. While ALERT does not explicitly
model safety requirements, it can be configured to prioritize
accuracy over other dimensions. When users particularly
value safety (e.g., auto-driving), they could set a high accuracy
requirement or even remove the energy constraints.

Concurrent inference jobs. ALERT is currently designed
to support one inference job at a time. To support multiple
concurrent inference jobs, future work needs to extend
ALERT to coordinate across these concurrent jobs. We expect
the main idea of ALERT, such as using a global slowdown
factor to estimate system variation, to still apply.

Finally, how the inference behaves ultimately depends not
only on ALERT, but also on the DNN models and system-
resource setting options. As shown in Section 5, ALERT
helps make the best use of supplied DNN models, but does
not eliminate the difference between different DNN models.

4 Implementation

We implement ALERT for both CPUs and GPUs. On CPUs,
ALERT adjusts power through Intel’s RAPL interface [13],
which allows software to set a hardware power limit. On

360 2020 USENIX Annual Technical Conference USENIX Association

Run-time environment setting
Default Inference task has no co-running process

Memory Co-locate with memory-hungry STREAM [60] (@CPU)
Co-locate with Backprop from Rodinia-3.1 [8] (@GPU)

Compute Co-locate with Bodytrack from PARSEC-3.0 [5] (@CPU)
Co-locate with the forward pass of Backprop [8] (@GPU)
Ranges of constraint setting

Latency 0.4x–2x mean latency* of the largest Anytime DNN
Accuracy Whole range achievable by trad. and Anytime DNN
Energy Whole feasible power-cap ranges on the machine
Task Trad. DNN Anytime [86] Fixed deadline?
Image Classifi. Sparse ResNet Depth-Nest Yes
Sentence Pred. RNN Width-Nest No
Scheme ID DNN selection Power selection
Oracle Dynamic optimal Dynamic optimal
OracleStatic Static optimal Static optimal
App-only One Anytime DNN System Default
Sys-only Fastest traditional DNN State-of-Art [37]
No-coord Anytime DNN w/o coord. with Power State-of-Art [37]
ALERT ALERT default ALERT default
ALERTAny ALERT w/o traditional DNNs ALERT default
ALERTTrad ALERT w/o Anytime DNNs ALERT default

Table 3: Settings and schemes under evaluation (* measured
under default setting without resource contention)

GPUs, ALERT uses PyNVML to control frequency and builds
a power-frequency lookup table. ALERT can also be applied
to other approaches that translate power limits into settings
for combinations of resources [33, 36, 72, 90].

In our experiments, ALERT considers a series of power
settings within the feasible range with 2.5W interval on our
test laptop and a 5W interval on our test CPU server and GPU
platform, as the latter has a wider power range than the former.
The number of power buckets is configurable.

ALERT incurs small overhead in both scheduler
computation and switching from one DNN/power-setting
to another, just 0.6–1.7% of an input inference time. We
explicitly account for overhead by subtracting it from the
user-specified goal (see step 2 in Section 3.2).

Users may set goals that are not achievable. If ALERT
cannot meet all constraints, it prioritizes latency highest, then
accuracy, then power. This hierarchy is configurable.

5 Experimental Evaluation

We apply ALERT to different inference tasks on both CPU
and GPU with and without resource contention from co-
located jobs. We set ALERT to (1) reduce energy while
satisfying latency and accuracy requirements and (2) reduce
error rates while satisfying latency and energy requirements.
We compare ALERT with both oracle and state-of-the-art
schemes and evaluate detailed design decisions.

5.1 Methodology
Experimental setup. We use the three platforms listed in
Table 1: CPU1, CPU2, and GPU. On each, we run inference

Minimize Energy Minimize Error

N
o

rm
 P

er
fo

rm
a

n
ce

0

0.2

0.4

0.6

0.8

1

1.2
Violations
App-only
Sys-only
No-coord
App+Sys

(ALERT-Any)

Oracle

V
io

la
ti

o
n

s(
%

)

0

12

24

36

48

60

72

Figure 7: Average performance normalized to OracleStatic.
Violations% is %-of-constraint-settings under which a scheme
incurs >10% violation of all inputs. (Smaller is better)

tasks4, image classification and sentence prediction, under
three different resource-contention scenarios:
• No contention: the inference task is the only job running,

referred to as “Default”;
• Memory dynamic: the inference task runs together with

a memory-intensive job that repeatedly stops and restarts,
representing dynamic memory resource contention,
referred to as “Memory”;
• Computation dynamic: the inference task runs together

with a computation-intensive job that repeatedly stops
and restarts, representing dynamic computation resource
contention, referred to as “Compute”.

Schemes in evaluation. We give ALERT three different
DNN sets, traditional DNN models (ALERTTrad), an Anytime
DNN (ALERTAny), and both (ALERT), and compare it with
two oracle and three state-of-the-art schemes (Table 3).

The two Oracle∗ schemes have perfect predictions for
every input under every DNN/power setting (i.e., impractical).
Specifically, the “Oracle" allows DNN/power settings to
change across inputs, representing the best possible results;
the “OracleStatic” has one fixed setting across inputs,
representing the best results without dynamic adaptation.

The three state-of-the-art approaches include the following:

• “App-only” conducts adaptation only at the application
level through an Anytime DNN [86];
• “Sys-only”adapts only at the system level following an

existing resource-management system that minimizes
energy under soft real-time constraints [62]5 and uses
the fastest candidate DNN to avoid latency violations;
• “No-coord” uses both the Anytime DNN for application

adaptation and the power-management scheme [62] to
adapt power, but with these two working independently.

5.2 Overall Results
Table 4 shows the results for all schemes for different tasks
on different platforms and environments. Each cell shows

4For GPU, we only run image classification task there, as the RNN-based
sentence prediction task is better suited for CPU [91].

5Specifically, this adaptation uses a feedback scheduler that predicts
inference latency based on Kalman Filter.

USENIX Association 2020 USENIX Annual Technical Conference 361

Plat. DNN Work. ALERT ALERT-
Any

Sys-
only

App-
only

No-
coord Oracle ALERT ALERT-

Any
Sys-
only

App-
only

No-
coord Oracle

Energy in Minimizing Energy Task Error Rate in Minimizing Error Task

CPU1

Sparse
Resnet

Idle 0.64 0.68 1.0819 1.19 0.941 0.64 0.91 0.92 1.35 1.023 0.913 0.89
Comp. 0.57 0.58 0.8019 1.30 1.391 0.57 0.38 0.39 0.51 1.3524 0.396 0.36
Mem. 0.53 0.55 0.7619 1.43 1.372 0.53 0.34 0.34 0.46 1.4728 0.392 0.33

RNN
Idle 0.61 0.65 1.0130 1.34 0.952 0.61 0.87 0.87 0.87 0.8721 0.8714 0.86

Comp. 0.60 0.57 0.9330 1.21 1.265 0.60 0.42 0.44 0.50 0.4628 0.4623 0.42
Mem. 0.54 0.56 0.9531 1.45 1.249 0.54 0.45 0.45 0.50 0.5728 0.5427 0.44

CPU2

Sparse
Resnet

Idle 0.93 0.88 0.9620 0.99 1.18 0.91 0.68 0.68 0.97 0.792 0.7124 0.66
Comp. 0.59 0.57 0.6023 1.00 1.01 0.58 0.58 0.57 0.85 0.7416 0.7129 0.55
Mem. 0.38 0.37 0.3919 0.65 0.6313 0.38 0.24 0.82 0.32 0.3317 0.7531 0.21

RNN
Idle 0.87 0.99 0.8034 1.04 1.006 0.83 0.84 0.85 0.99 0.8914 0.891 0.84

Comp. 0.60 0.60 0.5534 0.99 0.867 0.60 0.51 0.52 0.60 0.5321 0.5417 0.52
Mem. 0.52 0.51 0.4333 0.70 0.8514 0.52 0.26 0.27 0.31 0.2821 0.2717 0.26

GPU Sparse
Resnet

Idle 0.97 0.99 0.9220 1.36 1.37 0.92 0.90 0.92 1.22 1.092 1.7412 0.86
Comp. 0.96 0.97 0.9420 1.66 1.77 0.89 0.32 0.34 1.28 1.2123 2.5018 0.30
Mem. 0.97 1.01 0.9120 1.39 1.43 0.91 0.89 0.92 1.22 1.112 1.8114 0.86

Harmonic mean 0.64 0.64 0.7327 1.11 1.084 0.62 0.46 0.47 0.63 0.6716 0.6315 0.45

Table 4: Average energy consumption and error rate normalized to OracleStatic, smaller is better. (Each cell is averaged over 35–40
constraint settings; superscript: # of constraint settings violated for >10% inputs and hence excluded from energy average.)

the average energy or accuracy under 35–40 combinations
of latency, accuracy, and energy constraints (the settings
are detailed in Table 3), normalized to the OracleStatic
result. Figure 7 compares these results, where lower bars
represent better results and lower *s represent fewer constraint
violations. ALERT and ALERT Any both work very well
for all settings. They outperform state-of-the-art approaches,
which have a significant number of constraint violations, as
visualized by the many superscripts in Table 4 and the high
* positions in Figure 7. ALERT outperforms OracleStatic
because it adapts to dynamic variations. ALERT also comes
very close to the theoretically optimal Oracle.

Comparing with Oracles. As shown in Table 4,
ALERT achieves 93-99% of Oracle’s energy and accuracy
optimization while satisfying constraints. Oraclestatic, the
baseline in Table 4, represents the best one can achieve by
selecting 1 DNN model and 1 power setting for all inputs.
ALERT greatly out-performs Oraclestatic, reducing its energy
consumption by 3–48% while satisfying accuracy constraints
(36% in harmonic mean) and reducing its error rate by 9-66%
while satisfying energy constraints (54% in harmonic mean).

Figure 8 shows a detailed comparison for the energy
minimization task. The figure shows the range of performance
under all requirement settings (i.e., the whiskers). ALERT
not only achieves similar mean energy reduction, its whole
range of optimization behavior is also similar to Oracle. In
comparison, OracleStatic not only has the worst mean but also
the worst tail performance. Due to space constraints, we omit
the figures for other settings, where similar trends hold.

ALERT has more advantage over Oraclestatic on CPUs than
on GPUs. The CPUs have more empirical variance than the
GPU, so they benefit more from dynamic adaptation. The
GPU experiences significantly lower dynamic fluctuation so
the static oracle makes good predictions.

ALERT satisfies the constraint in 99.9% of tests for image

classification and 98.5% of those for sentence prediction. For
the latter, due to the large input variability (NLP1 in Figure 4),
some input sentences simply cannot complete by the deadline
even with the fastest DNN. There the Oracle fails, too.

Note that, these Oracle schemes not only have perfect—
and hence, impractical—prediction capability, but they also
have no overhead. In contrast, ALERT is running on the same
machines as the DNN workloads. All results include ALERT’s
run-time latency and power overhead.

Comparing with State-of-the-Art. For a fair comparison,
we focus on ALERTAny, as it uses exactly the same DNN
candidate set as "Sys-only", "App-only", and "No-coord".
Across all settings, ALERTAny outperforms the others.

The System-only solution suffers from not being able to
choose different DNNs under different runtime scenarios.
As a result, it performs much worse than ALERTAny in
satisfying accuracy requirements or optimizing accuracy. For
the former (left side of Table 4 and Figure 7), it creates
accuracy violations in 68% of the settings as shown in Figure
7; for the latter (right side of Table 4 and Figure 7), although
capable of satisfying energy constraints, it introduces 34%
more error than ALERTAny.

The Application-only solution that uses an Anytime
DNN suffers from not being able to adjust to the energy
requirements: it consumes 73% more energy in energy-
minimizing tasks (left side of Table 4 and Figure 7) and
introduces many energy-budget violations particularly under
resource contention settings (right side of Table 4 and Fig. 7).

The no-coordination scheme is worse than both System-
and Application-only. It violates constraints in both tasks
with 69% more energy and 34% more error than ALERTAny.
Without coordination, the two levels can work at cross
purposes; e.g., the application switches to a faster DNN to
save energy while the system makes more power available.

362 2020 USENIX Annual Technical Conference USENIX Association

Default Compute Memory

A
v

er
a

g
e

E
n

er
g

y
 (

J
)

0

0.5

1

1.5

2
Orcale-Static
ALERT
Oracle

(a) CPU1, Image Classification
Default Compute Memory

A
v

er
a

g
e

E
n

er
g

y
 (

J
)

0

5

10

15
Orcale-Static
ALERT
Oracle

(b) CPU1, Sentence Prediction
Default Compute Memory

A
v

er
a

g
e

E
n

er
g

y
 (

J
)

0

5

10

15

20

25
Orcale-Static
ALERT
Oracle

(c) CPU2, Image Classification
Default Compute Memory

A
v

er
a

g
e

E
n

er
g

y
 (

J
)

0

20

40

60

80
Orcale-Static
ALERT
Oracle

(d) CPU2, Sentence Prediction

Figure 8: ALERT versus Oracle and OracleStatic on minimize energy task (Lower is better). (whisker: whole range; circle: mean)

Plat. Work. ALERT Any Trad ALERT Any Trad
Minimize Energy Task Minimize Error Task

CPU1
Idle 0.64 0.68 0.651 0.91 0.92 0.93

Comp. 0.57 0.58 0.656 0.38 0.39 0.41
Mem. 0.53 0.55 0.533 0.34 0.34 0.35

CPU2
Idle 0.93 0.88 0.951 0.68 0.68 0.69

Comp. 0.59 0.57 0.604 0.58 0.57 0.59
Mem. 0.38 0.37 0.408 0.23 0.24 0.32

GPU
Idle 0.97 0.99 0.95 0.90 0.92 0.89

Comp. 0.97 1.01 0.96 0.89 0.92 0.89
Mem. 0.96 0.97 0.95 0.32 0.34 0.32

Harmonic mean 0.66 0.66 0.673 0.47 0.48 0.50

Table 5: ALERT normalized average energy consumption and
error rate to OracleStatic @ Sparse ResNet (Smaller is better)

5.3 Detailed Results and Sensitivity

Different DNN candidate sets. Table 5 compares the
performance of ALERT working with an Anytime DNN
(Any), a set of traditional DNN models (Trad), and both.
At a high level, ALERT works well with all three DNN
sets. Under close comparison, ALERTTrad violates more
accuracy constraints than the others, particularly under
resource contention on CPUs, because a traditional DNN
has a much larger accuracy drop than an anytime DNN when
missing a latency deadline. Consequently, when the system
variation is large, ALERTTrad selects a faster DNN to meet
latency and thus may not meet accuracy goals. Of course,
ALERTAny is not always the best. As discussed in Section
3.5, Anytime DNNs sometimes have lower accuracy then a
traditional DNN with similar execution time. This difference
leads to the slightly better results for ALERT over ALERTAny.

Figure 9 visualizes the different dynamic behavior of
ALERT (blue curve) and ALERTTrad (orange curve) when
the environment changes from Default to Memory-intensive
and back. At the beginning, due to a loose latency constraint,
ALERT and ALERTTrad both select the biggest traditional
DNN, which provides the highest accuracy within the energy
budget. When the memory contention suddenly starts, this
DNN choice leads to a deadline miss and an energy-budget
violation (as the idle period disappeared), which causes an
accuracy dip. Fortunately, both quickly detect this problem
and sense the high variability in the expected latency. ALERT
switches to use an anytime DNN and a lower power cap.
This switch is effective: although the environment is still
unstable, the inference accuracy remains high, with slight
ups and downs depending on which anytime output finished

L
at
en
cy

(s
)

0

0.05

0.1 ALERT-Trad

ALERT

Constraint

P
ow

er
(W

)

20

30

40

A
cc
u
ra
cy

(%
)

90

92

94

Image Classification Time (Input Number)
0 20 40 60 80 100 120 140 160

D
N
N

Trad

Any

Figure 9: Minimize error rates w/ latency, energy constraints
on CPU1. (Memory contention occurs from about input 46 to
119; Deadline: 1.25× mean latency of largest Anytime DNN
in Default; power limit: 35W.)

before the deadline. Only able to choose from traditional
DNNs, ALERTTrad conservatively switches to much simpler
and hence lower-accuracy DNNs to avoid deadline misses.
This switch does eliminate deadline misses under the highly
dynamic environment, but many of the conservatively chosen
DNNs finish before the deadline (see the Latency panel),
wasting the opportunity to produce more accurate results and
causing ALERTTrad to have a lower accuracy than ALERT.
When the system quiesces, both schemes quickly shift back
to the highest-accuracy, traditional DNN.

Overall, these results demonstrate how ALERT always
makes use of the full potential of the DNN candidate set to
optimize performance and satisfy constraints.

ALERT probabilistic design. A key feature of ALERT is
its use of not just mean estimations, but also their variance.
To evaluate the impact of this design, we compare ALERT to
an alternative design ALERT*, which only uses the estimated
mean to select configurations.

Figure 10 shows the performance of ALERT and ALERT*
in the minimize error task for sentence prediction. Here,
ALERT (blue circles) always performs better than ALERT*.
Its advantage is the biggest when the DNN candidates include
both traditional and Anytime DNNs (i.e., the “Standard”

USENIX Association 2020 USENIX Annual Technical Conference 363

Standard Trad. Only Any. Only

A
v

er
a

g
e

P
er

p
le

x
it

y

120

130

140

150

ALERT
ALERT*

(a) Default Contention
Standard Tradition OnlyAnytime Only

A
v

er
a

g
e

P
er

p
le

x
it

y

100

150

200

250

300

ALERT
ALERT*

(b) Memory Contention

Figure 10: Minimize error for sentence prediction@ CPU1
(Lower is better). (whisker: whole range; circle: mean)

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06

D
ef
a
u
lt

0

0.1

0.2

Observation

Estimation

1.1 1.2 1.3 1.4 1.5 1.6 1.7

C
o
m
p
u
te

0

0.05

0.1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

M
em

o
ry

0

0.1

0.2

Figure 11: Distribution of ξ for image class. on CPU1.

in Figure 10). The reason is that traditional DNNs and
Anytime DNN have different accuracy/latency curves, Eq.
3 for the former and Eq. 10 for the latter. ALERT* is
much worse in distinguishing these two by simply using the
mean of estimated latency to predict accuracy. ALERT also
clearly outperforms ALERT* under memory contention with
traditional DNN candidates, as ALERT’s estimation better
captures dynamic system variation. Overall, these results
show ALERT’s probabilistic design is effective.

Sensitivity to latency distribution. ALERT assumes a
Gaussian distribution, but is designed to work for other
distributions (see Section 3.6). As shown in Figure 11, the
observed ξs (red bars) are indeed not a perfect fit for Gaussian
distribution (blue lines), which confirms ALERT’s robustness.

6 Related work

Past resource management systems have used machine
learning [4, 51, 68, 69, 79] or control theory [32, 37, 44, 45,
62, 74, 93] to make dynamic decisions and adapt to changing
environments or application needs. Some also use Kalman
filter because it has optimal error properties [37, 44, 45, 62].
There are two major differences between them and ALERT:
1) prior approaches use the Kalman filter to estimate physical
quantities such as CPU utilization [45] or job latency [37],
while ALERT estimates a virtual quantity that is then used to
update a large number of latency estimates. 2) while variance
is naturally computed as part of the filter, ALERT actually
uses it, in addition to the mean, to help produce estimates that
better account for environment variability.

Past work designed resource managers explicitly to
coordinate approximate applications with system resource

usage [21, 31, 32, 46]. Although related, they manage
applications separately from system resources, which is
fundamentally different from ALERT’s holistic design. When
an environmental change occurs, prior approaches first adjust
the application and then the system serially (or vice versa)
so that the change’s effects on each can be established
independently [31, 32]. That is, coordination is established
by forcing one level to lag behind the other. In practice
this design forces each level to keep its own independent
model and delays response to environmental changes. In
contrast, ALERT’s global slowdown factor allows it to easily
model and update prediction about all application and system
configurations simultaneously, leading to very fast response
times, like the single input delay demonstrated in Figure 9.

Much work accelerates DNNs through hardware [3, 10–12,
19,23,24,27,30,38,43,54,58,66,73,75,83], compiler [9,65],
system [28,53], or design support [25,25,26,39,42,77,81,85].
They essentially shift and extend the tradeoff space, but do
not provide policies for meeting user needs or for navigating
tradeoffs dynamically, and hence are orthogonal to ALERT.

Some research supports hard real-time guarantees for
DNNs [92], providing 100% timing guarantees while
assuming that the DNN model gives the desired accuracy,
the environment is completely predictable, and energy
consumption is not a concern. ALERT provides slightly
weaker timing guarantees, but manages accuracy and power
goals. ALERT also provides more flexibility to adapt to
unpredictable environments. Hard real-time systems would
fail in the co-located scenario unless they explicitly account
for all possible co-located applications at design time.

7 Conclusion

This paper demonstrates the challenges behind the important
problem of ensuring timely, accurate, and energy efficient
neural network inference with dynamic input, contention, and
requirement variation. ALERT achieves these goals through
dynamic and coordinated DNN model selection and power
management based on feedback control. We evaluate ALERT
with a variety of workloads and DNN models and achieve
high performance and energy efficiency.

Acknowledgement

We thank the reviewers for their helpful feedback and Ken
Birman for shepherding this paper. This research is supported
by NSF (grants CNS-1956180, CNS-1764039, CNS-1764039,
CNS-1514256, CNS-1823032, CCF-1439156), ARO (grant
W911NF1920321), DOE (grant DESC0014195 0003),
DARPA (grant FA8750-16-2-0004) and the CERES Center
for Unstoppable Computing. Additional support comes from
the DARPA BRASS program and a DOE Early Career award.

364 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Baidu AI. Apollo open vehicle certificate platform.
Online document, http://apollo.auto, 2018.

[2] S. Akhlaghi, N. Zhou, and Z. Huang. Adaptive
adjustment of noise covariance in kalman filter for
dynamic state estimation. In IEEE Power Energy Society
General Meeting, 2017.

[3] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor
Aamodt, Natalie Enright Jerger, and Andreas Moshovos.
Cnvlutin: Ineffectual-neuron-free deep neural network
computing. In ISCA, pages 1–13, 2016.

[4] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan,
Marek Olszewski, Una-May O’Reilly, and Saman
Amarasinghe. Siblingrivalry: online autotuning through
local competitions. In CASES, 2012.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal
Singh, and Kai Li. The parsec benchmark suite:
Characterization and architectural implications. In
PACT, October 2008.

[6] Giorgio C Buttazzo, Giuseppe Lipari, Luca Abeni, and
Marco Caccamo. Soft Real-Time Systems: Predictability
vs. Efficiency: Predictability vs. Efficiency. Springer,
2006.

[7] Aaron Carroll and Gernot Heiser. Mobile multicores:
Use them or waste them. In HotPower, 2013.

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David
Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin
Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC, 2009.

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. Tvm: An
automated end-to-end optimizing compiler for deep
learning. In OSDI, pages 578–594, 2018.

[10] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang,
Chengyong Wu, Yunji Chen, and Olivier Temam.
Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. SIGPLAN Not., pages
269–284, 2014.

[11] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and
Vivienne Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional
neural networks. JSSC, 2016.

[12] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang
He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu,
Ninghui Sun, et al. Dadiannao: A machine-learning
supercomputer. In MICRO 47, pages 609–622, 2014.

[13] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and
C. Le. Rapl: Memory power estimation and capping. In
ISLPED, 2010.

[14] Christina Delimitrou and Christos Kozyrakis. Paragon:
Qos-aware scheduling for heterogeneous datacenters. In
ASPLOS, 2013.

[15] Christina Delimitrou and Christos Kozyrakis. Quasar:
resource-efficient and qos-aware cluster management.
In ASPLOS, 2014.

[16] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[18] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro
Perona. Pedestrian detection: An evaluation of the state
of the art. TPAMI, 2011.

[19] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo
Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and
Olivier Temam. Shidiannao: Shifting vision processing
closer to the sensor. In ISCA, pages 92–104, 2015.

[20] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn:
Resource-aware multi-tenant on-device deep learning
for continuous mobile vision. In Mobicom, 2018.

[21] Anne Farrell and Henry Hoffmann. MEANTIME:
achieving both minimal energy and timeliness with
approximate computing. In USENIX ATC, 2016.

[22] Michael Figurnov, Maxwell D Collins, Yukun Zhu,
Li Zhang, Jonathan Huang, Dmitry P Vetrov, and Ruslan
Salakhutdinov. Spatially adaptive computation time for
residual networks. In CVPR, page 7, 2017.

[23] Mingyu Gao, Christina Delimitrou, Dimin Niu,
Krishna T Malladi, Hongzhong Zheng, Bob Brennan,
and Christos Kozyrakis. Draf: a low-power dram-based
reconfigurable acceleration fabric. ISCA, pages
506–518, 2016.

[24] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark A Horowitz, and William J Dally. Eie:
efficient inference engine on compressed deep neural
network. In ISCA, pages 243–254, 2016.

[25] Song Han, Huizi Mao, and William J Dally. Deep
compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

USENIX Association 2020 USENIX Annual Technical Conference 365

http://apollo.auto

[26] Soheil Hashemi, Nicholas Anthony, Hokchhay Tann,
R Iris Bahar, and Sherief Reda. Understanding the
impact of precision quantization on the accuracy and
energy of neural networks. In DATE, pages 1474–1479,
2017.

[27] Johann Hauswald, Yiping Kang, Michael A Laurenzano,
Quan Chen, Cheng Li, Trevor Mudge, Ronald G
Dreslinski, Jason Mars, and Lingjia Tang. Djinn and
tonic: Dnn as a service and its implications for future
warehouse scale computers. In ISCA, pages 27–40,
2015.

[28] Johann Hauswald, Michael A Laurenzano, Yunqi Zhang,
Cheng Li, Austin Rovinski, Arjun Khurana, Ronald G
Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia
Tang, et al. Sirius: An open end-to-end voice and
vision personal assistant and its implications for future
warehouse scale computers. In ASPLOS, pages 223–238,
2015.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016.

[30] Parker Hill, Animesh Jain, Mason Hill, Babak Zamirai,
Chang-Hong Hsu, Michael A Laurenzano, Scott Mahlke,
Lingjia Tang, and Jason Mars. Deftnn: Addressing
bottlenecks for dnn execution on gpus via synapse vector
elimination and near-compute data fission. In MICRO,
pages 786–799, 2017.

[31] Henry Hoffmann. Coadapt: Predictable behavior for
accuracy-aware applications running on power-aware
systems. In ECRTS, pages 223–232, 2014.

[32] Henry Hoffmann. Jouleguard: energy guarantees for
approximate applications. In SOSP, 2015.

[33] Henry Hoffmann and Martina Maggio. PCP: A
generalized approach to optimizing performance under
power constraints through resource management. In
ICAC, pages 241–247, 2014.

[34] Hanzhang Hu, Debadeepta Dey, Martial Hebert, and
J Andrew Bagnell. Learning anytime predictions in
neural networks via adaptive loss balancing. In AAAI,
2019.

[35] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu,
Laurens van der Maaten, and Kilian Q. Weinberger.
Multi-scale dense convolutional networks for efficient
prediction. In CoRR, 2017.

[36] C. Imes and H. Hoffmann. Bard: A unified framework
for managing soft timing and power constraints. In
SAMOS, pages 31–38, 2016.

[37] C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann.
Poet: a portable approach to minimizing energy under
soft real-time constraints. In RTAS, pages 75–86, April
2015.

[38] Animesh Jain, Michael A Laurenzano, Gilles A Pokam,
Jason Mars, and Lingjia Tang. Architectural support
for convolutional neural networks on modern cpus. In
PACT, 2018.

[39] Shubham Jain, Swagath Venkataramani, Vijayalakshmi
Srinivasan, Jungwook Choi, Pierce Chuang, and Leland
Chang. Compensated-dnn: energy efficient low-
precision deep neural networks by compensating
quantization errors. In DAC, pages 1–6, 2018.

[40] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: scalable
adaptation of video analytics. In ACM SIGCOMM,
pages 253–266, 2018.

[41] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers,
Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami,
Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek
Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel
Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary,
Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni,
Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun
Yoon. In-datacenter performance analysis of a tensor
processing unit. In ISCA, 2017.

[42] Patrick Judd, Jorge Albericio, Tayler Hetherington,
Tor M Aamodt, Natalie Enright Jerger, and Andreas
Moshovos. Proteus: Exploiting numerical precision
variability in deep neural networks. In ICS, page 23,
2016.

[43] Patrick Judd, Jorge Albericio, Tayler Hetherington,
Tor M Aamodt, and Andreas Moshovos. Stripes: Bit-
serial deep neural network computing. In MICRO, pages
1–12, 2016.

366 2020 USENIX Annual Technical Conference USENIX Association

[44] Evangelia Kalyvianaki, Themistoklis Charalambous,
and Steven Hand. Self-adaptive and self-configured
cpu resource provisioning for virtualized servers using
kalman filters. In ICAC, 2009.

[45] Evangelia Kalyvianaki, Themistoklis Charalambous,
and Steven Hand. Adaptive resource provisioning for
virtualized servers using kalman filters. TAAS, 2014.

[46] Aman Kansal, Scott Saponas, AJ Brush, Kathryn S
McKinley, Todd Mytkowicz, and Ryder Ziola. The
latency, accuracy, and battery (lab) abstraction:
programmer productivity and energy efficiency for
continuous mobile context sensing. In OOPSLA, 2013.

[47] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya
Maeda, Manato Hirabayashi, Yuki Kitsukawa, Abraham
Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya
Azumi. Autoware on board: Enabling autonomous
vehicles with embedded systems. In ICCPS, pages 287–
296, 2018.

[48] D. H. K. Kim, C. Imes, and H. Hoffmann. Racing and
pacing to idle: Theoretical and empirical analysis of
energy optimization heuristics. In ICCPS, 2015.

[49] Gustav Larsson, Michael Maire, and Gregory
Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. arXiv preprint arXiv:1605.07648,
2016.

[50] Etienne Le Sueur and Gernot Heiser. Slow down or
sleep, that is the question. In USENIX ATC, June 2011.

[51] Benjamin C Lee and David Brooks. Efficiency trends
and limits from comprehensive microarchitectural
adaptivity. ASPLOS, 2008.

[52] Hankook Lee and Jinwoo Shin. Anytime neural
prediction via slicing networks vertically. arXiv preprint
arXiv:1807.02609, 2018.

[53] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt
Skach, Md E Haque, Lingjia Tang, and Jason Mars.
The architectural implications of autonomous driving:
Constraints and acceleration. In ASPLOS, pages 751–
766, 2018.

[54] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou,
Shengyuan Zhou, Olivier Teman, Xiaobing Feng,
Xuehai Zhou, and Yunji Chen. Pudiannao: A polyvalent
machine learning accelerator. In ISCA, pages 369–381,
2015.

[55] Jun S Liu and Rong Chen. Sequential monte carlo
methods for dynamic systems. Journal of the American
statistical association, 1998.

[56] ATLAS LS. What is
simultaneous/conference interpretation?
Online document, https://atlasls.com/
what-is-simultaneousconference-interpretation/,
2010.

[57] Martina Maggio, Alessandro Vittorio Papadopoulos,
Antonio Filieri, and Henry Hoffmann. Automated
control of multiple software goals using multiple
actuators. In FSE, 2017.

[58] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik
Sharma, Amir Yazdanbakhsh, Joon Kyung Kim, and
Hadi Esmaeilzadeh. Tabla: A unified template-based
framework for accelerating statistical machine learning.
In HPCA, pages 14–26. IEEE, 2016.

[59] Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. Treebank-3 - linguistic
data consortium. Online document, https://catalog.
ldc.upenn.edu/LDC99T42, 1999.

[60] John D McCalpin. Memory bandwidth and machine
balance in current high performance computers. TCCA,
1995.

[61] Mason McGill and Pietro Perona. Deciding how to
decide: Dynamic routing in artificial neural networks.
arXiv preprint arXiv:1703.06217, 2017.

[62] Nikita Mishra, Connor Imes, John D. Lafferty, and
Henry Hoffmann. CALOREE: learning control for
predictable latency and low energy. In ASPLOS, 2018.

[63] Nikita Mishra, Huazhe Zhang, John D. Lafferty,
and Henry Hoffmann. A probabilistic graphical
model-based approach for minimizing energy under
performance constraints. ASPLOS, 2015.

[64] Jakob Nielsen. Usability engineering. Elsevier, 1994.

[65] NVIDIA. Nvidia tensorrt: Programmable inference
accelerator. Online document, https://developer.
nvidia.com/tensorrt, 2018.

[66] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim,
Jeremy Fowers, Karin Strauss, and Eric S Chung.
Accelerating deep convolutional neural networks using
specialized hardware. Microsoft Research Whitepaper,
2015.

[67] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman
Jana. Deepxplore: Automated whitebox testing of deep
learning systems. In SOSP, 2017.

[68] Paula Petrica, Adam M Izraelevitz, David H Albonesi,
and Christine A Shoemaker. Flicker: A dynamically
adaptive architecture for power limited multicore
systems. In ISCA, 2013.

USENIX Association 2020 USENIX Annual Technical Conference 367

https://atlasls.com/what-is-simultaneousconference-interpretation/
https://atlasls.com/what-is-simultaneousconference-interpretation/
https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

[69] Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose.
Reducing power requirements of instruction scheduling
through dynamic allocation of multiple datapath
resources. In MICRO, 2001.

[70] Amir M. Rahmani, Bryan Donyanavard, Tiago Mück,
Kasra Moazzemi, Axel Jantsch, Onur Mutlu, and
Nikil D. Dutt. SPECTR: formal supervisory control
and coordination for many-core systems resource
management. In ASPLOS, pages 169–183, 2018.

[71] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[72] S. Reda, R. Cochran, and A. K. Coskun. Adaptive
power capping for servers with multithreaded workloads.
MICRO, 2012.

[73] Minsoo Rhu, Natalia Gimelshein, Jason Clemons,
Arslan Zulfiqar, and Stephen W Keckler. vdnn:
Virtualized deep neural networks for scalable, memory-
efficient neural network design. In MICRO, page 18,
2016.

[74] Muhammad Husni Santriaji and Henry Hoffmann.
Grape: Minimizing energy for gpu applications with
performance requirements. In MICRO, 2016.

[75] Hardik Sharma, Jongse Park, Divya Mahajan,
Emmanuel Amaro, Joon Kyung Kim, Chenkai Shao,
Asit Mishra, and Hadi Esmaeilzadeh. From high-level
deep neural models to fpgas. In MICRO, page 17, 2016.

[76] N Silberman and Guadarrama. S. Tensorflow-slim
image classification model library. Online document,
https://github.com/tensorflow/models/tree/
master/research/slim, 2016.

[77] Hyeonuk Sim, Saken Kenzhegulov, and Jongeun
Lee. Dps: dynamic precision scaling for stochastic
computing-based deep neural networks. In DAC,
page 13, 2018.

[78] Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

[79] Srinath Sridharan, Gagan Gupta, and Gurindar S Sohi.
Holistic run-time parallelism management for time and
energy efficiency. In ICS, 2013.

[80] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang,
Marta Kwiatkowska, and Daniel Kroening. Concolic
testing for deep neural networks. In ASE, 2018.

[81] Hokchhay Tann, Soheil Hashemi, R Iris Bahar, and
Sherief Reda. Hardware-software codesign of accurate,
multiplier-free deep neural networks. In DAC, 2017.

[82] Surat Teerapittayanon, Bradley McDanel, and H.T.
Kung. Branchynet: Fast inference via early exiting from
deep neural networks. In CVPR, 2016.

[83] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao.
Improving the speed of neural networks on cpus. In Proc.
Deep Learning and Unsupervised Feature Learning
NIPS Workshop, page 4, 2011.

[84] Andreas Veit and Serge Belongie. Convolutional
networks with adaptive inference graphs. In ECCV,
2018.

[85] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy,
and Anand Raghunathan. Axnn: energy-efficient
neuromorphic systems using approximate computing.
In ISLPED, 2014.

[86] Chengcheng Wan, Henry Hoffmann, Shan Lu, and
Michael Maire. Orthogonalized SGD and nested
architectures for anytime neural networks. In ICML
2020, to appear.

[87] Chengcheng Wan, Muhammad Santriaji, Eri Rogers,
Henry Hoffmann, Michael Maire, and Shan Lu. Alert:
Accurate learning for energy and timeliness. arXiv
preprint arXiv:1911.00119, 2020.

[88] Yan Wang, Zihang Lai, Gao Huang, Brian H Wang,
Laurens van der Maaten, Mark Campbell, and Kilian Q
Weinberger. Anytime stereo image depth estimation
on mobile devices. arXiv preprint arXiv:1810.11408,
2018.

[89] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio
Feris. Blockdrop: Dynamic inference paths in residual
networks. In CVPR, pages 8817–8826, 2018.

[90] Huazhe Zhang and Henry Hoffmann. Maximizing
performance under a power cap: A comparison of
hardware, software, and hybrid techniques. In ASPLOS,
2016.

[91] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang,
and Yuxiong He. Deepcpu: Serving rnn-based deep
learning models 10x faster. In ATC, pages 951–965,
2018.

[92] H. Zhou, S. Bateni, and C. Liu. S3dnn: Supervised
streaming and scheduling for gpu-accelerated real-time

DNN workloads. In RTAS, 2018.

368 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim

[93] Yanqi Zhou, Henry Hoffmann, and David Wentzlaff.
Cash: Supporting iaas customers with a sub-core
configurable architecture. In ISCA, 2016.

USENIX Association 2020 USENIX Annual Technical Conference 369

NeuOS: A Latency-Predictable Multi-Dimensional Optimization Framework for

DNN-driven Autonomous Systems

Soroush Bateni and Cong Liu
The University of Texas at Dallas

Abstract

Deep neural networks (DNNs) used in computer vision
have become widespread techniques commonly used in
autonomous embedded systems for applications such as
image/object recognition and tracking. The stringent space,
weight, and power constraints seen in such systems impose
a major impediment for practical and safe implementation
of DNNs, because they have to be latency predictable
while ensuring minimum energy consumption and maximum
accuracy. Unfortunately, exploring this optimization space
is very challenging because (1) smart coordination has to
be performed among system- and application-level solutions,
(2) layer characteristics should be taken into account, and
more importantly, (3) when multiple DNNs exist, a consensus
on system configurations should be calculated, which is
a problem that is an order of magnitude harder than any
previously considered scenario. In this paper, we present
NeuOS, a comprehensive latency predictable system solution
for running multi-DNN workloads in autonomous systems.
NeuOS can guarantee latency predictability, while managing
energy optimization and dynamic accuracy adjustment based
on specific system constraints via smart coordinated system-
and application-level decision-making among multiple DNN
instances. We implement and extensively evaluate NeuOS
on two state-of-the-art autonomous system platforms for a
set of popular DNN models. Experiments show that NeuOS
rarely misses deadlines, and can improve energy and accuracy
considerably compared to state of the art.

1 Introduction

The recent explosion of computer vision research has led to
interesting applications of learning-driven techniques in au-
tonomous embedded systems (AES) domain such as object
detection in self-driving vehicles and image recognition in
robotics. In particular, deep neural networks (DNNs) with
generally the same building blocks have been dominantly
applied as effective and accurate implementation of image
recognition, object detection, tracking, and localization to-
wards enabling full autonomy in the future [60, 50]. For ex-
ample, using such DNNs alone, Tesla has recently demon-
strated that a great deal of autonomy in self-driving cars
can be achieved [33]. Another catalyzer for the feasibility
of DNN-driven autonomous systems in practice has been the

Energy

Low Power

High Latency

Low Accuracy

High Power

Good Latency

High Accuracy

Good Power

Good Latency

Good Accuracy

(a)

T
im

in
g

Accuracy

(b)

Energy

Figure 1: Ternary depiction of the 3D optimization space.

advancement of fast, energy-efficient embedded platforms,
particularly accelerator-enabled multicore systems such as
the NVIDIA Drive AGX and the Tesla AI platforms [44, 22].

Autonomous systems based on embedded hardware plat-
forms are bounded by stringent Space, Weight, and Power
(SWaP) constraints. The SWaP constraints require system de-
signers to carefully take into account energy efficiency. How-
ever, DNN-driven autonomous embedded systems are consid-
ered mission-critical real-time applications and thus, require
predictable latency1 and sufficient accuracy2 (of the DNN
output) in order to pass rigorous certifications and be safe for
end users [46]. This causes a challenging conflict with energy
efficiency since accurate DNNs require a tremendous amount
of resources to be feasible and to be timing-predictable, and
are by far the biggest source of resource consumption in such
systems [5]. This usually results in less complicated (and less
resource-demanding) DNN models to be designed and used
in these systems, reducing accuracy considerably.

Fig. 1(a) shows a hypothetical three-dimensional space
between latency, power, and accuracy mapped to a ternary
plot [55] (where (Energy + Timing + Accuracy) has
been normalized to 3). Each dot in Fig. 1(a) represents
a configuration with a unique set of latency, power, and
accuracy characteristics. The power consumption is usually

1Latency from each system component (including the DNNs) in AES
will add up to the reaction latency between when a sensor observes an event
and when the system externally reacts to that event, such as by applying
the breaks in a self-driving vehicle. The faster a system reacts, the more
likely it is for the system to avoid a disaster, such as an accident. However,
policymakers might adopt a reasonable reaction time, such as 33ms or even
300ms [48, 27, 12, 14, 9, 4] as ”safe enough".

2We should mention here that there is currently no established standard
to connect DNN accuracy to the safety of a particular system, such as DNNs
in self-driving vehicles. In this paper, we assume the more accurate the DNN,
the safer the system is.

USENIX Association 2020 USENIX Annual Technical Conference 371

adjusted at system-level via dynamic voltage/frequency
scaling (DVFS) [5, 21]. The accuracy adjustment is done
at application-level via DNN approximation configuration
switching (see Sec. 4 for details). Note that both DVFS
and DNN configuration adjustments would impact runtime
latency. This figure highlights three configurations with
various levels of latency, power consumption, and accuracy
tradeoff that might or might not be acceptable given the
current performance constraints. Choosing the best three-
dimensional trade-off optimization point is a significant
challenge given the vast and complex DVFS and accuracy
configuration space.

Although all autonomous systems are required to be latency
predictable in nature, the constraints on power and accuracy
may vary based on the type of autonomous system (e.g.,
highly constrained power for drones and maximum accuracy
requirement for autonomous driving). To illustrate one such
variation, note Fig. 1(b), which shows a constraint on latency,
and a constraint on accuracy imposed in the configuration
space limiting the possible configurations considerably.
Challenges specific to DNN-driven AES. In addition to the
aforementioned optimization problem, DNNs are constructed
from layers, where each layer responds differently to DVFS
changes and has unique approximation characteristics (as
we shall showcase in Sec. 3.1). In order to meet a latency
target with optimized energy consumption and accuracy,
each layer requires a unique DVFS and approximation
configuration, whereas existing approaches such as Poet [23]
and JouleGuard [21] deal with DNNs as a black-box.
Moreover, system-level DVFS adjustments and application-
level accuracy adjustments happen at two separate stages.
Without smart coordination, the system might fall in a
negative feedback loop, as we shall demonstrate in Sec. 3.2.
This coordination needs to happen at layer boundaries,
making the problem at least an order of magnitude harder
than previous work.

Furthermore, existing techniques mostly focus on single-
tasking scenarios [5, 3, 20] whereas AES generally require
multiple instances of different DNNs. As we shall motivate
in Sec. 3.3 using a real-world example, these DNNs need
to communicate and build a cohort on a layer-by-layer basis
to avoid greedy and inefficient decision-making. Moreover,
system-level and application-level coordination in this multi-
DNN scenario is much harder than isolated processes
considered in previous work.

Finally, existing approaches [13, 5] optimize latency
performance on a best-effort basis (e.g., by using control
theory) that can overshoot a latency target (as demonstrated
in Sec. 3.2). A better solution should include proven real-time
runtime strategies such as LAG analysis [51].
Contribution. In this paper, we present NeuOS3, a compre-
hensive timing-predictable system solution for multi-DNN

3The latest version of NeuOS can be found at https://github.com/
Soroosh129/NeuOS.

workloads in autonomous embedded systems. NeuOS can
manage energy optimization and dynamic accuracy adjust-
ment for DNNs based on specific system constraints via smart
coordinated system- and application-level decision-making.

NeuOS is designed fundamentally based on the idea of
multi-DNN execution by introducing the concept of cohort,
a collective set of DNN instances that can communicate
through a shared channel. To track this cohort, we address how
latency, energy, and accuracy can be measured and propagated
efficiently in the multi-DNN cohort.

Besides the fundamental goal of providing latency pre-
dictability (i.e., meeting deadlines for processing each DNN
instance), NeuOS addresses the challenge of balancing energy
at system level and accuracy at application level for DNNs,
which has never been addressed in literature to the best of our
knowledge. Balancing three constraints at various execution
levels in the multi-DNN scenario requires smart coordina-
tion 1) between system level and application level decision
making, and 2) among multiple DNN instances.

Towards these coordination goals, we introduce two algo-
rithms in Sec. 4.2 that are executed at the layer completion
boundary of each DNN instance: one algorithm that can pre-
dict the best system-level DVFS configuration for each DNN
member of the cohort to meet deadline and minimize power
for that specific member in the upcoming layer, and one al-
gorithm that decides what application level approximation
configuration is required for others if any one of these system-
level DVFS decisions were chosen. These two algorithms
effectively propagate all courses of action for the next layer in
order to meet the deadline. Based on these two algorithms, we
propose an optimization problem in Sec. 4.3 that can decide
the best course of action depending on the system constraint,
and minimize system overhead. This method is effective be-
cause 1) it introduces an identical decision-making among
all DNN instances in the cohort and solves the coordination
problem between system-level and application-level decision
making, and 2) provides adaptability to three typical scenarios
imposing different constraints on energy and accuracy.
Implementation and Evaluation. We implement a system
prototype of NeuOS and extensively evaluate NeuOS using
popular image detection DNNs as a representative of
convolutional deep neural networks used in AES. The
evaluation is done under the following conditions:

• Extensible in terms of architecture. We fully imple-
ment NeuOS using a set of popular DNN models on
two different platforms: an NVIDIA Jetson TX2 SoC
(with architecture designed for low overhead embedded
systems), and an NVIDIA AGX Xavier SoC (with archi-
tecture designed for complex autonomous systems such
as self-driving cars).

• Multi-DNN scenarios. We ensure that our system can
trade-off and balance multiple DNNs in all conditions
by testing NeuOS under three cohort sizes: a small 1-
process, a medium 2-4 process, and a large 6-8 process.

372 2020 USENIX Annual Technical Conference USENIX Association

• Latency predictability. We extensively compare NeuOS
to six state-of-the-art solutions in literature, and find that
NeuOS rarely misses deadlines under all evaluated sce-
narios, and can improve runtime latency on average by
68% (between 8% and 96% depending on DNN com-
plexity) on TX2, by 40% on average (between 12% and
89%) on AGX, and by 54% overall.

• Versatility. NeuOS can be easily adapted to the follow-
ing three constraint scenarios:

– Balanced energy and accuracy. Without any
system constraints given, NeuOS is proved to be
energy efficient while sacrificing an affordable
degree of accuracy, improving energy consumption
on average by 68% on TX2, by 40% on average on
AGX, while incurring an accuracy loss of 21% on
average (between 19% and 42%).

– Min energy. When energy is constrained to be min-
imal, NeuOS is able to sacrifice accuracy a small
amount (at most 23%) but further improve energy
consumption by 11% over the general unrestricted
case, while meeting the latency requirement.

– Max accuracy. When accuracy is given as a
constraint, NeuOS is able to improve accuracy
by 10% on average compared to balanced case,
but also sacrifices energy by only a small amount,
increasing by 23% on average.

2 Background

DVFS space in autonomous systems. The trade-off between
latency and power consumption is usually achieved via ad-
justments to frequency and/or voltages of hardware compo-
nents. A software and hardware technique typical of modern
systems is DVFS. Through DVFS, system software such as
the operating system or hardware solutions can dynamically
adjust voltage and frequency. To understand this technique
better, consider Fig. 2(a), showing the components of a Jet-
son TX2, which contains a Parker SoC with a big.LITTLE
architecture with 2 NVIDIA Denver big cores and 4 ARM
Cortex A53 LITTLE cores. The Parker SoC also contains
a 256-core Pascal-architecture GPU. The TX2 module also
contains 8 GB of shared memory (the Jetson AGX Xavier
also used in Sec. 5 has a more advanced Xavier SoC with
8 NVIDIA “Carmel” cores, a 512 Volta-architecture GPU,
and 16GB of shared memory). Each component includes a
voltage/frequency (V/F) gate that can be adjusted via soft-
ware. The value for frequency and voltage for each component
forms a unique topple, called a DVFS configuration through-
out this paper.
DNN and its approximation techniques. Fig. 2(b) depicts a
simplified version of a Deep Neural Network (DNN). Neurons
are the basic building blocks of DNNs. Depending on the layer
neurons belong to, they perform various different operations.
A DNN may contain multiple layers of different types, such

Σ Σ Σ Σ

FC FC

SoftMax

(a) Jetson TX2 V/F Structure (b) An example DNN

Power

Source

VDD_IN

CPU GPU

8GB Memory

V/F Gate V/F Gate

V/F Gate

4x LITTLE

Cores

2x big

Cores

V/F Gate V/F Gate

(VDD_SYS_GPU)

Pre Regulator

(VDD_DDR)(VDD_SYS_CPU) Σ Σ

Figure 2: DVFS configuration space and DNN structure.

as the convolutional and the normalization layers, which are
connected via their inputs and outputs.

DNNs by nature are approximation functions [36]. DNNs
are trained on a specific training set. After training, accuracy
is measured by using a test data set, set aside from the
training set and measuring the accuracy (e.g., top-5 error rate–
comparing the top 5 guesses against the ground truth). The
accuracy of the overall DNN can be adjusted by manipulating
the layer parameters.

A rich set of DNN approximation techniques have been
proposed in the literature and adopted in the industry [17,
58, 24, 29, 43, 56, 7, 18]. Such techniques aim at reducing
the computation and storage overhead for executing DNN
workloads. An example technique to provide approximation
for convolutional layers is Lowrank [45], which performs a
lowrank decomposition of the convolution filters. In our im-
plementation, dynamic accuracy adjustment or “hot swapping”
layers will refer to applying the lowrank decomposition to the
upcoming layers before their execution. Note that applying
such approximation adjustments on the fly is possible because
the generated pair of layers have the exact combined input and
output dimensions. Moreover, this adjustment is only possible
for future layers at each layer boundary.

Measuring Accuracy. The approximation on the fly will
affect the final accuracy. Due to the dynamic nature of this
adjustment, the exact value of accuracy measurement using
traditional methodology is impractical. Most related work
thus incorporate an alternative scoring method [3], where the
system will deduce the accuracy score accordingly if certain
approximation techniques are to be applied to the next layer.
In our method, we assume a perfect score for the original
DNN, and switching to the lowrank approximation of any
layer will reduce the score by a set amount. For example,
running AlexNet in its entirety will result in a score of 100. If
we swap a convolutional layer with a lowrank version of that
layer, the overall accuracy will be affected by some amount
(e.g., 1 in our method), thus yielding a lower score (e.g., 99
under the scoring method). Therefore, the score is always
relative to the original DNN configuration and not related to
the absolute value of accuracy on a particular dataset. This
method of keeping relative accuracy is still invaluable to
maximizing accuracy in a dynamic runtime environment but
cannot be used to calculate the exact accuracy loss.

USENIX Association 2020 USENIX Annual Technical Conference 373

2
5
8

11
14
17
20
23

 0 2000 4000 6000 8000 10000

L
ay

er
 #

Best DVFS Conf. #

2
5
8

11
14
17
20
23

 0 20 40 60 80 100

L
ay

er
 #

Best Theoretical Approx. Conf. (%)

Figure 3: Calculated best system level DVFS configuration
and best application level theoretical approximation config-
uration for AlexNet on Jetson TX2 in order to meet a 12ms
deadline (0 means no approximation).

3 Motivation

In this section, we lay out several motivational case studies
to understand the challenges that exist for DNNs, and gain
insights on why existing approaches (or naively extended
ones) may fail under our problem context.

3.1 Balancing in two-dimensional Space

The trade-off to meet a specified latency target while maxi-
mizing accuracy is done in a 2-dimensional space by choosing
an approximation configuration for the application. Similarly,
the 2-dimensional trade-off between energy and latency is
done by changing an optimal DVFS configuration. Traditional
control-theory based solutions treat the entire application as
a black-box, and decide on what DVFS or approximation
configuration should be chosen every few iterations of that
specific application [21, 20]. However, treating DNNs as a
blackbox does not yield the most efficient results. Fig. 3 left
hand shows the best DVFS configuration for each layer of
AlexNet among all possible DVFS configurations for a Jetson
TX2 in terms of energy consumption. The y-axis is the layer
number for AlexNet, and the x-axis is the DVFS configuration
index, partially sorted based on frequency and activated core
counts. The dots show the configuration that has the absolute
minimum energy consumption. As is evident, each layer has
a different optimal DVFS configuration. More interestingly,
we observe a non-linearity where sometimes faster DVFS
configurations have lower energy consumption. This is due
to the massive parallelism of GPUs, where increasing the fre-
quency by 2x for example can yield a 10-fold improvement
in performance, which outweighs the momentary increase in
energy consumption. Fig. 3 right hand shows the best theo-
retical approximation configurations required for each layer
of AlexNet in order to meet a 12ms deadline4. As is evident
in the figure, each layer requires a different approximation
configuration for optimal results.

Thus, the DNN must somehow become transparent to the
system, conveying layer-by-layer information in order to
make the correct decisions. This can make the decision space
in the 2-dimensional space at least an order of magnitude
harder (e.g., AlexNet has 23 layers) since every layer must be
considered for each execution of the DNN application.

4Please see Sec. 4.2 for more details on how this is calculated.

-1

-0.5

 0

 0.5

 1

 3 6 9 12 15 18 21

N
o

rm
al

iz
ed

 V
al

u
e

Layer #

Energy Deficit Accuracy

(a)

Application level

System

too Slow

Switch to

Lower

Accuracy

Overshoot

: System

is too Fast

System level

System

too Fast

Switch to

Slower

DVFS

Overshoot

: System

is too Slow

(b)

Figure 4: Negative feedback loop between an application-
level solution and a system-level solution.

Observation 1: Layer-level trade-off makes the problem an
order of magnitude harder than ordinary blackbox techniques.

3.2 Balancing in three-dimensional Space

Balancing energy/latency and accuracy/latency in isolation
can be naive, and lead to unnecessary consumption of energy
or reduced accuracy. Fig. 4a shows a similar experiment
to Sec. 3.1, but both the system and application (Alexnet)
are employed at the same time without any coordination.
The goal of both solutions is to reach a 20ms deadline (by
using latency deficit, LAG, as a guide (Sec. 4.2)). In the
case of AlexNet, the system-level DVFS adjustment can be
enough to meet the desired deadline. In an ideal scenario,
only energy is adjusted slightly until AlexNet is not behind
schedule. However, as is evident in the figure, normalized
energy consumption and accuracy for each layer are both
decreased continuously and dramatically. This is due to an
unwanted negative loop, where a negative deficit (indicating
that the system is behind schedule) has resulted in the
application-level solution switching to a lower approximation
configuration. Because these configurations are discrete, as
we shall discuss in Sec. 4.2, the deficit will overshoot (at
around layer 10) and becomes positive (meaning the system is
ahead of schedule). The system-level solution would see this
deficit as a headroom to reduce energy consumption, and in
the case of Fig. 4a, has turned the positive deficit into a small
negative at around layer 18. This cycle (as depicted in Fig. 4b)
is repeated until the minimum approximation configuration
is reached. This result is extremely undesirable in accuracy-
sensitive applications such as autonomous driving (but can
be okay for energy sensitive applications such as remote
sensing). Thus, a feasible solution would be for the system
and application to communicate, and make decisions based on
given constraints for an application based on given constraints.
This communication should be done at the granularity of
layers, which makes the problem extra hard.
Observation 2: Trade-off in a 3-dimensional latency, energy,
and accuracy optimization space is a significant challenge
due to both system constraints as well as lacking harmony
between application-level and system-level solutions.

3.3 Balancing for Multi-DNN Scenarios

To the best of our knowledge, no existing approach deals
with multiple DNN instances in a coordinated manner.

374 2020 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

1 2 3 4 5 6 7 8
 300
 400
 500
 600
 700
 800
 900
 1000

L
at

en
cy

 (
s)

E
n
er

g
y
 (

m
J)

Instance ID

Latency Energy

Figure 5: Energy consumption and execution time of running
8 instances of Resnet-50 on a Jetson TX2 under PredJoule.

Straightforwardly extending single-tasking latency/energy
trade-off approaches, such as PredJoule [5], to multi-tasking
scenarios would only result in decision-making that is local
and greedy, based on locally measured variables. To showcase
why coordination in this additional dimension is a key
issue, examine Fig. 5, which shows the latency and energy
consumption for running 8 DNN instances together averaged
over 20 iterations under PredJoule on a Jetson TX2. We
chose PredJoule because in our experiments, it outperformed
all other existing solutions on exploring the 2D tradeoff
between latency and energy for DNNs. The left (right) y-axis
in Fig. 5 depicts the latency (energy consumption) in seconds
(miliJoules) for each instance. As is evident in the figure, the
DVFS management is greedy, resulting in instances 1 and
2 having relatively good latency and energy consumption.
This greediness has pushed the rest of the DNN instances
into unacceptable latency range (which is above 150ms for
ResNet-50) because the chosen DVFS configuration at each
layer boundary has been mostly beneficial only to the current
layers of DNN instance 1 and 2. Moreover, the distribution
of timing and energy consumption is not even across all
instances because of the same reason. This disparity is the
result of an uncoordinated system solution that chooses DVFS
configurations greedily based on local variables.
Observation 3: In addition to the 2D and 3D complexities
of solving the latency/accuracy/energy trade-off, a complete
system solution must also accommodate for Multi-DNN
scenarios, which are inherently more complicated to model
and predict than single-DNN scenarios. The case studies
also imply that naive extensions on existing single-DNN
2D solutions may fail in multi-DNN cases because they
make greedy decisions based on local variables without
coordination towards being globally optimal.

4 System Design

4.1 NeuOS Overview

To optimize the three-dimensional tradeoff space at the layer
granularity, two basic research questions need to be answered
first: 1) how to define and track the values of the three
performance constraints in the system, and 2) what target
should be imposed for optimizing each constraint.

For the first research question, we define a value of LAG
(defined in Sec. 4.2, as a measurement of how far behind the

DNN is compared to an ideal schedule that meets the relative
deadline D), which tracks the progress of DNN execution
at layer boundaries, P for energy consumption (in mJ) for
each layer, and a variable X to reflect accuracy. We choose
to track LAG at runtime instead of using an end-to-end
optimization because it is more practical due to two reasons:
1) in a multi-DNN scenario, predicting the overlap between
different DNN instances (and thus coordinating an optimal
solution) cannot be done offline without making unrealistic
assumptions, such as synchronized release times, and, 2) LAG
is especially useful in a real system since it can account for
outside interference, such as interference by other processes
in the system, whereas an end-to-end optimization framework
could miss the latency target. Moreover, as we shall discuss in
Sec. 4.2, the value of P can be inferred by LAG in our design
as these two variables fundamentally depend on the runtime
DVFS configuration. Thus, the essential variables to track
the status of a DNN execution can be simplified to {LAG,X}.
Since we are dealing with a multi-DNN scenario, each DNN
instance will have its own set of these variables. To know the
collective status of the system, each DNN instance will put
its variables in a shared queue.

In order to answer the second question regarding what
optimization targets should be imposed on the system, we
focus on the following three typical scenarios (expanded on
in Sec. 4.3) that entail different performance constraints:

• Min Energy (MP) is when NeuOS is deployed on
an embedded system with a critically small energy
envelope. Thus, the system should minimize energy
without sacrificing too much accuracy. This scenario
is motivated by applications seen in extremely power-
limited systems such as drones, robotics, and a massive
set of internet-of-thing devices.

• Max Accuracy (MA) is when NeuOS is deployed on
a system that has limited energy but accuracy is of
utmost importance. Thus, the system should try to
maximize accuracy without losing too much energy. This
scenario is motivated by CPS-related applications such
as autonomous driving.

• Balanced Energy and Accuracy (S) describes a more
general, flexible scenario when the system is limited by
both energy consumption and accuracy requirements,
but no priority is given to either. Thus, the system should
try to balance energy consumption and accuracy.

With the given scenarios and the values of {LAG,X} at
hand, we can answer the two key research questions presented
in our motivation: 1) how to coordinate in a multi-DNN
scenario such that the overall system is balanced and can meet
the performance constraints, and, 2) how to efficiently tradeoff
between latency, energy, and accuracy given the complexity of
the problem space and how to prevent the negative feedback
loop discussed in Sec. 3.2?

Design overview. Fig. 6 shows the overall design of NeuOS

USENIX Association 2020 USENIX Annual Technical Conference 375

L1 L2 L3

L1 L2 L3
D

1
D

2

{DVFS List (Δ)}

{X1} {Xn}

…

{D
i
,LAG

i
}

Alg. 2Alg. 2

Alg. 1

MP/MA/S

Queue

L1 L2 L3D
n

{LAG1,X1}

{LAG2,X2}

{LAGn,Xn}

Figure 6: Design Overview

around {LAG,X}. The left side depicts the shared queue
among multiple DNN instances. In the middle, a simple
example of n concurrently running DNN instances each with
three layers is shown. NeuOS makes runtime decisions on
DVFS and DNN approximation configuration adjustments at
layer boundaries, i.e., whenever a layer of a DNN instance
completes. This is beneficial not only because applying
approximation on-the-fly is possible only at layer boundaries,
but in terms of overhead as well (as proved by our evaluation).

As illustrated in the figure, at the boundary between layers
L2 and L3 of the first DNN instance, NeuOS is going through
the process of decision-making which contains several steps.
The first step is Alg.1, which senses the last known value
of LAG for each DNN instance. Alg. 1 decides what DVFS
configuration (at system level) is best for each instance in
order to meet their deadlines D, outputting a list of potential
DVFS configurations (∆), where each member of the list
corresponds to a DNN instance. In the next step, the list
of potential DVFS configurations are fed into Alg.2, which
predicts what approximation {Xi} (at application level) would
be required for other DNN instances to meet the deadline if
the DVFS configuration for any one of the DNN instances
is applied. Thus, Alg. 1 and Alg. 2 in tandem discover all
possible courses of action the system can take to meet the
deadline. However, at this point, no decision has been made
on what DVFS configuration or accuracy configuration should
be chosen for the system, because that depends on the given
system constraint. This problem is inherently an optimization
problem of finding the best possible choice in the propagated
configuration space. We present this optimization problem
formally in Sec. 4.3, where depending on broad scenarios, a
particular setting is chosen for the next period of execution.
In the last step of NeuOS, the system chooses one of these
possibilities based on the scenario involved.

4.2 Coordinated System- and Application-level

Adjustments

In this section, we expand on how runtime LAG is measured,
how it relates to energy consumption, how accuracy X
is calculated, and how the two developed algorithms take
advantage of these two measurements to discover all possible
choices the system can make efficiently in order to reduce the
LAG to zero and meet the deadline.

LAG. We quantify the relationship between the partial
execution time at time t of DNN instance i (ei) and its relative

deadline Di as a form of LAG [51], denoted by LAGi. LAGi

is a local variable (that can be updated at layer boundaries)
for each DNN instance that keeps track of how far ahead or
how far behind the DNN instance is compared to the deadline
at time t. LAGi is calculated as:

LAGi(t,Li(t)) = ∑
l∈Li(t)

(dl− el), (1)

in which Li(t) is the list of the layers of instance i that have
completed by time t. For layer l ∈ Li(t), dl and el depict the
sub-deadline for layer l and the recorded execution time for
layer l, respectively. NeuOS keeps track of el by measuring
the elapsed time between each layer. Moreover, we use the
proportional deadline method [38] to devise sub-deadlines
for each layer based on Di, the relative (end-to-end) deadline
of DNN instance i, in which the subdeadline dl for layer l is
calculated as:

dl = (el/ ∑
x∈Li

(ex)) ·Di, (2)

where ∑x∈Li
(ex) denotes the execution time of DNN i. The

proportional nature of sub-deadlines means that they only
need to be calculated once for the lifetime of a given DNN
instance on a platform.

Each DNN instance i would broadcast LAGi among all
instances via the shared queue. Thus, LAGi would reflect the
last known status of DNN instance i up to the last executed
layer. We call the collection of LAG from all instances the
LAG cohort, and we denote it by Φ. At completion of a DNN
instance, a special message is sent to the cohort so that every
DNN instance in the system is aware of their exit.

Based on the LAG cohort, the DNN instances can make
decisions on accuracy and DVFS. A cohort will be perfect if
every LAG within it is 0, or ∀LAGi ∈Φ,LAGi = 0. This means
that all layers have exactly finished by their sub-deadline so
far. Thus, the system has reasons to believe that the DNN
instances will exactly finish by the deadline and do not require
a faster DVFS or an approximation configuration, saving
energy and accuracy in the process.

Since LAG indicates how far behind (LAG < 0) or ahead
(LAG > 0) each DNN is, the DVFS and the approximation
configuration need to be adjusted to run faster or slower
accordingly. However, energy consumption and accuracy
constraints must also be considered. We discuss each next.
System-level DVFS adjustment. At system-level, the ques-
tion is which DVFS configuration is the best given the state
of Φ to minimize energy consumption while reducing LAG

to zero? The answer would vary between different DNN in-
stances in the cohort, as they exhibit different LAGs. More-
over, different layers react differently to DVFS adjustments.

Alg. 1 is responsible for finding the best DVFS configu-
ration for each DNN instance in the cohort. Alg. 1 takes as
input the LAG cohort Φ and a SpeedUp/PowerUp table for
the current layer of each DNN instance i. The structure of

376 2020 USENIX Annual Technical Conference USENIX Association

Algorithm 1 ∆ Calculator.

Input: Φ ⊲ Progress Cohort
Input: SpeedUp/PowerUp[] ⊲ The SpeedUp/PowerUp table of DNNs.
Output: ∆

1: function RETURN∆(Φ)
2: for LAGi in Φ do

3: SPi
← Di+LAGi

Di
.

4: δi ← LookUp
(

SpeedUp/PowerUp[SPi
]
)

Table 1: SpeedUp/PowerUp and SpeedUp/Accuracy tables.

(a) SpeedUp/PowerUp for a layer of DNN instance i.

DVFS Configuration(δ) SpeedUp PowerUp

1 1x 1x
2 2.1x 2x
3 2.8x 1.5x

(b) SpeedUp/Accuracy.

X SpeedUp

81% 1x
71% 1.8x
59% 2.5x

the SpeedUp/PowerUp table is depicted in Table 1a. The first
column of Table 1a is the index for all the possible DVFS
configurations in the system. The second column indicates
how fast each DVFS configuration is in the worst case sce-
nario compared to the baseline DVFS configuration (baseline
is usually chosen to be the slowest configuration). The third
column indicates how much power that DVFS configuration
will consume relative to baseline.

Storing relative speedup and powerup values (instead of
absolute measurements) is useful for looking up the table. In
Alg. 1, given a LAGi (line 2) and a relative deadline Di for
DNN instance i, the required speedup (denoted as Si) could
be directly calculated as (line 3):

SP =
Di +LAGi

Di

, (3)

in which SP is the speedup (or slowdown) value calculated
as the relationship between the current projected execution
time (Di + LAGi) and the ideal execution time (Di). Since
LAG can be negative or positive, the value of SP can
indicate a slowdown or speedup, where the slowdown is a
way to conserve energy, which is the goal of NeuOS. The
LookUp procedure (line 4) would then find the closest DVFS
configuration that matches the speedup (or slowdown) in
relation to the current configuration.

For our Alg. 1 to operate, we prepare a structure such as
Table 1a for all DNN instances in a hashed format5. The
LookUp procedure would then directly find a bucket by us-
ing the SpeedUp as an index. The output of Alg. 1 is a set
∆ = {δ1,δ2, ...,δn}, in which δi is the ideal DVFS config-
uration for DNN instance i in order to meet the deadline.
Imagine we ultimately decide that δc ∈ ∆ is the best DVFS
configuration for the next scheduling period. A very interest-
ing question would be that, what is the effect of applying δc

5Our hashing is custom, and hashes the relationship between SpeedUp
and PowerUp. This method relies on partially sorting the DVFS configuration
space. You can find the latest hashing code at https://git.io/Jfogq

Algorithm 2 Xi Calculator.

Input: ∆ ⊲ Potential DVFS list.
Input: SpeedUp/Accuracy[] ⊲ The SpeedUp/Accuracy table of DNNs.
Input: SpeedUp/PowerUp[] ⊲ The SpeedUp/PowerUp table of DNNs.
Output: X [][] ⊲ The accuracy list for each DNN instance for each δ

1: function RETURNXi(∆)
2: for δc in ∆ do

3: for i = 0 to i < |∆| do

4: SAi
←

SPi
(δc)·(Di+LAGi)

Di

5: X [c][i]← LookUp
(

SpeedUp/Accuracy[SAi
]
)

on other DNN instances i 6= c? The speedup of δc for other
DNN instances can be calculated by using δc as the lookup
key in their corresponding SpeedUp/PowerUp table. But what
if this speedup does not reduce LAGi to zero? To solve this
problem, we next present the algorithm that calculates the
application-level approximation required to reduce LAGi to
zero given a DVFS configuration δc ∈ ∆.

Application-level accuracy adjustment. Alg. 2 portrays the
procedures to calculate the required approximation for the
upcoming layers of all DNN instances based on a DVFS
configuration. If the instance i is behind the ideal schedule by
LAGi, with a relative deadline of Di, and if the chosen DVFS
configuration is δc, the remaining required speedup can be
calculated as follows (line 4):

SAi
(δc) =

SPi
(δc) · (Di +LAGi)

Di

, (4)

in which SAi
(δc) is the required speedup (or slowdown) via

approximation for DNN instance i when DVFS configuration
δc is chosen, and SPi

(δc) · (Di +LAGi) is the new projected
execution time of DNN instance i. The value of SAc , the
speedup from accuracy for the chosen DVFS configuration,
should always be zero or less than zero since by definition,
δc is the ideal DVFS configuration for c and requires no
additional speedup from approximation.

The value of SAi
is then used as a lookup key to a new table,

called the SpeedUp/Accuracy table, depicted in Table 1b.
Table 1b stores the relative worst case execution times for
each layer’s approximation configuration. We index each
row by X, which is the value of the total accuracy of that
configuration6. Note that the exact value of X has no effect
in the algorithm and what matters is the relative order in
Table 1b (i.e., the lower we go down the table, the lower the
relative accuracy). The output of Alg.2 is the row index in the
SpeedUp/Accuracy table sufficient to meet the deadline for
all DNN instances except c. We denote this index for layer k
of DVFS configuration i as Xk

i . This value is then broadcasted
in the accuracy cohort and indicates the application-level

6Each row could be indexed by any measure. However, indexing with
X has benefits in overhead reduction for the LookUp procedure in Alg. 2
because it can be more easily hashed.

USENIX Association 2020 USENIX Annual Technical Conference 377

configuration chosen for the next immediate layer of the
corresponding DNN instance.

The remaining question is that which δc should be chosen.
We answer this question next.

4.3 Constraints and Coordination

The combination of Alg. 1 and Alg. 2 produces a list of poten-
tial DVFS configurations ∆, and for each DVFS configuration
in ∆, a corresponding list of required approximations for all
DNN instances in the cohort if that DVFS configuration were
to be applied. Such a scenario can be visualized as a decision
tree. The remaining question of our design would be which
path to go down to in order to have a perfect LAG cohort. As
discussed in Sec. 3.2, the requirements on energy and accu-
racy can vary depending on specific scenarios. We present
the following three approaches based on the three scenarios
defined in Sec. 4.1, i.e., minimum energy (MP), maximum
accuracy (MA), and balanced energy and accuracy (S).

Min Energy. This approach aims at minimizing power
usage at the cost of accuracy. To choose the best DVFS
configuration in the DVFS candidate set ∆, we should
look at the corresponding SPi

(δc),δc ∈ ∆ values in the
SpeedUp/PowerUp table and choose the δc that has the
smallest PowerUp value for that corresponding DNN instance,
namely:

δc = {δi ∈ ∆ | PowerU pi(δi)≤ PowerU pi(δx),∀δx ∈ ∆},
(5)

in which PowerU pi(δi) is extracted from the
SpeedUp/PowerUp table of DNN instance i. Note that in
our experience, the values of PowerUp can be non-linear in
relation to SpeedUp, and hence, a comprehensive search as
noted above is required. Then, using Alg. 2, the accuracy
cohort can be calculated and broadcasted based on the pro-
jected new execution times. Even though this approach has
the best power consumption, it will not have the best accuracy
since many processes will most likely not meet the deadline
without significant loss of accuracy, since the speedup from
DVFS alone will likely not make up for the vast majority of
the progress values in the cohort.

Max Accuracy. In this method, our system chooses the DVFS
configuration δc in such a way that:

δc = {δi ∈ ∆ |∑(SA j(δi))≤ ∀∑(SA j(δx ∈ ∆)),

∀ DNN instance j in cohort}, (6)

in which ∑SA j(δi) is the sum of all the required speedups
from approximation (SAi) for configuration δi, and ≤
∀∑(SA j(δx ∈ ∆)) is indicating that the sum of approximation-
induced speedup for the chosen δc should be less than or
equal any other sum of approximation values for other δx ∈ ∆

(this indirectly ensures minimized accuracy loss).

Statistical Approach for Balanced Energy and Accuracy.

To achieve balanced energy and accuracy, we propose a
statistical approach that checks the state of ∆ and the projected
accuracy cohort in statistical terms to make a decision. The
calculation of SPi

and SAi
(which depends on SPi

) resemble the
form of Bivariate Regression Analysis (BRA) [57], in which:

SAi
= SPi

·
Di +LAGi

Di

+0, (7)

in which, Di+LAGi
Di

is called the influence of SPi
on the required

approximation. To measure this influence, we first calculate

I =
i=n−1

∑
i=0

Di +LAGi

Di

, (8)

in which I is the collective influence of LAG on approxi-
mation. If the value of I is high, it means that the accuracy
can be more adversely affected by a low value of DVFS-
induced speedup(SPi

). Similarly, a low value of I means that
the accuracy can remain minimal even with a low value for
DVFS-induced speedup. We simplify our decision making
by dividing the LAG cohort Φ into three groups based on
how big or small the value of LAG is. The boundary for the
intervals is calculated using:

Boundary =
max{Φ}−min{Φ}

3
. (9)

The three groups G1[0...Boundary], G2[Boundary...2 ·Boundary],
and G3[2 ·Boundary...3 ·Boundary] are then formed, and the
ultimate DVFS configuration is chosen as:

δc =

median(G1) i f (I < t)

median(G2) i f (t < I < 1+ t)

median(G3) i f (I > 1+ t)

, (10)

in which, t is a threshold for I, set to the standard deviation σ

of the set I. However, t can be chosen by the system designer
to indicate a requirement on power consumption and accuracy.
A small value for t will push the system towards faster DVFS
configurations and vice versa.
Discussion on choosing modes and safety. We would like
to conclude our design by a discussion on which modes to
choose and the safety concern it might entail. Our stand
from a system perspective is to design a flexible system
architecture that can adapt to various external needs. Where
absolute mission-critical applications are concerned, we
offer Max Accuracy. Nonetheless, depending on the safety
requirement, our Balanced approach might be good enough
with the proper threshold t even for applications such as self-
driving vehicles. However, choosing a mode dynamically
at runtime or statically for a particular system offline has
more to do with the certification standards (which are in their
preliminary stages for self-driving vehicles) as well as the
requirement on maximum reaction time and accuracy. Thus,
we believe the decision should be relegated to an external
policy controller [54, 31, 6, 34, 52]

378 2020 USENIX Annual Technical Conference USENIX Association

NeuOS PredJoule Poet Race2Idle Max-N Max-Q

 100
 200
 300
 400
 500

1 Process

T
X

2

 100
 200
 300
 400
 500

1 Process

T
X

2

4 Process

 100
 200
 300
 400
 500

1 Process

T
X

2

4 Process 8 Process

 30
 60
 90
 120
 150

AlexNet GoogleNet ResNet-50 VGGNet

1 Process

T
X

2

4 Process 8 Process

 30
 60
 90
 120
 150

AlexNet

GoogleNet

ResNet-50

VGGNet

M
ixed

1 Process

T
X

2

4 Process 8 Process

A
G

X

 30
 60
 90
 120
 150

AlexNet

GoogleNet

ResNet-50

VGGNet

M
ixed

1 Process

T
X

2

4 Process 8 Process

A
G

X

Figure 7: Energy under various methods (in mJ) for 1, 4, and 8 instances of 4 DNN models.

NeuOS PredJoule Poet Race2Idle Max-N Max-Q

30

60

90

120

1 Process

T
X

2

30

60

90

120

1 Process

T
X

2

4 Process

30

60

90

120

1 Process

T
X

2

4 Process 8 Process

20

40

60

80

AlexNet GoogleNet ResNet-50 VGGNet

1 Process

T
X

2

4 Process 8 Process

20

40

60

80

AlexNet

GoogleNet

ResNet-50

VGGNet

M
ixed

1 Process

T
X

2

4 Process 8 Process

A
G

X

20

40

60

80

AlexNet

GoogleNet

ResNet-50

VGGNet

M
ixed

1 Process

T
X

2

4 Process 8 Process

A
G

X

Figure 8: Latency under various methods (in ms) for 1, 4, and 8 instances of 4 DNN models.

5 Evaluation

In this section, we test our full implementation on top of
Caffe [25] with an extensive set of evaluations.

5.1 Experimental Setup

In this section we lay out our experimental setup, which
includes two embedded platforms and four popular DNN
models. We compare NeuOS to 6 existing approaches.

Testbeds. We have chosen two different NVIDIA platforms
imposing different architectural features (since deployed
autonomous systems solutions, particularly for autonomous
driving and robotics, seem to gravitate towards NVIDIA
hardware as of writing this paper [26, 30]) to showcase
the cross-platform nature of our design when it comes to
hardware. We use NVIDIA Jetson TX2, with 6 big.LITTLE
ARM-based cores and a 256-core Pascal based GPU with
11759 unique DVFS configurations, and the NVIDIA Jetson
AGX Xavier, the latest powerful platform for robotics and
autonomous vehicles with an 8-core NVIDIA Carmel CPU
and a 512-core Volta-based GPU with 51967 unique DVFS
configurations.

DNN models. Having a diversified portfolio of DNN models
can showcase that NeuOS is future proof in the fast-moving
field of neural networks. To that end, we use AlexNet [32],
ResNet [19], GoogleNet [2], and VGGNet [49] in our

experiments. Our method dynamically applies a lowrank
version of a convolutional layer whenever approximation is
necessary by keeping both version of the layer in memory for
fast switching. The deadline for each DNN instance is based
on their worst-case execution time (WCET) on each platform,
and is set to 10ms, 30ms, 150ms, and 40ms respectively for
Jetson TX2 and 5ms, 10ms, 25ms, 30ms respectively for AGX
Xavier. Note that ResNet is much slower on Jetson TX2 due
to the older JetPack software.

Small Cohort, Medium Cohort, Large Cohort sizes. We
test NeuOS under three different cohort size classes to test
for adaptability and balance: 1 process for small, 2 to 4
processes for medium, and 6 to 8 processes for large. Each
of these cohort sizes have their own unique challenges. We
measure average timing, energy consumption, and accuracy
for these scenarios and provide a measure of balancing where
applicable. For medium and large cohorts, we include a mixed
scenario, where different DNN models are executed, which
represents systems that use different DNNs (for example for
voice and image recognition). For the medium cohort, one
instance of each DNN model and for the large cohort, two
instances of each model are initiated.

Adaptability to different system scenarios. As discussed in
Sec. 4.1, we consider three different scenarios with different
limits on latency, energy and accuracy: minimum energy,
maximum accuracy, and balanced energy and accuracy.

Compared Solutions. We implement and compare six state-

USENIX Association 2020 USENIX Annual Technical Conference 379

4 Process 8 Process 4P ApNet 8P ApNet

 0.7
 0.8
 0.9

 1

1 2 3 4 5 6

S
co

re

Iteration

AlexNet

 0.7
 0.8
 0.9

 1

1 2 3 4 5 6
Iteration

GoogleNet

 0.7
 0.8
 0.9

 1

1 2 3 4 5 6
Iteration

ResNet

 0.7
 0.8
 0.9

 1

1 2 3 4 5 6
Iteration

VGGNet

Figure 9: Average accuracy (y-axis as a fraction of 1) of the cohort over iteration of execution for 4 different DNN models with 4
and 8 instances compared to ApNet (x-axis is the iteration number).

of-the art solutions from the literature, including DNN-
specific and DNN-agnostic ones, software-based DVFS and
hardware-based DVFS, and application-level and system-level
solutions. We present a short detail for each as follows.

PredJoule [5] is a system-level solution tailored towards
DNN by employing a layer-based DVFS adjustment solution
for optimization latency and energy. Poet [23] is a system-
level control-theory based software solution that balances
energy and timing in a best-effort manner via adjusting DVFS.
We choose to compare against Poet instead of its extended
approaches including JouleGuard [21] and CoAdapt [20],
as they employ essentially the same set of control theory-
based techniques as Poet. ApNet [3] is an application-level
solution based on DNNs that can theoretically provide a per-
layer approximation requirement offline to meet deadlines.
Race2Idle [28] is the classic “run it as fast as you can”
philosophy, which is always interesting to compare to. Max-

N [10, 11] is a reactive hardware DVFS that maximizes
frequency and sacrifices energy in the name of speed, in
NVIDIA embedded hardware. Max-Q [10] is a hardware
DVFS on Jetson TX2 that dynamically adjusts DVFS on
the fly to conserve energy. However, this feature has been
removed from the Xavier platform [11], and is replaced by
low level power caps, such as 10W, 15W, and 30W. We use
the 15w cap instead of Max-Q on Xavier.

5.2 Overall Effectiveness
In this section, we measure the efficacy of NeuOS on the
two evaluated platforms under the balanced scenario. Since
our design is concerned with timing predictability, energy
consumption, and DNN accuracy, we measure all three
constraints and compare against state-of-the-art literature
under each platform and each scenario.

5.2.1 Small Cohort

Energy. The left column of Fig. 7 depicts our measurements
in terms of average energy consumption compared to a GPU-
enabled Poet, Max-Q, Max-N, PredJoule, and Race2Idle using
AlexNet, GoogleNet, ResNet-50 and VGGNet as the base
DNN model and using lowrank as the approximation method.
As is evident in the figure, NeuOS is able to save energy
considerably compared to all other methods on Jetson TX2
on all DNN models, with improvements of 68% on average for
Jetson TX2 and 46% on average for AGX Xavier. This saving
is due to the fact that in some cases accuracy is minimally
traded off for the benefit of energy and timing.

On the Jetson AGX Xavier, NeuOS has better energy
consumption compared to all other approaches on every DNN
model except compared to PredJoule for VGGNet. As we
shall see for timing, PredJoule misses the deadline of 30 for
VGGNet, and NeuOS has decided to sacrifice energy to meet
timing.
Latency. Fig. 8 shows the average execution time for NeuOS
compared to the 5 methods and using 4 DNN models. NeuOS
outperforms all other approaches, improving on average
execution time by 68% on Jetson TX2 and by 40% on AGX
Xavier. It is also interesting to note that AGX Xavier is much
faster than Jetson TX2, by 70% on average.
Tail Latency. Through response time measurements, we
find that NeuOS rarely misses the deadline (3.25% of the
time). Moreover, the variance is low with the 99th percentile
execution time for AlexNet, GoogleNet, ResNet-50, and
VGGNet as 9.2 ms, 48 ms, 130.3 ms and 39.1 ms for TX2 and
5.0 ms, 12.0 ms, 26.1 ms and 36.2 ms for AGX respectively.
Accuracy. We also measure the accuracy loss of NeuOS
compared to ground truth and compared to ApNet (Fig. 9
omits small cohort for clarity). ApNet is the only DNN-
specific application level solution we are aware of. NeuOS
has an approximation score of 0.94% on average (out of 1),
which is better than ApNet by 21%.

5.2.2 Medium and Large Cohorts

In order to save space, we only compare PredJoule for
the 4-process medium and 8-process large cohort sizes.
In our testings, PredJoule already vastly outperforms other
methodologies, and thus is a good comparison to NeuOS.
Energy. As is evident in the second and third columns of
Fig. 7, NeuOS can almost always outperform PredJoule
in terms of energy consumption on Jetson TX2 improving
70% on average. However, rather interestingly, NeuOS
performs worse in terms of energy compared to PredJoule for
GoogleNet, ResNet, and VGGNet on AGX Xavier. This is
due to the fact that PredJoule again misses the deadlines on
AGX Xavier, and NeuOS has sacrificed a negligible amount
of energy (1.5% on average) in order to meet the deadline.
Latency. NeuOS always outperforms state-of the art, improv-
ing by 53% on average for Jetson TX2, and by 32% on average
for AGX. This is due to the fact that NeuOS is able to leverage
a small amount of accuracy and energy loss (in the case of
AGX Xavier) for better timing and energy characteristics.
Tail Latency. We find that deadline miss ratio is about the

380 2020 USENIX Annual Technical Conference USENIX Association

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9

1 Process

T
im

e
(m

s)

Iteration

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9

1 Process

E
n
er

g
y
 (

m
J)

Iteration

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9

2 Process

T
im

e
(m

s)

Iteration

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9

2 Process

E
n
er

g
y
 (

m
J)

Iteration

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9

3 Process

T
im

e
(m

s)

Iteration

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8 9

3 Process

E
n
er

g
y
 (

m
J)

Iteration

T.S PredJoule MA MP

Figure 10: Performance of NeuOS under three scenarios
compared to PredJoule on Jetson TX2.

same as the small cohort. Moreover, the variance is similarly
low with the 99th percentile execution time for AlexNet,
GoogleNet, ResNet-50, and VGGNet as 10.4 ms, 39.2 ms,
101.7 ms and 69 ms for TX2 and 11 ms, 12.5, 26.3 and 35.9
ms for AGX respectively for the medium cohort and 13.6 ms,
40.8 ms, 190 ms and 72 ms for TX2 and 10.7 ms , 54 ms , 62
ms and 36.1 ms for AGX respectively for the large cohort.

Accuracy. Fig. 9 shows the average accuracy of the cohort
over 6 iterations on AGX Xavier. As is evident in the figure,
NeuOS generally improves upon accuracy as the system
progresses because the optimization in Sec. 4.3 is able to
find better DVFS configurations. When compared to the
efficient approximation-aware solution APnet, NeuOS is able
to achieve noticeably better accuracy in all scenarios.

Balance. A very important measure discussed in Sec. 3.3 is
how balanced the system solution is when faced with multiple
processes. To measure how balanced NeuOS is compared
to PredJoule in the 4-process and 8-process scenarios, we
include min-max bars in Fig. 7 and Fig. 8 to showcase the
discrepancy between minimum and maximum timing/energy.
As is evident in the figure, the discrepancy is negligible
compared to the total energy consumption and execution time
(up to 79 mJ and 4 ms). Thus, NeuOS maintains balance
in the cohort. This is due to the coordinated cohorts and a
uniform non-greedy decision making approach introduced in
our design.

5.3 Detailed Examination on Tradeoff

In this section, we focus on the fact that system designers
might require certain constraints that limits the ability of
NeuOS in a certain dimension. To this end, we test our
platform under three different scenarios: Maximum Accuracy
(MA), Minimum Power (MP), and Balanced (T.S).

(a) The entire configuration space
for all DVFS and accuracy combina-
tions for Jetson TX2.

(b) Chosen configurations in the
triangle space.

5.3.1 Energy and Latency.

We compare against PredJoule and measure average timing
for the cohort in ms and average energy in mJ in Fig. 10 for
1-process (small), 2-process (medium), and 3-process (large)
scenarios on AlexNet over 9 iterations on the Jetson TX2.
PredJoule is shown as a black line. The deadline in this
scenario is set to 25 to show the interesting characteristics of
each method.
Balanced. As is evident in the figure, our statistical balanced
approach outperforms PredJoule over all iterations. Notably
in the case of medium and large cohorts, PredJoule has
a particularly bad start in terms of timing and has higher
fluctuation due to the greedy nature of DVFS selection.
Min Energy. Interestingly, MP performs very bad (still meets
the deadline) for the small cohort both in terms of timing and
energy consumption. This is due to the algorithms discussed
in Sec. 4.3. The system has switched to a very slow DVFS
configuration to save energy. However, because of the non-
linearity inherent in very slow DVFS configurations for
GPUs [5], this has resulted in a very bad energy consumption
as well. However, the coordination starts to pay off for
medium and large cohorts. This is because a coordinated
multi-process cohort needs faster DVFS configurations and
thus, the circumstances push MP out of the slow and power
inefficient DVFS configuration subset. The greediness of
PredJoule is inherent for medium and large cohorts in the
form of very large fluctuations throughout the iterations.
Max Accuracy. MA should improve accuracy while sacri-
ficing energy and timing. We shall discuss the accuracy de-
cisions shortly. However, the timing for MA is worse than
balanced energy by a negligible amount. The same is true
for energy consumption (23% on average). This highlights a
big design decision of the balanced scenario overall. Even for
the balanced general approach, sacrificing accuracy is done
very conservatively as was discussed earlier. Thus, the slight
push toward perfect accuracy does not introduce very large
overheads. However, as was discussed earlier guaranteeing
a tight deadline (such as 10ms for AlexNet) requires some
approximation if energy consumption is a consideration.

5.3.2 Energy-Accuracy Tradeoff.

For accuracy and to show where the variations of NeuOS
jump in terms of system and application configurations, we
bring back the triangle of Fig. 1, but with real DVFS and

USENIX Association 2020 USENIX Annual Technical Conference 381

Table 2: Average execution time overhead of NeuOS
compared to other approaches on AlexNet (ms).

1 Process 4 Process 8 Process

NeuOS 0.145 0.571 0.738
PredJoule 0.772 0.929 1.597
ApNet 0 3.27 5.85
Poet 151.03 604.12 1208.27

accuracy configurations with the selected configurations of
MP, MA, and T.S highlighted in Fig. 11b. As is evident in
the triangle, the deadline limits the possible configurations to
the bottom left corner. However, within that limitation, MP

(in red) has chosen configurations that are lower on energy
consumption toward the upper right. On the other hand MA (in
green) has chosen configurations that are not as good in terms
of energy consumption, but are better in terms of accuracy
toward bottom left. Finally, T.S, colored black, is similar to
MA because of the high emphasis on accuracy in our design.

5.4 Overhead

Execution time: Table 2 shows the overhead of NeuOS
compared to Poet, PredJoule, and ApNet using AlexNet as
the baseline model on Jetson TX2 (times are in milliseconds).
As is evident in Table 2, the overhead for NeuOS is
negligible, especially compared to Poet and the overhead is
also negligible compared to the overall execution time of
AlexNet itself. The reason Poet is so slow is because it has
to go through all DVFS configurations in a quadratic way
(O(n2), n is the number of DVFS configurations). Even O(n)
would be unacceptable on embedded systems with more than
10000 unique DVFS configurations. This proves that applying
our complexity reduction techniques (via hashing) is a must
for a practical system solution. Moreover, NeuOS is more
efficient than PredJoule and ApNet, especially in 4 Process
and 8 Process scenarios.
Memory: As discussed in Sec. 5.1, our implementation
keeps both the original and the lowrank approximation
of the model in GPU memory for fast switching at layer
boundaries. Moreover, NeuOS also holds the per-layer hash
tables containing approximation and DVFS configuration
information as described in Sec. 4. Table 3 depicts the
added overhead in terms of both raw and percentage of
the total NeuOS memory usage. As expected, the lowrank
approximated version of each model has slightly less overall
size compared to the original model. Nonetheless, this
technique sacrifices memory overhead to improve latency and
energy consumption. A viable alternative left as future work
is dynamic approximation on the fly, which trades off latency
for lower memory consumption. Moreover, the overhead of
the hash tables is negligible compared to the total memory
usage. Finally, the last two columns depict the cumulative
maximum percentage of total available memory occupied by
one instance of NeuOS for each platform (this memory usage
also includes the temporary intermediate layer data [39]).

Table 3: Raw and percentage based memory overhead of
applying NeuOS for each model.

(a) Overhead in addition to Caffe (b) Ratio to total memory

Lowrank Hash Table Ratio Jetson TX2 AGX Xavier

AlexNet 226 MB 331 B 49% 10% 4%
GoogleNet 23 MB 2.1 KB 30% 2% 1%
ResNet-50 82 MB 3.2 KB 45% 7% 3%
VGGNet 509 MB 634 B 48% 25% 12.7%

6 Related Work

Trading off latency and power efficiency has been a hot topic
in the related fields including real-time embedded systems
and mobile computing [40, 8, 41, 53, 59, 16, 37, 42, 47, 1].
Due to the explosion of approximation techniques in different
application domains, there has been several recent works [15,
35, 13] seeking to address this problem in a three dimensional
space covering accuracy as well. Unfortunately, these works
cannot resolve the problem as their applicability is limited
in scope in various ways. JouleGuard [21], MeanTime [13],
CoAdapt [20] and other similar approaches provide general
system or hardware solution for non-DNN applications that
claim to explore the three dimensional optimization space.

A very recent set of works including PredJoule [5], and
ApNet [3] are able to provide latency predictability (meeting
deadlines) for DNN-based workloads, yet they only consider
two out of the three dimensions and focus on single-DNN
scenarios. As we have discussed in Sec. 3.2, running ApNet
and PredJoule at the same time even at different frequencies
will result in a negative feedback loop. Thus, a better, more
coordinated approach is required.

Such limitations would dramatically reduce the complexity
of the optimization space, as the system-level and application-
level tradeoffs focusing on a single task can be considered
in an independent manner (e.g., pure system-level and
application-level optimization under Poet [23] and CoAdapt,
respectively). This results in solutions that are inapplicable to
any practical autonomous real-time system featuring a multi-
DNN environment.

7 Acknowledgment

We would like to thank our shepherd, Amitabha Roy, and the
anonymous referees for their invaluable insight and advice
into making this paper substantially better. This work is
supported by NSF grant CNS CAREER 1750263.

8 Conclusion

This paper presents NeuOS, a comprehensive latency pre-
dictable system solution for running multi-DNN workloads
in autonomous embedded systems. NeuOS can guarantee
latency predictability, while managing energy optimization
and dynamic accuracy adjustment based on specific system
constraints via smart coordinated system- and application-
level decision-making among multiple DNN instances. Ex-
tensive evaluation results prove the efficacy and practicality
of NeuOS.

382 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor
Aamodt, Natalie Enright Jerger, and Andreas Moshovos.
Cnvlutin: Ineffectual-neuron-free deep neural network
computing. In ACM SIGARCH Computer Architecture

News, volume 44, pages 1–13. IEEE Press, 2016.

[2] Mohammadhossein Bateni, Aditya Bhaskara, Silvio
Lattanzi, and Vahab Mirrokni. Distributed balanced
clustering via mapping coresets. In Advances in

Neural Information Processing Systems, pages 2591–
2599, 2014.

[3] Soroush Bateni and Cong Liu. Apnet: Approximation-
aware real-time neural network. In 2018 IEEE Real-

Time Systems Symposium (RTSS), pages 67–79, Dec
2018.

[4] Soroush Bateni and Cong Liu. Predictable data-
driven resource management: an implementation using
autoware on autonomous platforms. In 2019 IEEE Real-

Time Systems Symposium (RTSS), pages 339–352. IEEE,
2019.

[5] Soroush Bateni, Husheng Zhou, Yuankun Zhu, and
Cong Liu. Predjoule: A timing-predictable energy
optimization framework for deep neural networks. In
2018 IEEE Real-Time Systems Symposium (RTSS),
pages 107–118, Dec 2018.

[6] Raunak P Bhattacharyya, Derek J Phillips, Changliu
Liu, Jayesh K Gupta, Katherine Driggs-Campbell, and
Mykel J Kochenderfer. Simulating emergent properties
of human driving behavior using multi-agent reward
augmented imitation learning. In 2019 International

Conference on Robotics and Automation (ICRA), pages
789–795. IEEE, 2019.

[7] Wenlin Chen, James Wilson, Stephen Tyree, Kilian
Weinberger, and Yixin Chen. Compressing neural
networks with the hashing trick. In International

Conference on Machine Learning, pages 2285–2294,
2015.

[8] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen
Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. Prime:
a novel processing-in-memory architecture for neural
network computation in reram-based main memory.
In ACM SIGARCH Computer Architecture News, vol-
ume 44, pages 27–39. IEEE Press, 2016.

[9] European Commission. Rolling plan for ict standardisa-
tion, 2018.

[10] NVIDIA Corp. Power management for jet-
son agx xavier devices. https://docs.

nvidia.com/jetson/l4t/index.html#page/

TegraLinuxDriverPackageDevelopmentGuide/

power_management_jetson_xavier.html.

[11] NVIDIA Corp. Power management
for jetson tx2 series devices. https:

//docs.nvidia.com/jetson/archives/

l4t-archived/l4t-3231/index.html#page/

TegraLinuxDriverPackageDevelopmentGuide/

power_management_tx2_32.html.

[12] ETSI. Intelligent transport systems (its); vehicular com-
munications; basic set of applications; part 3: Specifica-
tions of decentralized environmental notification basic
service, Aug 2018.

[13] Anne Farrell and Henry Hoffmann. Meantime: Achiev-
ing both minimal energy and timeliness with approxi-
mate computing. In USENIX Annual Technical Confer-

ence, pages 421–435, 2016.

[14] ISO International Organization for Standardization.
26262: 2018. Road vehicles—Functional safety.

[15] Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. Mcdnn: An approximation-based execution
framework for deep stream processing under resource
constraints. In Proceedings of the 14th Annual Interna-

tional Conference on Mobile Systems, Applications, and

Services, MobiSys ’16, pages 123–136, New York, NY,
USA, 2016. ACM.

[16] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark A Horowitz, and William J Dally. Eie:
efficient inference engine on compressed deep neural
network. In Computer Architecture (ISCA), 2016

ACM/IEEE 43rd Annual International Symposium on,
pages 243–254. IEEE, 2016.

[17] Song Han, Huizi Mao, and William J Dally. Deep
compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149, 2015.

[18] Song Han, Jeff Pool, John Tran, and William Dally.
Learning both weights and connections for efficient
neural network. In Advances in neural information

processing systems, pages 1135–1143, 2015.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[20] Henry Hoffmann. Coadapt: Predictable behavior for
accuracy-aware applications running on power-aware
systems. In Real-Time Systems (ECRTS), 2014 26th

Euromicro Conference on, pages 223–232, 2014.

USENIX Association 2020 USENIX Annual Technical Conference 383

[21] Henry Hoffmann. Jouleguard: energy guarantees for
approximate applications. In Proceedings of the 25th

Symposium on Operating Systems Principles, pages 198–
214. ACM, 2015.

[22] Sean Hollister. Tesla’s new self-driving chip is here, and
this is your best look yet., Apr 2019.

[23] C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann.
Poet: a portable approach to minimizing energy under
soft real-time constraints. In 21st IEEE Real-Time and

Embedded Technology and Applications Symposium,
pages 75–86, April 2015.

[24] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Speeding up convolutional neural networks with low
rank expansions. arXiv preprint arXiv:1405.3866, 2014.

[25] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[26] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya
Maeda, Manato Hirabayashi, Yuki Kitsukawa, Abraham
Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya
Azumi. Autoware on board: Enabling autonomous vehi-
cles with embedded systems. In 2018 ACM/IEEE 9th

International Conference on Cyber-Physical Systems

(ICCPS), pages 287–296. IEEE, 2018.

[27] Jaanus Kaugerand, Johannes Ehala, Leo Mõtus, and
Jürgo-Sören Preden. Time-selective data fusion for in-
network processing in ad hoc wireless sensor networks.
International Journal of Distributed Sensor Networks,
14(11), 2018.

[28] D. H. K. Kim, C. Imes, and H. Hoffmann. Racing
and pacing to idle: Theoretical and empirical analysis
of energy optimization heuristics. In 2015 IEEE 3rd

International Conference on Cyber-Physical Systems,

Networks, and Applications, pages 78–85, Aug 2015.

[29] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim
Choi, Lu Yang, and Dongjun Shin. Compression of deep
convolutional neural networks for fast and low power
mobile applications. arXiv preprint arXiv:1511.06530,
2015.

[30] B. Kisacanin. Deep learning for autonomous vehi-
cles. In 2017 IEEE 47th International Symposium on

Multiple-Valued Logic (ISMVL), pages 142–142, May
2017.

[31] Olga Kouchnarenko and Jean-François Weber. Adapting
component-based systems at runtime via policies with
temporal patterns. In International Workshop on

Formal Aspects of Component Software, pages 234–253.
Springer, 2013.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C.J.C. Burges, L. Bottou,
and K.Q. Weinberger, editors, Advances in Neural

Information Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012.

[33] TIMOTHY B. LEE. Tesla’s autonomy event: Impressive
progress with an unrealistic timeline, Apr 2019.

[34] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer
Dolson, David Held, Soeren Kammel, J Zico Kolter,
Dirk Langer, Oliver Pink, Vaughan Pratt, et al. Towards
fully autonomous driving: Systems and algorithms. In
2011 IEEE Intelligent Vehicles Symposium (IV), pages
163–168. IEEE, 2011.

[35] Yongbo Li, Yurong Chen, Tian Lan, and Guru Venkatara-
mani. Mobiqor: Pushing the envelope of mobile edge
computing via quality-of-result optimization. In 2017

IEEE 37th International Conference on Distributed

Computing Systems (ICDCS), pages 1261–1270. IEEE,
2017.

[36] Shiyu Liang and R Srikant. Why deep neural
networks for function approximation? arXiv preprint

arXiv:1610.04161, 2016.

[37] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polan-
sky, and Lin Zhong. Redeye: analog convnet image sen-
sor architecture for continuous mobile vision. In ACM

SIGARCH Computer Architecture News, volume 44,
pages 255–266. IEEE Press, 2016.

[38] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

[39] Zongqing Lu, Swati Rallapalli, Kevin Chan, and Thomas
La Porta. Modeling the resource requirements of
convolutional neural networks on mobile devices. In
Proceedings of the 25th ACM international conference

on Multimedia, pages 1663–1671, 2017.

[40] M. Maggio, E. Bini, G. Chasparis, and K. Årzén. A
game-theoretic resource manager for rt applications. In
2013 25th Euromicro Conference on Real-Time Systems,
pages 57–66, July 2013.

[41] Nikita Mishra, Huazhe Zhang, John D Lafferty, and
Henry Hoffmann. A probabilistic graphical model-
based approach for minimizing energy under perfor-
mance constraints. In ACM SIGARCH Computer Archi-

tecture News, volume 43, pages 267–281. ACM, 2015.

384 2020 USENIX Annual Technical Conference USENIX Association

[42] Brandon Reagen, Paul Whatmough, Robert Adolf,
Saketh Rama, Hyunkwang Lee, Sae Kyu Lee,
José Miguel Hernández-Lobato, Gu-Yeon Wei, and
David Brooks. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In ACM

SIGARCH Computer Architecture News, volume 44,
pages 267–278. IEEE Press, 2016.

[43] Adriana Romero, Nicolas Ballas, Samira Ebrahimi
Kahou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. Fitnets: Hints for thin deep nets. arXiv preprint

arXiv:1412.6550, 2014.

[44] Francisca Rosique, Pedro J Navarro, Carlos Fernández,
and Antonio Padilla. A systematic review of perception
system and simulators for autonomous vehicles research.
Sensors, 19(3):648, 2019.

[45] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru
Arisoy, and Bhuvana Ramabhadran. Low-rank matrix
factorization for deep neural network training with high-
dimensional output targets. In 2013 IEEE international

conference on acoustics, speech and signal processing,
pages 6655–6659. IEEE, 2013.

[46] Rick Salay, Rodrigo Queiroz, and Krzysztof Czar-
necki. An analysis of iso 26262: Using machine learn-
ing safely in automotive software. arXiv preprint

arXiv:1709.02435, 2017.

[47] Ali Shafiee, Anirban Nag, Naveen Muralimanohar,
Rajeev Balasubramonian, John Paul Strachan, Miao
Hu, R Stanley Williams, and Vivek Srikumar. Isaac:
A convolutional neural network accelerator with in-
situ analog arithmetic in crossbars. ACM SIGARCH

Computer Architecture News, 44(3):14–26, 2016.

[48] Akshay Kumar Shastry. Functional Safety Assessment

in Autonomous Vehicles. PhD thesis, Virginia Tech,
2018.

[49] Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[50] Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith,
and Stan Birchfield. Toward low-flying autonomous
mav trail navigation using deep neural networks for en-
vironmental awareness. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),
pages 4241–4247. IEEE, 2017.

[51] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah,
J. E. Gehrke, and C. G. Plaxton. A proportional share
resource allocation algorithm for real-time, time-shared
systems. In 17th IEEE Real-Time Systems Symposium,
pages 288–299, Dec 1996.

[52] Chen Tang, Zhuo Xu, and Masayoshi Tomizuka.
Disturbance-observer-based tracking controller for neu-
ral network driving policy transfer. IEEE Transactions

on Intelligent Transportation Systems, 2019.

[53] Yaman Umuroglu, Nicholas J Fraser, Giulio Gam-
bardella, Michaela Blott, Philip Leong, Magnus Jahre,
and Kees Vissers. Finn: A framework for fast, scal-
able binarized neural network inference. In Proceedings

of the 2017 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pages 65–74. ACM,
2017.

[54] Jean-François Weber. Tool support for fuzz testing of
component-based system adaptation policies. In Inter-

national Workshop on Formal Aspects of Component

Software, pages 231–237. Springer, 2016.

[55] Wikipedia contributors. Ternary plot - wikipedia,the free
encyclopedia. https://en.wikipedia.org/wiki/

Ternary_plot, 2019. [Online; accessed 31-May-
2019].

[56] Jian Xue, Jinyu Li, Dong Yu, Mike Seltzer, and Yifan
Gong. Singular value decomposition based low-
footprint speaker adaptation and personalization for
deep neural network. In Acoustics, Speech and

Signal Processing (ICASSP), 2014 IEEE International

Conference on, pages 6359–6363. IEEE, 2014.

[57] Taro Yamane. Statistics: An introductory analysis. 1973.

[58] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. De-
signing energy-efficient convolutional neural networks
using energy-aware pruning. arXiv preprint, 2017.

[59] Huazhe Zhang and Henry Hoffmann. Maximizing
performance under a power cap: A comparison of
hardware, software, and hybrid techniques. SIGPLAN

Not., 51(4):545–559, March 2016.

[60] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong
Liu, and Sarfraz Khurshid. Deeproad: Gan-based
metamorphic autonomous driving system testing. arXiv

preprint arXiv:1802.02295, 2018.

USENIX Association 2020 USENIX Annual Technical Conference 385

PERCIVAL: Making In-Browser Perceptual Ad Blocking
Practical with Deep Learning

Zainul Abi Din †

UC Davis
Panagiotis Tigas†

University of Oxford
Samuel T. King

UC Davis
Bouncer Technologies

Benjamin Livshits
Brave Software

Imperial College London

Abstract
In this paper we present PERCIVAL, a browser-embedded,

lightweight, deep learning-powered ad blocker. PERCIVAL
embeds itself within the browser’s image rendering pipeline,
which makes it possible to intercept every image obtained
during page execution and to perform image classification
based blocking to flag potential ads.

Our implementation inside both Chromium and Brave
browsers shows only a minor rendering performance overhead
of 4.55%, for Chromium, and 19.07%, for Brave browser,
demonstrating the feasibility of deploying traditionally heavy
models (i.e. deep neural networks) inside the critical path
of the rendering engine of a browser. We show that our
image-based ad blocker can replicate EasyList rules with
an accuracy of 96.76%. Additionally, PERCIVAL does
surprisingly well on ads in languages other than English
and also performs well on blocking first-party Facebook
ads, which have presented issues for rule-based ad blockers.
PERCIVAL proves that image-based perceptual ad blocking
is an attractive complement to today’s dominant approach of
block lists.

1 Introduction
Web advertising provides the financial incentives necessary

to support most of the free content online, but it comes at a
security and privacy cost. To make advertising effective, ad
networks or publishers track user browsing behavior across
multiple sites to generate elaborate user profiles for targeted
advertising.

Users find that ads are intrusive [61] and cause disruptive
browsing experience [6, 27]. In addition, studies have shown
that advertisements impose privacy and performance costs
to users, and carry the potential to be a malware delivery
vector [2, 35, 37, 54, 55, 76].

Ad blocking is a software capability for filtering out
unwanted advertisements to improve user experience,
performance, security, and privacy. At present, ad blockers

†Employed by Brave software when part of this work took place.

either run directly in the browser [4, 12] or as browser
extensions [1].

Current ad blocking solutions filter undesired content based
on “handcrafted” filter lists such as EasyList [74], which
contain rules matching ad-carrying URLs and DOM elements.
Most widely-used ad blockers, such as uBlock Origin [26] and
Adblock Plus [1] use these block lists for content blocking.
While useful, these approaches fail against adversaries who
can change the ad-serving domain or obfuscate the web page
code and metadata.

In an attempt to find a more flexible solution, researchers
have proposed alternative approaches to ad blocking. One
such approach is called Perceptual ad blocking, which relies
on “visual cues” frequently associated with ads like the
AdChoices logo or a sponsored content link. Storey et al. [70]
built the first perceptual ad blocker that uses traditional
computer vision techniques to detect ad-identifiers. Recently,
Adblock Plus developers built filters into their ad blocker [15]
to match images against a fixed template in order to detect ad
labels. Due to the plethora of ad-disclosures, AdChoices logo
and other ad-identifiers, it is unlikely that traditional computer
vision techniques are sufficient and generalizable to the range
of ads one is likely to see in the wild.

A natural extension to traditional vision-based blocking
techniques is deep learning. Adblock Plus recently proposed
SENTINEL [65] that detects ads in web pages using deep
learning. SENTINEL’s deep learning model takes as input the
screenshot of the rendered webpage to detect ads. However,
this technology is still in development.

To this end, we present PERCIVAL, a native, deep
learning-powered perceptual ad blocker, which is built into
the browser image rendering pipeline. PERCIVAL intercepts
every image obtained during the execution sequence of a page
and blocks images that it classifies as ads. PERCIVAL is small
(half the average webpage size [25]) and fast, and we deploy
it online within two commercial browsers to block and detect
ads at real-time.

PERCIVAL can be run in addition to an existing ad blocker,
as a last-step measure to block whatever slips through its

USENIX Association 2020 USENIX Annual Technical Conference 387

DOM Style Layout ... Image-Decoding Raster Percival ...

Rendering Process

Content from nework Pixels on screen with ads removed

Figure 1: Overall architecture of PERCIVAL. PERCIVAL is
positioned in the renderer process-which is responsible for
creating rasterized pixels from HTML, CSS, Javascript. As
the renderer process creates the DOM and decodes and
rasterizes all image frames, these are first passed through
PERCIVAL. PERCIVAL blocks the frames that are classified
as ads. The corresponding output with ads removed is shown
above (right).

filters. However, PERCIVAL may also be deployed outside
the browser, for example, as part of a crawler, whose job is to
construct comprehensive block lists to supplement EasyList.

1.1 Contributions
This paper makes the following contributions:

• Perceptual ad blocking in Chromium-based
browsers. We deploy PERCIVAL in two
Chromium-based browsers: Chromium and Brave. We
demonstrate two deployment scenarios; first, PERCIVAL
blocks ads synchronously as it renders the page, with
a modest performance overhead. Second, PERCIVAL
classifies images asynchronously and memoizes the
results, thus speeding up the classification process1.

• Lightweight and accurate deep learning models. We
show that ad blocking can be done effectively using
highly-optimized deep neural network-based models
for image processing. Previous studies suggest that
models over 5MB in size become hard to deploy on
mobile devices [62]; because of our focus on low-latency
detection, we create a compressed in-browser model that
occupies 1.76MB2 on disk, which is smaller by factor
of 150 compared to other models of this kind [22], while
maintaining similar accuracy results.

• Accuracy and performance overhead measurements.
We show that our perceptual ad blocking model can
replicate EasyList rules with the accuracy of 96.76%,
making PERCIVAL a viable and complementary ad
blocking layer. Our implementation within Chromium

1We make the source code, pre-trained models and data available for
other researchers at https://github.com/dxaen/percival

2Our in-browser model is 3.2MB due to a less efficient serialization
format. Still, the weights are identical to our 1.76MB model

shows an average overhead of 178.23ms for page
rendering. This overhead shows the feasibility of
deploying deep neural networks inside the critical path
of the rendering engine of the browser.

• First-party ad blocking. While the focus of traditional
ad blocking is primarily on third-party ad blocking,
we show that PERCIVAL blocks first-party ads as
well, such as those found on Facebook. Specifically,
our experiments show that PERCIVAL blocks ads on
Facebook (often referred to as “sponsored content”)
with a 92% accuracy, with precision and recall of 78.4%
and 70.0%.

• Language-agnostic blocking. We demonstrate that our
model in PERCIVAL blocks images that are in languages
we did not train our model on. We evaluate our trained
model on Arabic, Chinese, Korean, French and Spanish
image-based ads. Our model achieves an accuracy
of 81.3% on Arabic, 95.1% on Spanish, and 93.9%
on French datasets, with moderately high precision and
recall. However, results from Chinese and Korean ads
are less accurate.

2 Motivation
Intrusive, online, advertising has been a long standing

concern for user privacy, security and overall web experience.
While web advertising makes it easier and more economic
for businesses to reach a wider audience, bad actors have
exploited this channel to engage in malicious activities.
Attackers use ad-distribution channels to hijack compromised
web pages in order to trick users into downloading
malware [54]. This is known as malicious advertising.

Mobile users are also becoming targets of malicious
advertising [68]. Mobile applications contain code embedded
from the ad networks, which provides the interface for the
ad networks to serve ads. This capability has been abused
by attackers where the landing page of the advertisements
coming from ad networks links to malicious content.
Moreover, intrusive advertisements significantly affect the
user experience on mobile phones due to limited screen
size [38]. Mobile ads also drain significant energy and
network data [73].

Web advertising also has severe privacy implications for
users. Advertisers use third party web-tracking by embedding
code in the websites the users visit, to identify the same users
again in a different domain, creating a more global view of
the user browsing behavior [52]. Private user information
is collected, stored and sold to other third party advertisers.
These elaborate user profiles can be used to infer sensitive
information about the users like medical history or political
views [31,57]. Communication with these third party services
is unencrypted, which can be exploited by attackers.

The security and privacy concerns surrounding web
advertising has motivated research in ad blocking tools

388 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/dxaen/percival

from both academia [29, 40, 44, 69, 75] and industry notably
Adblock Plus [1], Ghostery [13], Brave [4], Mozilla [47],
Opera [16] and Apple [17]. Ad blocking serves to improve
web security, privacy, usability, and performance. As of
February 2017, 615 million devices had ad blockers
installed [19] However, recently Google Chrome [14]
and Safari [3] proposed changes in the API exposed to
extensions, with the potential to block extension based
ad-blockers. This motivates the need for native ad blockers
like Brave [4], Opera [16], AdGraph [44], PageGraph [32]
and even PERCIVAL.

3 PERCIVAL Overview
This paper presents PERCIVAL, a novel deep-learning based

system for blocking ads. Our primary goal is to build a system
that blocks ad images that could escape detection by current
techniques, while remaining small and efficient enough to run
in a mobile browser.

Figure 1 shows how PERCIVAL blocks rendering of ads.
First, PERCIVAL runs in the browser image rendering pipeline.
By running in the image rendering pipeline, PERCIVAL can
inspect all images before the browser shows them to the
user. Second, PERCIVAL uses a deep convolutional neural
network (CNN) for detecting ad images. Using CNNs enables
PERCIVAL to detect a wide range of ad images, even if they
are in a language that PERCIVAL was not trained on.

This section discusses PERCIVAL’s architecture overview,
possible alternative implementations and detection model.
Section 4 discusses the detailed design and implementation
for our browser modifications and our detection model.

3.1 PERCIVAL’s Architecture Overview
PERCIVAL’s detection module runs in the browser’s

image decoding pipeline after the browser has decoded the
image into pixels, but before it displays these pixels to the
user. Running PERCIVAL after the browser has decoded an
image takes advantage of the browser’s mature, efficient, and
extensive image decoding logic, while still running at a choke
point before the browser displays the decoded pixels. Simply
put, if a user sees an image, it goes through this pipeline first.

More concretely, as shown in Figure 1 PERCIVAL runs
in the renderer process of the browser engine. The renderer
process on receiving the content of the web page proceeds
to create the intermediate data structures to represent the
web page. These intermediate representations include the
DOM-which encodes the hierarchical structure of the web
page, the layout-tree, which consists of the layout information
of all the elements of the web page, and the display list, which
includes commands to draw the elements on the screen. If
an element has an image contained within it, it needs to go
through the Image Decoding Step before it can be rasterized.
We run PERCIVAL after the Image Decoding Step during
the raster phase which helps run PERCIVAL in parallel for
multiple images at a time. Images that are classified as ads

Bitmap Image
onGetPixels()

Deferred Image Decoder

SkImage

Image Decoders

Decoding Image Generator

SkImage Generator

Percival

Figure 2: PERCIVAL in the image decoding pipeline. SkImage
Generator allocates a bitmap and calls the onGetPixels()
of DecodingImageGenerator to populate the bitmap. This
bitmap is then passed to the network for classification and
cleared if it contains an ad.

are blocked from rendering. The web page with ads removed
is shown in Figure 1 (right). We present the detailed design
and implementation in Section 4.

3.2 Alternative Possible Implementations and
Advantages of PERCIVAL

One alternative to running PERCIVAL directly in the
browser could have been to run PERCIVAL in the browser’s
JavaScript layer via an extension. However, this would require
scanning the DOM to find image elements, waiting for them
to finish loading, and then screenshotting the pixels to run
the detection model. The advantage of a JavaScript-based
system is that it works within current browser extensibility
mechanisms, but recent work has shown how attackers can
evade this style of detection [71].

Ad blockers that inspect web pages based on the DOM such
as Ad Highlighter [70] are prone to DOM obfuscation attacks.
They assume that the elements of the DOM strictly correspond
to their visual representation. For instance, an ad blocker that
retrieves all img tags and classifies the content contained in
these elements does not consider the case, where a rendered
image is a result of several CSS or JavaScript transformations
and not the source contained in the tag. These ad blockers are
also prone to resource exhaustion attacks where the publisher
injects a lot of dummy elements in the DOM to overwhelm
the ad blocker.

Additionally, a native implementation is much faster than
a browser extension implementation with the added benefit
of having access to the unmodified image buffers.

3.3 Detection Model
PERCIVAL runs a detection model on every image loaded

in the document’s main frame, a sub-document such as an
iframe, as well as images loaded in JavaScript to determine
if the image is an ad.

Although running directly within the browser provides
PERCIVAL with more control over the image rendering

USENIX Association 2020 USENIX Annual Technical Conference 389

process, it introduces a challenge: how to run the model
efficiently in a browser? Our goal is to run PERCIVAL in
browsers that run on laptops or even mobile phones. This
requires that the model be small to be practical [62]. This
design also requires that the model run directly in the image
rendering pipeline, so overhead remains low. Any overhead
adds latency to rendering for all images it inspects.

In PERCIVAL, we use the SqueezeNet [43] CNN as the
starting point for our detection model. We modify the basic
SqueezeNet network to be optimized for ad blocking by
removing less important layers. This results in a model size
that is less than 2MB and detects ad images in 11ms per
image.

A second challenge in using small CNNs is how to provide
enough training data. In general, smaller CNNs can have
suitable performance but require more training data. What is
more, the labels are highly imbalanced making the training
procedure even more challenging.

Gathering ad images is non-trivial; most ads are
programmatically inserted into the document through
iframes or JavaScript, and so simple crawling methods that
work only on the initial HTML of the document will miss
most of the ad images.

To crawl ad images, other researchers [22, 71] propose
screenshotting iframes or JavaScript elements. This data
collection method leads to problems with synchronizing the
timing of the screenshot and when the element loads. Many
screenshots end up with whites-space instead of the image
content. Also, this method only makes sense if the input to
the classifier is the rendered content of the web page.

To address these concerns and to provide ample training
data, we design and implement a custom crawler in Blink3

that handles dynamically-updated data and eliminates the
race condition between the browser displaying the content
and the screenshot we use to capture the image data. Our
custom-crawler fetches ad and non-ad images directly from
the rendering pipeline and uses the model trained during the
previous phase as a labeler. This way we amplify our dataset
to fine-tune our model further.

4 Design and Implementation of PERCIVAL
This section covers the design and implementation of the

browser portion of PERCIVAL. We first cover the high-level
design principles that guide our design, and then we discuss
rendering and image handling in Blink, the rendering engine
of Chromium-based browsers. Finally, we describe our
end-to-end implementation within Blink.

4.1 Design Goals
We have two main goals in our design of PERCIVAL:

Run PERCIVAL at a choke point: Advertisers can serve
ad images in different formats, such as JPG, PNG, or GIF.

3Blink http://www.chromium.org/blink is the rendering engine used
by Chromium.

Depending on the format of the image, an encoded frame
can traverse different paths in the rendering pipeline. Also,
a wide range of web constructs can cause the browser
to load images, including HTML image tags, JavaScript
image objects, HTML Canvas elements, or CSS background
attributes. Our goal is to find a single point in the browser
to run PERCIVAL, such that it inspects all images, operates
on pixels instead of encoded images, but does so before the
user sees the pixels on the screen, enabling PERCIVAL to
block ad images cleanly. Note: If individual pixels are drawn
programmatically on canvas, PERCIVAL will not block it from
rendering.

In Blink, the raster task within the rendering pipeline
enables PERCIVAL to inspect, and potentially block, all
images. Regardless of the image format or how the browser
loads it, the raster task decodes the given image into raw
pixels, which it then passes to the GPU to display the content
on the screen. We run PERCIVAL at this precise point to
abstract different image formats and loading techniques, while
still retaining the opportunity to block an image before the
user sees it.

Run multiple instances of PERCIVAL in parallel:
Running PERCIVAL in parallel is a natural design choice
because PERCIVAL makes all image classification decisions
independently based solely on the pixels of each individual
image. When designing PERCIVAL, we look for opportunities
to exploit this natural parallelism to minimize the latency
added due to the addition of our ad blocking model.

4.2 Rendering and PERCIVAL: Overview
We integrate PERCIVAL into Blink, the rendering engine

for Google Chrome and Brave. From a high level, Blink’s
primary function is to turn a web page into the appropriate
GPU calls [5] to show the user the rendered content.

A web page can be thought of as a collection of HTML,
CSS, and JavaScript code, which the browser fetches from the
network. The rendering engine parses this code to build the
DOM and layout tree, and to issue OpenGL calls via Skia,
Google’s graphics library [24].

The layout tree contains the locations of the regions the
DOM elements will occupy on the screen. This information
together with the DOM element is encoded as a display
item.

The browser then proceeds with rasterization, which takes
the display items and turns them into bitmaps. Rasterization
issues OpenGL draw calls via the Skia library to draw bitmaps.
If the display list items have images in them (a common
occurrence), the browser must decode these images before
drawing them via Skia.

PERCIVAL intercepts the rendering process at this point,
after the Image Decode Task and during the Raster Task.
As the renderer process creates the DOM and decodes and
rasterizes all image frames, these are first passed through

390 2020 USENIX Annual Technical Conference USENIX Association

http://www.chromium.org/blink

PERCIVAL. PERCIVAL blocks the frames that are classified
as ads.

4.3 End-to-End Implementation in Blink

We implement PERCIVAL inside Blink (Chromium
rendering engine), where PERCIVAL uses the functionality
exposed by the Skia library. Skia uses a set of image decoding
operations to turn SkImages, which is the internal type within
Skia that encapsulates images, into bitmaps. PERCIVAL reads
these bitmaps and classifies their content accordingly. If
PERCIVAL classifies the bitmap as an ad, it blocks it by
removing its content. Otherwise, PERCIVAL lets it pass
through to the next layers of the rendering process. When
content is cleared, there are several ways to fill up the
surrounding white-space; either collapsing it by propagating
the information upwards or displaying a predefined image
(user’s spirit animal) in place of the ad.

Figure 2 shows an overview of our Blink integration.
Blink class BitmapImage creates an instance of
DeferredImageDecoder which in turn instantiates a
SkImage object for each encoded image. SkImage creates an
instance of DecodingImageGenerator (blink class) which
will in turn decode the image using the relevant image
decoder from Blink. Note that the image hasn’t been decoded
yet since chromium practices deferred image decoding.

Finally, SkImageGenerator allocates bitmaps
corresponding to the encoded SkImage, and calls
onGetPixels() of DecodingImageGenerator to decode
the image data using the proper image decoder. This method
populates the buffer (pixels) that contain decoded pixels,
which we pass to PERCIVAL along with the image height,
width, channels information (SKImageInfo) and other
image metadata. PERCIVAL reads the image, scales it
to 224×224×4 (default input size expected by SqueezeNet),
creates a tensor, and passes it through the CNN. If PERCIVAL
determines that the buffer contains an ad, it clears the buffer,
effectively blocking the image frame.

Rasterization, image decoding, and the rest of the
processing happen on a raster thread. Blink rasters on a per
tile basis and each tile is like a resource that can be used by
the GPU. In a typical scenario there are multiple raster threads
each rasterizing different raster tasks in parallel. PERCIVAL
runs in each of these worker threads after image decoding and
during rasterization, which runs the model in parallel.

As opposed to Sentinel [65] and Ad Highlighter [36]
the input to PERCIVAL is not the rendered version of web
content; PERCIVAL takes in the Image pixels directly from
the image decoding pipeline. This is important since with
PERCIVAL we have access to unmodified image buffers and
it helps prevent attacks where publishers modify content of
the webpage (including iframes) with overlaid masks (using
CSS techniques) meant to fool the ad blocker classifier.

Decoding Image
Generator

Percival

SkImage Generator

Retrain and
Update

Ad Non-Ad

onGetPixels()

classification

Figure 3: Crawling, labelling and re-training with PERCIVAL.
Every decoded image frame is passed through PERCIVAL and
PERCIVAL downloads the image frame into the appropriate
bucket.

5 Deep Learning Pipeline
This section covers the design of PERCIVAL’s deep neural

network and the corresponding training workflow. We first
describe the network employed by PERCIVAL and the training
process. We then describe our data acquisition and labelling
techniques.

5.1 PERCIVAL’s CNN Architecture
We cast ad detection as a traditional image classification

problem, where we feed images into our model and it classifies
them as either being (1) an ad, or (2) not an ad. CNNs are
the current standard in the computer vision community for
classifying images.

Because of the prohibitive size and speed of standard
CNN based image classifiers, we use a small network,
SqueezeNet [43], as the starting point for our in-browser
model. The SqueezeNet authors show that SqueezeNet
achieves comparable accuracy to much larger CNNs, like
AlexNet [48], and boasts a final model size of 4.8 MB.

SqueezeNet consists of multiple fire modules. A fire module
consists of a “squeeze” layer, which is a convolution layer
with 1×1 filters and two “expand” convolution layers with
filter sizes of 1 × 1 and 3 × 3, respectively. Overall, the
”squeeze” layer reduces the number of input channels to larger
convolution filters in the pipeline.

A visual summary of PERCIVAL’s network structure is
shown in Figure 4. As opposed to the original SqueezeNet,
we down-sample the feature maps at regular intervals in the
network. This helps reduce the classification time per image.
We also perform max-pooling after the first convolution layer
and after every two fire modules.

5.2 Data Acquisition
We use two systems to collect training image data. First,

we use a traditional crawler with traditional ad-blocking rules
(EasyList [7]) to identify ad images. Second, we use our
browser instrumentation from PERCIVAL to collect images,
improving on some of the issues we encountered with our
traditional crawler.

USENIX Association 2020 USENIX Annual Technical Conference 391

Fire3 - 48, 256

a) Original SqueezeNet

Conv - 3x3, 96

Maxpool2D - 3x3

Fire1 - 16, 64

Fire2 - 16, 64

Fire3 - 16, 64

Maxpool2D - 3x3

Fire4 - 32, 128

Fire5 - 48, 192

Fire6 - 48, 192

Fire7 - 64, 256

Maxpool2D - 3x3

Fire8 - 64, 256

Conv - 1x1, 1000

Avgpool - 13x13

b) Percival Architecture

Conv - 3x3, 64

Maxpool2D - 3x3

Fire1 - 16, 64

Fire2 - 16, 64

Maxpool2D - 3x3

Fire3 - 32, 128

Fire4 - 32, 128

Maxpool2D - 3x3

Fire8 - 64, 256

Conv - 1x1, 2

Avgpool - 13x13

Fire4 - 64, 256

Figure 4: Original SqueezeNet (left) and PERCIVAL’s fork
of SqueezeNet (right). For Conv, Maxpool2D, and Avgpool
blocks a×b represents the dimensions of the filters used. For
fire blocks a, b represents the number of intermediate and
output channels. We remove extraneous blocks as well as
downsample the feature maps at regular intervals to reduce
the classification time per image.

5.2.1 Crawling with EasyList
We use a traditional crawler matched with a traditional

rule-based ad blocker to identify ad content for our first
dataset. In particular, to identify ad elements which could
be iframes or complex JavaScript constructs, we use EasyList,
which is a set of rules that identify ads based on the URL of
the elements, location within the page, origin, class or id tag,
and other hand-crafted characteristics known to indicate the
presence of ad content.

We built a crawler using Selenium [21] for browser
automation. We then use the crawler to visit Alexa top-1,000
web sites, waiting for 5 seconds on each page, and then
randomly selecting 3 links and visiting them, while waiting
on each page for a period of 5 seconds as before. For every
visit, the crawler applies every EasyList network, CSS and
exception rule.

For every element that matches an EasyList rule, our
crawler takes a screenshot of the component, cropped tightly
to the coordinates reported by Chromium, and then stores
it as an ad sample. We capture non-ad samples by taking
screenshots of the elements that do not match any of the
EasyList rules. Using this approach we, extract 22,670 images
out of which 13,741 are labelled as ads, and 8,929 as non-ads.
This automatic process was followed by a semi-automated
post-processing step, which includes removing duplicate
images, as well as manual spot-checking for misclassified
images.

Eventually, we identify 2,003 ad images and 7,432 non-ad
images. The drop in the number of ad images from 13,741 to
2,003 is due to a lot duplicates and content-less (single-color)

images due to the asynchrony of iframe-loading and the
timing of the screenshot. These shortcomings motivated our
new crawler. To balance the positive and negative examples
in our dataset so the classifier doesn’t favor one class over
another, we limited the number of non ad and ad images to
2,000.

5.2.2 Crawling with PERCIVAL

We found that traditional crawling was good enough to
bootstrap the ad classification training process, but it has
the fundamental disadvantage that for dynamically-updated
elements, the meaningful content is often unavailable at the
time of the screenshot, leading to screenshots filled with
white-space.

More concretely, the page load event is not very reliable
when it comes to loading iframes. Oftentimes when we take a
screenshot of the webpage after the page load event, most of
the iframes do not appear in the screenshots. Even if we wait
a fixed amount of time before taking the screenshot, iframes
constantly keep on refreshing, making it difficult to capture
the rendered content within the iframe consistently.

To handle dynamically-updated data, we use PERCIVAL’s
browser architecture to read all image frames after the browser
has decoded them, eliminating the race condition between
the browser displaying the content and the screenshot we use
to capture the image data. This way we are guaranteed to
capture all the iframes that were rendered, independently of
the time of rendering or refresh rate.
Instrumentation: Figure 3 shows how we use PERCIVAL’s
browser instrumentation to capture image data. Each encoded
image invokes an instance of DecodingImageGenerator
inside Blink, which in turn decodes the image using the
relevant image decoder (PNG, GIFs, JPG, etc.). We use the
buffer passed to the decoder to store pixels in a bitmap
image file, which contains exactly what the rendering engine
sees. Additionally, the browser passes this decoded image to
PERCIVAL, which determines whether the image contains an
ad. This way, every time the browser renders an image, we
automatically store it and label it using our initially trained
network, resulting in a much cleaner dataset.
Crawling: To crawl for ad and non-ad images, we run our
PERCIVAL-based crawler with a browser automation tool
called Puppeteer [20]. In each phase, the crawler visits the
landing page of each Alexa top-1,000 websites, waits until
networkidle0 (when there are no more than 0 network
connections for at least 500 ms) or 60 seconds. We do this
to ensure that we give the ads enough time to load. Then
our crawler finds all internal links embedded in the page.
Afterwards, it visits 20 randomly selected links for each page,
while waiting for networkidle0 event or 60 seconds time
out on each request.

In each phase, we crawl between 40,000 to 60,000 ad
images. We then post process the images to remove duplicates,
leaving around 15-20% of the collected results as useful. We

392 2020 USENIX Annual Technical Conference USENIX Association

Images Ads Identified Accuracy Precision Recall

6,930 3466 96.76% 97.76% 95.72%

Figure 5: Summary of the results obtained by testing the
dataset gathered using EasyList with PERCIVAL.

crawl for a total of 8 phases, retraining PERCIVAL after each
stage with the data obtained from the current and all the
previous crawls. As before, we cap the number of non-ad
images to the amount of ad images to ensure a balanced
dataset.

This process was spread-out in time over 4 months,
repeated every 15 days for a total of 8 phases, where each
phase took 5 days. Our final dataset contains 63,000 unique
images in total with a balanced split between positive and
negative samples.

6 Evaluation
6.1 Accuracy Against EasyList

To evaluate whether PERCIVAL can be a viable shield
against ads, we conduct a comparison against the most popular
crowd-sourced ad blocking list, EasyList [7], currently being
used by extensions such as Adblock Plus [1], uBlock
Origin [26] and Ghostery [13].

Methodology: For this experiment, we crawl Alexa top 500
news websites as opposed to Alexa top 1000 websites used in
the crawl for training. This is because news websites are
an excellent source of advertisements [18] and the crawl
can be completed relatively quickly. Also, Alexa top 500
news websites serves as a test domain different from the train
domain we used previously.

For our comparison we create two data sets: First,
we apply EasyList rules to select DOM elements that
potentially contain ads (IFRAMEs, DIVs, etc.); we then
capture screenshots of the contents of these elements. Second,
we use resource-blocking rules from EasyList to label all the
images of each page according to their resource URL. After
crawling, we manually label the images to identify the false
positives resulting in a total of 6,930 images.

Performance: On our evaluation dataset, PERCIVAL is
able to replicate the EasyList rules with accuracy 96.76%,
precision 97.76% and recall 95.72% (Figure 5), illustrating a
viable alternative to the manually-curated filter-lists.

Ads No-ads Accuracy FP FN Precision Recall

354 1,830 92.0% 68 106 78.4% 70.0%

Figure 6: Online evaluation of Facebook ads and sponsored
content.

Figure 7: The screenshots show one of the author’ Facebook
home page accessed with PERCIVAL. The black rectangles
are not part of the original screenshot.

6.2 Blocking Facebook Ads
Facebook obfuscates the “signatures” of ad elements (e.g.

HTML classes and identifiers) used by filter lists to block
ads since its business model depends on serving first-party
ads. As of now, Facebook does not obfuscate the content
of sponsored posts and ads due to the regulations regarding
misleading advertising [10,11]. Even though this requirement
favors perceptual ad blockers over traditional ones, a lot of
the content on Facebook is user-created which complicates
the ability to model ad and non-ad content.

In this section, we assess the accuracy of PERCIVAL on
blocking Facebook ads and sponsored content.

Methodology: To evaluate PERCIVAL’s performance on
Facebook, we browse Facebook with PERCIVAL for a
period of 35 days using two non-burner accounts that have
been in use for over 9 years. Every visit is a typical
Facebook browsing session, where we browse through the
feed, visit friends’ profiles, and different pages of interest.
For desktop computers two most popular places to serve
ads is the right-side columns and within the feed (labelled
sponsored) [9].

For our purposes, we consider content served in these
elements as ad content and everything else as non-ad content.
A false positive (FP) is defined as the number of non-ads
incorrectly blocked and false negative (FN) is the number
of ads PERCIVAL missed to block. For every session, we
manually compute these numbers. Figure 6 shows the
aggregate numbers from all the browsing sessions undertaken.
Figure 7 shows PERCIVAL blocking right-side columns
correctly.

Results: Our experiments show that PERCIVAL blocks ads
on Facebook with a 92% accuracy and 78.4% and 70.0% as
precision and recall, respectively. Figure 6 shows the complete
results from this experiment. Even though we achieve the
accuracy of 92%, there is a considerable number of false
positives and false negatives, and as such, precision and recall
are lower. The classifier always picks out the ads in the

USENIX Association 2020 USENIX Annual Technical Conference 393

right-columns but struggles with the ads embedded in the feed.
This is the source of majority of the false negatives. False
positives come from high “ad intent” user-created content, as
well as content created by brand or product pages on Facebook
(Figure 8).

Figure 8: Examples of false positives and false negatives on
Facebook (left) False Positive: This post was created by page
owned by Dell Corp. (right) False Negative: This post was
part of the sponsored content in the news feed.

Discussion: False Positives and False Negatives: To put
Figure 6 into perspective since it might appear to have an
alarming number of false positives and false negatives, it is
worthwhile to consider an average scenario. If each facebook
visit on average consists of browsing through 100 images, then
by our experiments, a user will find roughly 16 ad images and
84 non-ad images, out of which PERCIVAL will block 11 to
12 ad images on average while also blocking 3 to 4 non-ad
images. This is shown in Figure 10.

In addition to the above mentioned experiments which
evaluate the out of box results of using PERCIVAL, we trained
a version of PERCIVAL on a particular user’s ad images. The
model achieved higher precision and recall of 97.25%, 88.05%
respectively.

6.3 Blocking Google Image Search Results
To improve our understanding of the misclassifications

of PERCIVAL, we used Google Images as a way to fetch
images from distributions that have high or low ad intent. For
example, we fetched results with the query “Advertisement”
and used PERCIVAL to classify and block images. As we
can see in Figure 11, out of the top 23 images, 20 of
them were successfully blocked. Additionally, we tested with
examples of low ad intent distribution we used the query
“Obama”). We also searched for other keywords, such as
“Coffee”, “Detergent”, etc. The detailed results are presented
in Figure 12. As shown, PERCIVAL can identify a significant
percentage of images on a highly ad-biased content.

6.4 Language-Agnostic Detection
We test PERCIVAL against images with language content

different than the one we trained on. In particular, we source
a data set of images in Arabic, Chinese, French, Korean and
Spanish.
Crawling: To crawl for ad and non-ad images, we use
ExpressVPN [8] to VPN into major world cities where

Language # crawled # Ads Accuracy Precision Recall

Arabic 5008 2747 81.3% 83.3% 82.5%
Spanish 2539 309 95.1% 76.8% 88.9%
French 2414 366 93.9% 77.6% 90.4%
Korean 4296 506 76.9% 54.0% 92.0%
Chinese 2094 527 80.4% 74.2% 71.5%

Figure 9: Accuracy of PERCIVAL on ads in non-English
languages. The second column represents the number of
images we crawled, while the third column is the number
of images that were identified as ads by a native speaker. The
remaining columns indicate how well PERCIVAL is able to
reproduce these labels.

Images Ads No-ads FP FN

100 16 84 3-4 4-5

Figure 10: Average reporting of evaluation of Facebook ads
and sponsored content per visit. We assume each Facebook
visit consists of browsing through 100 total images.

the above mentioned languages are spoken. For instance,
to crawl Korean ads, we VPN into two locations in Seoul.
We then manually visit top 10 websites as mentioned in
SimilarWeb [23] list. We engage with the ad-networks by
clicking on ads, as well as closing the ads (icon at the top
right corner of the ad) and then choosing random responses
like content not relevant or ad seen multiple times. This is
done to ensure we are served ads from the language of the
region.

We then run PERCIVAL-based crawler with the browser
automation tool Puppeteer [20]. Our crawler visits the landing
page of each top 50 SimilarWeb websites for the given region,
waits until networkidle0 (when there are no more than 0
network connections for at least 500 ms) or 60 seconds. Then
our crawler finds all internal links embedded in the page.
Afterwards, it visits 10 randomly selected links for each page,
while waiting for networkidle0 event or 60 seconds time out

Figure 11: Search results from searching for “Advertisement”
on Google images, using PERCIVAL.

394 2020 USENIX Annual Technical Conference USENIX Association

Query # blocked # rendered FP FN

Obama 12 88 12 0
Advertisement 96 4 0 4
Coffee 23 77 - -
Detergent 85 15 10 6
iPhone 76 24 23 1

Figure 12: PERCIVAL blocking image search results. For
each search we only consider the first 100 images returned
(“-” represents cases where we were not able to determine
whether the content served is ad or non-ad).

on each request. As opposed to Section 5.2.2, we download
every image frame to a single bucket.
Labeling: For each language, we crawl 2,000–6,000 images.
We then hire a native speaker of the language under
consideration and have them label the data crawled for that
language. Afterwards, we test PERCIVAL with this labeled
dataset to determine how accurately can PERCIVAL reproduce
these human annotated labels. Figure 9 shows the detailed
results from all languages we test on. Figure 14 shows a
screen shot of a Portuguese website rendered with PERCIVAL.

Results: Our experiments show that PERCIVAL can
generalize to different languages with high accuracy (81.3%
for Portuguese, 95.1% for Spanish, 93.9% for French) and
moderately high precision and recall (83.3%, 82.5% for
Arabic, 76.8%, 88.9% for Spanish, 77.6%, 90.4% for French).
This illustrates the out-of-the box benefit of using PERCIVAL
for languages that have much lower coverage of EasyList
rules, compared to the English ones. The model does not
perform as well on Korean and Chinese datasets.

6.5 Salience Map of the CNN
To visualize which segments of the image are influencing

the classification decision, we used Grad-CAM [64] network
salience mapping which allow us to highlight the important
regions in the image that caused the prediction. As we can

(a) Ad image: Layer 9 (b) Ad image: Layer 5

Figure 13: Salience map of the network on a sample ad images.
Each image corresponds to the output of Grad-CAM [64] for
the layer in question.

Figure 14: PERCIVAL results on record.pt (Portuguese
language website).

see in Figure 13, our network is focusing on ad visual cues
(AdChoice logo), when this is present (case (a)), also it follows
the outlines of text (signifying existence of text between white
space) or identifies features of the object of interest (wheels
of a car).

6.6 Runtime Performance Evaluation
We next evaluate the impact of PERCIVAL-based blocking

on the browser performance. This latency is a function to
the number and complexity of the images on the page and
the time the classifier takes to classify each of them. We
measure the rendering time impact when we classify each
image synchronously.

To evaluate the performance of our system, we used
top 5,000 URLs from Alexa to test against Chromium
compiled on Ubuntu Linux 16.04, with and without
PERCIVAL activated. We also tested PERCIVAL in Brave,
a privacy-oriented Chromium-based browser, which blocks
ads using block lists by default. For each experiment we
measured render time which is defined as the difference
between domComplete and domLoading events timestamps.
We conducted the evaluations sequentially on the same
Amazon m5.large EC2 instance to avoid interference with
other processes and make the comparison fair. Also, all the
experiments were using xvfb for rendering, an in-memory
display server which allowed us to run the tests without a
display.

In our evaluation we show an increase of 178.23ms of
median render time when running PERCIVAL in the rendering
critical path of Chromium and 281.85ms when running inside
Brave browser with ad blocker and shields on. Figures 15
and 16 summarize the results.

To capture rendering and perceptual impact better, we
create a micro-benchmark with firstMeaningfulPaint to
illustrate overhead. In our new experiment, we construct
a static html page containing 100 images. We then
measure firstMeaningfulPaint with Percival classifying
images synchronously and asynchronously. In synchronous
classification, PERCIVAL adds 120ms to Chrome and 140ms

USENIX Association 2020 USENIX Annual Technical Conference 395

record.pt

Figure 15: Render time evaluation in Chromium and Brave
browser.

to Brave. In asynchronous classification, PERCIVAL adds
6ms to Chrome and 3ms to Brave. Although asynchronous
classification nearly eliminates overhead, it opens up the
possibility of showing an image to the user that we later
remove after flagging it as an ad because the rasterization of
the image runs in parallel with classification in this mode of
operation.

To determine why PERCIVAL with Brave is slower than
Chromium. We trace events inside the decoding process using
firstMeaningfulPaint and confirm there is no significant
deviation between the two browsers. The variance observed
initially is due to the additional layers in place like Brave’s
ad blocking shields.

6.7 Comparison With Other Deep Learning
Based Ad Blockers

Recently, researchers evaluated the accuracy of three
deep-learning based perceptual ad blockers including
PERCIVAL [71]. They used real website data from Alexa
top 10 news websites to collect data which is later manually
labelled. In this evaluation, PERCIVAL outperformed models
150 times bigger than PERCIVAL in terms of recall. We show
their results in Figure 17.

6.8 Adversarial Attacks against PERCIVAL
In recent work by Tramèr et al. [71], they show how

the implementation of some state-of-the-art perceptual ad
blockers, including PERCIVAL, is vulnerable to attacks.

First, the authors in [71] claim that one adversarial sample
influences PERCIVAL to block another benign non-ad image.
This, however, is not true; the authors claim to use two benign

Baseline Treatment Overhead (%) (ms)

Chromium Chromium + PERCIVAL 4.55 178.23
Brave Brave + PERCIVAL 19.07 281.85

Figure 16: Performance evaluation of PERCIVAL on Render
metric.

images, one of which is not benign and other is contentless
white-space image. PERCIVAL blocks these images. If these
are replaced with stock non-ad images, PERCIVAL correctly
renders both, meaning that PERCIVAL makes each decision
independently and is not vulnerable to hijacking as is claimed
in the paper.

We found that one of the attacks where they used
PERCIVAL’s model to create adversarial ad images affects
PERCIVAL due to our design decision to run PERCIVAL
client-side thereby giving attackers white box access to the
model. To address this concern, we argue that PERCIVAL is
extremely light-weight and can be re-trained and updated very
quickly. Our model currently takes 9 minutes (7 epochs) to
fine-tune the weights of the network on an NVIDIA V 100
GPU, meaning that we can generate new models very quickly.
PERCIVAL is 1.7MB which is almost half the average web
page in 2018 [25] making frequent downloads easier.

To demonstrate, re-training and model update as an
effective defense against the adversarial samples, we trained
a MobilenetV2 [63] with our current dataset. It took 9
minutes of fine-tuning to get to our baseline accuracy. The
updated model correctly classified all the adversarial samples
generated for PERCIVAL by Tramer et al. [71] suggesting that
none of the samples transferred to this model. It should be
noted that, we did not add any more data to our dataset.

While we do accept that given sufficient time and machine
learning expertise, it may be possible to create adversarial
samples that generalize across different models but it in effect
makes evasion more expensive. If we can update the model
frequently, adversaries will have to play catch-up every time.

Additionally, to improve the robustness of the models
against adversarial attacks one could employ techniques like
min-max (robust) optimization [56] ,where the classification
loss is minimized while maximizing the acceptable
perturbation one can apply to the image, or randomized
smoothing [34, 51, 53] where provable (or certified) robust
accuracy can be afforded. Such techniques have shown
promising results in training robust models and are currently
under active research [66, 78].

Two main criticisms with such techniques is the
performance degradation in accuracy but also the costly
optimization involved. Although the "inherent tension"
between robustness and accuracy [72] is inevitable, the
l2 perturbations drive the network to focus on more
perceptual features and not on imperceptual features that
can be exploitable. The training time penalty though can
be mitigated by adopting fast min-max-based adversarial
robustness training algorithms like [67, 79]. Given the
fast iteration time for fine-tuning our network, any such
performance degradation should be within our iteration cycle
quota. We leave thorough study of such mitigation techniques
for future work.

396 2020 USENIX Annual Technical Conference USENIX Association

Model Size FP FN

Sentinel [22] Clone 256 MB 0/20 5/29
ResNet [42] 242 MB 0/20 21/39
PERCIVAL 1.76 MB 2/7 3/33

Figure 17: Tramer et al.’s [71] evaluation of various deep
learning based perceptual ad blockers. The difference in the
number of images used for evaluation stem from the kind of
images the ad blocker is expecting.

7 Limitations
Dangling Text: By testing PERCIVAL integrated into
Chromium, we noticed the following limitations. Many ads
consist of multiple elements, which contain images and text
information layered together. PERCIVAL is positioned in the
rendering engine, and therefore it has access to one image at
a time. This leads to situations where we effectively block
the image, but the text is left dangling. Although this is rare,
we can mitigate this by retraining the model with ad image
frames containing just the text. Alternatively, a non-machine
learning solution would be to memorize the DOM element
that contains the blocked image and filter it out on consecutive
page visitations. Although this might provide an unsatisfying
experience to the user, we argue that it is of the benefit of the
user to eventually have a good ad blocking experience, even
if this is happening on a second page visit.
Small Images: Currently, images that are below 100× 100
size skips PERCIVAL to reduce the processing time. This
is a limitation which can be alleviated by deferring the
classification and blocking of small images to a different
thread, effectively blocking asynchronously. That way we
make sure that we don’t regress the performance significantly,
while we make sure that consecutive requests will continue
blocking small ads.

8 Related Work
Filter lists: Popular ad blockers like, Adblock Plus [1],
uBlock Origin [26], and Ghostery [13] are using a set
of rules, called filter-list, to block resources that match a
predefined crowd-sourced list of regular expressions (from
lists like EasyList and EasyPrivacy). On top of that, CSS
rules are applied, to prevent DOM elements that are potential
containers of ads. These filter-lists are crowd-sourced and
updated frequently to adjust on the non-stationary nature
of the online ads [70]. For example, EasyList, the most
popular filter-list, has a history of 9 years and contains
more than 60,000 rules [74]. However, filter-list based
solutions enable a continuous cat-and-mouse game: their
maintenance cannot scale efficiently, as they depend on the
human-annotator and they do not generalize to “unseen”
examples.
Perceptual Ad Blocking: Perceptual ad blocking is the
idea of blocking ads based solely on their appearance; an

example ad, highlighting some of the typical components.
Storey et al. [70] uses the rendered image content to identify
ads. More specifically, they use OCR and fuzzy image search
techniques to identify visual cues such as ad disclosure
markers or sponsored content links. Unlike PERCIVAL, this
work assumes that the ad provider is complying with the
legislation and is using visual cues like AdChoices.

Sentinel [65] proposes a solution based on convolutional
neural networks (CNNs) to identify Facebook ads. This
work is closer to our proposal; however, their model is not
deployable in mobile devices or desktop computers because
of its large size (>200MB). Also, we would like to mention
the work of [28, 42, 77], where they use deep neural networks
to identify the represented signifiers in the Ad images. This is
a promising direction in semantic and perceptual ad blocking.

Adversarial attacks: In computer-vision, researchers have
demonstrated attacks that can cause prediction errors by
near-imperceptible perturbations of the input image. This
poses risks in a wide range of applications on which
computer vision is a critical component (e.g. autonomous
cars, surveillance systems) [58–60]. Similar attacks have been
demonstrated in speech to text [30], malware detection [39]
and reinforcement-learning [41]. To defend from adversarial
attacks, a portfolio of techniques has been proposed [33, 45,
46,49,50,56], whether these solve this open research problem,
remains to be seen.

9 Conclusion
With PERCIVAL, we illustrate that it is possible to

devise models that block ads, while rendering images inside
the browser. Our implementation shows a rendering time
overhead of 4.55%, for Chromium and and 19.07%, for Brave
browser, demonstrating the feasibility of deploying deep
neural networks inside the critical path of the rendering engine
of a browser. We show that our perceptual ad blocking model
can replicate EasyList rules with an accuracy of 96.76%,
making PERCIVAL a viable and complementary ad blocking
layer. Finally, we demonstrate off the shelf language-agnostic
detection due to the fact that our models do not depend
on textual information and we show that PERCIVAL is a
compelling blocking mechanism for first-party Facebook
sponsored content, for which traditional filter based solutions
are less effective.

Acknowledgements
We would like to thank the anonymous reviewers for their

thoughtful comments and Brave Research team for providing
valuable feedback during the project. Panagiotis Tigas is
supported by the UK EPSRC CDT in Autonomous Intelligent
Machines and Systems (grant reference EP/L015897/1).
Zainul Abi Din is supported by a grant from Bouncer
Technologies to UC Davis (grant reference A20-2169).

USENIX Association 2020 USENIX Annual Technical Conference 397

References
[1] Adblock Plus for Chrome support. https://

adblockplus.org/.
[2] Annoying online ads do cost business. https:

//www.nngroup.com/articles/annoying-ads-
cost-business/.

[3] Apple neutered ad blockers in Safari . https:
//www.zdnet.com/article/apple-neutered-
ad-blockers-in-safari-but-unlike-chrome-
users-didnt-say-a-thing/.

[4] Brave - Secure, Fast & Private Web Browser with
Adblocker. https://brave.com/.

[5] Chromium Graphics. https://www.chromium.
org/developers/design-documents/chromium-
graphics.

[6] Coalition for better ads. https://www.betterads.
org/research/.

[7] EasyList. https://easylist.to.
[8] ExpressVPN. https://www.expressvpn.com/.
[9] Facebook Ad placements. https://www.facebook.

com/business/help/407108559393196.
[10] Facebook’s Arms Race with Adblockers Continues

to Escalate. https://motherboard.vice.com/en_
us/article/7xydvx/facebooks-arms-race-with-
adblockers-continues-to-escalate.

[11] False and deceptive display ads at yahoo’s right media,
2009. http://www.benedelman.org/rightmedia-
deception/#reg.

[12] Firefox’s Enhanced Protection. https://blog.
mozilla.org/blog/2019/09/03/todays-firefox-
blocks-third-party-tracking-cookies-and-
cryptomining-by-default/.

[13] Ghostery – Privacy Ad Blocker. https://www.
ghostery.com/.

[14] Google Is Finally Making Chrome Extensions More
Secure . https://www.wired.com/story/google-
chrome-extensions-security-changes/.

[15] Implement hide-if-contains-snippet. https://issues.
adblockplus.org/ticket/7088/.

[16] Introducing native ad blocking feature. . https:
//blogs.opera.com/desktop/2016/03/native-
ad-blocking-feature-opera-for-computers/.

[17] iPhone users can block ads in Safari on iOS
9 . https://www.theverge.com/2015/6/11/
8764437/iphone-adblock-safari-ios-9.

[18] More than half of local independent news
sites are selling sponsored content. https:
//www.niemanlab.org/2016/06/more-than-half-
of-local-independent-online-news-sites-
are-now-selling-sponsored-content-survey/.

[19] Page Fair Ad Block Report. https://pagefair.com/
blog/2017/adblockreport/.

[20] Puppeteer: Headless Chrome Node API. https://
github.com/GoogleChrome/puppeteer.

[21] Selenium: Web Browser Automation. https://www.
seleniumhq.org.

[22] Sentinel: The artificial intelligenence ad detector.
[23] Similar Web. https://www.similarweb.com/.
[24] Skia Graphics Library. https://skia.org/.
[25] The average web page is 3MB. https://speedcurve.

com/blog/web-performance-page-bloat/.
[26] uBlock Origin. https://www.ublock.org/.
[27] Why people hate ads? https://www.vieodesign.

com/blog/new-data-why-people-hate-ads/.
[28] Karuna Ahuja, Karan Sikka, Anirban Roy, and Ajay

Divakaran. Understanding Visual Ads by Aligning
Symbols and Objects using Co-Attention. 2018.

[29] Sruti Bhagavatula, Christopher Dunn, Chris Kanich,
Minaxi Gupta, and Brian Ziebart. Leveraging Machine
Learning to Improve Unwanted Resource Filtering.
In Proceedings of the 2014 Workshop on Artificial
Intelligent and Security Workshop - AISec ’14, 2014.

[30] Nicholas Carlini and David Wagner. Audio
adversarial examples: Targeted attacks on speech-to-text.
Proceedings - 2018 IEEE Symposium on Security and
Privacy Workshops, SPW 2018, 2018.

[31] Claude Castelluccia, Mohamed-Ali Kaafar, and
Minh-Dung Tran. Betrayed by your ads! reconstructing
user profiles from targeted ads. In Proceedings of the
12th International Conference on Privacy Enhancing
Technologies, PETS’12, page 1–17, Berlin, Heidelberg,
2012. Springer-Verlag.

[32] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros
Kapravelos. Improving web content blocking with
event-loop-turn granularity javascript signatures. arXiv,
pages arXiv–2005, 2020.

[33] Steven Chen, Nicholas Carlini, and David A. Wagner.
Stateful detection of black-box adversarial attacks.
CoRR, abs/1907.05587, 2019.

[34] Jeremy M Cohen, Elan Rosenfeld, and J Zico
Kolter. Certified adversarial robustness via randomized
smoothing. In Proceedings of the 36th International
Conference on Machine Learning, Proceedings of
Machine Learning Research, pages 1310–1320. PMLR,
2019.

[35] Steven Englehardt and Arvind Narayanan. Online
tracking: A 1-million-site measurement and analysis.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16,
New York, NY, USA, 2016. ACM.

[36] G. Storey, D. Reisman, J. Mayer and
A. Narayanan. Perceptual Ad Highlighter.
https://chrome.google.com/webstore/
detail/perceptual-ad-highlighter/
mahgiflleahghaapkboihnbhdplhnchp, 2017.

398 2020 USENIX Annual Technical Conference USENIX Association

https://adblockplus.org/
https://adblockplus.org/
https://www.nngroup.com/articles/annoying-ads-cost-business/
https://www.nngroup.com/articles/annoying-ads-cost-business/
https://www.nngroup.com/articles/annoying-ads-cost-business/
https://www.zdnet.com/article/apple-neutered-ad-blockers-in-safari-but-unlike-chrome-users-didnt-say-a-thing/
https://www.zdnet.com/article/apple-neutered-ad-blockers-in-safari-but-unlike-chrome-users-didnt-say-a-thing/
https://www.zdnet.com/article/apple-neutered-ad-blockers-in-safari-but-unlike-chrome-users-didnt-say-a-thing/
https://www.zdnet.com/article/apple-neutered-ad-blockers-in-safari-but-unlike-chrome-users-didnt-say-a-thing/
https://brave.com/
https://www.chromium.org/developers/design-documents/chromium-graphics
https://www.chromium.org/developers/design-documents/chromium-graphics
https://www.chromium.org/developers/design-documents/chromium-graphics
https://www.betterads.org/research/
https://www.betterads.org/research/
https://easylist.to
https://www.expressvpn.com/
https://www.facebook.com/business/help/407108559393196
https://www.facebook.com/business/help/407108559393196
https://motherboard.vice.com/en_us/article/7xydvx/facebooks-arms-race-with-adblockers-continues-to-escalate
https://motherboard.vice.com/en_us/article/7xydvx/facebooks-arms-race-with-adblockers-continues-to-escalate
https://motherboard.vice.com/en_us/article/7xydvx/facebooks-arms-race-with-adblockers-continues-to-escalate
http://www.benedelman.org/rightmedia-deception/#reg
http://www.benedelman.org/rightmedia-deception/#reg
https://blog.mozilla.org/blog/2019/09/03/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
https://blog.mozilla.org/blog/2019/09/03/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
https://blog.mozilla.org/blog/2019/09/03/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
https://blog.mozilla.org/blog/2019/09/03/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
https://www.ghostery.com/
https://www.ghostery.com/
https://www.wired.com/story/google-chrome-extensions-security-changes/
https://www.wired.com/story/google-chrome-extensions-security-changes/
https://issues.adblockplus.org/ticket/7088/
https://issues.adblockplus.org/ticket/7088/
https://blogs.opera.com/desktop/2016/03/native-ad-blocking-feature-opera-for-computers/
https://blogs.opera.com/desktop/2016/03/native-ad-blocking-feature-opera-for-computers/
https://blogs.opera.com/desktop/2016/03/native-ad-blocking-feature-opera-for-computers/
https://www.theverge.com/2015/6/11/8764437/iphone-adblock-safari-ios-9
https://www.theverge.com/2015/6/11/8764437/iphone-adblock-safari-ios-9
https://www.niemanlab.org/2016/06/more-than-half-of-local-independent-online-news-sites -are-now-selling-sponsored-content-survey/
https://www.niemanlab.org/2016/06/more-than-half-of-local-independent-online-news-sites -are-now-selling-sponsored-content-survey/
https://www.niemanlab.org/2016/06/more-than-half-of-local-independent-online-news-sites -are-now-selling-sponsored-content-survey/
https://www.niemanlab.org/2016/06/more-than-half-of-local-independent-online-news-sites -are-now-selling-sponsored-content-survey/
https://pagefair.com/blog/2017/adblockreport/
https://pagefair.com/blog/2017/adblockreport/
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.similarweb.com/
https://skia.org/
https://speedcurve.com/blog/web-performance-page-bloat/
https://speedcurve.com/blog/web-performance-page-bloat/
https://www.ublock.org/
https://www.vieodesign.com/blog/new-data-why-people-hate-ads/
https://www.vieodesign.com/blog/new-data-why-people-hate-ads/
https://chrome.google.com/webstore/ detail/perceptual-ad-highlighter/mahgiflleahghaapkboihnbhdplhnchp
https://chrome.google.com/webstore/ detail/perceptual-ad-highlighter/mahgiflleahghaapkboihnbhdplhnchp
https://chrome.google.com/webstore/ detail/perceptual-ad-highlighter/mahgiflleahghaapkboihnbhdplhnchp

[37] Kiran Garimella, Orestis Kostakis, and Michael
Mathioudakis. Ad-blocking: A Study on Performance,
Privacy and Counter-measures. In Proceedings
ofWebSci ’17, Troy, NY, USA, 2017. WebSci ’17.

[38] Daniel G. Goldstein, R. Preston McAfee, and Siddharth
Suri. The cost of annoying ads. In WWW ’13, 2013.

[39] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. Adversarial
examples for malware detection. In European
Symposium on Research in Computer Security. Springer,
2017.

[40] David Gugelmann, Markus Happe, Bernhard Ager,
and Vincent Lenders. An Automated Approach
for Complementing Ad Blockers’ Blacklists. In
Proceedings on Privacy Enhancing Technologies,
volume 2015, 2015.

[41] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan
Duan, and Pieter Abbeel. Adversarial attacks on neural
network policies. arXiv preprint arXiv:1702.02284,
2017.

[42] Zaeem Hussain, Christopher Thomas, Mingda Zhang,
Zuha Agha, Xiaozhong Zhang, Nathan Ong, Keren Ye,
and Adriana Kovashka. Automatic understanding of
image and video advertisements. Proceedings - 30th
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, 2017-January(14):1100–1110,
2017.

[43] Forrest N. Iandola, Song Han, Matthew W. Moskewicz,
Khalid Ashraf, William J. Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size. 2016.

[44] Umar Iqbal, Zubair Shafiq, Peter Snyder, Shitong Zhu,
Zhiyun Qian, and Benjamin Livshits. Adgraph: A
machine learning approach to automatic and effective
adblocking. CoRR, abs/1805.09155, 2018.

[45] Harini Kannan, Alexey Kurakin, and Ian Goodfellow.
Adversarial Logit Pairing. arXiv preprint
arXiv:1803.06373, 2018.

[46] J Zico Kolter and Eric Wong. Provable defenses against
adversarial examples via the convex outer adversarial
polytope. arXiv preprint arXiv:1711.00851, 1(2), 2017.

[47] Georgios Kontaxis and Monica Chew. Tracking
protection in firefox for privacy and performance. ArXiv,
abs/1506.04104, 2015.

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, USA, 2012. Curran Associates Inc.

[49] Alex Kurakin, Dan Boneh, Florian Tramèr, Ian
Goodfellow, Nicolas Papernot, and Patrick McDaniel.
Ensemble Adversarial Training: Attacks and Defenses.
2018.

[50] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

[51] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu,
Daniel Hsu, and Suman Jana. Certified robustness to
adversarial examples with differential privacy. In 2019
IEEE Symposium on Security and Privacy (SP), pages
656–672. IEEE, 2019.

[52] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi
Kohno, and Franziska Roesner. Internet jones and the
raiders of the lost trackers: An archaeological study
of web tracking from 1996 to 2016. In 25th USENIX
Security Symposium (USENIX Security 16), Austin, TX,
August 2016. USENIX Association.

[53] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence
Carin. Certified adversarial robustness with additive
noise. In Advances in Neural Information Processing
Systems, pages 9459–9469, 2019.

[54] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and
XiaoFeng Wang. Knowing your enemy: Understanding
and detecting malicious web advertising. In Proceedings
of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 674–686,
New York, NY, USA, 2012. ACM.

[55] Timothy Libert. Exposing the hidden web: An analysis
of third-party http requests on 1 million websites. 11
2015.

[56] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations,
2018.

[57] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis,
S. Neuner, M. Schmiedecker, and E. Weippl. Block me
if you can: A large-scale study of tracker-blocking tools.
In 2017 IEEE European Symposium on Security and
Privacy (EuroS P), pages 319–333, 2017.

[58] Nicolas Papernot, Patrick McDaniel, and Ian
Goodfellow. Transferability in Machine Learning: from
Phenomena to Black-Box Attacks using Adversarial
Samples. 2016.

[59] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical Black-Box Attacks against Machine Learning.
2016.

[60] Nicolas Papernot, Patrick Mcdaniel, Somesh Jha, Matt
Fredrikson, Z. Berkay Celik, and Ananthram Swami.
The limitations of deep learning in adversarial settings.
Proceedings - 2016 IEEE European Symposium on
Security and Privacy, EURO S and P 2016, 2016.

[61] Enric Pujol, Tu Berlin, Oliver Hohlfeld, Anja Feldmann,
and Tu Berlin. Annoyed users: Ads and ad-block usage
in the wild.

USENIX Association 2020 USENIX Annual Technical Conference 399

[62] Sam Tolomei. Shrinking APKs, growing installs.
https://medium.com/googleplaydev/shrinking-
apks-growing-installs-5d3fcba23ce2.

[63] Mark Sandler, Andrew G. Howard, Menglong Zhu,
Andrey Zhmoginov, and Liang-Chieh Chen. Inverted
residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation. CoRR,
abs/1801.04381, 2018.

[64] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna
Vedantam, Michael Cogswell, Devi Parikh, and Dhruv
Batra. Grad-cam: Why did you say that? visual
explanations from deep networks via gradient-based
localization. CoRR, abs/1610.02391, 2016.

[65] Adblock Sentinel. Adblock Plus, Sentinel, 2018.
[66] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi,

Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial
training for free! In Advances in Neural Information
Processing Systems, pages 3353–3364, 2019.

[67] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi,
Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial
training for free! In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 32, pages 3358–3369. Curran Associates, Inc.,
2019.

[68] R. Shao, V. Rastogi, Y. Chen, X. Pan, G. Guo,
S. Zou, and R. Riley. Understanding in-app ads and
detecting hidden attacks through the mobile app-web
interface. IEEE Transactions on Mobile Computing,
17(11):2675–2688, 2018.

[69] Anastasia Shuba and Athina Markopoulou. NoMoATS:
Towards Automatic Detection of Mobile Tracking.
Proceedings on Privacy Enhancing Technologies,
2020(2), 2020.

[70] Grant Storey, Dillon Reisman, Jonathan Mayer, and
Arvind Narayanan. The Future of Ad Blocking: An
Analytical Framework and New Techniques. 2017.

[71] Florian Tramèr, Pascal Dupré, Gili Rusak, Giancarlo
Pellegrino, and Dan Boneh. Ad-versarial: Defeating
perceptual ad-blocking. CoRR, abs/1811.03194, 2018.

[72] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness
may be at odds with accuracy. In International
Conference on Learning Representations, 2019.

[73] Narseo Vallina-Rodriguez, Jay Shah, Alessandro
Finamore, Yan Grunenberger, Konstantina

Papagiannaki, Hamed Haddadi, and Jon Crowcroft.
Breaking for commercials: Characterizing mobile
advertising. In Proceedings of the 2012 Internet
Measurement Conference, IMC ’12, page 343–356,
New York, NY, USA, 2012. Association for Computing
Machinery.

[74] Antoine Vastel, Peter Snyder, and Benjamin Livshits.
Who Filters the Filters: Understanding the Growth,
Usefulness and Efficiency of Crowdsourced Ad
Blocking. arXiv preprint arXiv:1810.09160, 2018.

[75] Qianru Wu, Qixu Liu, Yuqing Zhang, Peng Liu, and
Guanxing Wen. A machine learning approach for
detecting third-party trackers on the web. In Sokratis
Katsikas, Catherine Meadows, Ioannis Askoxylakis,
and Sotiris Ioannidis, editors, Computer Security -
21st European Symposium on Research in Computer
Security, ESORICS 2016, Proceedings, Lecture Notes
in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), pages 238–258, Germany, January
2016. Springer Verlag. 21st European Symposium
on Research in Computer Security, ESORICS 2016 ;
Conference date: 26-09-2016 Through 30-09-2016.

[76] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi
Weinsberg, Anmol Sheth, Roberto Perdisci, and
Wenke Lee. Understanding malvertising through
ad-injecting browser extensions. In Proceedings of
the 24th international conference on world wide web.
International World Wide Web Conferences Steering
Committee, 2015.

[77] Keren Ye and Adriana Kovashka. ADVISE: Symbolism
and external knowledge for decoding advertisements.
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 11219 LNCS, 2018.

[78] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing
Zhu, and Bin Dong. You only propagate once:
Accelerating adversarial training via maximal principle.
In Advances in Neural Information Processing Systems,
pages 227–238, 2019.

[79] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing
Zhu, and Bin Dong. You only propagate once:
Accelerating adversarial training via maximal principle.
In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems

32, pages 227–238. Curran Associates, Inc., 2019.

400 2020 USENIX Annual Technical Conference USENIX Association

https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2

Harmonizing Performance and Isolation in Microkernels with Efficient

Intra-kernel Isolation and Communication

Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, Haibo Chen
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Institute of Parallel and Distributed Systems (IPADS), Shanghai Jiao Tong University

Abstract

This paper presents UnderBridge, a redesign of traditional
microkernel OSes to harmonize the tension between messag-
ing performance and isolation. UnderBridge moves the OS
components of a microkernel between user space and ker-
nel space at runtime while enforcing consistent isolation. It
retrofits Intel Memory Protection Key for Userspace (PKU)
in kernel space to achieve such isolation efficiently and de-
sign a fast IPC mechanism across those OS components.
Thanks to PKU’s extremely low overhead, the inter-process
communication (IPC) roundtrip cost in UnderBridge can be
as low as 109 cycles. We have designed and implemented a
new microkernel called ChCore based on UnderBridge and
have also ported UnderBridge to three mainstream microker-
nels, i.e., seL4, Google Zircon, and Fiasco.OC. Evaluations
show that UnderBridge speeds up the IPC by 3.0× compared
with the state-of-the-art (e.g., SkyBridge) and improves the
performance of IPC-intensive applications by up to 13.1×
for the above three microkernels.

1 Introduction

The microkernel OS design has been studied for decades [3,
27, 35, 44, 49, 52, 70]. Microkernels minimize code running
in supervisor mode by moving OS components, such as file
systems and the network stack, as well as device drivers, into
isolated user processes, which achieves good extensibility, se-
curity, and fault isolation. Other than the success of microker-
nels in safety-critical scenarios [1, 40, 66], there is a resur-
gent interest in designing microkernels for more general-
purpose applications, such as Google’s next-generation ker-
nel Zircon [3].

However, a cost coming with microkernel is its commonly
lower performance compared with its monolithic counter-
parts, which forces a tradeoff between performance and iso-
lation in many cases. One key factor of such cost is the com-
munication (IPC) overhead between OS components, which
is considered as the Achilles’ Heel of microkernels [30, 33,
51, 53, 62, 76]. Hence, there has been a long line of re-
search work to improve the IPC performance for microker-
nels [19, 30, 36, 44, 50, 52, 62, 79, 82]. Through a com-

bination of various optimizations such as in-register param-
eter passing and scheduling avoidance, the performance of
highly optimized IPC has reached less than 1500 cycles per
roundtrip [13]. The state-of-the-art SkyBridge IPC design,
which retrofits Intel vmfunc to optimize IPCs, has further re-
duced the IPC cost to around 400 cycles per roundtrip [62].
However, such cost is still considerable compared with the
cost of invoking kernel components in monolithic kernels
(e.g., calling function pointers takes around 24 cycles).

There is always a tension between isolation and perfor-
mance for OS kernel designs. In this paper, we present a
new design named UnderBridge, which redesigns the run-
time structure of microkernels to harmonize performance
and isolation. The key idea is building isolated domains in su-
pervisor mode while providing efficient cross-domain inter-
actions, and enabling user-space system servers1 of a micro-
kernel OS to run in those domains. A traditional microkernel
OS usually consists of a core kernel in supervisor mode and
several system servers in different user processes. With Un-
derBridge, a system server can also run in an isolated kernel
space domain besides a user process. The system servers that
run in kernel can interact with each other as well as the core
kernel efficiently without traditional expensive IPCs, and ap-
plications can invoke them with only two privilege switches,
similar to a monolithic OS. Although the number of isolated
domains is limited and may be smaller than the number of
system servers, UnderBridge supports server migration. The
microkernel can dynamically decide to run a server either in
a user process or a kernel domain based on how performance-
critical it is. However, it is challenging to efficiently provide
mutually-isolated domains together with fast cross-domain
interactions in kernel space.

Protection Keys for Userspace (PKU [7], Section-2.7,
Volume-3), also named as Intel memory protection keys
(MPK), has been introduced in recent Intel processors and
investigated by researchers to achieve intra-process isolation
in user space [29, 39, 64, 77]. As the name “Userspace” in-
dicates, PKU is a mechanism that appears to be only effec-

1We name the microkernel OS components implementing system func-
tionalities as system servers. File system and drivers are typical examples.

USENIX Association 2020 USENIX Annual Technical Conference 401

tive in user space. After a detailed investigation, we observed
that no matter in kernel space (Ring-0) or user space (Ring-

3), PKU-capable CPUs transparently enforce permission

checks on memory accesses only if the User/Kernel (U/K) bit

of the corresponding page table entry is User (means user-

accessible). Hence, PKU, as a lightweight hardware feature,
also offers an opportunity to achieve efficient intra-kernel
isolation if all the page table entries for kernel memory are
marked with U bit instead of K bit. However, marking ker-
nel memory as user-accessible is dangerous since unprivi-
leged applications may directly access kernel memory. Fortu-
nately, today’s OS kernels are usually equipped with kernel-
page-table-isolation (KPTI) when preferring stronger secu-
rity guarantees, including defending against Meltdown-like
attacks [20, 55] and protecting kernel-address-space-layout-
randomization [8, 42]. User processes and the kernel use dif-
ferent page tables with KPTI, so marking kernel memory as
user-accessible in a separate page table does not risk allow-
ing applications to access kernel space.

Hence, UnderBridge allocates an individual page table for
the kernel and builds isolated execution domains atop MPK
memory domains in kernel space. Unlike software fault iso-
lation (SFI), guaranteeing memory isolation with MPK hard-
ware incurs nearly zero runtime overhead. Meanwhile, a
new instruction, wrpkru, can help switching domains by writ-
ing a specific register, PKRU (protection key rights register
for user pages), which only takes 28 cycles. Thus, domain
switches can be quick. With UnderBridge, we design and im-
plement a prototype microkernel named ChCore, which com-
prises a core kernel and different system servers similar to
existing microkernels. ChCore still preserves the IPC inter-
faces with fast domain switch for the servers but embraces
better performance by significantly reducing the IPC costs.

However, we find merely using MPK in kernel fails to
achieve the same isolation guarantee as traditional microker-
nels. On the one hand, since MPK only checks read/write per-
missions when accessing memory but applies no restrictions
on instruction fetching, any server can execute all the code
in the same virtual address space. Thus, an IPC gate (a code
piece), which is used in UnderBridge to establish the con-
nection between two specific servers, can be abused by any
server to issue an illegal IPC. To address the problem, Under-
Bridge authenticates the caller of an IPC gate through check-
ing its (unique) memory-access permission and ensures the
authentication is non-bypassable by validating a secret token
at both sides of the IPC gate.

On the other hand, system servers running in kernel space
can execute privileged instructions. Although the servers
(initially running in user space) should not contain any
privileged instruction, such instructions may arise inadver-
tently on x86, e.g., being composed of the bytes of adjacent
instructions. Thus, a compromised server may use return-
oriented programming (ROP) [21, 69] to execute them. Tradi-
tional microkernels confine system servers in user processes,

which, inherently, prevent them from executing privileged in-
structions and exclude them from the system’s trusted com-
puting base (TCB). To do not bloat the TCB, we also pre-
vent the in-kernel system servers from executing any privi-
leged instruction. We leverage hardware virtualization and
run ChCore in non-root mode and deploy a tiny secure mon-
itor in root mode. For most privileged instructions that are
not in the critical path, we configure them to trigger VMExit

and enforce permission checks in the monitor. For others, we
carefully handle them using binary scanning and rewriting.

We have implemented ChCore on a real server with Intel
Xeon Gold 6138 CPUs and conducted evaluations to show
the efficiency of UnderBridge. To demonstrate the general-
ity of UnderBridge, we have also ported it to three popu-
lar microkernels, i.e., seL4 [14], Google Zircon [4], and Fi-
asco.OC [2]. In the micro-benchmark, UnderBridge achieves
3.0× speedup compared with SkyBridge. In IPC-intensive
application benchmarks, UnderBridge also shows better per-
formance than SkyBridge (up to 65%) and improves the per-
formance of the above three microkernels by 2.5×∼13.1×.

In summary, this paper makes the following contributions:

• A new IPC design called UnderBridge that retrofits In-
tel MPK/PKU in kernel to achieve ultra-low overhead
interactions across system servers.

• A microkernel prototype ChCore which uses Under-
Bridge to move system servers back to kernel space
while keeping the same isolation properties as tradi-
tional microkernels.

• A detailed evaluation of UnderBridge in ChCore and
three widely-used microkernels, which demonstrates
the efficiency of the design.

2 Motivation

2.1 Invoking Servers with IPCs is Costly

To obviate the severe consequences incurred by crashes or
security breaches [9, 22, 24], the microkernel architecture
places most kernel functionalities into different user-space
system servers and only keeps crucial functionalities in the
privileged kernel, as depicted in Figure-1. Therefore, a fault
in a single system server can be caught before it propagates
to the whole system.

However, compared with a monolithic OS like Linux, a
system service invocation usually becomes more expensive

Application
System

Server A

System

Server B

Core Kernel

Ring-0

Ring-3

Process-1 Process-2 Process-3

E.g., SQLite3 E.g., xv6fs E.g., RAMdisk

Figure 1: A simplified microkernel architecture. Even without
KPTI, calling a server with IPC requires two user-kernel roundtrips
with two process switches. A vertical arrow represents one
roundtrip, and a dotted line means two process switches.

402 2020 USENIX Annual Technical Conference USENIX Association

in such an OS architecture. Figure-1 shows a service invo-
cation procedure that involves two system servers and thus
leads to two IPCs. In this case, a microkernel requires four

roundtrips between user and kernel in total, while Linux only
requires one (i.e., the leftmost arrow between the application
and the OS). It is because Linux invokes different kernel com-
ponents (like system servers in microkernel) directly through
function calls.

20%

40%

60%

80%

100%

Zircon seL4
w/ kpti

seL4
w/o kpti

IPC Cost
Real Work in Servers

(a)

Parts (cycles) w/o KPTI w/ KPTI

Privilege Switch 158 690
Process Switch 295 Included above
Others 277 320

Total 730 * 1010

*The result conforms to the officially reported
data (722∼736) [13].

(b)

Figure 2: (a) Invoking servers with IPCs is expensive. (b) A break-
down of seL4 fast-path IPC.

To measure the performance cost of server invocations
with IPC, we run SQLite3 [15] on Zircon and seL4 (§ 6 gives
the detailed setup). We measure (i) the total time spent on
invoking system servers (i.e., an FS server and a RAMdisk
server) and (ii) the effective time used in system servers for
handling the requests. The difference between the two time
durations is considered as the IPC cost. As presented in Fig-
ure 2(a), the IPC cost is as high as 79% in Zircon. Even in
seL4, which uses highly-optimized IPCs, 44% of the time is
spent on IPC when KPTI enabled (38% without KPTI).

Moreover, a system functionality may involve even more
IPCs to invoke multiple system servers. For instance, launch-
ing an application requires 8 IPC roundtrips (among Shell,

Loader, FS, and Driver) on Zircon. In contrast, it only needs
one or two system calls on Linux (e.g., fork + exec). There-
fore, invoking system servers with IPCs is time-consuming
in microkernels, which motivates our work in this paper.

2.2 IPC Overhead Analysis

To further understand the overhead of IPC, we break down
and measure the cost of each step in the IPC procedure in
seL4, which is known to be an efficient implementation of
microkernel IPC. Here we use the ideal configuration by re-
ferring to [13] and measure a one-way IPC (not a roundtrip)
without transferring data.

We find that the direct cost of the IPC consists of three
main parts as shown in Figure-2(b). The first part is the priv-
ilege switch. A user-space caller starts an IPC by using a
syscall instruction to trap into the kernel. The kernel needs
to save the caller’s context, which will be restored when re-
suming the caller. To invoke the target user-space callee, the
kernel transfers the control flow with a sysret instruction after
restoring the callee’s context. The second part is the process
switch. The major cost in this part is the CR3 modification in-
struction (270 cycles). Since the caller and callee are isolated

in different user-space processes (different address spaces),
the kernel has to change the address space from the caller
to the callee. With KPTI enabled, the kernel further needs to
change the address spaces twice during the privilege switch,
which inflates the overhead. The third part is other logics in
IPC, such as permissions and fast-path conditions checks.

Besides its inherent cost, an IPC will inevitably cause pol-
lution to the CPU internal structures such as the pipeline,
instruction, data caches, and translation look-aside buffers
(TLB), which has been evaluated in prior work [18, 32, 62,
71]. According to [71], the pollution caused by frequent priv-
ilege switches can degrade the performance by up to 65% for
SPEC CPU programs.

In summary, the switches of privilege and address space
in IPC bring considerable overhead, which motivates our
lightweight IPC design to remove these switches.

2.3 Using Intel MPK in Kernel

Background: Intel memory protection keys (MPK) [7] is a
new hardware feature to restrict memory accesses. MPK as-
signs a four-bit domain ID (aka, protection key) to each page
in a virtual address space by filling the ID in previously un-
used bits of page table entries. Thus, MPK can partition user
pages within a virtual address space into at most 16 memory
domains. To determine the access permissions (read-only,
read-write, none) on each memory domain, it introduces a
per-core register, PKRU, and a new instruction, wrpkru, to
modify the PKRU register in only 28 cycles. It is worth men-
tioning that MPK checks on memory accesses incur nearly
zero runtime overhead [39, 77]. Nevertheless, MPK does not
enforce permission checks on execution permission. One ex-
ecutable memory page is always executable to any domain,
even if PKRU forbids the domain from reading the page.
Observation: After a detailed investigation, we observe that
no matter in Ring-0 or Ring-3, MPK enforces permission
checks on any user-accessible memory page. To enable MPK
checks in Ring-0, the User/Kernel (U/K) bits of all the corre-
sponding page table entries in a four-level page table have to
be set as User (i.e., 1). If there exists one entry that contains
the Kernel bit at any level, MPK will not check the access
on the corresponding memory pages. Furthermore, the Su-
pervisor Mode Access Prevention (SMAP) and Supervisor
Mode Execution Prevention (SMEP) should also be disabled
for accessing or executing these pages (tagged with User) in
Ring-0.

2.4 Building Isolated Domains

There are many approaches to build lightweight and isolated
domains. SFI (Software Fault Isolation), which has been ac-
tively studied over 20 years [34, 46, 60, 68, 80, 87], is one
of the most mature candidates. However, although being a
general solution to achieve memory/fault isolation, SFI in-
curs non-negligible runtime overhead due to excessive code
instrumentations. For example, two representative studies

USENIX Association 2020 USENIX Annual Technical Conference 403

show that SFI introduces around 15% overhead for SPEC
CPU programs on average (Table-2 in [68]), even with the
help of the latest boundary-checking hardware MPX (Figure-
3 in [46]). Some other approaches [48, 88] uses x86 segmen-
tation for memory isolation, which avoids software checks
on memory accesses and is suitable for sandbox execution,
but it is not widely used anymore [68].

Instruction Cost (cycles)

Indirect Call + Return 24
syscall + sysret 150
Write CR3 (no TLB flush) 226
vmfunc (switch EPT) 146
wrpkru 28

Table 1: Cost comparison of selected instructions.

Leveraging advanced hardware features to build isolated
domains can achieve better runtime performance. For exam-
ple, prior work [39, 46, 56, 57, 62, 65, 77] utilizes (extended)
page tables to provide isolated domains in user space and ex-
ploits instructions like vmfunc and wrpkru for fast domain
switches. We list the costs of these frequently-used instruc-
tions in Table-1. The cost of wrpkru is the closest to indirect

call, which is used to invoke kernel components (with func-
tion pointers) in monolithic kernels. Therefore, considering
that MPK is applicable to the kernel and has good perfor-
mance property, we propose that MPK can be leveraged to
implement an efficient fine-grained isolation mechanism in
the kernel.

3 UnderBridge

Traditional IPC

Application Server-C

IPC Gate

Core Kernel

E
x
e
c
u
ti
o

n
 D

o
m

a
in

-1

E
x
e
c
u
ti
o

n
 D

o
m

a
in

-2

Server-B

Execution Domain-0 (Privileged)

Server-A

IPC Data

M
e
m

o
ry

 D
o

m
a
in

-0

Memory

Domain-1

Memory

Domain-2

Memory Domain-3

(Shared by A & B)

U
s
e
r

M
o

d
e

K
e
rn

e
l
M

o
d

e

Code Data

Process Process

Figure 3: The overview of ChCore based on UnderBridge.

The goal of UnderBridge is to optimize the synchronous
IPC2 while simultaneously maintaining strong isolation. An

2Synchronous IPC is commonly used in microkernels, especially when
calling system servers. After issuing a synchronous IPC, the caller blocks
until the callee returns.

intuitive design is adopting the MPK-based intra-process iso-
lation [39, 77] to run system servers within an application ad-
dress space. However, this design has three major problems.
First, it requires to map a server into multiple applications’
page tables, which makes updating the server’s memory map-
pings especially expensive (i.e., update all the page tables).
Second, its cost to setting up the IPC is non-negligible due
to intensive page table modifications. Third, it restricts the
applications’ ability to use the whole address space and the
MPK hardware freely.

Instead, UnderBridge boosts IPC performance by putting
the system servers, which are user-space processes in tradi-
tional microkernels, back into kernel space. Figure-3 shows
the system overview. The core kernel resembles the tra-
ditional microkernel, which provides crucial functionali-
ties such as managing memory protection, capability en-
forcement, scheduling, and establishing IPC connections.
With UnderBridge, system servers can run in kernel space
(e.g., Server-A/B) but are confined in isolated environments
(called execution domain). UnderBridge makes the core ker-
nel and in-kernel system servers share the same (kernel) ad-
dress space while leveraging Intel MPK to guarantee mem-
ory isolation.

To use MPK in kernel space, UnderBridge tags all the ker-
nel memory pages with “User” bits in the kernel page table,
as introduced in § 2.3. However, marking kernel memory as
user-accessible enables unprivileged user-space applications
to access kernel memory directly. UnderBridge prevents this
by allocating a separate page table to each application. An
application’s page table does not contain the kernel space
memory except for a small trampoline region (tagged with
“Kernel”), which is used for privilege switch (e.g., syscall).

Building IPC connections with in-kernel system servers
takes the following steps. First, a system server proactively
registers a function address (IPC function) in the core kernel
before serving requests. The core kernel will check whether
the address is legal, i.e., both executable and belonging to
the server. Second, another server can ask the core kernel to
establish an IPC connection with the registered server. Third,
the core kernel generates an IPC Gate, which helps to accom-
plish the IPC function invocation.

If an application needs to invoke the in-kernel server, it
also needs to establish the connection first. Later, it invokes
the system call for IPC and traps into the core kernel. Then,
the kernel will help to invoke the requested server via the
corresponding IPC gate (between the kernel and the server).

3.1 Execution Domains

As shown in Figure-3, UnderBridge constructs isolated ex-

ecution domains over MPK memory domains and confines
each in-kernel system server in an individual execution do-
main. Specifically, UnderBridge builds 16 execution do-
mains in kernel space and assigns a unique domain ID
(0∼15) to each of them. Execution domain 0 is specialized

404 2020 USENIX Annual Technical Conference USENIX Association

for running the (trustworthy) core kernel and can access all
the memory. Every other execution domain (1∼15) has a pri-
vate memory domain with a specific ID and can only access
its private memory domain by default. A system server, ex-
clusively running in one execution domain, stores its data,
stack, and heap regions in its private memory domain, which
cannot be accessed by other servers. Nevertheless, its code re-
gion resides in memory domain 0 that can only be read/writ-
ten by the core kernel. In this way, the server cannot read-
/write its own code but can still execute it (i.e., execute-only
memory) as MPK memory domains do not affect instruction
fetching. UnderBridge ensures an execution domain can only
access allowed memory domains by configuring its PKRU

register. It also forbids an execution domain (a server) from
modifying this register by itself (details in § 4.2).

Shared memory between two servers is allocated by al-
lowing them to access a free memory domain together (e.g.,
Memory Domain-3). Shared memory between a server and
the core kernel is achieved by letting the core kernel directly
access the server’s private memory domain. Shared memory
between an application and a server is achieved by mapping
some private memory of the server in the application’s page
table, which does not require a free memory domain.

3.2 IPC Gates

Even though system servers reside in the same kernel address
space, UnderBridge still preserves the well-defined IPC inter-
faces for them. When connecting two system servers (in two
execution domains), the core kernel generates an IPC gate for
them, which resides in memory domain 0. Specifically, it first
allocates a piece of memory for the gate and loads the gate
code, which is small, as shown in Figure-4, into the memory.
Then, it fills specific values (e.g., per-gate SECRET_TOKEN)
into the gate. After that, it gives the gate address to the two
system servers connected by this gate.

Later, during an IPC invocation, the gate transfers the con-
trol flow from a caller to a callee. To be more specific, it saves
the caller’s execution state, switches to the callee’s domain
by setting the PRKU register, and restores the callee’s execu-
tion state. UnderBridge allows the caller and callee to define
their calling conventions (the gates only save/restore neces-
sary state by default), which is flexible and efficient. Trans-
ferring messages by registers and shared memory are both
supported.

Since the system server in UnderBridge only executes
when being called through an IPC gate, we adopt the mech-
anism of decoupling the execution context, which contains
the execution state (e.g., register values), with the schedul-
ing context, which contains the scheduling information (e.g.,
time slice used in the scheduler) [47, 58, 72] and mark those
servers as passive. When an application (T1) invokes the sys-
tem server (T2) through an IPC, T2 inherits T1’s scheduling
context and then starts executing. When T2 invokes another
server (T3), T3 also inherits the scheduling context, which is

originally from T1. Thus, the scheduling overhead is avoided
in the IPC gates.

Besides intra-server, IPC gates also exist between the core
kernel and the servers, which enables the core kernel to in-
teract with the servers. Specifically, those in-kernel system
servers invoke the core kernel’s service through dedicated
IPC gates connected with the core kernel instead of using
syscall instructions. To handle exceptions/interrupts during
the execution of in-kernel servers, UnderBridge provides
similar gates at the beginning of each handler to switch the
execution domain to the core kernel (execution domain 0).

3.3 Server Migration

As MPK provides 16 memory domains in total, UnderBridge
can only support at most 16 execution domains concurrently,
including the reserved one for the core kernel. Neverthe-
less, more system servers can be required, considering the
number of different device drivers. When the number of
concurrent system servers exceeds 15, one solution is time-
multiplexing [64] but will bring non-negligible overhead if
frequently stopping and restarting servers.

Instead, UnderBridge enables server migration, which dy-
namically moves servers between user and kernel space.
Each server is compiled as a position-independent exe-
cutable, and the core kernel assigns disjoint virtual memory
regions for different system servers. Whenever runs in an ex-
ecution domain in the kernel or a user process, a server al-
ways uses the same virtual addresses. So, when migrating a
server between user and kernel, UnderBridge does not need
to do relocations because all the memory references in the
server are always valid (no changes), which significantly sim-
plifies the migration procedure. Moreover, the system call
layer of the LibC used by servers is also modified, and thus
all the syscall instructions are organized in one memory page,
namely the syscall page. When migrating a server from user
space to kernel space, the core kernel overrides this page with
another prepared page which contains IPC gates connected to
the core kernel. Therefore, a server can seamlessly perform
system calls no matter in user or kernel space.

Specifically, there are four steps to migrate a server from
kernel space to user space. First, the core kernel will wait for
the server to enter a quiescent state by blocking new IPC re-
quests to the server temporarily and waiting for the finishes
of on-going ones. Second, it will modify the syscall page

of the server and making the server perform system calls
through syscall instruction instead of IPC gates later. Third,
it will free the execution domain (ID) of the server by set-
ting the domain ID of the server’s page table entries to 0
and flush TLBs. If the server installs shared memory with an-
other in-kernel server (S), the domain ID of the shared mem-
ory will also be freed because the shared memory can use the
domain ID of S in the kernel page table. Last, the core ker-
nel will activate the in-user server and allow clients to issue
IPCs to it. Migrating a server from user space to kernel space

USENIX Association 2020 USENIX Annual Technical Conference 405

 ··· // Save & clear the caller’s states

 mov $SECRET_TOKEN, %r15

 xor %rcx, %rcx

 xor %rdx, %rdx

 /*

 * Replace Line 5-7 with Line-8.

 * Only the legal caller can access

 * ADDR_IN_CALLER.

 */

 rdpkru

 cmp $PKRU_CALLER, %rax

 jne handle_abuse

 mov %rsp, ADDR_IN_CALLER

 mov $PKRU_CALLEE, %rax

 wrpkru

 cmp $SECRET_TOKEN, %r15

 jne handle_abuse

 ··· // Save & clear the caller’s states

 xor %rcx, %rcx

 xor %rdx, %rdx

 mov $PKRU_CALLEE, %rax

 wrpkru // switch to the callee’s domain

 cmp $PKRU_CALLEE, %rax

 jne abort

 ··· // Execute the callee’s function

 xor %rcx, %rcx

 xor %rdx, %rdx

 mov $PKRU_CALLER, %rax

 wrpkru // switch to the caller’s domain

 cmp $PKRU_CALLER, %rax

 jne abort

 ··· // Restore & return to the caller

1

2

3
4
5

6

7

8

9

10
11

12
13

14

15

 ··· // Save & clear the caller’s states

 // Only core-kernel knows SECRET_TOKEN

 mov $SECRET_TOKEN, %r15

 xor %rcx, %rcx

 xor %rdx, %rdx

 // Authenticates the caller’s identity

 rdpkru

 cmp $PKRU_CALLER, %rax

 jne handle_abuse

 mov $PKRU_CALLEE, %rax

 wrpkru

 // Line-10 is removed due to Line-11

 cmp $PKRU_CALLEE, %rax

 cmp $SECRET_TOKEN, %r15

 // DoS attacks is also not allowed

 jne abort

 jne handle_abuse

1

2

3
4

5

6

7

+

+
+
+

8

9

10

11

12

+

13+
-

-

1

2

3
4

5

6

7
8

9
10

11
12

+

-
-
-

(a) (b) (c)

Figure 4: (a) A basic IPC gate for switching execution domains: Line 1-7 is from the caller to the callee and Line 9-15 is just a reverse process.
(b) A security-enhanced IPC gate (from the caller to the callee only) that solves the arbitrary IPC problem. (c) An optimized IPC gate based
on the secure one.

works similarly. The mappings of a system server in the ker-
nel page table (used when running in the kernel) will not be
removed, and the system server’s page table (used when run-
ning in user) always exists. And the core kernel will keep
corresponding mappings in the two page tables the same.

With server migration, UnderBridge can run frequently-
used servers (according to either online or offline profiling)
in kernel space while accommodating other servers in user
processes. Besides that, we think the number of frequently-
used servers may usually be small according to a preliminary
survey on some popular applications including Memcached,
MySQL, GCC, and a ROS-based (robot) application. We run
those applications on Linux and find the most required sys-
tem calls are only related to the File System, Network, Syn-
chronization, and Memory-Management. For a microkernel,
these system calls are usually implemented in only several
system servers or directly in the core kernel, which indicates
the server migration may rarely happen.

4 Enforcing Isolation in UnderBridge

Threat Model and Assumptions. UnderBridge aims to
achieve the same security guarantee as existing microkernels
and inherits the same trust model. Specifically, the (trusted)
core kernel is assumed to be bug-free and correctly imple-
mented because it has relatively small codebase (e.g., 8,500
LoC in our implementation) and is amenable to formal ver-
ification [44]. We do not trust applications or the operating
system servers, which may have vulnerabilities or even be
maliciously crafted and can be fully compromised by attack-
ers. Physical attacks and hardware bugs are out of the scope
of this paper.
Two Security Challenges. Although UnderBridge achieves
memory isolation by utilizing MPK hardware, there are still
two security threats.

The first threat is the arbitrary IPC problem. The core
kernel generates IPC gates in memory domain 0 to ensure
any server cannot modify the gates. However, an IPC gate
can still be invoked by any (in-kernel) system server as the
MPK does not enforce permission check on execution per-

mission. Although recent work on MPK-based intra-process
isolation [39, 77] does not consider such gate abusing prob-
lem, we cannot neglect it because it violates the enforce-
ment of the IPC capability in microkernels. Therefore, Un-
derBridge ensures only a legal caller (allowed by the core
kernel) can successfully use an IPC gate by adding manda-
tory authentications in the gate. § 4.1 explains the secure de-
sign of IPC gates.

The second threat is that untrusted in-kernel system
servers run in supervisor mode (Ring-0). Thus, a compro-
mised server can execute any privileged instructions theo-
retically, which threatens the whole system. For example, it
could install a new page table and freely access all memory.
One possible defense solution is to enforce control-flow in-
tegrity (CFI), which ensures that servers cannot execute any
illegal control flow leading to executing privileged instruc-
tions. However, CFI instrumentations inevitably bring obvi-
ous runtime overhead. Instead, we choose hardware virtual-
ization technology and run ChCore in non-root mode. A tiny
secure monitor in root mode audits the execution of most
privileged instructions, as summarized in Table 2, by simply
trapping them through VMExits. In the meanwhile, we use
the binary rewriting technique to avoid the expensive VMEx-

its on the critical paths. § 4.2 gives more details.

4.1 Unauthorized IPCs Prevention

As shown in Figure-4(a), the responsibility of an IPC gate
is saving/restoring the (necessary) execution context of the
caller/callee and switching the execution domain from the
caller to the callee. Line 2-4 prepares the argument registers
for wrpkru, which requires eax to store the target permission,
and both ecx and edx to be zero. The wrpkru instruction
in Line 5 sets PKRU_CALLEE (the callee’s permission) to
the PKRU register, which specifies the memory-access per-
mission, so the execution domain changes to the callee’s
domain after this instruction finishes. Line 6-7 prevents a
compromised thread from directly jumping (e.g., ROP) to
Line 5 with some carefully chosen value in eax. Existing
work [39, 77] on MPK also designs similar gates for intra-

406 2020 USENIX Annual Technical Conference USENIX Association

process isolation.
However, such a design faces the gate abusing problem.

Since MPK has no restriction on execution permission, a do-
main can use the gates belonging to other domains to issue
IPCs. UnderBridge solves this problem by authenticating the
caller’s identity in the IPC gates. As the core kernel is re-
sponsible for generating IPC gates when two execution do-
mains establish the IPC connection, it knows which domain
is the legal caller of the gate. Besides, since each domain
has unique memory-access permission, UnderBridge regards
the permission as the domain’s identity and checks the iden-
tity with rdpkru in Line 5-7 of Figure-4(b). Moreover, Un-
derBridge must ensure that the identity check cannot be by-
passed. Otherwise, a compromised thread can jump to Line
8/9 without going through the check. To this end, each gate
adds two cheap instructions (Line 2 and Line 11 in Figure-
4(b)) to guarantee that a successful IPC invocation must go
through the check. When setting up an IPC gate, the core ker-
nel randomly produces a 64-bit secret token with rdrand in-
struction and inserts it to the gate. Note that any server cannot
read the token value since the IPC gates belong to domain 0
(core kernel). Thus, any caller who wants to pass the check at
Line 11 must execute Line 2 first, which ensures the identity
check at Line 5-7 is non-bypassable for successful invoca-
tions. Similarly, Line 8 is also non-bypassable for successful
IPCs; thus, Line 10 is no more required.

Figure-4(c) further gives a more efficient design, which
eliminates the overhead of identity check. Although rdpkru

only takes about 9 cycles, it as well as the extra comparison
(Line 6-7) are still on the critical path of IPC. To remove the
overhead, UnderBridge authenticates IPC callers by reusing

the stack-pointer saving instruction (Line 8), which is ini-
tially located in the procedure of state saving (Line 1). In
this way, any illegal caller will trigger a fault when accessing
ADDR_IN_CALLER (Line 8) and get caught.

4.2 Privilege Deprivation

In traditional microkernels, system servers only have Ring-3
privilege. To achieve the same security/isolation guarantee,
UnderBridge should restrict the servers’ behavior when run-
ning them in execution domains (Ring-0). However, a com-
promised server may find and execute privileged instructions
at unaligned instruction boundaries with ROP to attack the
whole system. Based on an in-depth analysis of privileged
instructions (briefly summarized in Table-2), UnderBridge
combines virtualization hardware support, binary rewriting
technique, and some specific solutions to de-privilege the ex-
ecution domains for servers with negligible overhead.

According to our survey on four microkernels, system reg-
isters such as IDTR are only configured at boot time; de-
bug/profile registers are only accessed at debugging/profil-
ing time; most model-specific registers (MSRs) are also not
accessed in the critical paths. Thus, UnderBridge runs the
microkernel in non-root mode and configures the privileged

instructions operating on those registers to trigger VMExits.
And, the secure monitor in root mode checks whether they
are executed by the core kernel according to the memory-
access permission in PKRU. Nevertheless, rdmsr/wrmsr may
also be used to operate FS/GS in the critical path. Under-
Bridge can configure these two specific registers not to trap
or replace them with some newer non-privileged instructions
(e.g., wrfsbase).

Similarly, since control registers CR0 and CR4 are set at
boot time only, UnderBridge also traps the setting instruc-
tions. Nevertheless, accessing CR2 and reading CR0/CR4

cannot trigger VMExits. UnderBridge clears CR2, where
CPU saves the page fault address in the fault handler to
prevent information leakage, and hides the real CR0/CR4

value with a shadow value by leveraging virtualization hard-
ware functionality. As for CR3, it points to page tables and
needs modifications when switching address spaces, which
frequently appears in the critical path. So, triggering VMEx-

its on CR3 modifications is expensive. Instead, we use the fol-
lowing lightweight solution (a special method). When load-
ing system servers, UnderBridge leverages binary scanning
and rewriting to guarantee the servers contain no CR3 modifi-
cation instructions, including at unaligned instruction bound-
aries. While in the core kernel, this privileged instruction
must exist to switch address spaces. UnderBridge prevents
a compromised system server from executing this instruc-
tion in the core kernel through defenses in depth. First (a
simple defense), the instruction location is unknown to the
servers. Second, to achieve higher security, the core kernel
can write this instruction right before executing it and imme-
diately remove it after the execution. Thus, a system server
cannot execute it even if knowing its location. Furthermore,
on different cores, UnderBridge makes the page table map-
ping for this instruction (page) different. So, when one core
writes this instruction, other cores still cannot execute it.

Instructions that invalidate cache/TLB may be used by
compromised servers for conducting performance attacks.
While trapping cache invalidation instructions via VMEx-

its does not affect overall performance since they are rarely
executed, flushing TLB frequently appears on the critical
path. So, we use binary rewriting to ensure there are no
TLB flush instructions in system servers instead of trapping
these instructions. The core kernel must contain these instruc-
tions, but they cannot be abused by faulting servers because
we make sure they are followed by instructions that access
the core kernel memory. Cacheline flush instructions (non-
privileged instructions, e.g., clflush and clflushopt) are also
considered because the system servers share the same ad-
dress space with the core kernel. Nevertheless, these instruc-
tions obey MPK memory (read) checks and thus, cannot be
utilized by a server to flush others’ memory areas.

For other privileged instructions and I/O related opera-
tions, we take similar solutions as listed in Table-2. One thing
to notice is that a compromised server may disable interrupts

USENIX Association 2020 USENIX Annual Technical Conference 407

Categories
Related Instructions

or Registers
Usages in Zircon/Fiasco.OC/seL4/ChCore or Brief Explanations Solutions

Load/Store
System Registers

IDTR, GDTR, LDTR
TR, XCR0 ...

Although seL4 uses "LTR" instruction when switching processes,
it can be removed by setting different TSSs at boot time as do in other microkernels.
Others are required at boot time only.

VMExit

Debug/Profile
Registers

Debug registers
RDPMC

Required for debugging and profiling, which are not performance-oriented. VMExit

Model Specific
Registers

RDMSR/WRMSR
Usually, they are mostly used at boot time or debug time and
can trigger VMExits for selected registers according to configuration bitmaps.

Selected VMExit

Read/Write
Control Registers

mov CRn, reg
mov reg, CRn
CLTS (modify CR0)

- In the four microkernels, CR0/CR4 is written at boot time only and CR8 is not used.
- No VMExits: accessing CR2, reading CR0 and CR4.
- CR3 is used for switching address space. So, we handle it with a special method.

- VMExit
- Clear/hide
- Special method

Cache/TLB
States

- INVD/WBINVD
- INVLPG/INVPCID
- clflush instructions

- Whole cache eviction. WBINVD is rarely used, and INVD is even not used.
- TLB clear is needed after updating page tables. So, triggering VMExits is costly here.
- (executable in Ring-3) Evicting a single cache line. MPK checks take effects.

- VMExit
- Binary rewritng
- None

I/O Related
Operations

- Port I/O
- MMIO
- DMA

- Port I/O is not performance-oriented and can trigger VMExits with I/O bitmaps.
- MMIO operations go through MPK checks.
- The core kernel initializes DMA devices at boot time and takes the control plane.

- VMExit
- None
- None

Other Privilege
Instructions

- SMSW, RSM, HLT ...
- SWAPGS, SYSRET...
- CLI, POPFQ...

- Either related to other modes like legacy and SMM mode or rarely used.
- Cannot break the system states, otherwise leading to the execution of fault handlers.
- Can be used by compromised servers to disable interrupts.

- VMExit
- None
- Check in VMM

PKRU Register
(Ring-0/3)

- xsave set instructions
- WRPKRU

- For restoring extended processor states, which may include PKRU state.
- For changing the value of PRKU register as used in IPC gates.

- No restoring
- Binary rewriting

Table 2: Deprive the execution domains for system servers of the ability to execute privileged instructions.

through instructions like cli to monopolize the CPU. Fortu-
nately, it cannot disable the host timer interrupts, which un-
conditionally trigger VMExits. Thus, the secure monitor can
easily detect such malicious behaviors by checking PKRU

and interrupt state.

Last but not least, we must forbid system servers from
changing the PKRU register, i.e., changing the memory-
access permission, by themselves. There are two kinds
of instructions that can modify PKRU. For the first kind
(xrstor/xrstors), the core kernel configures them not to man-
age PKRU by setting a control bit (bit-9) in XRC0. For the
second kind (wrpkru), the core kernel ensures it does not ex-
ist outside the IPC gates by rewriting the binary code (simi-
lar to [77]). The wrpkru in the IPC gates cannot be abused as
specified in § 4.1.

We omit the detailed policies of the binary rewriting in
this paper as it is a mature technique [17, 25, 77]. Neverthe-
less, it is worth noting that using binary rewriting to directly
eliminating all privilege instructions is undecidable because
some privilege instructions only take one byte (e.g., hlt). Our
hybrid approach is both effective and efficient.

4.3 Security Analysis

By introducing in-kernel servers, our system has one major
difference from existing microkernels, which may lead to a
larger attack surface. The in-kernel servers run in the ker-
nel mode, which means a compromised server is able to ex-
ecute any privileged instruction. We will analyze the attacks
caused by the difference and illustrate how to defend against
them.

Restricting privileged in-kernel servers: System servers
are not trusted in our threat model. Although they can run
in the kernel mode, they are highly restricted when trying to

attack the core kernel, other servers, or the applications.

We assume that an attacker has fully compromised an in-
kernel server and can execute arbitrary instructions. Since
the server runs in another execution domain (no access to
the memory domain 0), it cannot directly access the memory
of the core kernel. As long as it tries to read or write any
disallowed memory, a CPU exception will immediately be
triggered and handled by the core kernel.

There are four ways to bypass the memory isolation mech-
anism enforced by MPK: the first one is to run the disabling
instructions, e.g., by setting CR4.PKE to 0 or setting CR0.WP

to 0; the second is to change the PKRU register to gain access
permission of other memory domains illegally; the third is to
change the page table base address by setting the CR3 regis-
ter; the fourth is to modify the page table directly.

ChCore can defend against all these attacks. Before load-
ing a server, ChCore uses binary scanning/rewriting to elimi-
nate the undesired privileged instructions. At runtime, the se-
cure monitor will prevent a server from executing other privi-
leged instructions. Compared with running on traditional mi-
crokernels, servers, including maliciously crafted ones, have
no more attack means on microkernels with UnderBridge.
First, when the malicious server executes the disabling in-
structions, it will trigger VMExits, and the monitor will lo-
cate the compromised server. Second, as described in the last
paragraph of § 4.2, the two ways of modifying the PKRU reg-
ister are prevented. Third, the malicious server has no way to
modify CR3 since the binary rewriting guarantees no CR3

modification instructions exist in any server’s address space.
Fourth, the malicious server cannot modify the page table
because the kernel page table resides in memory domain 0.
Meanwhile, it cannot modify or add instructions which re-
quire to change the page table first. The isolation between

408 2020 USENIX Annual Technical Conference USENIX Association

in-kernel servers is the same as the isolation between an in-
kernel server and the core kernel. Since an in-kernel server
does not share address space with user applications, it can-
not access applications’ memory either.
Defending side-channel attacks: Since all the in-kernel
servers share one address space, it is easier for a malicious
one to issue Spectre [45] and Meltdown [54] attacks com-
pared with the case where all servers have their own address
spaces. Although these attacks are caused by CPU bugs (out-
of-scope), ChCore can mitigate them with existing software
defenses like using address randomization makes a compro-
mised server hard to locate the sensitive memory area. Con-
sidering the secret tokens leakage on buggy CPUs, extra
checks can be added in the IPC gates, e.g., Line-10 in Figure-
4(b), to prevent malicious PKRU modification and ensure the
memory isolation. Besides that, most known hardware vul-
nerabilities have been fixed by major CPU vendors in their
latest products [5, 6], which is orthogonal to ChCore.

5 Implementation

Based on our UnderBridge design, we have implemented a
prototype microkernel ChCore, which contains about 8500
lines of C code (LOC). ChCore runs in guest-mode, i.e.,
non-root mode on x86_64, and a small secure monitor
(around 300 LOC) runs in hypervisor-mode, i.e., root mode
on x86_64. We have implemented the tiny secure monitor
in a minimal virtualization-layer, RootKernel (1,500 LOC)
of SkyBridge [62]. Note that RootKernel is not a hypervisor
and works only for running one OS in the guest-mode and
thus avoids most overhead caused by virtualization. There-
fore, although our system requires hardware virtualization,
it still can be deployed in bare-metal machines with RootK-
ernel and achieve close-to-native performance. Considering
the above, our system increases the trusted computing base
(TCB) by 1,800 LOC in total when running on bare-metal
machines, which is acceptable. Besides, we also integrate
the tiny secure monitor in a commercial hypervisor, KVM,
which makes deploying our system in cloud feasible. Even if
nested virtualization is required, our secure monitor can still
work because it simply utilizes the hardware-provided capa-
bility to trap sensitive instructions. Because the instructions
to trap are deliberately selected and do not exist on critical
paths, they will not degrade the overall performance. Never-
theless, our current implementation requires cloud providers
to patch their hypervisors. In such a case, our system in-
creases TCB by 300 LOC. Alternatively, we may leverage
eBPF [61, 81] to deploy our secure monitor without modifi-
cations to the commercial hypervisor (left as future work).

We also apply UnderBridge to three state-of-the-art mi-
crokernels, i.e., seL4 3, Zircon, and Fiasco.OC, to demon-
strate the generality of the design. The porting effort is about
1000∼1500 LOC for each of them. Since UnderBridge uses
different page tables for applications and kernel, it also en-

3We do not retain formal correctness guarantees of seL4.

ables and leverages the PCID hardware feature for avoiding
unnecessary TLB flushing. As native Fiasco.OC does not
support to use this feature, we also add a simple extension
to assign different PCIDs to an application and the kernel.

6 Performance Evaluation

Basic Setup. We conduct all the experiments on a Dell Pow-
erEdge R640 server, which is equipped with a 20-core Intel
Xeon Gold 6138 2.0GHz CPU and 128GB memory. Both
Turbo Boost and Hyper-threading are disabled. ChCore runs
on Linux/KVM-4.19 and QEMU-4.1.
Systems for Comparison. We evaluate the native IPC per-
formance of three popular microkernels (Zircon, seL4, and
Fiasco.OC) on bare metal. Also, we evaluate SkyBridge [62],
which is the state-of-the-art optimization for IPC in micro-
kernels by using vmfunc. SkyBridge deploys a small hyper-
visor called RootKernel and runs microkernels in non-root
mode. When evaluating UnderBridge, we deploy the secure
monitor of UnderBridge in RootKernel and run microker-
nels with UnderBridge on it. As Zircon has no kernel-page-
table-isolation (KPTI) support, we simulate the overhead of
page table switching by writing CR3 twice when evaluating
UnderBridge on it, this is because UnderBridge requires to
make the kernel and applications use different page tables.

6.1 IPC Performance Analysis

Cross-server IPC. Firstly, we analyze the IPC performance
between two servers (we abbreviate “system server” as
“server” in this section) in a micro-benchmark, which uses
rdtsc instruction to measure the round-trip latency of invok-
ing an empty function in server B from server A.

 7500

 8000

 8500
8151

C
y
c
le

s

 0

 1000

 2000

 3000

 4000

 5000

Monolithic

ChCore
(UnderBridge)

SkyBridge

seL4
seL4-KPTI

Fiasco.OC

Fiasco.OC

-KPTI

Zircon

24 109
437

1450
2035

3057

4145

C
y
c
le

s

Figure 5: Round-trip latency of cross-server IPC.

Figure-5 gives the absolute cost of cross-server IPCs in
different designs. Since invocations between servers (com-
ponents) in monolithic kernels are usually achieved by using
(indirect) call/ret instructions, the round-trip latency is only
24 cycles. The latency of an IPC round-trip in ChCore is
109 cycles, which is dominated by two wrpkru instructions
(56 cycles in total). Note that the IPC is achieved by Under-
Bridge and thus only involves the lightweight wrpkru and
the procedure of saving necessary registers. SkyBridge re-
quires two much heavier vmfunc instruction (292 cycles in
total) and therefore has larger latency.

The round-trip latency of a native IPC in the other three
microkernels are much more noticeable. Among them, seL4

USENIX Association 2020 USENIX Annual Technical Conference 409

shows the best performance as it will directly switch the
caller thread to callee thread when executing fast-path IPCs.
Although Fiasco.OC applies a similar strategy, it has a more
complex IPC capability handling procedure. Zircon does not
support direct-switch and thus has the worst performance due
to the high scheduling cost.

Compared with the native IPC in the three microkernels,
our UnderBridge design is more than 12.3× faster. The per-
formance improvement mainly comes from two parts. First,
UnderBridge avoids the time-consuming privilege switches
in traditional IPC designs, as measured in § 2.2. Second, Un-
derBridge avoids the complex validation and invocation of
the IPC capability on the critical path. An IPC gate is only
generated after the corresponding capabilities having been
checked, so UnderBridge needs not to check the capability
at runtime. Also, the gate only requires several lightweight
instructions for the domain switching (details in § 4.1).

Another benefit of UnderBridge is that the in-kernel
servers can invoke system calls faster via the IPC gates in-
stead of using syscall instructions.
Application-to-Server IPC. We further analyze the IPC
(round-trip) performance between a user application and a
server in this part. Commonly, a system call involves mul-
tiple servers in microkernels (or multiple kernel components
in monolithic kernels), which means an application-to-server
IPC may involve several cross-server IPCs. To simulate such
cases, we design a micro-benchmark that includes one appli-
cation and several servers. Each server will do nothing but
routing IPCs to another server. We vary the number of cross-
server IPCs in the benchmark.

Approaches
Cross-server IPCs

0 1 2

SkyBridge 437 931 1390

ChCore (UnderBridge) 723 856 981

seL4 1450 2932 4266

Table 3: Round-trip latency (cycles) of one application-to-server
IPC and different number of cross-server IPCs.

Table-3 compares the performance of SkyBridge (applied
on Fiasco.OC) and UnderBridge (applied on ChCore) in this
micro-benchmark. Results are similar when we apply them
to other microkernels and thus omitted. If an application in-
vokes a server without causing any cross-server IPCs, Sky-
Bridge (437 cycles) shows better performance than Under-
Bridge (723 cycles). It is because UnderBridge has to switch
the privilege level and the address space for transferring the
control flow from user space to kernel space, while Sky-
Bridge applies more lightweight EPT switching via vmfunc.
Nevertheless, UnderBridge still outperforms the best native
IPC (1450 cycles in seL4), because of reducing one privilege
switch and minimizing the software logic of an IPC.

As the number of cross-server IPCs increases, the latency
of SkyBridge increases in proportion. It is because that IPC
from application to the server and between servers are sym-

metric and cost the same cycles. In contrast, the latency of
UnderBridge grows much slower because its cross-server
IPC is much more lightweight. As shown in Table-3, the
performance of UnderBridge becomes better than SkyBridge
when involving one cross-server IPC, and is better than that
by 42% when involving two. The performance speedup is
expected to grow along with the increasing number of the
cross-server IPCs and finally close to 3.0× as in Figure-5.

6.2 Application Benchmarks

We further evaluate the performance of UnderBridge with
two real-world applications: a database application and
an HTTP server application. In the following experiments,
shared memory is used to transfer data during IPCs.
Database Evaluation. To faithfully compare with Sky-
Bridge, we use the benchmarks in [62]. Specifically, for serv-
ing a relational database, SQLite3 [15], we run two system
servers: one is a file system named xv6fs [16, 23], and the
other is a RAMdisk (memory-only). When SQLite3 oper-
ates on a file, it will first invoke the xv6fs server by an
application-to-server IPC, and then the xv6fs will read or
write the RAMdisk by cross-server IPCs.
Basic Operations. We first evaluate the performance of basic
operations, including insert, update, query, and delete opera-
tions. Our evaluation includes three IPC approaches: the na-
tive IPC, UnderBridge, and SkyBridge. Specifically, for each
microkernel, we not only evaluate the performance with its
native IPC designs but also test the performance after apply-
ing UnderBridge and SkyBridge to it. We also emulate the
performance of a monolithic kernel by replacing all the IPC
gates in UnderBridge with function calls.

Figure-6(a), 6(b) and 6(c) show the normalized throughput
of basic operations in the three microkernels, separately. The
baseline is set as the performance of native IPC design in
each microkernel.

UnderBridge achieves up to 13.1×, 9.0×, 1.6× and 11.3×
speedup for each of these operations, individually. The im-
provement of query operations is relatively small since
SQLite3 has an internal buffer for storing recent data and
may handle the queries without issuing IPCs. Compared with
SkyBridge, the performance improvement of UnderBridge
(up to 65%) is because a single IPC from SQLite3 to xv6fs
is likely to trigger multiple cross-server IPCs between xv6fs
and RAMdisk. Even compared with the emulated perfor-
mance of monolithic kernels, UnderBridge only introduces
about 5.0% overhead.

The above-tested xv6fs (exactly the same one used in
the SkyBridge paper [62]) contains no page cache, which,
thus, emulates an IPC-intensive scenario. We further en-
able the page cache in xv6fs to show how UnderBridge
performs with fewer cross-server IPCs between xv6fs and
RAMdisk. As shown in Figure-6(d), 6(e) and 6(f), the per-
formance improvement of UnderBridge is still obvious. Un-
derBridge shows up to 4.0×, 2.9×, 0.7× and 3.2× speedup

410 2020 USENIX Annual Technical Conference USENIX Association

 0

 5

 10

 15

 20

insert update query delete

T
h
ro

u
g
h
p
u
t

Native w/o KPTI
Zircon-SkyBridge

Zircon-UnderBridge

Monolithic
Monolithic w/o KPTI

(a) Zircon (xv6fs w/o page cache).

 0

 1

 2

 3

 4

 5

insert update query delete

T
h
ro

u
g
h
p
u
t

Native w/ KPTI
Native w/o KPTI
seL4-SkyBridge

seL4-UnderBridge
Monolithic

Monolithic w/o KPTI

(b) seL4 (xv6fs w/o page cache).

 0

 2

 4

 6

 8

 10

 12

insert update query delete

T
h
ro

u
g
h
p
u
t

Native w/ KPTI
Native w/o KPTI

Fiasco.OC-SkyBridge

Fiasco.OC-UnderBridge
Monolithic

Monolithic w/o KPTI

(c) Fiasco.OC (xv6fs w/o page cache).

 0

 1

 2

 3

 4

 5

 6

insert update query delete

T
h
ro

u
g
h
p
u
t

(d) Zircon (xv6fs w/ page cache).

 0

 1

 2

insert update query delete

T
h
ro

u
g
h
p
u
t

(e) seL4 (xv6fs w/ page cache).

 0

 1

 2

 3

 4

insert update query delete

T
h
ro

u
g
h
p
u
t

(f) Fiasco.OC (xv6fs w/ page cache).

Figure 6: Normalized throughput of basic SQLite3 operations.

compared with the native IPC and achieves comparable per-
formance with monolithic kernels. Nevertheless, since fewer
cross-server IPCs are involved, the maximum improvement
of UnderBridge compared with SkyBridge drops from 65%
to 25%.

Since UnderBridge runs in non-root mode, we also count
the number of VMExit, which is known as the cost of virtual-
ization. Thanks to the careful design of RootKernel and our
secure monitor, there are almost zero VMExits during the ex-
periments. For example, at most one VMExit (due to timer)
happens during the query test.

YCSB Benchmark. We also evaluate SQLite3 against YCSB
workloads. Figure-7(a) and 7(b) show the normalized
throughput of YCSB-A (50% update and 50% query) with
the page cache disabled and enabled in xv6fs, separately. We
use the same baseline as the basic operation evaluation. Even
for seL4, which is the most efficient among the three micro-
kernels, UnderBridge improves the application’s throughput
from 35% to 105%. UnderBridge also brings a better perfor-
mance (from 7% to 35%) than SkyBridge. Besides, it is only
slightly slower (3.3% on average) than the monolithic kernel.
Other YCSB workloads give similar results.

Furthermore, Figure-7(c) gives a detailed analysis of the
experiments with page cache enabled in xv6fs. First, the ratio
of IPCs from SQLite3 to xv6fs (application-to-server) and
xv6fs to RAMdisk (cross-server) is about 1:2. Thus, Under-
Bridge outperforms SkyBridge, according to Table-3. Sec-
ond, it helps to reduce the ratio of time spent on IPCs to
around 11% while the other three microkernels spend at least
30% of the time on IPCs. Third, it makes the application and
the servers execute faster (about 10%) owing to less indirect
costs such as cache/TLB pollution.

Server Migration. We also evaluate the performance of
server migration, although it should rarely happen. We still
run SQLite3, xv6fs, and RAMdisk as above on Zircon and
trigger the server migration. Taking RAMdisk (128 MB vir-
tual memory range) as an example, migrating it from kernel
to user takes about 84,361 cycles. Most of the cycles (83,517)

are spent on modifying the kernel page table to free the do-
main ID (i.e., the third step for migrating a server specified in
§ 3.3). Migrating RAMdisk from user to kernel takes more
cycles (90,189) mainly because more cycles are spent on
waiting for finishes of on-going IPCs.

HTTP Server Evaluation. For running an HTTP server (a
user-space application), we create three system servers: a
socket server, a TCP/IP protocol stack server, and a loop-
back network device driver (not involving the real network
device) atop lwIP [31] library. We measure the throughput of
a simple HTTP server from the client-side, which receives re-
quests from the network and sends back a static HTML page.

We perform this evaluation on Zircon. As shown in Figure-
7(d), UnderBridge improves the throughput of the HTTP
server by 4.4×. We also implement the same benchmark with
SkyBridge. UnderBridge outperforms SkyBridge by about
24% because a network request also triggers multiple cross-
server IPCs.

7 Related Work

Reconstructing monolithic kernels. The development of
monolithic kernels follows the philosophy of modularization,
but all the kernel components are not isolated from each
other. With reliability and security attracting a fair amount
of attention, we witness interest in reconstructing monolithic
kernels to achieve better fault isolation and higher secu-
rity [17, 25, 26, 38, 41, 59, 63, 65, 67, 74, 75, 84, 86]. Daut-
enhahn et al. [25] build one memory protection domain in-
side the BSD kernel and run a small trusted kernel in that
domain to control memory mappings. Mondrix [84] imple-
ments a compartmentalized Linux kernel with eleven iso-
lated modules based on customized security hardware [83].
Proskurin et al. [65] propose to use Intel EPT and vmfunc to
isolate critical kernel data in different domains. Nooks [74]
and LXFI [59] focus on improving the reliability of Linux by
isolating kernel modules, especially device drivers.

Our work does share some similarities with prior work
on intra-(monolithic)kernel isolation. Nevertheless, we fo-

USENIX Association 2020 USENIX Annual Technical Conference 411

 0

 2

 4

 6

 8

 10

Zircon Fiasco.OC seL4

T
h
ro

u
g
h
p
u
t

Native w/ KPTI
Native w/o KPTI

SkyBridge

UnderBridge
Monolithic

Monolithic w/o KPTI

(a) YCSB-A (xv6fs w/o page cache).

 0

 1

 2

 3

 4

Zircon Fiasco.OC seL4

T
h
ro

u
g
h
p
u
t

(b) YCSB-A (xv6fs w/ page cache).

20%

40%

60%

80%

100%

UnderBridge
Zircon Fiasco seL4

SQLite3-xv6fs IPC
xv6fs-RAMdisk IPC

Real Work

(c) Breakdown analysis.

 0

 1

 2

 3

 4

 5

 6

 7

T
h

ro
u

g
h

p
u

t

Zircon

(d) HTTP server.

Figure 7: (a), (b), and (d) share the same legend. (a) and (b) show the normalized throughput of YCSB-A with xv6fs’s page cache disabled
and enabled separately. (c) shows the time breakdown of YCSB-A benchmark. (d) demonstrates the normalized throughput of a HTTP server.

cus on accelerating IPCs for microkernel architectures while
maintaining strong isolation (both ends). We need to do lit-
tle modification/instrumentation on system servers of a mi-
crokernel. This is because system servers of a microkernel
are designed to run in different user processes, and all the
interactions are explicit IPCs, which is different from the
subsystems in Linux (no clear boundaries and have com-
plex shared memory references). We achieve intra-kernel iso-
lation by retrofitting Intel MPK, which is lightweight and
commercially-available, to build multiple execution domains
in kernel space. Furthermore, UnderBridge may also be gen-
eralized to other kernel scopes with more efforts in the fu-
ture. On one side, the proposed abstraction of the execution
domain can be extended to accommodate different kernel
modules in monolithic kernels, and the IPC gates can still
be used to handle interactions between those modules. On
the other side, our design can also be applied in kernels writ-
ten in memory-safe languages [11, 24] to isolate some unsafe
code (e.g., the code with “unsafe” tag in Rust).

Accelerating IPCs. Optimizing the performance of IPC in
microkernels is continuously studied for a long time [19,
36, 44, 50, 52, 82]. For example, LRPC [19] eliminates
the scheduling overhead during an IPC by using the thread-
migration model [36, 37]; seL4 [44] provides the fast-path
IPC, which also avoids scheduling and passes arguments
through registers. Nevertheless, even with these software-
based optimizations, IPC-intensive applications on microker-
nels still suffer from the IPC overhead.

Recent studies present new designs to accelerate IPCs with
advanced hardware features. SkyBridge [62] utilizes the vm-

func to allow a process to invoke a function in another pro-
cess directly without the kernel’s involvement. XPC [30] is
a hardware proposal that accelerates IPCs by implementing
efficient context switch and memory granting. dIPC relies
on another hardware proposal [78] to put processes into the
same address space and thus make IPCs faster. Our design
shows better performance than SkyBridge and requires no
hardware modification.

Usage of Intel MPK. Intel MPK/PKU has been utilized
by [39, 64, 77] to achieve efficient intra-process isolation,
which can build mutual-distrusted execution environments
in a single user process. There are two main differences be-
tween UnderBridge and them. First, UnderBridge retrofits

MPK that designed for user space in kernel space to improve
the IPC performance for microkernels (the first effort to our
knowledge) and also faces more security challenges. Appli-
cations can still utilize MPK in user space as they want since
they have different page tables from the kernel. Second, Un-
derBridge authenticates the caller of each MPK gate for en-
forcing IPC capability to prevent illegal domain switches,
while prior work allows arbitrary domain switches.

There exist two concurrent studies [38, 73] to Under-
Bridge. They also propose to utilize MPK in kernel mode
but with different goals and designs. IskiOS [38] leverages
MPK to defend against code-reuse attacks (e.g., protecting
shadow stacks) in the kernel. Sung et al. [73] uses MPK to
enhance the isolation for a unikernel while does not solve the
security challenges identified in UnderBridge.
MPK-like features on other architectures. Tagged mem-
ory [28, 43, 85], which can provide MPK-like features, is
added in other architectures, which brings the potential to
make UnderBridge more general to those architectures. Re-
cently, the RISC-V security community also considers en-
hancing the PMP (physical memory protection) isolation
with the tagged memory mechanism [12]. However, Under-
Bridge cannot work on current ARMv8 (aarch64). Yet, ARM
v8.5 has included memory tagging extensions [10], by ex-
tending which with more mechanisms, we may provide a
similar mechanism workable on future ARM platforms.

8 Conclusion

This paper introduces UnderBridge, a redesign of the run-
time structure of microkernel OSes for faster OS services. To
demonstrate UnderBridge’s efficiency, we have built a proto-
type microkernel named ChCore and ported it to three exist-
ing microkernels. Performance evaluations showed that Un-
derBridge can achieve better performance in IPC-intensive
workloads compared with prior work.

9 Acknowledgement

We sincerely thank our shepherd Antonio Barbalace and the
anonymous reviewers for their insightful suggestions. This
work is supported in part by China National Natural Science
Foundation (No. 61925206, 61972244, and U19A2060) and
a grant from the Science and Technology Commission of
Shanghai Municipality (No. 19511121100). Yubin Xia is the
corresponding author.

412 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Apple ios security-ios 12.1. https://www.apple.

com/business/site/docs/iOS_Security_Guide.

pdf. Referenced December 2019.

[2] Fiasco.oc repository. https://l4re.org/download/

snapshots/. Referenced December 2019.

[3] Fuchsia. https://fuchsia.dev/fuchsia-src. Ref-
erenced December 2019.

[4] Fuchsia repository. https://fuchsia.dev/

fuchsia-src/development/source_code. Ref-
erenced December 2019.

[5] Ian cutress: Analyzing core i9-9900k performance
with spectre and meltdown hardware mitigations.
https://www.anandtech.com/show/13659/analyzing-
core-i9-9900k-performance-with-spectre-and-
meltdown-hardware-mitigations. Referenced De-
cember 2019.

[6] Intel corporation. engineering new protections into
hardware. https://www.intel.com/content/

www/us/en/architecture-and-technology/

engineering-new-protections-into-hardware.

html. Referenced December 2019.

[7] Intel software developer’s manual. https://

software.intel.com/sites/default/files/

managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.

pdf. Referenced December 2019.

[8] Kernel page table isolation. https://en.wikipedia.

org/wiki/Kernel_page-table_isolation. Refer-
enced December 2019.

[9] Linux kernel cves. https://www.cvedetails.com/

product/47/Linux-Linux-Kernel.html?vendor_

id=33. Referenced December 2019.

[10] Memory tagging in armv8.5-a. https://

community.arm.com/developer/ip-products/

processors/b/processors-ip-blog/posts/

arm-a-profile-architecture-2018-developments-armv85a.
Referenced May 2020.

[11] Redox operating system. https://www.redox-os.

org/. Referenced December 2019.

[12] Risc-v isa specification. https://riscv.org/

specifications/. Referenced May 2020.

[13] sel4 performance report. http://sel4.systems/

About/Performance/. Referenced December 2019.

[14] sel4 repository. https://github.com/seL4/seL4.
Referenced December 2019.

[15] Sqlite. https://www.sqlite.org/index.html. Ref-
erenced December 2019.

[16] xv6 repository. https://github.com/mit-pdos/

fscq/tree/master/xv6. Referenced December 2019.

[17] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen,
Rohan Bhutkar, Guruprasad Ganesh, Jia Ma, and
Wenbo Shen. Hypervision across worlds: Real-time

kernel protection from the arm trustzone secure world.
In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, pages 90–
102. ACM, 2014.

[18] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singha-
nia. The multikernel: A new os architecture for scal-
able multicore systems. In Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems Prin-

ciples, SOSP ’09, pages 29–44, New York, NY, USA,
2009. ACM.

[19] Brian N. Bershad, Thomas E. Anderson, Edward D. La-
zowska, and Henry M. Levy. Lightweight remote pro-
cedure call. ACM Trans. Comput. Syst., 8(1):37–55,
February 1990.

[20] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on meltdown-resistant cpus. In Proceedings of

the 2019 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’19, pages 769–784,
New York, NY, USA, 2019. ACM.

[21] Stephen Checkoway, Lucas Davi, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,
and Marcel Winandy. Return-oriented programming
without returns. In Proceedings of the 17th ACM Con-

ference on Computer and Communications Security,
CCS ’10, pages 559–572, New York, NY, USA, 2010.
ACM.

[22] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M. Frans Kaashoek. Linux ker-
nel vulnerabilities: State-of-the-art defenses and open
problems. In Proceedings of the Second Asia-Pacific

Workshop on Systems, APSys ’11, pages 5:1–5:5, New
York, NY, USA, 2011. ACM.

[23] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Us-
ing crash hoare logic for certifying the fscq file system.
In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP ’15, page 18–37, New York,
NY, USA, 2015. Association for Computing Machin-
ery.

[24] Cody Cutler, M Frans Kaashoek, and Robert T Morris.
The benefits and costs of writing a {POSIX} kernel
in a high-level language. In 13th {USENIX} Sympo-

sium on Operating Systems Design and Implementation

({OSDI} 18), pages 89–105, 2018.

[25] Nathan Dautenhahn, Theodoros Kasampalis, Will Di-
etz, John Criswell, and Vikram Adve. Nested kernel:
An operating system architecture for intra-kernel priv-
ilege separation. In Proceedings of the Twentieth In-

USENIX Association 2020 USENIX Annual Technical Conference 413

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://l4re.org/download/snapshots/
https://l4re.org/download/snapshots/
https://fuchsia.dev/fuchsia-src
https://fuchsia.dev/fuchsia-src/development/source_code
https://fuchsia.dev/fuchsia-src/development/source_code
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://www.redox-os.org/
https://www.redox-os.org/
https://riscv.org/specifications/
https://riscv.org/specifications/
http://sel4.systems/About/Performance/
http://sel4.systems/About/Performance/
https://github.com/seL4/seL4
https://www.sqlite.org/index.html
https://github.com/mit-pdos/fscq/tree/master/xv6
https://github.com/mit-pdos/fscq/tree/master/xv6

ternational Conference on Architectural Support for

Programming Languages and Operating Systems, AS-
PLOS ’15, pages 191–206, New York, NY, USA, 2015.
ACM.

[26] Lucas Davi, David Gens, Christopher Liebchen, and
Ahmad-Reza Sadeghi. Pt-rand: Practical mitigation of
data-only attacks against page tables. In NDSS, 2017.

[27] Francis M David, Ellick M Chan, Jeffrey C Carlyle, and
Roy H Campbell. Curios: improving reliability through
operating system structure. pages 59–72, 2008.

[28] Udit Dhawan, Nikos Vasilakis, Raphael Rubin, Silviu
Chiricescu, Jonathan M Smith, Thomas F Knight Jr,
Benjamin C Pierce, and André DeHon. Pump: a pro-
grammable unit for metadata processing. In Proceed-

ings of the Third Workshop on Hardware and Archi-

tectural Support for Security and Privacy, pages 1–8,
2014.

[29] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the zofs
user-space nvm file system. In Proceedings of the

27th ACM Symposium on Operating Systems Princi-

ples, SOSP ’19, pages 478–493, New York, NY, USA,
2019. ACM.

[30] Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and
Haibo Chen. Xpc: Architectural support for secure
and efficient cross process call. In Proceedings of the

46th International Symposium on Computer Architec-

ture, ISCA ’19, pages 671–684, New York, NY, USA,
2019. ACM.

[31] Adam Dunkels. lwip-a lightweight tcp/ip stack.
Available from World Wide Web: http://www. sics.

se/ adam/lwip/index. html, 2002.

[32] Kevin Elphinstone and Gernot Heiser. From l3 to sel4
what have we learnt in 20 years of l4 microkernels? In
Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, SOSP ’13, pages 133–
150, New York, NY, USA, 2013. ACM.

[33] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exok-
ernel: An operating system architecture for application-
level resource management. In Proceedings of the Fif-

teenth ACM Symposium on Operating Systems Princi-

ples, SOSP ’95, pages 251–266, New York, NY, USA,
1995. ACM.

[34] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
Budiu, and George C. Necula. Xfi: Software guards for
system address spaces. In Proceedings of the 7th Sym-

posium on Operating Systems Design and Implementa-

tion, OSDI ’06, pages 75–88, Berkeley, CA, USA, 2006.
USENIX Association.

[35] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tull-
mann, Godmar Back, and Stephen Clawson. Microker-
nels meet recursive virtual machines. In Proceedings of

the Second USENIX Symposium on Operating Systems

Design and Implementation, OSDI ’96, pages 137–151,
New York, NY, USA, 1996. ACM.

[36] Bryan Ford and Jay Lepreau. Evolving mach 3.0 to a
migrating thread model. In Proceedings of the USENIX

Winter 1994 Technical Conference on USENIX Win-

ter 1994 Technical Conference, WTEC’94, pages 9–9,
Berkeley, CA, USA, 1994. USENIX Association.

[37] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and
Michael Stumm. Tornado: Maximizing locality and
concurrency in a shared memory multiprocessor operat-
ing system. In Proceedings of the Third Symposium on

Operating Systems Design and Implementation, OSDI
’99, pages 87–100, Berkeley, CA, USA, 1999. USENIX
Association.

[38] Spyridoula Gravani, Mohammad Hedayati, John
Criswell, and Michael L Scott. Iskios: Lightweight
defense against kernel-level code-reuse attacks. arXiv

preprint arXiv:1903.04654, 2019.

[39] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-process isolation for high-
throughput data plane libraries. In Proceedings of the

2019 USENIX Conference on Usenix Annual Technical

Conference, USENIX ATC ’19, pages 489–503, Berke-
ley, CA, USA, 2019. USENIX Association.

[40] Dan Hildebrand. An architectural overview of qnx.
In Proceedings of the Workshop on Micro-kernels and

Other Kernel Architectures, pages 113–126, Berkeley,
CA, USA, 1992. USENIX Association.

[41] Charles Jacobsen, Muktesh Khole, Sarah Spall, Scotty
Bauer, and Anton Burtsev. Lightweight capabil-
ity domains: Towards decomposing the linux kernel.
SIGOPS Oper. Syst. Rev., 49(2):44–50, January 2016.

[42] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking
kernel address space layout randomization with intel
tsx. In Proceedings of the 2016 ACM SIGSAC Confer-

ence on Computer and Communications Security, CCS
’16, pages 380–392, New York, NY, USA, 2016. ACM.

[43] Alexandre Joannou, Jonathan Woodruff, Robert Ko-
vacsics, Simon W Moore, Alex Bradbury, Hongyan
Xia, Robert NM Watson, David Chisnall, Michael Roe,
Brooks Davis, et al. Efficient tagged memory. In 2017

IEEE International Conference on Computer Design

(ICCD), pages 641–648. IEEE, 2017.

[44] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Win-
wood. sel4: Formal verification of an os kernel. In Pro-

ceedings of the ACM SIGOPS 22Nd Symposium on Op-

erating Systems Principles, SOSP ’09, pages 207–220,
New York, NY, USA, 2009. ACM.

[45] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,

414 2020 USENIX Annual Technical Conference USENIX Association

Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spec-
tre attacks: Exploiting speculative execution. In 2019

IEEE Symposium on Security and Privacy (SP), pages
1–19. IEEE, 2019.

[46] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuf-
frida, and Elias Athanasopoulos. No need to hide: Pro-
tecting safe regions on commodity hardware. In Pro-

ceedings of the Twelfth European Conference on Com-

puter Systems, EuroSys ’17, pages 437–452, New York,
NY, USA, 2017. ACM.

[47] Adam Lackorzyński, Alexander Warg, Marcus Völp,
and Hermann Härtig. Flattening hierarchical schedul-
ing. In Proceedings of the Tenth ACM Interna-

tional Conference on Embedded Software, EMSOFT
’12, pages 93–102, New York, NY, USA, 2012. ACM.

[48] Hojoon Lee, Chihyun Song, and Brent Byunghoon
Kang. Lord of the x86 rings: A portable user mode priv-
ilege separation architecture on x86. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’18, page 1441–1454,
New York, NY, USA, 2018. Association for Computing
Machinery.

[49] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf.
Policy/mechanism separation in hydra. In Proceed-

ings of the Fifth ACM Symposium on Operating Sys-

tems Principles, SOSP ’75, pages 132–140, New York,
NY, USA, 1975. ACM.

[50] Henry M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

[51] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying
the cost of context switch. In Proceedings of the 2007

Workshop on Experimental Computer Science, ExpCS
’07, New York, NY, USA, 2007. ACM.

[52] Jochen Liedtke. Improving ipc by kernel design. In
Proceedings of the Fourteenth ACM Symposium on Op-

erating Systems Principles, SOSP ’93, pages 175–188,
New York, NY, USA, 1993. ACM.

[53] Jochen Liedtke. A persistent system in real use - expe-
riences of the first 13 years. pages 2 – 11, 01 1994.

[54] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, et al. Melt-
down: Reading kernel memory from user space. In 27th

{USENIX} Security Symposium ({USENIX} Security

18), pages 973–990, 2018.

[55] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel mem-
ory from user space. In Proceedings of the 27th

USENIX Conference on Security Symposium, SEC’18,
pages 973–990, Berkeley, CA, USA, 2018. USENIX

Association.

[56] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-weight contexts: An os abstraction for
safety and performance. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’16, pages 49–64, Berkeley, CA,
USA, 2016. USENIX Association.

[57] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting memory disclosure with effi-
cient hypervisor-enforced intra-domain isolation. In
Proceedings of the 22Nd ACM SIGSAC Conference

on Computer and Communications Security, CCS ’15,
pages 1607–1619, New York, NY, USA, 2015. ACM.

[58] Anna Lyons, Kent McLeod, Hesham Almatary, and
Gernot Heiser. Scheduling-context capabilities: A prin-
cipled, light-weight operating-system mechanism for
managing time. In Proceedings of the Thirteenth Eu-

roSys Conference, EuroSys ’18, pages 26:1–26:16, New
York, NY, USA, 2018. ACM.

[59] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M Frans Kaashoek. Software
fault isolation with api integrity and multi-principal
modules. In Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, pages
115–128, 2011.

[60] Stephen McCamant and Greg Morrisett. Evaluating sfi
for a cisc architecture. In Proceedings of the 15th Con-

ference on USENIX Security Symposium - Volume 15,
USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX
Association.

[61] Steven McCanne and Van Jacobson. The bsd packet
filter: A new architecture for user-level packet capture.
In USENIX winter, volume 46, 1993.

[62] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. Skybridge: Fast and secure inter-process
communication for microkernels. In Proceedings of

the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 9:1–9:15, New York, NY, USA, 2019. ACM.

[63] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight kernel isola-
tion with virtualization and vm functions. In Proceed-

ings of the 16th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, pages
157–171, 2020.

[64] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. Libmpk: Software abstraction for
intel memory protection keys (intel mpk). In Proceed-

ings of the 2019 USENIX Conference on Usenix Annual

Technical Conference, USENIX ATC ’19, pages 241–
254, Berkeley, CA, USA, 2019. USENIX Association.

[65] Sergej Proskurin, Marius Momeu, Seyedhamed
Ghavamnia, Vasileios P Kemerlis, and Michalis Poly-

USENIX Association 2020 USENIX Annual Technical Conference 415

chronakis. xmp: Selective memory protection for
kernel and user space. In Proceedings of 41st IEEE

Symposium on Security and Privacy, S&P ’20, 2020.

[66] Franklin Reynolds. An architectural overview of al-
pha: A real-time, distributed kernel. In Proceedings of

the Workshop on Micro-kernels and Other Kernel Ar-

chitectures, pages 127–146, Berkeley, CA, USA, 1992.
USENIX Association.

[67] O. Schwahn, S. Winter, N. Coppik, and N. Suri. How
to fillet a penguin: Runtime data driven partitioning of
linux code. IEEE Transactions on Dependable and Se-

cure Computing, 15(6):945–958, Nov 2018.

[68] David Sehr, Robert Muth, Cliff Biffle, Victor Khi-
menko, Egor Pasko, Karl Schimpf, Bennet Yee, and
Brad Chen. Adapting software fault isolation to con-
temporary cpu architectures. In Proceedings of the 19th

USENIX Conference on Security, USENIX Security’10,
pages 1–1, Berkeley, CA, USA, 2010. USENIX Associ-
ation.

[69] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM Conference

on Computer and Communications Security, CCS ’07,
pages 552–561, New York, NY, USA, 2007. ACM.

[70] Jonathan S. Shapiro, Jonathan M. Smith, and David J.
Farber. Eros: A fast capability system. In Proceedings

of the Seventeenth ACM Symposium on Operating Sys-

tems Principles, SOSP ’99, pages 170–185, New York,
NY, USA, 1999. ACM.

[71] Livio Soares and Michael Stumm. Flexsc: Flexible sys-
tem call scheduling with exception-less system calls.
In Proceedings of the 9th USENIX Conference on Op-

erating Systems Design and Implementation, OSDI’10,
pages 33–46, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[72] Udo Steinberg and Bernhard Kauer. Nova: A
microhypervisor-based secure virtualization architec-
ture. In Proceedings of the 5th European Conference on

Computer Systems, EuroSys ’10, pages 209–222, New
York, NY, USA, 2010. ACM.

[73] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Bi-
noy Ravindran. Intra-unikernel isolation with intel
memory protection keys. In Proceedings of the 16th

ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, pages 143–156, 2020.

[74] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the reliability of commodity operating
systems. In Proceedings of the Nineteenth ACM Sym-

posium on Operating Systems Principles, SOSP ’03,
pages 207–222, New York, NY, USA, 2003. ACM.

[75] Donghai Tian, Xi Xiong, Changzhen Hu, and Peng Liu.
A policy-centric approach to protecting os kernel from
vulnerable lkms. Software: Practice and Experience,

48(6):1269–1284, 2018.

[76] Dan Tsafrir. The context-switch overhead inflicted
by hardware interrupts (and the enigma of do-nothing
loops). In Experimental Computer Science on Experi-

mental Computer Science, ecs’07, pages 3–3, Berkeley,
CA, USA, 2007. USENIX Association.

[77] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. Erim: Secure, efficient in-process isolation with
protection keys (mpk). In Proceedings of the 28th

USENIX Conference on Security Symposium, SEC’19,
pages 1221–1238, Berkeley, CA, USA, 2019. USENIX
Association.

[78] Lluïs Vilanova, Muli Ben-Yehuda, Nacho Navarro,
Yoav Etsion, and Mateo Valero. Codoms: Protecting
software with code-centric memory domains. In 2014

ACM/IEEE 41st International Symposium on Computer

Architecture (ISCA), pages 469–480. IEEE, 2014.

[79] Lluís Vilanova, Marc Jordà, Nacho Navarro, Yoav Et-
sion, and Mateo Valero. Direct inter-process communi-
cation (dipc): Repurposing the codoms architecture to
accelerate ipc. In Proceedings of the Twelfth European

Conference on Computer Systems, EuroSys ’17, pages
16–31, New York, NY, USA, 2017. ACM.

[80] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient software-based fault
isolation. In Proceedings of the Fourteenth ACM Sym-

posium on Operating Systems Principles, SOSP ’93,
pages 203–216, New York, NY, USA, 1993. ACM.

[81] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chli-
pala, and Zachary Tatlock. Jitk: A trustworthy in-kernel
interpreter infrastructure. In 11th {USENIX} Sympo-

sium on Operating Systems Design and Implementation

({OSDI} 14), pages 33–47, 2014.

[82] Robert N. M. Watson, Robert M. Norton, Jonathan
Woodruff, Simon W. Moore, Peter G. Neumann,
Jonathan Anderson, David Chisnall, Brooks Davis, Ben
Laurie, Michael Roe, Nirav H. Dave, Khilan Gudka,
Alexandre Joannou, A. Theodore Markettos, Ed Maste,
Steven J. Murdoch, Colin Rothwell, Stacey D. Son, and
Munraj Vadera. Fast protection-domain crossing in
the cheri capability-system architecture. IEEE Micro,
36(5):38–49, September 2016.

[83] Emmett Witchel, Josh Cates, and Krste Asanović. Mon-
drian memory protection. In Proceedings of the 10th

International Conference on Architectural Support for

Programming Languages and Operating Systems, AS-
PLOS X, pages 304–316, New York, NY, USA, 2002.
ACM.

[84] Emmett Witchel, Junghwan Rhee, and Krste Asanović.
Mondrix: Memory isolation for linux using mondri-
aan memory protection. In Proceedings of the Twenti-

eth ACM Symposium on Operating Systems Principles,

416 2020 USENIX Annual Technical Conference USENIX Association

SOSP ’05, pages 31–44, New York, NY, USA, 2005.
ACM.

[85] Jonathan Woodruff, Robert NM Watson, David Chis-
nall, Simon W Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. The cheri capability model: Revisit-
ing risc in an age of risk. In 2014 ACM/IEEE 41st Inter-

national Symposium on Computer Architecture (ISCA),
pages 457–468. IEEE, 2014.

[86] Xi Xiong, Donghai Tian, Peng Liu, et al. Practical pro-
tection of kernel integrity for commodity os from un-
trusted extensions. In NDSS, volume 11, 2011.

[87] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley

Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In Pro-

ceedings of the 2009 30th IEEE Symposium on Secu-

rity and Privacy, SP ’09, pages 79–93, Washington, DC,
USA, 2009. IEEE Computer Society.

[88] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In
2009 30th IEEE Symposium on Security and Privacy,
pages 79–93. IEEE, 2009.

USENIX Association 2020 USENIX Annual Technical Conference 417

FAASM: Lightweight Isolation for Efficient Stateful Serverless Computing

Simon Shillaker
Imperial College London

Peter Pietzuch
Imperial College London

Abstract
Serverless computing is an excellent fit for big data process-
ing because it can scale quickly and cheaply to thousands of
parallel functions. Existing serverless platforms isolate func-
tions in ephemeral, stateless containers, preventing them from
directly sharing memory. This forces users to duplicate and
serialise data repeatedly, adding unnecessary performance
and resource costs. We believe that a new lightweight iso-
lation approach is needed, which supports sharing memory
directly between functions and reduces resource overheads.

We introduce Faaslets, a new isolation abstraction for high-
performance serverless computing. Faaslets isolate the mem-
ory of executed functions using software-fault isolation (SFI),
as provided by WebAssembly, while allowing memory re-
gions to be shared between functions in the same address
space. Faaslets can thus avoid expensive data movement
when functions are co-located on the same machine. Our run-
time for Faaslets, FAASM, isolates other resources, e.g. CPU
and network, using standard Linux cgroups, and provides a
low-level POSIX host interface for networking, file system
access and dynamic loading. To reduce initialisation times,
FAASM restores Faaslets from already-initialised snapshots.
We compare FAASM to a standard container-based platform
and show that, when training a machine learning model, it
achieves a 2× speed-up with 10× less memory; for serving
machine learning inference, FAASM doubles the throughput
and reduces tail latency by 90%.

1 Introduction
Serverless computing is becoming a popular way to deploy
data-intensive applications. A function-as-a-service (FaaS)
model decomposes computation into many functions, which
can effectively exploit the massive parallelism of clouds. Prior
work has shown how serverless can support map/reduce-style
jobs [42, 69], machine learning training [17, 18] and infer-
ence [40], and linear algebra computation [73, 88]. As a
result, an increasing number of applications, implemented
in diverse programming languages, are being migrated to
serverless platforms.

Existing platforms such as Google Cloud Functions [32],
IBM Cloud Functions [39], Azure Functions [50] and AWS
Lambda [5] isolate functions in ephemeral, stateless contain-
ers. The use of containers as an isolation mechanisms in-
troduces two challenges for data-intensive applications, data
access overheads and the container resource footprint.

Data access overheads are caused by the stateless nature of
the container-based approach, which forces state to be main-
tained externally, e.g. in object stores such as Amazon S3 [6],
or passed between function invocations. Both options in-
cur costs due to duplicating data in each function, repeated
serialisation, and regular network transfers. This results in
current applications adopting an inefficient “data-shipping ar-
chitecture”, i.e. moving data to the computation and not vice
versa—such architectures have been abandoned by the data
management community many decades ago [36]. These over-
heads are compounded as the number of functions increases,
reducing the benefit of unlimited parallelism, which is what
makes serverless computing attractive in the first place.

The container resource footprint is particularly relevant
because of the high-volume and short-lived nature of server-
less workloads. Despite containers having a smaller memory
and CPU overhead than other mechanisms such as virtual
machines (VMs), there remains an impedance mismatch be-
tween the execution of individual short-running functions
and the process-based isolation of containers. Containers
have start-up latencies in the hundreds of milliseconds to
several seconds, leading to the cold-start problem in today’s
serverless platforms [36, 83]. The large memory footprint
of containers limits scalability—while technically capped at
the process limit of a machine, the maximum number of con-
tainers is usually limited by the amount of available memory,
with only a few thousand containers supported on a machine
with 16 GB of RAM [51].

Current data-intensive serverless applications have ad-
dressed these problems individually, but never solved both—
instead, either exacerbating the container resource overhead
or breaking the serverless model. Some systems avoid data
movement costs by maintaining state in long-lived VMs or ser-

USENIX Association 2020 USENIX Annual Technical Conference 419

vices, such as ExCamera [30], Shredder [92] and Cirrus [18],
thus introducing non-serverless components. To address the
performance overhead of containers, systems typically in-
crease the level of trust in users’ code and weaken isolation
guarantees. PyWren [42] reuses containers to execute mul-
tiple functions; Crucial [12] shares a single instance of the
Java virtual machine (JVM) between functions; SAND [1]
executes multiple functions in long-lived containers, which
also run an additional message-passing service; and Cloud-
burst [75] takes a similar approach, introducing a local key-
value-store cache. Provisioning containers to execute multiple
functions and extra services amplifies resource overheads, and
breaks the fine-grained elastic scaling inherent to serverless.
While several of these systems reduce data access overheads
with local storage, none provide shared memory between
functions, thus still requiring duplication of data in separate
process memories.

Other systems reduce the container resource footprint by
moving away from containers and VMs. Terrarium [28] and
Cloudflare Workers [22] employ software-based isolation us-
ing WebAssembly and V8 Isolates, respectively; Krustlet [54]
replicates containers using WebAssembly for memory safety;
and SEUSS [16] demonstrates serverless unikernels. While
these approaches have a reduced resource footprint, they do
not address data access overheads, and the use of software-
based isolation alone does not isolate resources.

We make the observation that serverless computing can
better support data-intensive applications with a new isola-
tion abstraction that (i) provides strong memory and resource
isolation between functions, yet (ii) supports efficient state
sharing. Data should be co-located with functions and ac-
cessed directly, minimising data-shipping. Furthermore, this
new isolation abstraction must (iii) allow scaling state across
multiple hosts; (iv) have a low memory footprint, permitting
many instances on one machine; (v) exhibit fast instantiation
times; and (vi) support multiple programming languages to
facilitate the porting of existing applications.

In this paper, we describe Faaslets, a new lightweight
isolation abstraction for data-intensive serverless comput-
ing. Faaslets support stateful functions with efficient shared
memory access, and are executed by our FAASM distributed
serverless runtime. Faaslets have the following properties,
summarising our contributions:
(1) Faaslets achieve lightweight isolation. Faaslets rely on
software fault isolation (SFI) [82], which restricts functions
to accesses of their own memory. A function associated
with a Faaslet, together with its library and language runtime
dependencies, is compiled to WebAssembly [35]. The FAASM
runtime then executes multiple Faaslets, each with a dedicated
thread, within a single address space. For resource isolation,
the CPU cycles of each thread are constrained using Linux
cgroups [79] and network access is limited using network
namespaces [79] and traffic shaping. Many Faaslets can be
executed efficiently and safely on a single machine.

(2) Faaslets support efficient local/global state access.
Since Faaslets share the same address space, they can ac-
cess shared memory regions with local state efficiently. This
allows the co-location of data and functions and avoids serial-
isation overheads. Faaslets use a two-tier state architecture,
a local tier provides in-memory sharing, and a global tier
supports distributed access to state across hosts. The FAASM
runtime provides a state management API to Faaslets that
gives fine-grained control over state in both tiers. Faaslets
also support stateful applications with different consistency
requirements between the two tiers.
(3) Faaslets have fast initialisation times. To reduce cold-
start time when a Faaslet executes for the first time, it
is launched from a suspended state. The FAASM run-
time pre-initialises a Faaslet ahead-of-time and snapshots
its memory to obtain a Proto-Faaslet, which can be re-
stored in hundreds of microseconds. Proto-Faaslets are
used to create fresh Faaslet instances quickly, e.g. avoid-
ing the time to initialise a language runtime. While exist-
ing work on snapshots for serverless takes a single-machine
approach [1, 16, 25, 61], Proto-Faaslets support cross-host
restores and are OS-independent.
(4) Faaslets support a flexible host interface. Faaslets inter-
act with the host environment through a set of POSIX-like
calls for networking, file I/O, global state access and library
loading/linking. This allows them to support dynamic lan-
guage runtimes and facilitates the porting of existing appli-
cations, such as CPython by changing fewer than 10 lines of
code. The host interface provides just enough virtualisation
to ensure isolation while adding a negligible overhead.
The FAASM runtime1 uses the LLVM compiler toolchain to
translate applications to WebAssembly and supports func-
tions written in a range of programming languages, including
C/C++, Python, Typescript and Javascript. It integrates with
existing serverless platforms, and we describe the use with
Knative [33], a state-of-the-art platform based on Kubernetes.

To evaluate FAASM’s performance, we consider a number
of workloads and compare to a container-based serverless
deployment. When training a machine learning model with
SGD [68], we show that FAASM achieves a 60% improve-
ment in run time, a 70% reduction in network transfers, and a
90% reduction in memory usage; for machine learning infer-
ence using TensorFlow Lite [78] and MobileNet [37], FAASM
achieves over a 200% increase in maximum throughput, and a
90% reduction in tail latency. We also show that FAASM exe-
cutes a distributed linear algebra job for matrix multiplication
using Python/Numpy with negligible performance overhead
and a 13% reduction in network transfers.

2 Isolation vs. Sharing in Serverless
Sharing memory is fundamentally at odds with the goal of
isolation, hence providing shared access to in-memory state

1FAASM is open-source and available at github.com/lsds/Faasm

420 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/lsds/Faasm

Containers VMs Unikernel SFI Faaslet

Fu
nc

.

Memory safety 3 3 3 3 3
Resource isolation 3 3 3 7 3
Efficient state sharing 7 7 7 7 3
Shared filesystem 3 7 7 3 3

N
on

-
fu

nc
. Initialisation time 100 ms 100 ms 10 ms 10 µs 1 ms

Memory footprint MBs MBs KBs Bytes KBs
Multi-language 3 3 3 7 3

Table 1: Isolation approaches for serverless (Initialisation times
include ahead-of-time snapshot restore where applicable [16,25,61].)

in a multi-tenant serverless environment is a challenge.
Tab. 1 contrasts containers and VMs with other potential

serverless isolation options, namely unikernels [16] in which
minimal VM images are used to pack tasks densely on a hy-
pervisor and software-fault isolation (SFI) [82], providing
lightweight memory safety through static analysis, instrumen-
tation and runtime traps. The table lists whether each fulfils
three key functional requirements: memory safety, resource
isolation and sharing of in-memory state. A fourth require-
ment is the ability to share a filesystem between functions,
which is important for legacy code and to reduce duplication
with shared files.

The table also compares these options on a set of non-
functional requirements: low initialisation time for fast elas-
ticity; small memory footprint for scalability and efficiency,
and the support for a range of programming languages.

Containers offer an acceptable balance of features if one
sacrifices efficient state sharing—as such they are used by
many serverless platforms [32, 39, 50]. Amazon uses Fire-
cracker [4], a “micro VM” based on KVM with similar prop-
erties to containers, e.g. initialisation times in the hundreds
of milliseconds and memory overheads of megabytes.

Containers and VMs compare poorly to unikernels and
SFI on initialisation times and memory footprint because
of their level of virtualisation. They both provide complete
virtualised POSIX environments, and VMs also virtualise
hardware. Unikernels minimise their levels of virtualisation,
while SFI provides none. Many unikernel implementations,
however, lack the maturity required for production serverless
platforms, e.g. missing the required tooling and a way for
non-expert users to deploy custom images. SFI alone cannot
provide resource isolation, as it purely focuses on memory
safety. It also does not define a way to perform isolated
interactions with the underlying host. Crucially, as with con-
tainers and VMs, neither unikernels nor SFI can share state
efficiently, with no way to express shared memory regions
between compartments.

2.1 Improving on Containers

Serverless functions in containers typically share state via
external storage and duplicate data across function instances.
Data access and serialisation introduces network and compute
overheads; duplication bloats the memory footprint of con-
tainers, already of the order of megabytes [51]. Containers
contribute hundreds of milliseconds up to seconds in cold-

start latencies [83], incurred on initial requests and when
scaling. Existing work has tried to mitigate these drawbacks
by recycling containers between functions, introducing static
VMs, reducing storage latency, and optimising initialisation.

Recycling containers avoids initialisation overheads and
allows data caching but sacrifices isolation and multi-tenancy.
PyWren [42] and its descendants, Numpywren [73], IBMPy-
wren [69], and Locus [66] use recycled containers, with long-
lived AWS Lambda functions that dynamically load and exe-
cute Python functions. Crucial [12] takes a similar approach,
running multiple functions in the same JVM. SAND [1]
and Cloudburst [75] provide only process isolation between
functions of the same application and place them in shared
long-running containers, with at least one additional back-
ground storage process. Using containers for multiple func-
tions and supplementary long-running services requires over-
provisioned memory to ensure capacity both for concurrent
executions and for peak usage. This is at odds with the idea
of fine-grained scaling in serverless.

Adding static VMs to handle external storage improves
performance but breaks the serverless paradigm. Cirrus [18]
uses large VM instances to run a custom storage back-end;
Shredder [92] uses a single long-running VM for both storage
and function execution; ExCamera [30] uses long-running
VMs to coordinate a pool of functions. Either the user or
provider must scale these VMs to match the elasticity and
parallelism of functions, which adds complexity and cost.

Reducing the latency of auto-scaled storage can improve
performance within the serverless paradigm. Pocket [43]
provides ephemeral serverless storage; other cloud providers
offer managed external state, such as AWS Step Functions [3],
Azure Durable Functions [53], and IBM Composer [8]. Such
approaches, however, do not address the data-shipping prob-
lem and its associated network and memory overheads.

Container initialisation times have been reduced to mitigate
the cold-start problem, which can contribute several seconds
of latency with standard containers [36, 72, 83]. SOCK [61]
improves the container boot process to achieve cold starts
in the low hundreds of milliseconds; Catalyzer [25] and
SEUSS [16] demonstrate snapshot and restore in VMs and
unikernels to achieve millisecond serverless cold starts. Al-
though such reductions are promising, the resource overhead
and restrictions on sharing memory in the underlying mecha-
nisms still remain.

2.2 Potential of Software-based Isolation

Software-based isolation offers memory safety with initial-
isation times and memory overheads up to two orders of
magnitude lower than containers and VMs. For this reason,
it is an attractive starting point for serverless isolation. How-
ever, software-based isolation alone does not support resource
isolation, or efficient in-memory state sharing.

It has been used in several existing edge and serverless
computing systems, but none address these shortcomings.

USENIX Association 2020 USENIX Annual Technical Conference 421

Fastly’s Terrarium [28] and Cloudflare Workers [22] provide
memory safety with WebAssembly [35] and V8 Isolates [34],
respectively, but neither isolates CPU or network use, and
both rely on data shipping for state access; Shredder [92] also
uses V8 Isolates to run code on a storage server, but does not
address resource isolation, and relies on co-locating state and
functions on a single host. This makes it ill-suited to the level
of scale required in serverless platforms; Boucher et al. [14]
show microsecond initialisation times for Rust microservices,
but do not address isolation or state sharing; Krustlet [54]
is a recent prototype using WebAssembly to replace Docker
in Kubernetes, which could be integrated with Knative [33].
It focuses, however, on replicating container-based isolation,
and so fails to meet our requirement for in-memory sharing.

Our final non-functional requirement is for multi-language
support, which is not met by language-specific approaches to
software-based isolation [11, 27]. Portable Native Client [23]
provides multi-language software-based isolation by targeting
a portable intermediate representation, LLVM IR, and hence
meets this requirement. Portable Native Client has now been
deprecated, with WebAssembly as its successor [35].

WebAssembly offers strong memory safety guarantees by
constraining memory access to a single linear byte array, ref-
erenced with offsets from zero. This enables efficient bounds
checking at both compile- and runtime, with runtime checks
backed by traps. These traps (and others for referencing in-
valid functions) are implemented as part of WebAssembly
runtimes [87]. The security guarantees of WebAssembly are
well established in existing literature, which covers formal ver-
ification [84], taint tracking [31], and dynamic analysis [45].
WebAssembly offers mature support for languages with an
LLVM front-end such as C, C++, C#, Go and Rust [49], while
toolchains exist for Typescript [10] and Swift [77]. Java byte-
code can also be converted [7], and further language support
is possible by compiling language runtimes to WebAssembly,
e.g. Python, JavaScript and Ruby. Although WebAssembly
is restricted to a 32-bit address space, 64-bit support is in
development.

The WebAssembly specification does not yet include mech-
anisms for sharing memory, therefore it alone cannot meet
our requirements. There is a proposal to add a form of syn-
chronised shared memory to WebAssembly [85], but it is not
well suited to sharing serverless state dynamically due to the
required compile-time knowledge of all shared regions. It
also lacks an associated programming model and provides
only local memory synchronisation.

The properties of software-based isolation highlight a com-
pelling alternative to containers, VMs and unikernels, but
none of these approaches meet all of our requirements. We
therefore propose a new isolation approach to enable efficient
serverless computing for big data.

Host interface

Virtual net interface
Function

(WebAssembly)

Message bus

Faaslet
Network namespaceThread + CGroup

WASI capabilities

Filesystem

Memory safety

Private
Shared

Memory

Figure 1: Faaslet abstraction with isolation

3 Faaslets
We propose Faaslets, a new isolation mechanism that satis-
fies all the requirements for efficient data-intensive serverless
computing. Tab. 1 highlights Faaslets’ strong memory and
resource isolation guarantees, and efficient shared in-memory
state. Faaslets provide a minimal level of lightweight virtuali-
sation through their host interface, which supports serverless-
specific tasks, memory management, a limited filesystem and
network access.

In terms of non-functional requirements, Faaslets improve
on containers and VMs by having a memory footprint below
200 KB and cold-start initialisation times of less than 10 ms.
Faaslets execute functions compiled to secure IR, allowing
them to support multiple programming languages.

While Faaslets cannot initialise as quickly as pure SFI, they
mitigate the cold-start problem through ahead-of-time initiali-
sation from snapshots called Proto-Faaslets. Proto-Faaslets
reduce initialisation times to hundreds of microseconds, and a
single snapshot can be restored across hosts, quickly scaling
horizontally on clusters.

3.1 Overview

Fig. 1 shows a function isolated inside a Faaslet. The function
itself is compiled to WebAssembly [35], guaranteeing mem-
ory safety and control flow integrity. By default, a function
is placed in its own private contiguous memory region, but
Faaslets also support shared regions of memory (§3.3). This
allows a Faaslet to access shared in-memory state within the
constraints of WebAssembly’s memory safety guarantees.

Faaslets also ensure fair resource access. For CPU isolation,
they use the CPU subset of Linux cgroups [79]. Each function
is executed by a dedicated thread of a shared runtime process.
This thread is assigned to a cgroup with a share of CPU equal
to that of all Faaslets. The Linux CFS [79] ensures that these
threads are scheduled with equal CPU time.

Faaslets achieve secure and fair network access using net-
work namespaces, virtual network interfaces and traffic shap-
ing [79]. Each Faaslet has its own network interface in a
separate namespace, configured using iptables rules. To en-
sure fairness between co-located tenants, each Faaslet applies
traffic shaping on its virtual network interface using tc, thus
enforcing ingress and egress traffic rate limits.

As functions in a Faaslet must be permitted to invoke stan-
dard system calls to perform memory management and I/O
operations, Faaslets offer an interface through which to in-

422 2020 USENIX Annual Technical Conference USENIX Association

Class Function Action Standard

Calls

byte* read_call_input() Read input data to function as byte array

none

void write_call_output(out_data) Write output data for function
int chain_call(name, args) Call function and return the call_id
int await_call(call_id) Await the completion of call_id
byte* get_call_output(call_id) Load the output data of call_id

State

byte* get_state(key, flags) Get pointer to state value for key
byte* get_state_offset(key, off, flags) Get pointer to state value for key at offset
void set_state(key, val) Set state value for key
void set_state_offset(key, val, len, off) Set len bytes of state value at offset for key
void push/pull_state(key) Push/pull global state value for key
void push/pull_state_offset(key, off) Push/pull global state value for key at offset
void append_state(key, val) Append data to state value for key
void lock_state_read/write(key) Lock local copy of state value for key
void lock_state_global_read/write(key) Lock state value for key globally

Dynlink void* dlopen/dlsym(...) Dynamic linking of libraries

POSIX
int dlclose(...) As above

Memory void* mmap(...), int munmap(...) Memory grow/shrink only
int brk(...), void* sbrk(...) Memory grow/shrink

Network int socket/connect/bind(...) Client-side networking only

WASI

size_t send/recv(...) Send/recv via virtual interface

File I/O int open/close/dup/stat(...) Per-user virtual filesystem access
size_t read/write(...) As above

Misc int gettime(...) Per-user monotonic clock only
size_t getrandom(...) Uses underlying host /dev/urandom

Table 2: Faaslet host interface (The final column indicates whether functions are defined as part of POSIX or WASI [57].)

teract with the underlying host. Unlike containers or VMs,
Faaslets do not provide a fully-virtualised POSIX environ-
ment but instead support a minimal serverless-specific host
interface (see Fig. 1). Faaslets virtualise system calls that
interact with the underlying host and expose a range of func-
tionality, as described below.

The host interface integrates with the serverless runtime
through a message bus (see Fig. 1). The message bus is used
by Faaslets to communicate with their parent process and each
other, receive function calls, share work, invoke and await
other functions, and to be told by their parent process when
to spawn and terminate.

Faaslets support a read-global write-local filesystem,
which lets functions read files from a global object store (§5),
and write to locally cached versions of the files. This is pri-
marily used to support legacy applications, notably language
runtimes such as CPython [67], which need a filesystem for
loading library code and storing intermediate bytecode. The
filesystem is accessible through a set of POSIX-like API
functions that implement the WASI capability-based security
model, which provides efficient isolation through unforgeable
file handles [56]. This removes the need for more resource-
intensive filesystem isolation such as a layered filesystem or
chroot, which otherwise add to cold start latencies [61].

3.2 Host Interface

The Faaslet host interface must provide a virtualisation layer
capable of executing a range of serverless big data applica-
tions, as well as legacy POSIX applications. This interface
necessarily operates outside the bounds of memory safety,
and hence is trusted to preserve isolation when interacting

with the host.
In existing serverless platforms based on containers and

VMs, this virtualisation layer is a standard POSIX envi-
ronment, with serverless-specific tasks executed through
language- and provider-specific APIs over HTTP [5, 32, 39].
Instantiating a full POSIX environment with the associated
isolation mechanisms leads to high initialisation times [61],
and heavy use of HTTP APIs contributes further latency and
network overheads.

In contrast, the Faaslet host interface targets minimal vir-
tualisation, hence reducing the overheads required to pro-
vide isolation. The host interface is a low-level API built
exclusively to support a range of high-performance serverless
applications. The host interface is dynamically linked with
function code at runtime (§3.4), making calls to the interface
more efficient than performing the same tasks through an
external API.

Tab. 2 lists the Faaslet host interface API, which supports:
(i) chained serverless function invocation; (ii) interacting with
shared state (§4); (iii) a subset of POSIX-like calls for memory
management, timing, random numbers, file/network I/O and
dynamic linking. A subset of these POSIX-like calls are
implemented according to WASI, an emerging standard for a
server-side WebAssembly interface [57]. Some key details of
the API are as follows:
Function invocation. Functions retrieve their input data
serialised as byte arrays using the read_call_input func-
tion, and similarly write their output data as byte arrays
using write_call_output. Byte arrays constitute a generic,
language-agnostic interface.

Non-trivial serverless applications invoke multiple func-

USENIX Association 2020 USENIX Annual Technical Conference 423

tions that work together as part of chained calls, made with
the chain_call function. Users’ functions have unique names,
which are passed to chain_call, along with a byte array con-
taining the input data for that call.

A call to chain_call returns the call ID of the invoked func-
tion. The call ID can then be passed to await_call to perform
a blocking wait for another call to finish or fail, yielding its
return code. The Faaslet blocks until the function has com-
pleted, and passes the same call ID to get_call_output to
retrieve the chained call’s output data.

Calls to chain_call and await_call can be used in loops to
spawn and await calls in a similar manner to standard multi-
threaded code: one loop invokes chain_call and records the
call IDs; a second loop calls await_call on each ID in turn.
We show this pattern in Python in Listing 1.
Dynamic linking. Some legacy applications and libraries re-
quire support for dynamic linking, e.g. CPython dynamically
links Python extensions. All dynamically loaded code must
first be compiled to WebAssembly and undergo the same
validation process as other user-defined code (§3.4). Such
modules are loaded via the standard Faaslet filesystem abstrac-
tion and covered by the same safety guarantees as its parent
function. Faaslets support this through a standard POSIX
dynamic linking API, which is implemented according to
WebAssembly dynamic linking conventions [86].
Memory. Functions allocate memory dynamically through
calls to mmap() and brk(), either directly or through
dlmalloc [44]. The Faaslet allocates memory in its private
memory region, and uses mmap on the underlying host to ex-
tend the region if necessary. Each function has its own pre-
defined memory limit, and these calls fail if growth of the
private region would exceeded this limit.
Networking. The supported subset of networking calls allows
simple client-side send/receive operations and is sufficient
for common use cases, such as connecting to an external
data store or a remote HTTP endpoint. The functions socket,
connect and bind allow setting up the socket while read and
write allow the sending and receiving of data. Calls fail if
they pass flags that are not related to simple send/receive
operations over IPv4/IPv6, e.g. the AF_UNIX flag.

The host interface translates these calls to equivalent socket
operations on the host. All calls interact exclusively with the
Faaslet’s virtual network interface, thus are constrained to a
private network interface and cannot exceed rate limits due to
the traffic shaping rules.
Byte arrays. Function inputs, results and state are repre-
sented as simple byte arrays, as is all function memory. This
avoids the need to serialise and copy data as it passes through
the API, and makes it trivial to share arbitrarily complex
in-memory data structures.

3.3 Shared Memory Regions

As discussed in §2, sharing in-memory state while otherwise
maintaining isolation is an important requirement for efficient

0 +B +B+S

0 +A +A+S

BA SProc. memory

Faaslet A

Faaslet B

Offset:

Figure 2: Faaslet shared memory region mapping

serverless big data applications. Faaslets do this by adding the
new concept of shared regions to the existing WebAssembly
memory model [35]. Shared regions give functions concurrent
access to disjoint segments of shared process memory, allow-
ing them direct, low-latency access to shared data structures.
Shared regions are backed by standard OS virtual memory,
so there is no extra serialisation or overhead, hence Faaslets
achieve efficient concurrent access on a par with native multi-
threaded applications. In §4.2, we describe how Faaslets use
this mechanism to provide shared in-memory access to global
state.

Shared regions maintain the memory safety guarantees of
the existing WebAssembly memory model, and use standard
OS virtual memory mechanisms. WebAssembly restricts each
function’s memory to a contiguous linear byte array, which
is allocated by the Faaslet at runtime from a disjoint section
of the process memory. To create a new shared region, the
Faaslet extends the function’s linear byte array, and remaps
the new pages onto a designated region of common process
memory. The function accesses the new region of linear
memory as normal, hence maintaining memory safety, but
the underlying memory accesses are mapped onto the shared
region.

Fig. 2 shows Faaslets A and B accessing a shared region
(labelled S), allocated from a disjoint region of the common
process memory (represented by the central region). Each
Faaslet has its own region of private memory (labelled A and
B), also allocated from the process memory. Functions inside
each Faaslet access all memory as offsets from zero, forming
a single linear address space. Faaslets map these offsets onto
either a private region (in this case the lower offsets), or a
shared region (in this case the higher offsets).

Multiple shared regions are permitted, and functions can
also extend their private memory through calls to the memory
management functions in the host interface such as brk (§3.2).
Extension of private memory and creation of new shared re-
gions is handled by extending a byte array, which represents
the function’s memory, and then remapping the underlying
pages to regions of shared process memory. This means the
function continues to see a single densely-packed linear ad-
dress space, which may be backed by several virtual memory
mappings. Faaslets allocate shared process memory through
calls to mmap on the underlying host, passing MAP_SHARED and
MAP_ANONYMOUS flags to create shared and private regions, re-
spectively, and remap these regions with mremap.

424 2020 USENIX Annual Technical Conference USENIX Association

Sources Toolchain WebAssembly

Codegen Obj. file

JIT Executable

1) Compilation
 (untrusted)

2) Code generation
 (trusted)

3) Executable linking
 (trusted)

WebAssembly

Obj. file Host iface+

Figure 3: Creation of a Faaslet executable

3.4 Building Functions for Faaslets

Fig. 3 shows the three phases to convert source code of a
function into a Faaslet executable: (1) the user invokes the
Faaslet toolchain to compile the function into a WebAssembly
binary, linking against a language-specific declaration of the
Faaslet host interface; (2) code generation creates an object
file with machine code from WebAssembly; and (3) the host
interface definition is linked with the machine code to produce
the Faaslet executable.

When Faaslets are deployed, the compilation phase to gen-
erate the WebAssembly binary takes place on a user’s ma-
chine. Since that is untrusted, the code generation phase
begins by validating the WebAssembly binary, as defined
in the WebAssembly specification [35]. This ensures that
the binary conforms to the specification. Code generation
then takes place in a trusted environment, after the user has
uploaded their function.

In the linking phase, the Faaslet uses LLVM JIT li-
braries [49] to link the object file and the definition of the
host interface implementation. The host interface functions
are defined as thunks, which allows injecting the trusted host
interface implementation into the function binary.

Faaslets use WAVM [70] to perform the validation, code
generation and linking. WAVM is an open-source WebAssem-
bly VM, which passes the WebAssembly conformance
tests [84] and thus guarantees that the resulting executable
enforces memory safety and control flow integrity [35].

4 Local and Global State

Stateful serverless applications can be created with Faaslets
using distributed data objects (DDO), which are language-
specific classes that expose a convenient high-level state inter-
face. DDOs are implemented using the key/value state API
from Tab. 2.

The state associated with Faaslets is managed using a two-
tier approach that combines local sharing with global distri-
bution of state: a local tier provides shared in-memory access
to state on the same host; and a global tier allows Faaslets to
synchronise state across hosts.

DDOs hide the two-tier state architecture, providing trans-
parent access to distributed data. Functions, however, can
still access the state API directly, either to exercise more fine-
grained control over consistency and synchronisation, or to
implement custom data structures.

Listing 1: Distributed SGD application with Faaslets
1 t_a = SparseMatrixReadOnly("training_a")
2 t_b = MatrixReadOnly("training_b")
3 weights = VectorAsync("weights")
4

5 @faasm_func
6 def weight_update(idx_a , idx_b):
7 for col_idx , col_a in t_a.columns[idx_a:idx_b]:
8 col_b = t_b.columns[col_idx]
9 adj = calc_adjustment(col_a , col_b)

10 for val_idx , val in col_a.non_nulls ():
11 weights[val_idx] += val * adj
12 if iter_count % threshold == 0:
13 weights.push()
14

15 @faasm_func
16 def sgd_main(n_workers , n_epochs):
17 for e in n_epochs:
18 args = divide_problem(n_workers)
19 c = chain(update, n_workers, args)
20 await_all(c)
21 ...

4.1 State Programming Model

Each DDO represents a single state value, referenced through-
out the system using a string holding its respective state key.

Faaslets write changes from the local to the global tier by
performing a push, and read from the global to the local tier
by performing a pull. DDOs may employ push and pull op-
erations to produce variable consistency, such as delaying
updates in an eventually-consistent list or set, and may lazily
pull values only when they are accessed, such as in a dis-
tributed dictionary. Certain DDOs are immutable, and hence
avoid repeated synchronisation.

Listing 1 shows both implicit and explicit use of two-tier
state through DDOs to implement stochastic gradient de-
scent (SGD) in Python. The weight_update function accesses
two large input matrices through the SparseMatrixReadOnly

and MatrixReadOnly DDOs (lines 1 and 2), and a single shared
weights vector using VectorAsync (line 3). VectorAsync ex-
poses a push() function which is used to periodically push
updates from the local tier to the global tier (line 13). The calls
to weight_update are chained in a loop in sgd_main (line 19).

Function weight_update accesses a randomly assigned sub-
set of columns from the training matrices using the columns

property (lines 7 and 8). The DDO implicitly performs a pull
operation to ensure that data is present, and only replicates
the necessary subsets of the state values in the local tier—the
entire matrix is not transferred unnecessarily.

Updates to the shared weights vector in the local tier are
made in a loop in the weight_update function (line 11). It
invokes the push method on this vector (line 13) sporadically
to update the global tier. This improves performance and
reduces network overhead, but introduces inconsistency be-
tween the tiers. SGD tolerates such inconsistencies and it
does not affect the overall result.

USENIX Association 2020 USENIX Annual Technical Conference 425

Ak
A
: k

B
: B k

C
: C

A B B C1 C2

F1 F2 F3 F4
Memory mapping

Local tier

Global tier

Host 1 Host 2

Figure 4: Faaslet two-tier state architecture

4.2 Two-Tier State Architecture

Faaslets represent state with a key/value abstraction, using
unique state keys to reference state values. The authoritative
state value for each key is held in the global tier, which is
backed by a distributed key-value store (KVS) and accessible
to all Faaslets in the cluster. Faaslets on a given host share
a local tier, containing replicas of each state value currently
mapped to Faaslets on that host. The local tier is held ex-
clusively in Faaslet shared memory regions, and Faaslets do
not have a separate local storage service, as in SAND [1] or
Cloudburst [75].

Fig. 4 shows the two-tier state architecture across two hosts.
Faaslets on host 1 share state value A; Faaslets on both hosts
share state value B. Accordingly, there is a replica of state
value A in the local tier of host 1, and replicas of state value B
in the local tier of both hosts.

The columns method of the SparseMatrixReadOnly and
MatrixReadOnly DDOs in Listing 1 uses state chunks to ac-
cess a subset of a larger state value. As shown in Fig. 4,
state value C has state chunks, which are treated as smaller
independent state values. Faaslets create replicas of only the
required chunks in their local tier.

Ensuring local consistency. State value replicas in the local
tier are created using Faaslet shared memory (§3.3). To ensure
consistency between Faaslets accessing a replica, Faaslets
acquire a local read lock when reading, and a local write lock
when writing. This locking happens implicitly as part of all
state API functions, but not when functions write directly
to the local replica via a pointer. The state API exposes the
lock_state_read and lock_state_write functions that can
be used to acquire local locks explicitly, e.g. to implement
a list that performs multiple writes to its state value when
atomically adding an element. A Faaslet creates a new local
replica after a call to pull_state or get_state if it does not
already exist, and ensures consistency through a write lock.

Ensuring global consistency. DDOs can produce vary-
ing levels of consistency between the tiers as shown
by VectorAsync in Listing 1. To enforce strong con-
sistency, DDOs must use global read/write locks, which
can be acquired and released for each state key using
lock_state_global_read and lock_state_global_write, re-
spectively. To perform a consistent write to the global tier,
an object acquires a global write lock, calls pull_state to
update the local tier, applies its write to the local tier, calls
push_state to update the global tier, and releases the lock.

Sharing Q

Faaslets

Scheduler Scheduler

State A CB

Incoming callsB C

A

A

B B C

C BC

A

Faasm instance 1 Faasm instance 2

Figure 5: FAASM system architecture

5 FAASM Runtime
FAASM is the serverless runtime that uses Faaslets to exe-
cute distributed stateful serverless applications across a clus-
ter. FAASM is designed to integrate with existing server-
less platforms, which provide the underlying infrastructure,
auto-scaling functionality and user-facing frontends. FAASM
handles the scheduling, execution and state management of
Faaslets. The design of FAASM follows a distributed architec-
ture: multiple FAASM runtime instances execute on a set of
servers, and each instance manages a pool of Faaslets.

5.1 Distributed Scheduling

A local scheduler in the FAASM runtime is responsible for
the scheduling of Faaslets. Its scheduling strategy is key to
minimising data-shipping (see §2) by ensuring that executed
functions are co-located with required in-memory state. One
or more Faaslets managed by a runtime instance may be
warm, i.e. they already have their code and state loaded.
The scheduling goal is to ensure that as many function calls
as possible are executed by warm Faaslets.

To achieve this without modifications to the underlying
platform’s scheduler, FAASM uses a distributed shared state
scheduler similar to Omega [71]. Function calls are sent
round-robin to local schedulers, which execute the function
locally if they are warm and have capacity, or share it with
another warm host if one exists. The set of warm hosts for
each function is held in the FAASM state global tier, and each
scheduler may query and atomically update this set during
the scheduling decision.

Fig. 5 shows two FAASM runtime instances, each with its
own local scheduler, a pool of Faaslets, a collection of state
stored in memory, and a sharing queue. Calls for functions A–
C are received by the local schedulers, which execute them
locally if they have warm Faaslets, and share them with the
other host if not. Instance 1 has a warm Faaslet for func-
tion A and accepts calls to this function, while sharing calls to
functions B and C with Instance 2, which has corresponding
warm Faaslets. If a function call is received and there are no
instances with warm Faaslets, the instance that received the
call creates a new Faaslet, incurring a “cold start”.

5.2 Reducing Cold Start Latency

While Faaslets typically initialise in under 10 ms, FAASM
reduces this further using Proto-Faaslets, which are Faaslets
that contain snapshots of arbitrary execution state that can
be restored on any host in the cluster. From this snapshot,

426 2020 USENIX Annual Technical Conference USENIX Association

FAASM spawns a new Faaslet instance, typically reducing
initialisation to hundreds of microseconds (§6.5).

Different Proto-Faaslets are generated for a function by
specifying user-defined initialisation code, which is executed
before snapshotting. If a function executes the same code
on each invocation, that code can become initialisation code
and be removed from the function itself. For Faaslets with
dynamic language runtimes, the runtime initialisation can be
done as part of the initialisation code.

A Proto-Faaslet snapshot includes a function’s stack, heap,
function table, stack pointer and data, as defined in the We-
bAssembly specification [35]. Since WebAssembly memory
is represented by a contiguous byte array, containing the
stack,heap and data, FAASM restores a snapshot into a new
Faaslet using a copy-on-write memory mapping. All other
data is held in standard C++ objects. Since the snapshot is
independent of the underlying OS thread or process, FAASM
can serialise Proto-Faaslets and instantiate them across hosts.

FAASM provides an upload service that exposes an HTTP
endpoint. Users upload WebAssembly binaries to this end-
point, which then performs code generation (§3.4) and writes
the resulting object files to a shared object store. The imple-
mentation of this store is specific to the underlying serverless
platform but can be a cloud provider’s own solution such
as AWS S3 [6]. Proto-Faaslets are generated and stored in
the FAASM global state tier as part of this process. When
a Faaslet undergoes a cold start, it loads the object file and
Proto-Faaslet, and restores it.

In addition, FAASM uses Proto-Faaslets to reset Faaslets
after each function call. Since the Proto-Faaslet captures a
function’s initialised execution state, restoring it guarantees
that no information from the previous call is disclosed. This
can be used for functions that are multi-tenant, e.g. in a
serverless web application. FAASM guarantees that private
data held in memory is cleared away after each function exe-
cution, thereby allowing Faaslets to handle subsequent calls
across tenants. In a container-based platform, this is typi-
cally not safe, as the platform cannot ensure that the container
memory has been cleaned entirely between calls.

6 Evaluation
Our experimental evaluation targets the following questions:
(i) how does FAASM state management improve efficiency
and performance on parallel machine learning training? (§6.2)
(ii) how do Proto-Faaslets and low initialisation times im-
pact performance and throughput in inference serving? (§6.3)
(iii) how does Faaslet isolation affect performance in a linear
algebra benchmark using a dynamic language runtime? (§6.4)
and (iv) how do the overheads of Faaslets compare to Docker
containers? (§6.5)

6.1 Experimental Set-up

Serverless baseline. To benchmark FAASM against a state-of-
the-art serverless platform, we use Knative [33], a container-

based system built on Kubernetes [80]. All experiments are
implemented using the same code for both FAASM and Kna-
tive, with a Knative-specific implementation of the Faaslet
host interface for container-based code. This interface uses the
same undelrying state management code as FAASM, but can-
not share the local tier between co-located functions. Knative
function chaining is performed through the standard Knative
API. Redis is used for the distributed KVS and deployed to
the same cluster.
FAASM integration. We integrate FAASM with Knative by
running FAASM runtime instances as Knative functions that
are replicated using the default autoscaler. The system is oth-
erwise unmodified, using the default endpoints and scheduler.
Testbed. Both FAASM and Knative applications are executed
on the same Kubernetes cluster, running on 20 hosts, all
Intel Xeon E3-1220 3.1 GHz machines with 16 GB of RAM,
connected with a 1 Gbps connection. Experiments in §6.5
were run on a single Intel Xeon E5-2660 2.6 GHz machine
with 32 GB of RAM.
Metrics. In addition to the usual evaluation metrics, such
as execution time, throughput and latency, we also consider
billable memory, which quantifies memory consumption over
time. It is the product of the peak function memory multi-
plied by the number and runtime of functions, in units of
GB-seconds. It is used to attribute memory usage in many
serverless platforms [5, 32, 39]. Note that all memory mea-
surements include the containers/Faaslets and their state.

6.2 Machine Learning Training

This experiment focuses on the impact of FAASM’s state man-
agement on runtime, network overheads and memory usage.

We use distributed stochastic gradient descent (SGD) using
the HOGWILD! algorithm [68] to run text classification on the
Reuters RCV1 dataset [46]. This updates a central weights
vector in parallel with batches of functions across multiple
epochs. We run both Knative and FAASM with increasing
numbers of parallel functions.

Fig. 6a shows the training time. FAASM exhibits a small
improvement in runtime of 10% compared to Knative at low
parallelism and a 60% improvement with 15 parallel functions.
With more than 20 parallel Knative functions, the underlying
hosts experience increased memory pressure and they exhaust
memory with over 30 functions. Training time continues to
improve for FAASM up to 38 parallel functions, at which point
there is a more than an 80% improvement over 2 functions.

Fig. 6b shows that, with increasing parallelism, the volume
of network transfers increases in both FAASM and Knative.
Knative transfers more data to start with and the volume
increase more rapidly, with 145 GB transferred with 2 parallel
functions and 280 GB transferred with 30 functions. FAASM
transfers 75 GB with 2 parallel functions and 100 GB with
38 parallel functions.

Fig. 6c shows that billable memory in Knative increases
with more parallelism: from 1,000 GB-seconds for 2 func-

USENIX Association 2020 USENIX Annual Technical Conference 427

0 5 10 15 20 25 30 35
Parallel Functions

0

100

200

300

Ti
m

e
(s

)

Knative
Faasm

(a) Training time

0 5 10 15 20 25 30 35
Parallel Functions

0
50

100
150
200
250

Se
nt

 +
 re

cv
 (G

B)

(b) Network transfers

0 5 10 15 20 25 30 35
Parallel Functions

0
1000
2000
3000
4000
5000

Us
ag

e
(G

B-
se

co
nd

)

(c) Memory usage

Figure 6: Machine learning training with SGD with Faaslets (FAASM) and containers (Knative)

tions to over 5,000 GB-second for 30 functions. The billable
memory for FAASM increases slowly from 350 GB-second
for 2 functions to 500 GB-second with 38 functions.

The increased network transfer, memory usage and du-
ration in Knative is caused primarily by data shipping, e.g.
loading data into containers. FAASM benefits from sharing
data through its local tier, hence amortises overheads and re-
duces latency. Further improvements in duration and network
overhead come from differences in the updates to the shared
weights vector: in FAASM, the updates from multiple func-
tions are batched per host; whereas in Knative, each function
must write directly to external storage. Billable memory in
Knative and FAASM increases with more parallelism, how-
ever, the increased memory footprint and duration in Knative
make this increase more pronounced.

To isolate the underlying performance and resource over-
heads of FAASM and Knative, we run the same experiment
with the number of training examples reduced from 800K to
128. Across 32 parallel functions, we observe for FAASM
and Knative: training times of 460 ms and 630 ms; network
transfers of 19 MB and 48 MB; billable memory usage of
0.01 GB-second and 0.04 GB-second, respectively.

In this case, increased duration in Knative is caused by the
latency and volume of inter-function communication through
the Knative HTTP API versus direct inter-Faaslet communica-
tion. FAASM incurs reduced network transfers versus Knative
as in the first experiment, but the overhead of these transfers
in both systems are negligible as they are small and amortized
across all functions. Billable memory is increased in Kna-
tive due to the memory overhead of each function container
being 8 MB (versus 270 kB for each Faaslet). These improve-
ments are negligible when compared with those derived from
reduced data shipping and duplication of the full dataset.

6.3 Machine Learning Inference

This experiment explores the impact of the Faaslet initialisa-
tion times on cold-starts and function call throughput.

We consider a machine learning inference application be-
cause they are typically user-facing, thus latency-sensitive,
and must serve high volumes of requests. We perform infer-
ence serving with TensorFlow Lite [78], with images loaded
from a file server and classified using a pre-trained Mo-
bileNet [37] model. In our implementation, requests from

0 50 100 150 200 250
Throughput (request/s)

0

500

1000

1500

2000

M
ed

ia
n

la
te

nc
y

(m
s)

(a) Throughput vs. latency

0 500 1000 1500 2000
Latency (ms)

0
20
40
60
80

100

%
 re

qu
es

ts

Faasm
0% cold
2% cold
20% cold

(b) Latency CDF

Figure 7: Machine learning inference with TensorFlow Lite

each user are sent to different instances of the underlying
serverless function. Therefore, each user sees a cold-start on
their first request. We measure the latency distribution and
change in median latency when increasing throughput and
varying the ratio of cold-starts.

Figs. 7a and 7b show a single line for FAASM that covers
all cold-start ratios. Cold-starts only introduce a negligible
latency penalty of less than 1 ms and do not add significant
resource contention, hence all ratios behave the same. Op-
timal latency in FAASM is higher than that in Knative, as
the inference calculation takes longer due to the performance
overhead from compiling TensorFlow Lite to WebAssembly.

Fig. 7a shows that the median latency in Knative increases
sharply from a certain throughput threshold depending on
the cold-start ratio. This is caused by cold starts resulting in
queuing and resource contention, with the median latency for
the 20% cold-start workload increasing from 90 ms to over
2 s at around 20 req/s. FAASM maintains a median latency of
120 ms at a throughput of over 200 req/s.

Fig. 7b shows the latency distribution for a single function
that handles successive calls with different cold-start ratios.
Knative has a tail latency of over 2 s and more than 35%
of calls have latencies of over 500 ms with 20% cold-starts.
FAASM achieves a tail latency of under 150 ms for all ratios.

6.4 Language Runtime Performance with Python

The next two experiments (i) measure the performance impact
of Faaslet isolation on a distributed benchmark using an exist-
ing dynamic language runtime, the CPython interpreter; and
(ii) investigate the impact on a single Faaslet running compute
microbenchmarks and a suite of Python microbenchmarks.

We consider a distributed divide-and-conquer matrix mul-
tiplication implemented with Python and Numpy. In the
FAASM implementation, these functions are executed using

428 2020 USENIX Annual Technical Conference USENIX Association

0 2 4 6 8
Matrix size 1e3

0

50

100

150

Ti
m

e
(s

)

Knative
Faasm

(a) Duration

0 2 4 6 8
Matrix size 1e3

0

5

10

15

Se
nt

 +
 re

cv
 (G

B)

(b) Network transfer

Figure 8: Comparison of matrix multiplication with Numpy

2m
m
3m

m ad
i
ata

x
bic

g

cho
les

ky

cor
rel

ati
o

cov
ari

an
ce

de
ric

he

do
itg

en
du

rbi
n

fdt
d-2

d

flo
yd

-wars

gra
msch

mid

he
at-

3d

jac
ob

i-1
d

jac
ob

i-2
d lu

lud
cm

p
mvt

nu
ssi

no
v

sei
de

l-2
d

tris
olv

0.0
0.5
1.0
1.5

Vs
. n

at
iv

e

(a) Polybench

cha
os

de
lta

blu
e

du
lwich

fan
nk

uchflo
at
ge

nsh
i go

he
xio

m

jso
n-d

um
ps

jso
n-l

oa
ds

log
gin

g
mdp

nb
od

y
pic

kle

pid
igit

s
py

ae
s

py
fla

te

ray
tra

ce

ric
ha

rds

sci
mark

spe
ctr

al-
n
tel

co

un
pa

ck-
seq

0

1

2

Vs
. n

at
iv

e

(b) Python Performance Benchmark

Figure 9: Performance of Faaslets with Python

CPython inside a Faaslet; in Knative, we use standard Python.
As there is no WebAssembly support for BLAS and LAPACK,
we do not use them in either implementation.

While this experiment is computationally intensive, it also
makes use of the filesystem, dynamic linking, function chain-
ing and state, thus exercising all of the Faaslet host interface.
Each matrix multiplication is subdivided into multiplications
of smaller submatrices and merged. This is implemented by
recursively chaining serverless functions, with each multi-
plication using 64 multiplication functions and 9 merging
functions. We compare the execution time and network traffic
when running multiplications of increasingly large matrices.

Fig. 8a shows that the duration of matrix multiplications
on FAASM and Knative are almost identical with increasing
matrix sizes. Both take around 500 ms with 100×100 matri-
ces, and almost 150 secs with 8000×8000 matrices. Fig. 8b
shows that FAASM results in 13% less network traffic across
all matrix sizes, and hence gains a small benefit from storing
intermediate results more efficiently.

In the next experiment, we use Polybench/C [64] to mea-
sure the Faaslet performance overheads on simple compute
functions, and the Python Performance Benchmarks [76] for
overheads on more complex applications. Polybench/C is
compiled directly to WebAssembly and executed in Faaslets;
the Python code executes with CPython running in a Faaslet.

Docker Faaslets Proto-Faaslets vs. Docker

Initialisation 2.8 s 5.2 ms 0.5 ms 5.6K×
CPU cycles 251M 1.4K 650 385K×
PSS memory 1.3 MB 200 KB 90 KB 15×
RSS memory 5.0 MB 200 KB 90 KB 57×
Capacity ~8 K ~70 K >100 K 12×

Table 3: Comparison of Faaslets vs. container cold starts
(no-op function)

Fig. 9 shows the performance overhead when running both
sets of benchmarks compared to native execution. All but
two of the Polybench benchmarks are comparable to native
with some showing performance gains. Two experience a
40%–55% overhead, both of which benefit from loop opti-
misations that are lost through compilation to WebAssembly.
Although many of the Python benchmarks are within a 25%
overhead or better, some see a 50%–60% overhead, with
pidigits showing a 240% overhead. pidigits stresses big
integer arithmetic, which incurs significant overhead in 32-bit
WebAssembly.

Jangda et al. [41] report that code compiled to WebAssem-
bly has more instructions, branches and cache misses, and
that these overheads are compounded on larger applications.
Serverless functions, however, typically are not complex ap-
plications and operate in a distributed setting in which distri-
bution overheads dominate. As shown in Fig. 8a, FAASM can
achieve competitive performance with native execution, even
for functions interpreted by a dynamic language runtime.

6.5 Efficiency of Faaslets vs. Containers

Finally we focus on the difference in footprint and cold-start
initialisation latency between Faaslets and containers.

To measure memory usage, we deploy increasing numbers
of parallel functions on a host and measure the change in
footprint with each extra function. Containers are built from
the same minimal image (alpine:3.10.1) so can access the
same local copies of shared libraries. To highlight the impact
of this sharing, we include the proportional set size (PSS)
and resident set size (RSS) memory consumption. Initiali-
sation times and CPU cycles are measured across repeated
executions of a no-op function. We observe the capacity as
the maximum number of concurrent running containers or
Faaslets that a host can sustain before running out of memory.

Tab. 3 shows several orders of magnitude improvement
in CPU cycles and time elapsed when isolating a no-op
with Faaslets, and a further order of magnitude using Proto-
Faaslets. With an optimistic PSS memory measurement for
containers, memory footprints are almost seven times lower
using Faaslets, and 15× lower using Proto-Faaslets. A single
host can support up to 10× more Faaslets than containers,
growing to twelve times more using Proto-Faaslets.

To assess the impact of restoring a non-trivial Proto-Faaslet
snapshot, we run the same initialisation time measurement
for a Python no-op function. The Proto-Faaslet snapshot
is a pre-initialised CPython interpreter, and the container
uses a minimal python:3.7-alpine image. The container

USENIX Association 2020 USENIX Annual Technical Conference 429

10 1 100 101 102 103

Container/ Faaslet creation per second

100
101
102
103
104

La
te

nc
y

(m
s)

Docker
Faaslet
Proto-Faaslet

Figure 10: Function churn for Faaslets vs. containers

initialises in 3.2 s and the Proto-Faaslet restores in 0.9 ms,
demonstrating a similar improvement of several orders of
magnitude.

To further investigate cold-start initialisation times, we
measure the time to create a new container/Faaslet at increas-
ingly higher rates of cold-starts per second. We also measure
this time when restoring the Faaslet from a Proto-Faaslet.
The experiment executes on a single host, with the containers
using the same minimal image.

Fig. 10 shows that both Faaslets and containers main-
tain a steady initialisation latency at throughputs below
3 execution/s, with Docker containers initialising in ~2 s
and Faaslets in ~5 ms (or ~0.5 ms when restored from a
Proto-Faaslet). As we increase the churn in Docker past
3 execution/s, initialisation times begin to increase with
no gain in throughput. A similar limit for Faaslets is
reached at around 600 execution/s, which grows to around
4000 execution/s with Proto-Faaslets.

We conclude that Faaslets offer a more efficient and per-
formant form of serverless isolation than Docker containers,
which is further improved with Proto-Faaslets. The lower
resource footprint and initialisation times of Faaslets are im-
portant in a serverless context. Lower resource footprints
reduce costs for the cloud provider and allow a higher packing
density of parallel functions on a given host. Low initialisa-
tion times reduce cost and latency for the user, through their
mitigation of the cold-start problem.

7 Related Work
Isolation mechanisms. Shreds [20] and Wedge [13] intro-
duce new OS-level primitives for memory isolation, but fo-
cus on intra-process isolation rather than a complete exe-
cutable as Faaslets do. Light-weight Contexts [48] and Pi-
coprocesses [38] offer lightweight sandboxing of complete
POSIX applications, but do not offer efficient shared state.
Common runtimes. Truffle [90] and GraalVM [26] are run-
times for language-independent bytecode; the JVM also ex-
ecutes multiple languages compiled to Java bytecode [21].
Despite compelling multi-language support, none offer multi-
tenancy or resource isolation. GraalVM has recently added
support for WebAssembly and could be adapted for Faaslets.
Autoscaling storage. FAASM’s global state tier is currently
implemented with a distributed Redis instance scaled by Ku-
bernetes horizontal pod autoscaler [81]. Although this has

not been a bottleneck, better alternatives exist: Anna [89] is a
distributed KVS that achieves lower latency and more gran-
ular autoscaling than Redis; Tuba [9] provides an autoscal-
ing KVS that operates within application-defined constraints;
and Pocket [43] is a granular autoscaled storage system built
specifically for a serverless environments. Crucial [12] uses
Infinispan [52] to build its distributed object storage, which
could also be used to implement FAASM’s global state tier.
Distributed shared memory (DSM). FaRM [24] and RAM-
Cloud [63] demonstrate that fast networks can overcome the
historically poor performance of DSM systems [19], while
DAL [60] demonstrates the benefits of introducing locality
awareness to DSM. FAASM’s global tier could be replaced
with DSM to form a distributed object store, which would
require a suitable consensus protocol, such as Raft [62], and
a communication layer, such as Apache Arrow [65].
State in distributed dataflows. Spark [91] and Hadoop [74]
support stateful distributed computation. Although focuses on
fixed-size clusters and not fine-grained elastic scaling or multi-
tenancy, distributed dataflow systems such as Naiad [58],
SDGs [29] and CIEL [59] provide high-level interfaces for
distributed state, with similar aims to those of distributed data
objects—they could be implemented in or ported to FAASM.
Bloom [2] provides a high-level distributed programming
language, focused particularly on flexible consistency and
replication, ideas also relevant to FAASM.
Actor frameworks. Actor-based systems such as Or-
leans [15], Akka [47] and Ray [55] support distributed state-
ful tasks, freeing users from scheduling and state manage-
ment, much like FAASM. However, they enforce a strict
asynchronous programming model and are tied to a specific
languages or language runtimes, without multi-tenancy.

8 Conclusions
To meet the increasing demand for serverless big data, we pre-
sented FAASM, a runtime that delivers high-performance effi-
cient state without compromising isolation. FAASM executes
functions inside Faaslets, which provide memory safety and
resource fairness, yet can share in-memory state. Faaslets are
initialised quickly thanks to Proto-Faaslet snapshots. Users
build stateful serverless applications with distributed data ob-
jects on top of the Faaslet state API. FAASM’s two-tier state
architecture co-locates functions with required state, provid-
ing parallel in-memory processing yet scaling across hosts.
The Faaslet host interface also supports dynamic language
runtimes and traditional POSIX applications.
Acknowledgements. We thank the anonymous reviewers and
our shepherd, Don Porter, for their valuable feedback. This
work was partially supported by the European Union’s Hori-
zon 2020 Framework Programme under grant agreement
825184 (CloudButton), the UK Engineering and Physical
Sciences Research Council (EPSRC) award 1973141, and a
gift from Intel Corporation under the TFaaS project.

430 2020 USENIX Annual Technical Conference USENIX Association

References
[1] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus

Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: To-
wards High-Performance Serverless Computing. In USENIX Annual
Technical Conference (USENIX ATC), 2018.

[2] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R.
Marczak. Consistency Analysis in Bloom: A CALM and Collected Ap-
proach. In Conference on Innovative Data Systems Research (CIDR),
2011.

[3] Amazon. AWS Step Functions. https://aws.amazon.com/
step-functions/, 2020.

[4] Amazon. Firecracker Micro VM. https://aws.amazon.com/blogs/
aws/firecracker-lightweight-virtualization-for-serverless-computing/,
2020.

[5] Amazon Web Services. AWS Lambda. https://aws.amazon.com/
lambda/, 2020.

[6] Amazon Web Services. AWS S3. https://aws.amazon.com/s3/, 2020.

[7] Alexey Andreev. TeaVM. http://www.teavm.org/, 2020.

[8] Apache Project. Openwhisk Composer. https://github.com/
ibm-functions/composer, 2020.

[9] Masoud Saeida Ardekani and Douglas B Terry. A Self-Configurable
Geo-Replicated Cloud Storage System. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2014.

[10] Assemblyscript. AssemblyScript. https://github.com/AssemblyScript/
assemblyscript, 2020.

[11] Abhiram Balasubramanian, Marek S Baranowski, Anton Burtsev, Au-
rojit Panda, Zvonimir Rakamari, and Leonid Ryzhyk. System Pro-
gramming in Rust: Beyond Safety. ACM SIGOPS Operating Systems
Review, 2017.

[12] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre
Sutra, and Pedro García-López. On the FaaS Track: Building Stateful
Distributed Applications with Serverless Architectures. In ACM/IFIP
Middleware Conference, 2019.

[13] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge:
Splitting Applications into Reduced-Privilege Compartments. In
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI), 2008.

[14] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky.
Putting the "Micro" Back in Microservice. USENIX Annual Technical
Conference (USENIX ATC), 2018.

[15] Sergey Bykov, Alan Geller, Gabriel Kliot, James R Larus, Ravi Pandya,
and Jorgen Thelin. Orleans: Cloud Computing for Everyone. In ACM
Symposium on Cloud Computing (SOCC), 2011.

[16] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. SEUSS: Skip Redundant Paths to Make
Serverless Fast. In ACM European Conference on Computer Systems
(EuroSys), 2020.

[17] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. A Case for Serverless Machine Learning. Systems for
ML, 2018.

[18] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. Cirrus. In ACM Symposium on Cloud Computing (SOCC),
2019.

[19] John B Carter, John K Bennett, and Willy Zwaenepoel. Implementation
and Performance of Munin. ACM SIGOPS Operating Systems Review,
1991.

[20] Y Chen, S Reymondjohnson, Z Sun, and L Lu. Shreds: Fine-Grained
Execution Units with Private Memory. In IEEE Symposium on Security
and Privacy (SP), 2016.

[21] Shigeru Chiba and Muga Nishizawa. An Easy-to-use Toolkit for
Efficient Java Bytecode Translators. In International Conference on
Generative Programming and Component Engineering, 2003.

[22] Cloudflare. Cloudflare Workers. https://workers.cloudflare.com/,
2020.

[23] Alan Donovan, Robert Muth, Brad Chen, and David Sehr. Pnacl:
Portable Native Client Executables. Google White Paper, 2010.

[24] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. FaRM: Fast Remote Memory. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2014.

[25] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond Startup
for Serverless Computing with Initialization-less Booting. In ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[26] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon,
Christian Wimmer, and Hanspeter Mössenböck. Graal IR: An Exten-
sible Declarative Intermediate Representation. In Proceedings of the
Asia-Pacific Programming Languages and Compilers Workshop, 2013.

[27] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson,
Galen Hunt, James R Larus, and Steven Levi. Language Support for
Fast and Reliable Message-based Communication in Singularity OS.
In ACM SIGOPS Operating Systems Review, 2006.

[28] Fastly. Terrarium. https://wasm.fastlylabs.com/, 2020.

[29] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki,
and Peter Pietzuch. Making State Explicit For Imperative Big Data
Processing. In USENIX Annual Technical Conference (USENIX ATC),
2014.

[30] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Bal-
asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. Encoding, Fast and Slow: Low-
Latency Video Processing Using Thousands of Tiny Threads. USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2017.

[31] William Fu, Raymond Lin, and Daniel Inge. TaintAssembly: Taint-
Based Information Flow Control Tracking for WebAssembly. arXiv
preprint arXiv:1802.01050, 2018.

[32] Google. Google Cloud Functions. https://cloud.google.com/functions/,
2020.

[33] Google. KNative Github. https://github.com/knative, 2020.

[34] Google. V8 Engine. https://github.com/v8/v8, 2020.

[35] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the Web up to Speed with WebAssembly. ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 2017.

[36] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. Serverless Computing: One Step Forward, Two Steps Back.
Conference on Innovative Data Systems Research (CIDR), 2019.

[37] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vi-
sion Applications. arXiv preprint arXiv:1704.04861, 2017.

[38] Jon Howell, Bryan Parno, and John R Douceur. How to Run POSIX
Apps in a Minimal Picoprocess. In USENIX Annual Technical Confer-
ence (USENIX ATC), 2013.

[39] IBM. IBM Cloud Functions. https://www.ibm.com/cloud/functions,
2020.

[40] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Serv-
ing Deep Learning Models in a Serverless Platform. In IEEE Interna-
tional Conference on Cloud Engineering, (IC2E), 2018.

USENIX Association 2020 USENIX Annual Technical Conference 431

https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
http://www.teavm.org/
https://github.com/ibm-functions/composer
https://github.com/ibm-functions/composer
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://workers.cloudflare.com/
https://wasm.fastlylabs.com/
https://cloud.google.com/functions/
https://github.com/knative
https://github.com/v8/v8
https://www.ibm.com/cloud/functions

[41] Abhinav Jangda, Bobby Powers, Emery Berger, and Arjun Guha. Not
So Fast: Analyzing the Performance of WebAssembly vs. Native Code.
In USENIX Annual Technical Conference (USENIX ATC), 2019.

[42] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. Occupy the Cloud: Distributed Computing for the 99%.
In ACM Symposium on Cloud Computing (SOCC), 2017.

[43] Ana Klimovic, Yawen Wang, Stanford University, Patrick Stuedi, Ani-
mesh Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket: Elastic
Ephemeral Storage for Serverless Analytics. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2018.

[44] Doug Lea. dlmalloc. http://gee.cs.oswego.edu/dl/html/malloc.html,
2020.

[45] Daniel Lehmann and Michael Pradel. Wasabi: A Framework for Dy-
namically Analyzing WebAssembly. In ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2019.

[46] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A
New Benchmark Collection for Text Categorization Research. Journal
of Machine Learning Research, 2004.

[47] Lightbend. Akka Framework. https://akka.io/, 2020.

[48] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. Light-Weight Con-
texts: An OS Abstraction for Safety and Performance. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2016.

[49] LLVM Project. LLVM 9 Release Notes. https://releases.llvm.org/9.0.
0/docs/ReleaseNotes.html, 2020.

[50] Sahil Malik. Azure Functions. https://azure.microsoft.com/en-us/
services/functions/, 2020.

[51] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. My VM is Lighter (and Safer) than your Container. In ACM
Symposium on Operating Systems Principles (SOSP), 2017.

[52] Francesco Marchioni and Manik Surtani. Infinispan Data Grid Plat-
form. Packt Publishing Ltd, 2012.

[53] Microsoft. Azure Durable Functions. https://docs.microsoft.com/
en-us/azure/azure-functions/durable-functions-overview, 2020.

[54] Microsoft Research. Krustlet. https://deislabs.io/posts/
introducing-krustlet/.

[55] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A Distributed Framework
for Emerging AI Applications. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2017.

[56] Mozilla. WASI Design Principles. https://github.com/WebAssembly/
WASI/blob/master/docs/DesignPrinciples.md, 2020.

[57] Mozilla. WASI: WebAssembly System Interface. https://wasi.dev/,
2020.

[58] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. Naiad: a Timely Dataflow System. In
ACM Symposium on Operating Systems Principles (SOSP), 2013.

[59] Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy, and Steven Hand. CIEL: a Universal
Execution Engine for Distributed Dataflow Computing. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2011.

[60] Gábor Németh, Dániel Géhberger, and Péter Mátray. DAL: A Locality-
Optimizing Distributed Shared Memory System. In USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud), 2017.

[61] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
USENIX Annual Technical Conference (USENIX ATC), 2018.

[62] Diego Ongaro and John Ousterhout. In Search of an Understandable
Consensus Algorithm. In USENIX Annual Technical Conference
(USENIX ATC), 2014.

[63] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry
Qin, Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and
Stephen Yang. The RAMCloud Storage System. ACM Transactions
on Computer Systems, 2015.

[64] Louis-Noel Pouchet. Polybench/C. http://web.cse.ohio-state.edu/
~pouchet.2/software/polybench/, 2020.

[65] The Apache Project. Apache arrow. https://arrow.apache.org/.

[66] Qifan Pu, U C Berkeley, Shivaram Venkataraman, Ion Stoica, U C
Berkeley, and Implementation Nsdi. Shuffling, fast and slow : Scalable
analytics on serverless infrastructure. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2019.

[67] Python Software Foundation. CPython. https://github.com/python/
cpython, 2020.

[68] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hog-
wild: A Lock-free Approach to Parallelizing Stochastic Gradient De-
scent. In Advances in Neural Information Processing Systems, 2011.

[69] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-
López. Serverless Data Analytics in the IBM Cloud. In ACM/IFIP
Middleware Conference, 2018.

[70] Andrew Scheidecker. WAVM. https://github.com/WAVM/WAVM,
2020.

[71] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. Omega: Flexible, Scalable Schedulers for Large Com-
pute Clusters. In ACM European Conference on Computer Systems
(EuroSys), 2013.

[72] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Archi-
tectural Implications of Function-as-a-service Computing. In Annual
International Symposium on Microarchitecture (MICRO), 2019.

[73] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram
Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-
Kelley. Numpywren: Serverless Linear Algebra. arXivpreprint
arXiv:1810.09679, 2018.

[74] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler,
and Others. The Hadoop Distributed File System. In Conference on
Massive Storage Systems and Technology (MSST), 2010.

[75] Vikram Sreekanti, Chenggang Wu Xiayue Charles Lin, Jose M
Faleiro, Joseph E Gonzalez, Joseph M Hellerstein, and Alexey Tu-
manov. Cloudburst: Stateful Functions-as-a-Service. arXiv preprint
arXiv:2001.04592, 2020.

[76] Victor Stinner. The Python Performance Benchmark Suite. https:
//pyperformance.readthedocs.io/, 2020.

[77] SwiftWasm. SwiftWasm. https://swiftwasm.org/.

[78] Tensorflow. TensorFlow Lite. https://www.tensorflow.org/lite, 2020.

[79] The Kernel Development Community. The Linux Kernel docu-
mentation. https://www.kernel.org/doc/html/v4.10/driver-api/80211/
mac80211.html, 2020.

[80] The Linux Foundation. Kubernetes. https://kubernetes.io/, 2020.

[81] The Linux Foundation. Kubernetes Horizontal Pod Autoscaler. https:
//kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/,
2020.

[82] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. Efficient Software-based Fault Isolation. In ACM Symposium
on Operating Systems Principles (SOSP), 1993.

432 2020 USENIX Annual Technical Conference USENIX Association

http://gee.cs.oswego.edu/dl/html/malloc.html
https://akka.io/
https://releases.llvm.org/9.0.0/docs/ReleaseNotes.html
https://releases.llvm.org/9.0.0/docs/ReleaseNotes.html
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://deislabs.io/posts/introducing-krustlet/
https://deislabs.io/posts/introducing-krustlet/
https://github.com/WebAssembly/WASI/blob/master/docs/DesignPrinciples.md
https://github.com/WebAssembly/WASI/blob/master/docs/DesignPrinciples.md
https://wasi.dev/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://arrow.apache.org/
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/WAVM/WAVM
https://pyperformance.readthedocs.io/
https://pyperformance.readthedocs.io/
https://swiftwasm.org/
https://www.tensorflow.org/lite
https://www.kernel.org/doc/html/v4.10/driver-api/80211/mac80211.html
https://www.kernel.org/doc/html/v4.10/driver-api/80211/mac80211.html
https://kubernetes.io/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

[83] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking Behind the Curtains of Serverless Platforms.
In USENIX Annual Technical Conference (USENIX ATC), 2018.

[84] Conrad Watt. Mechanising and Verifying the WebAssembly Spec-
ification. In ACM SIGPLAN International Conference on Certified
Programs and Proofs, 2018.

[85] Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod. Weak-
ening WebAssembly. Proceedings of the ACM on Programming
Languages (PACMPL), 2019.

[86] WebAssembly. WebAssembly Dynamic Linking. https://webassembly.
org/docs/dynamic-linking/, 2020.

[87] WebAssembly. WebAssembly Specification. https://github.com/
WebAssembly/spec/, 2020.

[88] S. Werner, J. Kuhlenkamp, M. Klems, J. Müller, and S. Tai. Serverless
Big Data Processing Using Matrix Multiplication. In IEEE Conference
on Big Data (Big Data), 2018.

[89] Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein. Anna:
a KVS for any Scale. IEEE International Conference on Data Engi-
neering, (ICDE), 2018.

[90] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. One VM to Rule Them All. In ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming & Software, 2013.

[91] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and
Ion Stoica. Resilient Distributed Datasets: A Fault-tolerant Abstrac-
tion for In-memory Cluster Computing. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2012.

[92] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing the
Gap Between Serverless and its State with Storage Functions. In ACM
Symposium on Cloud Computing (SOCC), 2019.

USENIX Association 2020 USENIX Annual Technical Conference 433

https://webassembly.org/docs/dynamic-linking/
https://webassembly.org/docs/dynamic-linking/
https://github.com/WebAssembly/spec/
https://github.com/WebAssembly/spec/

Fewer Cores, More Hertz: Leveraging High-Frequency Cores in the OS Scheduler
for Improved Application Performance

Redha Gouicem, Damien Carver
Sorbonne University, LIP6, Inria

Jean-Pierre Lozi
Oracle Labs

Julien Sopena
Sorbonne University, LIP6, Inria

Baptiste Lepers, Willy Zwaenepoel
University of Sydney

Nicolas Palix
Université Grenoble Alpes

Julia Lawall, Gilles Muller
Inria, Sorbonne University, LIP6

Abstract
In modern server CPUs, individual cores can run at different
frequencies, which allows for fine-grained control of the per-
formance/energy tradeoff. Adjusting the frequency, however,
incurs a high latency. We find that this can lead to a problem
of frequency inversion, whereby the Linux scheduler places
a newly active thread on an idle core that takes dozens to hun-
dreds of milliseconds to reach a high frequency, just before an-
other core already running at a high frequency becomes idle.

In this paper, we first illustrate the significant performance
overhead of repeated frequency inversion through a case
study of scheduler behavior during the compilation of the
Linux kernel on an 80-core IntelR© Xeon-based machine.
Following this, we propose two strategies to reduce the like-
lihood of frequency inversion in the Linux scheduler. When
benchmarked over 60 diverse applications on the IntelR© Xeon,
the better performing strategy, Smove, improves performance
by more than 5% (at most 56% with no energy overhead)
for 23 applications, and worsens performance by more than
5% (at most 8%) for only 3 applications. On a 4-core AMD
Ryzen we obtain performance improvements up to 56%.

1 Introduction

Striking a balance between performance and energy consump-
tion has long been a battle in the development of computing
systems. For several decades, CPUs have supported Dynamic
Frequency Scaling (DFS), allowing the hardware or the soft-
ware to update the CPU frequency at runtime. Reducing CPU
frequency can reduce energy usage, but may also decrease
overall performance. Still, reduced performance may be ac-
ceptable for tasks that are often idle or are not very urgent,
making it desirable to save energy by reducing the frequency
in many use cases. While on the first multi-core machines, all
cores of a CPU had to run at the same frequency, recent server
CPUs from IntelR© and AMDR© make it possible to update the
frequency of individual cores. This feature allows for much
finer-grained control, but also raises new challenges.

One source of challenges in managing core frequencies is
the Frequency Transition Latency (FTL). Indeed, transitioning
a core from a low to a high frequency, or conversely, has an
FTL of dozens to hundreds of milliseconds. FTL leads to a
problem of frequency inversion in scenarios that are typical
of the use of the standard POSIX fork() and wait() system
calls on process creation, or of synchronization between
lightweight threads in a producer-consumer application. The
problem occurs as follows. First, a task Twaker running on core
Cwaker creates or unblocks a task Twoken. If the Completely
Fair Scheduler (CFS), i.e., the default scheduler in Linux,
finds an idle core CCFS, it will place Twoken on it. Shortly
thereafter, Twaker terminates or blocks, because e.g., it was
a parent process that forked a child process and waited
just afterwards, or because it was a thread that was done
producing data and woke up a consumer thread as its last
action before going to sleep. Now Cwaker is idle and yet
executing at a high frequency because it was running Twaker

until recently, and CCFS, on which Twoken is running, is likely
to be executing at a low frequency because it was previously
idle. Consequently, the frequencies at which Cwaker and CCFS

operate are inverted as compared to the load on the cores. This
frequency inversion will not be resolved until Cwaker reaches
a low frequency and CCFS reaches a high frequency, i.e., for
the duration of the FTL. Current hardware and software
DFS policies, including the schedutil policy [9] that was
recently added to CFS cannot prevent frequency inversion
as their only decisions consist in updating core frequencies,
thus paying the FTL each time. Frequency inversion reduces
performance and may increase energy usage.

In this paper, we first exhibit the problem of frequency in-
version in a real-world scenario through a case study of the
behavior of CFS when building the Linux kernel on a IntelR©

Xeon-based machine with 80 cores (160 hardware threads).
Our case study finds repeated frequency inversions when pro-
cesses are created through the fork() and wait() system
calls, and our profiling traces make it clear that frequency
inversion leads to tasks running on low frequency cores for a
significant part of their execution.

USENIX Association 2020 USENIX Annual Technical Conference 435

Figure 1: Execution trace when building the Linux kernel version 5.4 using 320 jobs.

Based on the results of the case study, we propose to ad-
dress frequency inversion at the scheduler level. Our key ob-
servation is that the scheduler can avoid frequency inversion
by taking core frequencies into account when placing a task
on a core. For this, we propose and analyze two strategies.
Our first strategy Slocal is for the scheduler to simply place
Twoken on Cwaker, as frequency inversion involves a core Cwaker

that is likely at a high frequency, and may soon be idle. This
strategy improves the kernel build performance. It runs the
risk, however, that Twaker does not promptly terminate or block,
causing a long wait before Twoken is scheduled. Accordingly,
our second strategy Smove additionally arms a high-resolution
timer when it places Twoken on Cwaker, and if the timer expires
before Twoken is scheduled, then Twoken is migrated to CCFS,
i.e., the core CFS originally chose for it. Furthermore, even
slightly delaying Twoken by placing it on Cwaker is not worth-
while when CCFS is above the minimum frequency. Thus,
Smove first checks whether the frequency of CCFS is above the
minimum, and if so places Twoken on CCFS directly.

The contributions of this paper are the following.

• The identification of the frequency inversion phe-
nomenon, which leads to some idle cores running at
a high frequency while some busy cores run at a low
frequency for a significant amount of time.

• A case study, building the Linux kernel on an 80-core
server, with independent per-core frequencies.

• Two strategies, Slocal and Smove, to prevent frequency in-
version in CFS. Implementing these policies only re-
quired minor code changes: 3 (resp. 124) lines were mod-
ified in the Linux kernel to implement Slocal (resp. Smove).

• A comprehensive evaluation of our strategies on 60
diverse applications, including popular Linux bench-
marks as well as applications from the Phoronix [23]
and NAS [5] benchmark suites. The evaluation consid-
ers both the powersave CPU governor, which is cur-
rently used by default in Linux, and the experimental
schedutil governor. It also considers two machines:
a large 80-core IntelR© Xeon E7-8870 v4 server and a
smaller 4-core AMDR© Ryzen 5 3400G desktop machine.

With the powersave governor on the server machine, we
find that both Slocal and Smove perform well overall: out of
the 60 applications used in the evaluation, Slocal and Smove

improve the performance of 27 and 23 applications by more
than 5% respectively, and worsen the performance of only 3
applications by more than 5%. In the best case, Slocal and Smove

improve application performance by 58% and 56% respec-
tively with no energy overhead. However, Slocal performs very
poorly with two of the applications, even worsening perfor-
mance by 80% in the worst case, which may not be acceptable
for a general-purpose scheduler. Smove performs much better
in the worst case: the increase in application execution time
is only 8% and mitigated by a 9% improvement in terms of
energy usage. Evaluation results with schedutil show that
this governor does not address the frequency inversion issue,
and exhibits several more cases in which Slocal performs very
poorly—while Smove again has much better worst-case perfor-
mance. The evaluation on the desktop machine shows similar
trends, albeit on a smaller scale. Again, Smove performs better
than Slocal on edge cases.

2 A Case Study: Building the Linux Kernel

We present a case study of the workload that led us to discover
the frequency inversion phenomenon: building the Linux ker-
nel version 5.4 with 320 jobs (-j) on a 4-socket IntelR© Xeon
E7-8870 v4 machine with 80 cores (160 hardware threads),
with a nominal frequency of 2.1 GHz. Thanks to the IntelR©

SpeedStep and Turbo Boost technologies, our CPUs can in-
dividually vary the frequency of each core between 1.2 and
3.0 GHz. The frequency of the two hardware threads of a core
is the same. In the rest of the paper, for simplicity, we use the
term “core” for hardware threads.

Figure 1 shows the frequency of each core of the machine
while the kernel build workload is running. This plot was
produced with two tools that we have developed, SchedLog
and SchedDisplay [10]. SchedLog collects the execution
trace of an application with very low overhead. SchedDisplay
produces a graphical view of such a trace. We have used
SchedDisplay to generate all execution traces presented in this
paper. SchedLog records the frequency information shown in

436 2020 USENIX Annual Technical Conference USENIX Association

Figure 1 at each tick event (4ms in CFS). Consequently, the
absence of a colored line in such traces means that ticks have
been disabled by CFS on that core. CFS disables ticks on
inactive cores to allow them to switch to a low-power state.

In Figure 1, we notice different phases in the execution. For
a short period around 2 seconds, for a longer period between
4.5 and 18 seconds, and for a short period around 28 seconds,
the kernel build has highly parallel phases that use all of the
cores at a high frequency. The second of these three phases
corresponds to the bulk of the compilation. In these three
phases, the CPUs seem to be exploited to their maximum.
Furthermore, between 22 and 31 seconds, there is a long
phase of mostly sequential code with very few active cores, of
which there is always one running at a high frequency. In this
phase, the bottleneck is the CPU’s single-core performance.

Between 0 and 4.5 seconds, and between 18 and 22 seconds
however, there are phases during which all cores are used but
they run at the CPU’s lowest frequency (1.2 GHz). Upon
closer inspection, these phases are actually mainly sequential:
zooming in reveals that while all cores are used across the
duration of the phase, only one or two cores are used at any
given time. This raises two questions: why are so many cores
used for a nearly sequential execution, and why are those
cores running at such a low frequency.

We focus on the first couple of seconds where core uti-
lization seems to be suboptimal. Zooming around 1 second,
we first look at runqueue sizes and scheduling events, as il-
lustrated in Figure 2a. We are in the presence of a pattern
that is typical of mostly-sequential shell scripts: processes are
created through the fork() and exec() system calls, and gen-
erally execute one after the other. These processes can easily
be recognized on Figure 2a as they start with WAKEUP_NEW
and EXEC scheduler events. After the process that runs on
Core 56 blocks around the 0.96 s mark, three such short-
lived processes execute one after the other on Cores 132, 140,
and 65. After that, two longer-running ones run on Core 69
around the 0.98 s mark, and on Core 152 between the 0.98 s
and 1.00 s mark. This pattern goes on for the entire duration
of the execution shown in Figure 2a, with tasks created one
after the other on Cores 148, 125, 49, 52, 129, 156, 60 and
finally 145.

Looking at the core frequencies in the same part of the
execution, as illustrated by Figure 2b, gives us a hint as to
why cores are running slowly in this phase: there seems to be
a significant delay between the time when a task starts run-
ning on a core, and the time when the core frequency starts
increasing. For instance, between 1.00 s and 1.02 s, the task
on Core 49 runs at a low frequency, and only when it is over
at around 1.04 s does the frequency of the core rise to its
maximum—before starting to decrease again almost instantly
as the hardware notices that no task is running anymore on that
core. The same issue can be observed shortly before 1.00 s on
Core 152, and around 0.98 s on Core 69. In this last example,
the core’s frequency was even on a downward slope when the

(a) Scheduler events.

(b) Core frequencies.

Figure 2: Zoom over a sparse region of Figure 1.

task started, and the frequency keeps going down even after
the task ended before finally increasing again around 1.00 s.
It appears that in the considered phase of the execution, the
FTL is much higher than the duration of the tasks. Since tasks
that follow each other tend to be scheduled on different cores,
they are likely to always run at a low frequency as most cores
are idle most of the time in this phase of the execution.

To confirm our intuition about the FTL, we develop a
fine-grained tool [1] to monitor the frequency of a single
core around the execution of an isolated busy loop, using the
powersave governor. As shown in Figure 3, the task runs for
0.20 s, as illustrated by the start and end vertical lines in the
figure. It takes an FTL of 29 ms for the core to go from its
minimum frequency of 1.25 GHz to its maximum frequency
of 3.00 GHz in order to accommodate the task. When the
task ends, it takes approximately 10 ms for the core to go
back to its initial frequency, but the duration of the FTL is
compounded by the fact that the frequency tends to bounce
back several times for around 98 ms before stabilizing at the
core’s lowest frequency. These measurements are consistent
with our interpretation of Figure 2b: a FTL of several dozens
of milliseconds is significantly longer than the execution
of the tasks that are visible in the figure, as the longest task
runs for around 20 ms between the 1.00 s and 1.02 s marks.
Note that the duration of the FTL is mainly due to the time
for the hardware to detect a load change and then decide
to change the frequency. Previous work [22] shows that the
actual latency for the core to change its frequency is only

USENIX Association 2020 USENIX Annual Technical Conference 437

current base min maxFrequency:

start endWorkload:

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time (s)

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Fr
e
q

u
e
n
cy

 (
G

H
z)

29 ms

98 ms

Figure 3: FTL for the Xeon E7-8870 v4 CPU.

tens of microseconds on IntelR© CPUs.
Coming back to Figure 2a, the phenomenon we have been

observing is the following. Computations in the (near) sequen-
tial phases of the build of Linux are launched sequentially
as processes through the fork() and wait() system calls,
and the execution of these computations is shorter than the
FTL. Consequently, cores speed up after they have performed
a computation, even though at that point, computation has
moved to newly forked processes, which are likely to run on
cores that were not recently used if the machine is not very
busy. Indeed, CFS often selects different cores for tasks to
wake up on, and if most cores are idle, it is likely that the
selected cores were not used recently, and therefore run at a
low frequency. The tasks that initiated the fork() perform
wait() operations shortly afterwards, which means that the
frequency increase they initiated is mostly wasted. We are in
the presence of recurring frequency inversion, which is caused
by a very common scenario: launching a series of sequential
processes, as is commonly done in a shell script.

Sequential creation of processes through the fork() and
wait() system calls is not the only cause of recurring fre-
quency inversion. This phenomenon can also occur with
lightweight threads that unblock and block each other, as is
common in producer-consumer applications. Indeed, the CFS
code that selects a core for a new task to wake up on is also
used to select a core for already existing tasks that wake up.
Note that CFS does not use different code paths depending
on the type of task, namely, a process or a thread.

3 Strategies to Prevent Frequency Inversion

Since frequency inversion is the result of scheduling deci-
sions, we believe it must be addressed at the scheduler level.
In our experience, every change to the scheduler may have un-
predictable consequences on some workloads, and the more

complex the change, the less predictable the consequences.
Therefore, proposing extensive or complex changes to the
scheduler, or a complete rewrite, would make it unclear where
performance gains come from. Striving for minimal, simple
changes allows for an apples-to-apples comparison with CFS.

We propose two strategies to solve the frequency inversion
problem. The first one is a simple strategy that offers good
performance but suffers from large performance degradations
in some scheduling scenarios. The second solution aims to
have the same benefits as the first solution while minimizing
worst cases at the expense of some simplicity.

3.1 Placing Threads Locally
The first strategy that we propose to prevent frequency in-
version is Slocal: when a thread is created or unblocked, it is
placed on the same core as the process that created or un-
blocked it. In the context of creating a single process through
the fork() and wait() system calls, this strategy implies that
the created process is more likely to run on a high-frequency
core, as the frequency of the core may already be high due to
the activity of the parent. Furthermore, the duration in which
there are two processes running on the same core will be
limited, if the parent process calls wait() shortly afterwards.
In the context of a producer-consumer application, when a
producer thread wakes up a consumer thread, this strategy
again implies that the consumer thread is more likely to run
on a high-frequency core, and the duration in which there are
two processes running on the same core will again be limited,
if the last action of the producer is to wake up the consumer
before blocking or terminating.

However, there are cases in which Slocal might hurt perfor-
mance: if the task that created or woke another task does not
block or terminate quickly afterwards, the created or woken
task will wait for the CPU resource for a certain period of
time. This issue is mitigated by the periodic load balancer
of the Linux scheduler that will migrate one of the tasks to
another less loaded core. However, waiting for the next load
balancing event might be quite long. In CFS, periodic load
balancing is performed hierarchically, with different periods:
cores in the same cache domain are more frequently balanced
than cores on different NUMA nodes. These periods can vary
from 4 to hundreds of milliseconds on large machines.

Slocal significantly changes the behavior of CFS by fully re-
placing its thread placement strategy. Additionally, the afore-
mentioned shortcomings make it a high risk solution for cer-
tain workloads. Both issues make this solution unsatisfactory
given the prerequisites that we previously set.

3.2 Deferring Thread Migrations
In order to fix core oversubscription without waiting for pe-
riodic load balancing, we propose a second strategy, Smove.
With vanilla CFS, when a thread is created or woken, CFS

438 2020 USENIX Annual Technical Conference USENIX Association

CPU vendor IntelR© AMDR©

CPU model Xeon E7-8870 v4 Ryzen 5 3400G
Cores (SMT) 80 (160) 4 (8)
Min freq 1.2 GHz 1.4 GHz
Base freq 2.1 GHz 3.7 GHz
Turbo freq 3.0 GHz 4.2 GHz
Memory 512 GB 8 GB
OS Debian 10 (buster) Arch Linux

Table 1: Configurations of our experimental machines.

decides on which core it should run. Smove defers the use of
this chosen core to allow waking threads to take advantage of
a core that is more likely to run at a high frequency.

Let Twoken be the newly created or waking task, Cwaker the
core where task Twaker that created or woke Twoken is running
and CCFS the destination core chosen by CFS. The normal
behavior of the scheduler is to directly enqueue task Twoken

into CCFS’s runqueue. We propose to delay this migration
to allow Twoken to be more likely to use a high-frequency
core if CCFS is running at a low frequency. First, if CCFS is
running at a frequency higher than the CPU’s minimum one,
we enqueue Twoken in CCFS’s runqueue. Otherwise, we arm a
high-resolution timer interrupt that will perform the migration
in D µs and we enqueue Twoken into Cwaker’s runqueue.The
timer is cancelled if Twoken is scheduled on Cwaker.

The rationale behind Smove is that we want to avoid waking
low frequency cores if the task can be performed quickly
when placed locally on a core that is likely to run at a
high frequency. Indeed, Twaker is running at the time of the
placement, meaning that Cwaker is likely to run at a high
frequency. The delay D can be changed at run time by writing
to a parameter file in the sysfs pseudo file system. We have
chosen a default value of 50 µs, which is close to the delay
between a fork and a wait system call during our Linux kernel
build experiments. We have found that varying the value
of this parameter between 25 µs and 1 ms has insignificant
impact on the benchmarks used in Section 4.

4 Evaluation

This section aims to demonstrate that our strategies improve
performance on most workloads, while not degrading energy
consumption. We run a wide range of applications from the
Phoronix benchmark suite [23], the NAS benchmark suite [5],
as well as other applications, such as hackbench (a popular
benchmark in the Linux kernel scheduler community) and
sysbench OLTP (a database benchmark). These experiments
are run on a server-grade 4-socket NUMA machine with
an 80-core IntelR© CPU and on a desktop machine equipped
with a 4-core AMDR© CPU (Table 1). Both CPUs can select

independent frequencies for each core1 We have implemented
Slocal and Smove in the latest LTS kernel, Linux 5.4, released in
November 2019 [3], and compare our strategies to Linux 5.4.

Implementing Slocal (resp. Smove) only required modifying
3 (resp. 124) lines in CFS. We run all experiments 10 times.
Energy consumption is evaluated on both machines using the
IntelR© RAPL [19] feature, which measures the energy con-
sumption of the CPU socket and the DRAM. The performance
results are those reported by each benchmark, and thus they
involve different metrics, such as execution time, throughput,
or latency, with inconsistent units. For better readability, all
the following graphs show the improvement in terms of per-
formance and energy usage compared to the mean of the runs
with CFS. Therefore, higher is always better, regardless of the
measured unit. The mean of the results for CFS is displayed
on top of the graph for all benchmarks with the benchmark’s
unit.

In Linux, frequency is controlled by a subsystem called
a governor. On modern IntelR© hardware, the powersave
governor delegates the choice of the frequency to the
hardware since it can perform more fine-grained adjustments.
The hardware frequency-selection algorithm tries to save
energy with a minimal impact on performance. The hardware
estimates the load of a core based on various heuristics such
as the number of retired instructions. This is the default
governor for IntelR© hardware on most Linux distributions.
The schedutil governor, in development by the Linux
community since Linux 4.7 (July 2016), tries to give control
back to the operating system. It uses the internal data of the
kernel scheduler, CFS, to estimate the load on each core, and
changes the frequency accordingly. Two other governors,
performance and ondemand, are available in Linux but are
of no interest to us: the former runs all cores at the highest
frequency, thus disabling dynamic scaling, while the latter is
not supported on modern IntelR© processors. To demonstrate
that our work is orthogonal to the used governor, we evaluate
our strategies using both powersave and the schedutil.

We first present the complete results on the IntelR© server
and summarize the results on the AMDR© desktop machine.
We then revisit our kernel build case study and study some
worst case results (mkl, hackbench). Finally, we discuss the
overhead of our Smove strategy.

4.1 Execution Using powersave

We first consider the execution under powersave. Figure 4a
shows the improvement in terms of performance and energy
consumption of Slocal and Smove as compared to CFS. We con-
sider that improvements or deteriorations that do not exceed
5% to be on par with CFS.

1This is different from turbo frequencies: many desktop and laptop CPUs
have per-core DFS in order to support turbo frequencies, but in practice, all
cores not using the turbo range run at the same frequency.

USENIX Association 2020 USENIX Annual Technical Conference 439

Slocal Smove

−80 −80
−60 −60
−40 −40
−20 −20

0 0
20 20
40 40

Pe
rfo

rm
an

ce
 (%

)

ha
ck

be
nc

h-
10

00
0

ap
ac

he
-0

na
s_

bt
.B

-1
60

c-
ra

y-
0

kb
ui

ld
-a

ll-
80

na
s_

ua
.B

-1
60

de
ep

sp
ee

ch
-0

re
di

s-
1

m
kl

-d
nn

-7
-1

pe
rl-

be
nc

hm
ar

k-
1

no
de

-o
ct

an
e-

1
sc

im
ar

k2
-2

ap
ac

he
-s

ie
ge

-5
go

-b
en

ch
m

ar
k-

3
sc

hb
en

ch
-6

-7
na

s_
sp

.B
-1

60
go

-b
en

ch
m

ar
k-

2
na

s_
cg

.C
-1

60
ol

tp
-m

ys
ql

-8
0

bu
ild

-ll
vm

-0
na

s_
lu

.B
-1

60
sc

im
ar

k2
-1

m
kl

-d
nn

-7
-2

sc
im

ar
k2

-4
sc

im
ar

k2
-3

sc
im

ar
k2

-6
gi

t-0
ph

pb
en

ch
-0

sc
im

ar
k2

-5
ao

be
nc

h-
0

go
-b

en
ch

m
ar

k-
4

ap
ac

he
-s

ie
ge

-2
op

en
ss

l-0
na

s_
ep

.C
-1

60
na

s_
m

g.
D-

16
0

go
-b

en
ch

m
ar

k-
1

ap
ac

he
-s

ie
ge

-4
na

s_
cg

.C
-8

0
kb

ui
ld

-a
ll-

16
0

kb
ui

ld
-a

ll-
32

0
ru

st
-p

rim
e-

0
ol

tp
-m

ys
ql

-1
60

ol
tp

-m
ys

ql
-3

20
na

s_
ep

.C
-8

0
ap

ac
he

-s
ie

ge
-3

bu
ild

-li
nu

x-
ke

rn
el

-0
na

s_
lu

.B
-8

0
na

s_
ua

.B
-8

0
co

m
pr

es
s-

7z
ip

-0
na

s_
ft.

C-
16

0
na

s_
bt

.B
-8

0
na

s_
m

g.
D-

80
kb

ui
ld

-s
ch

ed
-3

20
kb

ui
ld

-s
ch

ed
-1

60
kb

ui
ld

-s
ch

ed
-8

0
ap

ac
he

-s
ie

ge
-1

na
s_

sp
.B

-8
0

llv
m

cm
ak

e
na

s_
ft.

C-
80

pe
rl-

be
nc

hm
ar

k-
2

−40 −40

−20 −20

0 0

20 20

40 40

En
er

gy
 im

pr
ov

em
en

t (
%

)

3.
80

 s
85

18
.5

7
rq

/s
4.

69
 s

14
.5

5
s

36
.8

4
s

6.
38

 s
19

3.
03

 s
1.

04
e+

6
rq

/s
6.

60
 m

s
1.

71
e-

1
s

2.
93

e+
4

po
in

ts
25

7.
35

 M
flo

ps
1.

95
e+

4
tr/

s
1.

78
e+

6
ns

/o
p

1.
08

e+
5

us
ec

5.
50

 s
1.

58
e+

4
ns

/o
p

7.
35

 s
1.

58
e+

4
tr/

s
12

6.
89

 s
5.

63
 s

51
0.

72
 M

flo
ps

15
66

.5
0

m
s

10
3.

60
 M

flo
ps

99
1.

23
 M

flo
ps

68
4.

51
 M

flo
ps

8.
54

 s
4.

86
e+

5
po

in
ts

51
7.

47
 M

flo
ps

45
.2

8
s

8.
1e

+5
 n

s/
op

1.
57

e+
4

tr/
s

1.
48

e+
4

sig
ns

/s
2.

53
 s

84
.3

0
s

3.
e+

10
 n

s/
op

1.
88

e+
4

tr/
s

12
.6

7
s

31
.0

8
s

31
.1

3
s

4.
39

 s
1.

03
e+

4
tr/

s
81

29
.1

0
tr/

s
3.

59
 s

1.
74

e+
4

tr/
s

34
.5

0
s

6.
62

 s
5.

67
 s

2.
2e

+5
 m

ip
s

7.
80

 s
7.

65
 s

86
.0

9
s

6.
45

 s
6.

44
 s

6.
47

 s
21

51
.7

1
tr/

s
6.

31
 s

26
.9

2
s

10
.2

0
s

4.
67

e-
3

s

12
85

.1
0

J
4.

01
e+

4
J

28
28

.4
9

J
1.

51
e+

4
J

1.
46

e+
4

J
33

00
.5

5
J

4.
73

e+
4

J
99

16
.9

7
J

85
06

.2
8

J
2.

76
e+

4
J

1.
58

e+
4

J
1.

53
e+

4
J

6.
30

e+
4

J
1.

5e
+4

 J
2.

35
e+

4
J

30
43

.9
1

J
1.

11
e+

4
J

43
88

.8
5

J
46

93
.3

7
J

7.
18

e+
4

J
30

15
.9

1
J

1.
52

e+
4

J
1.

24
e+

4
J

1.
52

e+
4

J
1.

53
e+

4
J

1.
5e

+4
 J

96
66

.2
0

J
1.

23
e+

4
J

1.
51

e+
4

J
1.

83
e+

4
J

1.
42

e+
4

J
1.

09
e+

4
J

1.
87

e+
4

J
12

14
.3

5
J

4.
74

e+
4

J
1.

46
e+

4
J

3.
47

e+
4

J
63

30
.5

4
J

1.
31

e+
4

J
1.

32
e+

4
J

86
31

.8
0

J
47

80
.1

8
J

48
44

.1
8

J
15

35
.5

4
J

2.
03

e+
4

J
2.

66
e+

4
J

31
95

.0
4

J
26

34
.4

1
J

5.
05

e+
4

J
45

11
.3

9
J

35
68

.7
6

J
4.

45
e+

4
J

17
15

.6
2

J
17

13
.9

0
J

17
19

.9
2

J
1.

03
e+

4
J

30
77

.0
6

J
67

22
.5

6
J

49
38

.7
7

J
24

6.
97

 J

(a) Comparison with CFS using the powersave governor.

−80 −80
−60 −60
−40 −40
−20 −20

0 0
20 20
40 40

Pe
rfo

rm
an

ce
 (%

)

ha
ck

be
nc

h-
10

00
0

ap
ac

he
-0

na
s_

bt
.B

-1
60

c-
ra

y-
0

kb
ui

ld
-a

ll-
80

na
s_

ua
.B

-1
60

de
ep

sp
ee

ch
-0

re
di

s-
1

m
kl

-d
nn

-7
-1

pe
rl-

be
nc

hm
ar

k-
1

no
de

-o
ct

an
e-

1
sc

im
ar

k2
-2

ap
ac

he
-s

ie
ge

-5
go

-b
en

ch
m

ar
k-

3
sc

hb
en

ch
-6

-7
na

s_
sp

.B
-1

60
go

-b
en

ch
m

ar
k-

2
na

s_
cg

.C
-1

60
ol

tp
-m

ys
ql

-8
0

bu
ild

-ll
vm

-0
na

s_
lu

.B
-1

60
sc

im
ar

k2
-1

m
kl

-d
nn

-7
-2

sc
im

ar
k2

-4
sc

im
ar

k2
-3

sc
im

ar
k2

-6
gi

t-0
ph

pb
en

ch
-0

sc
im

ar
k2

-5
ao

be
nc

h-
0

go
-b

en
ch

m
ar

k-
4

ap
ac

he
-s

ie
ge

-2
op

en
ss

l-0
na

s_
ep

.C
-1

60
na

s_
m

g.
D-

16
0

go
-b

en
ch

m
ar

k-
1

ap
ac

he
-s

ie
ge

-4
na

s_
cg

.C
-8

0
kb

ui
ld

-a
ll-

16
0

kb
ui

ld
-a

ll-
32

0
ru

st
-p

rim
e-

0
ol

tp
-m

ys
ql

-1
60

ol
tp

-m
ys

ql
-3

20
na

s_
ep

.C
-8

0
ap

ac
he

-s
ie

ge
-3

bu
ild

-li
nu

x-
ke

rn
el

-0
na

s_
lu

.B
-8

0
na

s_
ua

.B
-8

0
co

m
pr

es
s-

7z
ip

-0
na

s_
ft.

C-
16

0
na

s_
bt

.B
-8

0
na

s_
m

g.
D-

80
kb

ui
ld

-s
ch

ed
-3

20
kb

ui
ld

-s
ch

ed
-1

60
kb

ui
ld

-s
ch

ed
-8

0
ap

ac
he

-s
ie

ge
-1

na
s_

sp
.B

-8
0

llv
m

cm
ak

e
na

s_
ft.

C-
80

pe
rl-

be
nc

hm
ar

k-
2

−40 −40

−20 −20

0 0

20 20

40 40

En
er

gy
 im

pr
ov

em
en

t (
%

)

3.
73

 s
88

15
.3

1
rq

/s
4.

91
 s

14
.6

1
s

36
.9

2
s

6.
40

 s
22

0.
24

 s
9.

6e
+5

 rq
/s

6.
71

 m
s

1.
72

e-
1

s
2.

86
e+

4
po

in
ts

25
2.

60
 M

flo
ps

1.
97

e+
4

tr/
s

1.
88

e+
6

ns
/o

p
1.

08
e+

5
us

ec
6.

20
 s

1.
63

e+
4

ns
/o

p
7.

25
 s

1.
37

e+
4

tr/
s

12
6.

45
 s

5.
81

 s
50

9.
83

 M
flo

ps
15

66
.7

6
m

s
10

3.
17

 M
flo

ps
99

1.
57

 M
flo

ps
68

5.
91

 M
flo

ps
8.

71
 s

4.
85

e+
5

po
in

ts
51

8.
96

 M
flo

ps
45

.2
4

s
8.

51
e+

5
ns

/o
p

1.
8e

+4
 tr

/s
1.

47
e+

4
sig

ns
/s

2.
53

 s
83

.8
7

s
3.

27
e+

10
 n

s/
op

1.
91

e+
4

tr/
s

12
.7

4
s

31
.2

6
s

31
.2

4
s

4.
41

 s
1.

06
e+

4
tr/

s
82

05
.5

0
tr/

s
3.

51
 s

1.
78

e+
4

tr/
s

34
.8

6
s

6.
72

 s
5.

80
 s

2.
19

e+
5

m
ip

s
7.

62
 s

8.
29

 s
87

.1
4

s
6.

71
 s

6.
73

 s
6.

71
 s

18
35

.5
9

tr/
s

6.
77

 s
32

.7
1

s
10

.3
9

s
4.

79
e-

3
s

12
46

.0
4

J
3.

79
e+

4
J

28
97

.5
9

J
1.

39
e+

4
J

1.
47

e+
4

J
33

19
.4

0
J

5.
29

e+
4

J
87

35
.1

9
J

72
50

.0
4

J
2.

65
e+

4
J

1.
46

e+
4

J
1.

41
e+

4
J

6.
15

e+
4

J
1.

33
e+

4
J

2.
22

e+
4

J
33

52
.0

2
J

1.
03

e+
4

J
43

18
.9

6
J

41
44

.4
8

J
7.

19
e+

4
J

30
81

.4
4

J
1.

39
e+

4
J

1.
12

e+
4

J
1.

41
e+

4
J

1.
41

e+
4

J
1.

41
e+

4
J

85
07

.3
5

J
1.

11
e+

4
J

1.
41

e+
4

J
1.

70
e+

4
J

1.
22

e+
4

J
95

66
.5

0
J

1.
74

e+
4

J
11

96
.2

3
J

4.
74

e+
4

J
1.

41
e+

4
J

3.
36

e+
4

J
63

23
.3

1
J

1.
32

e+
4

J
1.

32
e+

4
J

73
84

.7
2

J
44

31
.5

9
J

45
04

.9
0

J
14

99
.2

8
J

1.
96

e+
4

J
2.

58
e+

4
J

32
04

.8
9

J
26

65
.5

2
J

4.
92

e+
4

J
44

33
.7

2
J

37
49

.4
2

J
4.

50
e+

4
J

17
76

.6
4

J
17

80
.8

0
J

17
75

.0
0

J
93

23
.8

7
J

32
51

.0
7

J
81

24
.3

5
J

50
15

.5
5

J
24

7.
28

 J

(b) Comparison with CFS using the schedutil governor.

Figure 4: Performance and energy consumption improvement w.r.t. Linux 5.4 on the server machine (higher is better).

440 2020 USENIX Annual Technical Conference USENIX Association

−20 −20

−10 −10

0 0

10 10

20 20

Pe
rfo

rm
an

ce
 (%

)

ha
ck

be
nc

h-
10

00
0

ap
ac

he
-0

na
s_

bt
.B

-1
60

c-
ra

y-
0

kb
ui

ld
-a

ll-
80

na
s_

ua
.B

-1
60

de
ep

sp
ee

ch
-0

re
di

s-
1

m
kl

-d
nn

-7
-1

pe
rl-

be
nc

hm
ar

k-
1

no
de

-o
ct

an
e-

1
sc

im
ar

k2
-2

ap
ac

he
-s

ie
ge

-5
go

-b
en

ch
m

ar
k-

3
sc

hb
en

ch
-6

-7
na

s_
sp

.B
-1

60
go

-b
en

ch
m

ar
k-

2
na

s_
cg

.C
-1

60
ol

tp
-m

ys
ql

-8
0

bu
ild

-ll
vm

-0
na

s_
lu

.B
-1

60
sc

im
ar

k2
-1

m
kl

-d
nn

-7
-2

sc
im

ar
k2

-4
sc

im
ar

k2
-3

sc
im

ar
k2

-6
gi

t-0
ph

pb
en

ch
-0

sc
im

ar
k2

-5
ao

be
nc

h-
0

go
-b

en
ch

m
ar

k-
4

ap
ac

he
-s

ie
ge

-2
op

en
ss

l-0
na

s_
ep

.C
-1

60
na

s_
m

g.
D-

16
0

go
-b

en
ch

m
ar

k-
1

ap
ac

he
-s

ie
ge

-4
na

s_
cg

.C
-8

0
kb

ui
ld

-a
ll-

16
0

kb
ui

ld
-a

ll-
32

0
ru

st
-p

rim
e-

0
ol

tp
-m

ys
ql

-1
60

ol
tp

-m
ys

ql
-3

20
na

s_
ep

.C
-8

0
ap

ac
he

-s
ie

ge
-3

bu
ild

-li
nu

x-
ke

rn
el

-0
na

s_
lu

.B
-8

0
na

s_
ua

.B
-8

0
co

m
pr

es
s-

7z
ip

-0
na

s_
ft.

C-
16

0
na

s_
bt

.B
-8

0
na

s_
m

g.
D-

80
kb

ui
ld

-s
ch

ed
-3

20
kb

ui
ld

-s
ch

ed
-1

60
kb

ui
ld

-s
ch

ed
-8

0
ap

ac
he

-s
ie

ge
-1

na
s_

sp
.B

-8
0

llv
m

cm
ak

e
na

s_
ft.

C-
80

pe
rl-

be
nc

hm
ar

k-
2

−20 −20

−10 −10

0 0

10 10

20 20

30 30

En
er

gy
 im

pr
ov

em
en

t (
%

)

Figure 5: Performance of schedutil compared to powersave with CFS on the server machine.

Performance. Both Slocal and Smove perform well overall
with respectively 27 and 23 out of 60 applications outper-
forming CFS. The best results for these policies are seen, as
expected, on benchmarks that extensively use the fork/wait
pattern, and therefore exhibit a large number of frequency in-
versions. In the best case, Slocal and Smove gain up to 58% and
56% respectively on perl-benchmark-2, that measures the
startup time of the perl interpreter. This benchmark benefits
greatly from avoiding frequency inversions since it mostly
consists of fork/wait patterns. In terms of performance
losses, both strategies deteriorate the performance of only
3 applications, but on very different scales. Slocal deteriorates
mkl-dnn-7-1 by 80% and nas_lu.B-160 by 17% while
Smove has a worst case deterioration of 8.4% on hackbench.

Energy consumption. Overall, both Slocal and Smove im-
prove energy usage. Out of our 60 applications, we improve
energy consumption by more than 5% for 16 and 14 applica-
tions, respectively, compared to CFS. Most of the improve-
ments are seen on benchmarks where performance is also
improved. In these cases, the energy savings are likely mostly
due to the shorter execution times of the applications. How-
ever, we also see some improvements on applications where
the performance is on par with that on CFS. This is due to the
fact that we avoid waking up cores that are in low power states,
therefore saving the energy necessary to power up and run
those cores. In terms of loss, Slocal consumes more energy than
CFS on only one application, nas_lu.B-160. This loss is ex-
plained by the bad performance of Slocal on this application.
This benchmark’s metric is its execution time, and increas-
ing the execution time without correspondingly reducing the
frequency increases the energy consumption. Smove consumes

more energy than CFS on two applications: hackbench, be-
cause of the performance loss, and deepspeech that has too
high a standard deviation for its results to have significance.

Overall score. To compare the overall impact of our strate-
gies, we compute the geometric mean of all runs, where each
run is normalized to the mean result of CFS. Smove has a perfor-
mance improvement of 6%, a reduction in energy usage of 3%
and an improvement of 4% with both metrics combined. Slocal

has similar overall scores (always 5%), but its worst cases
suggest that Smove is a better option for a general-purpose
scheduler. These small differences are expected because
most of the applications we evaluate perform similarly with
CFS and with our strategies. We also evaluate the statistical
significance of our results with a t-test. With p-values of at
most 3 ·10−20, we deem our results statistically significant.

4.2 Execution Using schedutil

Next, we consider execution under the schedutil governor.
As a baseline, Figure 5 first shows the performance and energy
improvements of the schedutil governor compared to the
powersave governor with CFS. Overall, we observe that the
schedutil governor deteriorates the performance of most
applications while improving energy usage. This indicates
that this new governor is more aggressive in terms of power
savings than the one implemented in hardware. We omit raw
values since they are already available in Figures 4a and 4b.
Figure 4b then shows the improvement in terms of perfor-
mance and energy consumption of our strategies compared to
CFS, when using the schedutil governor.

USENIX Association 2020 USENIX Annual Technical Conference 441

Slocal Smove

80 80

60 60

40 40

20 20

0 0

20 20

40 40

P
e
rf

o
rm

a
n
ce

 (
%

)

h
a
ck

b
e
n
ch

-4
0

0

h
a
ck

b
e
n
ch

-2
0

0
0

re
d
is

-1

h
a
ck

b
e
n
ch

-1
0

0
0

n
a
s_

b
t.

B
-8

n
a
s_

b
t.

B
-1

6

n
a
s_

b
t.

B
-4

a
p
a
ch

e
-s

ie
g
e
-2

sc
im

a
rk

2
-6

m
kl

-d
n
n
-7

-2

n
a
s_

e
p
.C

-1
6

sc
im

a
rk

2
-5

sc
im

a
rk

2
-3

n
a
s_

e
p
.C

-8

sc
h
b
e
n
ch

-6
-7

sc
im

a
rk

2
-1

c-
ra

y
-0

co
m

p
re

ss
-7

zi
p
-0

n
o
d
e
-o

ct
a
n
e
-1

a
p
a
ch

e
-s

ie
g
e
-3

n
a
s_

e
p
.C

-4

n
a
s_

cg
.C

-4

n
a
s_

cg
.C

-1
6

n
a
s_

cg
.C

-8

n
a
s_

sp
.B

-1
6

n
a
s_

lu
.B

-4

a
p
a
ch

e
-s

ie
g
e
-4

n
a
s_

ft
.C

-4

g
o
-b

e
n
ch

m
a
rk

-4

n
a
s_

u
a
.B

-8

a
p
a
ch

e
-s

ie
g
e
-5

n
a
s_

sp
.B

-4

p
h
p
b
e
n
ch

-0

sc
im

a
rk

2
-4

n
a
s_

u
a
.B

-1
6

n
a
s_

ft
.C

-1
6

g
o
-b

e
n
ch

m
a
rk

-3

n
a
s_

sp
.B

-8

n
a
s_

lu
.B

-8

ru
st

-p
ri

m
e
-0

n
a
s_

u
a
.B

-4

n
a
s_

ft
.C

-8

m
kl

-d
n
n
-7

-1

n
a
s_

lu
.B

-1
6

sc
im

a
rk

2
-2

o
p
e
n
ss

l-
0

p
e
rl

-b
e
n
ch

m
a
rk

-1

kb
u
ild

-a
ll-

1
6

a
p
a
ch

e
-0

a
o
b
e
n
ch

-0

kb
u
ild

-a
ll-

8

g
o
-b

e
n
ch

m
a
rk

-2

d
e
e
p
sp

e
e
ch

-0

kb
u
ild

-a
ll-

4

g
it

-0

g
o
-b

e
n
ch

m
a
rk

-1

kb
u
ild

-s
ch

e
d
-8

kb
u
ild

-s
ch

e
d
-1

6

kb
u
ild

-s
ch

e
d
-4

p
e
rl

-b
e
n
ch

m
a
rk

-2

llv
m

cm
a
ke

a
p
a
ch

e
-s

ie
g
e
-1

1
.4

2
e
-1

 s

7
.2

2
e
-1

 s

1
.5

7
e
+

6
 r

q
/s

3
.6

5
e
-1

 s

5
4

.5
4

 s

5
9

.0
7

 s

5
0

.1
0

 s

3
.6

2
e
+

4
 t

r/
s

4
3

1
.0

3
 M

fl
o
p
s

1
.7

1
e
+

4
 m

s

1
8

.1
9

 s

6
6

1
.5

4
 M

fl
o
p
s

1
1

1
0

.7
9

 M
fl
o
p
s

1
7

.9
2

 s

1
.4

4
e
+

6
 u

se
c

4
9

5
.2

9
 M

fl
o
p
s

1
3

4
.7

9
 s

1
.6

6
e
+

4
 m

ip
s

3
.9

1
e
+

4
 p

o
in

ts

2
.9

9
e
+

4
 t

r/
s

3
3

.7
8

 s

5
3

.7
4

 s

5
4

.6
5

 s

5
3

.3
9

 s

6
1

.5
3

 s

3
2

.0
1

 s

2
.8

7
e
+

4
 t

r/
s

5
1

.5
9

 s

2
.5

7
e
+

6
 n

s/
o
p

5
8

.8
7

 s

2
.7

9
e
+

4
 t

r/
s

5
8

.9
5

 s

5
.3

5
e
+

5
 p

o
in

ts

1
2

0
.8

4
 M

fl
o
p
s

6
1

.2
4

 s

8
2

.9
5

 s

9
.8

9
e
+

6
 n

s/
o
p

6
1

.4
0

 s

3
3

.0
2

 s

8
2

.5
1

 s

6
0

.0
8

 s

8
1

.3
2

 s

2
8

.4
5

 m
s

1
0

5
5

.5
4

 s

1
5

5
.1

3
 M

fl
o
p
s

8
6

0
.5

9
 s

ig
n
s/

s

1
.5

7
e
-1

 s

2
6

2
.3

8
 s

2
.2

4
e
+

4
 r

q
/s

3
6

.7
3

 s

2
6

0
.0

7
 s

7
1

5
1

.7
0

 n
s/

o
p

1
1

6
.1

1
 s

3
5

0
.3

6
 s

6
.0

8
 s

2
.8

e
+

1
0

 n
s/

o
p

7
.7

3
 s

7
.9

8
 s

9
.6

0
 s

2
.4

9
e
-3

 s

2
0

.9
6

 s

4
8

2
0

.6
2

 t
r/

s

Figure 6: Performance improvement w.r.t. Linux 5.4 on the desktop machine (higher is better).

Performance. Slocal and Smove outperform CFS on 22 and
20 applications out of 60 respectively. The applications con-
cerned are the same that were improved with the powersave
governor. In terms of performance losses, however, Slocal is
more impacted by the schedutil governor than Smove, with
7 applications performing worse than CFS versus only 2.

Energy consumption. The overall improvement in terms
of energy usage of schedutil with CFS would suggest that
we might see the same trend with Slocal and Smove. And indeed,
the results are quite similar to what we observe with the
powersave governor.

Overall score. The geometric means with this governor are
the following for schedutil and Smove: 6% for performance,
4% for energy and 5% with both metrics combined. Slocal has
similar results (2%, 6% and 4% respectively), but the worst
cases are still too detrimental for a general-purpose scheduler.
These results are also statistically significant with p-values of
at most 3 ·10−20.

4.3 Evaluation on the Desktop Machine
We also evaluate our strategies on the smaller 4-core AMDR©

desktop CPU presented in Table 1. In contrast to IntelR© CPUs,
the powersave governor on AMDR© CPUs always uses the
lowest available frequency, making it unusable in our context.
We therefore use the schedutil governor on this machine.

As shown in Figure 6, we observe the same general trend as
on our server machine. Slocal and Smove behave similarly when
there is improvement, and Smove behaves better on the few
benchmarks with performance degradation. We measure at
worst an 11% slowdown and at best a 52% speedup for Smove,
with an aggregate performance improvement of 2%. Addi-
tionally, Smove improves the performance of 7 applications by

more than 5% while only degrading the performance of 4
applications at the same scale. The Slocal strategy gives the
same results regarding the number of improved and degraded
applications, but suffers worse edge cases. Its best perfor-
mance improvement is 42% while its worst deterioration is
25%, with an aggregate performance improvement of 1%. We
conclude that even if there is no major global improvement,
Smove is still a good strategy to eliminate frequency inversions
on machines with smaller core counts. Our performance re-
sults are statistically significant, with p-values of 5 ·10−4 for
Smove and 3 ·10−2 for Slocal.

In terms of energy consumption, both Slocal and Smove seem
to have little to no impact as compared to CFS. However, the
measures we were able to gather with all three strategies had
a large variance that we did not observe on our IntelR© CPU.
We suspect that this is due to the energy-related hardware
counters available on AMDR© processors or the lack of good
software support for these counters.

4.4 In-Depth Analysis
We now present a detailed analysis of specific benchmarks
that either performed particularly well or particularly poorly
with our solutions. In this section all traces were obtained
with the powersave governor.

kbuild Figure 7 shows the execution of the build of the
Linux kernel as presented in the case study, with CFS (top)
and Smove (bottom). During the mostly sequential phases with
multiple cores running at a low frequency on CFS (0-2 s,
2.5-4.5 s, 17-22 s), Smove uses fewer cores at a higher fre-
quency. This is mainly due to the fork()/wait() pattern: as
the waker thread calls wait() shortly after the fork(), the
Smove timer does not expire and the woken threads remain on
the local core running at a high frequency, thus avoiding fre-

442 2020 USENIX Annual Technical Conference USENIX Association

(a) CFS

(b) Smove

Figure 7: Execution trace when building the Linux kernel
version 5.4 using 320 jobs.

quency inversion. As a result, for example, the phase before
the long parallel phase is executed in 4.4 seconds on CFS and
in only 2.9 seconds with Smove.

To understand the impact of Smove better, Figure 8 shows
the kbuild-sched-320 benchmark, which builds only the
scheduler subsystem of the Linux kernel. Here, the parallel
phase is much shorter than with a complete build, as there are
fewer files to compile, making the sequential phases of the
execution more visible. Again, we see that fewer cores are
used, at a higher frequency.

mkl The mkl-dnn-7-1 benchmark is the worst-case sce-
nario for Slocal: all threads keep blocking and unblocking and
therefore avoid periodic load balancing and continue return-
ing to the same set of cores. Thus, threads that are sharing
a core with another thread will tend to remain there with
the Slocal strategy. Figure 9 shows the number of threads on
the runqueue of each core with all three schedulers with the
powersave governor. A black line indicates that there is one
thread in the runqueue, and a red line indicates that there is
more than one. CFS spreads the threads on all cores rapidly,
and achieves a balanced machine with one thread per core in
less than 0.2 seconds. On the other hand, Slocal tries to max-
imize core reuse and oversubscribes 36 cores. This leads to
never using all cores, achieving at most 85% CPU utilization
with multiple cores overloaded. This is a persistent viola-
tion of the work-conservation property, as defined by Lozi et
al. [21], i.e., no core is idle if a core has more than one thread

(a) CFS

(b) Smove

Figure 8: Execution trace when building the sched directory
of the Linux kernel version 5.4 using 320 jobs.

in its runqueue.
Interestingly, in our experiment, the balancing operations

that spread threads are due to system or daemon threads (e.g.
systemd) that wake up and block immediately, thus triggering
an idle balancing from the scheduler. On a machine with
nothing running in the background, we could have stayed in
an overloaded situation for a long period of time, as ticks are
deactivated on idle cores, removing opportunities for periodic
balancing. We can see the same pattern on nas-lu.B-160,
another benchmark that does not work well with Slocal. Smove

solves the problem by migrating, after a configurable delay,
the threads that overload cores to available idle cores.

hackbench The hackbench-10000 benchmark is the
worst application performance-wise for the Smove strategy.
This micro-benchmark is particularly stressful for the sched-
uler, with 10,000 running threads. However, the patterns ex-
hibited are interesting to better understand the shortcomings
of Smove and give insights on how to improve our strategies.

This benchmark has three phases: thread creation, com-
munication and thread termination. Figure 10 shows the fre-
quency of all cores during the execution of hackbench with
CFS, Slocal and Smove. The first phase corresponds to the first
two seconds on all three schedulers. A main thread creates
10,000 threads with the fork() system call, and all child
threads immediately wait on a barrier. With CFS, child threads
are placed on idle cores that become idle again when the
threads arrive at the barrier. This means that all cores remain

USENIX Association 2020 USENIX Annual Technical Conference 443

(a) CFS (b) Slocal (c) Smove

Figure 9: Number of threads per core during the execution of mkl-dnn-7-1.

(a) CFS

(b) Slocal

(c) Smove

Figure 10: Core frequency when executing hackbench.

mostly idle. This also leads to the main thread remaining on
the same core during this phase. However, Slocal and Smove

place the child threads locally, causing oversubscription of
the main thread’s core and migrations by the load balancer.
The main thread itself is thus sometimes migrated from core
to core. When all threads are created, the main thread re-
leases the threads waiting on the barrier and waits for their
termination, thus beginning the second phase. During this
phase, the child threads communicate by reading and writing
in pipes. CFS tries to even out the load between all cores, but
its heuristics give a huge penalty to migrations across NUMA
nodes, so a single node runs at a high frequency (cores 0, 4,
8, etc. share the same node on our machine) while the others
have little work to perform and run at lower frequencies. This
phase finishes at 2.8 seconds. The remainder of the execution
is the main thread reaping its children and terminating.

Slocal packs threads aggressively, leading to long runqueues
in the second phase, and therefore facilitating load balancing
across nodes because of the large induced overload. However,
Slocal still does not use all cores, mainly avoiding running on
hyperthreaded pairs of cores (cores n and n+ 80 are hyper-
threaded on our machine). Slocal runs the second phase faster
than CFS, terminating it at 2.5 seconds, because it uses half
of the cores at a high frequency all the time, and many of the
other cores run at a medium frequency.

On the other hand, Smove performs poorly in the second
phase, completing it at 3.4 seconds. The behavior seems very
close to that of CFS, with one core out of four running at a
high frequency. However, Smove results in more idleness or
low frequency on the other cores. This is due to Smove placing
threads locally: many threads contend for the local core; some
are able to use the resource while others are migrated when
the timer interrupt is triggered. The delays cause idleness com-
pared to CFS, and the migrations leave cores idle, lowering
their frequency compared to Slocal. Additionally, when threads
are migrated because of timers expiring, they are all placed on
the same core, and oversubscribe it. For hackbench, choosing

444 2020 USENIX Annual Technical Conference USENIX Association

the middle ground is the worst strategy. We can also note that
load balancing is not able to mitigate this situation because
of the high volatility of this workload. This problem was also
demonstrated by Lozi et al. [21] on a database application.

This hackbench setup is an extreme situation that is un-
likely to happen in real life, with a largely overloaded machine
(10,000 threads) and a highly volatile application. This mi-
crobenchmark is only interesting to study the behavior of our
strategies. Still, overall, Smove gives better performance than
Slocal.

4.5 Scheduling Overhead of Smove

Smove is more complex than Slocal, and so we analyze its over-
head as compared to CFS, as an upper bound for our strategies.
We identify two possible sources of overhead: querying fre-
quency and using timers.

First, we evaluate the cost of querying the core frequency.
Querying the frequency of a core mostly consists in reading
two hardware registers and performing some arithmetic oper-
ations, as the current frequency is the division of these two
registers times the base frequency of the CPU. Even though
this is a very small amount of computation compared to the
rest of the scheduler, we minimize it furthermore by querying
this information at every tick instead of every time it is needed.
In our benchmarks, we notice no difference in performance
with or without querying the frequency at every tick.

Second, we evaluate the cost of triggering a large number
of timers in the scheduler. To do so, we run schbench on
two versions of Linux: the vanilla 5.4 kernel and a modified
version with timers armed under the same condition as Smove.
Here, however, the timer handler does not migrate the thread
as in Smove. We choose schbench because it performs the
same workload as hackbench but provides, as a performance
evaluation, the latencies of the messages sent through pipes
instead of the completion time. Table 2 shows the results of
this benchmark. Overall, the 99.5th percentile of latencies
is the same for both versions of the kernel, except for 256
threads where timers have a negative impact. We can also
observe that the number of timers triggered increases with the
number of threads but drops after 256 threads. This behavior
is expected: more threads means more wake-ups, but when
the machine starts being overloaded, all cores run at high
frequencies, and the timers are less frequently armed. This
tipping point arrives around 256 threads because schbench
threads constantly block, meaning that typically fewer than
160 threads are runnable at a time.

5 Discussion

As previously stated, our proposed solutions Slocal and Smove

are purposefully simple. We now discuss other more complex
solutions to the frequency inversion problem.

Threads
Latency

Timers triggered
vanilla with timers

64 78 77 2971
128 86 84 13910
192 119 144 63965
256 2292 3188 93001
512 36544 36544 512
768 60224 60480 959
1024 76416 76928 1290

Table 2: schbench latencies (99.5th percentile, in µsec) and
number of timers triggered.

High frequency pool. A possible solution would be to keep
a pool of cores running at a high frequency even though no
thread is running on them. This would allow threads to be
placed on an idle core running at a high frequency instanta-
neously. This pool could, however, waste energy and reduce
the maximal frequency attainable by busy cores, which dimin-
ishes when the number of active cores increases.

Tweaking the placement heuristic. We could add a new
frequency heuristic to the existing placement strategy. How-
ever, the tradeoff between using a core running at a higher
frequency and e.g., cache locality is not clear, and may vary
greatly according to the workload and the architecture.

Frequency model. The impact of the frequency of one core
on the performance of other cores is hardware-specific. If the
scheduler were to take frequency-related decisions, it would
also need to account for the impact its decision would have
on the frequency of all cores. Such models are not currently
available, and would be complicated to create.

6 Related Work

Dynamic frequency scaling. Using DFS to reduce energy
usage has been studied for over two decades. Weiser et al. [33]
were the first to propose to adjust the frequency of the CPU ac-
cording to its load, with the aim to maximize the millions of in-
structions per joule metric. Following this, in the early 2000s,
Chase et al. [11] as well as Elnozahy et al. [17] proposed to
reduce the frequency of underutilized servers in farms that ex-
hibit workload concentration. Bianchini and Rajamony sum-
marized these early works in a survey from 2004 [6]. Nowa-
days, on the hardware side, most CPUs support DFS, with the
most recent series having elaborate hardware algorithms that
are able to dynamically select very different frequencies for
cores on the same chip, with technologies such as Enhanced
Intel SpeedStepR© [2] and AMDR© SenseMI [4]. Despite this

USENIX Association 2020 USENIX Annual Technical Conference 445

shift of DFS logic from the software side to the hardware
side in recent years, the decision to develop the experimental
schedutil [9] governor in Linux was based on the idea that
software still has a role to play in DFS, as it knows better
the load being executed. Similarly, our strategies show that
the software placing tasks on high-frequency cores can be
more efficient than waiting for the hardware to increase the
frequency of cores after task placement, due to the FTL.

Tracking inefficient scheduler behavior. Perf [15,16,32],
which is provided with the Linux kernel, supports monitoring
scheduler behavior through the perf sched command. While
perf sched makes it possible to analyze the behavior of
the scheduler on simple workloads with good accuracy, it
has significant overhead on the Linux kernel build and other
real-world workloads. Lozi et al. [21] identify performance
bugs in the Linux scheduler. To analyze them, they write
a basic profiler that monitors, for each core, the number of
queued threads and the load. Their basic profiler does not
monitor scheduling events. SchedLog and SchedDisplay [10],
which we use in this paper, make it possible to record relevant
information about all scheduler events with low overhead, and
to efficiently navigate through the large amount of recorded
data with a powerful and scriptable graphical user interface.

Mollison et al [25] apply regression testing to schedulers.
Their focus is limited to real-time schedulers, and they do
not take DFS into account. More generally, there has been an
ongoing effort to test and understand the impact of the Linux
scheduler on performance. Since 2005, the LKP project [12]
has focused on hunting performance regressions, and a myriad
of tools that make it possible to identify performance bugs in
kernels have been proposed by the community [7, 18, 26, 28].
The focus of these tools, however, is to detect slowdowns
inside the kernel code, and not slowdowns in application code
that were caused by decisions from the kernel. Consequently,
they are unable to detect poor scheduling behavior.

Improving scheduler behavior. Most previous work fo-
cuses on improving general-purpose OS scheduling with new
policies that improve a specific performance metric, such
as reducing contention over shared resources [31, 35], opti-
mizing the use of CPU caches [29, 30], improving NUMA
locality [8, 14] or minimizing idleness [20]. These papers
systematically disable DFS in their experiments. Merkel et
al. [24] propose a scheduling algorithm that avoids resource
contention by co-scheduling applications that use complemen-
tary resources. They reduce contention by lowering the fre-
quency of cores that execute inauspicious workloads. Zhang
et al. [34] propose a scheduling policy for multi-core archi-
tectures that facilitates DFS, although their main focus is re-
ducing cache interference. They only consider per-chip DFS,
as per-core DFS was not commonplace at the time.

Linux kernel developers have recently focused on DFS and
turbo frequencies [13], as it was discovered that a short-lived

jitter process that runs on a previously idle core can make that
core switch to turbo frequencies, which can in turn reduce the
frequencies used by other cores—even after the jitter process
completes. To solve this issue, a patch [27] was proposed to
explicitly mark jitter tasks. The scheduler then tries to place
these marked tasks on cores that are active and expected to
remain active. In contrast, the frequency inversion issue we
identified is not specifically caused by turbo frequencies: it
can occur with any DFS policy in which different cores may
run at different frequencies.

Child runs first. CFS has a feature that may seem related
to our solutions: sched_child_runs_first. At thread cre-
ation, this feature assigns a lower vruntime to the child thread,
giving it a higher priority than its parent. If CFS places the
thread on the same core as its parent, the thread will preempt
the parent; otherwise, the thread will just run elsewhere. This
feature does not affect thread placement and thus cannot ad-
dress the frequency inversion problem. Using this feature in
combination with Smove would defeat Smove’s purpose by al-
ways canceling the timer. The strategy would resemble Slocal,
except that the child thread would always preempt its parent.

7 Conclusion

In this paper, we have identified the issue of frequency in-
version in Linux, which occurs on multi-core CPUs with
per-core DFS. Frequency inversion leads to running tasks on
low-frequency cores and may severely degrade performance.
We have implemented two strategies to prevent the issue in
the Linux 5.4 CFS scheduler. Implementing these strategies
required few code changes: they can easily be ported to other
versions of the Linux kernel. On a diverse set of 60 applica-
tions, we show that our better solution, Smove, often signifi-
cantly improves performance. Additionally, for applications
that do not exhibit the frequency inversion problem, Smove

induces a penalty of 8% or less with 3 of the evaluated ap-
plications. As independent core frequency scaling becomes
a standard feature on latest generation processors, our work
will target a larger number of machines.

In future work, we want to improve thread placement in the
scheduler by including the cores’ frequencies directly in the
placement algorithm. This improvement will need to account
for various parameters such as architecture-specific DFS, si-
multaneous multi-threading and maintaining cache locality.

Acknowledgments and Availability

This work is supported in part by Oracle donation CR 1930.
We would also like to thank the anonymous reviewers and our
shepherd, Heiner Litz, for their feedback.

Slocal and Smove patches for Linux 5.4 are available at:
https://gitlab.inria.fr/whisper-public/atc20.

446 2020 USENIX Annual Technical Conference USENIX Association

https://gitlab.inria.fr/whisper-public/atc20

References

[1] frequency_logger. https://github.com/rgouicem/
frequency_logger.

[2] IntelR©. Frequently Asked Questions about Enhanced
Intel SpeedStepR© Technology for IntelR© Processors.
https://www.intel.com/content/www/us/en/
support/articles/000007073/processors.html.

[3] Linus Torvalds’ official git repository. https://
github.com/torvalds/linux.

[4] AMDR©. SenseMI Technology. https://www.amd.
com/en/technologies/sense-mi.

[5] D.H. Bailey, E. Barszcz, J. T. Barton, D. S. Brown-
ing, R. L. Carter, L. Dagum, R.A Fatoohi, P. O. Fred-
erickson, T. A Lasinski, R. S. Schreiber, H.D. Simon,
V. Venkatakrishnan, and S.K. Weeratunga. The NAS
parallel benchmarks summary and preliminary results.
In Supercomputing, pages 158–165, Seattle, WA, USA,
1991.

[6] Ricardo Bianchini and Ram Rajamony. Power and
energy management for server systems. Computer,
37(11):68–76, 2004.

[7] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-
ris, and Nickolai Zeldovich. An analysis of Linux scala-
bility to many cores. In OSDI, pages 86–93, Vancouver,
BC, Canada, 2010.

[8] Timothy Brecht. On the importance of parallel applica-
tion placement in NUMA Multiprocessors. In USENIX
SEDMS, San Diego, CA, USA, 1993.

[9] Neil Brown. Improvements in CPU frequency manage-
ment. https://lwn.net/Articles/682391/.

[10] Damien Carver, Redha Gouicem, Jean-Pierre Lozi,
Julien Sopena, Baptiste Lepers, Willy Zwaenepoel, Nico-
las Palix, Julia Lawall, and Gilles Muller. Fork/wait
and multicore frequency scaling: a generational clash.
In PLOS, pages 53–59, Huntsville, ON, Canada, 2019.
ACM.

[11] Jeffrey S Chase, Darrell C Anderson, Prachi N Thakar,
Amin M Vahdat, and Ronald P Doyle. Managing energy
and server resources in hosting centers. ACM SIGOPS
operating systems review, 35(5):103–116, 2001.

[12] Tim Chen, Leonid I Ananiev, and Alexander V Tikhonov.
Keeping kernel performance from regressions. In Linux
Symposium, pages 93–102, Ottawa, ON, Canada, 2007.

[13] Jonathan Corbet. TurboSched: the return of small-task
packing. Linux Weekly News, July 1, 2019. https:
//lwn.net/Articles/792471/.

[14] Mohammad Dashti, Alexandra Fedorova, Justin Fun-
ston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers,
Vivien Quema, and Mark Roth. Traffic management: a
holistic approach to memory placement on NUMA sys-
tems. In ASPLOS, pages 381–394, Houston, TX, USA,
2013.

[15] Arnaldo Carvalho de Melo. Performance counters on
Linux. In Linux Plumbers Conference, Portland, OR,
USA, 2009.

[16] Arnaldo Carvalho de Melo. The new Linux ‘perf’ tools.
In Slides from Linux Kongress, Nuremberg, Germany,
2010.

[17] EN Mootaz Elnozahy, Michael Kistler, and Ramakrish-
nan Rajamony. Energy-efficient server clusters. In
PACS, pages 179–197, Cambridge, MA, USA, 2002.
Springer.

[18] Ashif S. Harji, Peter A. Buhr, and Tim Brecht. Our
troubles with Linux and why you should care. In APSys,
pages 1–5, Shanghai, China, 2011.

[19] IntelR©. IntelR© and 64 and IA-32 architectures software
developer’s manual. Volume 3B: System programming
Guide, Part 2, Chapter 14.9, page 5, 2011.

[20] Baptiste Lepers, Redha Gouicem, Damien Carver, Jean-
Pierre Lozi, Nicolas Palix, Maria-Virginia Aponte, Willy
Zwaenepoel, Julien Sopena, Julia Lawall, and Gilles
Muller. Provable multicore schedulers with ipanema:
application to work conservation. In EuroSys, pages
3:1–3:16, Heraklion, Greece, 2020. ACM.

[21] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fa-
bien Gaud, Vivien Quéma, and Alexandra Fedorova.
The Linux scheduler: a decade of wasted cores. In Eu-
roSys, pages 1–16, London, UK, 2016.

[22] Abdelhafid Mazouz, Alexandre Laurent, Benoît Pradelle,
and William Jalby. Evaluation of CPU frequency transi-
tion latency. Comput. Sci. Res. Dev., 29(3-4):187–195,
2014.

[23] Phoronix Media. Phoronix test suite – Linux testing &
benchmarking platform, automated testing, open-source
benchmarking. http://www.phoronix-test-suite.
com/.

[24] Andreas Merkel, Jan Stoess, and Frank Bellosa.
Resource-conscious scheduling for energy efficiency
on multicore processors. In EuroSys, pages 153–166,
Paris, France, 2010. ACM.

USENIX Association 2020 USENIX Annual Technical Conference 447

https://github.com/rgouicem/frequency_logger
https://github.com/rgouicem/frequency_logger
https://www.intel.com/content/www/us/en/support/articles/000007073/processors.html
https://www.intel.com/content/www/us/en/support/articles/000007073/processors.html
https://github.com/torvalds/linux
https://github.com/torvalds/linux
https://www.amd.com/en/technologies/sense-mi
https://www.amd.com/en/technologies/sense-mi
https://lwn.net/Articles/682391/
https://lwn.net/Articles/792471/
https://lwn.net/Articles/792471/
http://www.phoronix-test-suite.com/
http://www.phoronix-test-suite.com/

[25] Malcolm S Mollison, Björn Brandenburg, and James H
Anderson. Towards unit testing real-time schedulers in
LITMUSRT. In OSPERT, Stuttgart, Germany, 2009.

[26] Sharon E. Perl and William E. Weihl. Performance
assertion checking. In SOSP, pages 134–145, Asheville,
NC, USA, 1993.

[27] Parth Shah. TurboSched: A scheduler for sustaining
turbo frequencies for longer durations, June 25, 2019.
https://lkml.org/lkml/2019/6/25/25.

[28] Kai Shen, Ming Zhong, and Chuanpeng Li. I/O system
performance debugging using model-driven anomaly
characterization. In FAST, pages 309–322, San Fran-
cisco, CA, USA, 2005.

[29] David Tam, Reza Azimi, and Michael Stumm. Thread
clustering: sharing-aware scheduling on SMP-CMP-
SMT multiprocessors. In EuroSys, pages 47–58, Lisbon,
Portugal, 2007.

[30] Lingjia Tang, J. Mars, Xiao Zhang, R. Hagmann,
R. Hundt, and E. Tune. Optimizing Google’s warehouse
scale computers: The NUMA experience. In HPCA,
pages 188–197, Shenzhen, China, 2013.

[31] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Eu-
roSys, pages 1–17, Bordeaux, France, 2015.

[32] Vincent M Weaver. Linux perf_event features and over-
head. In FastPath, pages 80–87, Austin, TX, 2013.

[33] Mark Weiser, Brent B. Welch, Alan J. Demers, and Scott
Shenker. Scheduling for reduced CPU energy. In OSDI,
pages 13–23, Monterey, CA, USA, 1994.

[34] Xiao Zhang, Sandhya Dwarkadas, and Rongrong Zhong.
An evaluation of per-chip nonuniform frequency scaling
on multicores. In USENIX ATC, Berkeley, CA, USA,
2010.

[35] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov,
Alexandra Fedorova, and Manuel Prieto. Survey of
scheduling techniques for addressing shared resources in
multicore processors. ACM Computing Surveys (CSUR),
45(1):4, 2012.

448 2020 USENIX Annual Technical Conference USENIX Association

https://lkml.org/lkml/2019/6/25/25

VSMT-IO: Improving I/O Performance and Efficiency on SMT Processors in
Virtualized Clouds

Weiwei Jia1, Jianchen Shan2, Tsz On Li3, Xiaowei Shang1 Heming Cui3, Xiaoning Ding1

1New Jersey Institute of Technology 2Hofstra University 3University of Hong Kong

Abstract

The paper focuses on an under-studied yet fundamental issue
on Simultaneous Multi-Threading (SMT) processors — how
to schedule I/O workloads, so as to improve I/O performance
and efficiency. The paper shows that existing techniques used
by CPU schedulers to improve I/O performance are ineffi-
cient on SMT processors, because they incur excessive con-
text switches and spinning when workloads are waiting for
I/O events. Such inefficiency makes it difficult to achieve
high CPU throughput and high I/O throughput, which are
required by typical workloads in clouds with both intensive
I/O operations and heavy computation.

The paper proposes to use context retention as a key tech-
nique to improve I/O performance and efficiency on SMT pro-
cessors. Context retention uses a hardware thread to hold the
context of an I/O workload waiting for I/O events, such that
overhead of context switches and spinning can be eliminated,
and the workload can quickly respond to I/O events. Target-
ing virtualized clouds and x86 systems, the paper identifies
the technical issues in implementing context retention in real
systems, and explores effective techniques to address these
issues, including long term context retention and retention-
aware symbiotic scheduling.

The paper designs VSMT-IO to implement the idea and
the techniques. Extensive evaluation based on the prototype
implementation in KVM and diverse real-world applications,
such as DBMS, web servers, AI workload, and Hadoop jobs,
shows that VSMT-IO can improve I/O throughput by up to
88.3% and CPU throughput by up to 123.1%.

1 Introduction
Simultaneous Multi-Threading (SMT), or Hyper-Threading
(HT) on x86 processors, is widely enabled on most cloud
infrastructures [1–4]. For example, in Amazon EC2 [1], vir-
tual instances can have their virtual CPUs (vCPUs) run on
dedicated hardware threads or time-share hardware threads.
With SMT, multiple hardware threads share the same set of
execution resources in each core, such as functional units and
caches. Thus, when enabled, SMT can effectively improve

resource utilization and system throughput.
On SMT processors, CPU schedulers are critical for achiev-

ing high performance. To make optimal scheduling decisions,
they must fully consider and leverage the performance fea-
tures of SMT processors, particularly the intensive resource
sharing between hardware threads. For example, intensive
study has concentrated on symbiotic scheduling algorithms,
which co-schedule the threads that can fully utilize the hard-
ware resources with minimal conflicts on each core [5–10].

Existing scheduling optimizations for SMT processors, in-
cluding symbiotic scheduling and other enhancements in ex-
isting system software [11–13], mainly target computation-
intensive workloads and aim to improve processor throughput.
However, the techniques that can effectively and efficiently
improve the performance of I/O-intensive workloads on SMT-
enabled systems have not been paid enough attention. These
techniques are particularly important when a system has both
computation workloads and I/O workloads, and requires both
high processor throughput and high I/O throughput.

To improve I/O workload performance, existing CPU sched-
ulers generally use two techniques, polling [14–16] and boost-
ing the priority of I/O workloads [17–19]. However, with these
techniques, I/O workloads incur high overhead on SMT pro-
cessors due to busy-looping and increased context switches,
which can significantly reduce the performance of computa-
tion running on other hardware threads.

This problem is particularly significant and detrimental in
clouds. In clouds, I/O workloads and computation workloads
are usually consolidated on the same server to improve sys-
tem utilization [17, 19–22]. At the same time, virtualization
is dominantly used in clouds, which causes busy-looping and
context switches to incur higher overhead, because extra op-
erations must be carried out to deschedule and reschedule
virtual CPUs, as we will show in §2.

To control the overhead of polling and I/O workload prior-
ity boosting, existing system designs make trade-offs between
the efficiency and the effectiveness of these techniques, which
undermine the performance of I/O workloads. For polling,
existing systems usually incorporate a short timeout to keep

USENIX Association 2020 USENIX Annual Technical Conference 449

the busy-looping brief. For priority boosting, it has been a
long-standing dilemma to make I/O workloads preempting
the running workloads promptly or with some extra delay;
to resolve this dilemma, Linux uses a scheduling delay pa-
rameter (tunable, usually a few milliseconds) as a knob to
trade-off I/O workloads responsiveness and the increased con-
text switch overhead.

Instead of improving the effectiveness-efficiency trade-off,
the paper seeks a fundamental solution to the above problem.
The key is a technique that can effectively improve the perfor-
mance of I/O workloads with high efficiency. Our solution is
motivated by the hardware-based design for efficient blocking
synchronization on SMT processors [23]. With the design,
blocking synchronizations can be finished efficiently without
busy-looping or context switches. Specifically, the design al-
lows a thread blocked at a synchronization point to free all
its resources for other hardware threads to use, except for its
hardware context; thus, when the thread is unblocked, it can
resume its execution in a few cycles.

Our solution targets virtualized clouds and x86 SMT pro-
cessors. It is built on a hardware-based blocking mechanism
for vCPUs, named Context Retention. Context retention is
implemented with Intel MONITOR/MWAIT support [24]. With
context retention, when a vCPU is waiting for an I/O event, its
execution context can be held on a hardware thread without
busy-looping involved; upon the I/O event, the vCPU can
resume execution quickly without a context switch.

1.1 Technical Issues

While the rationale of the context retention mechanism is
straightforward, maximizing its potential on improving per-
formance needs to address three technical issues listed below.
These issues arise mainly because context retention may be
long time periods. Many I/O operations have long latencies in
millisecond scale, and the latencies may further increase due
to queueing/scheduling delays. To avoid context switches, the
contexts of the vCPUs waiting for the finish of these opera-
tions need to be retained on hardware threads for the same
amount of time.

First, uncontrolled context retention can diminish the bene-
fits from simultaneous multithreading, because context reten-
tion reduces the number of active hardware threads on a core.
This issue is particularly serious for x86 processors, which
only implement 2-way SMT1. When a hardware thread is
used for context retention, only one hardware thread remains
for computation.

Second, context retention consumes the timeslice of an
I/O workload, and thus reduces its timeslice available for
computation. We found that, if not well controlled, context
retention can even reduce the throughput of I/O workloads.

Third, due to context retention and burstiness of I/O op-
erations [25], the resource demand of an I/O workload may
vary dramatically on a hardware thread. This makes it a chal-
lenging task to improve processor throughput with existing

symbiotic scheduling methods. To determine which work-
loads may make fast progress if scheduled on the same core,
existing symbiotic scheduling methods periodically profile
workload executions and make predictions based on the pro-
filing results. Thus, these methods are effective only when
the workload on each vCPU changes steadily. They must be
substantially extended to handle I/O workloads.

1.2 Major Techniques

We implement our solution and address the above issues
by designing the VSMT-IO scheduling framework. It has
two major components. The Long-Term Context Reten-
tion (LTCR) mechanism is mainly to maximize I/O through-
put with high efficiency. The Retention Aware Symbiotic
Scheduling (RASS) algorithm is mainly to maximize proces-
sor throughput.

The LTCR mechanism mainly addresses the first two issues
identified in Section 1.1. It holds the context of the vCPU
waiting for an I/O event on a hardware thread for an extended
time period. If the expected I/O event happens in this period,
the vCPU can quickly resume and respond to the event. Oth-
erwise, the vCPU is descheduled. The maximum length of the
time period is carefully adjusted in a way that both processor
throughput and I/O throughput can be improved.

With LTCR, the context of an I/O workload can be held for
as long as a few milliseconds, which is more than 10x longer
than the busy-looping timeout used in system software (sub-
millisecond) [14, 15]. This makes LTCR capable of dealing
with relatively high I/O latencies, which are associated with
slow I/O operations (e.g., HDD accesses and SSD writes) or
caused by various system factors (e.g., queueing/scheduling
delay and SSD block erase). In contrast, polling is used only
when I/O workloads interact with low latency devices, e.g.,
local network and NVMe devices [16, 26].

The RASS algorithm mainly addresses the third issue iden-
tified in Section 1.1. On each core, it classifies the vCPUs into
two categories, CPU-bound vCPUs and I/O-bound vCPUs. It
uses one hardware thread for running CPU-bound vCPUs and
the other hardware thread mainly for I/O-bound vCPUs. In
this way, the computation on the CPU-bound vCPUs can over-
lap to the greatest extent with the context retention periods on
the other hardware thread. This effectively improves proces-
sor throughput, since CPU-bound vCPUs can take advantage
of the hardware resources released due to context retention to
make fast progress. RASS schedules CPU-bound vCPUs on
both hardware threads only when I/O-bound vCPUs are not
ready to run. In this case, RASS selects CPU-bound vCPUs
based on the symbiosis between vCPUs (i.e., how well the
vCPUs can share the hardware resources and make progress
when co-scheduled).

With RASS, the first two issues identified in Section 1.1 can

1Though some Xeon Phi processors implement 4-way SMT, the paper
targets 2-way SMT x86 processors because of their overwhelming dominance
in clouds.

450 2020 USENIX Annual Technical Conference USENIX Association

be further mitigated. LTCR mainly targets long context reten-
tions. It limits the lengths of context retentions to mitigate the
resource underutilization they cause and reduce the timeslice
they consume. However, it cannot deal with the issues caused
by relatively short context retentions. For these context reten-
tions, RASS mitigates the resource underutilization issue (the
first issue in Section 1.1) by overlapping computation and
context retention; to mitigate the second issue, it helps ensure
the supply of timeslice to I/O-bound vCPUs by running them
on dedicated hardware threads with high priorities.

The paper makes the following contributions. First, the
paper identifies the efficiency issues in existing CPU sched-
ulers when they are used to improve I/O performance on
SMT-enabled systems, and proposes a novel idea, context
retention, to improve efficiency. Second, it identifies the is-
sues in implementing the idea, and explores effective tech-
niques to address these issues, including long term context
retention and retention-aware symbiotic scheduling. Third,
targeting virtualized clouds and x86 processors, the paper
designs VSMT-IO to implement the idea and the techniques,
and builds a system prototype based on KVM [27]. Forth, it
has evaluated VSMT-IO with extensive experiments and a
diverse set of 18 programs, including DBMS, web servers, AI
workloads, and Hadoop jobs, and compared the performance
of VSMT-IO with the vanilla system and widely-adopted
enhancements. The experiments show that VSMT-IO can im-
prove I/O throughput by up to 88.3% and processor through-
put by up to 123.1%.

2 Background and Motivation
Targeting virtualized clouds, this section demonstrates the
efficiency issues of existing schedulers in improving I/O per-
formance on SMT-enabled systems. It first introduces these
techniques, and experimentally verifies their inefficiency and
the caused performance degradation (§2.1). Then, it explains
why the issues are serious on virtualized platforms (§2.2).

2.1 Inefficient I/O-Improving Techniques

I/O-intensive applications are usually driven by I/O events. A
pattern repeated in their executions is waiting for I/O events
(e.g., queries received from network, or data read from disks),
processing I/O events, and generating new I/O requests (e.g.,
responses to queries, or more disk reads). Thus, high I/O
performance not only depends on fast and well-managed I/O
devices to quickly respond to I/O requests. It also depends on
the applications to promptly respond to various I/O events,
such that new I/O requests can be generated and issued to I/O
devices quickly.

Thus, CPU schedulers play an important role in improv-
ing I/O performance. To increase the responsiveness of I/O
workloads to I/O events, existing schedulers use two general
techniques — polling for low-latency I/O events and priority
boosting for high-latency I/O events. With polling, an I/O
workload waiting for an I/O event enters a busy loop (im-

plemented with PAUSE on x86 processors) with a pre-set
timeout. The workload keeps looping before it is interrupted
upon the expected I/O event or is descheduled due to timeout.
Thus, polling allows a workload to respond to I/O events with
a minimal delay before timeouts. With priority boosting, upon
an I/O event, the priority of the I/O workload is boosted, such
that it can quickly preempt a running workload to respond to
the I/O event.

On virtualized platforms, I/O workloads run on vCPUs;
and vCPU scheduling becomes a key component affecting
I/O performance. For vCPUs, polling may be implemented
in guest OS kernel [28]. However, busy-looping in guest OS
causes unnecessary VM_EXITs and extra overhead on x86
processors when Pause Loop Exiting (PLE) is enabled. Thus,
recent designs (e.g., HALT-Polling [15]) usually implement
polling at the VMM level. Priority boosting may be imple-
mented by adjusting priorities explicitly [17] or by implicitly
associating priorities with CPU time consumption. For ex-
ample, Linux/KVM allows the vCPUs with lower CPU time
consumption (e.g., I/O-bound vCPUs) to preempt the vCPUs
with higher CPU time consumption [17, 29].

Though polling and priority boosting can improve the per-
formance of I/O workloads, they are inefficient on SMT pro-
cessors. The operations associated with these techniques,
busy-looping and context switches, waste the hardware re-
source that can be otherwise utilized by the computation on
other hardware threads. Thus, the inefficiency may not be
an issue when a system has only I/O workloads; but it be-
comes detrimental when I/O workloads are consolidated with
computation workloads. Efficiency can be improved by mak-
ing these techniques less aggressive, e.g., enforcing a shorter
timeout for polling. However, this sacrifices the effectiveness
of these techniques and I/O performance.

We illustrate the inefficiency issue with polling and prior-
ity boosting using the experiments with two combinations
of applications, Sockperf with Matmul, and Redis with
PageRank. Sockperf and Redis are I/O-bound. Matmul
and PageRank are CPU-bound. We run each combination
on a 24-core server (48 hyperthreads) with each application
running in a 48-vCPU VM. This results in 2 vCPUs on each
hyperthread. The VMs are managed by KVM/Linux. Detailed
server/VMs configurations and application descriptions can
be found in §6.

To illustrate the inefficiency issue on a well-tuned system
with high efficiency, we have enhanced the HALT-Polling
implementation in KVM. The enhancement makes HALT-
Polling more effective, so as to further reduce context switches
between vCPUs and make vCPUs more responsive to I/O
events. Specifically, with the “vanilla” implementation, an
idle vCPU is not allowed to perform HALT-Polling when
there is another vCPU ready to run on the same hyperthread.
The enhancement removes this restriction. It also increases the
maximum timeout that is allowed in HALT-Polling. (HALT-
Polling adjusts timeout value dynamically between 0 and

USENIX Association 2020 USENIX Annual Technical Conference 451

workloads
KVM w/

enhanced HALT-Polling VSMT-IO

vCPU
switches

spinning
time

perf.
imprv.

vCPU
switches

spinning
time

perf.
imprv.

Sockperf
Matmul 12.5K 40.1% 16.1% 3.3K - 56.5%

8.2% 57.4%
Redis

PageRank 43.9K 27.5% 8.4% 15.1K - 88.3%
7.7% 123.1%

Table 1: Existing techniques handling I/O workloads incur frequent
vCPU switches and massive spinning, and are inefficient on SMT proces-
sors. “vCPU switches” are counts of context switches between vCPUs
every second in the server. The performance improvements are relative
to “vanilla” KVM.

a maximum value.) The enhancement improves the perfor-
mance of the applications by 7.7% ∼ 16.1%.

As shown in Table 1, both application combinations incur
frequent vCPU switches. For example, Redis and PageRank
incur a vCPU switch about every 1 millisecond on each hyper-
thread. At the same time, a substantial portion of CPU time
is spent by polling (e.g., 40.1% for Sockperf and Matmul).
vCPU switches and such massive polling inevitably degrade
performance, as we will show later.

 20

 40

 60

 80

 100

 120

 140

 16
 32

 64
 128

 256
 512

 1024

 2048

 4096

(a) Tweaking halt-polling

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
(%

)

Halt-polling timeout (us)

Redis
Pagerank

Average system throughput

 20

 40

 60

 80

 100

 120

 140

 1024

 2048

 4096

 8192

(b) Tweaking I/O workload priority

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
(%

)

Scheduling delay (us)

Redis
Pagerank

Average system throughput

Figure 1: Tweaking existing techniques for scheduling I/O workload can-
not substantially improve performance. (The throughputs are normal-
ized to those with vanilla KVM.)

The performance advantage of the enhanced HALT-Polling
is achieved by increasing polling to reduce costly vCPU
switches. This demonstrates some potential to tweak existing
designs. However, to improve performance significantly, ma-
jor changes must be made. To illustrate this, Figure 1 shows
how the performance of Redis and PageRank changes when
tweaking the key parameters of polling and priority boosting.
We first tweak the timeout used in HALT-Polling and vary it
from 10 microseconds to 5 milliseconds. Figure 1(a) shows
that increasing timeout only slightly improves performance
when timeout value is small. However, the performance im-
provement of these two applications hits a plateau at about
10% after the timeout value reaches 200 microseconds.

Then, we adjust the scheduling delay parameter in Linux.
The parameter controls the delay between a vCPU being wo-
ken up upon an I/O event and the vCPU preempting another
vCPU. Thus, increasing the parameter essentially reduces the
priority of I/O-bound vCPUs and reduces vCPU switches. As
Figure 1(b) shows, the average performance barely changes;
and increasing this parameter is basically sacrificing I/O per-
formance for higher processor throughputs.

The aim of VSMT-IO is to substantially reduce the over-

head caused by spinning and vCPU switches. The reduced
overhead improves the performance of computation work-
loads. As shown in Table 1, reducing more than 2/3 of vCPU
switches and eliminating spinning lead to significant perfor-
mance improvement to PageRank (123.1% relative to vanilla
KVM or 107.1% relative to enhanced KVM). More impor-
tantly, the performance improvement of computation work-
load is not at the cost of I/O performance. With VSMT-IO, the
throughput of Redis is increased by 88.3% over vanilla KVM
or 73.7% over enhanced KVM. The system I/O throughput is
also increased by 75.1% over enhanced KVM.

2.2 Overhead of Polling and Context Switches

Existing techniques for improving I/O performance are in-
efficient on SMT processors, because context switches and
polling waste the resource that can be otherwise utilized by
the computation on other hardware threads. Targeting vir-
tualized clouds, this subsection highlights the overhead of
these operations with experiments and explains how such
high overhead is incurred.

Hyperthread 1 Hyperthread 2 Relative performance
- Matmul 100%

vCPUs Switches Matmul 32%
HALT-Polling Matmul 73%

Table 2: vCPU switches and HALT-Polling on a hyperthread slow down
the computation on the other hyperthread.

In the experiments, we run a Matmul thread on a hyper-
thread. Then, on the other hyperthread, we make two vCPUs
switch back and forth or make a vCPU repeat the HALT-
Polling loop. We check how the performance of Matmul is
impacted by these operations.

The experiments show that vCPU switches slow down
Matmul by about 70%, and HALT-Polling slows it down by
about 30% (Table 2). While the slowdowns explain the ineffi-
ciency of polling and priority boosting techniques, we were
surprised at these slowdowns. We expected the slowdown
caused by vCPU switches to be around 50%, because there
are two streams of instructions compete for CPU resource
on the hyperthreads, and expected the slowdown caused by
HALT-Polling to be minimal, because PAUSE instruction is
designed to consume minimal resource.

We have diagnosed the slowdowns. vCPU switches cause
large slowdowns mainly because the L1 data cache shared
by both hyperthreads needs to be flushed during vCPU
switches to address the L1 Terminal Fault problem [30, 31].
Other costly operations, including TLB flush [32], handling
rescheduling IPIs [33], and the execution of scheduling algo-
rithm, also contribute to the performance impact incurred by
vCPU switches. The slowdown caused by HALT-Polling is
larger than expected because the operations other than PAUSE
are executed. HALT-Polling is implemented in the VMM.
Thus, VM_EXIT is incurred when a vCPU enters HALT-
Polling. VM_EXITs are costly operations [34]. During the
polling, the instructions controlling the busy-loop are exe-
cuted repeatedly. They are also more costly than PAUSE.

452 2020 USENIX Annual Technical Conference USENIX Association

3 Basic Idea and Technical Issues
As Section 2 shows, polling and priority boosting incur high
overhead on SMT processors; tweaking these techniques
yields only marginal performance improvements. This re-
quires that a new and efficient technique be developed to
handle I/O workloads.

On a SMT processor, an efficient technique must consume
minimal hardware resources. In a scheduling technique for
improving I/O performance, two factors determine its hard-
ware resource consumption. One is how to handle an I/O
workload while it is waiting for the completion of an I/O
operation. The other is how to quickly resume the execution
of the I/O workload upon the completion of the expected I/O
operation. Polling and priority boosting each concentrate on
reducing the resource consumption of only one factor, but at
the cost of high resource consumption in the other factor. Our
solution aims to minimize the resource consumption of both
factors.

Our solution leverages two features of SMT processors:
1) hardware-based blocking support, and 2) intense resource
sharing between hardware threads. With these features, we im-
plement a Context Retention mechanism for vCPUs. While
a vCPU is waiting for the completion of I/O operations, it
can “block” itself on a hardware thread, and release all its
resources for other hardware threads to use, except for its
hardware context. This minimizes the resource consumption
required by waiting for the completion of I/O operations. With
the hardware context, the vCPU can be quickly “unblocked”
without context switches upon the completion of the I/O oper-
ations. This minimizes the resource consumption required to
quickly resume the execution of I/O workloads. Table 3 sum-
marizes the benefits of context retention from the perspectives
of both I/O workloads and computation workloads.

Benefit Overhead

I/O better responsiveness timeslice charged
for context retention

Computation extra resources from reduced
context switches and polling

resource
underutilization

Table 3: A summary of benefit and overhead of context retention.

Though context retention consumes minimal hardware re-
sources, it does incur some overhead, which are as summa-
rized in Table 3 and must be reduced for better efficiency.
From the perspective of computation workloads, because not
all the hardware threads can be used for computation, the
overhead is reflected by resource underutilization. Given that
a x86 core has two hyperthreads, to avoid low utilization, one
must be doing computation while the other does context re-
tention. Even with this arrangement, full utilization may not
be achieved.

From the perspective of I/O workloads, they are charged
for vCPU usage while they retain contexts; so only short
context retention periods are cheaper than descheduling and
rescheduling vCPUs; but longer retention periods are not.
This problem can be illustrated by the performance of I/O

workload Redis in Figure 1(a). Increasing HALT-Polling
timeout improves the performance of Redis when the timeout
value is low. However, after the timeout exceeds 0.5 millisec-
ond, further increasing the timeout degrades its performance.
This is because, with a longer timeout, polling consumes more
timeslice and reduces the timeslice available to the compu-
tation in Redis. Though polling is used in this experiment,
if polling is replaced with context retention, the performance
trend would be similar.

For the above overhead issues, a natural solution is to con-
trol the maximum length of context retention, such that ex-
tended context retention periods will not cause high overhead.
However, this solution cannot deal with the overhead of the
context retention periods that are relatively short. Reducing
this overhead requires some enhancement in vCPU schedul-
ing. For example, resource underutilization can be mitigated
by scheduling a resource-demanding vCPU on a hyperthread
when context retention is in progress on the other hyperthread;
the vCPUs with much timeslice consumed by context reten-
tion can be compensated with extra timeslice.

In addition to the overhead issues, context retention also cre-
ates some challenge on the integration of symbiotic schedul-
ing methods, which are needed for improving CPU perfor-
mance. The key of symbiotic scheduling is to estimate how
well a group of workloads can corun on a SMT core (i.e.,
symbiosis level) [6–9, 35]. This is achieved by monitoring
workload executions periodically. For instance, SOS (Sample,
Optimize and Symbiosis) [5] samples workload executions
periodically in sample phases to determine their symbiosis
levels, and preferentially coschedules tasks with the highest
symbiosis levels in symbiosis phases. Thus, existing symbi-
otic scheduling methods require that the resource demand
of a workload change steadily during its execution. Due to
context retention and burstiness of I/O operations [25], the
resource demand of an I/O workload changes dramatically
during its execution on a vCPU. Existing symbiotic schedul-
ing methods cannot handle such workloads. This issue may be
addressed by coscheduling I/O workloads with computation
workloads, such that symbiosis levels can be lifted by overlap-
ping context retention with resource-demanding computation.
Existing symbiotic scheduling methods can still be used to
handle computation workloads.

4 VSMT-IO Design
We implement our idea and address the technical issues in
VSMT-IO. In this section, we present the overall architecture
of VSMT-IO and its major components.

4.1 Overview

Figure 2 shows the overall architecture of VSMT-IO.
VSMT-IO incorporates four major components:
• The Long Term Context Retention (LTCR) mechanism
on each core implements context retention. To prevent ex-
tended context retention periods causing high overhead (re-

USENIX Association 2020 USENIX Annual Technical Conference 453

Core 0

Retention-Aware

Symbiotic Scheduling

Workload

Monitor

Long Term

Context Retention

schedule

monitor

workload

info.

perf. info.timeout

Workload

Adjuster
workload info.

Core 1

. . .

migrate

.

.

.

.

.

.

.

.

.

.

.

.

workload info.

system component

CPU-bound vCPU

I/O-bound vCPU

data

control & management

Figure 2: VSMT-IO Architecture. Key components are in orange.

source underutilization and timeslice consumption), it en-
forces a context retention timeout, and dynamically adjusts
the timeout value.
• The Retention Aware Symbiotic Scheduling (RASS) al-
gorithm is mainly to increase the symbiosis levels of the
vCPUs running on the hypertheads in each core. To achieve
this, RASS classifies vCPUs into two categories, CPU-bound
vCPUs and I/O-bound vCPUs, and schedules CPU-bound
vCPUs on a hyperthread and I/O-bound vCPUs on the other
hyperthread. CPU-bound vCPUs run on both hyperthreads
only when I/O-bound vCPUs are not ready to run. In this
way, the resource-demanding computation on CPU-bound
vCPUs can overlap to the greatest extent with the resource-
conserving context retention periods on I/O-bound vCPUs.
Increased symbiosis levels improve CPU performance and
reduce the overhead of context retentions. At the same time,
using a dedicated hyperthread for I/O-bound vCPUs allows
them to use extra CPU time as a “compensation” for the times-
lice charged in context retention periods, and further prevents
them from being unfairly penalized.
• The Workload Monitor on each core monitors vCPU ex-
ecutions. It characterizes the workloads on the vCPUs and
measures performance. It provides workload information for
RASS to classify and schedule vCPUs and for the workload
adjuster introduced below to adjust the workloads between
cores. It provides performance information for LTCR to adjust
the timeout value.
• The effectiveness of RASS relies on the heterogeneity of
the workloads on each core, some being CPU-bound and
some others being I/O-bound. The Workload Adjuster sup-
plements RASS. It adjusts the workloads on each core to
maintain their heterogeneity by migrating vCPUs between
cores.

4.2 Long Term Context Retention (LTCR)

On x86 processors, we implement vCPU context retention
with the MONITOR/MWAIT support. Specifically, to wait for
an I/O event, a vCPU calls a MWAIT instruction paired with a

Algorithm 1 Context Retention Timeout Adjustment
1: Td : desired timeout value; Te: effective timeout value; Tinit : initial time-

out value; P: time period between two adjustments

2: Td ← Tinit
3: while true do
4: Te← Td , collect performance data for a time period of P
5: if TESTTIMEOUT(Td * 1.1) then
6: Td ← Td ∗1.1; continue
7: else
8: Te← Td , collect performance data for a time period of P
9: end if

10: if TESTTIMEOUT(Td * 0.9) then
11: Td ← Td ∗0.9; continue
12: end if
13: end while

14: function TESTTIMEOUT(T)
15: Te← T , collect performance data for a time period of P
16: Scpu← average speed-up of CPU-bound vCPUs
17: Sio← average speed-up of I/O bound vCPUs
18: if Scpu > 1 and Sio > 1 then return true; end if
19: return false
20: end function

MONITOR instruction that specifies a memory location in guest
OS. The MWAIT instruction “blocks” the vCPU and keeps its
context on the hyperthread. With the MONITOR/MWAIT support,
the MWAIT instruction ends automatically when the content at
the memory location is updated or an interrupt is directed to
the hyperthread. Since both I/O events and timeouts can be
notified with interrupts, we choose to use interrupts to stop
MWAIT. To prevent MWAIT from being terminated by mem-
ory writes prematurely, we set the memory location used in
MONITOR read-only.

The context retention timeout is to balance the cost and ben-
efit of context rentention. Based on the summary in Table 3,
for I/O workloads, lengthening a context retention is always
a gain when it consumes less timeslice than descheduling and
then rescheduling a vCPU. For computation workloads, con-
text retention is rewarding when the amount of resource saved
by reducing context switches and polling exceeds the amount
of resource that cannot be utilized due to context retention. In
the cases where one hyperthread does computation and the
other hyperthread does context retention, context retention
is always rewarding if it is not longer than the time spent
on descheduling and then rescheduling a vCPU, based on
the measurements shown in Table 2. Thus, context retention
timeout can be set to be at least the time required by de-
scheduling and rescheduling a vCPU. Then, longer timeouts
can be tested.

LTCR uses algorithm 1 to adjust the context retention time-
out periodically. The algorithm slightly increases or decreases
the timeout value, checks whether performance is improved
with the new value, and keeps the new value if it is. The al-
gorithm uses the vCPU performance information collected
by the workload monitor to determine whether performance
is improved. Specifically, it uses IPC (instruction per cycle)
to measure the performance of CPU-bound vCPUs, and uses

454 2020 USENIX Annual Technical Conference USENIX Association

the frequency of context retentions (i.e., number of context
retentions per second) to measure the performance of I/O-
bound vCPUs. Then, the algorithm calculates a speed-up for
each vCPU. A speed-up value greater than 1 indicates that
the performance of the vCPU has been improved with the
new timeout value. It averages the speed-up values of CPU-
bound vCPUs, and averages the speed-up values of I/O-bound
vCPUs. The algorithm determines that the performance is im-
proved and the new timeout value should be kept only if both
average values are greater than 1.

4.3 Retention Aware Symbiotic Scheduling (RASS)

RASS schedules the vCPUs on each core with the main aim
of maximizing the computation throughput of the core. This
is achieved by increasing the symbiosis levels of the vCPUs
running on the hypertheads. RASS combines two methods.
One is unbalanced scheduling that maximizes the overlap-
ping between resource-demanding computation and resource-
conserving context retention periods (Section 4.3.1). The
other is symbiotic scheduling based-on cycle accounting to
select CPU-bound vCPUs with high symbiosis levels when
both hardware threads need to run CPU-bound vCPUs (Sec-
tion 4.3.2).

4.3.1 Unbalanced Scheduling

Unbalanced scheduling classifies vCPUs into two categories,
CPU-bound vCPUs and I/O-bound vCPUs, and schedules
them on paired hyperthreads (See Figure 3). The classification
is based on how much time each vCPU spends on context
retention. Specifically, for each vCPU, a context retention rate
is calculated and updated periodically. It is the ratio between
the time spent on context retention in last time period and
the period length. When a new period begins, the vCPUs are
ranked based on their context retention rates. The vCPUs with
higher context retention rates are considered to be I/O-bound,
and the rest are CPU-bound.

computation

Context retention

I/O handling

Computation
(from hyperthread0)

CPU-bound vCPUs mainly

running on hyperthread0

I/O-bound vCPUs

running on hyperthread1

Context retention

I/O handling

Context retention

I/O handling

Figure 3: Computation and context retention are distributed to differ-
ent hyperthreads with unbalanced scheduling.

When the hyperthread running I/O-bound vCPUs is idle, a
CPU-bound vCPU is selected based on the symbiosis level
(Section 4.3.2) and migrated to this hyperthread. This is to
improve the utilization of CPU hardware to further increase
CPU performance. The CPU-bound vCPU can only run with
a priority lower than the I/O-bound vCPUs. It is preempted
and migrated back when an I/O-bound vCPU becomes ready

to run. This is to prevent the CPU-bound vCPU from blocking
I/O-bound vCPUs and degrading I/O performance.

Unbalanced scheduling assumes that each vCPU has been
attached with a weight, e.g., that used in Linux Completely
Fair Scheduler (CFS). When classifying the vCPUs, it tries to
balance the total weight of CPU-bound vCPUs and the total
weight of I/O-bound vCPUs, and make them roughly equal.
This is mainly to balance the load on the hyperthreads and
reduce the migration of CPU-bound vCPUs.

The compensation to I/O-bound vCPUs for the timeslice
consumed by context retentions can also be implemented by
adjusting the weights of vCPUs. For example, the weights
of the vCPUs can be increased based on their context reten-
tion rates. For the vCPUs that spend more time on context
retentions than other vCPUs, their weights are increased by
larger percentages. In this way, fewer vCPUs are classified
as I/O-bound, and share the same hyperthread. However, we
found that this adjustment is not necessary in most cases. The
main reason is that I/O-bound vCPUs usually have low CPU
utilization. Thus, even with context retention, some I/O-bound
vCPUs still cannot fully consume their timeslice. Other I/O-
bound vCPUs that need more timeslice acquire automatically
extra timeslice as compensation. This is because the sched-
uler is work-conserving, and I/O-bound vCPUs have higher
priority than CPU-bound vCPUs on the hyperthread and are
supplied with extra timeslice first.

4.3.2 Symbiotic Scheduling Based on Cycle Accounting

When both hyperthreads need to run CPU-bound vCPUs, the
symbiosis levels between vCPUs must be considered. RASS
determines the symbiosis levels using the cycle accounting
technique [36–39]. It is a symbiotic scheduling technique for
threads. We only adapt its method that estimates the symbiosis
levels between threads and use it on vCPUs.

We select this technique because of its high practicality. To
estimate the symbiosis levels between threads, it samples and
characterizes each individual thread, and inputs the charac-
terization into an interference estimation model. Compared
to SOS (Sample, Optimize and Symbiosis), which samples
the execution of possible thread combinations [5], the cycle
accounting technique has a much lower complexity (O(n) vs.
O(n2)) and thus higher practicality.

The cycle accounting technique uses three parameters,
which are the components of the CPI (cycler per instruction),
to characterize a thread. The base component (B) is the num-
ber of cycles used to finish an instruction when all the required
hardware resource and data are locally available; the miss
component (M) is the number of cycles used to handle misses
(e.g., cache misses and TLB misses); the waiting component
(W) is the number of cycles waiting for hardware resource to
become available. The CPI value is roughly the sum of B, M,
and W.

When the parameters of a thread are being measured, the cy-
cle accounting technique requires that the thread run alone on

USENIX Association 2020 USENIX Annual Technical Conference 455

the core without any computation on the other hyperthread so
as to eliminate interference. This incurs non-trivial overhead.
To reduce this overhead, we take advantage of context reten-
tions, and measure the parameters of a CPU-bound vCPU
when it is running on a hyperthread and context retention is
in progress in the other hyperthread. We obtain the base com-
ponent, the miss component, and the CPI of the vCPU using
hardware counters, and calculate the waiting component from
this.

4.4 Workload Adjuster

The effectiveness of RASS relies on the heterogeneity of the
workloads on each core, some being CPU-bound and some
others being I/O-bound. Its performance advantage may di-
minish when workloads become homogeneous due to factors,
such as load balancing and phase changes in workloads. The
workload adjuster is designed to maintain the workload het-
erogeneity on each core.

The workload adjuster measures workload heterogeneity
and characterizes the overall workload type by calculating
the standard deviation and the average value of vCPU context
retention rates. If a group of vCPUs have a small deviation
value, their workloads are generally homogeneous; if the av-
erage context retention rate of a group of vCPUs is very high,
these vCPUs are likely to be I/O-bound; if the average rate
is very low, the vCPUs are likely to be CPU-bound. The
workload adjuster calculates these values for each core, and
updates them periodically to detect the need for workload ad-
justment. When the standard deviation drops below a pre-set
threshold, workload adjustment starts.

To adjust the workloads, the adjuster finds the core with
the smallest deviation. Then, based on the average context
retention rate of the core (e.g., a very small average value of
CPU-bound vCPUs), the adjuster searches for another core,
which is dominated by the other type of vCPUs (e.g., I/O-
bound vCPUs). The search is done by examining the average
context contention rates of other cores. The desired core is
the one with the average context contention rate that differs
from the former average rate by the largest degree (e.g., a very
large average value of I/O-bound vCPUs). After a such core
is found, the adjuster ranks the vCPUs based on their context
retention rates on each of these two cores, selects the vCPU
ranked in the middle on each core, and swaps the two vCPUs.

5 Implementation Details
We have implemented a prototype of VSMT-IO based on
Linux/KVM. We added/modified about 1300 lines of source
code mainly in KVM kernel modules and Linux CFS 2. The
workload monitor and the long-term context retention (LTCR)
components are mainly implemented in a KVM kernel mod-
ule by changing kvm_main.c. In LTCR, the context retention
mechanism needs to be implemented in guest OS to minimize
overhead. Though it can be implemented as an idle driver ker-
nel module [40], we choose to directly change the idle loop

in idle.c to simplify the implementation. Context retention is
implemented with a loop, which repeatedly calls MONITOR,
MWAIT, and the need_sched() function of Linux kernel. It is
inserted at the beginning of each iteration of the idle loop.
Implementing context retention with a loop is to prevent it
from being terminated prematurely by irrelevant interrupts.
The loop terminates when a thread becomes “ready” on the
vCPU (fulfilled with the need_sched() call). Thus, context
retention can finish upon the expected I/O event. The loop
also ends if a timer interrupt “marking” the timeout of the
context retention is received by the vCPU. To differentiate
this interrupt from regular timer interrupts, we change the
two unused bits in the VM execution control register, and use
them as a timeout flag.

Retention aware symbiotic scheduling and workload ad-
juster are implemented based on Linux CFS in fair.c and
core.c. Thus, the original scheduling and load balancing poli-
cies implemented in CFS are followed in most cases, e.g.,
when deciding which I/O-bound vCPU is the next to run on
a hyperthread. However, when deciding which CPU-bound
vCPU is the next to run, the symbiotic scheduling policy in
RASS and the fairness based scheduling policy in CFS have
different objectives, and thus may decide to select different
vCPUs. To coordinate these different objectives, our imple-
mentation let Linux CFS select a few vCPUs based on its
policies. Then, among these vCPUs, RASS selects a vCPU
based on symbiosis.

6 Performance Evaluation
With the prototype implementation, we have evaluated
VSMT-IO extensively with a diverse set of workloads. The
objectives of the evaluation are four-fold: 1) to show that
VSMT-IO can improve I/O performance with high efficiency
and benefit both I/O workload and computation workload,
2) to verify the effectiveness of the major techniques used
in VSMT-IO, 3) to understand the performance advantages
of VSMT-IO across diverse workload mixtures and different
scenarios, and 4) to evaluate the overhead of VSMT-IO.

6.1 Experiment Settings

Our evaluation was done on a DELLTM PowerEdgeTM R430
server with two 2.60GHz Intel Xeon E5-2690 processors
(two NUMA zones), 64GB of DRAM, a 1TB HDD, and an
Intel I350 Gigabit NIC. Each processor has 12 physical cores,
and each physical core has two hyperthreads. With KVM,
we built four VMs, each with 24 vCPUs and 16GB memory.
Both the host OS and guest OS are Ubuntu Linux 18.04 with
kernel updated to 5.3.1. We test VSMT-IO with a large and
diverse set of workloads generated by typical applications
from different domains, as summarized in Table 4. In the
experiments, each VM encapsulates one workload.

We test VSMT-IO under two settings. Under the first set-
ting, we launch two VMs; thus each vCPU has a dedicated

2Source code can be found at https://github.com/vSMT-IO/vSMT-IO.

456 2020 USENIX Annual Technical Conference USENIX Association

App. Workload Description
Redis Serve requests (randomly chosen keys, 50% SET, 50% GET) [42].
HDFS Read 10GB data sequentially with HDFS TestDFSIO [43].

Hadoop TeraSort with Hadoop [43].
HBase Read and update records sequentially with YCSB [44].
MySQL OLTP workload generated by SysBench for MySQL [45].
Nginx Serve web requests generated by ApacheBench [46].
ClamAV Virus scan a large file set with clamscan [47].
RocksDB Serve requests (randomly chosen keys, 50% SET, 50% GET) [48].
PgSQL TPC-B-like workload generated by PgBench [49].
Spark PageRank and Kmeans algorithms in Spark [50].
DBT1 TPC-W-like workload [51].

XGBoost Four AI algorithms included in XGBoost [52] system.
Matmul Multiply two 8000x8000 matrices of integers.

SockperfTCP ping-pong test with Sockperf [53].

Table 4: Benchmark applications used to test VSMT-IO.

hyperthread. We compare VSMT-IO against three compet-
ing solutions: 1) Blocking, which immediately deschedules
the vCPUs waiting for I/O events, and is implemented by
disabling HALT-Polling in KVM; 2) Polling, which is im-
plemented by booting guest OS with parameter idle=poll
configured [41] (timeout is not enforced for best I/O perfor-
mance); and 3) HALT-Polling implemented in KVM, which
combines polling and priority boosting techniques.

Under the second setting, we launch four VMs; thus, each
hyperthread is time-shared by two vCPUs. Without a timeout,
Polling is not a choice for improving I/O performance under
this setting. Thus, we compare VSMT-IO against 1) vanilla
KVM, which uses priority boosting to improve I/O per-
formance, because HALT-Polling implemented in vanilla
KVM is inactive under this setting, and 2) HALT-Polling
enhanced to support time-sharing (described in Section 2.1).

We measure the throughputs of the workloads. We also
collect response times if the workloads report them. The per-
formance measurements may vary significantly across differ-
ent workloads. When we present them in figures, for clarity,
we normalize them against those of Blocking under the first
setting and priority boosting (i.e., vanilla KVM) under
the second setting.

6.2 One vCPU on Each Hyperthread

Under the first setting, I/O workloads can achieve the best
performance with Polling. We want to compare the effec-
tivenss of VSMT-IO on improving I/O performance against
that of Polling by comparing the performance of I/O work-
loads managed with these two solutions. Without a timeout,
Polling incurs high overhead on SMT processors, and de-
grades the performance of other workloads on the proces-
sors. Blocking and HALT-Polling are more efficient solu-
tions than Polling under this setting. We want to compare
the efficiency of VSMT-IO against that of Blocking and
HALT-Polling by comparing the performance of computa-
tion workloads when they are collocated with I/O workloads
managed with these three solutions.

With the above objectives, we launch two VMs. We run

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

R
o
ck

sD
B

M
atm

u
l

C
lam

A
V

M
atm

u
l

P
g
S

Q
L

M
atm

u
l

M
y
S

Q
L

M
atm

u
l

D
B

T
1

M
atm

u
l

H
b
ase

M
atm

u
l

M
o
n
g
o
D

B
M

atm
u
l

H
D

F
S

M
atm

u
l

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(%
)

Polling

HALT-Polling

vSMT-IO

Figure 4: Throughputs of Matmul and eight I/O-intensive benchmarks
when Matmul is collocated with each of the benchmarks in two VMs.
Each vCPU runs on a dedicated hyperthread. Throughputs are normal-
ized to those of Blocking.

Matmul in one VM, which is computation-intensive, and run
an I/O-intensive benchmark in the other VM. Figure 4 shows
the normalized throughputs of Matmul and eight I/O-intensive
benchmarks selected to co-run with Matmul. Note that the
performance with Blocking is shown with the flat line at
100%.

With VSMT-IO, the I/O-intensive benchmarks achieve sim-
ilar performance as they do with Polling. The largest differ-
ence is with DBT1, 4.1%. This is because DBT1 incurs a large
number of random accesses to the HDD, which have long
latencies exceeding the timeout value used in LTCR. On aver-
age, the I/O intensive benchmarks are only 2.3% slower with
VSMT-IO. This shows that VSMT-IO is highly effective on
improving I/O performance.

The high effectiveness of VSMT-IO is achieved with high
efficiency. This is reflected by Matmul achieving higher
performance with VSMT-IO consistently in all the exper-
iments than it with the other three solutions. On average,
with VSMT-IO the performance of Matmul is 37.9%, 14.5%,
and 27.6% higher than it with Polling, Blocking, and
HALT-Polling, respectively.

6.3 Multiple vCPUs Time-Sharing a Hyperthread

With multiple vCPUs on each hyperthread, context switches
are usually incurred when improving I/O performance. It be-
comes more difficult for I/O-improving solutions to maintain
high efficiency. We want to know to what extent the effec-
tiveness and efficiency of VSMT-IO can be maintained. At
the same time, VSMT-IO can be fully exercised under this
setting. We want to verify the effectiveness of the major tech-
niques in VSMT-IO.

In the experiments, we launch four VMs. On two of the
VMs, we run two instances of the same benchmark, which
is computation-intensive, e.g., Nginx, or AI algorithms in
XGBoost. On the other two VMs, we run two instances of
another benchmark, which is I/O-intensive, e.g., web server,
or file server.

Figure 5 shows the normalized throughputs for eight bench-
mark pairs. In each pair, the first benchmark is I/O intensive,
and the second benchmark is computation intensive. The en-

USENIX Association 2020 USENIX Annual Technical Conference 457

hanced HALT-Polling can effectively improve the through-
puts of I/O-intensive benchmarks, because polling can “ab-
sorb” some context switches caused by I/O operations. Com-
pared to vanilla KVM, the throughputs of I/O intensive bench-
marks are increased by 36.9% on average. However, polling
consumes CPU resources and may degrade the performance
of other workloads (e.g., Nginx and Regression). Because
the length of polling is carefully controlled in HALT-Polling,
on average the throughputs of computation-intensive bench-
marks are similar to those with vanilla KVM.

Compared to enhanced HALT-Polling, VSMT-IO can
more effectively improve the throughputs of I/O-intensive
benchmarks. On average, their throughputs are 29.5% higher
than those with enhanced HALT-Polling. More importantly,
this is achieved by improving the throughputs of computation-
intensive workloads at the same time. On average, the through-
puts of computation-intensive workloads with VSMT-IO
are 22.8% and 18.4% higher than those with enhanced
HALT-Polling and vanilla KVM, respectively.

 0

 50

 100

 150

 200

R
o
ck

sD
B

N
g
in

x

C
lam

A
V

B
in

ary
C

lassify

P
g
S

Q
L

R
eg

ressio
n

M
y
S

Q
L

P
red

ictio
n

D
B

T
1

M
u
ltip

leC
lassify

H
B

ase
P

ag
eR

an
k

M
o
n
g
o
D

B
K

m
ean

s

H
D

F
S

H
ad

o
o
p

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(%
) Enhanced HALT-Polling

vSMT-IO

Figure 5: Throughputs of eight pairs of benchmarks. Each bench-
mark has two instances running on two VMs. Each hyperthread
is time-shared by 2 vCPUs. Throughputs are normalized to those
with vanilla KVM. Benchmarks BinaryClassify, MultipleClassify,
Regression and Prediction are AI algorithms in XGBoost [52, 54].

The results in Figure 5 confirm that VSMT-IO can maintain
its effectiveness and efficiency when each hyperthread is time-
shared by vCPUs. To further investigate how the throughputs
are improved with VSMT-IO, we collect the frequencies of
vCPU switches (shown in Table 5) and profile the workload
on the hyperthreads for I/O-bound vCPUs (results shown in
Table 6).

The effectiveness of VSMT-IO on improving I/O perfor-
mance relies on context retentions holding vCPU contexts
on hyperthreads (the LTCR component). It is reflected by re-
duced context switches. As shown in Table 5, VSMT-IO can
reduce vCPU switches significantly by up to 95% (80% on av-
erage). As a comparison, enhanced HALT-Polling can only
reduce vCPU switches by at most 51% (32% on average). This
explains the superiority of VSMT-IO over HALT-Polling.

The high efficiency of VSMT-IO comes partially from
its capability to reduce vCPU switches. It also comes from
LTCR and RASS controlling the overhead incurred by context

Benchmark Pairs Number of vCPU Switches Per Second

Vallina KVM Enhanced
HALT-Polling VSMT-IO

(RocksDB,Nginx) 29.3k 15.2k 1.9k
(ClamAV,BinaryClassify) 11.8k 8.7k 3.2k

(PgSQL,Regression) 9.5k 8.0k 2.8k
(MySQL,Prediction) 11.5k 9.3k 4.5k

(DBT1,MultipleClassify) 61.3k 29.5k 3.9k
(HBase,PageRank) 23.4k 12.3k 3.9k
(MongoDB,Kmeans) 33.3k 20.8k 9.3k

(HDFS,Hadoop) 34.0k 30.6k 1.7k

Table 5: The number of vCPU switches is substantially reduced with
VSMT-IO for the eight benchmark pairs.

Benchmark
Pairs

Context
Retentions

I/O
Workload

Computation
Workload

(RocksDB,Nginx) 28.1% 34.3% 37.6%
(ClamAV,BinaryClassify) 39.8% 31.6% 28.6%

(PgSQL,Regression) 42.3% 19.2% 38.5%
(MySQL,Prediction) 30.0% 33.5% 36.5%

(DBT1,MultipleClassify) 32.7% 54.4% 12.9%
(HBase,PageRank) 53.9% 31.9% 14.2%
(MongoDB,Kmeans) 34.4% 45.3% 20.3%

(HDFS,Hadoop) 33.0% 45.2% 21.8%

Table 6: Time (percentage) spent by context retentions, I/O-bound
vCPU, and CPU-bound vCPU on the hyperthreads for I/O-bound vC-
PUs.

retentions. While the effectiveness of RASS on controlling
the overhead is self-evident, the effectiveness of LTCR can
be confirmed with the results shown in Table 6. LTCR limits
the context retention lengths to prevent high overhead. As a
result, on the hyperthreads for I/O-bound vCPUs, for most
benchmark pairs, the time spent on context retentions is less
than 40%. With context retention lengths well controlled,
more than 20% of the CPU time on these hyperthreads can
be used by CPU-bound vCPUs to improve CPU throughput.

 0

 50

 100

 150

 200

H
base

PageR
ank

M
ongoD

B

K
m

eans

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
(%

)

RASS and Workload Adjuster
LTCR

vSMT-IO

Figure 6: Normalized throughputs (relative to those achieved with
vanilla KVM) of two pairs of benchmarks when LTCR and RASS are
enabled separately.

To understand how the two major techniques in VSMT-IO,
LTCR and RASS, improve performance, we enable these tech-
niques separately, and show the performance of two pairs
of benchmarks, HBase with PageRank, and MongoDB with

458 2020 USENIX Annual Technical Conference USENIX Association

Kmeans, in Figure 6. Workload Adjuster is enabled along
with RASS, because it is a supplement to RASS. Figure 6 shows
that the performance improvements of I/O-intensive work-
loads are mainly from the LTCR technique; and the perfor-
mance improvements of computation-intensive workloads are
mainly from the RASS technique. When LTCR is enabled, the
throughputs of I/O-intensive workloads, HBase and MongoDB,
are significantly increased by 41.1% and 44.7%, respectively.
However, it barely increases the throughputs of PageRank and
Kmeans. Further enabling RASS (with Workload Adjuster)
can effectively improve the throughputs of all the workloads.

 0

 20

 40

 60

 80

 100

R
o
ck

sD
B

C
lam

A
V

P
g
S

Q
L

M
y
S

Q
L

D
B

T
1

H
b
ase

M
o
n
g
o
D

B

N
o

rm
al

iz
ed

 R
es

p
o

n
se

 T
im

e
(%

) Enhanced HALT-Polling
vSMT-IO

Figure 7: Response times of RocksDB, ClamAV, PgSQL, MySQL, DBT1,
HBase, and MongoDB normalized to those with vanilla KVM (shown
with the horizontal line at 100%).

Some benchmarks report response times. Figure 7
compares how their response times are reduced with
VSMT-IO and HALT-Polling. Relative to vanilla KVM,
HALT-Polling reduces the response times by 28.7% on av-
erage. VSMT-IO can reduce the response times by larger per-
centages (50.8% on average). To investigate how VSMT-IO
reduces response times, we monitor the state changes of the
vCPUs during the executions of these benchmarks, collect
the time spent by vCPUs at the following states: 1) Running,
including context retention, on a hyperthread, 2) Ready and
waiting to be scheduled, 2) Waiting for an event. In Table 7,
for each benchmark, we show the time (in milliseconds) spent
in these states for serving a request.

Benchmark Vallina KVM Enhanced
HALT-Polling VSMT-IO

Run Ready Wait Run Ready Wait Run Ready Wait
RocksDB 116.2 132.6 378.1 131.7 88.0 305.4 129.8 69.0 237.2
ClamAV 15.2 45.7 10.9 12.9 29.7 10.5 11.0 21.1 9.5
PgSQL 14.7 37.6 10.1 12.3 27.1 9.4 13.5 19.7 8.7
MySQL 111.4 319.7 88.9 90.7 167.9 89.5 87.5 136.7 80.6
DBT1 346.2 1831.4 1390.2 361.6 842.9 1035.8 306.9 643.2 641.6
HBase 266.2 655.0 901.8 237.8 323.3 795.9 241.6 315.0 654.3

MongoDB 376.1 528.6 1444.1 365.3 345.2 1276.6 351.7 256.0 897.9

Table 7: Time spent by vCPUs in three states when processing a request
with vanilla KVM, enhanced HALT-Polling, and VSMT-IO.

The response times are reduced with VSMT-IO mainly
because vCPUs spend less time on waiting to be scheduled or
for events. As shown in Table 7, VSMT-IO can significantly

reduce the time in the Ready state (53.6% on average). This is
because context retention reduces context switches between
vCPUs, and thus reduces the scheduling delay associated with
the switches. We have noticed that the time in the Waiting state
is substantially reduced for some benchmarks (e.g., DBT1).
This is because finising an I/O operation sometimes need the
collaboration of multiple vCPUs in the VM. For example,
after a vCPU sends out an I/O request and becomes idle,
another vCPU may receive the response and must notify the
former vCPU by sending it an inter-processor interrupt (IPI).
In this case, reducing the Ready time of the latter vCPU (i.e.,
scheduling it earlier) can also reduce the Waiting time of the
former vCPU.

6.4 Applicability and Overhead

VSMT-IO targets heterogeneous workloads with intensive
I/O operations and heavy computation. We want to know how
well VSMT-IO performs for the workloads with different
heterogeneity. This subsection tests the performance and over-
head of VSMT-IO for different workload mixes. We still use
4 VMs to run 4 instances of 2 applications in the experiments.
But we change VM sizes (i.e., the number of vCPUs in a VM)
to change the workload mix. For example, to make the work-
load more I/O-intensive, we increase the sizes of the 2 VMs
running I/O-intensive benchmarks and reduce the sizes of the
VMs running computation-intensive benchmarks. The total
number of vCPUs of the 4 VMs is kept fixed (96 vCPUs).

 0

 50

 100

 150

 200

0:96 24:72 32:64 48:48 64:32 72:24

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(%
)

The ratio between I/O intensive and computation intensive vCPUs

Hbase
PageRank

MongoDB
Kmeans

Figure 8: Normalized throughputs of VSMT-IO under different work-
load mixes. Throughputs are normalized to those with vanilla KVM.

 0

 20

 40

 60

 80

 100

 120

24:72 32:64 48:48 64:32 72:24N
o
rm

al
iz

ed
 R

es
p
o
n
se

 T
im

e
(%

)

The ratio between I/O intensive and computation intensive vCPUs

Hbase
MongoDB

Figure 9: Normalized response times of VSMT-IO under different
workload mixes. Response times are normalized to those with vanilla
KVM.

Figure 8 shows the normalized throughputs of two bench-
mark paris, HBase with PageRank, and MongoDB with
Kmeans, when the VM sizes for I/O-intensive benchmarks and
computation-intensive benchmarks are changed from (12,36)
to (36,12). (The ratios of the vCPUs running these bench-
marks vary from 24:72 to 72:24.) Figure 9 shows the re-
sponse times of HBase and MongoDB in these experiments.
Though VSMT-IO can improve performance for all these

USENIX Association 2020 USENIX Annual Technical Conference 459

workload mixes, it improves performance by the largest per-
centages when the number of vCPUs running I/O-intensive
benchmarks is the same as the number of vCPUs running
computation-intensive vCPUs.

We also run PageRank and Kmeans in two VMs with
48 vCPUs each, and show the normalized throughputs (la-
beled with “0:96”) in Figure 8. Because both benchmarks
are computation intensive, there is no space for VSMT-IO to
improve performance. The performance difference between
VSMT-IO and vanilla KVM is unnoticeable (less than 2%).
This shows that the overhead of VSMT-IO is very low.

We have also evaluated the performance of VSMT-IO with
8 VMs (192 vCPUs). We find that VSMT-IO consistently
shows better performance than vanilla KVM and enhanced
HALT-Polling, for heterogeneous workloads; but the per-
formance improvement is similar to that with 4 VMs. The
performance advantage of VSMT-IO is more determined by
the mix of workloads than the number of VMs on each server.

7 Related Work
Improving I/O performance in virtualized systems. I/O
performance problems in virtualized systems have been in-
tensively studied; and various solutions have been proposed,
including shortening time slices [55–58], task-aware priority
boosting [17, 18, 59–69], and task consolidation [19, 70–73].
These solutions are not designed for SMT processors, and are
orthogonal to our work. Shortening time slices of vCPUs can
reduce the latency of I/O workloads in virtualized systems.
However, it may incur significant performance degradation
caused by context switches. Task-aware priority boosting im-
proves I/O performance in virtualized systems by prioritizing
I/O-intensive workloads. For instance, xBalloon [17] main-
tains the high priority of I/O-intensive workloads by reserving
CPU resource for them. However, this may hurt the perfor-
mance of computation-intensive workloads. vMigrater [19]
prioritizes I/O-intensive workloads by migrating them away
from to-be-descheduled vCPUs to other vCPUs, such that
they can keep running and generating I/O requests. However,
it is designed for VMs with multiple vCPUs, and may incur
high workload migration cost. Task consolidation solutions
can improve I/O performance by reducing the descheduling
and rescheduling of vCPUs. They consolidate workloads onto
fewer vCPUs if the workloads are I/O-intensive, such that
these vCPUs can be kept active with relatively low cost. These
solutions may also incur high cost due to frequent workload
migrations. Polling is used in these solutions to keep vC-
PUs active. This is inefficient on SMT processors and can be
improved by replacing polling with context retention.
Symbiotic scheduling aims to maximize the throughput of
SMT processors by selecting the tasks with complementary
resource demands and coscheduling them on the same SMT
core [5–10]. For instance, SOS (Sample, Optimize, Symbio-
sis) and its variants [5–10, 35] sample task executions when
they are coscheduled onto the same core, and preferentially

coschedule those with small slowdowns. These solutions only
target processor throughput, and cannot be used to improve
the performance of I/O-intensive workloads.
Other scheduling solutions for SMT processors. Instead of
maximizing processor throughput, some scheduling solutions
aim to secure resources for individual tasks on SMT proces-
sors to ensure their decent performance [11, 35, 74, 75]. For
instance, ELFEN [11] aims to ensure the high performance
of latency-critical tasks when they are collocated with batch
tasks on SMT processors. It puts a latency-critical task and
batch tasks on different hardware threads in the same core,
and “blocks” batch tasks when the latency-ciritical task is
making progress. The efficiency is low with this solution, be-
cause each core has only one active hardware thread at any
moment, and resource is underutilized. Tasks on the same
SMT processor may not share the resources in a fair way.
Various solutions have been proposed to enforce fairness
among the tasks in a SMT-enabled system [76–78]. For in-
stance, progress-aware scheduler [76] periodically estimates
the progress of tasks, and prioritizes the tasks with relatively
slow progress. VSMT-IO is orthogonal to these solutions. It
increases efficiency to improve both CPU performance and
I/O performance.

8 Conclusion and Future Work
Despite the prevalence of SMT processors, the problems with
how to improve I/O performance and efficiency on SMT pro-
cessors are surprisingly under-studied. Existing techniques
used in CPU schedulers to improve I/O performance are se-
riously inefficient on SMT processors, making it difficult to
achieve high CPU throughput and high I/O throughput. Lever-
aging the hardware feature of SMT processors, the paper de-
signs VSMT-IO as an effective solution. The key technique
in VSMT-IO is context retention. VSMT-IO targets virtual-
ized clouds and x86 systems and addresses a few challenges
in implementing context retention in real systems. Extensive
experiments confirm its effectiveness.

NUMA systems have become ubiquitous. Though our eval-
uation demonstrates that VSMT-IO achieves better perfor-
mance than competing solutions, the designs in VSMT-IO
have not been optimized for NUMA systems. As future work,
we want to make VSMT-IO “NUMA-aware” to further im-
prove its performance. For example, the workload adjuster
can be enhanced by adjusting workloads within each NUMA
node before it migrates vCPUs across NUMA nodes.

9 Acknowledgments
We thank the anonymous reviewers for their constructive com-
ments, and Dr. James Bottomley for his helpful suggestions as
the shepherd for this paper. This work is funded in part by the
US National Science Foundation under a grant CCF 1617749,
HK RGC ECS (No.27200916), HK RGC GRF (No.17207117
and No. 17202318), and a Croucher Innovation Award.

460 2020 USENIX Annual Technical Conference USENIX Association

References
[1] Amazon EC2 Instance Types. https://aws.amazon.com/ec2/

instance-types/#instance-details.

[2] SMT Configurations in VMWARE. https://bit.ly/1LxQTiW.

[3] Introducing hyperthreading into azure vms.
https://azure.microsoft.com/en-us/blog/
introducing-the-new-dv3-and-ev3-vm-sizes/.

[4] Google Cloud Virtual Machine Types. https://cloud.google.com/
compute/docs/machine-types.

[5] Allan Snavely and Dean M Tullsen. Symbiotic jobscheduling for
a simultaneous mutlithreading processor. ACM SIGPLAN Notices,
35(11):234–244, 2000.

[6] Jun Nakajima and Venkatesh Pallipadi. Enhancements for hyper-
threading technology in the operating system: Seeking the optimal
scheduling. In WIESS, pages 25–38, 2002.

[7] Kefeng Deng, Kaijun Ren, and Junqiang Song. Symbiotic scheduling
for virtual machines on SMT processors. In 2012 Second International
Conference on Cloud and Green Computing, pages 145–152. IEEE,
2012.

[8] James R Bulpin and Ian Pratt. Hyper-threading aware process schedul-
ing heuristics. In USENIX Annual Technical Conference, General
Track, pages 399–402, 2005.

[9] Josué Feliu, Julio Sahuquillo, Salvador Petit, and José Duato. L1-
bandwidth aware thread allocation in multicore SMT processors. In
Proceedings of the 22nd international conference on Parallel architec-
tures and compilation techniques, pages 123–132. IEEE Press, 2013.

[10] Alexandra Fedorova, Margo Seltzer, and Michael D Smith. A non-
work-conserving operating system scheduler for SMT processors. In
Proceedings of the Workshop on the Interaction between Operating Sys-
tems and Computer Architecture, in conjunction with ISCA, volume 33,
pages 10–17, 2006.

[11] Xi Yang, Stephen M Blackburn, and Kathryn S McKinley. Elfen
scheduling: Fine-grain principled borrowing from latency-critical work-
loads using simultaneous multithreading. In USENIX Annual Technical
Conference, pages 309–322, 2016.

[12] Suresh Siddha, Venkatesh Pallipadi, and Asit Mallick. Chip multi
processing aware linux kernel scheduler. In Linux Symposium, page
193. Citeseer, 2005.

[13] Matt Liebowitz, Christopher Kusek, and Rynardt Spies. VMware
VSphere performance: designing CPU, memory, storage, and network-
ing for performance-intensive workloads. John Wiley & Sons, 2014.

[14] KVM: Dynamic Halt Polling Patches. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=aca6ff29c4063a8d467cdee241e6b3bf7dc4a171.

[15] Dynamic Halt Polling Technique. https://lkml.org/lkml/2017/
6/22/296.

[16] Jisoo Yang, Dave B. Minturn, and Frank Hady. When poll is better
than interrupt. In Proceedings of the 10th USENIX Conference on File
and Storage Technologies, FAST’12, pages 3–3, Berkeley, CA, USA,
2012. USENIX Association.

[17] Kun Suo, Yong Zhao, Jia Rao, Luwei Cheng, Xiaobo Zhou, and Francis
Lau. Preserving i/o prioritization in virtualized oses. In Proceedings
of the 2017 Symposium on Cloud Computing, pages 269–281. ACM,
2017.

[18] Luwei Cheng and Cho-Li Wang. vbalance: using interrupt load balance
to improve i/o performance for smp virtual machines. In Proceedings
of the Third ACM Symposium on Cloud Computing, page 2. ACM,
2012.

[19] Weiwei Jia, Cheng Wang, Xusheng Chen, Jianchen Shan, Xiaowei
Shang, Heming Cui, Xiaoning Ding, Luwei Cheng, Francis C. M. Lau,
Yuexuan Wang, and Yuangang Wang. Effectively mitigating i/o inactiv-
ity in vcpu scheduling. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), Boston, MA, 2018. USENIX Association.

[20] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bob-
tail: Avoiding long tails in the cloud. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 13), pages 329–341, Lombard, IL, 2013. USENIX.

[21] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
Cloudscale: elastic resource scaling for multi-tenant cloud systems. In
Proceedings of the 2nd ACM Symposium on Cloud Computing, page 5.
ACM, 2011.

[22] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj
Syamala, Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex
Chen, Jack Zhang, and Junhua Wang. Perfiso: Performance isolation
for commercial latency-sensitive services. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 519–532, Boston, MA,
July 2018. USENIX Association.

[23] Dean M Tullsen, Jack L Lo, Susan J Eggers, and Henry M Levy. Sup-
porting fine-grained synchronization on a simultaneous multithreading
processor. In Proceedings Fifth International Symposium on High-
Performance Computer Architecture, pages 54–58. IEEE, 1999.

[24] Intel 64 and ia-32 architectures developer’s
manual. https://www.intel.com/content/
www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-manual-325462.
html.

[25] Chris Ruemmler and John Wilkes. UNIX disk access patterns. In
Winter USENIX Conference, page 405–420, 1993.

[26] Damien Le Moal. I/o latency optimization with polling. Vault–Linux
Storage and Filesystem, 2017.

[27] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
kvm: the linux virtual machine monitor. In Proceedings of the Linux
symposium, volume 1, pages 225–230, 2007.

[28] Muli Ben-Yehuda, Michael Factor, Eran Rom, Avishay Traeger, Eran
Borovik, and Ben-Ami Yassour. Adding advanced storage controller
functionality via low-overhead virtualization. In FAST, volume 12,
pages 15–15, 2012.

[29] Chandandeep Singh Pabla. Completely fair scheduler. Linux J.,
2009(184), August 2009.

[30] L1 Terminal Fault. https://software.intel.com/
security-software-guidance/software-guidance/
l1-terminal-fault.

[31] Flushing L1 Data Cache When a vCPU Enters the Guest OS. https:
//lore.kernel.org/patchwork/patch/974356/.

[32] Flushing TLB When a vCPU Enters the Guest OS. https://lwn.
net/Articles/740363/.

[33] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joonwon Lee, and Seun-
gryoul Maeng. Demand-based coordinated scheduling for smp vms.
In ACM SIGPLAN Notices, volume 48, pages 369–380. ACM, 2013.

[34] Lluís Vilanova, Nadav Amit, and Yoav Etsion. Using SMT to accel-
erate nested virtualization. In Proceedings of the 46th International
Symposium on Computer Architecture, pages 750–761. ACM, 2019.

[35] Allan Snavely, Dean M Tullsen, and Geoff Voelker. Symbiotic job-
scheduling with priorities for a simultaneous multithreading processor.
In ACM SIGMETRICS Performance Evaluation Review, volume 30,
pages 66–76. ACM, 2002.

[36] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E Smith.
A performance counter architecture for computing accurate cpi com-
ponents. ACM SIGOPS Operating Systems Review, 40(5):175–184,
2006.

USENIX Association 2020 USENIX Annual Technical Conference 461

[37] Stijn Eyerman and Lieven Eeckhout. Per-thread cycle accounting in
SMT processors. ACM Sigplan Notices, 44(3):133–144, 2009.

[38] Josue Feliu, Stijn Eyerman, Julio Sahuquillo, and Salvador Petit. Symbi-
otic job scheduling on the ibm power8. In 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages
669–680. IEEE, 2016.

[39] Stijn Eyerman and Lieven Eeckhout. Probabilistic job symbiosis mod-
eling for SMT processor scheduling. In ACM SIGARCH Computer
Architecture News, volume 38, pages 91–102. ACM, 2010.

[40] The HALT-Polling Kernel Module. https://patchwork.kernel.
org/patch/11030651/, 2019.

[41] The Halt Polling Technique. https://lwn.net/Articles/384146/.

[42] Redis In-memory Key-Value Database. http://redis.io/.

[43] Apache Hadoop Systems. http://hadoop.apache.org/core/.

[44] Yahoo! Cloud Serving Benchmark. https://github.com/
brianfrankcooper/YCSB, 2004.

[45] MySQL Database. http://www.mysql.com/, 2014.

[46] Apache Web Server. http://www.apache.org, 2012.

[47] Clam AntiVirus Benchmarks. http://www.clamav.net/.

[48] RocksDB NoSQL Storage System. https://rocksdb.org/.

[49] PostgreSQL DBMS Benchmarks. https://www.postgresql.org,
2012.

[50] Apache spark benchmarks. https://spark.apache.org/examples.
html.

[51] TPC-W Database Benchmarks. http://osdldbt.sourceforge.
net/.

[52] XGBOOST Runtime System. http://dmlc.cs.washington.edu/
xgboost.html.

[53] Sockperf. https://github.com/Mellanox/sockperf.

[54] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international confer-
ence on knowledge discovery and data mining, pages 785–794. ACM,
2016.

[55] Cong Xu, Sahan Gamage, Pawan N Rao, Ardalan Kangarlou, Ra-
mana Rao Kompella, and Dongyan Xu. vslicer: latency-aware virtual
machine scheduling via differentiated-frequency cpu slicing. In Pro-
ceedings of the 21st international symposium on High-Performance
Parallel and Distributed Computing, pages 3–14. ACM, 2012.

[56] Jeongseob Ahn, Chang Hyun Park, and Jaehyuk Huh. Micro-sliced
virtual processors to hide the effect of discontinuous cpu availability for
consolidated systems. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 394–405. IEEE
Computer Society, 2014.

[57] Jeongseob Ahn, Chang Hyun Park, Taekyung Heo, and Jaehyuk Huh.
Accelerating critical os services in virtualized systems with flexible
micro-sliced cores. In Proceedings of the Thirteenth EuroSys Con-
ference, EuroSys ’18, pages 29:1–29:14, New York, NY, USA, 2018.
ACM.

[58] Boris Teabe, Alain Tchana, and Daniel Hagimont. Application-specific
quantum for multi-core platform scheduler. In Proceedings of the
Eleventh European Conference on Computer Systems, EuroSys ’16,
pages 3:1–3:14, 2016.

[59] Hwanju Kim, Hyeontaek Lim, Jinkyu Jeong, Heeseung Jo, and Joon-
won Lee. Task-aware virtual machine scheduling for i/o performance.
In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages 101–110. ACM,
2009.

[60] Diego Ongaro, Alan L Cox, and Scott Rixner. Scheduling i/o in
virtual machine monitors. In Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments, pages 1–10. ACM, 2008.

[61] Xiaoning Ding, Phillip B Gibbons, and Michael A Kozuch. A hidden
cost of virtualization when scaling multicore applications. In HotCloud,
2013.

[62] Ardalan Kangarlou, Sahan Gamage, Ramana Rao Kompella, and
Dongyan Xu. vsnoop: Improving tcp throughput in virtualized environ-
ments via acknowledgement offload. In High Performance Computing,
Networking, Storage and Analysis (SC), 2010 International Conference
for, pages 1–11. IEEE, 2010.

[63] Cong Xu, Brendan Saltaformaggio, Sahan Gamage, Ramana Rao Kom-
pella, and Dongyan Xu. vread: Efficient data access for hadoop in
virtualized clouds. In Proceedings of the 16th Annual Middleware
Conference, pages 125–136. ACM, 2015.

[64] Sahan Gamage, Cong Xu, Ramana Rao Kompella, and Dongyan Xu.
vpipe: Piped i/o offloading for efficient data movement in virtualized
clouds. In Proceedings of the ACM Symposium on Cloud Computing,
pages 1–13. ACM, 2014.

[65] Hui Lu, Cong Xu, Cheng Cheng, Ramana Kompella, and Dongyan
Xu. vhaul: Towards optimal scheduling of live multi-vm migration for
multi-tier applications. In Cloud Computing (CLOUD), 2015 IEEE 8th
International Conference on, pages 453–460. IEEE, 2015.

[66] Sahan Gamage, Ardalan Kangarlou, Ramana Rao Kompella, and
Dongyan Xu. Opportunistic flooding to improve tcp transmit per-
formance in virtualized clouds. In Proceedings of the 2nd ACM Sym-
posium on Cloud Computing, page 24. ACM, 2011.

[67] Hui Lu, Brendan Saltaformaggio, Ramana Kompella, and Dongyan
Xu. vfair: Latency-aware fair storage scheduling via per-io cost-based
differentiation. In Proceedings of the Sixth ACM Symposium on Cloud
Computing, pages 125–138. ACM, 2015.

[68] Ron C Chiang and H Howie Huang. Tracon: Interference-aware
scheduling for data-intensive applications in virtualized environments.
In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, page 47. ACM, 2011.

[69] Weiwei Jia Jianchen Shan and Xiaoning Ding. Rethinking the scal-
ability of multicore applications on big virtual machines. In IEEE
International Conference on Parallel and Distributed Systems. IEEE,
2017.

[70] Xiang Song, Jicheng Shi, Haibo Chen, and Binyu Zang. Schedule
processes, not VCPUs. In APSys 2013, pages 1:1–1:7, 2013.

[71] Luwei Cheng, Jia Rao, and Francis Lau. vScale: automatic and efficient
processor scaling for smp virtual machines. In EuroSys 2016, page 2.
ACM, 2016.

[72] Xiaoning Ding, Phillip B Gibbons, Michael A Kozuch, and Jianchen
Shan. Gleaner: Mitigating the blocked-waiter wakeup problem for
virtualized multicore applications. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pages 73–84, 2014.

[73] Xiang Song, Haibo Chen, Binyu Zang, X SONG, H CHEN, and
B ZANG. Characterizing the performance and scalability of many-core
applications on virtualized platforms. Parallel Processing Institute
Technical Report Number: FDUPPITR-2010, 2, 2010.

[74] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and Lingjia Tang.
Smite: Precise QoS prediction on real-system SMT processors to im-
prove utilization in warehouse scale computers. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 406–418. IEEE Computer Society, 2014.

[75] Artemiy Margaritov, Siddharth Gupta, Rekai Gonzalez-Alberquilla,
and Boris Grot. Stretch: Balancing QoS and Throughput for Colocated
Server Workloads on SMT Cores. In 2019 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages
15–27. IEEE, 2019.

[76] Josué Feliu, Julio Sahuquillo, Salvador Petit, and José Duato. Address-
ing fairness in SMT multicores with a progress-aware scheduler. In
2015 IEEE International Parallel and Distributed Processing Sympo-
sium, pages 187–196. IEEE, 2015.

462 2020 USENIX Annual Technical Conference USENIX Association

[77] David Koufaty and Deborah T Marr. Hyperthreading technology in the
netburst microarchitecture. IEEE Micro, 23(2):56–65, 2003.

[78] Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Ronak Singhal, Matt

Merten, and Martin Dixon. SMT QoS: Hardware prototyping of thread-
level performance differentiation mechanisms. In Proceedings of the

USENIX Workshop on Hot Topics in Parallelism, 2012.

USENIX Association 2020 USENIX Annual Technical Conference 463

Lightweight Preemptible Functions
Sol Boucher,∗Anuj Kalia†, David G. Andersen,∗ and Michael Kaminsky‡∗

∗Carnegie Mellon University †Microsoft Research ‡BrdgAI

Abstract
Lamenting the lack of a natural userland abstraction
for preemptive interruption and asynchronous cancel-
lation, we propose lightweight preemptible functions,
a mechanism for synchronously performing a function
call with a precise timeout that is lightweight, e�-
cient, and composable, all while being portable between
programming languages. We present the design of li-
binger, a library that provides this abstraction, on top of
which we build libturquoise, arguably the �rst general-
purpose and backwards-compatible preemptive thread
library implemented entirely in userland. Finally, we
demonstrate this software stack’s applicability to and
performance on the problems of combatting head-of-
line blocking and time-based DoS attacks.

1 Introduction
After years of struggling to gain adoption, the coroutine
has �nally become a mainstream abstraction for coop-
eratively scheduling function invocations. Languages
as diverse as C#, JavaScript, Kotlin, Python, and Rust
now support “async functions,” each of which expresses
its dependencies by “awaiting” a future (or promise);
rather than polling, the language yields if the awaited
result is not yet available.

Key to the popularity of this concurrency abstraction
is the ease and seamlessness of parallelizing it. Underly-
ing most futures runtimes is some form of green thread-
ing library, typically consisting of a scheduler that dis-
tributes work to a pool of OS-managed worker threads.
Without uncommon kernel support (e.g., scheduler acti-
vations [3]), however, this logical threading model ren-
ders the operating system unaware of individual tasks,
meaning context switches are purely cooperative. This
limitation is common among userland thread libraries,
and illustrates the need for a mechanism for preemptive
scheduling at �ner granularity than the kernel thread.

In this paper, we propose an abstraction for calling
a function with a timeout: Once invoked, the function
runs on the same thread as the caller. Should the func-
tion time out, it is preempted and its execution state is
returned as a continuation in case the caller later wishes

†This author was at Carnegie Mellon during this project.
‡This author was not at Carnegie Mellon during this project.

to resume it. The abstraction is exposed via a wrapper
function reminiscent of a thread spawn interface such as
pthread_create() (except synchronous). Despite their
synchronous nature, preemptible functions are useful
to programs that are parallel or rely on asynchronous
I/O; indeed, we later demonstrate how our abstraction
composes with futures and threads.

The central challenge of introducing preemption into
the contemporary programming model is supporting
existing code. Despite decades of improvement focused
on thread safety, modern systems stacks still contain
critical nonreentrancy, ranging from devices to the dy-
namic memory allocator’s heap region. Under POSIX,
code that interrupts other user code is safe only if it re-
stricts itself to calling async-signal-safe (roughly, reen-
trant) functions [27]. This restriction is all too famil-
iar to those programmers who have written signal han-
dlers: it is what makes it notoriously di�cult to write
nontrivial ones. Preemption of a timed function consti-
tutes its interruption by the rest of the program. This
implies that the rest of the program should be restricted
to calling reentrant functions; needless to say, such a
rule would be crippling. Addressing this problem is one
of the main contributions of this paper. Our main in-
sight here, as shown in Figure 1, is that some libraries
are naturally reentrant, while many others can be made
reentrant by automatically cloning their internal state
so that preempting one invocation does not leave the
library “broken” for concurrent callers.

The most obvious approach to implementing pre-
emptible functions is to map them to OS threads, where
the function would run on a new thread that could
be cancelled upon timeout. Unfortunately, cancelling
a thread is also hard. UNIX’s pthreads provide asyn-
chronous cancelability, but according to the Linux doc-
umentation, it

is rarely useful. Since the thread could be
cancelled at any time, it cannot safely re-
serve resources (e.g., allocating memory with
malloc()), acquire mutexes, semaphores, or
locks, and so on... some internal data struc-
tures (e.g., the linked list of free blocks man-
aged by the malloc() family of functions)
may be left in an inconsistent state if can-
cellation occurs in the middle of the function
call [25].

USENIX Association 2020 USENIX Annual Technical Conference 465

Is the library reentrant? Already safe to use
yes

Is all state internal to the library
(e.g., global variables)?

 no

Addressed by library copying
yes

Defer preemption.

 no (e.g., shared storage/hardware resource)

Figure 1: Taxonomy of support for library code. In
practice, we always apply one of the two mitigations.
Library copying is used by default, and is discussed in
Sections 5.1 and 5.2. Deferred preemption is needed to
preserve the semantics of malloc() and users of un-
copyable resources such as �le descriptors or network
adapters, and is applied according to a whitelist, as de-
scribed in Section 5.5.

The same is true on Windows, whose API documenta-
tion warns that asynchronously terminating a thread

can result in the following problems: If the
target thread owns a critical section, the criti-
cal section will not be released. If the target
thread is allocating memory from the heap,
the heap lock will not be released...

and goes on from there [28].
One might instead seek to implement preemptible

functions via the UNIX fork() call. Assuming a satis-
factory solution to the performance penalty of this ap-
proach, one signi�cant challenge would be providing
bidirectional object visibility and ownership. In a model
where each timed function executes in its own child pro-
cess, not only must data allocated by the parent be acces-
sible to the child, but the opposite must be true as well.
The fact that the child may terminate before the parent
raises allocation lifetime questions. And all this is with-
out addressing the di�culty of even calling fork() in
a multithreaded program: because doing so e�ectively
cancels all threads in the child process except the calling
one, the child process can experience the same problems
that plague thread cancellation [4].

These naïve designs share another shortcoming: in
reducing preemptible functions to a problem of paral-
lelism, they hurt performance by placing thread creation
on the critical path. Thus, the state-of-the-art abstrac-
tions’ high costs limit their composability. We observe
that, when calling a function with a timeout, it is con-
currency alone—and not parallelism—that is fundamen-
tal. Leveraging this key insight, we present a design that

separates interruption from asynchrony in order to pro-
vide preemption at granularities in the tens of microsec-
onds, orders of magnitude �ner than contemporary OS
schedulers’ millisecond timescales. Our research proto-
type1 is implemented entirely in userland, and requires
neither custom compiler or runtime support nor man-
aged runtime features such as garbage collection.

This paper makes three primary contributions: (1)
It proposes function calls that return a continuation
upon preemption, a novel primitive for unmanaged lan-
guages. (2) It introduces selective relinking, a compiler-
agnostic approach to automatically lifting safety restric-
tions related to nonreentrancy. (3) It demonstrates how
to support asynchronous function cancellation, a fea-
ture missing from state-of-the-art approaches to pre-
emption, even those that operate at the coarser gran-
ularity of a kernel thread.

2 Related work
A number of past projects (Table 1) have sought to pro-
vide bounded-time execution of chunks of code at sub-
process granularity. For the purpose of our discussion,
we refer to a portion of the program whose execution
should be bounded as timed code (a generalization of
a preemptible function); exactly how such code is delin-
eated depends on the system’s interface.

Interface notwithstanding, the systems’ most dis-
tinguishing characteristic is the mechanism by which
they enforce execution bounds. At one end of the
spectrum are cooperative multitasking systems where
timed code voluntarily cedes the CPU to another task via
a runtime check. (This is often done implicitly; a simple
example is a compiler that injects a conditional branch
at the beginning of any function call from timed code.)
Occupying the other extreme are preemptive systems
that externally pause timed code and transfer control to
a scheduler routine (e.g., via an interrupt service routine
or signal handler, possibly within the language’s VM).

The cooperative approach tends to be unable to inter-
rupt two classes of timed code: (1) blocking-call code
sections that cause long-running kernel traps (e.g., by
making I/O system calls), thereby preventing the inter-
ruption logic from being run; and (2) excessively-tight
loops whose body does not contain any yield points
(e.g., spin locks or long-running CPU instructions). Al-
though some cooperative systems re�ne their approach
with mechanisms to tolerate either blocking-call code
sections [1] or excessively-tight loops [32], we are not
aware of any that are capable of handling both cases.

One early instance of timed code support was the en-
gines feature of the Scheme 84 language [15]. Its in-

1Our system is open source; the code is available from
efficient.github.io/#lpf.

466 2020 USENIX Annual Technical Conference USENIX Association

https://efficient.github.io/#lpf

Dependencies Third-party code support
System Preemptive Synchronous In userland Works without GC Preemptible Works without recompiling

Scheme engines X* X X † X
Lilt X X †* —

goroutines X †* —
�∀ X X X †* —

RT library X X X X
Shinjuku X X †
libinger X X X X X X

X* = the language speci�cation leaves the interaction with blocking system calls unclear
† = assuming the third-party library is written in a purely functional (stateless) fashion
†* = the third-party code must be written in the language without foreign dependencies

(beyond simple recompilation, this necessitates porting)

Table 1: Systems providing timed code at sub-process granularity

terface was a new engine keyword that behaved sim-
ilarly to lambda, but created a special “thunk” accept-
ing as an argument the number of ticks (abstract time
units) it should run for. The caller also supplied a call-
back function to receive the timed code’s return value
upon successful completion. Like the rest of the Scheme
language, engines were stateless: whenever one ran out
of computation time, it would return a replacement en-
gine recording the point of interruption. Engines’ im-
plementation relied heavily on Scheme’s managed run-
time, with ticks corresponding to virtual machine in-
structions and cleanup handled by the garbage collec-
tor. Although the paper mentions timer interrupts as an
alternative, it does not evaluate such an approach.
Lilt [32] introduced a language for writing programs

with statically-enforced timing policies. Its compiler
tracks the possible duration of each path through a pro-
gram and inserts yield operations wherever a timeout
could possibly occur. Although this approach requires
assigning the execution limit at compile time, the com-
piler is able to handle excessively-tight loops by in-
strumenting backward jumps. Blocking-call functions
remained a challenge, however: handling them would
have required operating system support, reminiscent of
Singularity’s static language-based isolation [12].

Some recent languages o�er explicit userland thread-
ing, which could be used to support timed code. One ex-
ample is the Go language’s [1] goroutines. Its runtime in-
cludes a cooperative scheduler that conditionally yields
at function call sites. This causes problems with tight
loops, which require the programmer to manually add
calls to the runtime.Gosched() yield function [7].

The solutions described thus far all assume languages
with a heavyweight, garbage-collected runtime. How-
ever, two recent systems seek to support timed code
with fewer dependencies: the �∀ language [8] and a C
thread library for realtime systems (here, “RT”) devel-

oped by Mollison and Anderson [22]. Both perform pre-
emption using timer interrupts, as proposed in the early
Scheme engines literature. They install a periodic sig-
nal handler for scheduling tasks and migrating them be-
tween cores, a lightweight approach that achieves com-
petitive scheduling latencies. However, as explained
later in this section, the compromise is interoperability
with existing code.

Shinjuku [17] is an operating system designed to per-
form preemption at microsecond scale. Built on the
Dune framework [5], it runs tasks on a worker thread
pool controlled by a single centralized dispatcher thread.
The latter polices how long each task has been run-
ning and sends an inter-processor interrupt (IPI) to any
worker whose task has timed out. The authors study
the cost of IPIs and the overheads imposed by perform-
ing them within a VT-x virtual machine, as required by
Dune. They then implement optimizations to reduce
these overheads at the expense of Shinjuku’s isolation
from the rest of the system.

As seen in Section 1, nonreentrant interfaces are in-
compatible with externally-imposed time limits. Be-
cause such interfaces are proli�c in popular dependen-
cies, no prior work allows timed code to transparently
call into third-party libraries. Scheme engines and Lilt
avoid this issue by only supporting functional code,
which cannot have shared state. Go is able to preempt
goroutines written in the language itself, but a goroutine
that makes any foreign calls to other languages is treated
as nonpreemptible by the runtime’s scheduler [11]. The
C∀ language’s preemption model is only safe for func-
tions guarded by its novel monitors: the authors caution
that “any challenges that are not [a result of extending
monitor semantics] are considered as solved problems
and therefore not discussed.” With its focus on real-
time embedded systems, RT assumes that the timed code
in its threads will avoid shared state; this assumption

USENIX Association 2020 USENIX Annual Technical Conference 467

struct linger_t {
bool is_complete;
cont_t continuation;

};

linger_t launch(Function func,
u64 time_us,
void *args);

void resume(linger_t *cont, u64 time_us);

Listing 1: Preemptible functions core interface

linger = launch(task, TIMEOUT, NULL);
if (!linger.is_complete) {

// Save @linger to a task queue to
// resume later
task_queue.push(linger);

}

// Handle other tasks
...
// Resume @task at some later point
linger = task_queue.pop();
resume(&linger, TIMEOUT);

Listing 2: Preemptible function usage example

mostly precludes calls to third-party libraries, though
the system supports the dynamic memory allocator by
treating it as speci�cally nonpreemptible. Rather than
dealing with shared state itself, Shinjuku asks applica-
tion authors to annotate any code with potential concur-
rency concerns using a nonpreemptible call_safe()
wrapper.

3 Timed functions: libinger
To address the literature’s shortcomings, we have devel-
oped libinger,2 a library providing a small API for timed
function dispatch (Listing 1):

• launch() invokes an ordinary function func with
a time cap of time_us. The call to launch() re-
turns when func completes, or after approximately
time_us microseconds if func has not returned by
then. In the latter case, libinger returns an opaque
continuation object recording the execution state.

• resume() causes a preemptible function to con-
tinue after a timeout. If execution again times out,
resume() updates its continuation so the process
may be repeated. Resuming a function that has al-
ready returned has no e�ect.

Listing 2 shows an example use of libinger in a
task queue manager designed to prevent latency-critical

2In the style of GNU’s libiberty, we named our system for the
command-line switch used to link against it. As the proverb goes,
“Don’t want your function calls to linger? Link with -linger.”

Dynamic linker

libgotcha

libinger ... Other control lib.
(e.g., libas-safe)

Your novel
preemptive library ... libturquoise

Your program
(if synchronous)

Your program
(if async/parallel)

Figure 2: Preemptible functions software stack.
Hexagonal boxes show the required runtime environ-
ment. Rectangular boxes represent components imple-
menting the preemptible functions abstraction. Ovals
represent components built on top of these. A pre-
emptible function’s body (i.e., func) may be de�ned di-
rectly in your program, or in some other loaded library.

tasks from blocking behind longer-running ones. The
caller invokes a task with a timeout. If the task does
not complete within the allotted time, the caller saves
its continuation in the task queue, handles other tasks,
and later resumes the �rst task.

In accordance with our goal of language agnosti-
cism, libinger exposes both C and Rust [2] APIs. To
demonstrate the �exibility and composability of the pre-
emptible function abstraction, we have also created lib-
turquoise, a preemptive userland thread library for Rust,
by porting an existing futures-based thread pool to li-
binger. We discuss this system in Section 4.

Figure 2 shows a dependency graph of the soft-
ware components comprising the preemptible functions
stack. The libinger library itself is implemented in ap-
proximately 2,500 lines of Rust. To support calls to non-
reentrant functions, it depends on another library, lib-
gotcha, which consists of another 3,000 lines of C, Rust,
and x86-64 assembly. We cover the details in Section 5.

We now examine libinger, starting with shared state.

3.1 Automatic handling of shared state
As we found in Section 1, a key design challenge fac-
ing libinger is the shared state problem: Suppose a pre-
emptible function � calls a stateful routine in a third-
party library !, and that � times out and is preempted
by libinger. Later, the user invokes another timed func-
tion �0, which also calls a stateful routine in !. This pat-
tern involves an unsynchronized concurrent access to !.
To avoid introducing such bugs, libinger must hide state
modi�cations in ! by � from the execution of �0.

One non-solution to this problem is to follow the ap-

468 2020 USENIX Annual Technical Conference USENIX Association

proach taken by POSIX signal handlers and specify that
preemptible functions may not call third-party code,
but doing so would severely limit their usefulness (Sec-
tion 2). We opt instead to automatically and dynamically
create copies of ! to isolate state from di�erent timed
functions. Making this approach work on top of exist-
ing systems software required solving many design and
implementation challenges, which we cover when we
introduce libgotcha in Section 5.

3.2 Safe concurrency
Automatically handling shared state arising from non-
reentrant library interfaces is needed because the shar-
ing is transparent to the programmer. A di�erent prob-
lem arises when a programmer explicitly shares state
between a preemptible function and any other part of
the program. Unlike third-party library authors, this
programmer knows they are using preemptible func-
tions, a concurrency mechanism.

When using the C interface, the programmer bears
complete responsibility for writing race-free code (e.g.,
by using atomics and mutexes wherever necessary). The
libinger Rust API, however, leverages the language’s
�rst-class concurrency support to prevent such mis-
takes from compiling: launch()’s signature requires the
wrapped function to be Send safe (only reference state
in a thread-safe manner) [29].

While the Rust compiler rejects all code that shares
state unsafely, it is still possible to introduce correct-
ness bugs such as deadlock [30]. For example, a pro-
gram might block on a mutex held by the preemptible
function’s caller (recall that invocation is synchronous,
so blocking in a preemptible function does not cause it
to yield!). It is sometimes necessary to acquire such a
mutex, so libinger provides a way to do it: The API has
an additional function, pause(), that is a rough analog
of yield. After performing a try-lock operation, a pre-
emptible function can call pause() to immediately re-
turn to its caller as if it had timed out. The caller can tell
whether a function paused via a �ag on its continuation.

3.3 Execution stacks
When a preemptible function times out, libinger returns
a continuation object. The caller might pass this object
around the program, which could later resume() from a
di�erent stack frame. To handle this case, the launch()
function switches to a new, dedicated stack just before
invoking the user-provided function. This stack is then
stored in the continuation alongside the register context.

Because of the infeasibility of moving these stacks af-
ter a function has started executing, libinger currently
heap-allocates large 2-MB stacks so it can treat them as
having �xed size. To avoid an order of magnitude slow-
down from having such large dynamic allocations on

Caller’s stack:

...

launch()

Preemptible function’s stack:

[bottom]

F()[caller]

handler()

Figure 3: The stacks just before a timeout. Upon
discovering that the preemptible function has exceeded
its time bound, the handler jumps into the launch() (or
resume()) function, which in turn returns to the origi-
nal call site, removing its own stack frame in the process.

the critical path, libinger preallocates a pool of reusable
stacks when it is �rst used.

3.4 Timer interrupts
Whenever libinger is executing a user-provided func-
tion, we enable �ne-grained timer interrupts to monitor
that function’s elapsed running time. A timer interrupt
�res periodically,3 causing our signal handler to be in-
voked. If the function exceeds its timeout, this handler
saves a continuation by dumping the machine’s regis-
ters. It then performs an unstructured jump out of the
signal handler and back into the launch() or resume()
function, switching back to the caller’s stack as it does
so. Figure 3 shows the two stacks of execution that are
present while the signal handler is running.

A subsequent resume() call restores the registers
from the stored continuation, thereby jumping back into
the signal handler. The handler returns, resuming the
preemptible function from the instruction that was exe-
cuting when the preemption signal arrived.

To support blocking system calls, we use the
SA_RESTART �ag when installing the signal handler
to instruct libc to restart system calls that are inter-
rupted by the signal [26]. We direct signals at the
process’s speci�c threads that are running preemptible
functions by allocating signal numbers from a pool, an
approach that limits the number of simultaneous invo-
cations to the number of available signals; this restric-
tion could be lifted by instead using the Linux-speci�c
SIGEV_THREAD_ID timer noti�cation feature [31].

3.5 Cancellation
Should a caller decide not to �nish running a timed-out
preemptible function, it must deallocate it. In Rust, deal-

3Signal arrival is accurate to microsecond timescales, but exhibits
a warmup e�ect. For simplicity, we use a �xed signal frequency for
all preemptible functions, but this is not fundamental to the design.
In the future, we plan to adjust each function’s frequency based on its
timeout, and to delay the �rst signal until shortly before the prescribed
timeout (in the case of longer-running functions).

USENIX Association 2020 USENIX Annual Technical Conference 469

location happens implicitly via the linger_t type’s de-
structor, whereas users of the C interface are responsible
for explicitly calling the libinger cancel() function.

Cancellation cleans up libinger resources allocated by
launch(); however, the current implementation does
not automatically release resources already claimed by
the preemptible function itself. While the lack of a stan-
dard resource deallocation API makes such cleanup in-
herently hard to do in C, it is possible in Rust and other
languages in which destructor calls are ostensibly guar-
anteed. For instance, the approach proposed by Boucher
et al. [6] could be employed to raise a panic (exception)
on the preemptible function’s stack. This in turn would
cause the language runtime to unwind each stack frame,
invoking local variables’ destructors in the process.

4 Thread library: libturquoise
Until now, we have limited our discussion to syn-
chronous, single-threaded programs. In this section, we
will show that the preemptible function abstraction is
equally relevant to asynchronous and parallel programs,
and that it composes naturally with both futures and
threads. As a proof of concept, we have created lib-
turquoise,4 a preemptive userland thread library.

That libturquoise provides preemptive scheduling is a
signi�cant achievement: Shinjuku observes that “there
have been several e�orts to implement e�cient, user-
space thread libraries. They all focus on cooperative
scheduling” [17]. (Though RT from Section 2 could
be a counterexample, its lack of nonreentrancy support
renders it far from general purpose.) We attribute the
dearth of preemptive userland thread libraries to a lack
of natural abstractions to support them.

Before presenting the libturquoise design, we begin
with some context about futures.

4.1 Futures and asynchronous I/O
As mentioned in Section 1, futures are a primitive for
expressing asynchronous program tasks in a format
amenable to cooperative scheduling. Structuring a pro-
gram around futures makes it easy to achieve low la-
tency by enabling the runtime to reschedule slow oper-
ations o� the critical path. Alas, blocking system calls
(which cannot be rescheduled by userland) defeat this
approach.

The community has done extensive prior work to sup-
port asynchronous I/O via result callbacks [19, 18, 20,
23]. Futures runtimes such as Rust’s Hyper [16] have
adapted this approach by providing I/O libraries whose
functions return futures. Rather than duplicate this
work, we have integrated preemptible functions with
futures so they can leverage it.

4so called because it implements “green threading with a twist”

function PreemptibleFuture(Future fut,
Num timeout):

function adapt():
// Poll wrapped future in the usual way
while poll(fut) == NotReady:

pause()
fut.linger = launch(adapt, CREATE_ONLY)
fut.timeout = timeout
return fut

// Custom polling logic for preemptible futures
function poll(PreemptibleFuture fut):

resume(fut.linger, fut.timeout);
if has_finished(fut.linger):

return Ready
else

if called_pause(fut.linger):
notify_unblocked(fut.subscribers)

return NotReady

Listing 3: Futures adapter type (pseudocode)

4.2 Preemptible futures
For seamless interoperation between preemptible func-
tions and the futures ecosystem, we built a preemptible
future adapter that wraps the libinger API. Like a nor-
mal future, a preemptible future yields when its result is
not ready, but it can also time out.

Each language has its own futures interface, so pre-
emptible futures are not language agnostic like the pre-
emptible functions API. Fortunately, they are easy to
implement by using pause() to propagate cooperative
yields across the preemptive function boundary. We
give the type construction and polling algorithm in List-
ing 3; our Rust implementation is only 70 lines.

4.3 Preemptive userland threading
We built the libturquoise thread library by modifying
the tokio-threadpool [13] work-stealing scheduler from
the Rust futures ecosystem. Starting from version 0.1.16
of the upstream project, we added 50 lines of code that
wrap each incoming task in a preemptible future.

Currently, libturquoise assigns each future it launches
or resumes the same �xed time budget, although this de-
sign could be extended to support multiple job priorities.
When a task times out, the scheduler pops it from its
worker thread’s job queue and pushes it to the incoming
queue, o�ering it to any available worker for reschedul-
ing after all other waiting jobs have had a turn.

5 Shared state: libgotcha
We now present one more artifact, libgotcha. Despite
the name, it is more like a runtime that isolates hidden
shared state within an application. Although the rest of
the program does not interact directly with libgotcha, its

470 2020 USENIX Annual Technical Conference USENIX Association

static bool two;
bool three;

linger_t caller(const char *s, u64 timeout) {
stdout = NULL;
two = true;
three = true;
return launch(timed, timeout, s);

}

void timed(void *s) {
assert(stdout); // (1)
assert(two); // (2)
assert(three); // (3)

}

Listing 4: Demo of isolated (1) vs. shared (2&3) state

presence has a global e�ect: once loaded into the process
image, it employs a technique we call selective relink-
ing to dynamically intercept and reroute many of the
program’s function calls and global variable accesses.

The goal of libgotcha is to establish around every pre-
emptible function a memory isolation boundary encom-
passing whatever third-party libraries that function in-
teracts with (Section 3.1). The result is that the only
state shared across the boundary is that explicitly passed
via arguments, return value, or closure—the same state
the application programmer is responsible for protect-
ing from concurrency violations (Section 3.2). Listing 4
shows the impact on an example program, and Figure 1
classi�es libraries by how libgotcha supports them.

Note that libgotcha operates at runtime; this con-
strains its visibility into the program, and therefore the
granularity of its operation, to shared libraries. It there-
fore assumes that the programmer will dynamically link
all third-party libraries, since otherwise there is no way
to tell them apart from the rest of the program at run-
time. We feel this restriction is reasonable because a
programmer wishing to use libinger or libgotcha must
already have control over their project’s build in order
to add the dependency.

Before introducing the libgotcha API and explaining
selective relinking, we now brie�y motivate the need for
libgotcha by demonstrating how existing system inter-
faces fail to provide the required type of isolation.

5.1 Library copying: namespaces
Expanding a preemptible function’s isolation boundary
to include libraries requires providing it with private
copies of those libraries. POSIX has long provided a
dlopen() interface to the dynamic linker for loading
shared objects at runtime; however, opening an already-
loaded library just increments a reference count, and
this function is therefore of no use for making copies.

typedef long libset_t;

bool libset_thread_set_next(libset_t);
libset_t libset_thread_get_next(void);
bool libset_reinit(libset_t);

Listing 5: libgotcha C interface

Fortunately, the GNU dynamic linker (ld-linux.so)
also supports Solaris-style namespaces, or isolated sets
of loaded libraries. For each namespace, ld-linux.so
maintains a separate set of loaded libraries whose de-
pendency graph and reference counts are tracked inde-
pendently from the rest of the program [9].

It may seem like namespaces provide the isolation
we need: whenever we launch(F), we can initialize a
namespace with a copy of the whole application and
transfer control into that namespace’s copy of F, rather
than the original. The problem with this approach is
that it breaks the lexical scoping of static variables. For
example, Listing 4 would fail assertion (2).

5.2 Library copying: libsets
We just saw that namespaces provide too much isola-
tion for our needs: because of their completely inde-
pendent dependency graphs, they never encounter any
state from another namespace, even according to nor-
mal scoping rules. However, we can use namespaces to
build the abstraction we need, which we term a libset.
A libset is like a namespace, except that the program
can decide whether symbols referenced within a libset
resolve to the same libset or a di�erent one. Control li-
braries such as libinger con�gure such libset switches
via libgotcha’s private control API, shown in Listing 5.

This abstraction serves our needs: when a launch(F)
happens, libinger assigns an available libset_t
exclusively to that preemptible function. Just
before calling F, it informs libgotcha by calling
libset_thread_set_next() to set the thread’s next
libset: any dynamic symbols used by the preemptible
function will resolve to this libset. The thread’s current
libset remains unchanged, however, so the preemptible
function itself executes from the same libset as its caller
and the two share access to the same global variables.

One scoping issue remains, though. Because dynamic
symbols can resolve back to a de�nition in the same exe-
cutable or shared object that used them, Listing 5 would
fail assertion (3) under the described rules. We want
global variables de�ned in F ’s object �le to have the
same scoping semantics regardless of whether they are
declared static, so libgotcha only performs a names-
pace switch when the use of a dynamic symbol occurs
in a di�erent executable or shared library than that sym-
bol’s de�nition.

USENIX Association 2020 USENIX Annual Technical Conference 471

5.3 Managing libsets
At program start, libgotcha initializes a pool of libsets,
each with a full complement of the program’s loaded ob-
ject �les. Throughout the program’s run libinger tracks
the libset assigned to each preemptible function that has
started running but not yet reached successful comple-
tion. When a preemptible function completes, libinger
assumes it has not corrupted its libset and returns it to
the pool of available ones. However, if a preemptible
function is canceled rather than being allowed to return,
libinger must assume that its libset’s shared state could
be corrupted. It unloads and reloads all objects in such
a libset by calling libset_reinit().

While libinger in principle runs on top of an unmod-
i�ed ld-linux.so, in practice initializing more than
one namespace tends to exhaust the statically-allocated
thread-local storage area. As a workaround, we build
glibc with an increased TLS_STATIC_SURPLUS. It is use-
ful to also raise the maximum number of namespaces by
increasing DL_NNS.

5.4 Selective relinking
Most of the complexity of libgotcha lies in the implemen-
tation of selective relinking, the mechanism underlying
libset switches.

Whenever a program uses a dynamic symbol, it looks
up its address in a data structure called the global o�set
table (GOT). As it loads the program, ld-linux.so ea-
gerly resolves the addresses of all global variables and
some functions and stores them in the GOT.

Selective relinking works by shadowing the GOT.5 As
soon as ld-linux.so �nishes populating the GOT, lib-
gotcha replaces every entry that should trigger a libset
switch with a fake address, storing the original one in
its shadow GOT, which is organized by the libset that
houses the de�nition. The fake address used depends
upon the type of symbol:

Functions’ addresses are replaced by the address of
a special function, procedure_linkage_override().
Whenever the program tries to call one of the af-
fected functions, this intermediary checks the thread’s
next libset, looks up the address of the appropriate
de�nition in the shadow GOT, and jumps to it. Be-
cause procedure_linkage_override() runs between
the caller’s call instruction and the real function, it is
written in assembly to avoid clobbering registers. In-
stead of being linked to their symbol de�nitions at load
time, some function calls resolve lazily the �rst time
they are called: their GOT entries initially point to a spe-
cial lookup function in the dynamic linker that rewrites
the GOT entry when invoked. Such memoization would
remove our intermediary, so we alter the ELF relocation

5Hence the name libgotcha.

entries of a�ected symbols to trick the dynamic linker
into updating our shadow GOT instead.

Global variables’ addresses are replaced with a unique
address within a mapped but inaccessible page. When
the program tries to read or write such an address, a
segmentation fault occurs; libgotcha handles the fault,
disassembles the faulting instruction to determine the
base address register of its address calculation,6 loads
the address from this register, computes the location of
the shadow GOT entry based on the fake address, checks
the thread’s next libset, and replaces the register’s con-
tents with the appropriate resolved address. It then re-
turns, causing the faulting instruction to be reexecuted
with the valid address this time.7

5.5 Uninterruptible code: uncopyable
The library-copying approach to memory isolation
works for the common case, and allows us to handle
most third-party libraries with no con�guration. How-
ever, in rare cases it is not appropriate. The main ex-
ample is the malloc() family of functions: in Section 1,
we observed that not sharing a common heap compli-
cates ownership transfer of objects allocated from inside
a preemptible function. To support dynamic memory al-
location and a few other special cases, libgotcha has an
internal whitelist of uncopyable symbols.

From libgotcha’s perspective, uncopyable symbols
di�er only in what happens on a libset switch. If
code executing in any libset other than the applica-
tion’s starting libset calls an uncopyable symbol, a
libset switch still occurs, but it returns to the start-
ing libset instead of the next libset; thus, all calls
to an uncopyable symbol are routed to a single,
globally-shared de�nition. When the function call
that caused one of these special libset switches re-
turns, the next libset is restored to its prior value.
The libgotcha control API provides one more func-
tion, libset_register_interruptible_callback(),
that allows others to request a noti�cation when one of
these libset restorations occurs.

Because it is never safe to preempt while executing in
the starting libset, the �rst thing the libinger preemption
handler described in Section 3.4 does is check whether
the thread’s next libset is set to the starting one; if so,
it disables preemption interrupts and immediately re-
turns. However, libinger registers an interruptible call-

6Although it is possible to generate code sequences that are incom-
patible with this approach (e.g., because they perform in-place pointer
arithmetic on a register rather than using displacement-mode address-
ing with a base address), we employ a few heuristics based on the
context of the instruction and fault; in our experience, these cover the
common cases.

7This does not break applications with existing segfault handlers:
we intercept their calls to sigaction(), and forward the signal along
to their handler when we are unable to resolve an address ourselves.

472 2020 USENIX Annual Technical Conference USENIX Association

back that it uses to reenable preemption as soon as any
uncopyable function returns.

5.6 Limitations
The current version of libgotcha includes partial support
for thread-local storage (TLS). Like other globals, TLS
variables are copied along with the libset; this behav-
ior is correct because a thread might call into the same
library from multiple preemptible functions. However,
we do not yet support migrating TLS variables between
threads along with their preemptible function. This re-
striction is not fundamental: the TLS models we support
(general dynamic and local dynamic) use a support func-
tion called __tls_get_addr() to resolve addresses [10],
and libgotcha could substitute its own implementation
that remapped the running thread’s TLS accesses to that
of the preemptible function’s initial thread when execut-
ing outside the starting libset.

While selective relinking supports the ordinary
GLOB_DAT (eager) and JUMP_SLOT (lazy) ELF dynamic
relocation types, it is incompatible with the optimized
COPY class of dynamic variable relocations. The COPY
model works by allocating space for all libraries’ glob-
als in the executable, enabling static linking from the
program’s code (but not its dynamic libraries’). This
transformation defeats selective relinking for two rea-
sons: the use of static linking prevents identifying sym-
bol uses in the executable, and the cross-module migra-
tion causes breakages such as failing assertion (3) from
Listing 4. When building a program that depends on
libgotcha, programmers must instruct their compiler to
disable COPY relocations, as with the -fpic switch to
GCC and Clang. If libgotcha encounters any COPY relo-
cations in the executable, it prints a load-time warning.

Forsaking COPY relocations does incur a small perfor-
mance penalty, but exported global variables are rare
now that thread safety is a pervasive concern in sys-
tem design. Even the POSIX-speci�ed errno global is
gone: the Linux Standard Base speci�es that its address
is resolved via a call to the __errno_location() helper
function [21].

5.7 Case study: auto async-signal safety
We have now described the role of libgotcha, and how
libinger uses it to handle nonreentrancy. Before con-
cluding our discussion, however, we note that libgotcha
has other interesting uses in its own right.

As an example, we have used it to implement a small
library, libas-safe, that transparently allows an appli-
cation’s signal handlers to call functions that are not
async-signal safe, which is forbidden by POSIX because
it is normally unsafe.

Written in 127 lines of C, libas-safe works by injecting
code before main() to switch the program away from its

Operation Duration (`B)
launch() 4.6 ± 0.05
resume() 4.4 ± 0.02
cancel() 4767.7 ± 1168.7
fork() 207.5 ± 79.3

pthread_create() 32.5 ± 8.0

Table 2: Latency of preemptible function interface

starting libset. It shadows the system’s sigaction(),
providing an implementation that:

• Provides copy-based library isolation for signal
handlers by switching the thread’s next libset to the
starting libset while a signal handler is running.

• Allows use of uncopyable code such as malloc()
from a signal handler by deferring signal arrival
whenever the thread is already executing in the
starting libset, then delivering the deferred signal
when the interruptible callback �res.

In addition to making signal handlers a lot easier
to write, libas-safe can be used to automatically “�x”
deadlocks and other misbehaviors in misbehaved signal-
handling programs just by loading it via LD_PRELOAD.

We can imagine extending libgotcha to support other
use cases, such as simultaneously using di�erent ver-
sions or build con�gurations of the same library from a
single application.

6 Evaluation
We now evaluate preemptible function performance,
presenting several microbenchmarks and two exam-
ples of their application to improve existing systems’
resilience to malicious or otherwise long-running re-
quests. All experiments were run on an Intel Xeon E5-
2683 v4 (Broadwell) server running Linux 4.12.6, rustc
1.36.0, gcc 9.2.1, and glibc 2.29.

6.1 Microbenchmarks
Table 2 shows the overhead of libinger’s core functions.
Each test uses hundreds of preemptible functions, each
with its own stack and continuation, but sharing an im-
plementation; the goal is to measure invocation time, so
the function body immediately calls pause(). For com-
parison, we also measured the cost of calling fork()
then exit(), and of calling pthread_create() with
an empty function, while the parent thread waits using
waitpid() or pthread_join(), respectively.

The results show that, as long as preemptible func-
tions are eventually allowed to run to completion, they
are an order of magnitude faster than spawning a thread
and two orders of magnitude faster than forking a pro-
cess. Although cancellation takes milliseconds in the
benchmark application, this operation need not lie on

USENIX Association 2020 USENIX Annual Technical Conference 473

the critical path unless the application is cancelling tasks
frequently enough to exhaust its supply of libsets.

Recall that linking an application against libgotcha
imposes additional overhead on most dynamic symbol
accesses; we report these overheads in Table 3a. Eager
function calls account for almost all of a modern pro-
gram’s dynamic symbol accesses: lazy resolution only
occurs the �rst time a module calls a particular function
(Section 5.4) and globals are becoming rare (Section 5.6).

Table 3b shows that the libgotcha eager function call
overhead of 14 ns is on par with the cost of a trivial C
library function (gettimeofday()) and one-third that
of a simple system call (getpid()). This overhead af-
fects the entire program, regardless of the current libset
at the time of the call. Additionally, calls to uncopy-
able functions from within a preemptible function incur
several extra nanoseconds of latency to switch back to
the main namespace as described in Section 5; Table 3c
breaks this overhead down to show the cost of noti�-
cation callbacks at the conclusion of such a call (always
required by libinger).

6.2 Web server
To test whether our thread library could combat
head-of-line blocking in a large system, we bench-
marked hyper, the highest-performing Web server
in TechEmpower’s plaintext benchmark as of July
2019 [16]. The server uses tokio-threadpool for schedul-
ing; because the changes described in Section 4 are
transparent, making hyper preemptive was as easy as
building against libturquoise instead. In fact, we did not
even check out the hyper codebase. We con�gured lib-
turquoise with a task timeout of 2 ms, give or take a
100-`s libinger preemption interval, and con�gured it
to serve responses only after spinning in a busy loop for
a number of iterations speci�ed in each request. For our
client, we modi�ed version 4.1.0 of the wrk [14] closed-
loop HTTP load generator to separately record the la-
tency distributions of two di�erent request classes.

Our testbed consisted of two machines connected by
a direct 10-GbE link. We pinned hyper to the 16 physical
cores on the NIC’s NUMA node of our Broadwell server.
Our client machine, a Intel Xeon E5-2697 v3 (Haswell)
running Linux 4.10.0, ran a separate wrk process pinned
to each of the 14 logical cores on the NIC’s NUMA node.
Each client core maintained two concurrent pipelined
HTTP connections.

We used loop lengths of approximately 500 `s and
50 ms for short and long requests, respectively, view-
ing the latter requests as possible DoS attacks on the
system. We varied the percentage of long requests from
0% to 2% and measured the round-trip median and tail
latencies of short requests and the throughput of all re-
quests. Figure 4 plots the results for three server con�g-

urations: baseline is cooperative scheduling via tokio-
threadpool, baseline+libgotcha is the same but with
libgotcha loaded to assess the impact of slower dynamic
function calls, and baseline+libturquoise is preemp-
tive scheduling via libturquoise. A 2% long request mix
was enough to reduce the throughput of the libgotcha
server enough to impact the median short request la-
tency. The experiment shows that preemptible func-
tions keep the tail latency of short requests scaling lin-
early at the cost of a modest 4.5% median latency over-
head when not under attack.

6.3 Image decompression
The Web benchmark showed preemptive scheduling at
scale, but did not exercise preemptible function cancel-
lation. To demonstrate this feature, we consider decom-
pression bombs, �les that expand exponentially when
decoded, consuming enormous computation time in ad-
dition to their large memory footprint. PNG �les are
vulnerable to such an attack, and although libpng now
supports some mitigations [24], one cannot always ex-
pect (or trust) such functionality from third-party code.

We benchmarked the use of libpng’s “simple API”
to decode an in-memory PNG �le. We then com-
pared against synchronous isolation using preemptible
functions, as well as the naïve alternative mitiga-
tions proposed in Section 1. For preemptible func-
tions, we wrapped all uses of libpng in a call to
launch() and used a dedicated (but blocking) reaper
thread to remove the cost of cancellation from the crit-
ical path; for threads, we used pthread_create() fol-
lowed by pthread_timedjoin_np() and, conditionally,
pthread_cancel() and pthread_join(); and for pro-
cesses, we used fork() followed by sigtimedwait(), a
conditional kill(), then a waitpid() to reap the child.
We ran pthread_cancel() both with and without asyn-
chronous cancelability enabled, but the former always
deadlocked. The timeout was 10 ms in all cases.

Running on the benign RGB image
mirjam_meijer_mirjam_mei.png from version
1:0.18+dfsg-15 of Debian’s openclipart-png
package showed launch() to be both faster and
lower-variance than the other approaches, adding 355
`s or 5.2% over the baseline (Figure 5a). The results
for fork() represent a best-case scenario for that
technique, as we did not implement a shared memory
mechanism for sharing the bu�er, and the cost of
the system call will increase with the number pages
mapped by the process (which was small in this case).

Next, we tried a similarly-sized RGB decompression
bomb from revision b726584 of https://bomb.codes
(Figure 5b). Without asynchronous cancelability, the
pthreads approach was unable to interrupt the thread.
Here, launch() exceeded the deadline by just 100 `s, a

474 2020 USENIX Annual Technical Conference USENIX Association

https://bomb.codes

Symbol resolution scheme Time without libgotcha (=B) Time with libgotcha (=B)
eager (load time) 2 ± 0 14 ± 0

lazy (runtime) 100 ± 1 125 ± 0
global variable 0 ± 0 3438 ± 13

(a) Generic symbols, without and with libgotcha
Baseline Time without libgotcha (=B)

gettimeofday() 19 ± 0
getpid() 44 ± 0

(b) Library functions and syscalls without libgotcha

Trigger Time with libgotcha (=B)
Uncopyable call 21 ± 0

Uncopyable call + callback 25 ± 0
(c) Uncopyable calls triggering a libset switch

Table 3: Runtime overheads of accessing dynamic symbols

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Prevalence of long requests (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
%

 la
te

nc
y

of
 S

HO
RT

 re
qu

es
ts

 (m
s)

Short median latency vs. long:short request ratio

baseline
baseline+libgotcha
baseline+libturquoise

(a) Median latency

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Prevalence of long requests (%)

0

5

10

15

20

25

30

35

40

90
%

 la
te

nc
y

of
 S

HO
RT

 re
qu

es
ts

 (m
s)

Short 90% tail latency vs. long:short request ratio

baseline
baseline+libgotcha
baseline+libturquoise

(b) 90% tail latency

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Prevalence of long requests (%)

0

10

20

30

40

50

60

99
%

 la
te

nc
y

of
 S

HO
RT

 re
qu

es
ts

 (m
s)

Short 99% tail latency vs. long:short request ratio

baseline
baseline+libgotcha
baseline+libturquoise

(c) 99% tail latency

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Prevalence of long requests (%)

0

200

400

600

800

1000

1200

1400

1600

Th
ro

ug
hp

ut
 o

f A
LL

 re
qu

es
ts

 (r
eq

s/
s)

Throughput vs. long:short request ratio
baseline
baseline+libgotcha
baseline+libturquoise

(d) Overall throughput

Figure 4: hyper Web server with 500--s (short) and 50-ms (long) requests

USENIX Association 2020 USENIX Annual Technical Conference 475

none
pthread_create

pthread_create+async

fork
launch

Decompression bomb mitigation strategy

0

2

4

6

8

De
co

de
 ti

m
e

(m
s)

 D

EA
DL

OC
K

Runtime on 332-KB benign image

(a) Benign image

870

875

880

885

none
pthread_create

pthread_create+async

fork
launch

Decompression bomb mitigation strategy

0

2

4

6

8

10

 D

EA
DL

OC
K

Runtime on 309-KB malicious image

(b) Malicious image

Figure 5: libpng in-memory image decode times

�gure that includes deviation due to the 100-`s preemp-
tion interval in addition to libinger’s own overhead. It
again had the lowest variance.

Applying preemptible functions proved easy: the
launch()/cancel() approach took just 20 lines of Rust,
including the implementation of a reaper thread to move
libset reinitialization o� the critical path. In comparison,
the fork()/sigtimedwait() approach required 25 lines
of Rust. Note that both benchmarks include unsafe Rust
(e.g., to use the libpng C library and zero-copy bu�ers).

7 Future work
One of our contributions is asynchronous cancellation,
something rarely supported by the state of the art. In
Section 3.5, we noted our lack of support for automated
resource cleanup; however, we outlined a possible ap-
proach for languages such as Rust, which we intend to
investigate further. Cancellation is currently our most
expensive operation because of the libset reinitialization
described in Section 5.3, but we plan to improve this by
restoring only the writeable regions of each module.

Another area for improvement is signal-handling per-
formance optimization: whereas Shinjuku is able to pre-
empt every 5 `s with a 10% throughput penalty [17], we
have observed a similar throughput drop while only pre-
empting every 20 `s via our technique [6]. We have not
yet heavily optimized libinger, and have reason to be-
lieve that doing so will allow our design to achieve a pre-
emption granularity midway between those �gures for
the same throughput cost. Because Shinjuku executes in
privilege ring 0, they preempt by issuing interprocessor
interrupts (IPIs) directly rather than using Linux signals.
Their microbenchmarks reveal an IPI:signal latency ra-
tio of roughly 1:2.5 (1,993 vs. 4,950 CPU cycles), indicat-

ing that we are not achieving peak performance. Fur-
thermore, a key design di�erence between our systems
suggests that this ratio probably understates the perfor-
mance we could achieve. In their benchmark, roughly
42% of cycles are spent sending each signal, a cost we
can amortize because our design uses recurring timer
signals to counter warmup e�ects. A further 6.9% of
benchmarked cycles are spent propagating the signal
between cores, which should not a�ect our system be-
cause we request the timer signals on the same core
that will receive them rather than using a central watch-
dog thread to preempt all workers. Context switching is
likely responsible for most of our unexpected latency: by
writing our signal handler very carefully, we should be
able to adopt the same optimizations they describe (skip-
ping signal mask and �oating-point register swaps).

The selective relinking technique that underlies our
interface allows safe pausing and cancellation in the
presence of shared state, independent of preemption
mechanism. In lieu of a timeout, control transfer might
result from another scheduling consideration, such as
real-time computing or task priority.

8 Conclusion
We presented the lightweight preemptible function, a
new composable abstraction for invoking a function
with a timeout. This enabled us to build a �rst-in-
class preemptive userland thread library by implement-
ing preemption atop a cooperative scheduler, rather
than the other way around. Our evaluation shows that
lightweight preemptible functions have overheads of a
few percent (lower than similar OS primitives), yet en-
able new functionality.

We believe the lightweight preemptible function ab-
straction naturally supports common features of large-
scale systems. For example: In support of graceful
degradation, a system might use a preemptible function
to abort the rendering of a video frame in order to ensure
SLA adherance. An RPC server might preserve work by
processing each request in a preemptible function and
memoizing the continuations; if a request timed out but
was later retried by the client, the server could resume
executing from where it left o�.

Acknowledgements
This work was supported by the U.S. National Science
Foundation under award CNS–1700521, as well as the
Intel Science and Technology Center for Visual Cloud
Systems. The authors thank Holden and the other mem-
bers of the Pittsburgh Rust Co�ee meetup for early im-
plementation discussions about the safe use of unstruc-
tured control �ow in Rust programs. We also thank our
shepherd, Tim Harris, for his helpful suggestions.

476 2020 USENIX Annual Technical Conference USENIX Association

References
[1] The Go programming language. https://golang.org,

2019.
[2] The Rust programming language. https://www.

rust-lang.org, 2019.
[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.

Levy. Scheduler activations: E�ective kernel support for
the user-level management of parallelism. In Proceed-
ings of the thirteenth ACM symposium on operating sys-
tem principles (SOSP ’91), 1991.

[4] A. Baumann, J. Appavoo, O. Krieger, and T. Roscoe. A
fork() in the road. In HotOS ’19: Proceedings of the work-
shop on hot topics in operating systems, May 2019.

[5] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazères,
and C. Kozyrakis. Dune: Safe user-level access to priv-
ileged CPU features. In Proceedings of the 10th USENIX
conference on Operating Systems Design and Implemen-
taiton (OSDI’12), 2012.

[6] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky.
Putting the "micro" back in microservice. In 2018 USENIX
Annual Technical Conference, Boston, MA, 2018.

[7] A. Clements. Go runtime: tight loops should be
preemptible. https://github.com/golang/go/issues/10958,
2015.

[8] T. Delisle. Concurrency in C∀, 2018. URL https://
uwspace.uwaterloo.ca/handle/10012/12888.

[9] dlmopen. dlmopen(3) manual page from Linux man-
pages project, 2019.

[10] U. Drepper. ELF handling for thread-local storage.
Technical report, 2013. URL https://akkadia.org/
drepper/tls.pdf.

[11] D. Elo�. Go proposal: a faster C-call
mechanism for non-blocking C functions.
https://github.com/golang/go/issues/16051, 2016.

[12] G. H. et al. An overview of the Singularity project.
Technical Report MSR-TR-2005-135, Microsoft Re-
search Technical Reports, 2005. URL https://www.
microsoft.com/en-us/research/publication/
an-overview-of-the-singularity-project.

[13] GitHub. Tokio thread pool. https://github.com/
tokio-rs/tokio/tree/tokio-threadpool-0.1.16/
tokio-threadpool, 2019.

[14] GitHub. wrk: Modern HTTP benchmarking tool. https:
//github.com/wg/wrk, 2019.

[15] C. T. Haynes and D. P. Friedman. Engines build process
abstractions. Technical Report TR159, Indiana University
Computer Science Technical Reports, 1984. URL https:
//cs.indiana.edu/ftp/techreports/TR159.pdf.

[16] hyper. hyper: Fast and safe HTTP for the Rust language.
https://hyper.rs, 2019.

[17] K. Ka�es, T. Chong, J. T. Humphries, A. Belay, D. Maz-
ières, and C. Kozyrakis. Shinjuku: Preemptive schedul-
ing for microsecond-scale tail latency. In Proc. 16th
USENIX NSDI, Boston, MA, Feb. 2019.

[18] libev. libev. http://libev.schmorp.de.

[19] libevent. libevent. https://libevent.org.
[20] libuv. libuv: Cross-platform asynchronous I/O. https:

//libuv.org.
[21] Linux Standard Base Core speci�cation. __er-

rno_location. http://refspecs.linuxbase.org/
LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/
baselib---errno-location.html, 2015.

[22] M. S. Mollison and J. H. Anderson. Bringing theory
into practice: A userspace library for multicore real-
time scheduling. In 2013 IEEE 19th Real-Time and Em-
bedded Technology and Applications Symposium (RTAS),
Philadelphia, PA, 2013.

[23] mordor. mordor: A high-performance I/O library based
on �bers. https://github.com/mozy/mordor.

[24] PNG reference library: libpng. Defending libpng applica-
tions against decompression bombs. https://libpng.
sourceforge.io/decompression_bombs.html, 2010.

[25] pthread_setcanceltype(3). pthread_setcanceltype() man-
ual page from Linux man-pages project, 2017.

[26] sigaction. sigaction(2) manual page from the Linux man-
pages project, 2019.

[27] signal-safety. signal-safety(7) manual page from Linux
man-pages project, 2019.

[28] TerminateThread. TerminateThread func-
tion. https://docs.microsoft.com/en-us/
windows/win32/api/processthreadsapi/
nf-processthreadsapi-terminatethread, 2018.

[29] The Rust Programming Language. Exten-
sible Concurrency with the Sync and Send
Traits. https://doc.rust-lang.org/book/
ch16-04-extensible-concurrency-sync-and-send.
html, 2019.

[30] The Rust Reference. Behavior not considered unsafe.
https://doc.rust-lang.org/stable/reference/
behavior-not-considered-unsafe.html, 2019.

[31] timer_create. timer_create(2) manual page from the
Linux man-pages project, May 2020.

[32] C. J. Vanderwaart. Static enforcement of timing
policies using code certi�cation. Technical Re-
port CMU-CS-06-143, Carnegie Mellon Computer
Science Technical Report Collection, 2006. URL
http://reports-archive.adm.cs.cmu.edu/anon/
2006/abstracts/06-143.html.

USENIX Association 2020 USENIX Annual Technical Conference 477

https://golang.org
https://www.rust-lang.org
https://www.rust-lang.org
https://uwspace.uwaterloo.ca/handle/10012/12888
https://uwspace.uwaterloo.ca/handle/10012/12888
https://akkadia.org/drepper/tls.pdf
https://akkadia.org/drepper/tls.pdf
https://www.microsoft.com/en-us/research/publication/an-overview-of-the-singularity-project
https://www.microsoft.com/en-us/research/publication/an-overview-of-the-singularity-project
https://www.microsoft.com/en-us/research/publication/an-overview-of-the-singularity-project
https://github.com/tokio-rs/tokio/tree/tokio-threadpool-0.1.16/tokio-threadpool
https://github.com/tokio-rs/tokio/tree/tokio-threadpool-0.1.16/tokio-threadpool
https://github.com/tokio-rs/tokio/tree/tokio-threadpool-0.1.16/tokio-threadpool
https://github.com/wg/wrk
https://github.com/wg/wrk
https://cs.indiana.edu/ftp/techreports/TR159.pdf
https://cs.indiana.edu/ftp/techreports/TR159.pdf
https://hyper.rs
http://libev.schmorp.de
https://libevent.org
https://libuv.org
https://libuv.org
http://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/baselib---errno-location.html
http://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/baselib---errno-location.html
http://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/baselib---errno-location.html
https://github.com/mozy/mordor
https://libpng.sourceforge.io/decompression_bombs.html
https://libpng.sourceforge.io/decompression_bombs.html
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminatethread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminatethread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminatethread
https://doc.rust-lang.org/book/ch16-04-extensible-concurrency-sync-and-send.html
https://doc.rust-lang.org/book/ch16-04-extensible-concurrency-sync-and-send.html
https://doc.rust-lang.org/book/ch16-04-extensible-concurrency-sync-and-send.html
https://doc.rust-lang.org/stable/reference/behavior-not-considered-unsafe.html
https://doc.rust-lang.org/stable/reference/behavior-not-considered-unsafe.html
http://reports-archive.adm.cs.cmu.edu/anon/2006/abstracts/06-143.html
http://reports-archive.adm.cs.cmu.edu/anon/2006/abstracts/06-143.html

coIOMMU: A Virtual IOMMU with Cooperative DMA Buffer Tracking for Effi-
cient Memory Management in Direct I/O

Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, Yaozu Dong

Intel Corporation

Abstract
Direct assignment of I/O devices (Direct I/O) is the best per-
formant I/O virtualization method. However, it requires the
hypervisor to statically pin the entire guest memory, thereby
hindering the efficiency of memory management. This prob-
lem can be fixed by presenting a virtual IOMMU
(vIOMMU). Emulation of its DMA remapping capability
carries sufficient information about guest DMA buffers, al-
lowing the hypervisor to do fine-grained pinning of guest
memory. However, established vIOMMUs are not widely
used by commodity guests due to the emulation cost, thus
cannot reliably eliminate static pinning in direct I/O.

We propose and implement coIOMMU, a new vIOMMU ar-
chitecture for efficient memory management with a coopera-
tive DMA buffer tracking mechanism. The new mechanism
provides a dedicated interface for hypervisor and guest to ex-
change DMA buffer information over a shared DMA tracking
table (DTT), orthogonal to the costly DMA remapping inter-
face. We also explore two techniques: smart pinning and lazy
unpinning, to minimize the impact on the performance of di-
rect I/O. Our evaluation results show that coIOMMU dramat-
ically improves the efficiency of memory management in
wide direct I/O usages with negligible cost. Moreover, the
desired semantics of DMA remapping can be sustained when
cooperative tracking is enabled alongside. Overall, we be-
lieve that coIOMMU can serve as a reliable solution for effi-
cient memory management in direct I/O.

1. Introduction
Direct I/O [1, 21, 29, 31, 37, 39, 48, 49, 50] is the best per-
formant I/O virtualization method and a cornerstone capabil-
ity in data centers and clouds. It allows the guest to directly
interact with I/O devices without the intervention from soft-
ware intermediary. An I/O memory management unit
(IOMMU) [3, 14, 16] helps prevent Direct Memory Access
(DMA) attacks in direct I/O by providing the capability of
DMA remapping. Each assigned device is associated with an
IOMMU page table (IOPT), configured by the hypervisor in
a way that only the memory of the guest that owns the device
is mapped. The IOMMU walks the IOPTs to validate and
translate DMA requests, achieving inter-guest protection
among directly assigned devices.

Most devices do not tolerate DMA faults, implying that guest
buffers must be pinned in host memory and mapped in the

IOPT before they are accessed by DMAs. However, the hy-
pervisor does not know which pages are mapped by the guest
when it is eliminated from the direct I/O path. Consequently,
it has to pin the entire guest memory upfront, a.k.a static pin-
ning [7, 44]. This heavily hinders the efficiency of memory
management and worsens memory utilization, as pinned
pages cannot be reclaimed for other purposes.

Presenting a virtual IOMMU (vIOMMU) [8, 23, 29, 52, 60]
to the guest allows fine-grained pinning of guest memory for
efficient memory management, although its primary purpose
is to help the guest protect itself against buggy drivers. The
hypervisor emulates the DMA remapping interface by: 1)
walking the virtual IOPT (vIOPT) to identify the affected
buffers; 2) pinning and unpinning the buffers in the host
memory; and 3) mapping and unmapping them in the physi-
cal IOMMU to enforce protection as desired by the guest.
Naturally, the emulation leads to a fine-grained pinning
scheme, if the guest always uses the vIOMMU to remap its
DMA buffers.

Unfortunately, established vIOMMUs are not applicable as a
reliable solution for fine-grained pinning. Their virtual DMA
remapping capabilities are disabled by most guests [8, 24, 30,
38, 51] in typical usages such as public cloud, because signif-
icant emulation cost may be incurred due to frequent mapping
operations in the guest. Such cost could be alleviated through
side-core emulation [8] or para-virtualized extension [23,
52]. However, the side-core emulation requires an additional
CPU core to perform the emulation; and can only achieve op-
timal performance with deferred IOTLB invalidation, leading
to compromised security. Para-virtualized extension reduces
the virtualization overhead with optimized interfaces, but it
still involves large number of VM-exits at the time of guest
DMA mappings/unmappings, hence limiting the perfor-
mance. Therefore, they did not change the fact that estab-
lished vIOMMUs are used only in limited circumstances, e.g.
when intra-guest protection is valued over the overhead of
DMA remapping.

We argue that mixing the requirements of protection and pin-
ning, through the same costly DMA remapping interface, is
needlessly constraining. Protection is a guest requirement,
while pinning is for host memory management. The two do
not always match, thus favoring one may easily break the
other. Instead, we aim to provide a reliable solution for fine-
grained pinning by decoupling it from protection.

USENIX Association 2020 USENIX Annual Technical Conference 479

We propose and implement a new vIOMMU architecture
called coIOMMU, which helps the hypervisor achieve effi-
cient memory management in direct I/O. It introduces a ded-
icated mechanism for cooperative DMA buffer tracking, or-
thogonal to the costly DMA remapping interface. coIOMMU
allows the hypervisor and guest to communicate over a DMA
tracking table (DTT) located in a shared memory region. The
guest records the mapping status of its DMA buffers in the
DTT and the hypervisor walks the DTT to identify the corre-
sponding pinning requirement. coIOMMU further minimizes
the number of notifications from the guest, with two optimi-
zations: (1) smart pinning, which heuristically pins fre-
quently used pages and timely shares its pinning status with
the guest, to enable precise notification in guest-mapping op-
erations; and (2) lazy unpinning, which asynchronously un-
pins guest pages to eliminate notifications in guest-unmap-
ping operations. On the other hand, the new mechanism does
not affect the desired semantics of DMA remapping. It can
be enabled with or without DMA remapping, as a reliable and
standard interface to achieve fine-grained pinning in direct
I/O.

We implement coIOMMU by extending KVM/QEMU
vIOMMU and Linux guest. The concept and implementation
can be easily ported to other hypervisors, vIOMMUs and
guest OSes. Overall, the main contributions of this paper are:

• Observing that established vIOMMUs cannot reliably
fix the problem of static pinning in direct I/O, due to the
costly DMA remapping interface.

• Proposing and implementing coIOMMU, the first
vIOMMU that introduces a dedicated DMA buffer track-
ing mechanism for fine-grained pinning.

• Introducing smart pinning and lazy unpinning to dramat-
ically reduce the tracking overhead in fine-grained pin-
ning.

• Conducting comprehensive evaluations under different
Linux protection policies, with benchmarks in direct net-
working, storage, and GPU.

• Demonstrating that coIOMMU not only dramatically
improves the efficiency of memory management in wide
direct I/O usages with negligible cost, but also sustains
the desired security as required in specific protection pol-
icies.

The rest of the paper is organized as follows. The background
and motivation are first provided in section 2. We present the
design of coIOMMU in section 3 and its implementation in
section 4. Finally, the evaluation results are shown and dis-
cussed in section 5, with future work and conclusion drawn
in section 6.

2. Motivation

2.1. The Problem

Direct I/O is the best performant I/O virtualization method by
enabling direct communication between the guest and the I/O
devices. Removal of the software intermediary not only pro-
vides much better performance than other I/O virtualization
approaches, but also allows faster time-to-market for virtual-
izing new I/O acceleration capabilities. Direct I/O prolifer-
ates via device-side virtualization. Single-Root I/O Virtual-
ization (SR-IOV) [1, 13] allows the device to multiplex its
resource into virtual functions, each independently assigna-
ble to a guest. Cloud service providers even offload para-vir-
tualized backend drivers into directly assigned devices [11,
12]. With these hardware trends, direct I/O has gained main-
stream support in commodity hypervisors and is becoming a
cornerstone capability in data centers and clouds.

IOMMUs [3, 14, 16] are introduced by hardware vendors to
prevent assigned devices from touching arbitrary memory lo-
cations. Use of the IOMMU leads to the static pinning prob-
lem due to two factors: (1) most I/O devices do not tolerate
DMA faults, and (2) the hypervisor does not know how guest
memory is used for DMA. The hypervisor has to pin the en-
tire guest memory upfront, assuming that every guest page
might be a DMA page. This heavily hinders the efficiency of
memory management and worsens memory utilization, as
pinned pages cannot be reclaimed for other purposes.

2.2. Existing Solutions

Previous studies generally tackle this problem in two direc-
tions: making the device support DMA page faults or expos-
ing the DMA buffer information to the hypervisor through
software approaches.

DMA page faults allow all kinds of memory optimizations
that CPU page faults provide. The PCI-SIG standardizes the
support of DMA page faults with Address Translation Ser-
vice (ATS) and Page Request Service (PRS) [2]. It was orig-
inally introduced to simplify the programming model on
GPUs [27, 41, 42] and now also starts to find its way into
NICs [6] and FPGA [9]. However, the latency of handling
DMA page faults is 3x-80x higher than that of handling CPU
faults [6, 40]. Such long latency, up to hundreds of microsec-
onds, demands a larger on-device buffer to hold in-flight re-
quests and incurs higher device cost. Handling such long la-
tency in all critical paths further complicates the device.
Therefore, most commodity devices do not support DMA
page faults, or partially support it only for selective work-
loads. With time, it may become a preferable way for fine-
grained pinning, but not anytime soon.

Alternatively, researchers also look at software approaches to
expose enlightened guest DMA information to the hypervi-
sor. Knowing when a guest page is mapped or unmapped al-
lows the hypervisor to pin or unpin it dynamically. Willmann
et al. [44] evaluates several mapping strategies, revealing that

480 2020 USENIX Annual Technical Conference USENIX Association

a big performance penalty is incurred when blindly doing hy-
percalls to notify the hypervisor of every guest mapping/un-
mapping operation. Yassour et al. [7] dramatically reduces
such notifications with a guest-side pin-down cache. How-
ever, it puts a complex eviction policy in the guest and pro-
vides no intra-guest protection.

Presenting a vIOMMU [23, 29, 60] also provides sufficient
information for fine-grained pinning, as a result of emulating
its DMA remapping capability for intra-guest protection.
However, such emulation may incur significant cost, espe-
cially when frequent mapping operations are requested by the
guest. To trade off performance and protection, modern OSes
typically implement different policies about DMA re-
mapping. For example, Linux [8, 24, 30, 38, 51] implements
strict, lazy and passthrough policies. Although DMA re-
mapping is used in strict and lazy policies, the passthrough
policy simply disables it to gain best performance. Obvi-
ously, the guest cannot provide any DMA buffer information
to the hypervisor when the passthrough policy is selected.
Unfortunately, major guest Linux distributions choose
passthrough as default and even allow different policies
across devices.

Recent studies focus on reducing the cost of emulating DMA
remapping in vIOMMU. Tang et al. [52] reduces the re-
mapping overhead by reusing old mappings and delaying
their removal, however, at the cost of compromised security.
Side-core emulation [8] achieves 100% of 10Gbps line rate
with a fully emulated vIOMMU, but with relaxed protection
and increased total cost. The overhead of DMA remapping is
also tackled on bare metal [24, 30, 38]. While these works
generally apply to the guest OS as well, most of them have
not been adopted by commodity OSes due to its intrusive-
ness. In a nutshell, the cost of DMA remapping is still notable
in the guest today, leaving the capability disabled or even not
exposed in most cloud and data center usages.

2.3. DMA Tracking vs. DMA Remapping

We prefer the vIOMMU approach for two reasons: 1) it sup-
ports both intra-guest protection and fine-grained pinning;
and 2) DMA page faults are not widely supported by com-
modity devices. However, we want to go a different direction
from previous studies – to enable fine-grained pinning with-
out being encumbered by the intrinsic cost of DMA re-
mapping.

We argue that mixing the requirements of protection and pin-
ning, through the same costly DMA remapping interface, is
needlessly constraining. Protection is a guest requirement and
relies on the DMA remapping capability, while pinning is for
host memory management and needs the capability of track-
ing guest DMA buffers. The two do not always match, thus
favoring one may just break the other, if both are enabled
through the same interface. For example, the hypervisor

either must fall back to static pinning by assuming that most
guests disable protection, or, adopt fine-grained pinning by
forcing all guests to enable protection and bear with added
cost.

What about inventing a separate DMA buffer tracking mech-
anism to the vIOMMU, without relying on any semantics of
DMA remapping? Separating DMA tracking from DMA re-
mapping allows us to tackle the pinning and protection prob-
lems in parallel. If the new tracking mechanism incurs negli-
gible cost, we can expect most guests to always enable it and
reliably provide necessary information for fine-grained pin-
ning. If feasible, such an approach would make the vIOMMU
as the portal of efficient memory management in future data
centers and clouds.

3. Design
We propose coIOMMU, a new vIOMMU architecture that
helps the hypervisor achieve efficient memory management
in direct I/O. coIOMMU provides a dedicated DMA buffer
tracking mechanism that adopts a shared memory interface
for efficient communication between host and guest. The
guest records the mapping status of its DMA buffers through
a shared DMA tracking table (DTT), for the hypervisor to de-
cide its pinning strategy. coIOMMU also introduces two op-
timizations: smart pinning and lazy unpinning, to dramati-
cally reduce the performance impact when achieving fine-
grained pinning.

3.1. Goals

We want the new DMA buffer tracking mechanism to meet
these goals:

Orthogonal to DMA Remapping - Our solution should allow
DMA buffer tracking and DMA remapping independently
configured by the guest. The new tracking mechanism, once
enabled, should consistently supply sufficient information for
fine-grained pinning, regardless of how DMA remapping is
configured to protect guest. Enabling of DMA buffer tracking
should not affect the desired protection semantics of DMA
remapping.

Low Cost - DMA buffer tracking should incur negligible cost.
Otherwise, it faces the same challenge as in DMA remapping:
if significant cost is observed, why would one enable it by
default? We focus on the efficiency of DMA buffer tracking
itself and have no intention to further optimize DMA re-
mapping in this work. The original performance expectation
under each guest protection policy is set as the baseline for
comparing the cost of DMA buffer tracking in our evalua-
tions.

Non-intrusiveness - We want our solution to minimize the
changes in the guest software stack, as a primary factor to
gain mainstream support in commodity OSes. Commodity
OSes provide a generic DMA API layer [25, 43] to route

USENIX Association 2020 USENIX Annual Technical Conference 481

DMA mapping requests from device drivers to underlying
DMA driver. DMA buffers can be tracked either in the DMA
API layer or specific DMA driver. We did not choose DMA
API because any change in such common framework usually
takes a long time to be adopted by commodity OSes.

Wide Applicability - We prefer a solution that works with all
kinds of I/O devices rather than requiring additional changes
in hardware or device drivers. We also expect such a solution
to make no assumption on any vendor specific characteristics,
so it can be easily ported to different vIOMMUs, either emu-
lated or para-virtualized.

Extensibility - The solution should be extensible to help ad-
dress other limitations in memory management. For example,
another challenge in direct I/O is about lively migrating the
guest with assigned devices, which requires the ability of
tracking the pages that are dirtied by DMAs [20, 26, 28, 35].
We expect our solution can play as a portal of tracking all
kinds of DMA buffer status for efficient memory manage-
ment.

3.2. Architecture

The coIOMMU architecture is illustrated in Figure 1, com-
posed of coIOMMU backend in hypervisor and coIOMMU
driver inside the guest. The coIOMMU backend includes
three main components: (1) DMA remapping engine
(remapEngine), the same functionality for intra-guest protec-
tion as in established vIOMMUs, over a set of per-device
vIOMMU page tables (vIOPTs); (2) DMA tracking engine
(trackEngine), a new function dedicated for tracking guest
DMA buffers over a global DMA tracking table (DTT); and
(3) Page-pinning manager (pManager), which uses the infor-
mation gathered by trackEngine to intelligently manage the
pinning requirements of guest memory. The remapEngine
and trackEngine are independently enumerated and managed
by the coIOMMU driver, while pManager is hidden and ac-
tivated automatically when trackEngine is enabled.

In our prototype, we build coIOMMU by extending an exist-
ing vIOMMU, which emulates the Intel VT-d hardware [3].
This allows us to focus on the new trackEngine and pMan-
ager, while inheriting the established DMA remapping logic
as remapEngine. However, we make no assumption on the
specific hardware or vIOMMU type. The design of trackEn-
gine and pManager can be easily ported to any emulated or
para-virtualized vIOMMU.

The trackEngine holds the base address of the DTT, which is
allocated and registered by the coIOMMU driver. The format
of the DTT is a hierarchical page table, containing the map-
ping information required by fine-grained pinning. trackEn-
gine also includes a doorbell register to notify the hypervisor
if necessary. Within the coIOMMU backend, trackEngine
provides interfaces for pManager to access the DTT and also
notifies pManager when the doorbell is rung. With this

design, trackEngine acts as a standard interface solely for
conveying the DMA information, while pManager actually
uses the information to achieve fine-grained pinning. The
separation between these two components allows coIOMMU
to be easily extended for other purposes, e.g. by introducing
another agent to track dirty pages, alongside pManager, while
reusing the same trackEngine interface.

The coIOMMU driver intercepts the DMA API operations in
the guest and updates the DTT accordingly. Modern OSes all
implement a generic DMA API layer [25, 43], connecting de-
vice drivers to the underlying DMA driver to prepare their
DMA buffers. The coIOMMU driver registers itself as a
DMA driver to capture the latest mapping status of guest
DMA buffers. This driver also enforces the desired protection
semantics, as other vIOMMU drivers normally do today. In
this way, DMA tracking is enabled without any change to the
DMA API layer or specific device drivers of the guest.

The pManager contains hypervisor-specific policies for fine-
grained pinning. A specific implementation may even include
multiple policies and let the hypervisor dynamically choose a
policy at runtime. We demonstrate two optimizations in §3.4:
smart pinning and lazy unpinning, to minimize the notifica-
tion overhead. When required, pManager talks to the memory
manager for pinning or unpinning a set of guest pages and
request the IOMMU driver for mapping or unmapping them
in the physical IOPT. When both remapEngine and pManager
are enabled, their pinning decisions are ORed together to fa-
vor the stricter requirement. Once a guest page is unpinned
and unmapped, it can be reclaimed under whatever policy ap-
plied by the memory manager.

3.3. DMA Tracking Table (DTT)

The DTT records the mapping status of guest DMA buffers.
It is shared by all assigned devices because the hypervisor
only wants to know the DMA buffers of the entire guest. It is
not necessary to track DMA buffers for virtual devices, as-
suming their DMAs are emulated by and already known to
the hypervisor. The DTT is allocated by the guest, starting as
empty and then filled dynamically according to intercepted
DMA operations. We choose to track two categories of guest
pages in the DTT: 1) the pages that are currently mapped by
the guest and 2) the pages that have been unmapped but still

Figure 1: The architecture of coIOMMU

coIOMMU Backend

remapEngine

trackEngine

coIOMMU
Driver

Device
Driver

DTT

vIOPTs

Memory
Manager

IOMMU
Driver

Hypervisor Guest

Pin/
unpin

Map/
unmap

Page-Pinning
Manager

482 2020 USENIX Annual Technical Conference USENIX Association

pinned by the hypervisor. The latter category is necessary for
lazy unpinning introduced in the next section.

One may argue why inventing a new table instead of reusing
the vIOPTs, when the latter also carry the information of
guest DMA buffers. We considered this approach but gave
up for several reasons. First, the vIOPT is designed for intra-
guest protection which disallows pinning a page after it is un-
mapped thus also negates lazy unpinning. Second, the table
is indexed by guest I/O Virtual Address (IOVA) for the re-
mapping purpose. The hypervisor has to walk every vIOPT
to find out whether a guest page is mapped, which is too
costly. Last but not the least, the format of vIOPT is typically
vendor-specific, so extending it may not lead to good porta-
bility.

The DTT is a 4-level page table in 4KB pages, as shown in
Figure 2. The 4KB leaf page consists of 512 DTT PTEs
(DTEs) and each 8-bytes DTE is further split into 8 tracking
units (TU). Each TU corresponds to one 4KB guest page. In
total, the DTT can support up to 51-bits (9+9+9+9+3+12=51)
guest physical address width, big enough for prevalent virtu-
alization usages. Such design leaves 8-bits available in each
TU. coIOMMU currently uses 3 bits for fine-grained pinning,
with the other 5-bits reserved for future extension:

• ‘M (mapped)’, indicating a page currently mapped by
guest for DMA. It is set and cleared by the guest before
and after the corresponding DMA and is read-only to the
hypervisor. This bit conveys the primary information
used by fine-grained pinning.

• ‘P (pinned)’, marking a page currently pinned by the hy-
pervisor. It is updated by the hypervisor to reflect the
pinning status and is read-only to the guest, necessary for
smart pinning.

• ‘A (accessed)’, telling whether a page has ever been used
for DMA. The guest sets this bit alongside the setting of
M-bit (‘mapped’ bit). Then it stays sticky until the hy-
pervisor clears it in lazy unpinning.

An entry with both M and P bits cleared marks the page as
invalid. If every entry of a DTT page is invalid, the guest may
choose to free this page to save space.

3.4. Fine-grained Pinning

Two techniques are introduced in coIOMMU: smart pinning
and lazy unpinning, to minimize the notification overhead of
fine-grained pinning. We focus on the scenario where the
DMA remapping capability of coIOMMU is disabled by the
guest. In this case, there is no intra-guest protection require-
ment thus the hypervisor can pin more pages than what guest
actually maps.

3.4.1. Smart Pinning

coIOMMU manages the pinning of guest pages in three ways:
(1) instantly pinning: the guest instantly notifies the hypervi-
sor to pin pages when they are being mapped, for correctness;
(2) precise notification: the guest notifies the hypervisor if
and only if the to-be-mapped pages are not pinned, to mini-
mize the notification overhead; and (3) speculatively pinning:
pManager heuristically pins the frequently used pages for
performance.

First, pinning must be instantly done before any mapped page
is used for DMA, because most devices do not tolerate DMA
faults, as aforementioned. In such circumstance, the hypervi-
sor must be notified by the guest to complete the pinning ac-
tion in a timely manner, if the page has not yet been pinned.

Second, coIOMMU exposes the pinning status to the guest
through the P-bit (‘pinned’ bit) in the DTT, for precise noti-
fication. If the P-bit is cleared by the hypervisor, the guest
must notify the hypervisor instantly when mapping a page.
Otherwise, no notification is needed at all. This optimization
allows the guest to skip most notifications in its mapping op-
erations.

Last, pManager speculatively selects and pins frequently used
pages by leveraging the guest DMA locality, which has been
identified in both previous studies [7, 44, 51] and our evalu-
ation. The DTT includes an A-bit (‘accessed’ bit) to mark a
page ever used for DMA. The guest sets the A-bit when map-
ping a page and leaves it set until the hypervisor clears it.
pManager determines the ages of unmapped pages by period-
ically scanning the A-bits (and clears it after a scan). Young
pages (with A-bit set) are candidates of frequently used pages
and might be accessed soon again. So pManager heuristically
pins them to avoid the overhead of another pinning notifica-
tion in the near future.

Our evaluation shows that precise notification and specula-
tive pinning can dramatically reduce the notification over-
head in instant pinning by up to 99.9992% (from 1.5M to 11
notifications, per second), when running memcached with a
40Gbps NIC connection. One notification takes ~2000-4000
cycles in our evaluation, so 1.5M notifications per second
may eat up 1-2 CPU cores without such optimization.

Figure 2: the format of the DTT

6
3

5
1

5
0

4
2

4
1

3
3

3
2

2
4

2
3

1
5

1
4

1
2

1
1 0

Reserved

<<3

+

DTT Base
Pointer L4 Table

<<3

+

<<3

+

L3 Table

L2 Table

<<3

+

L1 Table

DTE TU0 TU1 TU2 TU3 TU4 TU5 TU6 TU7

R R R R R A P M

Tracking Unit (TU)

M: mapped
P: pinned
A: accessed
R: Reserved

Guest Physical Address (GPA)

USENIX Association 2020 USENIX Annual Technical Conference 483

3.4.2. Lazy Unpinning

The pManager lazily unpins guest pages to completely elim-
inate the notification overhead in guest unmapping opera-
tions. It asynchronously scans the DTT to find out the pages
that are unmapped but still pinned, and then unpins them in a
batch. In our prototype, we process lazy unpinning and spec-
ulative pinning together in the same thread. Unpinned pages
are reclaimable by the memory manager to increase overall
memory utilization. In the same example of memcached, lazy
unpinning eliminates another 1.5M notifications per second
for guest unmapping operations, which means saving another
1-2 CPU cores, with the cost of pinning additional ~1%
memory (0.32MB) than the total size of mapped pages
(34.68MB), in average.

3.5. Intra-Guest Protection

The DMA remapping engine (remapEngine) can achieve
fine-grained pinning as well, as it is required to precisely map
and pin DMA buffers per guest protection requirements.
However, one cannot solely rely on DMA remapping because
the guest may selectively turn it off for certain devices ac-
cording to its protection strategy. We describe two examples
as below.

First, the guest may dynamically enable/disable DMA re-
mapping for an assigned device, leaving the hypervisor to
switch back and forth between static pinning and fine-grained
pinning. For example, guest Linux typically enables DMA
remapping when assigning a device to its user space and then
disables remapping when returning the device back to its ker-
nel space [45]. The switch between static and fine-grained
pinning may lead to intermittent out-of-memory errors in a
budget system. Moreover, the hypervisor needs to unpin all
the guest pages when switching away from and then re-pin
them when switching back to static pinning, leading to in-
creased overhead.

Second, if the guest enables DMA remapping only for se-
lected devices, DMA remapping cannot provide full DMA
buffer information for fine-grained pinning. For example,
most Linux distributions enable DMA remapping only for
untrusted devices, based on physical characteristics of the de-
vice [61, 62]. Such flexible configuration is possible because
DMA remapping is typically enabled per device. However,
fine-grained pinning needs to know DMA buffers used by all
assigned devices in the guest, even for the ones that are not
protected with DMA remapping. In such case, the hypervisor
must fall back to static pinning with reduced memory utiliza-
tion.

In both of these examples, DMA buffer tracking of
coIOMMU allows reliably providing full DMA buffer infor-
mation to enable fine-grained pinning. When tracking and re-
mapping are both enabled, it is possible for the two to make
different pinning decision for the same page. In such case, the

decision from the DMA remapping interface takes prece-
dence, because we must not break any protection semantics
desired by the guest.

4. Implementation
We implement coIOMMU by extending the virtual Intel VT-
d, which is an emulated vIOMMU in QEMU [58] (the device
model of KVM hypervisor [10]), and the intel-iommu driver
in the guest Linux. In QEMU, the original DMA remapping
logic of the virtual VT-d is reused as remapEngine, while
trackEngine and pManager are developed from scratch.
Guest-side changes are all contained in the intel-iommu
driver and hidden behind the Linux DMA API layer. There is
no change required in guest device drivers. Currently,
coIOMMU adds ~700 LOC in QEMU and ~1000 LOC in
guest.

coIOMMU driver - coIOMMU driver extends guest intel-
iommu driver to manage the trackEngine when the capability
is detected. The intel-iommu driver registers callbacks to the
Linux DMA API layer for mapping and unmapping DMA
pages in different forms, e.g. for single page or scatter-gath-
ered page list, for pre-allocated pages or newly allocated
pages, etc. We extend the driver by extracting the DMA
buffer information from those callbacks and updating the cor-
responding tracking units (TUs) in DTT. The DTT is allo-
cated in the guest memory, which is always accessible by the
commodity KVM hypervisor. If such direct access is prohib-
ited in some specific security related usage cases [55, 56], the
DTT should be allocated in a shared memory region. Last,
the coIOMMU driver conditionally notifies the hypervisor
based on the DTT status.

trackEngine - We extend the virtual VT-d with several
changes: (1) a capability bit for enumerating the presence of
trackEngine, (2) an enabling bit for activating trackEngine,
(3) a register holding the base address of the DTT, (4) a reg-
ister as the doorbell interface for triggering notification to
pManager, and (5) a register pointing to the base address of
the notification structure. The notification structure is de-
signed to allow batching requests of multiple pages into one
notification, in case of those pages are mapped together.
trackEngine also provides function calls for pManager to
scan and update the DTT.

pManager – The implementation of pManager can be split into
two parts. First, it provides direct function calls for trackEn-
gine to complete instant pinning. The functions are invoked
synchronously in the vCPU threads when QEMU emulates
the guest write to the doorbell register. Second, pManager
also launches a thread for lazy unpinning and speculative pin-
ning, woken up every one second. This thread scans the DTT
to find out all the pages that are unmapped but still pinned
and speculatively unpin them based on their A-bits. When a
pinning decision is made, pManager invokes the VFIO API

484 2020 USENIX Annual Technical Conference USENIX Association

[45] to pin/unpin selected pages and map/unmap them in the
IOMMU.

Sub-Page Mappings - Multiple DMA buffers may co-locate in
the same 4KB guest page, e.g. as widely observed when han-
dling network packets. Sub-page mappings imply that one
page might be mapped and unmapped multiple times. In such
case, coIOMMU driver tracks the mapping count of each
mapped page and clears the “M-bit” of the corresponding en-
try only when its count reaches zero. We choose to leverage
the 5 reserved bits in each TU as the mapping count, holding
up to 31 sub-page mappings. Doing so simplifies the imple-
mentation and works well in our evaluations. Other imple-
mentations may choose different structures for such tracking
purpose.

Concurrency - coIOMMU must properly handle concurrent
pinning/unpinning requests between multiple vCPU threads
and the unpinning thread, as shown in Figure 3.

First, multiple vCPUs may try to map and pin the same DMA
page simultaneously, e.g. in sub-page mapping scenario. We
employ different locking mechanisms in guest and host for
race avoidance. Within the guest kernel, spinlock is required
for atomically setting the ‘mapped’ flag and checking the
‘pinned’ status of a target page. It is necessary as DMA map-
pings may happen in the guest interrupt context. On the other
hand, a mutex is introduced in QEMU for atomically com-
pleting the actual pinning actions: 1) rechecking the ‘pinned’
status; 2) pinning the page; and 3) updating the ‘pinned’ flag.

Second, race condition may happen between concurrent pin-
ning requests (from the vCPU threads) and unpinning re-
quests (from the unpinning thread). For example, it is possi-
ble seeing an unpinning operation starts before, yet completes
after, an in-flight pinning request. Such race may lead to the
pinning request completing successfully but with the target
page actually unpinned. We introduce two mechanisms to
solve this problem. For one, the unpinning thread needs to
check the ‘mapped’ flag before and after clearing the ‘pinned’
status. We call this special sequence as double-detection, nec-
essary to catch in-flight change of the mapping status in the
guest side. For two, the unpinning thread also needs to ac-
quire the aforementioned QEMU mutex for completing its
unpinning actions. In particular, the second check of the
‘mapped’ flag must be done with the mutex acquired and be-
fore conducting the unpinning action. If the ‘mapped’ status
becomes true, indicating that a pinning action is in progress
for the target page, the unpinning thread should cancel the
unpinning operation immediately.

4.1. Discussion

Applicability - coIOMMU applies to all kinds of directly as-
signed devices, without the need of ad-hoc changes in hard-
ware or software. Porting our Linux implementation to a new
guest OS is straightforward, as long as the OS implements a

generic DMA API layer which, obviously, is already a com-
mon feature in commodity OSes today. On the other hand,
the implementation of trackEngine and pManager is vendor-
neutral and self-contained. The separation between DMA
tracking and DMA remapping allow coIOMMU implemen-
tation to be easily portable to other vIOMMUs, regardless of
whether remapEngine is emulated or para-virtualized.

Extensibility - The page table format of the DTT can be ex-
tended to address other limitations in memory management.
For example, introducing a “D (dirty)” bit in the TU provides
a generic solution for tracking dirty pages when lively mi-
grating VMs in direct I/O. Similarly, using a “W (writable)”
bit to indicate read-only page enables the hypervisor to im-
plement copy-on-write features. Ideally, a specific imple-
mentation may extend the DTT to include the same set of per-
mission or status bits as available in a CPU page table.

Currently the DTT tracks DMA buffers in 4KB granularity.
It is sufficient for most direct I/O usages, as DMA buffers are
typically allocated in scattered 4KB pages. When large DMA
buffer is used, we rely on pManager to merge batched pinning
requests on continuous DMA pages into 2MB-based re-
quests. We observed such optimization leads to ~4.5% FPS
improvement in direct GPU benchmark, as illustrated in 5.1.
Alternatively, one may also directly extend the DTT format
to support 2MB-granular tracking entries.

Kernel Bypassing - coIOMMU also applies to various kernel
bypassing techniques [32, 33, 45], which allow applications
to directly manage DMA buffers in user space. Applications
are untrusted, so they must first register a trunk of memory to
the kernel and then manage within that trunk. The registration
goes through proper kernel interfaces, e.g. AF_XDP [33] or
VFIO [45] in Linux, which finally call into the coIOMMU

Figure 3: Race avoidance between concurrent pinning and unpin-
ning operations. Gray boxes are guest actions, and white are host.

Given a pinned page

‘mapped’==1?

Clear ‘pinned’ flag

‘mapped’==1?

Set ‘pinned’ flag

Unpin the page

Find next pinned page

Y

N

Y

N

‘pinned’==1?

When mapping a page

Set ‘mapped’ flag

Tracking Done

Ring doorbell
N

Pin the page

Set ‘pinned’ flag

Y

‘pinned’==1?Y

N

Mutex
Protected

Double
Detection

vCPU Threads Unpin Thread

Spinlock
protected

USENIX Association 2020 USENIX Annual Technical Conference 485

driver for actual mappings and unmappings thereby are still
tracked in the DTT. Kernel bypassing may increase the
memory footprint because applications usually register a one-
off big buffer pool to avoid calling into the kernel frequently.
We leave optimizing such workloads as future work.

DMA Page Faults – For devices which do support DMA page
faults, on-demand memory allocation/reclaim can happen at
any time thus one could implement fine-grained pinning
without using coIOMMU. However, coIOMMU may still
provide two benefits in such circumstance. First, the over-
head of handling DMA page faults might be non-negligible
in hot data paths. coIOMMU allows the guest to reduce the
number of faults by proactively requesting pre-pinning of hot
pages, based on the knowledge that is easily extracted from
DTT, yet invisible or difficult to acquire in legacy host. Sec-
ond, some devices may allow DMA page faults only in selec-
tive data paths. Hypervisor could enable coIOMMU along-
side the fault-based pinning scheme, to track DMA pages
which are touched in non-faultable data paths in such devices.

Guest Cooperation - coIOMMU is a para-virtualized approach
thus requires guest cooperation. We plan to submit our work
to Linux and QEMU community, so coIOMMU could be en-
abled by default in most Linux distributions in the future.
However, it is possible that a selfish guest may deliberately
report fake DMA pages or simply disable coIOMMU driver
to get more pages pinned than a cooperative guest. When re-
quired, one may choose to build a quota mechanism along-
side the new tracking interface of coIOMMU. For example,
the memory ballooning mechanism [57] can be extended to
convey the quota information of both total memory and DMA
memory, based on the service level agreement of the guest.
Afterward, pManager could reject new pinning requests from
any guest after its quota is exceeded.

5. Evaluation
Our evaluation aims to answer several questions. How does
the overhead imposed by coIOMMU compare to that of es-
tablished vIOMMUs? How many pages are pinned in various
direct I/O usages when using coIOMMU to enable fine-
grained pinning? Does coIOMMU sustain the desired perfor-
mance and security under different intra-guest protection pol-
icies? We answer these questions by planning our evaluation
to focus on four aspects: footprint, overhead, security and ap-
plicability.

Evaluated Modes - We evaluate six modes as shown in Table
1. The guest intel-iommu driver supports three protection pol-
icies: 1) passthrough, the default policy that disables DMA
remapping for performance; 2) strict, using DMA remapping
to gain full protection; and 3) lazy, trading off some security
for performance when using DMA remapping (e.g. by defer-
ring and batching IOTLB invalidations). We study the three
policies for coIOMMU and a state-of-the-art vIOMMU,

respectively, thus leading to six modes in total. In our proto-
type, coIOMMU inherits the DMA remapping logic of the
virtual VT-d, so we choose this emulated vIOMMU solution
to represent state-of-the-art vIOMMUs for fair comparison.
We use {PT-O, ST-O, LA-O} to indicate the three protection
policies with virtual VT-d and {PT-N, ST-N, LA-N} for the
policies with coIOMMU. ‘O’ stands for the ‘old’ emulated
VT-d while ‘N’ represents the ‘new’ coIOMMU.

Experimental Setup - Our setup consists of three machines, all
running Ubuntu 16.04 with kernel 5.0.0. The primary ma-
chine, used for networking and storage tests, is equipped with
a 16-core Intel Xeon Cascade Lake CPU at 2.7GHz, one
64GB DDR4 DIMM, an Intel XL710 40Gbps NIC, and two
Intel 760P series 1TB NVMe SSDs. The 2nd machine acts as
the network traffic generator, with another XL710 NIC con-
nected to the primary machine back-to-back. It includes dual
Intel Xeon Gold 6140 CPUs, each with 18 cores at 2.30GHz
and 64GB DDR4 memory. The last machine is used for GPU
evaluation, equipped with Intel Core i7-7567U CPU with
four cores at 3.50GHz, 32GB DDR4 memory, a 256GB Intel
520 series SSD, and an Intel® Iris® Plus graphics 650 GPU.

The VM of the first machine is based on RHEL7.2 with ker-
nel 5.1.0-rc3+, configured with 16 vCPUs, 32GB memory,
and a directly assigned device – either a XL710 NIC or a
760P SSD, according to whether direct-networking or direct-
storage is under evaluation. The two assigned devices are en-
abled independently, to avoid mutual interference from sec-
tion 5.1 to section 5.5. In section 5.6, we evaluated their per-
formance running combined workloads with both devices as-
signed. The VM for direct GPU includes Ubuntu 18.04 with
kernel 5.1.0-rc3+, 4 vCPUs, 4GB memory, and a directly as-
signed Intel® Iris® Plus graphics 650 GPU. The vCPUs of
both VMs are 1:1 pinned to the physical cores for stable re-
sults.

Benchmarks - We choose both micro-benchmarks and macro-
benchmarks for evaluating the six modes in direct network-
ing, direct storage and direct GPU:

• Netperf [63] is a standard micro-benchmark to measure
networking throughput. We perform Netperf stream re-
ceive (RX) and transmit (TX) tests, using 64KB message
size with 16 Netperf client/server instances (one per
core) in the guest. Aggregated throughput is reported.

Table 1: Evaluated modes in coIOMMU and virtual VT-d

mode abbr.
DMA

remapping
DMA buffer

tracking
pinning
model

protection

passthrough (virtual VT-d) PT-O unused n/a static no

passthrough (coIOMMU) PT-N unused used fine-grained no

strict (virtual VT-d) ST-O used n/a fine-grained full

strict (coIOMMU) ST-N used used fine-grained full

lazy (virtual VT-d) LA-O used n/a fine-grained relaxed

lazy (coIOMMU) LA-N used used fine-grained relaxed

486 2020 USENIX Annual Technical Conference USENIX Association

• Nginx [64] is a high-performance HTTP web server. We
use ApacheBench [69] to measure the number of concur-
rent requests that Nginx server can serve. We run
ApacheBench to issue 16 concurrent requests of a static
1MB file, through the Nginx server installed in the guest.

• Memcached [65] is a popular in-memory key-value
store, usually benchmarked using memaslap [70]. We
use the default memaslap configuration with 64-byte
keys, 1KB values, and 90%/10% GET/SET operations.
In the VM, we launch 16 memcached instances driven
by 16 memaslap threads each issuing 8 concurrent re-
quests.

• fio [66] is a standard micro-benchmark to measure disk
performance for wide range of storage types. We config-
ure 16 fio threads, each performing asynchronous direct
random reads from the assigned SSD, in 512-byte blocks
and 128 in-flight requests.

• OpenArena [67] is a 3D first-person shooter game, used
to benchmark direct GPU. The throughput is reported in
frame-per-second (fps).

In addition, we also selectively run sysbench [68] as a
memory benchmark and DPDK [32] for user-space network-
ing stack, for specific evaluation purposes.

5.1. Overhead

We record the performance of aforementioned benchmarks
in each evaluation mode, as shown in Figure 4. CPU utiliza-
tion is aggregated over all cores, i.e. one core at 100% CPU
would be reported as 100%/4=25% CPU utilization with 4
cores (for OpenArena) or 100%/16=6.25% CPU utilization
with 16 cores (for all other benchmarks). In addition, we also

capture the per-second number of completed DMA opera-
tions and associated VM-exits when running those bench-
marks, in Table 2. All benchmarks run 30 seconds, except
OpenArena, which must run to end in around 42 seconds.
Next, we compare coIOMMU to virtual VT-d under the three
Linux protection policies, respectively.

Passthrough - All networking benchmarks (left four in Figure
4) exhibit consistent results under the passthrough policy:
coIOMMU (PT-N) retains the performance comparable to
that of the virtual VT-d (PT-O), with less than 3% throughput
degradation and negligible variation in CPU utilization. Such
low cost is further explained in Table 2 – although hundreds
of thousands of DMA operations are tracked per second, the
majority of them do not trigger any VM-exit to notify the hy-
pervisor, due to the optimization of smart pinning and lazy
unpinning. For example, the lowest VM-exit number is ob-
served in memcached, with only 11 VM-exits incurred by
~3M DMA operations.

The overhead of coIOMMU is unrecognizable in FIO but in-
curs 4.5% FPS drop in OpenArena. We found that OpenA-
rena maps a big buffer (~240MB) in a batch at its launch time,
with many pages adjacent to each other. In such case, pinning
the buffer in 2MB size is more efficient than pinning in 4KB
size, due to increased IOTLB efficiency. Unfortunately, 2MB
pinning is not supported in our initial coIOMMU implemen-
tation, while it is the preferred option when KVM statically
pins the entire guest memory in PT-O. After coIOMMU was
extended to also conduct 2MB pinning for OpenArena, it then
reaches the same performance as the virtual VT-d (not shown
in the figure). We do not enable huge page pinning in other
benchmarks, because they are observed with frequent map-
ping operations on many scattered 4KB pages. Blindly doing

Table 2: The average number of completed DMA operations vs. incurred VM exits, per second.

netperf stream rx
(Gbps)

40

30

20

10

0

netperf stream tx
(Gbps)

40

30

20

10

0

nginx
(req/sec)

2.4K

1.8K

1.2K

0.6K

0

memcached
(req/sec)

2.0M

1.5M

1.0M

0.5M

0

fio
(iops)

500K

375K

250K

125K

0

throughput cpu [%]

openarena
(fps)

100

75

50

25

0

100%

75%

50%

25%

0%

dma_ops VM-exits dma_ops VM-exits dma_ops VM-exits dma_ops VM-exits dma_ops VM-exits dma_ops VM-exits

PT-O 352,224 0 577,037 0 525,974 0 3,110,716 0 781,055 0 44 0

PT-N 348,335 2,379 572,136 415 525,849 115 3,039,414 11 780,186 9 44 22

ST-O 109,403 109,403 64,448 64,448 72,239 72,239 104,354 104,354 109,864 109,198 44 44

ST-N 108,607 108,607 64,352 64,352 71,682 71,682 103,984 103,984 107,948 107,948 44 44

LA-O 141,844 71,013 59,645 29,896 63,230 31,702 145,309 72,744 163,085 81,655 44 23

LA-N 141,572 70,883 58,398 29,273 62,569 31,370 144,690 72,434 162,417 81,322 44 23

openarena
mode

netperf stream rx netperf stream tx nginx memcached fio

Figure 4: Performance of the six modes (100% CPU is 4 cores in openarena, and 16 cores in all other benchmarks)

USENIX Association 2020 USENIX Annual Technical Conference 487

huge page pinning simply adds more cost and footprint in
those circumstances.

Strict and Lazy - We did not observe recognizable difference
between coIOMMU (ST-N and LA-N) and virtual VT-d (ST-
O and LA-O) in all benchmarks, regarding to both throughput
and CPU utilization. There are much fewer DMA operations
completed in the strict and lazy policy than that in the
passthrough policy, due to the emulation cost of DMA re-
mapping. As shown in Table 2, the reduction is between
2.46x (in Netperf RX) to 29.8x (in memcached) in all evalu-
ated benchmarks. The tracking overhead in coIOMMU is
negligible when comparing to the overhead of DMA re-
mapping.

We also explore an interesting finding between lazy and strict
in Figure 4, although not directly related to coIOMMU. It is
a common learning that batching IOTLB invalidations gen-
erally brings better performance than strictly invalidating the
IOTLB one-by-one. However, it is not always the case in vir-
tualization – we observed 11% and 23% lower throughput
when comparing lazy to strict in Netperf TX and Nginx. We
find the batching interface of the virtual VT-d is the root
cause. Its emulation requires walking the entire vIOPT to
identify every valid mapping. If the walking cost exceeds the
cycles of saved invalidations, the performance of lazy is in-
stead worse than that of strict. We leave studying more effi-
cient batching interface and policy for another research.

5.2. Memory Footprint

We sample the number of pinned pages every 3 seconds, from
the beginning of the benchmarks to 6 seconds after its com-
pletion, in Figure 5. The extra 6 seconds are used to evaluate
the elasticity of the six modes, against transitional system
business. One note – the ‘max’ mark in the Y-axis indicates
the total number of guest pages, representing the case of static
pinning. It is 8M (for 32GB memory) in most benchmarks
and 1M (for 4GB memory) in OpenArena.

All six modes exhibit the same pattern in all benchmarks, ex-
cept PT-N. First, PT-O is tied to static pinning, thereby al-
ways sitting in the top ‘max’ location. Second, all four modes
with DMA remapping enabled (ST-O, ST-N, LA-O, and LA-
N) pin the least number of pages, because they need strictly

follow the desired protection semantics. As such, their lines
completely overlap in each diagram in Figure 5. The line of
PT-N (coIOMMU in the passthrough policy) fluctuates in the
middle due to smart pinning, which heuristically pins guest
pages for balancing performance and footprint. So, it is the
focus of our following analysis.

Networking - All four networking benchmarks (left four in
Figure 5) start and end with the same number of pinned pages
(~8800 pages) in PT-N. Those always-pinned pages come
from Intel i40e NIC driver, which pre-maps 512 pages per
vCPU as the receive buffer pool when the NIC is enabled.
The number sums up to 8192 pages with 16 vCPUs in our
configuration.

The largest footprint is observed in Netperf stream TX, with
up to 44530 pinned pages (174MB). It is ~4.4x of the pages
that are actually mapped for DMA at that time. The addition-
ally pinned 34158 pages reflect the DMA temporal locality,
occupying only 0.4% of the total 32GB guest memory.
coIOMMU recognizes such locality thus sustains the perfor-
mance of static pinning when keeping a small memory foot-
print. Netperf stream RX pins fewer pages (up to ~18000)
than TX, due to better DMA temporal locality – Intel i40e
NIC driver prefers to use the pre-mapped 8192 pages for in-
coming packets. On the other hand, Nginx and Memcached
are less throughput sensitive than Netperf TX/RX, yielding a
transfer rate of 2.3Gbps and 1.34 Gbps respectively. Accord-
ingly, there are fewer pages used for DMA in the two bench-
marks, leading to smaller footprint in coIOMMU.

Storage - We configure fio to perform asynchronous direct
random reads from the assigned SSD, to avoid page cache
and readahead optimization in guest Linux. 16 fio threads are
launched to read the disk with a 512-byte block size and 128
in-flight requests per I/O queue, summing up to 256 pages for
potential DMAs. The guest storage driver pre-maps 302
pages at boot time. Therefore, up to 558 pages may be
mapped for DMA simultaneously, at any time. Obviously,
coIOMMU precisely captures such temporal locality and
constantly pins 558 pages in our test.

GPU - There is no recognizable difference between the line of
PT-N and the bottom four lines, in OpenArena. The reason is

Figure 5: The number of pinned pages sampled in 3 second interval, taken from the beginning of the benchmarks to 6 seconds after their
completion. ‘max’ indicates the total pages of guest memory.

netperf s tream rx

max

15K
10K

5K

0

20K

netperf s tream tx

max

60K
40K

20K

0

80K

ngi nx

max

15K
10K

5K

0

20K

memcached

max

15K
10K

5K

0

20K

max

0.9K
0.6K

0.3K

0

1.2K

fio openarena

max

60K
40K

20K

0

80K

PT-O PT-N ST-O ST-N LA-O LA-N

488 2020 USENIX Annual Technical Conference USENIX Association

simple, as explained in §5.1, that OpenArena maps most of
its DMA pages (~240MB) one-off at launch time and then
unmaps them only at exit. In such circumstance, smart pin-
ning and lazy unpinning have no effect at all. Therefore, all
five fine-grained pinning modes pin the similar number of
guest pages, with only static pinning staying in the top.

5.3. Memory Overcommitment

Overcommitment allows the aggregated size of all VMs to
exceed the physical memory, thus improving memory utili-
zation. We explore this configuration in both coIOMMU (PT-
N) and the virtual VT-d (PT-O), to demonstrate the value of
fine-grained pinning.

We create two VMs in the test machine with 64GB physical
memory. VM1 has no assigned device and is configured with
32GB memory. It runs sysbench to randomly access a 16GB
memory region. On the other hand, VM2 is assigned with an
Intel i40e NIC and is configured with 48GB memory. It runs
Netperf to send packets through the assigned NIC. The total
memory size of the two VMs (80GB) exceeds the physical
memory limitation.

We compare the performance of running them together to that
of running each alone, in Figure 6. With the virtual VT-d,
Netperf sustains the single-VM performance while sysbench
suffers 25% performance drop. The drop is caused by fre-
quent page swaps due to insufficient host memory. There is
only 8.8GB left after statically pinning 48GB memory for
VM2. The situation gets worse with random errors reported
in VM1, when increasing the memory intensity of sysbench.
Conversely, both VMs achieve their desired performance
with coIOMMU, with 49GB free memory available even
when two benchmarks are both running.

5.4. Guest User Space Driver

The guest kernel may directly assign a device to its user space
for improved performance. However, kernel bypassing im-
poses the risk of DMA attacks from the user space. In such
case, the guest kernel typically turns on DMA remapping of
vIOMMU when the device is being assigned to the user space
and then turns off remapping after the device is assigned

backed to the kernel. In such circumstance, coIOMMU can
help the hypervisor maintain fine-grained pinning reliably,
while state-of-the-art vIOMMUs suffer from increased over-
head by switching back and forth between static pinning and
fine-grained pinning. We demonstrate such an example using
DPDK pktgen, which offloads TCP packet processing from
the guest user space to the assigned NIC. We run DPDK with
coIOMMU and with the virtual VT-d respectively and show
the comparison in Figure 7.

coIOMMU dramatically reduces the latency in several stages,
compared with the virtual VT-d: (1) 18x reduction when the
VM is created (407ms vs. 7554ms); (2) 91x reduction when
the guest kernel assigns the NIC to user space DPDK (2ms
vs. 183ms); and (3) 407x reduction when the NIC is assigned
back to the guest kernel (2ms vs. 815ms). The cost of the em-
ulated VT-d is mostly caused by pinning or unpinning the en-
tire guest memory when switching to or away from static pin-
ning. The VM creation phase suffers most because every
guest page needs to be allocated and cleared in static pinning.
In the meantime, coIOMMU pins no more than 186K pages,
while the virtual VT-d pins many more pages varying be-
tween 186K and 8M.

5.5. DMA Temporal Locality

Good temporal locality on DMA buffers is crucial for high
performance I/O processing, both in virtualization and on
bare metal. Commercial OSes are optimized toward this goal,
as observed in our evaluation and also reported by previous
studies [7, 44, 51]. On the other hand, Markuze et al. [30]
observes that many pages may be used to hold DMA buffers,
over time, in stock Linux. Hence, we studied the DMA tem-
poral locality of the networking stack in a similar configura-
tion, by running 16 Netperf TX instances for 15 minutes,
shown in Figure 8. We also run a Linux ‘dd’ command along-
side Netperf, reading the raw virtual disk into /dev/zero. The
‘dd’ command constantly causes ~20K page cache misses per
second, leading to ~20K new page allocated and heavily con-
tending with the networking stack. The experiment is con-
ducted in PT-N mode, i.e. under the passthrough policy.

Figure 6: The impact of memory overcommitment:
static pinning (PT-O) vs. fine-grained pinning (PT-N) Figure 7: Running DPDK with virtual VT-d and coIOMMU

0%

25%

50%

75%

100%

125%

0

10

20

30

40

50

virtual VT-d coIOMMU

Throughput (Gbps) cpu [%]

7554ms

183ms

815ms

virtual
VT-d coIOMMU ratio

Spent Cycles

Create VM

Assign NIC

Deassign NIC

407ms

2ms

2ms

18x

91x

407x

8388608

186368

8838608

virtual
VT-d coIOMMU ratio

Pinned Pages

Before DPDK

In DPDK

After DPDK

548

186368

548

15307x

1x

15307x

USENIX Association 2020 USENIX Annual Technical Conference 489

Our data echoes the previous finding [30] – almost the entire
guest memory (~7.9M pages, 98.7% of total memory) has
ever been used for sending packets, over time. However, the
number of pinned pages almost stays flat when coIOMMU is
enabled. The peak number is ~106K (424MB), 2.4x of that
when running Netperf TX alone and just 1.3% of the total
guest memory. The result implies that the DMA locality in a
short period is still good in such stress case, allowing the hy-
pervisor to intelligently pin the guest pages with coIOMMU.

5.6. Mixed Workloads

We run Netperf TX and fio together to check how coIOMMU
performs in mixed I/O workloads. The tested VM is config-
ured with 16 vCPUs and 32GB memory as previous tests. It
is directly assigned two devices: a XL710 NIC and a 760P
SSD. We launch 16 netperf instances and 16 fio threads sim-
ultaneously in the VM, with each vCPU holding one netperf
instance and one fio thread. Here we just compare PT-O vs.
PT-N under the passthrough policy, as the two modes can best
demonstrate the coIOMMU benefits according to the base-
line data.

The result is promising. First, there is no observable perfor-
mance difference when comparing Netperf and fio to their
baseline performance of running alone. The deviations are
less than 1% and within the error bar. Second, the peak num-
ber of pinned pages in mixed workloads is 45200 (176.5MB),
close to the sum of pinned pages of running Netperf (174MB)
and fio (2.2MB) alone. This result proves that coIOMMU can
effectively reduce the memory footprint with negligible over-
head, even when running mixed direct I/O usages together.

6. Conclusions and Future Work
Established vIOMMUs cannot reliably eliminate static pin-
ning in direct I/O, due to the emulation cost of their DMA
remapping interfaces. We instead propose coIOMMU, a new
vIOMMU architecture for efficient memory management.
coIOMMU introduces a cooperative DMA buffer tracking
mechanism for fine-grained pinning, orthogonal to the costly
DMA remapping interface. The new mechanism uses a
shared DMA tracking table (DTT) for hypervisor and guest
to exchange the DMA buffer information, without incurring

excessive notifications from the guest, due to smart pinning
and lazy unpinning. We demonstrate that coIOMMU not only
dramatically improves the efficiency of memory manage-
ment in wide direct I/O usages with negligible cost, but also
sustains the desired security as required in specific protection
policies. Last but not the least, although we implement
coIOMMU by extending an emulated vIOMMU - the virtual
Intel VT-d, this design can be easily ported to other vIOM-
MUs.

As for future work, we will focus on several areas. First, new
IOMMU trends [53, 54] begin to support two-level address
translations, allowing the guest to skip certain virtual IOTLB
invalidations for improved performance. coIOMMU should
provide efficient DMA buffer tracking in two-level transla-
tion and maintain its performance benefit. Second, some de-
vices (e.g. GPUs) partially support DMA page faults, e.g.
only for selective pages such as those used by applications.
We want to study a hybrid approach for fine-grained pinning,
by leveraging DMA page faults for faultable pages and using
coIOMMU for other non-faultable pages. Last, kernel by-
passing usually needs to pre-map a big trunk of memory for
the application to manage. We want to extend the coIOMMU
concept from the boundary between hypervisor and guest to
the boundary between kernel space and user space, to enable
finer-grained memory management in such usage.

References
[1] Yaozu Dong, Xiaowei Yang, Xiaoyong Li, Jianhui Li, Kun Tian and

Haibing Guan. High Performance Network Virtualization with SR-IOV.
In IEEE International Symposium on High-Performance Computer Ar-
chitecture (HPCA), 2010. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
https://doi.org/10.1109/HPCA.2010.5416637.

[2] PCI-SIG. Address Translation Services Revision 1.1.
http://www.pcisig.com/specifications/iov/ats/, 2009.

[3] Intel Corporation. Intel® Virtualization Technology for Directed I/O.
Architecture specification, rev. 3.1. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
http://www.intel.com/content/dam/www/public/us/en/documents/prod-
uct-specifications/vt-directed-io-spec.pdf, Jun 2019.

[4] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-Level Cache Side-Channel Attacks are Practical. In IEEE Sympo-
sium on Security and Privacy, 2015. https://doi.org/10.1109/SP.2015.43.

[5] Khronos. The OpenCL Specification, rev 2.0. https://www.khronos.org
/registry/OpenCL/specs/opencl-2.0.pdf, July 2015.

[6] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grim-
berg, Liran Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. Page
Fault Support for Network Controllers. In ACM International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), pages 449–466, 2016.
https://doi.org/10.1145/3093337.3037710.

[7] Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasserman. On the
DMA mapping problem in direct device assignment. In ACM Interna-
tional Systems and Storage Conference (SYSTOR), pages 18:1–18:12,
2010. https://doi.org/10.1145/1815695.1815718.

[8] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster.
vIOMMU: efficient IOMMU emulation. In USENIX Annual Technical
Conference (ATC), pages 73–86, 2011. https://www.usenix.org/leg-
acy/events/atc11/tech/final_files/Amit.pdf.

[9] Pirmin Vogel, Andrea Marongiu, and Luca Benini. Exploring Shared
Virtual Memory for FPGA Accelerators with a Configurable IOMMU.
In IEEE Transactions on Computers, volume 68, issue 4, 2019.
https://doi.org/10.1109/TC.2018.2879080.

[10] Avi Kivity, Yaniv Kamay, and Dor Laor. kvm: the Linux Virtual

Figure 8: DMA temporal locality when running Netperf with ‘dd’

490 2020 USENIX Annual Technical Conference USENIX Association

Machine Monitor. In Ottawa Linux Symposium (OLS), pages 225-230,
2007. https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-
230.pdf.

[11] Chris Schlaeger. AWS EC2 Virtualization: Introducing Nitro. In AWS
Summit, 2018. http://aws-de-media.s3.amazonaws.com/images/AWS_
Summit_2018/June7/Alexandria/Introducing-Nitro.pdf.

[12] Alibaba Corporation. Ali cloud elastic bare metal server – Shenlong ar-
chitecture (X-Dragon) secret. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
http://www.programmersought.com/article/7752222651/.

[13] PCI-SIG. Single root I/O virtualization and sharing 1.0 specification.
https://pcisig.com/specifications/iov/single_root/, Sep 2007.

[14] AMD Corporation. AMD IOMMU architecture specification, rev 3.00.
https://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf, De
c 2016

[15] Christopher Clark, Keir Fraser, Seven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live Migration
of Virtual Machines. In Proceedings of the 2nd Conference on Sympo-
sium on Networked Systems Design & Implementation (NSDI), volume
2, pages 273-286, 2005. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
https://www.usenix.org/legacy/event/nsdi05/tech/full_pa-
pers/clark/clark.pdf.

[16] ARM Corporation. ARM System Memory Management Unit Architec
ture Specification, rev 2.0. http://infocenter.arm.com/help/topic/com.ar
m.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specificati
on.pdf, 2016

[17] Intel Corporation. Intel Scalable I/O Virtualization Technical Specifi-
cation, rev 1.0. https://software.intel.com/en-us/download/intel-scala-
ble-io-virtualization-technical-specification, Jun 2018

[18] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister, Alexis
Bruemmer, and Leendert van Doorn. The price of safety: Evaluating
IOMMU performance. In Ottawa Linux Symposium (OLS), pages 9–20,
2007. https://www.kernel.org/doc/ols/2007/ols2007v1-pages-9-20.pdf.

[19] Amazon Corporation. Amazon EC2 Instance Types. https://aws.ama-
zon.com/ec2/instance-types/, 2019

[20] Xin Xu, Bhavesh Davda. SRVM: Hypervisor Support for Live Migra-
tion with Passthrough SR-IOV Network Devices. In Proceedings of the
12th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Envi-
ronments (VEE), pages 65-77, 2016. https://dl.acm.org/cita-
tion.cfm?doid=2892242.2892256.

[21] Nadav Amit, Abel Gordon, Nadav Har’El, Muli Ben-Yehuda, Alex
Landau, Assaf Schuster, and Dan Tsafrir. Bare-Metal Performance for
Virtual Machines with Exitless Interrupts. In Communications of ACM,
volume 59, issue 1, pages 108-116, 2016.
https://doi.org/10.1145/2845648.

[22] Alibaba Corporation. Elastic Compute Service Instance Type Families.
https://www.alibabacloud.com/help/doc-detail/25378.htm, Jul 2019.

[23] Eric Auger. vIOMMU/ARM: full emulation and virtio-iommu ap-
proaches. In KVM Forum, 2017. http://events17.linuxfounda-
tion.org/sites/events/files/slides/viommu_arm.pdf.

[24] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan Tsafrir. DAMN:
Overhead-Free IOMMU Protection for Networking. In ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 301–315, 2018.
https://doi.org/10.1145/3173162.3173175.

[25] James E.J. Bottomley. Dynamic DMA mapping using the generic de-
vice. https://www.kernel.org/doc/Documentation/DMA-API.txt. Linux
kernel documentation.

[26] Edwin Zhai, Gregory D. Cummings, and Yaozu Dong. Live Migration
with Pass-through Device for Linux VM. In Ottawa Linux Symposium
(OLS), pages 261-268, 2008. https://landley.net/kdocs/ols/2008/ols20

08v2-pages-261-267.pdf.
[27] The HSA Foundation. http://www.hsafoundation.com/.
[28] Asim Kadav and Michael M. Swift. Live Migration of Direct-Access

Devices. In ACM SIGOPS Operating System Review (OSR), volume 43,
issue 3, pages 95-104, 2009. http://pages.cs.wisc.edu/~swift/pa-
pers/shadow-migrate-osr.pdf.

[29] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor,
Nadav Har’El, Abel Gordon, Anthony Liguori, Orit Wasserman and
Ben-Ami Yassour. The Turtles Project: Design and Implementation of
Nested Virtualization. In USENIX Symposium on Operating Systems

Design & Implementation (OSDI), pages 423-436, 2010.
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Ben-Ye-
huda.pdf.

[30] Alex Markuze, Adam Morrison, and Dan Tsafrir. True IOMMU protec-
tion from DMA attacks: When copy is faster than zero copy. In ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 249–262, 2016.
https://doi.org/10.1145/2872362.2872379.

[31] Ardalan Amri Sani, Kevin Boos, Shaoqu Qin, and Lin Zhong. I/O Para-
virtualizatoin at the Device File Boundary. In ACM International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), 2014. aaaaaaaaaaaaaaaaaaaa
http://doi.org/10.1145/2541940.2541943.

[32] Intel Corporation. DPDK: Data Plane Development Kit. http://dpdk.org.
[33] AF_XDP. https://www.kernel.org/doc/html/v4.18/networking/af_xdp.

html. Linux networking documentation.
[34] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection

Based Architecture for Intrusion Detection. In Proceedings of Network
and Distributed Systems Security Symposium (NDSS), 2003.
https://suif.stanford.edu/papers/vmi-ndss03.pdf.

[35] Zhenhao Pan, Yaozu Dong, Yu Chen, Lei Zhang, Zhijiao Zhang.
CompSC: Live Migration with Pass-through Devices. In Proceedings of
the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Envi-
ronments (VEE), pages 109-120, 2012.
https://doi.org/10.1145/3139645.3139649.

[36] Yuval Yarom and Katrina Falkner. Flush+Reload: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd

USENIX conference on Security Symposium (SEC), pages 719–732,
2014. https://www.usenix.org/system/files/conference/usenixsecu-
rity14/sec14-paper-yarom.pdf.

[37] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and Tzi-cker Chi-
ueh. A Comprehensive Implementation and Evaluation of Direct Inter-
rupt Delivery. In Proceedings of the 11th ACM SIGPLAN/SIGOPS Con-
ference on Virtual Execution Environments (VEE), pages 1-15, 2015.
https://doi.org/10.1145/2731186.2731189.

[38] Omer Peleg, Adam Morrison, Benjamin Serebrin, and Dan Tsafrir. Uti-
lizing the IOMMU Scalably. In USENIX Annual Technical Conference
(ATC), pages 549–562, 2011. aaaaaaaaaaaaaaaaaaaaaaaaaaaa
https://www.usenix.org/system/files/conference/atc15/atc15-paper-
peleg.pdf.

[39] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Gotz. Un-
modified Device Driver Reuse and Improved System Dependability via
Virtual Machines. In USENIX Symposium on Operating Systems Design
& Implementation (OSDI), volume 6, pages 2-2, 2004. https://www.use-
nix.org/legacy/events/osdi04/tech/full_papers/levasseur/levasseur.pdf.

[40] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H. Loh, and Ab-
hishek Bhattacharjee. Observations and Opportunities in Architecting
Shared Virtual Memory for Heterogeneous Systems. In IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), 2016. https://doi.org/10.1109/ISPASS.2016.7482091.

[41] Nikolay Sakharnykh. Everything You Need to Know About Unified
Memory. In NVIDIA’s GPU Technology Conference (GTC), 2018.
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-eve-
rything-you-need-to-know-about-unified-memory.pdf.

[42] Intel Corporation. Intel Open Source HD Graphics and Intel® Iris®
Plus graphics Programmer’s Reference Manual, page 139, 2017.
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-kbl-
vol05-memory_views.pdf.

[43] Vinod Mamtani. DMA directions and Windows. http://download.mi-
crosoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-
b4085a80e34e/sys-t304_wh07.pptx, 2007.

[44] Paul Willmann, Scott Rixner, and Alan L. Cox. Protection Strategies
for Direct Access to Virtualized I/O Devices. In USENIX Annual Tech-
nical Conference (ATC), 2008. aaaaaaaaaaaaaaaaaaaaaaaaaa
https://www.usenix.org/legacy/event/usenix08/tech/full_papers/will-
mann/willmann_html/.

[45] Alex Williamson. VFIO: A user’s perspective. In KVM Forum, 2012.
http://www.linux-kvm.org/images/b/b4/2012-forum-VFIO.pdf.

[46] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. Security Im-
plications of Memory Deduplication in a Virtualized Environment. In

USENIX Association 2020 USENIX Annual Technical Conference 491

Proceedings of the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2013.
https://www.eecis.udel.edu/~hnw/paper/memdedup.pdf.

[47] Moshe Malka, Nadav Amit, and Dan Tsafrir. Efficient Intra-Operating
System Protection Against Harmful DMAs. In USENIX Conference on
File and Storage Technologies (FAST), pages 29-44, 2015.
https://www.usenix.org/system/files/conference/fast15/fast15-paper-
malka.pdf.

[48] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda. Hi
gh Performance VMM-bypass I/O in virtual machines. In USENIX An
nual Technical Conference (ATC), Pages 3-3, 2006. https://www.useni
x.org/legacy/event/usenix06/tech/full_papers/liu/liu_html/usenix06.ht
ml.

[49] Himanshu Raj and Karsten Schwan. High Performance and scalable I/
O virtualization via self-virtualized devices. In Proceedings of the 16th

International Symposium on High Performance Distributed Computing
(HPDC), pages 189-188, 2007. https://doi.org/10.1145/1272366.1272

390.
[50] Kaushik Kumar Ram, Jose Renato Santos, Yoshio Turner, Alan L. Cox,

and Scott Rixner. Achieving 10Gbps Using Safe and Transparent Net-
work Interface Virtualization. In Proceedings of the International Con-
ference on Virtual Execution Environments (VEE), 2009.
https://www.cs.rice.edu/~rixner/publication/ram-09/.

[51] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. IOMMU: strat-
egies for mitigating the IOTLB bottleneck. In Proceedings of Interna-
tional Conference on Computer Architecture (ISCA), pages 256-274,
2010. https://doi.org/10.1007/978-3-642-24322-6_22.

[52] Hongwei Tang, Qiang Li, Shengzhong Feng, Xiaofang Zhao, and Yan
Jin. IOMMU Para-Virtualization for Efficient and Secure DMA in Vir-
tual Machines. In KSII Transactions on Internet and Information Sys-
tems, vol. 10, no. 12, pp. 5938-5963, 2016. DOI:
10.3837/tiis.2016.12.014.

[53] Eric Auger. SMMUv3 Nested Stage Setup. aaaaaaaaaaaaaaaaaaaaa
https://lkml.org/lkml/2019/3/17/124.

[54] Baolu Lu. Use 1st-level for IOVA translation. aaaaaaaaaaaaaaaaaaa
https://lwn.net/Articles/807079/

[55] Jun Nakajima. Enhancing KVM for Guest Protection and Security. In
KVM Forum, 2019. aa
https://static.sched.com/hosted_files/kvmforum2019/23/nakajima-en-
hancing-kvm-for-guest-protection.pdf/.

[56] AMD. Secure Encrypted Virtualization. https://developer.amd.com/sev/.
[57] Carl A. Waldspurger. Memory Resource Management in VMware ESX

Server. In USENIX Symposium on Operating Systems Design & Imple-
mentation (OSDI), 2002. sssssssssssssssssssssssssssssssssssss
https://doi.org/10.1145/844128.844146

[58] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In
Proceedings of the annual conference on USENIX Annual Technical
Conference (ATEC), 2005. sss
https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_pa-
pers/bellard/bellard.pdf

[59] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan Tsafrir.
rIOMMU: Efficient IOMMU for I/O Devices that Employ Ring Buffers.
In ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2015.
https://dl.acm.org/doi/pdf/10.1145/2775054.2694355/.

[60] Peter Xu. Device Assignment with Nested Guest and DPDK. In KVM
Forum, 2017. https://www.linux-kvm.org/images/a/a6/KVM_Fo-
rum_2018_viommu_vfio.pdf.

[61] Baolu Lu. IOMMU: Bounce Page for Untrusted Devices.
https://lwn.net/Articles/794595/.

[62] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison
Pearce, Peter G. Neumann, Simon W. Moore, and Robert N. M. Watson.
Thunderclap: Exploring Vulnerabilities in Operating System IOMMU
Protection via DMA from Untrustworthy Peripherals. In Network and
Distributed System Security (NDSS) Symposium, 2019.
https://www.ndss-symposium.org/wp-content/up-
loads/2019/02/ndss2019_05A-1_Markettos_paper.pdf.

[63] Rick A. Jones. A network performance benchmark (revision 2.0). Tech-
nique report, Hewlett Packard, 1995.
http://www.netperf.org/netperf/training/Netperf.html

[64] Nginx. https://www.nginx.com/.
[65] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal,

2004. https://memcached.org/.
[66] Fio. https://fio.readthedocs.io/en/latest/fio_doc.html.
[67] OpenArena. https://en.wikipedia.org/wiki/OpenArena.
[68] Sysbench. https://wiki.gentoo.org/wiki/Sysbench.
[69] Apachebench. http://en.wikipedia.org/wiki/ApacheBench.
[70] Brian Aker. Memslap – load testing and benchmarking a server.

http://docs.libmemcached.org/bin/memslap.html.

492 2020 USENIX Annual Technical Conference USENIX Association

BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo
Federated Learning

Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan†, Yang Liu‡

HKUST, †University of Nevada, Reno, ‡WeBank
{czhangbn, slida, jxiaaf, weiwa}@cse.ust.hk, fyan@unr.edu, yangliu@webank.com

Abstract
Cross-silo federated learning (FL) enables organizations

(e.g., financial or medical) to collaboratively train a machine
learning model by aggregating local gradient updates from
each client without sharing privacy-sensitive data. To ensure
no update is revealed during aggregation, industrial FL frame-
works allow clients to mask local gradient updates using ad-
ditively homomorphic encryption (HE). However, this results
in significant cost in computation and communication. In our
characterization, HE operations dominate the training time,
while inflating the data transfer amount by two orders of mag-
nitude. In this paper, we present BatchCrypt, a system solution
for cross-silo FL that substantially reduces the encryption and
communication overhead caused by HE. Instead of encrypting
individual gradients with full precision, we encode a batch
of quantized gradients into a long integer and encrypt it in
one go. To allow gradient-wise aggregation to be performed
on ciphertexts of the encoded batches, we develop new quan-
tization and encoding schemes along with a novel gradient
clipping technique. We implemented BatchCrypt as a plug-
in module in FATE, an industrial cross-silo FL framework.
Evaluations with EC2 clients in geo-distributed datacenters
show that BatchCrypt achieves 23×-93× training speedup
while reducing the communication overhead by 66×-101×.
The accuracy loss due to quantization errors is less than 1%.

1 Introduction

Building high-quality machine learning (ML) models requires
collecting a massive amount of training data from diverse
sources. However, in many industries, data is dispersed and
locked in multiple organizations (e.g., banks, hospitals, and
institutes), where data sharing is strictly forbidden due to
the growing concerns about data privacy and confidentiality
as well as violating the government regulations [12, 17, 45].
Cross-silo federated learning (FL) [27,61] offers an appealing
solution to break “data silos” among organizations, where
participating clients collaboratively learn a global model by
uploading their local gradient updates to a central server for
aggregation, without sharing privacy-sensitive data.

To ensure that no client reveals its update during aggrega-
tion, many approaches have been proposed [9, 37, 47, 48, 52].
Among them additively homomorphic encryption (HE), no-
tably the Paillier crytosystem [46], is particularly attractive in
the cross-silo setting [37,48,61], as it provides a strong privacy
guarantee at no expense of learning accuracy loss (§2). With
HE, gradient aggregation can be performed on ciphertexts
without decrypting them in advance. HE has been adopted
in many cross-silo FL applications [13, 23, 37, 38, 44], and
can be easily plugged into the existing FL frameworks to aug-
ment the popular parameter server architecture [33]. Before
the training begins, an HE key-pair is synchronized across all
clients through a secure channel. During training, each client
encrypts its gradient updates using the public key and uploads
the ciphertexts to a central server. The server aggregates the
encrypted gradients from all clients and dispatches the result
to each of them. A client decrypts the aggregated gradients
using the private key, updates its local model, and proceeds
to the next iteration. As clients only upload the encrypted
updates, no information can be learned by the server or an
external party during data transfer and aggregation.

Although HE provides a strong privacy guarantee for cross-
silo FL, it performs complex cryptographic operations (e.g.,
modular multiplications and exponentiations) that are ex-
tremely expensive to compute. Our testbed characterization
(§3) shows that more than 80% of the training iteration time
is spent on encryption/decryption. To make matters worse,
encryption yields substantially larger ciphertexts, inflating the
amount of data transfer by over 150× than plaintext learning.
The significant overhead of HE in encryption and communi-
cation has become a major roadblock to facilitating cross-silo
FL. According to our contacts at WeBank [57], most of their
FL applications cannot afford to use the encrypted gradients
and are limited to scenarios with less stringent privacy require-
ments (e.g., FL across departments or trustworthy partners).

In this paper, we tackle the encryption and communication
bottlenecks created by HE with a simple batch encryption
technique. That is, a client first quantizes its gradient values
into low-bit integer representations. It then encodes a batch
of quantized values to a long integer and encrypts it in one go.

USENIX Association 2020 USENIX Annual Technical Conference 493

Compared with encrypting individual gradient values of full
precision, batch encryption significantly reduces the encryp-
tion overhead and data transfer amount. Although this idea
has been briefly mentioned in the previous work [37, 48], the
treatment is rather informal without a viable implementation.
In fact, to enable batch encryption in cross-silo FL, there are
two key technical challenges that must be addressed, which,
to our knowledge, remains open.

First, a feasible batch encryption scheme should allow us
to directly sum up the ciphertexts of two batches, and the
result, when decrypted, matches that of performing gradient-
wise aggregation on the two batches in the clear. We show that
although it is viable to tweak the generic quantization scheme
to meet such need, it has many limitations as it is not designed
for aggregation. Instead, we design a customized quantiza-
tion scheme that quantizes gradient values to signed integers
uniformly distributed in a symmetric range. Moreover, to sup-
port gradient-wise aggregation in a simple additive form, and
that the addition does not cause overflow to corrupt the en-
coded gradients, we develop a new batch encoding scheme
that adopts two’s compliment representation with two sign
bits for quantized values. We also use padding and advance
scaling to avoid overflow in addition. All these techniques
allow gradient aggregation to be performed on ciphertexts of
the encoded batches, without decryption first.

Second, as gradients values are unbounded, they need to
be clipped before quantization, which critically determines
the learning performance [5, 41]. However, it remains unclear
how to choose the clipping thresholds in the cross-silo setting.
We propose an efficient analytical model dACIQ by extend-
ing ACIQ [5], a state-of-the-art clipping technique for ML
over centralized data, to cross-silo FL over decentralized data.
dACIQ allows us to choose optimal clipping thresholds with
the minimum cumulative error.

We have implemented our solution BatchCrypt in
FATE [18], a secure computing framework released by We-
Bank [57] to facilitate FL among organizations. Our im-
plementation can be easily extended to support other opti-
mization schemes for distributed ML such as local-update
SGD [22, 35, 56], model averaging [40], and relaxed syn-
chronization [24, 34, 62], all of which can benefit from
BatchCrypt when applied to cross-silo FL. We evaluate
BatchCrypt with nine participating clients geo-distributed in
five AWS EC2 datacenters across three continents. These
clients collaboratively learn three ML models of various
sizes: a 3-layer fully-connected neural network with FM-
NIST dataset [60], AlexNet [32] with CIFAR10 dataset [31],
and a text-generative LSTM model [25] with Shakespeare
dataset [55]. Compared with the stock implementation of
FATE, BatchCrypt accelerates the training of the three mod-
els by 23×, 71×, and 93×, respectively, where more salient
speedup can be achieved for more complex models. In the
meantime, the communication overhead is reduced by 66×,
71×, and 101×, respectively. The significant benefits of

BatchCrypt come at no cost of model quality, with a neg-
ligible accuracy loss less than 1%. BatchCrypt1 offers the
first efficient implementation that enables HE in a cross-silo
FL framework with low encryption and communication cost.

2 Background and Related Work

In this section, we highlight the stringent privacy requirements
posed by cross-silo federated learning. We survey existing
techniques for meeting these requirements.

2.1 Cross-Silo Federated Learning

According to a recent survey [27], federated learning (FL) is
a scenario where multiple clients collaboratively train a ma-
chine learning (ML) model with the help of a central server;
each client transfers local updates to the server for imme-
diate aggregation, without having its raw data leaving the
local storage. Depending on the application scenarios, fed-
erated learning can be broadly categorized into cross-device
FL and cross-silo FL. In the cross-device setting, the clients
are a large number of mobile or IoT devices with limited
computing power and unreliable communications [27, 30, 39].
In contrast, the clients in the cross-silo setting are a small
number of organizations (e.g., financial and medical) with re-
liable communications and abundant computing resources in
datacenters [27, 61]. We focus on cross-silo FL in this paper.

Compared with the cross-device setting, cross-silo FL has
significantly more stringent requirements on privacy and learn-
ing performance [27,61]. First, the final trained model should
be exclusively released to those participating organizations—
no external party, including the central server, can have access
to the trained model. Second, the strong privacy guarantee
should not be achieved at a cost of learning accuracy. Third,
as an emerging paradigm, cross-silo FL is undergoing fast in-
novations in both algorithms and systems. A desirable privacy
solution should impose minimum constraints on the underly-
ing system architecture, training mode (e.g., synchronous and
asynchronous), and learning algorithms.

2.2 Privacy Solutions in Federated Learning

Many strategies have been proposed to protect the privacy
of clients for federated learning. We briefly examine these
solutions and comment on their suitability to cross-silo FL.

Secure Multi-Party Computation (MPC) allows multiple
parties to collaboratively compute an agreed-upon function
with private data in a way that each party knows nothing
except its input and output (i.e., zero-knowledge guarantee).
MPC utilizes carefully designed computation and synchro-
nization protocols between clients. Such protocols have strong
privacy guarantees, but are difficult to implement efficiently

1BatchCrypt is open-sourced and can be found at https://github.com/
marcoszh/BatchCrypt

494 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/marcoszh/BatchCrypt
https://github.com/marcoszh/BatchCrypt

Figure 1: The architecture of cross-silo FL system, where HE
is implemented as a pluggable module on the clients.

in a geo-distributed scenario like cross-silo FL [61]. Devel-
opers have to carefully engineer the ML algorithms and di-
vide the computation among parties to fit the MPC paradigm,
which may lower the privacy guarantees for better perfor-
mance [16, 42, 43].

Differential Privacy (DP) is another common tool that can
be combined with model averaging and SGD to facilitate
secure FL [47, 52]. It ensures the privacy of each individ-
ual sample in the dataset by injecting noises. A recent work
proposes to employ selective parameter update [52] atop dif-
ferential privacy to navigate the tradeoff between data privacy
and learning accuracy. Although DP can be efficiently imple-
mented, it exposes plain gradients to the central server during
aggregation. Later study shows that one can easily recover the
information from gradients [48]. While such privacy breach
and the potential accuracy drop might be tolerable for mobile
users in cross-device FL, they raise significant concerns for
participating organizations in cross-silo FL.

Secure Aggregation [9] is proposed recently to ensure that
the server learns no individual updates from any clients but
the aggregated updates only. While secure aggregation has
been successfully deployed in cross-device FL, it falls short
in cross-silo FL for two reasons. First, it allows the central
server to see the aggregated gradients, based on which the
information about the trained model can be learned by an
external entity (e.g., public cloud running the central server).
Second, in each iteration, clients must synchronize secret
keys and zero-sum masks, imposing a strong requirement of
synchronous training.

Homomorphic Encryption (HE) allows certain computa-
tion (e.g., addition) to be performed directly on ciphertexts,
without decrypting them first. Many recent works [13, 37,
38, 48] advocate the use of additively HE schemes, notably
Paillier [46], as the primary means of privacy guarantee in
cross-silo FL: each client transfers the encrypted local updates
to the server for direct aggregation; the result is then sent back
to each client for local decryption. HE meets the three require-
ments of cross-silo FL. First, it protects the trained model
from being learned by any external parties including the server

as update aggregation is performed on ciphertexts. Second,
it incurs no learning accuracy loss, as no noise is added to
the model updates during the encryption/decryption process.
Third, HE directly applies to the existing learning systems,
requiring no modifications other than encrypting/decrypting
updates. It hence imposes no constraints to the synchroniza-
tion schemes and the learning algorithms. However, as we
shall show in §3, HE introduces significant overhead to com-
putation and communication.

Summary To summarize, each of these privacy-preserving
techniques has its pros and cons. MPC is able to provide
strong privacy guarantees, but requires expert efforts to re-
engineer existing ML algorithms. DP can be adopted easily
and efficiently, but has the downside of weaker privacy guar-
antee and potential accuracy loss. Secure aggregation is an
effective way to facilitate large-scale cross-device FL, but may
not be suitable for cross-silo FL as it exposes the aggregated
results to third parties and incurs high synchronization cost.
HE can be easily adopted to provide strong privacy guarantees
without algorithm modifications or accuracy loss. However,
the high computation and communication overheads make it
impractical for production deployment at the moment.

2.3 Cross-Silo FL Platform with HE
Fig. 1 depicts a typical cross-silo FL system [27,37,61], where
HE is implemented as a pluggable module on the clients. The
aggregator is the server which coordinates the clients and
aggregates their encrypted gradients. Note that in this work,
we assume the aggregator is honest-but-curious, a common
threat model used in the existing FL literature [9, 38, 52].
The communications between all parties (the clients and

the aggregator) are secured by cryptographic protocols such
as SSL/TLS, so that no third party can learn the messages
being transferred. Before the training starts, the aggregator
randomly selects a client as the leader who generates an HE
key-pair and synchronizes it to all the other clients. The leader
also initializes the ML model and sends the model weights
to all the other clients. Upon receiving the HE key-pair and
the initial weights, the clients start training. In an iteration,
each client computes the local gradient updates (1©), encrypts
them with the public key (2©), and transfers the results to the
aggregator. The aggregator waits until the updates from all the
clients are received. It then adds them up and dispatches the
results to all clients (3©). A client then decrypts the aggregated
gradients (4©) and uses it to update the local model (5©).

This architecture design follows the classic distributed
SGD pattern. So the existing theories and optimizations in-
cluding flexible synchronization [24, 34, 62] and local update
SGD [22,35,56] naturally apply. Moreover, as model updating
is performed on the client’s side using the plaintext gradient
aggregation, we can adopt state-of-the-art adaptive optimizers
such as Adam [28] for faster convergence—a huge advan-
tage over the existing proposal [48] that applies encrypted
gradients directly on the encrypted global model in the server.

USENIX Association 2020 USENIX Annual Technical Conference 495

3 Characterizing Performance Bottlenecks
In this section, we characterize the performance of cross-silo
FL with three real applications driven by deep learning models
in a geo-distributed setting. We show that encryption and com-
munication come as two prohibitive bottlenecks that impede
the adoption of FL among organizations. We survey possible
solutions in the literature and discuss their inefficiency. To
our knowledge, we are the first to present a comprehensive
characterization for cross-silo FL in a realistic setting.

3.1 Characterization Results
Cross-silo FL is usually performed in multiple geo-distributed
datacenters of participating organizations [27, 61]. Our char-
acterization is carried out in a similar scenario where nine
EC2 clients in five geo-distributed datacenters collaboratively
training three ML models of various sizes, including FMNIST,
CIFAR, and LSTM (Table 3). Unless otherwise specified, we
configure synchronous training, where no client can proceed
to the next iteration until the (encrypted) updates from all
clients have been aggregated. We defer the detailed descrip-
tion of the cluster setup and the ML models to §6.1.

We base our study in FATE (Federated AI Technology
Enabler) [18], a secure compute framework developed by
WeBank [57] to drive its FL applications with the other in-
dustry partners. To our knowledge, FATE is the only open-
source cross-silo FL framework deployed in production en-
vironments. FATE has a built-in support to the Pailler cryp-
tosystem [46] (key size set to 2048 bits by default), arguably
the most popular additively HE scheme [50]. Our results also
apply to the other partially HE cryptosystems.

Encryption and Communication Overhead We start our
characterization by comparing two FL scenarios, with and
without HE. We find that the use of HE results in exceedingly
long training time with dramatically increased data transfer.
More specifically, when HE is enabled, we measured the av-
erage training iteration time 211.9s, 2725.7s, and 8777.7s for
FMNIST, CIFAR, and LSTM, respectively. Compared with
directly transferring the plaintext updates, the iteration time is
extended by 96×, 135×, and 154×, respectively. In the mean-
time, when HE is (not) in use, we measured 1.1GB (6.98MB),
13.1GB (85.89MB), and 44.1GB (275.93MB) data transfer
between clients and aggregator in one iteration on average for
FMNIST, CIFAR, and LSTM, respectively. To sum up, the
use of HE increases both the training time and the network
footprint by two orders of magnitude. Such performance over-
head becomes even more significant for complex models with
a large number of weights (e.g., LSTM).

Deep Dive To understand the sources of the significant over-
head caused by HE, we examine the training process of the
three models in detail, where we sample an iteration and
depict in Fig. 2 the breakdown of the iteration time spent
on different operations on the client’s side (left) and on the
aggregator’s side (right), respectively.

comp
enc

idl
dec

idl
col

agg
dis

F C L

0

50

100

p
e
rc

e
n
ta

g
e

(a) Client: compute,
encrypt, idle, decrypt

F C L

0

50

100

p
e
rc

e
n
ta

g
e

(b) Aggregator: idle, collect,
aggregate, dispatch

Figure 2: Iteration time breakdowns of FMNIST, CIFAR, and
LSTM for a client and the aggregator.

As illustrated in Fig. 2a, on the client’s side, HE-related
operations dominate the training time in all three applications.
In particular, a client spent around 60% of the iteration time
on gradient encryption (yellow), 20% on decryption (dark
purple), and another 20% on data transfer and idle waiting
for the gradient aggregation to be returned2 (light purple). In
comparison, the time spent on the actual work for computing
the gradients becomes negligible (< 0.5%).

When it comes to the aggregator (Fig. 2b), most of the time
(> 70%) is wasted on idle waiting for a client to send in the
encrypted gradients (orange). Collecting the gradients from
all clients (yellow) and dispatching the aggregated results to
each party (dark purple) also take a significant amount of time,
as clients are geo-distributed and may not start transferring (or
receiving) at the same time. The actual computation time for
gradient aggregation (light purple) only accounts for less than
10% of the iteration span. Our deep-dive profiling identifies
encryption and decryption as the two dominant sources of the
exceedingly long training time.

Why is HE So Expensive? In additively HE cryptosystems
such as Paillier [46], encryption and decryption both involve
multiple modular multiplications and exponentiation opera-
tions with a large exponent and modulus (usually longer than
512 bits) [50], making them extremely expensive to compute.
Encryption also yields significantly larger ciphertexts, which,
in turn, causes a huge communication overhead for data trans-
fer. In additively HE schemes such as Paillier, a ciphertext
takes roughly the same number of bits as the key size, irre-
spective of the plaintext size. As of 2019, the minimum secure
key size for Paillier is 2048 [6], whilst a gradient is typically
a 32-bit floating point. This already translates to 64× size
inflation after encryption.

We further benchmark the computation overhead and the
inflated ciphertexts of Paillier with varying key sizes. We
use python-paillier [15] to encrypt and then decrypt
900K 32-bit floating points. Table 1 reports the results on

2Due to the synchronization barrier, a client needs to wait for all the other
clients to finish transferring updates to the aggregator.

496 2020 USENIX Annual Technical Conference USENIX Association

Table 1: Benchmarking Paillier HE with various key sizes.

Key size Plaintext Ciphertext Encryption Decryption
1024 6.87MB 287.64MB 216.87s 68.63s
2048 6.87MB 527.17MB 1152.98s 357.17s
3072 6.87MB 754.62MB 3111.14s 993.80s

a c5.4xlarge instance. As the key size increases (higher se-
curity), both the computation overhead and the size of cipher-
texts grow linearly. Since Paillier can only encrypt integers,
floating point values have to be scaled beforehand, and their
exponents information contribute further to data inflation.

Summary The prohibitive computation and communication
overhead caused by HE, if not properly addressed, would
lead to two serious economic consequences. First, given the
dominance of HE operations, accelerating model computation
using high-end hardware devices (e.g., GPUs and TPUs) is no
longer relevant—a huge waste of the massive infrastructure
investments in clients’ datacenters. Second, the overwhelm-
ing network traffics across geo-distributed datacenters incurs
skyrocketing Internet data charges, making cross-silo FL eco-
nomically unviable. In fact, in WeBank, production FL appli-
cations may choose to turn off HE if the security requirement
is not so strict.

3.2 Potential Solutions and Their Inefficiency
Hardware-Accelerated HE HE process can be accelerated
using software or hardware solutions. However, typical HE
cryptosystems including Paillier have limited interleaving
independent operations, thus the potential speedup of a single
HE operation is quite limited. In fact, it is reported that a
specialized FPGA can only accelerate Paillier encryption by
3× [50]. Moreover, simply accelerating the encryption itself
does not help reduce the communication overhead.

Reducing Communication Overhead As accelerating HE
itself does not clear the barrier of adopting HE in FL, what
if we reduce the amount of data to encrypt in the first place?
Since data inflation is mainly caused by the mismatch be-
tween the lengths of plaintexts and ciphertexts, an intuitive
idea would be batching as many gradients together as possible
to form a long plaintext, so that the amount of encryption op-
erations will reduce greatly. However, the challenge remains
how to maintain HE’s additive property after batching without
modifying ML algorithms or hurting the learning accuracy.

While some prior works have explored the idea of joining
multiple values together to reduce HE overhead, they give
no viable implementation of batch encryption for cross-silo
FL. [48] makes a false assumption that quantization is loss-
less, and uses adaptive optimizer Adam in its simulation even
though its design does not support that. With only plain SGD
available, [48] requires tedious learning rate scheduling tun-
ing to achieve similar results of advanced optimizers [59].
The naive batching given in [37] cannot be correctly imple-
mented as homomorphic additivity is not retained. In fact,

none of these works have systematically studied the impact of
batching. Gazelle [26] and SEAL [51] adopt the SIMD (single
instruction multiple data) technique to speed up HE. However,
such approach only applies to lattice-based HE schemes [11]
and is restricted by their unique properties. For instance, it
incurs dramatic computational complexity for lattice-based
HE schemes to support more levels of multiplication [26].
Besides, these works only accelerate integer cryptographic
operations. How to maintain the training accuracy in cross-
silo FL context remains an open problem.

4 BatchCrypt
In this section, we describe our solution for gradient batching.
We begin with the technical challenges. We first show that
gradient quantization is required to enable batching. We then
explain that generic quantization scheme lacks flexibility and
efficiency to support general ML algorithms, which calls for
an appropriately designed encoding and batching scheme;
to prevent model quality degradation, an efficient clipping
method is also needed. We name our solution BatchCrypt,
a method that co-designs quantization, batch encoding, and
analytical quantization modeling to boost computation speed
and communication efficiency while preserving model quality
in cross-silo FL with HE.

4.1 Why is HE Batching for FL a Problem?
On the surface, it seems straightforward to implement gradient
batching. In fact, batching has been used to speed up queries
over integers in a Paillier-secured database [19]. However, this
technique only applies to non-negative integers [19]. In order
to support floating numbers, the values have to be reordered
and grouped by their exponents [19]. Such constraints are
the key to preserving HE’s additivity of batched ciphertexts—
that is, the sum of two batched ciphertexts, once decrypted,
should match the results of element-wise adding plaintext
values in the two groups. Gazelle and SEAL [26, 51] employ
SIMD technique to meet this requirement, but the approach is
limited to lattice-based cryptosystems. We aspire to propose
a universal batching method for all additively homomorphic
cryptosystems.

Why Quantization is Needed? Gradients are signed float-
ing values and must be ordered by their corresponding model
weights, for which we cannot simply rearrange them by expo-
nents. The only practical approach is to use integer represen-
tations of gradients in the batch, which requires quantization.

Existing Quantization Schemes ML algorithms are re-
silient to update noise and able to converge with gradients of
limited precision [10]. Fig. 3a illustrates how generic gradient
quantization scheme can be used in HE batching. Notably,
since there is no bit-wise mapping between a ciphertext and
its plaintext, permutation within ciphertexts is not allowed—
only plain bit-by-bit addition between batched integers is
available. Assume a gradient g in [−1,1] is quantized into an

USENIX Association 2020 USENIX Annual Technical Conference 497

+

=

11 111 111100 00 000 000100

11 000 001000 11 111 100100

…

z bit padding r bit value quantized
value

-1

-126

+1

-7

00

00 …

11 000 0001 11 111 101000
-127 -6

00 …01

+

=

0111 111000 1000 000100

0000 000100 0111 100000

…
126

1

129

120

00

00 …

0111 1111 1111 100100
127 249

00 …00

sign bit

(a) generic quantization (b) BatchCrypt

original
value

-0.0079

-0.9921

-1

0.0079

-0.0551

-0.0475

-0.0079

-0.9921

-1

0.0079

-0.0551

-0.0475

Figure 3: An illustration of a generic quantization scheme and
BatchCrypt. The latter preserves additivity during batching,
with the sign bits highlighted within values.

8-bit unsigned integer. Let [·] denote the standard rounding
function. The quantized value of g is

Q(g) = [255∗ (g−min)/(max−min)],

where max = 1 and min =−1. Suppose n quantized gradients
are summed up. The result, denoted by qn, is dequantized as

Q−1(qn) = qn ∗ (max−min)/255+n∗min.

Referring to Fig. 3a, gradients of a client (floating numbers
in blue) are first quantized and then batch joined into a large
integer. To aggregate the gradients of two clients, we simply
sum up the two batched integers, locate the added gradients
at the same bit positions as in the two batches (8-bit integers
in red), and dequantize them to obtain the aggregated results.

Such a generic quantization scheme, though simple to im-
plement, does not support aggregation well and has many
limitations when applied to batched gradient aggregation.

(1) It is restrictive. In order to dequantize the results, it
must know how many values are aggregated. This poses extra
barriers to flexible synchronization, where the number of
updates is constantly changing, sometimes even unavailable.

(2) It overflows easily in aggregation. As values are quan-
tized into positive integers, aggregating them is bound to over-
flow quickly as the sum grows larger. To prevent overflow,
batched ciphertexts have to be decrypted after a few additions
and encrypted again in prior work [48].

(3) It does not differentiate positive overflows from neg-
ative. Once overflow occurs, the computation has to restart.
Should we be able to tell them apart, a saturated value could
have been used instead of discarding the results.

4.2 HE Batching for Gradients
Unsatisfied with the generic quantization technique, we aspire
to devise a batching solution tailored to gradient aggregation.
Our scheme should have the following desirable properties:
(1) it preserves the additivity of HE; (2) it is more resilient to
overflows and can distinguish positive overflows from nega-
tive ones; (3) it is generally applicable to existing ML algo-
rithms and optimization techniques; (4) it is flexible enough
that one can dequantize values directly without additional
information, such as the number of values aggregated.

Gradient Quantization Existing works use gradient com-
pression techniques to reduce network traffic in distributed
training [1,29,36,58]. These quantization methods are mainly
used to compress values for transmission [58] or accelerate
inference where only multiplication is needed [5]. However,
they are not designed for gradient aggregation, and we cannot
perform computations over the compressed gradients effi-
ciently, making them inadequate for FL. We scrutinize the
constraints posed by our design objectives, and summarize
the stemed requirements for quantization as follows:

• Signed Integers: Gradients should be quantized into
signed integers. In this way, positive and negative values
can cancel each other out in gradient aggregation, mak-
ing it less prone to overflowing than quantizing gradients
into unsigned integers.

• Symmetric Range: To make values with opposite signs
cancel each other out, the quantized range must be sym-
metrical. Violating this requirement may lead to an incor-
rect aggregation result. For example, if we map [−1,1] to
[−128,127], then −1+1 would become −128+127 =
−1 after quantization.

• Uniform Quantization: Literature shows that non-
uniform quantization schemes have better compression
rates as gradients have non-uniform distribution [1, 7].
However, we are unable to exploit the property as addi-
tions over quantized values are required.

BatchCrypt We now propose an efficient quantization
scheme BatchCrypt that meets all the requirements above.
Assume that we quantize a gradient in [−α,α] into an r-bit in-
teger. Instead of mapping the whole range all together, we uni-
formly map [−α,0] and [0,α] to [−(2r−1),0] and [0,2r−1],
respectively. Note that the value 0 ends up with two codes in
our design. Prior work shows that 16-bit quantization (r = 16)
is sufficient to achieve near lossless gradient quantization [21].
We will show in §6 that such a moderate quantization width
is sufficient to enable efficient batching in FL setting.

With quantization figured out, the challenge remains how
to encode the quantized values so that signed additively arith-
metic is correctly enabled—once the batched long integer
is encrypted, we cannot distinguish the sign bits from the
value bits during aggregation. Inspired by how modern CPUs
handle signed integer computations, we use two’s comple-
ment representation in our encoding. By doing so, the sign
bits can engage in the addition just like the value bits. We
further use the two sign bits to differentiate between the pos-
itive and negative overflows. We illustrate an example of
BatchCrypt in Fig. 3b. By adding the two batched long in-
tegers, BatchCrypt gets the correct aggregation results for
−1+(−126) and +1+(−7), respectively.

BatchCrypt achieves our requirements by co-designing
quantization and encoding: no additional information is
needed to dequantize the aggregated results besides the batch
itself; positive and negative values are able to offset each
other; the signs of overflow can be identified. Compared

498 2020 USENIX Annual Technical Conference USENIX Association

⍺0-⍺

quantization
noise

clipping
noise

clipping
noise

Figure 4: A typical layer gradient distribution. α is the clip-
ping threshold.

with the batching methods in [26, 51], BatchCrypt’s batching
scheme is generally applicable to all additively HE cryptosys-
tems’ and fully HE cryptosystems’ additive operations.

4.3 dACIQ: Analytical Clipping for FL

Our previous discussion has assumed gradients in a bounded
range (§4.2). In practice, however, gradients may go un-
bounded and need to be clipped before quantization. Also, gra-
dients from different layers have different distributions [58].
We thus need to quantize layers individually [1, 58]. More-
over, prior works show that gradients from the same layer have
a bell-shaped distribution which is near Gaussian [2, 7, 53].
Such property can be exploited for efficient gradient compres-
sion [1, 58]. Finally, gradients require stochastic rounding
during quantization [21, 36, 58], as it stochastically preserves
diminishing information compared to round-to-nearest.

Layer-wise quantization and stochastic rounding can be
easily applied, yet it remains unclear how to find the optimal
clipping thresholds in the FL setting. As shown in Fig. 4,
clipping is the process of saturating the outlaying gradients
beyond a threshold α. If α is set too large, the quantization
resolution becomes too low. On the other hand, if α gets too
small, most of the range information from outlaying gradients
has to be discarded.

In general, there are two ways to set the clipping threshold,
profiling-based methods and analytical modeling. Profiling-
based clipping selects a sample dataset to obtain a sample
gradient distribution. Thresholds are then assessed with met-
rics such as KL divergence [41] and convergence rate [58].
However, such approach is impractical in FL for three reasons.
First, finding a representative dataset in FL can be difficult,
as clients usually have non-i.i.d. data, plus it breaks the data
silo. Second, the gradient range narrows slowly as the training
progresses [14], so clipping needs to be calibrated constantly,
raising serious overhead concerns. Third, the profiling results
are specific to the training models and datasets. Once the
models or the datasets change, new profiling is needed. For
both practicality and cost considerations, BatchCrypt instead
adopts analytical modeling.

As shown in Fig. 4, the accumulated noise comes from
two sources. Quantization noise refers to the error induced
by rounding within the clipping range (the light blue area),
while clipping noise refers to the saturated range beyond the
clipping threshold (the gray area). To model the accumulated
noise from both quantization and clipping, state-of-the-art
clipping technique ACIQ [5] assumes that they follow a Gaus-

sian distribution. However, ACIQ cannot be directly applied
to BatchCrypt for two reasons. First, it employs a generic
asymmetric quantization, which is not the case in BatchCrypt;
second, in FL, gradients are not available at one place in
plaintext to conduct distribution fitting.

We address these problems by extending ACIQ clipping to
the distributed FL setting, which we call dACIQ. In particu-
lar, we adopt stochastic rounding with an r-bit quantization
width. Assume that gradients follow Gaussian distribution
X ∼ N(0,σ2). Let qi be the i-th quantization level. We com-
pute the accumulated error in BatchCrypt as follows:

E[(X−Q(X))2] =
∫ −α

−∞

f (x) · (x+α)2dx+
∫

∞

α

f (x) · (x−α)2dx

+
2r−3

∑
i=0

∫ qi+1

qi
f (x) · [(x−qi)

2 · (qi+1− x
4

) + (x−qi+1)
2 · (x−qi

4
)]dx

≈ α2 +σ2

2
· [1− er f (

α√
2σ

)]− α ·σ · e−
α2

2·σ2

√
2π

+
2α2 · (2r−2)

3 ·23r ,

(1)
where the first and the second terms account for the clipping
noise, and the third the rounding noise. As long as we know
σ, we can then derive the optimal threshold α from Eq. (1).
We omit the detailed derivations in the interest of space.

Gaussian Fitting Now that we have Eq. (1), we still need to
figure out how to fit gradients into a Gaussian distribution in
the FL setting. Traditionally, to fit Gaussian parameters µ and
σ, Maximum Likelihood Estimation and Bayesian Inference
can be used. They require information including the size of
observation set, its sum, and its sum of squares. As an ML
model may have up to millions of parameters, calculating
these components as well as transferring them over Internet is
prohibitively expensive. As a result, dACIQ adopts a simple,
yet effective Gaussian fitting method proposed in [4]. The
method only requires the size of observation set and its max
and min, with the minimum computational and communica-
tion overhead. We later show that such light-weight fitting
does not affect model accuracy in §6.

Advance Scaling With multiple clients in FL, it is essential
to prevent overflows from happening. Thanks to clipping,
the gradient range is predetermined before encryption. Let m
be the number of clients. If m is available, we could employ
advance scaling by setting the quantization range to m times
of the clipping range, so that the sum of gradients from all
clients will not overflow.

4.4 BatchCrypt: Putting It All Together
Putting it all together, we summarize the workflow of
BatchCrypt in Algorithm 1.

Initialization The aggregator randomly selects one client as
the leader. The leader client generates the HE key-pair and
initializes the model weights. The key-pair and model weights
are then synchronized with the other client workers.

Training After initialization, there is no differentiation be-
tween the leader and the other workers. Clients compute gra-

USENIX Association 2020 USENIX Annual Technical Conference 499

Algorithm 1 HE FL BatchCrypt
Aggregator:
1: function INITIALIZE
2: Issue INITIALIZELEADER() to the randomly selected leader
3: Issue INITIALIZEOTHER() to the other clients
4: function STARTSTRAINING
5: for epoch e = 0,1,2, ...,E do
6: Issue WORKERSTARTSEPOCH(e) to all clients
7: for all training batch t = 0,1,2, · · · ,T do
8: Collect gradients range and size
9: Return clipping values α calculated by dACIQ

10: Collect, sum up all g(e,t)i into g(e,t), and dispatch it

Client Worker: i = 1,2, . . . ,m
– r: quantization bit width, bs: BatchCrypt batch size

1: function INITIALIZELEADER
2: Generate HE key-pair pub_key and pri_key
3: Initialize the model to train w
4: Send pub_key, pri_key, and w to other clients
5: function INITIALIZEOTHER
6: Receive HE key-pair pub_key and pri_key
7: Receive the initial model weights w
8: function WORKERSTARTSEPOCH(e)
9: for all training batch t = 0,1,2, · · · ,T do

10: Compute gradients g(e,t)i based on w

11: Send per-layer range and size of g(e,t)i to aggregator
12: Receive the layer-wise clipping values α’s
13: Clip g(e,t)i with corresponding α, quantize g(e,t)i into r bits, with

quantization range setting to mα . Advance scaling
14: Batch g(e,t)i with bs layer by layer

15: Encrypt batched g(e,t)i with pri_key

16: Send encrypted g(e,t)i to aggregator
17: Collect g(e,t) from aggregator, and decrypt with pub_key
18: Apply decrypted g(e,t) to w

dients and send the per-layer gradient range and size to the
aggregator. The aggregator estimates the Gaussian parameters
first and then calculates the layer-wise clipping thresholds as
described in § 4.3. Clients then quantize the gradients with
range scaled by the number of clients, and encrypt the quan-
tized values using BatchCrypt. Note that advanced scaling
utilizing the number of clients is used to completely avoid
overflowing. However, Algorithm 1 is still viable even without
that information, as BatchCrypt supports overflow detection.
The encrypted gradients are gathered at the aggregator and
summed up before returning to the clients.

5 Implementation
We have implemented BatchCrypt atop FATE (v1.1) [18].
While we base our implementation on FATE, nothing pre-
cludes it from being extended to the other frameworks such
as TensorFlow Federated [20] and PySyft [49].

Overview Our implementation follows the paradigm de-
scribed in Algorithm 1, as most of the efforts are made on the
client side. Fig. 5 gives an overview of the client architecture.

BatchCrypt consists of dACIQ, Quantizer, two’s Compli-
ments Codec, and Batch Manager. dACIQ is responsible for

Client Worker

ML backend

TensorFlow

FATE

HE Mgr. Comm. Mgr.

BatchCrypt

dACIQ Quantizer
Dist. Fitting

Initializer

Encrypt

Remote

GetMXNet

2’s Comp. Codec Batch Mgr.

Advance Scaler

Quantize / Dequantize

Encode / Decode

Numba Parallel

Batch / Unbatch

Joblib Parallel

…

Clipping

Figure 5: The architecture of a client worker in BatchCrypt.

Gaussian fitting and clipping threshold calculation. Quan-
tizer takes the thresholds and scales them to quantize the
clipped values into signed integers. Quantizer also performs
dequantization. Two’s Compliments Codec translates between
a quantized value’s true form and two’s compliment form with
two sign bits. Given the large volume of data to encode, we
adopt Numba to enable faster machine codes and massive par-
allelism. Finally, Batch Manager is in charge of batching and
unbatching gradients in their two’s compliment form, it re-
members data’s original shape before batching and restores it
during unbatching. Batch Manager utilizes joblib to exploit
computing resources by multiprocessing. FATE is used as
an infrastructure to conduct FL, in which all the underlying
ML computations are written with TensorFlow v1.14 opti-
mized for our machines shipped with AWS DLAMI [3]. FATE
adopts the open-sourced python-paillier as the Paillier
HE implementation. We again employ joblib to parallel the
operations here. FATE’s Communication Manager conducts
the SSL/TLS secured communication with gRPC. During our
characterizations and evaluations, the CPUs are always fully
utilized during Paillier operations and BatchCrypt process.

Model Placement In the typical parameter server architec-
ture, model weights are placed on the server side, while we
purposely place weights on the worker side in BatchCrypt.
Prior work [48] employs the traditional setup: clients encrypt
the initialized weights with HE and send them to the aggre-
gator first; the aggregator applies the received encrypted gra-
dients to the weights encrypted with the same HE key. Such
placement has two major drawbacks. First, keeping weights
on the aggregator requires re-encryption. Since new gradi-
ents are constantly applied to weights, the model has to be
sent back to the clients to decrypt and re-encrypt to avoid
overflows from time to time, resulting in a huge overhead.
Second, applying encrypted gradients prevents the use of so-
phisticated ML optimizers. State-of-the-art ML models are
usually trained with adaptive optimizers [28] that scale the
learning rates according to the gradient itself. By keeping the
model weights on the client side, BatchCrypt can examine the
aggregated plaintext gradients, enabling the use of advanced
optimizers like Adam, whereas on the aggregator side, one
can only adopt plain SGD.

500 2020 USENIX Annual Technical Conference USENIX Association

Table 2: Network bandwidth (Mbit/sec) between aggregator
and clients in different regions.

Region Ore. TYO. N.VA. LDN HK
Uplink (Mbps) 9841 116 165 97 81
Downlink (Mbps) 9841 122 151 84 84

6 Evaluation
In this section, we evaluate the performance of BatchCrypt
with real ML models trained in geo-distributed datacenters.
We first examine the learning accuracy loss caused by our
quantization scheme (§6.2). We then evaluate the computation
and communication benefits BatchCrypt brings as well as
how its performance compares to the ideal plaintext learning
(§6.3). We then assess how BatchCrypt’s speedup may change
with various batch sizes (§6.4). Finally, we demonstrate the
significant cost savings achieved by BatchCrypt (§6.5).

6.1 Methodology
Setting We consider a geo-distributed FL scenario where
nine clients collaboratively train an ML model in five AWS
EC2 datacenters located in Tokyo, Hong Kong, London,
N. Virginia, and Oregon, respectively. We launched two
compute-optimized c5.4xlarge instances (16 vCPUs and
32 GB memory) as two clients in each datacenter except
that in Oregon, where we ran only one client. Note that we
opt to not use GPU instances because computation is not a
bottleneck. We ran one aggregator in the Oregon datacenter
using a memory-optimized r5.4xlarge instance (16 vCPUs
and 128 GB memory) in view of the large memory footprint
incurred during aggregation. To better outline the network het-
erogeneity caused by geo-locations, we profiled the network
bandwidth between the aggregator and the client instances.
Our profiling results are summarized in Table 2. We adopt
Pailler cryptosystem in our evaluation as it is widely adopted
in FL [50], plus batching over it is not supported by Gazelle
or SEAL [26, 51]. We expect our results also apply to other
cryptosystems as BatchCrypt offers a generic solution.

Benchmarking Models As there is no standard benchmark-
ing suites for cross-silo FL, we implemented three representa-
tive ML applications in FATE v1.1. Our first application is a
3-layer fully-connected neural network trained over FMNIST
dataset [60], where we set the training batch size to 128 and
adopt Adam optimizer. In the second application, we train
AlexNet [32] using CIFAR10 dataset [31], with batch size
128 and RMSprop optimizer with 10−6 decay. The third appli-
cation is an LSTM model [25] with Shakespeare dataset [55],
where we set the batch size to 64 and adopt Adam optimizer.
Other LSTM models that are easier to validate have signifi-
cantly more weights. Training them to convergence is beyond
our cloud budget. As summarized in Table 3, all three appli-
cations are backed by deep learning models of various sizes
and cover common learning tasks such as image classifica-
tion and text generation. For each application, we randomly

Table 3: Summary of models used in characterizations.

FMNIST CIFAR LSTM
Network 3-layer FC AlexNet [32] LSTM [25]
Weights 101.77K 1.25M 4.02M
Dataset FMNIST [60] CIFAR10 [31] Shakespeare [55]
Task Image class. Image class. Text generation

0 100

Epochs

0.7

0.8

0.9

A
c
c
u
ra

c
y

plain
8 bits
16 bits
32 bits

(a) FMNIST test acc.

0 200

Epochs

0.0

0.3

0.6

0.9

A
c
c
u
ra

c
y

(b) CIFAR test acc.

10 20

Epochs

0.0

0.1

0.2

L
o
s
s

(c) LSTM train loss

Figure 6: The quality of trained model with different quanti-
zation bit widths in BatchCrypt.

partition its training dataset across nine clients. We configure
synchronous training unless otherwise specified.

6.2 Impact of BatchCrypt’s Quantization

We first evaluate the impact of our quantization scheme, and
see how quantization bit width could affect the model qual-
ity. We report the test accuracy for FMNIST and CIFAR
workloads to see how BatchCrypt’s quantization affects the
classification top-1 accuracy. Training loss is used for LSTM
as the dataset is unlabelled and has no test set. We simulated
the training with nine clients using BatchCrypt’s quantization
scheme including dACIQ clipping. The simulation scripts are
also open-sourced for public access. We set the quantization
bit width to 8, 16, and 32, respectively, and compare the re-
sults against plain training (no encryption) as the baseline.
We ran the experiments until convergence, which is achieved
when the accuracy or loss does not reach a new record for
three consecutive epochs.

Fig. 6 depicts the results. For FMNIST, plain baseline
reaches peak accuracy 88.62% at the 40th epoch, while the
8-bit, 16-bit, and 32-bit quantized training reach 88.67%,
88.37%, and 88.58% at the 122nd, 68th, and 32nd epoch, re-
spectively. For CIFAR, plain baseline reaches peak accuracy
73.97% at the 285th epoch, while the 8-bit, 16-bit, and 32-
bit quantized training reach 71.47%, 74.04%, and 73.91% at
the 234th, 279th, and 280th epoch, respectively. Finally, for
LSTM, plain baseline reaches bottom loss 0.0357 at the 20th

epoch, while the 8-bit, 16-bit, and 32-bit quantized training
reach 0.1359, 0.0335, and 0.0386 at the 29th, 23rd, and 22nd

epoch, respectively. We hence conclude that, with appropriate
quantization bit width, BatchCrypt’s quantization has negli-
gible negative impact on the trained model quality. Even in

USENIX Association 2020 USENIX Annual Technical Conference 501

encrypt idle
decrypt

overall

ti
m

e
 (

s
)

126

40 46

212

1.6 6.6 0.7 9.1

stock

batch

(a) FMNIST worker

idle agg.
transfer

overall

ti
m

e
 (

s
) 165

11
35

211

4.3 0.2 4.6 9.1

(b) FMNIST aggregator

encrypt idle
decrypt

overall

ti
m

e
 (

s
)

1558

653 511

2726

16.6 11.3 7.9 38.5

(c) CIFAR worker

idle agg.
transfer

overall

ti
m

e
 (

s
) 1904

153
654

2711

29.3 1.1 8.1 38.5

(d) CIFAR aggregator

encrypt idle
decrypt

overall

ti
m

e
 (

s
)

5077

2092 1605

8777

51.3 20.3 20.8 94.6

(e) LSTM worker

idle agg.
transfer

overall

ti
m

e
 (

s
) 6005

736
1778

8519

73.7 3.3 17.3 94.2

(f) LSTM aggregator

Figure 7: Breakdown of training iteration time under stock
FATE and BatchCrypt, where “idle” measures the idle waiting
time of a worker and “agg.” measures the gradient aggregation
time on the aggregator. Note that model computation is left
out here as it contributes little to the iteration time.

the case where the quantized version requires more epochs to
converge, we later show that such overhead can be more than
compensated by the speedup from BatchCrypt.

Although 8-bit quantization performs poorly for CIFAR
and LSTM, it is worth notice that, longer bit width does not
necessarily lead to higher model quality. In fact, quantized
training sometimes achieves better results. Prior quantiza-
tion work has observed similar phenomenon [63], where the
stochasticity introduced by quantization can work as a regular-
izer to reduce overfitting, similar to a dropout layer [54]. Just
like the dropout rate, quantization bit width acts as a trade-off
knob for how much information is retained and how much
stochasticity is introduced.

In summary, with apt bit width, our gradient quantization
scheme does not adversely affect the trained model quality. In
contrast, existing batching scheme introduces 5% of quality
drop [37]. Thus, quantization-induced error is not a concern
for the adoption of BatchCrypt.

6.3 Effectiveness of BatchCrypt
BatchCrypt vs. FATE We next evaluate the effectiveness
of BatchCrypt in real deployment. We set the quantization
bit width to 16 as it achieves a good performance (§6.2). The

batch size is set to 100, in which we pad two zeros between
the two adjacent values. We report two metrics: the iteration
time breakdown together with the network traffic. We ran the
experiments for 50 iterations, and present the averaged results
against those measured with the stock FATE implementation
in Figs. 7 and 8. We see in Fig. 2 that BatchCrypt significantly
speeds up a training iteration: 23.3× for FMNIST, 70.8×
for CIFAR, and 92.8× for LSTM. Iteration time breakdown
further shows that our implementation reduces the cost of HE
related operations by close to 100×, while the communication
time is substantially reduced as well (“idle” in worker and
“transfer” in aggregator).

We next refer to Fig. 8, where we see that BatchCrypt re-
duces the network footprint by up to 66×, 71×, and 101× for
FMNIST, CIFAR, and LSTM, respectively. Note that FATE
adopts grpc as the communication vehicle whose limit on pay-
load forces segmenting encrypted weights into small chunks
before transmission. By reducing the size of data to transfer,
BatchCrypt alleviates the segmenting induced overhead (meta-
data, checksum, etc.), so it is possible to observe a reduction
greater than the batch size.

Our experiments also show that BatchCrypt achieves more
salient improvements for larger models. First, encryption re-
lated operations take up more time in larger models, leaving
more potential space for BatchCrypt. Second, since layers are
batched separately, larger layers have higher chances forming
long batches. BatchCrypt’s speedup can be up to two orders
of magnitude, which easily offset the extra epochs needed for
convergence caused by quantization (§6.2).

stock batch

0

2000

tr
a
ff

ic
 (

M
B

)

1097

17

snd

rcv

(a) FMNIST

stock batch

0

1000

tr
a
ff

ic
 (

1
0

 M
B

) 1341

19

(b) CIFAR

stock batch

0

5000

tr
a
ff

ic
 (

1
0

 M
B

)

4516

45

(c) LSTM

FMNIST
CIFAR

LSTM

0

100

re
d
u
c
ti

o
n
 (

ti
m

e
s
)

66.0 70.5

101.2

(d) Reduction

Figure 8: Comparison of the network traffic incurred in one
training iteration using the stock FATE implementation and
BatchCrypt.

BatchCrypt vs. Plaintext Learning We next compare
BatchCrypt with the plain distributed learning where no en-
cryption is involved—an ideal baseline that offers the optimal
performance. Fig. 9 depicts the iteration time and the network

502 2020 USENIX Annual Technical Conference USENIX Association

FMNIST
 CIFAR LSTM

ti
m

e
 (

s
)

9

38

95

5.5 9.8 12.8

batch

plain

(a) Time

FMNIST
 CIFAR LSTM

tr
a
ff

ic
 (

M
B

)

2

21

49

0.8

9.5

30.7

(b) Communication

Figure 9: Time and communication comparisons of one iter-
ation on workers between BatchCrypt and plain distributed
learning without encryption.

Table 4: Projected total training time and network traffic usage
until convergence for the three models. The converged test
accuracy for FMNIST, CIFAR as well as loss for LSTM and
their corresponding epoch numbers are listed in the table.

Model Mode Epochs Acc./Loss Time (h) Traffic (GB)

FMNIST
stock 40 88.62% 122.5 2228.3
batch 68 88.37% 8.9 58.7
plain 40 88.62% 3.2 11.17

CIFAR
stock 285 73.97% 9495.6 16422.0
batch 279 74.04% 131.3 227.8
plain 285 73.97% 34.2 11.39

LSTM
stock 20 0.0357 8484.4 15347.3
batch 23 0.0335 105.2 175.9
plain 20 0.0357 12.3 10.4

footprint under the two implementations. While encryption re-
mains the major bottleneck, BatchCrypt successfully reduces
the overhead by an order of magnitude, making it practical
to achieve the same training results as the plain distributed
setting. Note that encrypted numbers in FATE each carries
redundant information such as public keys, thus causing the
communication inflation compared with the plain version.
Such inflation can be reduced if FATE employs some opti-
mized implementation.

Training to Convergence Our previous studies mainly fo-
cus on a single iteration. Compared with stock FATE and plain
distributed learning, BatchCrypt requires a different number
of iterations to converge. We hence evaluate their end-to-end
performance by training ML models till convergence. As this
would take exceedingly long time and high cost if performed
in real deployment, we instead utilize our simulation in §6.2
and iteration profiling results to project the total time and
network traffic needed for convergence.

Table 4 lists our projection results of the three solu-
tions. Compared with the stock implementation in FATE,
BatchCrypt dramatically reduces the training time towards
convergence by 13.76×, 72.32×, and 80.65× for FMNIST,
CIFAR, and LSTM, respectively. In the meantime, the net-
work footprints shrink by 37.96×, 72.01×, 87.23×, respec-
tively. We stress that these performance improvements are
achieved without degrading the trained model quality. On the
other hand, BatchCrypt only slows down the overall training

comp
enc

idl
dec

idl
col

agg
dis

8 16 32

0

100

200

ti
m

e
 (

s
)

58

95

176

(a) Worker: compute, encrypt,
idle, decrypt

8 16 32

0

100

200

ti
m

e
 (

s
)

58

94

174

(b) Aggregator: idle, collect,
aggregate, dispatch

8 16 32

0

500

1000

tr
a
ff

ic
 (

M
B

)

308
446

911snd

rcv

(c) Aggregator traffic

Figure 10: Breakdown of iteration time and communication
traffic of BatchCrypt with LSTM model with various quantiza-
tion bit widths in one iteration. The corresponding batch sizes
for bit width 8, 16, and 32 are 200, 100, and 50, respectively.

time by 1.78×, 2.84×, and 7.55× for the three models com-
pared with plain learning—which requires no encryption and
hence achieves the fastest possible training convergence. In
summary, BatchCrypt significantly reduces both the compu-
tation and communication overhead caused by HE, enabling
efficient HE for cross-silo FL in production environments.

6.4 Batching Efficiency
We have shown in §6.2 that ML applications have different
levels of sensitivity towards gradient quantization. It is hence
essential that BatchCrypt can efficiently batch quantized val-
ues irrespective of the chosen quantization bit width. Given an
HE key, the longest plaintext it can encrypt is determined by
the key size, so the shorter the quantization width is, the larger
the batch size is, and the higher the potential speedup could be.
We therefore look into how our BatchCrypt implementation
can exploit such batching speedup.

We evaluate BatchCrypt by varying the batch size. In partic-
ular, we train the LSTM model on the geo-distributed clients
with different quantization widths 8, 16, and 32. The corre-
sponding batch sizes are set respectively to 200, 100, and 50.
We ran the experiments for 50 iterations, and illustrate the
average statistics in Fig. 10. Figs. 10a and 10b show the time
breakdown in the three experiments. It is clear that employ-
ing a shorter quantization bit width enables a larger batch
size, thus leading to a shorter training time. Note that the
speedup going from 8-bit to 16-bit is smaller compared with
that from 16-bit to 32-bit, because HE operations become less
of a bottleneck with larger batch size. Fig. 10c depicts the

USENIX Association 2020 USENIX Annual Technical Conference 503

stock batch

0

2000

C
o
s
t

($
)

1126

80

ins

net

(a) FMNIST

stock batch

0

5000

10000

C
o
s
t

(1
0

 $
) 8355

116

(b) CIFAR

stock batch

0

5000

C
o
s
t

(1
0

 $
) 7467

93

(c) LSTM

FMNIST
CIFAR LSTM

0

100
p
e
rc

e
n
ta

g
e 92.9 98.6 98.8

(d) Savings

Figure 11: Total cost until convergence between FATE’s stock
implementation and BatchCrypt, instance and network costs
are highlighted separately.

accumulated network traffic incurred in one iteration, which
follows a similar trend as that of the iteration time. In con-
clusion, BatchCrypt can efficiently exploit batching thanks to
its optimized quantization. Similar to [26, 51], BatchCrypt’s
batching scheme reduces both the computation and commu-
nication cost linearly as the batch size increases. In fact, if
lattice-based HE algorithms are adopted, one can replace
BatchCrypt’s batching scheme with that of [26, 51], and still
benefit from BatchCrypt’s accuracy-preserving quantization.

6.5 Cost Benefits
The reduced computation and communication overheads en-
able significant cost savings: sustained high CPU usage leads
to high power consumption, while ISPs charge for bulk data
transfer over the Internet. As our evaluations were conducted
in EC2, which provides a runtime environment similar to the
organization’s own datacenters, we perform cost analysis un-
der the AWS pricing scheme. The hourly rate of our cluster
is $8.758, while the network is charged based on outbound
traffic for $0.042, $0.050, $0.042, $0.048, $0.055 per GB for
the regions listed in Table 2.

We calculate the total cost for training until convergence in
Table 4 and depict the results in Fig. 11. As both computation
and communication are reduced substantially, BatchCrypt
achieves huge cost savings over FATE. While the instance
cost reduction is the same as the overall speedup in Table 4,
BatchCrypt lowers the network cost by 97.4%, 98.6% and
98.8% for FMNIST, CIFAR, and LSTM, respectively.

7 Discussion
Local-update SGD & Model Averaging Local-update
SGD & model averaging is another common approach to
reducing the communication overhead for FL [22, 40], where
the aggregator collects and averages model weights before

propagating them back to clients. Since there are only addition
operations involved, BatchCrypt can be easily adopted.

Split Model Inference In many FL scenarios with restric-
tive privacy requirement, a trained model is split across
clients, and model inference involves coordination of all those
clients [23, 61]. BatchCrypt can be used to accelerate the
encryption and transmission of the intermediate inference
results.

Flexible Synchronization There have been many efforts in
amortizing the communication overhead in distributed SGD
by removing the synchronization barriers [24, 34, 62]. Al-
though we only evaluate BatchCrypt’s performance in syn-
chronous SGD, our design allows it to take advantage of the
flexible synchronization schemes proposed in the literature.
This is not possible with Secure Aggregation [9].

Potential on Large Models Recent research and our eval-
uations show that more sophisticated ML models are more
resilient to quantization noise. In fact, certain models are
able to converge even with 1- or 2-bit quantization [8, 58].
The phenomenon promises remarkable improvement with
BatchCrypt, which we will explore in our future work.

Applicability in Vertical FL Vertical FL requires compli-
cated operations like multiplying ciphertext matrices [38, 61].
Batching over such computation is beyond BatchCrypt’s cur-
rent capability. We will leave it as a future work.

8 Concluding Remark

In this paper, we have systematically studied utilizing HE to
implement secure cross-silo FL. We have shown that HE re-
lated operations create severe bottlenecks on computation and
communication. To address this problem, we have presented
BatchCrypt, a system solution that judiciously quantizes gra-
dients, encodes a batch of them into long integers, and per-
forms batch encryption to dramatically reduce the encryption
overhead and the total volume of ciphertext. We have imple-
mented BatchCrypt in FATE and evaluated its performance
with popular machine learning models across geo-distributed
datacenters. Compared with the stock FATE, BatchCrypt ac-
celerates the training convergence by up to 81× and reduces
the overall traffic by 101×, saving up to 99% cost when de-
ployed in cloud environments.

Acknowledgement

We thank our shepherd, Brandon Lucia, and the anonymous
reviewers for their valuable feedbacks that help improve the
quality of this work. This work was supported in part by RGC
ECS grant 26213818, WeBank-HKUST research collabora-
tion grant 2019, NSF CCF-1756013 and NSF IIS-1838024.
Chengliang Zhang was supported by the Hong Kong PhD
Fellowship Scheme.

504 2020 USENIX Annual Technical Conference USENIX Association

References
[1] ALISTARH, D., GRUBIC, D., LI, J., TOMIOKA, R., AND VOJNOVIC,

M. Qsgd: Communication-efficient sgd via gradient quantization and
encoding. In NeurIPS (2017).

[2] ANDERSON, A. G., AND BERG, C. P. The high-dimensional geometry
of binary neural networks. In ICLR (2018).

[3] Aws deep learning ami. https://aws.amazon.com/
machine-learning/amis/, 2019.

[4] BANNER, R., HUBARA, I., HOFFER, E., AND SOUDRY, D. Scalable
methods for 8-bit training of neural networks. In NeurIPS (2018).

[5] BANNER, R., NAHSHAN, Y., AND SOUDRY, D. Post training 4-
bit quantization of convolutional networks for rapid-deployment. In
NeurIPS (2019).

[6] BARKER, E., BARKER, W., BURR, W., POLK, W., AND SMID, M.
Recommendation for key management part 1: General (revision 3).
NIST special publication 800, 57 (2012), 1–147.

[7] BASKIN, C., SCHWARTZ, E., ZHELTONOZHSKII, E., LISS, N.,
GIRYES, R., BRONSTEIN, A. M., AND MENDELSON, A. Uniq: Uni-
form noise injection for non-uniform quantization of neural networks.
arXiv preprint arXiv:1804.10969 (2018).

[8] BERNSTEIN, J., WANG, Y.-X., AZIZZADENESHELI, K., AND
ANANDKUMAR, A. signsgd: Compressed optimisation for non-convex
problems. arXiv preprint arXiv:1802.04434 (2018).

[9] BONAWITZ, K., IVANOV, V., KREUTER, B., MARCEDONE, A.,
MCMAHAN, H. B., PATEL, S., RAMAGE, D., SEGAL, A., AND SETH,
K. Practical secure aggregation for privacy-preserving machine learn-
ing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (2017), ACM, pp. 1175–1191.

[10] BOTTOU, L., AND BOUSQUET, O. The tradeoffs of large scale learning.
In NeurIPS (2008).

[11] BRAKERSKI, Z., GENTRY, C., AND VAIKUNTANATHAN, V. (leveled)
fully homomorphic encryption without bootstrapping. ACM Transac-
tions on Computation Theory (TOCT) 6, 3 (2014), 1–36.

[12] California Consumer Privacy Act (CCPA). https://oag.ca.gov/
privacy/ccpa, 2018.

[13] CHENG, K., FAN, T., JIN, Y., LIU, Y., CHEN, T., AND YANG, Q.
Secureboost: A lossless federated learning framework. arXiv preprint
arXiv:1901.08755 (2019).

[14] COURBARIAUX, M., BENGIO, Y., AND DAVID, J.-P. Training deep
neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024 (2014).

[15] DATA61, C. Python paillier library. https://github.com/data61/
python-paillier, 2013.

[16] DU, W., HAN, Y. S., AND CHEN, S. Privacy-preserving multivariate
statistical analysis: Linear regression and classification. In Proceedings
of the 2004 SIAM international conference on data mining (2004),
SIAM, pp. 222–233.

[17] Regulation (EU) 2016/679 of the European Parliament and of the Coun-
cil of 27 April 2016 on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation).
https://eur-lex.europa.eu/eli/reg/2016/679/oj, 2016.

[18] FATE (Federated AI Technology Enabler). https://github.com/
FederatedAI/FATE, 2019.

[19] GE, T., AND ZDONIK, S. Answering aggregation queries in a secure
system model. In VLDB (2007).

[20] Tensorflow Federated. https://www.tensorflow.org/federated,
2019.

[21] GUPTA, S., AGRAWAL, A., GOPALAKRISHNAN, K., AND
NARAYANAN, P. Deep learning with limited numerical preci-
sion. In ICML (2015).

[22] HADDADPOUR, F., KAMANI, M. M., MAHDAVI, M., AND CADAMBE,
V. Local sgd with periodic averaging: Tighter analysis and adaptive
synchronization. In NeurIPS (2019).

[23] HARDY, S., HENECKA, W., IVEY-LAW, H., NOCK, R., PATRINI, G.,
SMITH, G., AND THORNE, B. Private federated learning on verti-
cally partitioned data via entity resolution and additively homomorphic
encryption. arXiv preprint arXiv:1711.10677 (2017).

[24] HO, Q., CIPAR, J., CUI, H., LEE, S., KIM, J. K., GIBBONS, P. B.,
GIBSON, G. A., GANGER, G., AND XING, E. P. More effective
distributed ml via a stale synchronous parallel parameter server. In
NeurIPS (2013).

[25] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780.

[26] JUVEKAR, C., VAIKUNTANATHAN, V., AND CHANDRAKASAN, A.
{GAZELLE}: A low latency framework for secure neural network
inference. In 27th {USENIX} Security Symposium ({USENIX} Security
18) (2018), pp. 1651–1669.

[27] KAIROUZ, P., MCMAHAN, H. B., AVENT, B., BELLET, A., BENNIS,
M., BHAGOJI, A. N., BONAWITZ, K., CHARLES, Z., CORMODE, G.,
CUMMINGS, R., ET AL. Advances and open problems in federated
learning. arXiv preprint arXiv:1912.04977 (2019).

[28] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[29] KOLOSKOVA, A., STICH, S. U., AND JAGGI, M. Decentralized
stochastic optimization and gossip algorithms with compressed com-
munication. In ICML (2019).

[30] KONEČNỲ, J., MCMAHAN, H. B., RAMAGE, D., AND RICHTÁRIK,
P. Federated optimization: Distributed machine learning for on-device
intelligence. arXiv preprint arXiv:1610.02527 (2016).

[31] KRIZHEVSKY, A., HINTON, G., ET AL. Learning multiple layers of
features from tiny images. Tech. rep., Citeseer, 2009.

[32] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet
classification with deep convolutional neural networks. In NeurIPS
(2012).

[33] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J., AHMED, A.,
JOSIFOVSKI, V., LONG, J., SHEKITA, E. J., AND SU, B.-Y. Scaling
distributed machine learning with the parameter server. In OSDI (2014),
USENIX.

[34] LIAN, X., HUANG, Y., LI, Y., AND LIU, J. Asynchronous parallel
stochastic gradient for nonconvex optimization. In NeurIPS (2015).

[35] LIN, T., STICH, S. U., PATEL, K. K., AND JAGGI, M. Don’t use large
mini-batches, use local sgd. arXiv preprint arXiv:1808.07217 (2018).

[36] LIN, Y., HAN, S., MAO, H., WANG, Y., AND DALLY, W. J. Deep
gradient compression: Reducing the communication bandwidth for
distributed training. arXiv preprint arXiv:1712.01887 (2017).

[37] LIU, C., CHAKRABORTY, S., AND VERMA, D. Secure model fusion
for distributed learning using partial homomorphic encryption. In
Policy-Based Autonomic Data Governance. Springer, 2019, pp. 154–
179.

[38] LIU, Y., CHEN, T., AND YANG, Q. Secure federated transfer learning.
arXiv preprint arXiv:1812.03337 (2018).

[39] MCMAHAN, H. B., MOORE, E., RAMAGE, D., HAMPSON, S., ET AL.
Communication-efficient learning of deep networks from decentralized
data. arXiv preprint arXiv:1602.05629 (2016).

[40] MCMAHAN, H. B., MOORE, E., RAMAGE, D., AND Y ARCAS, B. A.
Federated learning of deep networks using model averaging. ArXiv
abs/1602.05629 (2016).

[41] MIGACZ, S. 8-bit inference with tensorrt. In GPU technology confer-
ence (2017), vol. 2, p. 7.

USENIX Association 2020 USENIX Annual Technical Conference 505

https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://github.com/data61/python-paillier
https://github.com/data61/python-paillier
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/FATE
https://www.tensorflow.org/federated

[42] MOHASSEL, P., AND RINDAL, P. Aby 3: a mixed protocol frame-
work for machine learning. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (2018), ACM,
pp. 35–52.

[43] MOHASSEL, P., AND ZHANG, Y. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on
Security and Privacy (SP) (2017), IEEE, pp. 19–38.

[44] NIKOLAENKO, V., WEINSBERG, U., IOANNIDIS, S., JOYE, M.,
BONEH, D., AND TAFT, N. Privacy-preserving ridge regression on
hundreds of millions of records. In 2013 IEEE Symposium on Security
and Privacy (2013), IEEE, pp. 334–348.

[45] Cybersecurity Law of the People’s Republic of China. http://www.
lawinfochina.com/display.aspx?id=22826&lib=law, 2017.

[46] PAILLIER, P. Public-key cryptosystems based on composite degree
residuosity classes. In International Conference on the Theory and
Applications of Cryptographic Techniques (1999), Springer, pp. 223–
238.

[47] PATHAK, M., RANE, S., AND RAJ, B. Multiparty differential privacy
via aggregation of locally trained classifiers. In NeurIPS (2010).

[48] PHONG, L. T., AONO, Y., HAYASHI, T., WANG, L., AND MORIAI, S.
Privacy-preserving deep learning via additively homomorphic encryp-
tion. IEEE Transactions on Information Forensics and Security 13, 5
(2018), 1333–1345.

[49] RYFFEL, T., TRASK, A., DAHL, M., WAGNER, B., MANCUSO, J.,
RUECKERT, D., AND PASSERAT-PALMBACH, J. A generic framework
for privacy preserving deep learning. arXiv preprint arXiv:1811.04017
(2018).

[50] SAN, I., AT, N., YAKUT, I., AND POLAT, H. Efficient paillier crypto-
processor for privacy-preserving data mining. Security and communi-
cation networks 9, 11 (2016), 1535–1546.

[51] Microsoft SEAL (release 3.5). https://github.com/Microsoft/
SEAL, Apr. 2020. Microsoft Research, Redmond, WA.

[52] SHOKRI, R., AND SHMATIKOV, V. Privacy-preserving deep learning.
In Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security (2015), ACM, pp. 1310–1321.

[53] SOUDRY, D., HUBARA, I., AND MEIR, R. Expectation backprop-
agation: Parameter-free training of multilayer neural networks with
continuous or discrete weights. In NeurIPS (2014).

[54] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER, I.,
AND SALAKHUTDINOV, R. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research
15, 1 (2014), 1929–1958.

[55] Text generation with an rnn. https://www.tensorflow.org/
tutorials/text/text_generation, 2019.

[56] WANG, J., AND JOSHI, G. Adaptive communication strategies to
achieve the best error-runtime trade-off in local-update sgd. arXiv
preprint arXiv:1810.08313 (2018).

[57] WeBank. https://www.webank.com/en/, 2019.

[58] WEN, W., XU, C., YAN, F., WU, C., WANG, Y., CHEN, Y., AND LI,
H. Terngrad: Ternary gradients to reduce communication in distributed
deep learning. In NeurIPS (2017).

[59] WILSON, A. C., ROELOFS, R., STERN, M., SREBRO, N., AND
RECHT, B. The marginal value of adaptive gradient methods in ma-
chine learning. In NeurIPS (2017), pp. 4148–4158.

[60] XIAO, H., RASUL, K., AND VOLLGRAF, R. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms, 2017.

[61] YANG, Q., LIU, Y., CHEN, T., AND TONG, Y. Federated machine
learning: Concept and applications. ACM Transactions on Intelligent
Systems and Technology (TIST) 10, 2 (2019), 12.

[62] ZHANG, C., TIAN, H., WANG, W., AND YAN, F. Stay fresh: Specula-
tive synchronization for fast distributed machine learning. In ICDCS
(2018), IEEE.

[63] ZHOU, S., WU, Y., NI, Z., ZHOU, X., WEN, H., AND ZOU, Y. Dorefa-
net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

506 2020 USENIX Annual Technical Conference USENIX Association

http://www.lawinfochina.com/display.aspx?id=22826&lib=law
http://www.lawinfochina.com/display.aspx?id=22826&lib=law
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://www.tensorflow.org/tutorials/text/text_generation
https://www.tensorflow.org/tutorials/text/text_generation
https://www.webank.com/en/

A Deep Dive into DNS Query Failures

Donghui Yang† §, Zhenyu Li† § ‡, Gareth Tyson[
†ICT-CAS, §University of Chinese Academy of Sciences, ‡ Purple Mountain Laboratories, [QMUL

Abstract
The Domain Name System (DNS) is fundamental to the oper-
ation of the Internet. Failures within DNS can have a dramatic
impact on the wider Internet, most notably preventing access
to any services dependent on domain names (e.g. web, mobile
apps). Although there have been several studies into DNS
utilization, we argue that greater focus should be placed on
understanding how and why DNS queries fail in-the-wild. In
this paper, we perform the largest ever study into DNS activ-
ity, covering 3B queries. We find that 13.5% of DNS queries
fail, and this leads us to explore the root causes. We observe
significant differences between IPv4 and IPv6 lookups. A
handful of domains that have high failure rates attract a huge
volume of queries, and thus dominate the failures. This is
particularly the case for domains that are classified as ma-
licious. The success rates also vary greatly across resolvers
due to the differences in the domains that they serve and the
infrastructure reliability.

1 Introduction

The Domain Name System (DNS) is organized as a dis-
tributed system that provides mappings between human-
readable domain names (e.g. foo.com) and their associated
DNS records [17–20]. These include A type records for IPv4
addresses, AAAA for IPv6 addresses, MX for SMTP mail
exchanges, NS for name servers, PTR for pointers of reverse
DNS lookups and CNAME for domain name aliases. Nearly
all Internet-connected applications depend on DNS. As such,
it is a critical dependency, whose failure has the potential to
create global Internet outages. For example, in 2016, Dyn
(a DNS operator) suffered a major Denial of Service attack
against its infrastructure. This meant that DNS queries for
popular domains such as Netflix and Visa began to fail, crip-
pling access to these services (even though those services
were still online).

Although there is a significant body of research into DNS
behavior, we argue that DNS failures specifically require fur-
ther investigation. Root DNS server behavior was examined

in [5, 8], where negative DNS answers were analyzed includ-
ing NXDOMAIN responses. Callahan et al. [4] also examined
the DNS behavior from the perspectives of performance and
response message. We differ in that our focus is on failures
not caused by NXDOMAINs. In addition, we note that DNS
has evolved significantly since these studies, e.g. the rise of
new gTLDs and IDNs. Although there have been a number of
studies of new gTLDs and IDNs [9,13,15], they mainly focus
on domain registration behavior and cyber attacks, while we
complement these studies with DNS query failure analysis.
Other work [12,22,25] has leveraged NXDOMAIN responses
to detect botnets or DGAs. Again, our work focuses on fail-
ures caused by DNS infrastructures instead of NXDOMAINs.

With the above in-mind, we present a large-scale analysis
of DNS query failures in-the-wild. To achieve this, we gather
a unique dataset containing 3B DNS queries (Section 2). We
find that failed queries are, indeed, common place with 13.5%
of all queries not successfully resolved. This motivates us
to inspect which factors correlate most closely with failed
queries (Section 3). We observe a highly skewed distribution,
whereby a small number of domains are responsible for the
majority of failures. AAAA queries (IPv6) are particularly
unreliable, with only 1/3 of queries successfully resolved.
This is perhaps understandable given the use of protocols
such as Happy Eyeballs [24], although we also find that many
domains lack AAAA support. We further inspect the relation-
ship between failures and the DNS resolver used, to find a
vast array of resolvers, with 13.5% of queries in our dataset
being issued to public resolvers, e.g. OpenDNS. We observe
diverse failure rates across the resolvers, confirming that they
do have an impact on failures. We also note differences among
the Top Level Domains (TLDs) with, for example, the new
wave of generic-TLDs having higher failure rates than more
traditional TLDs. Finally, we propose system implications
based on our findings. To sum up, we make the following key
findings:

• In spite of the promotion of IPv6 over recent years [7,
21, 26], the majority (86.2%) of DNS queries are still
for A records, while only 10.4% are for AAAA records

USENIX Association 2020 USENIX Annual Technical Conference 507

(comparable to the proportion in 2012 [8]). The failure
rate for A lookups is 6.9%, yet, to our surprise, the failure
rate for AAAA queries is as high as 64.2%, almost 3 times
of that in 2012 [8]. We observe that approximately 60%
of domains do not support AAAA queries.

• We explore a number of factors to explore the causes of
failures. We observe a heavy-tailed distribution of failures
across domains, indicating that a handful of domains con-
tribute to most of the failures. 20% of local resolvers in our
dataset have never successfully resolved AAAA queries,
implying they are not ready for IPv6. The use of public
resolvers may also impact query failures as they show
diverse failure rates, in-part due to the distinct domain
sets that each serves and the differences in infrastructure
reliability.

• The success rates for new gTLD domains and IDNs are
10% lower than that of well established domains. This is
largely because of the prevalence of malicious domains.
Certain ASes are prevalent for hosting malicious new
gTLD domains, and these new gTLD domains contribute
to 73.7% of the all new gTLD queries. The malicious
domains are, however, volatile and change frequently. In
fact, none are resolvable today. The malicious new gTLD
domains in these ASes are of various types and have
distinct network footprints.

2 Dataset
Dataset Oveview. Our dataset consists of passive DNS logs
that are generated by Deep Packet Inspection (DPI) appli-
ances in 3 ISPs in China. Each DPI appliance parses the DNS
response messages from recursive resolvers to end users, and
generates a log for each response. A log includes the end
user’s anonymized IP address, BGP prefix,1 the ASN (Au-
tonomous System Number), the recursive resolver’s IP ad-
dress, the DNS query type, all the resource records, the times-
tamp (in seconds) and an indicator about whether the resolver
and the end user’s original IP address share a common /24
prefix. In cases of CNAME responses, we follow the redi-
rection to the final record. The dataset contains 14 samples
that were collected every other day in February 2018. Each
sample consists of 10-minute logs generated by all the DPI
appliances of the 3 ISPs. In total, we obtain 3,085,998,589
logs. It is noteworthy that while there were IPv6 addresses in
the response IP list of AAAA queries, no IPv6 addresses were
seen in end users’ IP addresses and recursive DNS resolvers.

Identification of Failed Queries. We next extract the set
of failed queries for the four most popular types of records
(A, AAAA, PTR, MX), because they constitute 99.5% of all
queries. For each response, we extract the requested domain
(the QNAME) from the Question portion, and check if the re-
sponse contains a valid answer (e.g. for an A query, at least one
RR in the response is an A record of the requested domain).

1IP addresses and BGP prefixes are anonymized with Crypto-PAn [2]

In this paper, we are interested in failures caused by DNS
infrastructures instead of NXDOMAINs (e.g. typos). How-
ever, we do not have the response code (e.g. ’NOERROR’,
’NXDOMAIN’ or other status) in our dataset. Therefore, we
turn to a heuristic method to filter out logs that are attributed
to NXDOMAINs. Specifically, for each domain requested
(i.e.,QNAME in the log), we check if it has succeeded at least
once in our logs. We then remove the logs containing domains
that have never succeeded in the whole dataset, as they are
likely NXDOMAINs. The subsequent analyses are based on
the remaining dataset, which contains 2,811,010,890 logs is-
sued by 37,070,965 unique IP addresses to 246,991 resolvers.

Caveats. It is important to highlight potential limitations in
our data. The above heuristic method may leave some do-
mains that were resolvable at a time but then became NX-
DOMAINs later. Moreover, our dataset does not allow us
to inspect failed queries that did not trigger a response (e.g.
due to packet loss). Naturally, the fact that a DNS response
is returned does not necessarily mean that the web server
is live and responsive. Therefore, we only inspect if a valid
DNS response is returned (not if the IP address is correct).
There are many possibilities that lead to incorrect mapping
of domains to addresses, such as DNS manipulation [16] and
on-path DNS interception [14]. Another related concern per-
tains to censored domains. Thus, before continuing, we test if
a censored domain will return a valid IPv4/IPv6 address for
an A/AAAA query. Our tests confirm that, indeed, valid ad-
dresses are returned, even when querying censored websites.2

Another potential limitation is that our data is local to China.
Nevertheless, we believe the scale of the Chinese Internet
means that these findings can still have a major impact. As
DNS is a globally distributed system where China and other
countries are all involved, there is not much specific to China
from the perspective of the DNS infrastructure. We also note
that (to the best of our knowledge) this is by far the largest
DNS failure dataset ever studied.

Ethical Issues. The ISPs collect the DNS logs for the pur-
pose of improving their service quality and security. The end
users’ IP addresses were anonymized and we are unable nor
allowed to link queries to users. Users are notified when sub-
scribing that the ISPs may collect this information, and may
share it with academics for research. Our study has not trig-
gered the collection of any new data. All data was processed
in a secure silo by the first author.

3 Exploring DNS Query Failures
3.1 A Primer on DNS Failures
We begin by simply computing the number and types of failed
queries in our dataset. Table 1 shows the percentage of query

2Since we focus on DNS query failures, we did not check whether the
returned IP address does host the queried domain or not [1].

508 2020 USENIX Annual Technical Conference USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0
success rate

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

A
AAAA
A(100)
AAAA(100)

Figure 1: CDFs of success rates of
domains for A and AAAA queries.

100 101 102 103 104 105 106

rank of domain (sorted by #failures)

10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

fr
ac

tio
n

of
 #

fa
ilu

re
s A

AAAA

Figure 2: #failures - rank of
domains(log-log).

0.00 0.25 0.50 0.75 1.00
#Failures(%)

Proxy(69K, 99.0%)
Edu(12.3M, 88.4%)

P2P(2.3M, 87.9%)
Religion(37.1K, 31.3%)
Hunting(11.3K, 30.5%)

Porn(193.7K, 27.7%)
Auctions(20.1K, 27.2%)

Info(50.1M, 24.6%)
Parked(9.4M, 21.6%)

Legal(4.2K, 21.0%)
Garden(32.0K, 14.9%)

Ca
te

go
ry

(#
fa

ilu
re

s,
 fa

ilu
re

 ra
te

)

Figure 3: The top 11 domain categories sorted by
failure rates with # of failures > 1K.

types, alongside the overall success rate, which is 1 minus the
ratio of failed queries to all queries of each query type. We
present the four most popular query types. The A type queries
account for the majority (86.2%), and AAAA queries have
a smaller query volume (10.4%).3 We observe a variety of
success rates across the query types. Overall, the A queries are
successfully resolved most frequently, while other query types
manifest lower success rates. This confirms that a sizeable
fraction of queries are not successfully resolved; we spend
the rest of the section exploring factors influencing this trend.

Table 1: Four popular types of DNS queries: percentages of
the number of queries and success rates.

Query Type A AAAA PTR MX Others

#queries 86.2% 10.4% 2.8% 0.1% 0.5%
Success Rate 93.1% 35.8% 40.4% 82.9% -

3.2 Failures Across Domains
We first compute the distribution of failures across domains.
Due to their prominence, we focus on A and AAAA queries.
Figure 1 presents the CDFs of the success rates across do-
mains encountered within our dataset.

A Queries. A queries exhibit high success rates: overall,
93.7% of domains have a success rate exceeding 95% sug-
gesting high reliability. There are ouliers though; for instance,
the bottom 0.1% of domains have success rates below 5%. To
eliminate the impact of low-frequency domains on the results,
we filter out domains that issue fewer than 100 requests and
plot the CDF of success rate of the remaining domains (the
red dash-dot line), where 84.9% of remaining domains have
a success rate exceeding 95%. Nevertheless, as many as 7%
of domains experience a success rate lower than 50%. Given
that we have removed the failures caused by NXDOMAINs,
the result suggests that problems with the DNS infrastructure
do impact users when visiting these domains.

AAAA Queries. For AAAA queries, only 34.3% of domains
have a success rate exceeding 95%. When limiting to domains
whose query frequency exceeds 100, only 7.8% of domains

3Note that we follow CNAME redirections, rather than reporting them
here as responses.

have a success rate exceeding 95%, while about 60% of do-
mains have never been successfully resolved. Again, given
that we only include domains that have been successfully
resolved (considering all query types), this suggests that there
are infrastructural limitations in how DNS supports IPv6.

Domain Failure Rates The above suggests that the majority
of failures are the responsibility of a small set of domains,
especially for A queries. To explore this further, Figure 2
presents the number of failures per domain on a log-log plot.
We sort the X-axis by the rank of the domain (based on the
number of failures). We see that failures are concentrated on a
small number of domains. To gain a further understanding of
the types of domains that have high failure rates, we utilize the
Webroot Brightcloud API4 to classify the top 50K domains
(measured by failure rate). Figure 3 presents the results. The
Y-axis shows the top 11 categories sorted by failure rate,
where the number of failed queries (> 1K) and the failure
rate is shown in the parentheses. For each category, we plot
the ratio of the number of failed queries of the top 3 SLDs
to the total number of failures. A number of classifications
which can be expected to fail frequently are present, e.g. proxy,
porn and parked domains. This suggests that such domain
types are paramount in increasing failure rates. However, it is
unexpected to see the Education category is ranked second.
Closer inspection reveals that clock.cuhk.edu.hk, which is
the third most failed domain, contributes the most failures.
Another interesting observation is the concentration of failures
for each category on a few domains. For 8 out of the 11
categories, over 80% of the failures are attributed to the top 3
SLDs (top 1 SLD in most cases).

3.3 Failures Across Resolvers
Another explanation for failed queries is that the resolvers
may not correctly handle queries.

Testing Resolvers. To explore this, we calculate the success
rate of queries issued to each DNS resolver (identified by
the resolver’s IP address). Figure 4 presents the CDF of the
success rate for the domains per resolver.5 The majority of

4https://www.brightcloud.com/web-service
5We eliminate the resolvers serving fewer than 100 queries in our dataset

to avoid bias.

USENIX Association 2020 USENIX Annual Technical Conference 509

0.0 0.2 0.4 0.6 0.8 1.0
success rate

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

A
AAAA

Figure 4: CDF of the success rate for
individual resolvers.

114DNS

360DNS

AliDNS

DNSPOD

GoogleDNS

OpenDNS

ISP

Others

114DNS

360DNS
AliD

NS

DNSPOD

GoogleDNS

OpenDNS
ISP

Others

resolver 1

re
s
o

lv
e

r
2

0.25

0.50

0.75

1.00

cosine
similarity

Figure 5: Cosine similarity between each
pair of DNS resolver types.

1.0 0.5 0.0 0.5 1.0
success rate difference

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

114DNS
360DNS
AliDNS
DNSPOD
GoogleDNS
OpenDNS
ISP
Others

Figure 6: Different success rates of same
domains handled by different resolvers.

Table 2: The number of A and AAAA queries and their success rates (shown in the parentheses) handled by each resolver.
114DNS 360DNS AlibabaDNS DNSPOD GoogleDNS OpenDNS ISP Others

A 296.4K(98.5%) 831.0K(95.9%) 667.8K(94.7%) 352.5K(99.6%) 333.4M(90.7%) 467.6K(86.3%) 48.7M(95.3%) 2.1B(93.5%)
AAAA 75.4K(14.5%) 50.3K(61.8%) 112.9K(52.4%) 15.5K(54.3%) 40.6M(43.4%) 31.0K(49.2%) 9.6M(22.8%) 252.6M(35.0%)

resolvers have very high success rates when serving A queries:
about half experience almost no failures. By contrast, 60% of
resolvers serving AAAA queries can successfully resolve just
20% of the queries. Surprisingly, about 20% of the resolvers
never succeed in resolving AAAA queries. These resolvers
may not be IPv6 ready during our observation period.

Testing Public Resolvers. Closer inspection reveals that a no-
table set of queries are sent to public resolvers [3,6,10]. Hence,
we also inspect the reliability of these public infrastructures,
which include 114 (Chinese) DNS resolvers provided by mul-
tiple telecom operators, DNS Pai which belongs to Qihoo
360, AliDNS which belongs to Alibaba, and DNSPOD which
belongs to Tencent. We also take into account GoogleDNS
and OpenDNS which are widely used throughout the world.
We identify these public DNS resolvers by the IP addresses
offered on their official websites. Table 2 shows the number
of A and AAAA queries handled by each public DNS resolver
mentioned above along with their success rates. GoogleDNS
dominates the most used public DNS service (even though
Google is less well known in China). Others do not show
much difference in terms of query volume. We observe var-
ious success rates across public DNS resolvers though. For
example, DNSPOD succeeds in almost all its A queries, while
OpenDNS achieves just 86.3%. There is also notably lower
success rate across all resolvers for AAAA queries.

The above confirms that resolvers do seem to have an im-
pact on success rates. A potential reason for this is that the
resolvers may simply receive different queries. To explore this,
we compute a vector for each resolver, where each element
represents a domain, which appears in A or AAAA queries
using the resolver, and the query volume of that domain han-
dled by the resolver. Then we calculate the similarity of each
pair of DNS resolver using the cosine similarity between their
vectors. Figure 5 illustrates the result. The resolvers actually
demonstrate a surprisingly low similarity with each other,
signalling rather different request patterns. Among these re-

solvers, 114DNS and AliDNS are the least like the others.
Indeed, 114DNS handles many requests for Akamai domains
which appear less often in other resolvers, while AliDNS
handles many requests of taobao.com and alipay.com which
belongs to Alibaba services. This could be the reason for the
variance of success rates observed from different resolvers.

Another possible explanation is the differences between
resolvers’ infrastructures. To explore this, we compare the suc-
cess rates of the same domains handled by different resolvers.
Specifically, for each resolver, we first find the domain inter-
section of it and each other resolver. Then for each domain in
each intersection, we calculate the difference in their success
rates on the two resolvers. Finally, for each type of resolver,
we plot the CDF of the differences between this type to other
types in Figure 6. Note, a difference below 0 indicates a lower
success rate of this type of resolver, and a positive value indi-
cates a higher success rate. We can see significant differences
for some types of resolvers: domains resolved by 114DNS
and ISP are more likely to fail, while DNSPOD and 360DNS
have higher success rates. This observation partially explains
the results in Table 2.

3.4 Failures Across TLDs

We next inspect if certain TLDs have lower query success
rates. Specifically, we explore two camps of TLDs: the new
generic Top Level Domains (gTLD),6 and those that have
Internationalized Domain Name (IDNs). Our dataset contains
611,769 new gTLDs and 79,705 IDNs. Table 3 summarizes
our results. We see rather different rates of success across
the domain and query types. The lower success rate for new
gTLDs may be because such gTLDs attract certain types
of domain registrant. For example, the .lol domain is well
known to attract large volumes of malicious activites [11].
With this in-mind, we find a success rate of just 20.3% for

6Based on the list from nTLDStats https://ntldstats.com

510 2020 USENIX Annual Technical Conference USENIX Association

https://ntldstats.com

100 101 102 103 104

network segment (/24, log)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ra
ti
o
 o

f
d
o
m

a
in

s

gTLD

IDN

Figure 7: Distri. of new gTLD domains
(gTLD in the legend for short) and IDNs
seperated by /24 network segments.

0 5 10 15 20 25 30
#BGP prefix

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

subnet 1
subnet 2
subnet 3
subnet 5

Figure 8: CDF of # BGP prefixes
requesting individual malicious SLDs.

1 2 3 5
subnet

0.0

0.2

0.4

0.6

0.8

1.0

link

site

win

xyz

ink online

down
load

faith

site
trade

Others

Figure 9: TLDs and their fractions of #
malicious SLDs.

.lol, compared to 83.0% of .com. Another reason for failed
queries is the presence of malicious domains which are un-
reliable. To inspect this, we extract all A record queries that
were successfully resolved and investigate the network seg-
ments hosting them. Overall, we obtain 113,539 (11,729)
IP addresses hosting new gTLDs (IDNs) mapping to 29,047
(5,635) /24 network segments, respectively.

Table 3: The number of queries and success rates (shown in
the parentheses) of new gTLD domains and IDNs.

new gTLD IDN

total 4.0M (79.3%) 0.26M (66.6%)
A 3.4M (88.6%) 0.17M (86.7%)

AAAA 0.6M (25.9%) 0.09M (26.4%)

Figure 7 presents the distribution of the number of new
gTLD domains and IDNs per network segment (sorted by #IPs
hosting new gTLD domains and IDNs, respectively). Several
surges in both lines further arouse our attention: they indicate
the existence of some /24 network segments that serve a large
number of new gTLD domains or IDNs. This is naturally
driven by the presence of large web hosting providers.

Thus, we extract the top 5 surges for both new gTLD do-
mains and IDNs to explore their details. Due to space limi-
tation, we only present the results of new gTLD domains in
Table 4, where the last column presents the number of do-
mains that are resolvable on 26 Sept. 2019. Across all of these
top ASes we witness an extremely low rate of successful res-
olutions. In the most extreme case, we observe 201K queries
for 195K domains being mapped to Enzu, none of which are
resolvable today. In addition, the number of queries is close
to the number of FQDNs, suggesting that these domains are
short-lived and change frequently. The above trends lead us
to hypothesize that some of these domains may be associated
with malicious activities. To explore this, we leverage two
blacklists from VirusTotal and Qihoo 360 to check the do-
mains. We label a domain as malicious if any of these two
blacklists classify it as so. Due to the large volume of domains,
we only check SLDs (as opposed to FQDNs). The results are
listed in parentheses in Table 4. None of the IDNs are classi-

fied as malicious by the two blacklists, however, a significant
fraction of the new gTLD domains fall into this category. For
example, 80% of the SLDs hosted in 23.245.136.0/24 pre-
fix (first row) are classified as malicious. This is common
across all of the top new gTLD domains. In total, 73.7% of
the queries are for the malicious domains.

Figure 8 presents the distribution of the number of end
users’ BGP prefixes requesting each malicious SLD in Subnet
1, 2, 3, 5 (shown in Table 4). Except the SLDs hosted in
subnet 3, other malicious SLDs affect only 1 or 2 networks. In
contrast, malicious SLDs hosted in subnet 3 have a footprint
in dozens of networks, implying a larger impact. One possible
explanation is that the subnets host different sites. Hence,
Figure 9 presents the make-up of the 5 subnets, confirming
that they do map to different TLDs.

4 Implications on Systems Design

In this section, we discuss about the implications of our
findings on system design, i.e.,what systems we could build
based on our observations.

Active Measurement System. Our results show that although
IPv6 has been promoted in recent years, AAAA queries still
fail frequently, and there exist resolvers that do not support
AAAA queries. In order to understand which resolvers sup-
port AAAA queries, we can build a system to actively mea-
sure the IPv6 support of the resolvers. For instance, simi-
lar to [23], we can build a single-node measurement system
for monitoring IPv6 support of DNS resolvers. The system
can distinguish between resolvers that support and do not
support AAAA queries by sending DNS queries of popu-
lar domains that support AAAA queries. We can also test
whether a domain supports AAAA queries by sending re-
quests of this domain to resolvers that are classified as sup-
porting AAAA queries. Considering the differences between
resolvers, we could measure the success rates of domains by
sending queries to different resolvers, and use the result to
help choose the better resolvers.

In addition, we could compare different resolvers from the
perspective of localization, i.e.,whether the resolver directs

USENIX Association 2020 USENIX Annual Technical Conference 511

Table 4: new gTLD domains hosted by the top 5 subnets. The number of domains labeled as malicious are within the parentheses.

No. subnet AS num. AS name #IPs #queries #FQDN #SLD #resolvable

1 23.245.136.0/24 18978 Enzu Inc 252 201.9K (157.1K) 195.9K (152.2K) 483 (386) 0(0)
2 192.238.167.0/24 395954 Leaseweb 236 17.4K (14.8K) 16.3K (13.9K) 287 (243) 0 (0)
3 172.246.207.0/24 18978 Enzu Inc 236 15.7K (15.4K) 13.2K (13.0K) 443(434) 1 (1)
4 104.217.93.0/24 40676 Psychz Net 253 9.0K (1) 8.8K (1) 923 (1) 9(0)
5 47.89.58.0/24 45102 Alibaba 4 10.9K (469) 8.8K (114) 7.7K (107) 748 (7)

Table 5: The localization performance of resolvers: the proportion of queries directed to servers in the same AS as the end user
when possible.

114DNS 360DNS AlibabaDNS DNSPOD GoogleDNS OpenDNS ISP Others

91.2% 98.0% 95.9% 94.3% 64.6% 43.8% 71.7% 69.9%

users to remote servers. This additional function is motivated
by our observation presented in Table 5: We calculate for
each resolver the fraction of queries that redirect clients to
servers in the same AS (when possible). For each domain i,
we count all its response IP addresses in the entire dataset
and these IP addresses form a set Si. Then for each log whose
QNAME equals i, if at least one IP address in Si is in the
same AS as the end user, we label this query as “possible to
be served locally”; if at least one IP address in the response
IP addresses of this log is in the same AS as the end user,
we label this query as “served locally”. These two labels are
independent and a log can have both labels, one of the labels,
or no label. We aggregate the logs according to the resolvers,
and calculate the ratio of the number of logs labeled as served
locally to the number of logs labeled as possible to be served
locally for each resolver. We observe that the obtained ratio
differs significantly across the resolvers, which indicates that
users can choose appropriate resolvers for better network
performance. Therefore, it is useful to develop a system for
end users to measure the localization performance of different
resolvers.

Such an active measurement system is useful for content
publishers, ISPs and end users. Many CDNs are being up-
graded for better IPv6 support, however, if AAAA queries
frequently fail, then the content publisher should be careful to
use such CDN IPv6 service. Therefore, it is useful for publish-
ers to locate their content if they can understand in advance
which resolvers do not support AAAA queries. In addition,
ISPs could also benefit when considering IPv6 network expan-
sion, because understanding which domains support AAAA
queries is useful for estimating the IPv6 traffic. For users, the
measurement of different resolvers can help them to choose
more suitable resolvers considering both IPv6 support and
localization performance.

Malicious New gTLD Domain Detection System. We have
found that malicious SLDs (of new gTLD domains) hosted
by particular ASes contribute to higher failure rates. Manual
inspection further reveals that the length of the SLDs tend to
be short. Table 6 presents the fraction of malicious SLDs of

different length. In more traditional TLDs, malicious domains
are usually long because registering a short domain name
would cost too much for an attacker. However, registering
short new gTLD domains is much easier. Therefore, extracting
features from domain names may not work well for detecting
malicious new gTLD domains. We could use features like
DNS query frequency, the number of FQDNs of an SLD, the
resolved IP addresses and the corresponding ASes to build a
system for detecting malicious SLDs of new gTLD domains.

Table 6: Fraction of malicious SLDs of different lengths.

Length 3 4 5 ≥6

% of SLDs 0.1% 93.0% 6.1% 0.8%

5 Conclusion

The paper has presented a deep dive into DNS query failures
using over 3B queries. We have identified high failure rates:
6.9% of A and 64.2% of AAAA queries. IPv6 is far from
ready as over half of the domains and 20% of local resolvers
do not support AAAA queries. Upgrading these resolvers and
popular domains for IPv6 is the first step towards the wider
usage of IPv6. Internet users, on the other hand, should be
aware of the impact of using public resolvers, from both the
perspectives of query failures and mapping inaccuracy [6].
We also found that the volatility of malicious domains (par-
ticularly new gTLD domains and IDNs) contributes to higher
failure rates because they change frequently and accesses to
them results in failures. The corresponding SLDs of malicious
new gTLD domains and IDNs, however, are limited, and they
are likely hosted by particular ASes. We finally proposed two
potential systems that could build on our findings.

Acknowledgement

This work was supported in part by National Key RD Pro-
gram of China: 2018YFB1800201, the NSF of China (NSFC):
61725206, the Youth Innovation Promotion Association CAS.
The corresponding author is Zhenyu Li.

512 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Towards a comprehensive picture of the great firewall’s
DNS censorship. In 4th USENIX Workshop on Free and
Open Communications on the Internet (FOCI 14), San
Diego, CA, 2014. USENIX Association.

[2] Crypto-pan. https://www.cc.gatech.edu/
computing/Networking/projects/cryptopan/,
2018.

[3] Bernhard Ager, Wolfgang Mühlbauer, Georgios Smarag-
dakis, and Steve Uhlig. Comparing DNS resolvers in the
wild. In Proceedings of the 10th ACM SIGCOMM con-
ference on Internet measurement, pages 15–21. ACM,
2010.

[4] Thomas Callahan, Mark Allman, and Michael Rabi-
novich. On modern DNS behavior and properties. ACM
SIGCOMM Computer Communication Review, 43(3):7–
15, 2013.

[5] Sebastian Castro, Duane Wessels, Marina Fomenkov,
and Kimberly Claffy. A day at the root of the internet.
ACM SIGCOMM Computer Communication Review,
38(5):41–46, September 2008.

[6] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Tor-
res. End-user mapping: Next generation request routing
for content delivery. ACM SIGCOMM Computer Com-
munication Review, 45(4):167–181, 2015.

[7] Jakub Czyz, Mark Allman, Jing Zhang, Scott Iekel-
Johnson, Eric Osterweil, and Michael Bailey. Measuring
IPv6 adoption. In ACM SIGCOMM Computer Commu-
nication Review, volume 44, pages 87–98. ACM, 2014.

[8] Hongyu Gao, Vinod Yegneswaran, Yan Chen, Phillip
Porras, Shalini Ghosh, Jian Jiang, and Haixin Duan. An
empirical reexamination of global DNS behavior. In
ACM SIGCOMM Computer Communication Review,
volume 43, pages 267–278. ACM, 2013.

[9] Tristan Halvorson, Matthew F Der, Ian Foster, Stefan
Savage, Lawrence K Saul, and Geoffrey M Voelker.
From. academy to. zone: An analysis of the new TLD
land rush. In Proceedings of the 2015 Internet Measure-
ment Conference, pages 381–394. ACM, 2015.

[10] Cheng Huang, David A Maltz, Jin Li, and Albert Green-
berg. Public DNS system and global traffic manage-
ment. In 2011 Proceedings IEEE INFOCOM, pages
2615–2623. IEEE, 2011.

[11] Damilola Ibosiola, Ignacio Castro, Gianluca Stringhini,
Steve Uhlig, and Gareth Tyson. Who watches the watch-
men: Exploring complaints on the web. Web Conference,
2019.

[12] N. Jiang, J. Cao, Y. Jin, L. E. Li, and Z. Zhang. Identi-
fying suspicious activities through DNS failure graph
analysis. In The 18th IEEE International Conference on
Network Protocols, pages 144–153, Oct 2010.

[13] Maciej Korczynski, Maarten Wullink, Samaneh Tajal-
izadehkhoob, Giovane Moura, Arman Noroozian, Drew
Bagley, and Cristian Hesselman. Cybercrime after the
sunrise: A statistical analysis of DNS abuse in new
gTLDs. In Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, pages
609–623. ACM, 2018.

[14] Baojun Liu, Chaoyi Lu, Haixin Duan, Ying Liu, Zhou
Li, Shuang Hao, and Min Yang. Who is answering my
queries: Understanding and characterizing interception
of the DNS resolution path. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1113–1128,
2018.

[15] Baojun Liu, Chaoyi Lu, Zhou Li, Ying Liu, Hai-Xin
Duan, Shuang Hao, and Zaifeng Zhang. A reexamina-
tion of internationalized domain names: The good, the
bad and the ugly. 2018.

[16] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick
Feamster, Nick Weaver, and Vern Paxson. Global mea-
surement of DNS manipulation. In 26th USENIX Secu-
rity Symposium (USENIX Security 17), pages 307–323,
2017.

[17] P.Mockapetris. Domain names–concepts and facilities,
rfc 882. http://www.ietf.org/rfc/rfc882.txt,
1983.

[18] P.Mockapetris. Domain names–implementation and
specification, rfc 883. http://www.ietf.org/rfc/
rfc883.txt, 1983.

[19] P.Mockapetris. Domain names–concepts and facilities,
rfc 1034. http://www.ietf.org/rfc/rfc1034.txt,
1987.

[20] P.Mockapetris. Domain names–implementation and
specification, rfc 1035. http://www.ietf.org/rfc/
rfc1035.txt, 1987.

[21] Enric Pujol, Philipp Richter, and Anja Feldmann. Under-
standing the share of IPv6 traffic in a dual-stack ISP. In
Mohamed Ali Kaafar, Steve Uhlig, and Johanna Amann,
editors, Passive and Active Measurement, pages 3–16,
Cham, 2017. Springer International Publishing.

[22] Samuel Schüppen, Dominik Teubert, Patrick Herrmann,
and Ulrike Meyer. FANCI : Feature-based automated nx-
domain classification and intelligence. In 27th USENIX
Security Symposium (USENIX Security 18), pages 1165–
1181, Baltimore, MD, August 2018. USENIX Associa-
tion.

USENIX Association 2020 USENIX Annual Technical Conference 513

https://www.cc.gatech.edu/computing/Networking/projects/cryptopan/
https://www.cc.gatech.edu/computing/Networking/projects/cryptopan/
http://www.ietf.org/rfc/rfc882.txt
http://www.ietf.org/rfc/rfc883.txt
http://www.ietf.org/rfc/rfc883.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1035.txt

[23] Will Scott, Thomas Anderson, Tadayoshi Kohno, and
Arvind Krishnamurthy. Satellite: Joint analysis of CDNs
and network-level interference. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), pages 195–
208, Denver, CO, June 2016. USENIX Association.

[24] Dan Wing and Andrew Yourtchenko. Happy eyeballs:
Success with dual-stack hosts. Technical report, 2012.

[25] Sandeep Yadav and A. L. Narasimha Reddy. Winning

with DNS failures: Strategies for faster botnet detection.
In Muttukrishnan Rajarajan, Fred Piper, Haining Wang,
and George Kesidis, editors, Security and Privacy in
Communication Networks, pages 446–459, Berlin, Hei-
delberg, 2012. Springer Berlin Heidelberg.

[26] Sebastian Zander and Xuequn Wang. Are we there yet?
IPv6 in Australia and China. ACM Transactions on

Internet Technology, 18(3), February 2018.

514 2020 USENIX Annual Technical Conference USENIX Association

A Decentralized Blockchain with High Throughput and Fast Confirmation

Chenxing Li∗, Peilun Li∗, Dong Zhou, Zhe Yang†, Ming Wu†,
Guang Yang†, Wei Xu, Fan Long‡†, Andrew Chi-Chih Yao

Tsinghua University †Conflux Foundation ‡University of Toronto

Abstract
This paper presents Conflux, a scalable and decentralized
blockchain system with high throughput and fast confir-
mation. Conflux operates with a novel consensus pro-
tocol which optimistically processes concurrent blocks
without discarding any as forks and adaptively assigns
weights to blocks based on their topologies in the Con-
flux ledger structure (called Tree-Graph). The adaptive
weight mechanism enables Conflux to detect and thwart
liveness attack by automatically switching between an
optimistic strategy for fast confirmation in normal sce-
narios and a conservative strategy to ensure consensus
progress during liveness attacks.

We evaluated Conflux on Amazon EC2 clusters with
up to 12k full nodes. The consensus protocol of Conflux
achieves a block throughput of 9.6Mbps with 20Mbps
network bandwidth limit per node. On a combined work-
load of payment transactions and Ethereum history trans-
actions, the end-to-end system of Conflux achieves the
throughput of up to 3480 transactions per second while
confirming transactions under one minute.

1 Introduction
Following the success of cryptocurrencies [2, 23],
blockchain has evolved into a technology powering se-
cure, decentralized, and consistent transaction ledgers
at Internet-scale. Newer blockchain platforms such as
Ethereum [2, 35] support customized transaction rules as
smart contracts, which greatly extend the capability of
blockchain ledgers beyond value transfers.

Blockchain platforms like Bitcoin [23] use Nakamoto
consensus. It organizes transactions into an ordered list
of blocks, each of which contains multiple transactions
and a link to its predecessor. Participants (miners) solves
proof-of-work (PoW) puzzles to compete for the right of
generating the next block. To prevent an attacker from
reverting previous transactions, honest participants agree

∗The first two authors contributed equally.

on the longest chain of blocks as the correct history. Each
new block is appended at the end of the longest chain to
make the chain longer and therefore harder to revert.

However, the performance remains one of the most
critical issues of blockchains. Nakamoto consensus is
bottlenecked by its slow block generation rate. For exam-
ple, Bitcoin generates one 1MB block every 10 minutes
and can therefore only process 7 transactions per second.
Users have to wait for typically one hour (i.e., six blocks)
to obtain high confidence on the finality of a transaction.

An ideal blockchain has the following four desirable
properties, security, decentralization, high throughput,
and fast confirmation. The key challenge of building
such a blockchain system is the threat of security attacks.
To obtain high performance, the system typically has to
operate with a fast block generation rate. Because block
propagation takes time, the system may therefore gen-
erate many concurrent blocks (i.e., forks). In Nakamoto
consensus, concurrent blocks waste PoW computation be-
cause they do not contribute to the finality of the longest
chain. They make the system vulnerable to double spend-
ing attacks that attempt to revert history transactions.

Moreover, a high block generation rate can make sev-
eral recently proposed protocols vulnerable to liveness
attacks [17, 31, 32]. An attacker can simultaneously gen-
erate blocks at two competing branches and strategically
withhold/release these blocks to maintain the balance of
the two branches. The attacker with little PoW computa-
tion power can stall the consensus progress [36].
Conflux: We present Conflux, the first blockchain system
that achieves all of the four desirable properties. Conflux
can process thousands of transactions per second while
confirming each transaction with within one minute on
average. With its novel consensus protocol, the consensus
layer of Conflux is no longer the performance bottleneck,
i.e., the throughput saturates its underlying gossip net-
work bandwidth and the confirmation speed is within the
same order of magnitude as the gossip network propa-

USENIX Association 2020 USENIX Annual Technical Conference 515

gation delay. Conflux is provably secure (see our formal
proof in [19]). It is also as decentralized and permission-
less as Bitcoin — participants can join and leave the
consensus process at any time and there is no privileged
committee or super-node dictating the process. Conflux
also implements a modified version of Ethereum Vir-
tual Machine (EVM) [35] and most smart contracts in
Ethereum can be directly ported to Conflux.

To address the security attack challenge, Conflux orga-
nizes blocks into a novel Tree-Graph structure, which is
a tree embedded inside a direct acyclic graph (DAG). In
Tree-Graph, concurrent blocks are not considered harm-
ful and they contribute to the Conflux ledger as well.
Their PoW solutions will improve the finality of all of
their ancestors and their transactions will be optimisti-
cally included into the ledger total order. This secures
Conflux against double spending attacks and improves
the Conflux throughput. To address liveness attacks, the
consensus protocol of Conflux inherently encodes two
different block generation strategies: an optimistic strat-
egy that allows fast confirmation and a conservative strat-
egy that ensures the consensus progress. Conflux uses its
novel adaptive weight mechanism to combine these two
strategies into a unified consensus protocol.
Adaptive Weight: Conflux assigns a weight to each
block, which indicates the amount of finality that the
block contributes to its ancestors. For each new block,
Conflux analyzes its topology in the Tree-Graph, decides
whether a liveness attack is potentially going on (e.g.,
whether there are old ancestor blocks that are not final-
ized yet), and then adaptively assigns weights to blocks
in the Tree-Graph to switch between the two strategies.
In normal scenarios, the mechanism assigns weights in
one way that enables the optimistic strategy to confirm
transactions fast. When a liveness attack happens, the
mechanism assigns weights in another way that enables
the conservative strategy to thwart the attack.
Deferred Execution: The execution order of recently
packaged transactions may oscillate temporarily in a sys-
tem with fast block generation. A naive implementation
of the transaction execution engine would have to roll
back executions many times and waste computation re-
sources. Conflux addresses this challenge with its de-
ferred execution mechanism. Instead of executing trans-
actions in every received block immediately, Conflux
waits for several blocks so that the order is relatively
stabilized. Our observation is that users need to wait for
the stabilization of the total order anyway to confirm a
transaction with high confidence. Therefore the deferred
execution does not harm the user experience at all.

Link-Cut Tree: An efficient consensus implementation
is important to the performance of Conflux. To maintain
the Conflux Tree-Graph, a naive implementation has the
time cost of O(n) for processing a new block on average,
where n is the number of existing blocks. To address this
challenge, Conflux uses link-cut tree to maintain weight
values in Tree-Graph efficiently. It reduces the processing
time from O(n) to O(logn) per block.
Experimental Results: We implemented Conflux and
evaluated it with Amazon EC2 machines under the same
experimental setup as previous work like Algorand and
OHIE [11, 36]. Our experimental results show that with
the bandwidth limit of 20Mbps and the simulated real
world network latency setting, Conflux achieves a trans-
action throughput of 9.6Mbps and a confirmation latency
of 47.75-51.54 seconds when running 3000-12000 nodes.
For a combined workload of payment transactions and
Ethereum history transactions, Conflux achieves up to
3480 transactions per second and confirms transactions
within one minute with high confidence. Comparing to
Algorand [11], Conflux has more than 4x higher through-
put and comparable confirmation speed. Comparing to
OHIE [36], Conflux has the same throughput and one
order of magnitude faster confirmation speed.
Contribution: This paper makes the following contribu-
tions: 1) we design and implement Conflux, a decentral-
ized and smart-contract-enabled blockchain system with
high throughput and fast confirmation; 2) we present a
novel consensus protocol with the adaptive weight mech-
anism; 3) we present a set of novel and critical optimiza-
tions, including deferred execution and link-cut tree.

2 Related Work
Nakamoto Consensus in Bitcoin: Transactions are
packed into blocks in Bitcoin. Each block has one pre-
decessor block and all blocks form a tree structure with
the genesis block as the root. Participants agree on the
longest chain as the valid transaction history. Nakamoto
consensus has to use a relatively slow block genera-
tion rate to avoid the generation of concurrent blocks,
i.e., forks. This is essential for the safety against dou-
ble spending attacks as shown in Figure 1a. More forks
would mean relatively less blocks in the longest chain.
In Figure 1a, due to forks, only 20% of blocks are on the
longest chain so that an attacker with more than 20% of
the network computation power can revert the longest
chain to launch double spending attacks.
GHOST: GHOST is a previous proposal to replace the
longest chain rule to improve the consensus safety under
a fast block generation rate [32]. It is partially imple-
mented in Ethereum [2]. Figure 1b presents an exam-

516 2020 USENIX Annual Technical Conference USENIX Association

G

… …

…

Forks

…

…

Forks The original longest
chain (20% of blocks)

(a) An attacker with more than 20% of the network compu-
tation power can revert the longest chain.

Genesis

Y Y Y Y

X X X New Block

X X

X

Y

(b) GHOST algorithm iteratively advances to the largest
subtree to select the agreed chain.

G
Y … Y Y

Y’ …

X … X

X’ …

…

…

Y’

New Block
from X groupX

X’

…

… New Block
from Y group

Malicious Blocks
In-Transit Blocks

Public Blocks

Expected blocks in
total. These blocks are only
visible to their own group.

� · d
<latexit sha1_base64="YPQ6RFPy//dSHO7eZ2QRP1Ii8wM=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwVWaqoMuiG5cV7AM6Q8lkMm1oJhmSO0It/RI3LhRx66e4829M21lo64HA4ZxzuTcnygQ34Hnfztr6xubWdmmnvLu3f1BxD4/aRuWashZVQuluRAwTXLIWcBCsm2lG0kiwTjS6nfmdR6YNV/IBxhkLUzKQPOGUgJX6biUQNhwTHNBYAY77btWreXPgVeIXpIoKNPvuVxArmqdMAhXEmJ7vZRBOiAZOBZuWg9ywjNARGbCepZKkzIST+eFTfGaVGCdK2ycBz9XfExOSGjNOI5tMCQzNsjcT//N6OSTX4YTLLAcm6WJRkgsMCs9awDHXjIIYW0Ko5vZWTIdEEwq2q7ItwV/+8ipp12v+Ra1+f1lt3BR1lNAJOkXnyEdXqIHuUBO1EEU5ekav6M15cl6cd+djEV1ziplj9AfO5w8GRpKs</latexit>

New Blocks

(c) The attacker can strategically withhold or release his/her
blocks to maintain the balance of two subtrees.

G
Y … Y Y

Y’ …

X … X

X’ …

…

…

Y’

New Block
from Y group

X

X’

…

…

New Block
from X group

Weighted Block (only 1/h blocks)
Zero Weight Block

(d) If h is large enough, two groups will converge eventually.
Figure 1: Double Spending Attack, GHOST, Liveness Attack,
and Structured GHOST

ple to illustrate the GHOST algorithm. GHOST starts
from the genesis block and iteratively advances to the
child block with the largest subtree to select the agreed
chain [32]. In Figure 1b, the new block appends to the
end of the agreed chain, which is in the subtree of X
(containing 6 blocks) not in the subtree Y (containing 5
blocks). The difference between GHOST and the longest
chain rule is that all blocks generated by honest partici-
pants will contribute to the finality of the agreed chain.
Suppose G is an old enough block that is on the agreed
chains of all honest participants. Future blocks generated
by honest participants will all contribute the finality of G
regardless of whether they are concurrent or not, because
all of these blocks will be under the subtree of G. Unlike
the longest chain rule, an attacker would need more than
half of computation power to revert G from the agreed
chain even with the presence of concurrent blocks [32].

Liveness Attack on GHOST: Unfortunately, GHOST is
vulnerable to liveness attacks if the block generation rate
is very fast. Figure 1c presents one example of such at-
tacks. The example has the following settings: 1) the total
block generation rate of honest participants is λ; 2) hon-
est participants are devided into two groups with equal
computation power (group X and group Y in Figure 1c);
3) blocks will transmit instantly inside each group, but
the propagation between these two groups has a delay
of d. In Figure 1c, each of the two groups extends its
own subtree following the GHOST rule. Note that re-
cent generated blocks within the time period of d are
in-transit blocks (gray blocks in Figure 1c), which are
only visible by the group who generates them. Therefore
each group will believe its own subtree is larger until one
group generates sufficiently more blocks than the other
to overcome the margin caused by the in-transit blocks.

In normal scenarios, one of the two groups will get
lucky to enable the blockchain to converge. However,
an attacker can mine under two subtrees simultaneously
to delay the convergence. The attacker can strategically
withhold or release the mined blocks to maintain the
balance of the two subtrees as shown in Figure 1c.

Theoretically, if honest participants evenly split due to
network delay and the margin caused by in-transit blocks
is significant, i.e., λd > 1, a small portion of computation
power is enough to launch attacks. Previous work [36] in-
cludes a simulation shows only 10% will do. In practice,
even if honest participants do not have an even parti-
tion, the more computation power the attacker controls,
the more likely the attacker will succeed. Consider the
presence of mining pools, it is not rare to see one miner
controlling more than 20% of computation power. Such
a miner will be able to launch successful balance attacks
without even partition.
DAG-based Structures: To improve the throughput and
the confirmation speed, researchers have explored sev-
eral alternative structures to organize blocks. Inclusive
blockchain [17] extends the Nakamoto consensus and
GHOST to DAG and specifies a framework to include
off-chain transactions. In PHANTOM [31], participating
nodes first find an approximate k-cluster solution for its
local block DAG to prune potentially malicious blocks.
They then obtain a total order via a topological sort of the
remaining blocks. Unfortunately, when the block genera-
tion rate is high, inclusive blockchain and PHANTOM
are all vulnerable to liveness attacks similar to Figure 1c.
Therefore, unlike Conflux they cannot achieve both the
security and the high performance.

Some protocols attempt to obtain partial orders instead
of total orders for payment transactions. SPECTRE [30]

USENIX Association 2020 USENIX Annual Technical Conference 517

produces a non-transitive partial order for all pairs of
blocks in the DAG. Avalanche [4] connects raw transac-
tions into a DAG and uses an iterative random sampling
algorithm to determine the acceptance of each transac-
tion. Unlike Conflux, it is very difficult to support smart
contracts on these protocols without total orders.
Hierarchical and Parallel Chains: Besides DAG, al-
ternative ways to organize blocks include hierarchi-
cal chains and parallel chains. For example, in Bit-
coinNG [9], a macro block is generated every 10 minutes.
The miner of such a block becomes the leader to gen-
erate micro blocks that contain actual transactions until
the next macro block. Similarly, FruitChain [27] packs
transactions first into fruits (i.e., micro blocks) and then
packs fruits into blocks. OHIE [36] runs multiple parallel
chains with the standard Nakamoto consensus and then
deterministically sorts blocks to obtain a total order.

The shared property of these protocols is that only a
small portion of blocks (e.g., macro blocks in BitcoinNG
and FruitChain) influence the total order of the transac-
tion ledger. It mitigates the liveness attack issue in Fig-
ure 1c because it reduces the chance of in-transit blocks
influencing the total order. But these protocols have slow
confirmation speed because they need to wait for more
blocks to confirm transactions than other protocols. For
example, BitcionNG has the same slow confirmation
speed as Bitcoin [9]; OHIE confirms transactions in about
10 minutes on average only under an extremely fast block
generation rate of 64 blocks per second [36]. In contrast,
Conflux has a much faster confirmation speed in normal
circumstances with no ongoing liveness attack.

Prism operates with one proposer chain and many par-
allel vote chains, each of which casts vote to decide the
total order of blocks in the proposer chain [6]. The theo-
retical simulation in [6] shows that Prism may achieve
high throughput and fast confirmation speed similar to
our Conflux results in Section 6. But the simulation as-
sumes a block propagation delay of one second, which
is too ideal (e.g., the measured block delay is 10-15 sec-
onds in our experiments). It is therefore unclear how fast
a blockchain system that implements Prism can confirm
transactions when running under practical P2P networks.
Byzantine Fault Tolerance: ByzCoin [14] and Thun-
derella [28] propose to achieve consensus by combining
the Nakamoto consensus with Byzantine fault tolerance
(BFT) protocols. Algorand [11], HoneyBadger [22], and
Stellar [21] replace the Nakamoto consensus entirely
with BFT protocols. In practice, all these proposals run
BFT protocols within a confined group of nodes, since
BFT protocols only scale up to dozens of nodes. The
confined group is often chosen based on their recent

PoW computation power [14, 28], their stakes of the sys-
tem [11], or external hierarchy of trusts [21, 22]. How-
ever, these approaches may create undesirable hierarchies
among participants and compromise the decentralization
of blockchain systems. In contrast, Conflux allows any
participant to join and leave the network without permis-
sion. In addition, instead of eagerly deciding the total or-
der of blocks as in BFT-based approaches, Conflux allows
multiple blocks to be generated in parallel and finalizes
their orders later, which leads to its higher throughput.
Sharding: Elastico [20], OmniLedger [15], Rapid-
Chain [37], and Monoxide [33] split the blockchain state
into shards. Instead of having every node to verify all
transactions, the systems select a small committee to
maintain each shard to improve scalability. Unlike Con-
flux, such systems sacrifice security for scalability, i.e.,
the committee configuration can only be changed slowly
(like days) due to reconfiguration overhead and therefore
a small shard may be vulnerable to powerful attackers
who can adaptively corrupt participants. This security
issue is so important that Vault [16] chooses to only use
sharding to mitigate storage cost with the trade-off of
increased network bandwidth cost. Also despite the high
combined throughput of all shards, the throughput of
inter-shard transactions is still limited.

3 Overview
We will first present an example to illustrate a straw-
man algorithm called structured GHOST that can de-
fend against liveness attacks but has a sub-optimal con-
firmation speed. We will then present an overview of the
Conflux consensus protocol, which uses the straw-man
algorithm as a building block.
Structured GHOST: In our structured GHOST algo-
rithm, only 1/h of blocks are weighted blocks that would
count in the chain selection process. These blocks are
selected randomly based on their PoW solution quali-
ties (e.g., the number of leading zeros of the PoW hash).
During the chain selection, the structured GHOST itera-
tively advances to the subtree with the largest number of
weighted blocks, instead of considering all blocks.

Figure 1d shows an example to illustrate how struc-
tured GHOST can defend against the liveness attack we
described before. With a sufficiently large h value, the
expected number of in-transit weighted blocks (λd/h)
will be very small. As shown in Figure 1d, the genera-
tion of a weighted block of one group will very likely to
make the two subtrees to converge, unless another group
generates a concurrent weighted block. When λd/h� 1,
the chance of such concurrent generation is very unlikely.
Without the margin caused by the in-transit blocks, the

518 2020 USENIX Annual Technical Conference USENIX Association

Genesis

F J I

C E

D

H

K

…

…

…

Adaptive Weight
Triggered

Liveness Attack
Launched

Adaptive
Weight End

N

Tx0 B
Tx2
Tx3

A
Tx1

Tx0: Mint 10 coins to X
Tx1: X sends 8 to Y
Tx2: X sends 8 to Z
Tx3: X deploys Foo

G
Tx3

(a) Tree-Graph Example. Solid blocks have weight one. Double-line blocks have weight
600. Dotted-line blocks have weight zero.

f() =
Weight of
the new
block

Is the past
sub-graph safe
from liveness

attacks?

Assign 1
Assign h with
1/h chance.
Otherwise 0.

Yes

No

(b) Adaptive Weight

Figure 2: Examples of Conflux Consensus on Tree-Graph

liveness attack is not possible without significant com-
putation power. Although structured GHOST is secure
against liveness attacks, it sacrifices the confirmation
speed — a user has to wait for the accumulation of
enough weighted blocks to confirm a transaction.
Consensus with Two Strategies: The Conflux consen-
sus protocol operates with two strategies, an optimistic
strategy similar to the GHOST algorithm and a conser-
vative strategy similar to the above straw-man algori-
htm. Our adaptive weight mechanism enables Conflux
to encode these two strategies in a unified framework.
In normal scenarios, Conflux would use the optimistic
strategy to achieve high performance. If a liveness attack
happens, the adaptive weight mechanism enables honest
participants of Conflux to cooperatively switch to the
conservative strategy to thwart the attack automatically.
Tree-Graph: The Conflux consensus protocol operates
on the local Tree-Graph state of each individual node.
Figure 2a presents a running example of the local Tree-
Graph state of a node in Conflux. We will use this ex-
ample in the remaining of this section to illustrate the
high-level ideas of the Conflux consensus protocol. Each
vertex in the Tree-Graph in Figure 2a corresponds to a
block. In Figure 2a, Genesis is the predefined genesis
block. Only Genesis, A, B, and G are associated with
transactions. There are two kinds of edges in the Tree-
Graph, parent edges and reference edges:
Parent and Reference Edges: Each block except Gen-
esis has exactly one outgoing parent edge (solid line
arrows in Figure 2a). For example, there is a parent edge
from C to A. Each block can have multiple outgoing refer-
ence edges (dashed line arrows in Figure 2a). A reference
edge corresponds to generated-before relationships be-
tween blocks. For example, there is an edge from E to D.
It indicates that D is generated before E.
Pivot Chain: Note that all parent edges in the Tree-
Graph together form a parental tree in which the genesis
block is the root. In the tree, Conflux selects a chain from
the genesis block to one of the leaf blocks as the pivot
chain. Each block in the Tree-Graph may have a different

weight determined by our novel adaptive weight mech-
anism. Conflux iteratively advances to the subtree with
the heaviest total block weight to select the pivot chain.
In Figure 2a before the liveness attack, Conflux selects
Genesis, A, C, E, and H as the pivot chain to append the
new block N. Note that Conflux does not selects the chain
of Genesis, B, F, J, I, and K, because the subtree of A has
heavier weights than the subtree of B.
Generating New Block: Whenever a node generates a
new block, it first computes the pivot chain in its local
Tree-Graph state and sets the last block in the chain as
the parent of the new block. The node then finds all tip
blocks in the Tree-Graph that have no incoming edge
and creates reference edges from the new block to each
of those tip blocks. For example, in Figure 2a, when
generating N, the node chooses H as the parent of N and
creates a reference edge from N to K.
Adaptive Weight: Figure 2b illustrates the basic idea of
the adaptive weight mechanism. The goal is to assign a
different weight to each generated block so that Conflux
can adaptively switch between the optimistic strategy
with a fast confirmation and the conservative strategy
that ensures the consensus progress. Conflux determines
the weight of a new block based on its past sub-graph,
i.e., all blocks that are reachable via a traversal from the
new block. As shown in Figure 2b, if the past sub-graph
is safe — every old enough ancestor of the new block
in the past sub-graph is secured on the pivot chain with
high probability, the weight of the new block will be one.
If not, the new block will be assigned an adaptive weight
— it gets a weight of h with the chance of 1/h (depending
on the PoW quality) or zero otherwise. Note that we set
h = 600 in Conflux. See Section 4.1.
Liveness Attack Resilience: Figure 2a shows how the
adaptive weight mechanism stops liveness attacks. Sup-
pose after the generation of N, an attacker launches a
liveness attack similar to one described in Figure 1c
to balance the subtree of A and B. After a while, all
honest participants start to generate blocks with adap-
tive weights, because they find that the old ancestors of

USENIX Association 2020 USENIX Annual Technical Conference 519

their new generated blocks (e.g., A or B in Figure 2a) are
still not secured on the pivot chain with high probabil-
ity. This essentially enables the consensus protocol to
operate in the conservative strategy similar to the struc-
tured GHOST algorithm. In Figure 2a, the heavy weight
blocks make Conflux to converge to the the subtree of
A. After more blocks being generated under A, the past
sub-graph of new generated blocks will become safe. Par-
ticipants therefore assign weight one to the new blocks,
automatically swtiching back to the optimistic strategy.
Epoch and Block Order: Parent edges, reference edges,
and the pivot chain together enable Conflux to split all
blocks in a Tree-Graph into epochs. Every block on the
pivot chain corresponds to one epoch. Each epoch con-
tains all blocks 1) that are reachable from the correspond-
ing block in the pivot chain via the combination of parent
and reference edges (including the pivot chain block it-
self) and 2) that are not included in previous epochs. For
example, in Figure 2a, J belongs to the epoch of H be-
cause J is reachable from H but not reachable from the
previous pivot chain blocks.

Conflux then derives a total order of all blocks in the
Tree-Graph with the following rules. Conflux first sorts
blocks based on their epochs. For blocks within the same
epoch, Conflux sorts them based on their topological
order. Conflux break ties determinisitcally (e.g., with
the PoW quality or the block hash). For example, in Fig-
ure 2a, Conflux will obtain the following block total order
for all blocks before the liveness attack: Genesis, A, B,
C, D, F, E, G, J, I, H, K, and N.
Transaction Order: Conflux first sorts transactions
based on the total orders of their enclosing blocks. If
two transactions belong to the same block, Conflux sorts
the two transactions based on the appearance order in
the block. Conflux checks the conflicts of the transac-
tions at the same time when deriving the order. If two
transactions are conflicting with each other, Conflux will
discard the second one. If one transaction appears in mul-
tiple blocks, Conflux will only keep the first appearance
and discard all redundant ones. In Figure 2a, the transac-
tion total order is Tx0, Tx1, Tx2, Tx3, and Tx3. Conflux
discards Tx2 because it conflicts with Tx1.

4 Consensus on Tree-Graph
The local state of a node in Conflux is S = 〈B,g〉, where B
is the set of blocks and g ∈ B is the genesis block. There
are several fields associated with a block b ∈ B. b.parent
denotes the parent block of b. b.pred_blocks denotes the
set of predecessor blocks linked by the reference and
parent edges from b. b.pow_quality is the quality of the
PoW solution — for b to be valid, b.pow_quality must no

Child(B,b) = {b′ | b′ ∈ B, b′.parent= b}
SubT(B,b) = (∪i∈Child(B,b)SubT(B, i))∪{b}
SubTW(B,b) = ∑i∈SubT(B,b) i.weight
Past(b) = (∪i∈b.pred_blocksPast(i))∪b.pred_blocks
PastW(b) = ∑i∈Past(b) i.weight

Figure 3: The definitions of utility functions.
Input :A set of blocks B and a starting block b.
Output :The pivot block for the subtree of b.

1 if Child(B,b) = /0 then
2 return b

3 else
4 w←max{SubTW(B, i) | i ∈ Child(B,b)}
5 a← argmin

i∈Child(B,b)
{i.hash | SubTW(B, i) = w}

6 return Pivot(B,a)
Figure 4: The definition of Pivot(B,b).

less than the PoW difficulty D. b.weight is the adaptive
weight of b. We use b.hash to denote the hash of b – all
nodes in Conflux share a predefined deterministic hash
function that maps each block to a unique id.

Figure 3 defines several utility functions and notations.
Child() returns the set of child blocks of a given block.
SubT() returns the set of blocks in the subtree of a given
block in the parental tree. SubTW() returns the sum of
the weights in the subtree. Past() returns the set of blocks
that are generated before a given block. PastW() returns
the sum of the weights of the past block set of a block.
Note that Past(b) and PastW(b) are determined at the
generation time of b and remain constant afterwards. In
this section, we use lists to denote chains and serialized
orders. “◦” denotes the concatenation of two lists.

4.1 Pivot Chain and Adaptive Weight
Pivot Chain: Figure 4 presents the pivot chain selection
algorithm in Conflux. Given a set of blocks B and the
starting genesis block g, Pivot(B,g) returns the leaf block
of the selected pivot chain. The algorithm recursively
advances to the child block whose corresponding subtree
has the largest total weights (lines 4-6). To break ties,
the algorithm selects the child block with the smallest
unique hash id (line 5). The algorithm terminates until it
reaches a leaf block (lines 1-2).
Adaptive Weight: Figure 5 presents how we calculate
the weight of a block b. The algorithm first determines
whether the block should have adaptive weight or not
based on the past block set of b (lines 1-11). If not, the
weight of the block will be one (lines 12-13). If so, the
algorithm checks the PoW solution quality against a dif-
ficulty that is h times higher than the base validation
difficulty. The weight of the block will be h if it passes
the check and be zero if it fails (lines 14-17).

To determine whether b should have adaptive weight,
the algorithm operates at a sub-Tree-Graph that only con-
tains blocks in the past set of b. It inspects every block in

520 2020 USENIX Annual Technical Conference USENIX Association

Input :A new block b
Output :The adaptive weight of b

1 B← Past(b)
2 a← b.parent
3 adaptive← False
4 Let f (x) =

2 ·SubTW(B,x)−SubTW(B,x.parent)+x.parent.weight
5 Let t(x) = |TimerChain(b)|− |TimerChain(x.parent)|
6 Let g(x) = |SubT(B,x.parent)|
7 while a.parent 6=Nil do
8 if f (a)< α and (t(a)> β or g(a)> γ) then
9 adaptive← True

10 break

11 a← a.parent

12 if not adaptive then
13 return 1

14 else if b.pow_quality ≥ h ·D then
15 return h

16 else
17 return 0

Figure 5: The definition of AdaptiveWeight(b)

Input :A block b.
Output :The timer chain of the past sub-graph of b.

1 if b.pred_blocks= /0 then
2 return b

3 else
4 a← argmax

i∈b.pred_blocks
{|TimerChain(i)|}

5 if b.pow_quality > h0 ·D then
6 return TimerChain(a)◦b

7 else
8 return TimerChain(a)

Figure 6: The definition of TimerChain(b).

the path from the genesis to b.parent. For each inspected
block a, it determines 1) whether a is still not secure on
the pivot chain with high probability – the subtree weight
of a is not significantly larger than the weight of the sib-
ling subtrees of a (i.e., f (a)< α) and 2) whether a is old
enough – there is an enough amount of timer ticks or an
enough number of blocks in the subtree of its parent (i.e.,
t(a) > β or g(a) > γ). If any inspected block satisfies
these two conditions, b should have adaptive weight.

The intuition is that to make progress, for any pivot
chain block a′ in Tree-Graph, after a certain period of
time, one of the child subtree of a′ (e.g., the subtree of a)
should become dominant. If the attacker attempts to main-
tain the balance between the subtrees of two (or more)
children of a′ for a long time, the condition at line 8 will
become true for a. Therefore, all honest participants will
start to generate blocks with adaptive weights. Conflux
will essentially operate with a conservative strategy simi-
lar to the structured GHOST algorithm (see Section 3).
This will thwart the attack to ensure the progress.
Timer Chain: Because an attacker with enough compu-
tation power may influence the subtree sizes of recent

Input :The local state S = 〈B,g〉 and a new discovered
block b

1 if b.pow_quality ≥ D then
2 Wait until Past(b)⊆ B
3 if Pivot(Past(b),g) = b.parent then
4 b.weight← AdaptiveWeight(b)
5 S← 〈B∪{b},g〉

Figure 7: The block validation procedure.
Input :A block b
Output :An ordered list of all blocks in Past(b)∪{b}

1 if b.parent= Nil then
2 return /0

3 L← ConfluxOrder(b.parent)
4 B∆← (Past(b)−Past(b.parent)−{b.parent})∪{b}
5 while B∆ 6= /0 do
6 B′

∆
←{x | |x.pred_blocks∩B∆|= 0}

7 Sort all blocks in B′
∆

in order as a1,a2, . . . ,ak
8 such that ∀1≤ i < j ≤ k, ai.hash< a j.hash
9 L← L◦a1 ◦a2 ◦ . . .◦ak

10 B∆← B∆−B′
∆

11 return L

Figure 8: The definition of ConfluxOrder().
pivot chain blocks via strategically withholding mined
blocks, only counting the number of blocks under the
subtree of a pivot block is not sufficient to detect whether
the pivot block is old enough or not. To this end, Con-
flux uses a timer chain mechanism to obtain an attacker
resilient estimation for the generation time of each block.

Figure 6 presents the definition of TimerChain(b),
which is the longest chain of blocks in the past sub-graph
of b whose PoW qualities are h0 times higher than the nor-
mal difficulty. We then use the length of the timer chain
as the timer tick of the generation time estimation of each
block (i.e., line 5 in Figure 5). When h0 is large enough
respecting the network delay, the attacker cannot stop the
growth of the timer chain, because honest participants
will contribute to the timer chain almost synchronously.
In Conflux we set h0 = 360. See Section 6.1.

4.2 Block Validation and Total Order
Block Validation: Figure 7 presents the validation pro-
cedure for a new discovered block. It first checks whether
the block has a PoW solution with a sufficient quality
(line 1). The procedure will wait for all blocks in its past
sub-graph being processed first (line 2). The procedure
will then compute the pivot chain in its past sub-Tree-
Graph to check whether it selects the right parent (line
3). If so, the procedure computes the weight of the new
block and adds it to the local Tree-Graph state (lines 4-5).
Block Order: Figure 8 defines ConfluxOrder(),
our block ordering algorithm. Given a block b,
ConfluxOrder(b) returns the total order of all blocks in
Past(b)∪{b}. The algorithm sorts the blocks based on
their corresponding epochs, i.e., it first recursively orders
all blocks in previous epochs. It then computes all blocks

USENIX Association 2020 USENIX Annual Technical Conference 521

in the epoch of b as B∆ (line 4). It topologically sorts all
blocks in B∆ and appends them to the result list (lines
5-10), and uses the hashes to break ties (lines 7-8).

4.3 Correctness
We next discuss the intuitions behind the correctness of
our consensus algorithm. Suppose the network together
has a block generation rate of λ. The correctness of Con-
flux is based on the following assumptions: 1) attackers
control at most δ of the total block generation power
(δ < 0.5); 2) the network is d-synchronous, i.e., if at time
t one honest node broadcast a block via the gossip net-
work, then before time t+d, all honest nodes will receive
this block and add this block into their local states.
Adversary Model: The attacker can choose arbitrary
strategies to disrupt honest nodes. We also assume 1)
attackers immediately receive all blocks and transactions
from the gossip network, 2) attackers can arbitrarily con-
trol the communication of honest nodes as long as the
d-synchronous assumption holds. The attacker however
does not have the capability to reverse cryptographic
functions. Therefore honest nodes can reliably verify the
integrity of a block in the presence of the attacker.
Safety: Conflux is safe against double spending attacks
because of two facts: 1) to revert a transaction in an
epoch, the attacker has to revert the pivot chain block
associated with the epoch from the pivot chain; 2) revert-
ing an old pivot chain block that is on the common pivot
chain of all honest nodes requires the attacker to compete
with all honest nodes together. Although honest nodes
may generate blocks that are concurrent with each other,
all of these blocks will be under the subtree of the com-
mon pivot chain block. As the time passes by, it will be
impossible for the attacker to forge an alternative heavier
subtree without the pivot chain block.
Liveness: Many previous consensus algorithms based
on tree and DAG can only provide liveness guarantees
if the block generation rate is significantly slower than
the block propagation delay (i.e., λ ·d� 1) [13, 26]. In
contrast, Conflux is safe against liveness attacks at the
protocol level even when the block generation rate is fast,
because if the consensus does not make progress for a
certain period of time, all honest nodes will start to gen-
erate blocks with adaptive weights. In this scenario, only
blocks with very high PoW quality will decide the total
order and the block generation rate of these blocks is sig-
nificantly slower than the block propagation delay (i.e.,
λ·d
h � 1 for a large enough h). Because concurrent gener-

ation of such heavy weight blocks is rare, an attacker has
to release a large number of previously withheld blocks to
balance a new generated heavy block or all honest nodes

will make progress and will recognize the heavy block as
a common pivot chain block. Because block withholding
capability of an attacker is limited by its block generation
power, the attacker will eventually run out of blocks to
continue the liveness attack. We prove in [19] that when
δ < 1/2, once a block in Conflux is seen by an honest
node, its order will become irreversible with exception
risk ε after d ·O(log(1/ε)) time.
Confirmation Policy: Conflux confirms a block b if for
any ancestor block of b, the corresponding subtree total
weight is heavier than all of the subtrees of its siblings by
a margin. This margin is not a preset value. It depends on
the status of blockchain protocol. With the parameter set-
ting used in our experiments, this margin is about 20∼30
in normal scenarios for obtaining the same confidence
as waiting six blocks in Bitcoin. Specially, if Conflux is
in the conservative mode and is generating blocks with
adaptive weights, we need to wait six blocks with heavy
weights instead. See [19] for the detailed formulas of the
risk in confirming a block.

5 Implementation and Optimizations
We have implemented Conflux in Rust [1].
Difficulty Adjustment: For brevity, our algorithm in
Section 4 assumes a constant PoW difficulty. Conflux
operates with a difficulty adjustment mechanism tailored
for Tree-Graph. Every 5000 epochs, Conflux counts the
number of blocks generated in the last 5000 epochs and
adjusts the difficulty accordingly to maintain a stable
block generation interval. Instead of setting the weight of
every normal block to one, Conflux sets the weight to the
difficulty of the block. For a block with a heavy adaptive
weight, its weight will be its difficulty multiplied by h.
The rationale is to allow the block weight to align with
the accumulated PoW as the difficulty changes.
Storage: A Conflux full node stores the blockchain ac-
count state as Merkle Patricia Trees [35] in a key-value
DB. To save storage space, Conflux periodically forms
checkpoints at specific epoch heights (e.g., every 200k
epoch heights) when the confirmation risk of the pivot
chain blocks at these heights become extremely low. Af-
ter a checkpoint, all history transactions before it can be
safely discarded — all full nodes treat the checkpoint
block as the new genesis. Note that full nodes still store
all block headers to help new nodes bootstrapping.
Bootstrap: To bootstrap a new full node to join the net-
work, it first synchronizes all the block headers in the
ledger from the peers and decides the latest confirmed
checkpoint block based on the headers. It then fetches
the corresponding checkpoint state from the peers and
continues the execution from that state.

522 2020 USENIX Annual Technical Conference USENIX Association

Pivot Parent Edge

Non-Pivot Parent Edge
Reference Edge

Block1

Deferred State Root Edge

DeferRoot

TX1

Executed

1

2

3

Block2

DeferRoot

TX2

Block1

DeferRoot

TX1

Block2

DeferRoot

TX2

Block3

DeferRoot

TX3

Block4

DeferRoot

TX4

Block1

DeferRoot

TX1

Block2

DeferRoot

TX2

Block3

DeferRoot

TX3

Block4

DeferRoot

TX4

Block5

DeferRoot

TX5

Figure 9: Save Redundant Execution by Deferred Execution

Transaction Relay: For a high performance blockchain
like Conflux, it is critical to minimize the redundant trans-
actions that are transferred. Ideally and optimally, each
node should only receive each transaction exactly once.
In current Bitcoin and Ethereum implementation, transac-
tions are disseminated among nodes via flooding, which
may waste network bandwidth resources. Erlay [24] tries
to solve this issue of Bitcoin by letting peers exchange
sets of unsent transactions that are encoded with PinS-
ketch algorithm [8]. However, this method cannot be
applied in Conflux, since it only works well when the
difference between the transaction sets of two peers is
small. Conflux is not this case because the transaction
throughput of Conflux is orders of magnitude higher than
Bitcoin. Conflux instead only floods 4-byte short trans-
action ids and pulls the missed transactions from peers.
The short id is built by a SipHash [12] on the SHA-3
hash of the transaction and a peer-specific random nonce
to significantly decrease the id conflict rate.
Signature Verification: Signature verification is
computation-intensive and may become a bottleneck
when the throughput is high. Conflux therefore uses a
thread-pool to parallel the signature verification for differ-
ent transactions to avoid bottlenecking other components.
Incentive Mechanism: For every mined block, Conflux
assigns its block generation reward based on how many
other blocks that are generated in parallel in Tree-Graph,
i.e., blocks that are not in the past and future sets of the
mined block. The more blocks are in parallel with the
mined block, the smaller the block reward would be. This
incentive mechanism penalizes malicious behaviors such
as withholding mined blocks and not referencing other
blocks. Because every block receives reward regardless
of whether they are on the pivot chain or not, this mecha-
nism nullifies selfish mining attack strategies [10, 25, 29].
See [7] for the details of the incentive mechanism.

5.1 Deferred Execution
In Conflux, when a block just enters the Tree-Graph struc-
ture, its position in the total order will change frequently.
Although such oscillation will stop in a short time, it
poses a challenge for the transaction execution engine.
In typical blockchain systems, all transactions in a block
immediately get executed in a node as soon as it is dis-
covered. Such naive approach may execute transactions
in a block many times as the order of the block oscillates.
This incurs significant execution overhead. The top part
of Figure 9 illustrates this problem. When a full node just
gets the Block2, it is on the pivot chain and the total or-
der of transactions is {T X1,T X2}. T X2 is then executed
in this order. But, when the node later gets Block3 and
Block4, Block2 does not belong to pivot chain anymore
and T X3 is positioned between T X1 and T X2 in the newly
decided total order. T X2 has to be executed again.

Conflux uses a novel deferred execution mechanism to
address this issue. The insight is that, just like users wait-
ing for a period of time to confirm transactions, Conflux
can wait for the total order position of a block to almost
stabilize to execute its transactions. Conflux delays the
execution by k-epochs. Specifically, unlike Ethereum
where the header of each block b contains a merkle state
root that corresponds to the execution results after pro-
cessing all transactions in and before b, the header of b in
Conflux contains a deferred root that corresponds to the
execution results of the block that are k-hops older than
b along its path to the root. We set k to five in Conflux
so that Conflux can avoid re-execution of transactions in
most cases. Five is also smaller than the typical number
of epochs that an user needs to wait to confirm transac-
tions and therefore it does not impact the user experience.

Figure 9 presents an example to illustrate the saving
of redundant executions by using deferred execution. For
illustration purpose, we set k to be one in this example.
Therefore in Figure 9, the Block2 stores the state root
based on the execution of T X1. When the full node gets
Block3 and Block4, in order to verify the deferred state
root of Block4, the system needs to execute T X3 but does
not need to execute T X2 because T X2 is positioned after
T X3 in the decided total order. When getting and veri-
fying Block5, Conflux then needs to produce the state
based on the execution of T X4 which depends on T X2. In
the process, although the pivot chain oscillates between
Block2 and Block3, T X2 only gets executed once.

5.2 Link-cut Tree Optimizations
Maintaining pivot chain in Conflux is not trivial. Adding
a new block to the Tree-Graph requires updating the
subtree weights of all the blocks from this new block back

USENIX Association 2020 USENIX Annual Technical Conference 523

to the genesis. The naive approach will takes O(n) time
to complete, because the Tree-Graph height is usually
linear to the number of blocks. To efficiently update the
subtree weights, Conflux uses a data structure called link-
cut tree [3]. Link-cut tree splits a tree structure into one
or more paths, and represents each path using a splay
tree, a form of balanced binary search tree invented by
Tarjan et al. [5]. The link-cut tree is ideal for maintaining
values like the subtree weights in the Conflux consensus
protocol, because it enables the following operations at
an amortized cost of O(logn): 1) increase or decrease
values of all nodes along a path in the tree by a given
value; 2) find the minimum or maximum value among
values of all nodes along a path; 3) find the least common
ancestor (LCA) of two nodes in the tree.
Update Pivot Chain: Conflux tracks the last pivot chain
block of the current Tree-Graph state. Conflux uses the
link-cut tree to maintain the total subtree weights of each
block. When Conflux discovers a new block b, it inserts
b into the link-cut tree and increases the total subtree
weights of all blocks along the path from b to the root
(i.e., genesis) by b.weight. Note that adding b may trig-
ger a pivot chain change — instead of running the chain
selection algorithm from the root, Conflux uses the link-
cut tree to calculate the LCA of b and the current last
pivot block p. If the weight of the subtree p belongs to
is still heavier than the one b belongs to, no pivot chain
update occurs. Otherwise, Conflux re-runs the selection
algorithm from the LCA block. Because long range pivot
chain reorganization is extremely rare, rerunning the al-
gorithm from the LCA block is not expensive in practice.

6 Experimental Results
We next present a systematic evaluation of Conflux on
its throughput, confirmation speed, and scalability. We
also evaluate important design aspects of Conflux, e.g.,
the adaptive weight mechanism for defending against
liveness attacks, the deferred execution for optimizing
the transaction execution, as well as link-cut tree for
optimizing the Tree-Graph maintainance.

We deployed Conflux on up to 800 Amazon EC2
m5.2xlarge virtual machines (VM), each of which has 8
cores and 1Gbps network throughput. By default, we run
one Conflux full node in each VM. To model the network
latency, we use the intercity latency measurements [34]
and assign each VM to one of 20 major cities. We emu-
late the intercity delay by inserting artificial delays. For
each full node, the gossip network of Conflux connects
it to an average of 10 randomly selected peers.

When we measure the confirmation speed of a trans-
action, we count a transaction as confirmed if we can

obtain the same confidence as empirically confirming a
transaction in Bitcoin after waiting six Bitcoin blocks.
In our experiments, unless otherwise noted, we limit the
bandwidth of each full node to 20Mbps and we assign
each full node with an equal block generation power.

6.1 Protocol Parameter Calibration
To calibrate Conflux consensus protocol parameters, we
run a set of experiments with 200 Conflux full nodes
on Amazon EC2 with one full node per VM. We run
Conflux with a set of different combinations of block size
limits and block generation rates to measure the block
propagation delays. For each setting, we run Conflux
from the genesis for 10 minutes and fill each block to full
with randomly generated simple payment transactions.

Figure 10a and 11a presents the experimental results
of Conflux where we fix the block generation rate at four
blocks per second and change the block size limit. Aver-
age network delay corresponds to the number of seconds
on average for a generated block to reach more than 50%
of participants. Network delay (99%) corresponds the
number of seconds for all blocks to reach more than 99%
of participants. In our experiments, we use the network
delay (99%) number as the network diameter d for calcu-
lating parameters. There are often one or two machines
lagging behind for some blocks and we can tolerate them
as temporary failure nodes.

Conflux achieves the throughput of 9.6Mbps at the
setting of 300K × 4 blocks per second. We find that
Conflux almost saturates its underlying gossip network
capability, considering that we limit the bandwidth of
each full node to 20Mbps, which is only enough to send
each block twice on average. With block sizes of 350K
and beyond, full nodes start to experience significantly
higher delay and may not be able to catch up new blocks.

Figure 10b and 11b presents the experimental results
of Conflux where we fix the block generation through-
put at 9.6Mbps and change the block generation rate
from 2 blocks/s to 16 blocks/s. Our results show that as
Conflux operates with faster block generation rate and
smaller blocks, the network propagation delay decreases.
But the delay no longer decreases much as it approaches
the latency limit of the network. Smaller network prop-
agation delay will improve the confirmation speed of
transactions, but there are additional costs for using high
generation rate. 1) Conflux full nodes have to store all
block headers (block content could be pruned away with
checkpoint techniques) and the average header size of
Conflux is 300∼500 bytes; 2) high block generation rates
incur more blocks in parallel and these blocks cannot pro-
cess transactions with dependencies.

524 2020 USENIX Annual Technical Conference USENIX Association

150 200 250 300
Block size (KBytes)

0

20

40

60

80
Ne

tw
or

k
de

la
y

(s
ec

)
Block interval 0.25 seconds

Network delay (Avg)
Network delay (P99)
Conflux Confirmation speed
GHOST Confirmation speed

0

20

40

60

80

Co
nf

irm
at

io
n

sp
ee

d
(s

ec
)

(a) Latency vs. block sizes.

1/2 1/4 1/8 1/16
Block interval (sec)

0

20

40

60

80

Ne
tw

or
k

de
la

y
(s

ec
)

Block generation throughput 9.6 Mbps
Network delay (Avg)
Network delay (P99)
Conflux Confirmation speed
GHOST Confirmation speed

0

20

40

60

80

Co
nf

irm
at

io
n

sp
ee

d
(s

ec
)

(b) Latency vs. block intervals.

3.0k 6.0k 9.0k 12.0k
Number of nodes

0

20

40

60

80

100

Ne
tw

or
k

de
la

y
(s

ec
)

Block interval 0.25 seconds and block size 300KB
Network delay (Avg)
Network delay (P99)
Conflux Confirmation speed
GHOST Confirmation speed

0

20

40

60

80

100

Co
nf

irm
at

io
n

sp
ee

d
(s

ec
)

(c) Scalability

Figure 10: Network Delay and Confirmation Speed

150 200 250 300
Block size (bytes)

10 1

100

101

Th
ro

ug
hp

ut
 (M

bp
s)

Block interval 0.25 seconds

Conflux
GHOST

(a) Throughput vs. block sizes.

1/2 1/4 1/8 1/16
Block interval (sec)

10 1

100

101

Th
ro

ug
hp

ut
 (M

bp
s)

Block generation throughput 9.6 Mbps

Conflux
GHOST

(b) Throughput vs. block intervals.

3.0k 6.0k 9.0k 12.0k
Number of nodes

10 1

100

101

Th
ro

ug
hp

ut
 (M

bp
s)

Block interval 0.25 seconds and block size 300KB

Conflux
GHOST

(c) Scalability

Figure 11: Throughput

Based on the above trade-off, we choose the block
generation rate of 4 blocks per second and the block size
limit of 300K. With the measured network propagation
delay, we determine the adaptive weight algorithm param-
eters following suggestions in our theory analysis [19].
1) h = 600 is large enough to enable Conflux to tolerate
liveness attacks from a powerful attacker that controls
40% of the network computation power; 2) β = 160 and
γ = 10000 so that the confirmation policy gives a desir-
able margin; 3) α = 1800 since it requires α ≥ 3h; 4)
h0 = 360 so the timer chain will have rare forks. Fig-
ure 10 plots the average confirmation speed under this
set of parameters.

Compared to GHOST (by only considering pivot
blocks as valid), Conflux achieves the similar confirma-
tion latency while provides significantly higher through-
put. As Figure 11b shows, the transaction throughput of
GHOST decreases with increasing block generation rate
since more concurrently generated blocks with smaller
size lead to less valid transactions.

6.2 Performance Results
Consensus Scalability Results: We next evaluate the
consensus protocol performance as the number of nodes
increases. Due to our resource limitation, we have to run
15 full nodes per VM. Because we are evaluating the con-
sensus protocol only, we turn off signature verification
and transaction execution to ensure enough computation
resources for 15 full nodes sharing each VM.

Figure 10c presents the network propagation delay
and the average transaction confirmation speed when run-
ning Conflux with different numbers of full nodes. In

0 500 1000 1500 2000
Timestamp (s)

1000000

2000000

3000000

4000000

To
ta

l T
x

Co
un

t
ETH (k=5)
ETH (k=1)
ETH + Payment (k=5)

Figure 12: End-to-end Results for ETH Workload

all the experiments, Conflux successfully operates with
the block throughput of 9.6Mbps (300K × 4 blocks per
second). Our results highlight the fast confirmation speed
of Conflux, it confirms transactions on average in 47.75-
51.54 seconds when running 3000-12000 full nodes. Our
results also show that the consensus protocol of Conflux
scales well. As the number of nodes increases, the net-
work propagation delay only increases slightly so does
the confirmation speed.

Note that our experimental setup is as same as the
Algorand and OHIE papers [11, 36], therefore we can
directly compare our results with their results. Com-
pared to Algorand [11], Conflux achieves more than 4x
throughput and similar confirmation latency. Compared
to OHIE [36], Conflux achieves similar throughput but
one order of magnitude faster confirmation.
End-to-end Results: With the calibrated parameters, we
run Conflux on 400 VMs (one node per VM) to mea-
sure the throughput and the confirmation speed of Con-
flux. To obtain a representative workload, we collected
the first four million transactions from the Ethereum
blockchain [2]. This includes both payment transactions
and smart contract transactions. We converted these col-

USENIX Association 2020 USENIX Annual Technical Conference 525

0 1000 2000 3000 4000 5000
Timestamp (s)

0

2000

4000

6000

8000

Su
bt

re
e

W
ei

gh
t

Subtree 1
Subtree 2
Adaptive Weight Triggered
Adaptive Weight End

Figure 13: Subtree Weights under Liveness Attack

lected transactions into Conflux transaction format. We
run two experiments, one experiment with the collected
Ethereum transactions only and another experiment with
a combined workload of the collected Ethereum trans-
actions and randomly generated payment transactions.
We terminate an experiment once Conflux processes four
million transactions in total.

Figure 12 presents the number of processed transac-
tions overtime. Our experimental results show that Con-
flux achieves a throughput of 1392 transactions per sec-
ond for Ethereum workload and 3480 transactions per
second for the combined workload. The average con-
firmation latencies are under one minute for both the
Ethereum workload and the combined workload. Note
that in the combined workload experiment, 14% of pro-
cessed transactions are from Ethereum history.

Conflux achieves higher transaction throughput on
the combined workload than on the Ethereum history
workload. A primary reason is that Ethereum is a much
slower blockchain and its transaction history does not
have enough parallelism to saturates the Conflux con-
sensus layer. We find that during the execution, future
transactions in the Ethereum history often depends on
previous transactions and full nodes of Conflux often
do not have enough pending transactions ready to pick
up so concurrent blocks pack duplicate transactions. A
secondary reason is that Ethereum history contains more
smart contract transactions which are more expensive to
process than payment transactions.
Deferred Execution: Conflux by default defers the exe-
cution of transactions by five epochs k = 5. To illustrate
the effect of the deferred execution optimization, we run
a modified version of Conflux on the Ethereum history
workload with k = 1. The results in Figure 12 show that
this causes a 11.6% slowdown of Conflux on the transac-
tion throughput because of the frequent re-execution of
transactions during order oscillation.

6.3 Liveness Attack and Link-cut Tree
Liveness Attack: We conducted a liveness attack experi-
ment to evaluate the security of Conflux. The experiment
includes three nodes, two honest nodes and one attacker

node. They keep a four block per second block generation
rate for entire network. The block propagation network
delay between the two honest nodes are 20 seconds and
the attacker node does not relay honest blocks. We use
only two honest nodes with significant delay to simulate
the ideal liveness attack scenario in Figure 1c — a power-
ful attacker that evenly splits honest nodes in two groups
and honest nodes with no latency inside a group and max-
imum latency between the two groups. The attacker node
controls 30% of the total computation power. It launches
the attack by finding the first fork between the two honest
nodes and try to mine blocks under the lighter subtree to
keep the two subtrees balanced.

Figure 13 shows how the weights of the two forked
subtrees change along the time. The attack starts at the
timestamp 0. During the time when the attack is per-
formed and no adaptive weight is triggered, the weights
of the two forked subtrees are almost perfectly balanced.
The adaptive weight mechanism triggers the conserva-
tive strategy at timestamp 2,909 s. After that, the liveness
attack quickly fails and the two honest nodes can then
agree on the same pivot block and generate blocks under
its subtree. After another 1,264 s, the two honest nodes
come back to the optimistic strategy.
Link-cut Tree: To evaluate the benefits of link-cut tree,
we run experiments on a micro-benchmark, a Tree-Graph
that contains 1.5 million blocks, to measure the block
processing throughput of the naive as well as our opti-
mized approaches. Our experimental results show that
the naive appraoch slows down to less than 4 blocks per
second when the number of blocks in the Tree-Graph
grows to one million, while our approach processes 5000
blocks per second on average.

7 Conclusion

Conflux is a scalable and decentralized blockchain plat-
form with high throughput and fast confirmation. Its
novel consensus protocol makes Conflux secure against
both double spending attacks and liveness attacks, even if
Conflux operates with a fast block generation rate. Con-
flux provides a promising solution to address the perfor-
mance bottleneck of blockchains and opens up a wide
range of blockchain applications.

Acknowledgments

We thank Bo Qiu and Yanpei Liu for their helps on the
experiments. We thank Xi Wang and the anonymous
reviewers for their insightful comments on the early draft
of this paper. We note that [18] describes an early version
of the Conflux system.

526 2020 USENIX Annual Technical Conference USENIX Association

References
[1] Conflux-Rust. https://github.com/

Conflux-Chain/conflux-rust.

[2] Etherum White Paper. https://github.com/
ethereum/wiki/wiki/White-Paper.

[3] Link/cut tree. https://en.wikipedia.org/
wiki/Link/cut_tree.

[4] Snowflake to Avalanche: A Novel Metastable Con-
sensus Protocol Family for Cryptocurrencies.

https://ipfs.io/ipfs/
QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV.

[5] Splay tree. https://en.wikipedia.org/wiki/
Splay_tree.

[6] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia
Fanti, and Pramod Viswanath. Prism: Deconstruct-
ing the blockchain to approach physical limits. In
Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’19, page 585–602, New York, NY, USA, 2019. As-
sociation for Computing Machinery.

[7] Yuxi Cai, Fan Long, Andreas Park, and Andreas
Veneris. Engineering economics in the conflux
network. arXiv preprint arXiv: 2004.13696, 2020.

[8] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith.
Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data. In Christian Cachin
and Jan L. Camenisch, editors, Advances in Cryp-
tology - EUROCRYPT 2004, pages 523–540, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[9] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer,
and Robbert Van Renesse. Bitcoin-ng: A scalable
blockchain protocol. In NSDI, pages 45–59, 2016.

[10] Ittay Eyal and Emin Gün Sirer. Majority is not
enough: Bitcoin mining is vulnerable. In Interna-
tional conference on financial cryptography and
data security, pages 436–454. Springer, 2014.

[11] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, and Nickolai Zeldovich. Algorand: Scal-
ing byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating
Systems Principles, pages 51–68. ACM, 2017.

[12] Aumasson JP. and Bernstein D.J. Siphash: A
fast short-input prf. Progress in Cryptology - IN-
DOCRYPT, 2012.

[13] Aggelos Kiayias and Giorgos Panagiotakos. Speed-
security tradeoffs in blockchain protocols. IACR
Cryptology ePrint Archive, 2015:1019, 2015.

[14] Eleftherios Kokoris Kogias, Philipp Jovanovic,
Nicolas Gailly, Ismail Khoffi, Linus Gasser, and
Bryan Ford. Enhancing bitcoin security and perfor-
mance with strong consistency via collective sign-
ing. In 25th USENIX Security Symposium (USENIX
Security 16), pages 279–296, 2016.

[15] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Li-
nus Gasser, Nicolas Gailly, Ewa Syta, and Bryan
Ford. Omniledger: A secure, scale-out, decentral-
ized ledger via sharding. In 2018 IEEE Sympo-
sium on Security and Privacy (SP), pages 583–598.
IEEE, 2018.

[16] Derek Leung, Adam Suhl, Yossi Gilad, and Nick-
olai Zeldovich. Vault: Fast bootstrapping for cryp-
tocurrencies. In Proceedings of the 2019 Annual
Network and Distributed System Security Sympo-
sium (NDSS), San Diego, CA, 2019.

[17] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv
Zohar. Inclusive block chain protocols. In Interna-
tional Conference on Financial Cryptography and
Data Security, pages 528–547. Springer, 2015.

[18] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu,
Fan Long, and Andrew Chi-Chih Yao. Scaling
nakamoto consensus to thousands of transactions
per second. arXiv preprint, 1805.03870, 2018.

[19] Chenxing Li, Fan Long, and Guang Yang. GHAST:
Breaking confirmation delay barrier in nakamoto
consensus via adaptive weighted blocks. arXiv
preprint arXiv:2006.01072, 2020.

[20] Loi Luu, Viswesh Narayanan, Chaodong Zheng,
Kunal Baweja, Seth Gilbert, and Prateek Saxena. A
secure sharding protocol for open blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’16, pages 17–30, New York, NY, USA, 2016. ACM.

[21] David Mazieres. The stellar consensus protocol: A
federated model for internet-level consensus. Stel-
lar Development Foundation, 2015.

[22] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi,
and Dawn Song. The honey badger of bft protocols.
In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security,
pages 31–42. ACM, 2016.

USENIX Association 2020 USENIX Annual Technical Conference 527

https://github.com/Conflux-Chain/conflux-rust
https://github.com/Conflux-Chain/conflux-rust
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://en.wikipedia.org/wiki/Link/cut_tree
https://en.wikipedia.org/wiki/Link/cut_tree
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/Splay_tree

[23] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system,” http://bitcoin.org/bitcoin.pdf.

[24] Gleb Naumenko, Gregory Maxwell, Pieter Wuille,
Alexandra Fedorova, and Ivan Beschastnikh. Erlay:
Efficient transaction relay for bitcoin. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’19, page
817–831, New York, NY, USA, 2019. Association
for Computing Machinery.

[25] Kartik Nayak, Srijan Kumar, Andrew Edmund
Miller, and Elaine Shi. Stubborn mining: General-
izing selfish mining and combining with an eclipse
attack. In IEEE European Symposium on Security
and Privacy, pages 305–320, 2016.

[26] Rafael Pass, Lior Seeman, and Abhi Shelat. Anal-
ysis of the blockchain protocol in asynchronous
networks. In Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques, pages 643–673. Springer, 2017.

[27] Rafael Pass and Elaine Shi. Fruitchains: A fair
blockchain. In Proceedings of the ACM Symposium
on Principles of Distributed Computing, pages 315–
324. ACM, 2017.

[28] Rafael Pass and Elaine Shi. Hybrid consensus:
Efficient consensus in the permissionless model.
In LIPIcs-Leibniz International Proceedings in In-
formatics, volume 91. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[29] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv
Zohar. Optimal selfish mining strategies in bitcoin.
CoRR, abs/1507.06183, 2015.

[30] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv
Zohar. Spectre: Serialization of proof-of-work
events: confirming transactions via recursive elec-
tions, 2016.

[31] Yonatan Sompolinsky and Aviv Zohar.
Phantom, a scalable blockdag protocol.
https://eprint.iacr.org/2018/104.pdf.

[32] Yonatan Sompolinsky and Aviv Zohar. Secure high-
rate transaction processing in bitcoin. In Interna-
tional Conference on Financial Cryptography and
Data Security, pages 507–527. Springer, 2015.

[33] Jiaping Wang and Hao Wang. Monoxide: Scale out
blockchains with asynchronous consensus zones.
In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 95–
112, Boston, MA, 2019. USENIX Association.

[34] WonderNetwork. Global ping statistics: Ping
times between WonderNetwork servers. https:
//wondernetwork.com/pings, Apr. 2018.

[35] Gavin Wood. Ethereum: A secure decentralised
generalised transaction ledger eip-150 revision
(759dccd - 2017-08-07), 2017. Accessed: 2018-
01-03.

[36] Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek
Saxena. OHIE: Blockchain scaling made simple.
arXiv preprint arXiv:1811.12628, 2018.

[37] Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. Rapidchain: A fast blockchain protocol
via full sharding.

528 2020 USENIX Annual Technical Conference USENIX Association

https://wondernetwork.com/pings
https://wondernetwork.com/pings

Reconstructing proprietary video streaming algorithms

Maximilian Grüner, Melissa Licciardello, Ankit Singla
Department of Computer Science, ETH Zürich

Abstract
Even though algorithms for adaptively setting video quality

in online streaming are a hot topic in networking academia,
little is known about how popular online streaming platforms
do such adaptation. This creates obvious hurdles for research
on streaming algorithms and their interactions with other
network traffic and control loops like that of transport and
traffic throttling. To address this gap, we pursue an ambitious
goal: reconstruction of unknown proprietary video streaming
algorithms. Instead of opaque reconstruction through, e.g.,
neural networks, we seek reconstructions that are easily un-
derstandable and open to inspection by domain experts. Such
reconstruction, if successful, would also shed light on the risk
of competitors copying painstakingly engineered algorithmic
work simply by interacting with popular services.

Our reconstruction approach uses logs of player and net-
work state and observed player actions across varied network
traces and videos, to learn decision trees across streaming-
specific engineered features. We find that of 10 popular
streaming platforms, we can produce easy-to-understand, and
high-accuracy reconstructions for 7 using concise trees with
no more than 20 rules. We also discuss the utility of such
interpretable reconstruction through several examples.

1 INTRODUCTION
Video streaming is one of the most popular Internet services
today, forming a majority of downstream Internet traffic [35].
Naturally, there is great interest in optimizing video delivery.
One particularly well-studied problem is that of designing
adaptive bitrate algorithms that adjust video quality in re-
sponse to changes in network bandwidth. ABR algorithms
attempt to maximize some notion of quality-of-experience,
which typically combines video playback metrics like average
video quality, and playback interruptions and stability.

The problem of maximizing QoE in video streaming is
crisply defined, intellectually interesting, and practically valu-
able. Thus, numerous ABR algorithms have been suggested
in recent work to tackle it, e.g., Oboe [3] and MPC [46]. How-
ever, little is known about the proprietary algorithms actually
deployed in widely used video streaming services such as
YouTube, TwitchTV and Netflix.1 We attempt to address this

1Researchers at Netflix published, in 2014, work on this problem [15],
including tests on their commercial deployment. Per our conversations with
them, their current deployment incorporates some features of this published

gap by exploring whether it might be possible to learn such
algorithms by controlled observation of video streams.

Our goal is to produce ABR controllers that: (a) mimic the
observed behavior of ABR logic deployed in target online
video services across a wide range of network conditions
and videos; and (b) are open to easy manual inspection and
understanding. Note that the latter precludes the direct use of
blackbox machine learning techniques like neural networks.

We are motivated by three factors. First, this effort helps
understand the risk of competitors copying painstakingly-
engineered algorithmic work simply by interacting with popu-
lar, public-facing front-ends. Second, being able to reconstruct
widely deployed algorithms would allow head-to-head com-
parisons between newly proposed research ABRs and indus-
trial ABRs, something lacking in the literature thus far. Third,
given that video is the majority of Internet traffic, this traffic
being controlled by unknown proprietary algorithms implies
that we do not understand the behavior of most Internet traffic.
This makes it difficult to reason about how different services
share the network, and interact with other control loops such
as congestion control and traffic shaping.

The above use cases help sharpen the goals for our recon-
struction effort. Simplifying our task is the fact that instead of
exact algorithm recovery, we need functional equivalence of
a reconstruction with its target algorithm over a large, varied
set of inputs – note that the same set of outcomes could be
arrived at by two substantially different algorithms, making
exact recovery of a particular algorithm impossible. However,
our use cases also impose a difficult additional requirement:
our reconstructions must be human-interpretable, allowing
not only the mimicking of observed behavior, but also manual
inspection and understanding. A competitor seeking to copy
the ABR logic of an online service needs interpretability to
be able to modify it as necessary for their use.2 They would
also like to ensure the robustness of the obtained logic, some-
thing that is difficult with blackbox learning — prior work
has shown corner cases with undesirable behavior in black-
box learning methods applied to networking [17]. Likewise,
in terms of comparisons between industrial and academic
ABRs, we would not only like to observe the performance

work, but they are unwilling to share more details, including the differences
from this published approach.

2Our work enables an understanding of whether this risk exists: “Can a
competitor reconstruct an ABR in a meaningfully beneficial, robust way?”
We leave the question of how this risk may be tackled to followup work.

USENIX Association 2020 USENIX Annual Technical Conference 529

differences empirically, but also understand where they stem
from. Lastly, reasoning about interactions with other network
control loops and competing services also requires having
a richer understanding of the control logic under study than
blackbox learning can provide.

Algorithmic reconstruction of this type is an ambitious goal,
with the current tools available for general-purpose program
synthesis still being fairly limited. However, there are two
reasons for optimism if we can suitably narrow our scope: (a)
the core of ABR algorithms involves a small set of inputs, and
has a limited decision space; and (b) it is easy to collect large
amounts of curated data for analysis.

Our approach automatically generates concise, human-
interpretable rule-sets that implement ABR by learning from
an existing target ABR algorithm. These rule-sets map the
client and network environment, video features, and state over
the connection, to a video quality decision for the next video
chunk. To obtain generalizable, succinct, and interpretable
pseudocode in a reconstruction, we find that it is insufficient
to directly use sophisticated techniques from imitation learn-
ing [5, 34]. As we shall show later, such methods can either
mimic the behavior of a target accurately with a large set
of complex rules, or, when limited to a small set of rules,
lose accuracy. Our approach sidesteps this tradeoff by embed-
ding suitable domain knowledge in the learning mechanism:
framing intuitive primitives familiar to domain experts, and
making them available to the learning mechanism, results in
rule-sets that are accurate, concise, and meaningful.

We use our approach to obtain concise reconstructions that
can successfully mimic the decision-making of several target
academic and industry ABR algorithms, achieving high agree-
ment with their decisions and similar video QoE behavior.
Of the 10 online streaming services we evaluate across, our
reconstruction achieves behavior similar to its target for 7 ser-
vices. In each case, we produce a concise decision-tree with
20 or fewer short rules, using primitives that are intuitive and
easy to understand. We also explain the reasons for failure for
the remaining 3 services.

We make the following contributions:

• We describe an approach for deriving accurate and con-
cise rule sets for ABR, using a corpus of decision out-
comes over network traces and videos. Our approach
handles the complex output space corresponding to di-
verse video encodings, as well as noise in the data.

• We apply our method to the reconstruction of algorithms
deployed in 10 popular streaming services. For 7 ser-
vices, we successfully achieve high agreement with their
decisions and closely similar streaming behavior.

• The rule sets we obtain are concise, with 20 or fewer
rules in each case. Our code also generates a loose natu-
ral language translation, which we used extensively in
understanding problems and improving performance.

• We also expose a likely fundamental compromise nec-
essary for interpretable and effective learning: the time-
consuming encoding of domain knowledge.
• Our code and reconstructed ABRs are open-source [12].

Beyond the above results, our ambitious effort raises several
exciting questions for future exploration, such as: (1) on the
tradeoffs between the effort invested in embedding domain
knowledge, and the quality of the inferred pseudocode; (2) to
what extent such domain knowledge may itself be learnt from
a corpus of hand-designed algorithms broadly from the net-
working domain; (3) applying our approach to other network-
ing problems, like congestion control, and newer problems
where we have more limited experience, such as multipath
transport; (4) and how online service providers may obscure
their logic against reconstruction, if so desired.

2 RELATED WORK
Numerous high-quality ABR proposals have appeared just
within the past few years [3,11,31,37,45], but relatively little
is known about widely deployed industrial ABR algorithms.

There is a large body of work on reconstructing unknown
algorithms. One may approach this using code analysis, like
Ayad et al.’s analysis of Javascript code for some online video
services [16]. However, some targets can be too large and ob-
fuscated for such analysis – YouTube, for instance, comprises
80,000+ lines of obfuscated Javascript. We used JS NICE [36],
the state-of-the-art in Javascript deobfuscation, but even cou-
pled with a step-through debugger and with help from the
authors of JS NICE, this provided little insight – ultimately,
manually examining such a large piece of code with mean-
ingless variable names to reconstruct its functionality seems
futile. It also has the downside of potentially requiring sub-
stantial rework for even small changes in the target. Even
more fundamentally, the code may not be available at the
client at all, with decision-making residing on the server side.

Several prior efforts have used manual experimentation
and analysis for dissecting the behavior of a variety of on-
line services [2, 9, 16, 19, 21, 27, 44]. For instance, Mondal
et al. [27] used network traces to experimentally study the
behavior under changing network conditions, and then manu-
ally draw coarse inferences, such as that YouTube’s requested
segment length varies with network conditions. An earlier
effort on inferring Skype’s adjustment of its sending rate [19],
was based on the researchers making experimental observa-
tions, then manually hypothesizing a control law, and finally
tuning its parameters to fit the data. Our own parallel mea-
surement study [21] experimentally examined the behavior
of several deployed ABR algorithms in terms of metrics like
stability of playback and convergence time after bandwidth
changes. In concurrent work, Xu et al. [43] propose a method
for inferring the quality of video chunks downloaded within
encrypted streams, and apply it to experimentally study the
streaming outcomes in response to different traffic throttling

530 2020 USENIX Annual Technical Conference USENIX Association

schemes. In contrast to all the above efforts, our goal here
is to automatically generate logic that mirrors a target ABR
algorithm’s behavior by observing the target ABR’s actions
in response to variations in the environment and inputs.

There are also efforts in networking to inspect the internals
of learning-based networked systems. This work is not di-
rectly applicable to our goal of reconstructing arbitrary ABRs,
which are most likely non-ML, and more importantly, are not
available to us. However, one could first train a blackbox-ML
algorithm to mimic any reconstruction target, and then use
such tools. Recent work on inspecting [10] or verifying [17]
systems built using ML has examined Pensieve [23]. The
authors frame hypotheses/questions about the system’s be-
havior, and then evaluate them. However, this (a) requires
knowing what hypotheses to examine, and (b) does not yield
a reconstruction. Among efforts in this vein, the most closely
related are the concurrent TranSys [26] and PiTree [25] stud-
ies. PiTree focuses on converting ABR algorithms to decision
trees, and TranSys broadens this approach to NN-based strate-
gies in networking. Both are networking applications of a
broader paradigm in ML, which we discuss next.

Beyond networking efforts, imitation learning is a rich
discipline in its own right. Most work in this direction uses
(uninterpretable) neural networks [6, 14, 42], but recent work
has also developed model-free approaches to approximate
the learned neural network via, e.g., a decision tree [5, 34].
As we show later in §6.2, directly using this approach (like
TranSys and PiTree) does not meet both of our accuracy and
interpretability goals simultaneously, instead requiring the
sacrifice of one or the other. While complex decision trees,
with a large number of rules with many literals, can robustly
imitate a target algorithm, they are difficult, if not impossible,
for even domain experts to understand and work with. On the
other hand, restricting the complexity of the generated trees
results in a loss of imitation accuracy and robustness. While
the expressiveness and compactness of these approaches can
be improved by employing genetic algorithms to craft features
for use therein [13], this often leads to both overfitting, and
complex, non-intuitive features.

Lastly, program synthesis is a rich and growing field. While
we use one particular strategy for ABR reconstruction, there
are other tools we plan to examine in future work. The most
promising perhaps is recent work combining learning with
code templates [41], where the core idea is to modify tem-
plates to minimize the distance from a target learning al-
gorithm. An alternative “deductive synthesis” approach, as
employed in Refazer [33], could also be fruitful.

To the best of our knowledge, our work is the first to attempt
an interpretable reconstruction of unknown deployed ABRs.

3 DATA PREPARATION
We extend a trace collection harness that we built for a mea-
surement study, where we used manual analysis to comment

on the behavior of deployed ABR algorithms across 10 stream-
ing platforms [21].

We launch a video stream on a target service, and accord-
ing to an input network trace, shape the throughput at the
client using Linux tc. We record the current client buffer
occupancy, the video chunk qualities played out, video meta-
data, etc. The client buffer occupancy is directly measured
through the instrumentation of the HTML5 player element.
If the HTML5 player element were not available, we could
instead use the captured HTTP chunk requests (locally at the
client, making encryption irrelevant) to reconstruct the buffer
occupancy — this strategy may be of use for future work
exploring mobile ABR implementations. This alternative can
be less accurate though, as “redownloading” (e.g., to replace
already downloaded low-quality chunks in the client player
buffer by higher-quality ones) introduces an ambiguity into
which chunk is actually played.

For each platform, by appropriate tailoring of HTTP re-
quests, we also fetch all chunks for the test videos at all quali-
ties, such that we can use these videos in an offline simulation,
allowing the learned ABR to make choices different from
those in our logs, as well as to enable us to study the behav-
ior of academic ABRs. Ultimately, we obtain the following
measurements:

• Ct : segment size (Mb) downloaded for request t

• Rt : segment bitrate (Mbps) for request t

• Vt : segment VMAF3 for request t

• Dt : download time for request t

• Qt : quality level requested in request t

• St : segment length (seconds) downloaded for request t

• Pt : Percent of the video played at request t

• Bt : buffer size (seconds) when requesting t

• RBt : rebuffer time (seconds) when requesting t

• Ci
t+n : segment size of quality i for nth chunk after t

• Ri
t+n : segment bitrate of quality i for nth chunk after t

• Vi
t+n : segment VMAF of quality i for nth chunk after t

4 RULE-SET BASED INFERENCE
We shall first consider a motivating example for why rule-
sets are a simple and potent representation for our type of
target algorithms, and then present our recipe for constructing
succinct rule-sets that capture the target algorithm’s behavior.

4.1 Motivating example

Let us examine a simple throughput-based ABR algorithm,
similar to that described in prior work [15]. It uses only the
throughput estimate for the last video chunk fetched, TN−1,

3VMAF is a video perceptual quality metric [20].

USENIX Association 2020 USENIX Annual Technical Conference 531

quality 0 → TN−1 ≤ 4.99
quality 1 → TN−1 > 4.99 & TN−1 ≤ 6.97
quality 2 → TN−1 > 6.97

Fig. 1: Minimal rule-set for a reservoir-based algorithm, which uses
only the last chunk’s throughput estimate to pick a quality level.

and two thresholds: reservoir and cushion. If TN−1 < reser-
voir, the lowest quality is served. If TN−1 > reservoir + cush-
ion, the highest quality is served. For other values of TN−1,
quality is linearly interpolated between these levels.

This algorithm, regardless of its specific instantiation with
particular values of the thresholds, can be easily expressed as
a set of rules. For a simple instantiation with only 3 quality
levels, and both reservoir and cushion set to 4 Mbps, this
rule-set is shown in Fig. 1.4 The rule-set is inferred (which
is why the rules contain imprecise values like 6.97) by the
process we shall describe shortly.

We caution the reader against concluding from this small
motivating example that only simple, stateless, “templates
with parameters / thresholds” type of algorithms can be ex-
pressed in this way. Rule sets are capable of capturing com-
plex stateful behavior, as long as primitives encoding this
state are made available for their use.

4.2 Decision trees and rules

We first learn binary decision trees [18] that encode conditions
for specific outputs, e.g., the video quality levels requested.
Further, in such a decision tree, each path from the root to a
leaf can be naturally interpreted as a descriptive rule capturing
the conditions for the outcome at the leaf to be reached.

Consider a single-threshold decision: “If throughput < 5
Mbps, pick low quality; otherwise, pick high quality.”. This
can be captured in a 3-node tree with the conditional at its
root, and the two outcomes as leaves. In this case, the rule-
lengths, i.e., the path lengths from the root to the leaves, are
1; and so is the number of “splits” in the tree.

Fig. 2 shows a more complex target decision plane with
two inputs (along the x and y dimensions), where there are
still only two outcomes (labels), but the data samples that
map to these labels are separated by more complex logic. If
we constrain the decision tree that approximates this decision
plane to use rules of only length one, we can use only one line
separating the labels, as shown in the top-left smaller figure.
Allowing more and more complex (longer) rules, allows a
tighter representation of the target decision plane. Of course,
using too many rules risks overfitting, especially under noisy
data that is typical in networking. Fortunately, our goal to

4Readers may expect the rule-set in Fig. 1 to mean that reservoir = 5 and
cushion= 2. The discrepancy stems from the discreteness of the interpolation:
for some TN−1 > reservoir i.e., TN−1 ∈ [4,5], quality 0 will be chosen.

Fig. 2: The big image is the target decision plane, with 2 labels.
On the right are its approximations with decision trees of different
rule-lengths, going from 1 to 4.

obtain concise rule sets aligns well with that of avoiding
overfitting and preserving generalization.

Framing the output space: A key design consideration in
using decision trees is the framing of the output decision
space. Suppose we frame decision outcomes in terms of the
video quality level that the client should fetch the next video
chunk at. If all the videos being served were encoded with
the same quality levels, both in terms of number and their
bitrates, e.g., 6 video qualities at bitrates of {200, 450, 750,
1200, 2350, 4300} Kbps, this would be easy: there are 6 a
priori known outcomes that we can train decision trees for.

However, this is clearly overly restrictive: in practice, ABR
algorithms must tackle a variety of videos encoded at dif-
ferent bitrates. The set of different bitrates at which a video
is encoded in is referred to as its “bitrate ladder”. Providers
like Netflix even use per-video customization of bitrate lad-
ders, varying the number and separation of bitrate levels [1].
This diversity in the output space is a challenge for learning
approaches: what should we present as the potential output
decision space? It is noteworthy that Pensieve [23] does not
fully tackle this challenge, instead restricting the video bitrate
levels to a small pre-defined set.

To overcome this issue, we formulate the decision pro-
cess in terms of video quality being upgraded or downgraded
relative to the current video quality. With one decision, a
maximum of n quality shifts are permitted in either direction,
with n being a tunable parameter. Of course, this prevents us
from capturing some algorithms, where larger quality changes
(than n) may be enforced in a single step. However, this is
atypical, as video streaming typically targets smooth output.
Even if some algorithm involves such decision making, our ap-
proach only differs from such a target’s decisions transiently.
This small compromise allows us to generalize to arbitrarily
diverse video bitrate ladders.

532 2020 USENIX Annual Technical Conference USENIX Association

Fig. 3: Here, the target decision plane (big, left) is governed by the
mean of TN−1 and TN−2. The smaller figures show that we need
long rules to approximate this if we are restricted to using individual
literals (TN−1 and TN−2) in our rules.

4.3 Feature engineering

Applying textbook decision-tree inference, with the above
framing, one can already infer simple algorithms. However,
as we shall see, appropriate customization based on domain
expertise is crucial to obtain concise and generalizable rules.

Consider, for instance, a target algorithm that uses the mean
throughput across the last 2 video chunks fetched. Naively
learnt rules will then contain complex conditionals across
both TN−1 and TN−2. Fig. 3 shows this for rules of increasing
length, up to 20. The target decision plane uses the mean,
TN−1+TN−2

2 to decide between three video qualities. Rules of
length 2 and 5 yield poor accuracy, necessitating much longer
(complex) rules.

Of course, if we knew that the building block for throughput
estimation is the mean, we could simplify such rules substan-
tially by expressing them in terms of the mean. Thus, we
can consider adding common estimators, based on our do-
main knowledge, to the feature-set available to our learning
pipeline. Then, instead of only learning across primitive liter-
als (like each individual chunk’s throughput), more compact
representation across these non-primitive literals becomes
possible. We thus explore three classes of such non-primitive
features that are intuitive and likely commonplace in ABR,
and even more broadly, other networking algorithms.

Throughput estimators: Clearly, having the most accurate
estimate of network throughput is advantageous in deciding
on video quality. As such, throughput estimators are poten-
tially useful building blocks. We consider two types of es-
timators. The first type is only parametrized by the number
of past throughput measurements it aggregates using a mean,
median, harmonic mean, etc., while the second type involves
additional tunable parameters, such as the weight decrease, α,
in an exponential weighted moving average (EWMA), which
sets the relative weight of a new measurement compared to
old measurements.

Encoding these estimators with a range of different parame-

Fig. 4: A decision plane comparing the throughput estimate to the
chunk bitrate is difficult to capture without long rules if rules can
only be framed in terms of the individual literals.

ter choices gives us a large set of features ranging from nearly
stateless (e.g., using only the last chunk’s throughput) to those
with long-term state (e.g., a moving average). In addition to
throughput, we also construct features capturing the variation
across recent throughput measurements as it characterizes the
stability of the network.

Comparisons: Decisions often depend on not just threshold-
ing of certain primitive or non-primitive features, but also on
comparisons among features. For instance, generalizing even
a simple rate-based algorithm to work for arbitrary videos
encoded with different bitrate ladders requires a comparison:
is the throughput larger than a particular step in the bitrate
ladder? Unfortunately, while decision trees can capture such
comparisons using only primitive features, they require a large
number of rules to do so. This is shown in Fig. 4, where the
decision trees with rules of length 2 and 5 do not accurately
represent a simple comparison-based target decision plane.

Thus, we must encode potential comparisons of this type
as non-primitive features. These can also be parameterized
in a similar manner to the throughput estimators discussed
above, e.g., by what factor should one feature exceed another.

Planning ahead: ABR, like many other control tasks, is not
only about making one decision in isolation, but also con-
sidering its longer-term influence. For instance, it might be
interesting to estimate the max, min, or mean rebuffering one
should expect given the decision to download a chunk at a
certain quality, assuming the throughput stays the same. We
design features along these lines, such as QoE in MPC [46].

More features? Over time more features can be added to
enhance our approach without having to reason about their
mutual interactions, as would be the case with incorporat-
ing new ideas into human-engineered routines. One could
also extend this approach by adding automatically engineered
features [13]. However, maintaining interpretability would
require limiting the complexity of auto-generated features.

USENIX Association 2020 USENIX Annual Technical Conference 533

5 IMPLEMENTATION
We implement the rule inference pipeline in Python3. For the
decision tree, we use the standard implementation provided
by the scikit-learn library [30]. If not otherwise mentioned
we use a maximum of 20 rules and limit one-step changes
in quality to upgrading or downgrading by at most 2 quality
levels. The 20-rule limit is somewhat arbitrarily chosen as
a quantitative threshold for interpretability, but we also find
that for our approach, more rules do not improve performance
substantively in most cases. This threshold is essentially a
hyperparameter that could be tuned by practitioners based on
where they seek to operate in the tradeoff space involving
interpretability, avoiding overfitting, and performance.

Baselines: To put our results in context, we compare them
against three neural network approaches, both as-is (blackbox
approaches, always represented by a recursive neural network
with GRU cells [7]), and translated to decision trees. The first
blackbox approach is the simplest, attempting to directly copy
the decisions in a supervised learning setting. The other two
use more sophisticated imitation learning methods [14, 42].

For translating the blackbox approaches into decision trees,
we test two state-of-the-art methods [5, 34]. One of these [5]
needs a reward function. In the vein of other imitation learn-
ing approaches, we use a clustering algorithm to assign a
similarity reward to every sample. In our implementation we
use an isolation forest [22] implemented in scikit-learn [30]
with the standard parameters as our clustering approach. At
every training step, we sample 3000 samples (as this gave
the best results) according to the cluster weighting. We also
tried changing the weighting function to a more agnostic di-
vergence measure as the proposed decision by the blackbox
approach might not always be what the original algorithm had
in mind. This makes the sampling approach more robust.

For each reconstruction, when we compare results to our
approach, we use the best blackbox approach and the best
tree-translation. Thus, we invested substantial effort in imple-
menting sophisticated baselines from the ML literature.

We also test whether our approach benefits from learning
from the blackbox, instead of directly from the data. We find
that this yields only minor improvements for 2 of our 10
reconstruction targets. We also explore learning in two passes,
where in the first pass, we learn a tree over engineered features,
and use a classifier to label its decisions in terms of their
similarity to decisions made by the reconstruction target. In
the second pass, we re-learn across weighted data samples,
such that samples corresponding to more similar decisions
are weighted higher. This approach also results in only minor
improvements for one of our ten reconstruction targets.

Feature engineering: We instantiate our features (§4.3) with
appropriate parameter ranges as below. ‘Action’ refers to
quality decisions, such as maintaining quality, or increasing
or decreasing it by up to n quality levels. The ‘any’ operator
instantiates all options for a parameter or primitive.

1. Standard deviation, mean, harmonic mean,
EWMA, and qth percentile over the last n chunks,
with n ∈ {1 . . .10}. Additionally, for EWMA,
α ∈ {0.15,0.35,0.55,0.75,0.95}.

2. For qth percentile, q ∈ {15,35,55,75,95}.

3. Reward R achievable by planning ahead 3 steps for any
action with any throughput estimate. The ‘any’ operators
here imply that we have numerous reward features, each
of which combines one of the many available throughput
estimators (from 1. and 2. above) with one of the possible
actions. As the reward function, we use the linear QoE
function introduced by Yin et al. [46], which converts bi-
trate, buffering and bitrate change per chunk downloaded
into a score. Note that this is not necessarily what any of
our reconstruction targets is optimizing for – each provider
may have their own reward goals. We use this feature sim-
ply as a compact representation of QoE components.

4. Fetch time for any action, any throughput estimate.

5. Bitrate gained weighted by the buffer filling ratio for any
action, any throughput estimate. Intuitively, this captures
the gain in bitrate relative to its cost, i.e., how much the
buffer is drained by an action if throughput stays the same.

6. VMAF gained weighted by the buffer filling ratio for any
action, any throughput estimate. Same as above, but with
VMAF.

Ultimately we make ∼ 1300 features available to the learner.
Note the multiplicative effect of the any operator above.

Throughout, we use a standard training, validation, and
testing methodology. The test set contains two videos com-
bined at random with 60 traces randomly sampled from the
overall set; these 60 traces are neither in the training nor in
the validation set. We only discuss results over the test set.

Automated Feature Engineering: As a comparison and fu-
ture outlook on the possibility of automated feature engineer-
ing, which has shown promise in other applications [13], we
also coarsely implement an automated feature generator. This
generator recombines the raw features in an iterative fashion
so that the most used features “survive” and get recombined
and the others “die” out. We use the library gplearn [39] with
basic mathematical operators as usable functions. We limit
the iterations to s ∈ [50,100,150] seconds to avoid overfitting.

6 EVALUATION
We summarize below the experiments we conducted as well
as their top-line conclusions:

1. How well can we reconstruct target algorithms? We can
mimic the decision-making of 7 of 10 targets to a high
degree, and obtain high similarity scores.

2. What influence does domain knowledge have? Certain
engineered features are crucial to obtain rules that gen-

534 2020 USENIX Annual Technical Conference USENIX Association

eralize beyond training data, are concise, and achieve
similar QoE as the target algorithms.

3. How interpretable and generalizable are the output rule
sets? We find that we can easily spot flaws in the learned
algorithm and propose ways to adapt it. Further, trees
with only 20 leaves suffice in most cases.

4. How do deployed ABRs compare to academic ones? We
find that academic ABRs generally outperform industrial
ones, with the caveat that our evaluation uses metrics
from academic work. Interestingly, we observe that one
provider’s algorithm shows behavior closely matching
the well known BOLA algorithm, indicating potentially
that this provider uses BOLA or a derivative of it.

6.1 Experimental methodology

Target platforms: We use the same 10 popular streaming
platforms we used in our measurement study of deployed
ABRs [21]. While certainly not exhaustive, this is a diverse
set of platforms, including some of the largest, such as Twitch
and YouTube; some regionally focused, such as Arte, SRF,
and ZDF; and some serving specific content verticals, such
as Vimeo (artistic content), TubiTV (movies and TV), and
Pornhub and XVideos. We exclude Netflix, Hulu, and Ama-
zon Prime because their terms of service prohibit robotic
interaction with their services [21].

Different platforms encode content at varied resolutions
and number of resolutions, ranging from 3 quality levels for
TubiTV to 6.5 on YouTube (on average across our test videos;
YouTube has available resolutions for different videos.) For
Twitch, which offers both live streams and video-on-demand
of archived live streams, we only study the latter, as live
streaming is a substantially different problem, and a poor
fit with the rest of our chosen platforms. For several of the
providers we study, there are multiple implementations, such
as for desktop browsers, mobile browsers, or mobile apps; we
only attempt reconstruction for the desktop versions.

We also evaluate our ability to emulate well-known aca-
demic approaches for ABR. We use the Robust-MPC (hence-
forth, just MPC throughout) and Multi-Video Pensieve (hence-
forth, NN, because it uses a neural network approach) imple-
mentation provided by the authors of the Pensieve paper [24].
We train and test these approaches on the Twitch video data
set. To speed up our experiments, for MPC, we use a looka-
head of 3 chunks instead of 5, finding that this did not make a
large difference in performance.

Videos: The type of content can have a substantial bearing
on streaming performance, e.g., videos with highly variable
encoding can be challenging for ABR. We thus used a set
of 10 videos on each platform. Where a popularity measure
was available, we used the most popular videos; otherwise,
we handpicked a sample of different types of videos. Videos
from each platform are encoded in broadly similar bitrate

ranges, with most differences lying at higher qualities, e.g.,
some content being available in 4K.
Network traces: Our experiments use synthetic and real-
world traces from 3 datasets in past work [3, 8, 32]. Unfortu-
nately, a full cross-product of platform-video-trace would be
prohibitively expensive — the FCC traces [8] alone would
require 4 years of streaming time. To sidestep this while still
testing a diversity of traces, we rank traces by their through-
put variability, and pick traces with the highest and lowest
variability, together with some randomly sampled ones.

Our final network trace collection consists of the 5 least
stable, 5 most stable, and 20 random traces from the Belgium
trace collection [40]; and 10 most/least stable ones plus 25
random traces from each of the Norway [32], the Oboe [3] and
the FCC datasets.5 We also use 15 constant bandwidth traces
covering the range from 0.3 to 15 Mbps uniformly. Lastly we
add 10 step traces: after 60 seconds of streaming we suddenly
increase/drop the bandwidth from/to 1 Mbps to/from 5 values
covering the space from 1.5 to 10 Mbps uniformly. If a trace
does not cover the whole experiment, we loop over it.

In total, we use 190 traces with throughput (average over
time for each trace) ranging from 0.09 to 41.43 Mbps, with
an average of 6.13 Mbps across traces. Note that we make no
claim of our set of traces being representative; rather our goal
is to test a variety of traces.
Evaluation metrics: For training our approach and evaluat-
ing its accuracy in a manner standard in learning literature, we
use two metrics: one measures agreement, and another the sim-
ilarity of sets of decisions. We train towards maximizing the
harmonic mean of these. Additionally, for our ABR-specific
use-case, we evaluate the video quality of experience [28].
Agreement, F1 score: For each output decision, we compute
the precision and recall of the inferred algorithm against its
target. The F1 score is the harmonic mean of these. F1 ∈ [0,1],
with 1.0 being optimal. We compute an average over the F1
scores across the labels in an unweighted fashion.

What is high/low agreement? If we were not interested in
interpretability, we could obtain a procedure that mimics any
target algorithm by using blackbox learning. We can think
of the agreement such a blackbox approach achieves with its
target as a baseline free of our conciseness constraint. On the
other end of the spectrum, if the inferred rules do not achieve
substantially higher agreement with the target than a generic
‘reasonable’ algorithm, then they are useless: this implies any
reasonable algorithm would make at least that many decisions
similar to the target. We use the simple rate-based approach
as the concrete stand-in for this generic reasonable algorithm.
Similarity: As we cannot assume anything about how each
provider designs their algorithm, we must use an agnostic ap-
proach in evaluating whether the experience under our recon-
struction and the actual ABR is the same. Thus, we choose,
as is typical in imitation learning, to learn whether the ex-

5Specifically, the stable collection from September 2017 [8].

USENIX Association 2020 USENIX Annual Technical Conference 535

perience of two streaming sessions is “similar”. Similarity
measures whether a set of samples (our reconstruction’s de-
cisions) is likely to be from a given distribution (the actual
ABR’s decisions). To classify whether a particular decision
looks like it has been taken by the actual ABR or by our
reconstruction, we choose an isolation forest [22].

Each of these two metrics is insufficient on its own. High
agreement is useful, but making a few important decisions
differently can substantially change a video stream’s behavior.
Thus the need for similarity. However, there’s a benign solu-
tion to achieving high similarity: most commercial providers
tend to keep the quality stable, so, by just keeping the same
quality one can get high similarity. Conversely, agreement
solves this problem: to get high agreement, we must match a
large fraction of each decision type, matching only the “keep
quality” decisions will result in poor agreement because of
low matches on quality changes.

QoE: Agreement and similarity can be thought of as
“micro-benchmarks” – these are standard measures in imi-
tation learning, and are useful both for training our approach,
and evaluating its learning accuracy. But ultimately, we also
want to know: “How different is the user experience from an
ABR versus from our reconstruction of it?”. We thus directly
compare how well different components of a visual QoE met-
ric used in earlier work [28] match up between a target and its
reconstruction. As we show below, agreement and similarity
correlate well with QoE: when a reconstruction achieves high
agreement and similarity, it typically also performs like the
target algorithm in terms of different QoE components.

Finally, we also comment on the role of domain knowl-
edge in achieving good results with our approach, and the
interpretability of our reconstructions.

6.2 Results

Agreement and similarity, Fig. 5: We compare the agree-
ment and similarity achieved by our rule-set approach against
the (best) blackbox approach and the simple rate baselines
across all 10 online providers. We also include MPC and
Pensieve (NN) evaluated on the Twitch videos.

The rule-sets achieve nearly the same or better agreement
than the blackbox approach achieves for a reconstruction
target in each case – in the worst case (NN), the rule-set’s
agreement score is 8% lower. Note that in many cases, we
achieve higher agreement than even the blackbox approach.
This is due to the imitation learning approaches trying to
achieve higher similarity in terms of behavior rather than
matching each individual quality decision.

The rule-sets also achieve high similarity in most cases, in
the worst case (Twitch), achieving a ≈20% lower similarity
score than the best blackbox approach, and in the mean, 5%
higher. In contrast, the rate-based approach achieves not only
very low agreement, but also very poor similarity.

Fig. 5: The generated rule-sets are never worse by more than 8%
and 20% than the blackbox approach on agreement and similarity
respectively. In contrast, the rate-based approach achieves extremely
poor results.

Fig. 6: For all but 3 of the 12 targets, the reconstruction matches the
target algorithm very closely. For YouTube, Fandom, and PornHub,
there is a substantial difference in performance; these are the same
3 providers in the bottom-left of Fig. 5, for which we achieve the
lowest agreement and similarity scores as well.

Some readers may interpret the “low” absolute numbers
in Fig. 5, e.g., F1 ∼ 50%, as a negative result. However, note
that F1 differences often don’t cause appreciable video ses-
sion quality differences, e.g., if an ABR switches two quality
levels in one step, and its reconstruction switches them in two
successive steps, the F1 score is lowered twice, but the video
stream behavior changes negligibly. Also, rare labels (e.g.,
increase quality by three levels) contribute equally to F1 as
common ones (e.g., retain quality), so a few errors on rare
labels have out-sized effect.

Video session quality metrics, Fig. 6: We compare met-
rics used to quantify video playback quality — VMAF [20],
VMAF switches, and rebuffers – as seen in the actual algo-
rithm (hatched points in the plot) and its rule-set reconstruc-
tion (solid points) across the same set of ABRs as in Fig. 5.
For 9 of 12 targets, we achieve a very good match: the mean
VMAF (x-axis in Fig. 6) for these 9 reconstructions is within
6% of the target ABR’s on average; the maximum VMAF dif-
ference is 12%. These good matches include Twitch, SRF,

536 2020 USENIX Annual Technical Conference USENIX Association

Arte, ZDF, TubiTV, XVideos, Vimeo, MPC, and Pensieve
(NN). On the other hand, for the other 3, YouTube, PornHub,
and Fandom, there are large discrepancies, with quality met-
rics being very different for the reconstruction compared to
the target. That our reconstruction does not yield good results
on these targets is also supported by exactly these ABRs being
in the low-agreement-low-similarity part of Fig. 5 (bottom-
left in the rightmost plot). We further investigated these 3
negative results:

1. YouTube, in addition to making quality decisions, varies
its segment length and can also redownload low-quality
chunks to replace them with high-quality ones [27]. Ulti-
mately, learning approaches will not frame new decision
spaces, only logic for arriving at the asked-for decisions –
in essence, YouTube is solving a different problem than we
expected. This is a fundamental gap for efforts like ours: if
the decision space is not appropriately encoded, outcomes
will be sub-optimal. We could add the relevant primitives
to achieve better results, but we resist such modifications
that use the benefit of hindsight.

2. In a similar vein, we find that PornHub often switches to a
progressive download, disabling video quality adaptation
altogether. Our approach ends up overfitting to the pro-
gressive behaviour as we see few switches. If we exclude
data where adaptation is disabled, we’re able to match
PornHub to within 4%, 0%, and 5% difference in terms
of mean VMAF, rebuffering, and switching respectively.

3. For Fandom, we find that the issue is the limited com-
plexity of our tree. A rule-set with a somewhat higher
complexity (31 rules) performs substantially better, di-
verging from the target algorithm by 5%, 11%, and 22%
in terms of mean VMAF, rebuffering, and switching re-
spectively. Note that rebuffering and switching, being in-
frequent events are extremely difficult to always match, so
a somewhat larger difference there is expected. As noted
earlier, the rule-count is a hyperparameter that may need
tuning for certain providers.

Role of domain knowledge, Fig. 8, 7: We already discussed
in §4 why the use of domain knowledge is critical for inter-
pretation: without simple primitives like moving averages,
rules are framed in terms of various basic literals, resulting in
complex and incomprehensible rules. Besides interpretation,
we find that there is also substantial impact on agreement
from adding useful domain knowledge.

We used our modified version of the DASH player to eval-
uate how the different trees emulating robust MPC generalize
to other videos. We selected a mixed subset of 60 traces, that
both include challenging and stable throughput measure and
generated the distribution across them of linear QoE used in
the MPC work [28]. Results are normalized to the mean QoE
for the ground-truth MPC implementation across the same
video-trace set.

Fig. 7: Domain knowledge helps the rule-set (Bitrate-QoE).

Fig. 8: Domain knowledge helps the rule-set (VMAF-QoE).

Fig. 7 shows how the rule-set reacts to additional build-
ing blocks being available for reconstruction in the form of
engineered features. The ‘Basic’ rule-set is framed directly
on the data features listed in §3, without any feature engi-
neering. The ‘Unaware’ and ‘Aware’ approaches use several
engineered features, as described in §4. The difference be-
tween them stems from the ‘Unaware’ approach only using
engineered features related to buffer filling and draining in
addition to the primitive data features. The ‘Aware’ approach
with the benefit of all engineered features matches MPC the
closest. ‘Aware’ improves average QoE over ‘Unaware’ by
∼5×. Thus, encoding domain knowledge helps not only with
conciseness, but also performance and generalization. Also of
note is the ‘Automated’ approach, which starts with the ‘Ba-
sic’ features, but can recombine them in the fashion described
in §5. While promising for future exploration, it presently
performs worse than manually engineering features, and does
not produce features that are meaningful to humans.

Fig. 8 repeats the above experiment, but for a VMAF-based
QoE function. The results are similar to those for bitrate -QoE.
The average QoE of the ‘Aware’ reconstruction is within 10%
of that of the target MPC algorithm, the median being within
2%. This is especially significant because we did not engineer
any explicit features similar to this QoE function.

Interpretability: Across our efforts on reconstruction, the

USENIX Association 2020 USENIX Annual Technical Conference 537

Fig. 9: The core of the decision tree generated by learning from the SRF example data. The green (solid) and red (dashed) arrows are the
“True” and “False” evaluations of the predicates at the nodes. The video quality of the last fetched chunk is denoted by and the next chunk’s
by . Potential decisions and decision outcomes are coded in terms of the relationships between these qualities: e.g., denotes that the next
chunk is requested at one higher video quality level. The predicates are in terms of expected buffer size after a certain potential decision, based
on throughput estimates (e.g., T+ is an aggressive/optimistic estimator); or on a reward (Rrelative) calculated relative to the other obtainable
rewards involving throughput, rebuffering penalty (P), the lookahead horizon over which these are estimated (W), etc.

Fig. 10: Reconstructing commercial ABR algorithms allows us to
uniformly compare them to both other commercial and academic
ones under the same test conditions.

generated rule sets are concise, with no more than 20 rules.
We realized early that being able to read and understand the
generated trees would make debugging and improvements
easier, and thus wrote a small, simple utility to translate the
predicates in trees loosely into natural language. Fig. 9 shows
an illustration of a tree generated for SRF. This version is
hand-drawn for aesthetic reasons, but there is no fundamen-
tal reason it could not be auto-generated. Due to space con-
straints, this version is a compressed tree which was allowed
to have at most 10 leaves instead of 20. We extensively exam-
ined and used our natural-language trees ourselves throughout
this work, as we describe in a few instances in §7.

We also understand, to some extent, why small rule-sets
suffice: (a) a single rule has implications capturing more than
is plainly visible, e.g., if the buffer is running too low, the best
recourse is to lower quality, and not much new will be learnt
from a long planning horizon; and (b) the domain-specific
primitives are a dense encoding of useful knowledge. We
caution readers against generalizing these observations to
imply that small rule-sets will necessarily suffice for other

problems where learning is effective — our exploration and
results are limited to ABR. That small rule-sets would suffice
for many ABRs, is also supported by prior work [10] showing,
for instance, that the neural network ABR approach, Pensieve,
largely depends on only 3 features.

Comparing academic and industry ABRs, Fig. 10: For tar-
gets we can reconstruct well, having a reconstruction enables
us to compare them to each other and academic ABRs in the
same test harness. This is non-trivial without a reconstruc-
tion, as each video platform has a very different streaming
setup in terms of encoding, server architecture, and player
design. For instance, if one platform uses more encoding lev-
els than another, then the same ABR algorithm can make
more fine-grained decisions on this platform than on the one
with coarser encoding. Therefore the same algorithm on the
same video would perform differently across video platforms,
making it difficult to compare ABRs across providers without
removing such confounding factors in a common test harness.

To this end, we extend the DASH architecture [37] with
implementations of the (rule-set) reconstructions for the 6
targets we are able to match most closely. The same setup
has ground truth implementations for BOLA [38], MPC [46],
and Pensieve [23]. We evaluate VMAF-QoE [28] using the
Envivio video typically used in academic work, and normalize
the results to the mean QoE for Pensieve.

As the results in Fig. 10 show, Pensieve and MPC generally
outperform the deployed ABRs’ reconstructions, although,
for a subset of traces, R-Twitch achieves the same or better
performance as MPC. This is perhaps not unsurprising: we are
evaluating all providers with QoE functions used in academic
literature, while the providers may, in fact, be optimizing for a
different goal. Amongst the providers, R-Arte’s ABR achieves
the worst performance on this QoE metric.

But perhaps most striking is the distribution-wide ex-
tremely close match between R-ZDF and BOLA – except
for a few outliers at the tails, for most video-trace pairs, their
performance is virtually identical. Thus, it is likely that ZDF

538 2020 USENIX Annual Technical Conference USENIX Association

is using BOLA, or a derivative of it.

7 THE UTILITY OF INTERPRETABILITY
Human insight can be crucial to robust solutions that account
for gaps and unanticipated changes in the data that drives the
behavior of learned control procedures. We discuss several
ways in which preserving the ability of expert designers to
understand the decision procedure helps.

Tracing the input-output mapping: With concise decision
trees, human experts can easily trace the decision process
used for particular inputs or sets of inputs. For any input
conditions, a path can be traced to a leaf (decision output),
and for any output, how it was arrived at can be understood as
well. Such tracing can allow easy debugging — “Why were
bad outcomes seen for these traces?”. This also opens the
door to more rigorous analyses of the outcomes for sets of
inputs, based on methods like symbolic execution [4].

Identifying potential issues: Experts can often identify over-
fitting and other problems a priori if they understand the
procedure, as is the case with the concise decision trees we
produce. Our experience itself revealed three such instances:
(1) One feature we encoded for use in our decision trees was
a prospective reward from fetching the next chunks at dif-
ferent bitrates. This worked for most videos, giving good
average performance. However, for some videos with much
higher/lower average bitrate than most other videos, results
were inferior. This is due to the reward function using absolute
bitrates, and thus not being meaningful across videos. Defin-
ing reward in relative terms, i.e., normalized to the maximum
possible reward, addresses this issue. A blackbox method, by
hiding from human experts the logic used in the rules, makes
such improvements more challenging.
(2) We noticed that even after training across the sizable net-
work traces used in past work, our rule sets largely depended
on optimistic estimators for throughput, unlikely to work well
in more challenging environments, e.g., new geographies a
video service expands to where connectivity is more limited
and variable. To force more conservative behavior, we can ei-
ther add such traces to the training data, or restrict the learning
approach to use only conservative throughput estimators lead-
ing to more stable behavior. Another possibility is to add new
features to detect situations where conservative or optimistic
behavior would be appropriate. Note that while given enough
appropriate data blackbox solutions would also potentially
overcome such problems, this requires noticing the problem
in the first place. Also, such data may not always be available:
e.g., if the video service performs poorly in a geography, users
may self-select themselves out by dropping the service, thus
further skewing the data.
(3) Early in our experiments, we observed a peculiar learned
rule that translates to “Never fetch the lowest quality after 45
video chunks.” This stemmed from overfitting due to training

on one video with 49 chunks (on which most other academic
ABR work is also evaluated), where even over a sizable set of
traces, typically a large enough buffer was built such that the
lowest quality was ruled out for the last few chunks. While
this particular artifact would be unlikely to arise in a large
provider’s pipeline given enough diverse training data, similar
problems may occur and go undetected in blackbox methods,
especially when the underlying data changes, e.g., if a short-
form video service introduces longer videos.

Across these examples, blackboxes can hide problems that
might otherwise have been obvious to human experts. Prior
work [17] has found problems of this type, e.g., Pensieve, even
if conditions are highly favourable, does not always download
the last chunk of a video at the highest quality.

Finally, when such problems do present themselves, the
recourse with blackboxes, depending on the problem’s nature,
can involve blindly tinkering with the inputs to the blackbox
approach until the outcomes improve, or adding extraneous
safeguards for each discovered problem.

7.1 Examining two reconstructions

We next give a view of two reconstructions of different com-
plexity: SRF (simplified, same as in Fig. 9) and Twitch.

Simplified SRF: The output tree reveals an intuitive structure
and highlights obvious flaws as we discuss below. (These are
only present in the simplification, and not SRF’s full tree.)

Fig. 9’s caption explains how to read the tree. First it checks
the point in playback, concluding that it is in a startup phase if
playtime is below a threshold. In the startup phase, it checks
if the possible gain in Reward is large enough to warrant the
leveling up by two levels. This is only done if we deplete the
buffer by not too much when doing so; etc. Of course, behind
these loose statements are concrete, parametrized features
which describe what the particular throughput estimator is,
what reward function is used, etc.

An interesting characteristic of the simplified-SRF tree is
that there are no quality changes beyond the startup phase.
This is clearly unsuitable in practice, and would be an obvious
red flag to any domain expert examining this tree. The full
tree does, in fact, use adaptation after startup too, although it
is infrequent. We have verified this behavior experimentally
as well, where SRF makes frequent quality switches during
startup, and much fewer later.

Twitch: Having examined a small simplified tree, we discuss
the (full) reconstruction for a more complex target, Twitch.

Twitch’s tree visually reveals 3 “branches” of activity,
which we call panic, cautious, and upbeat. The panic mode is
entered when the throughput is very low. Here the tree is most
likely to downgrade the quality by two levels to try to build
up buffer, regardless of current buffer occupancy. An example
trace captured online shows such behavior at roughly 100 s
in playback in Fig. 11.

USENIX Association 2020 USENIX Annual Technical Conference 539

Fig. 11: Twitch shows only marginally more reluctance towards
switching when compared to MPC

The cautious mode is entered at mediocre connection qual-
ity and, unlike the panic mode, examines the buffer level. In
this mode, the most likely action is to either keep the qual-
ity or, if buffer-level is low, downgrade it. Downgrading can
also be induced by high throughput variance, which indicates
uncertain networking conditions.

If throughput is above mediocre, the tree enters the upbeat
mode. Here the most common action is upgrading the quality,
or if we approach higher quality levels (and therefore, longer
download times even with good network conditions), the de-
cision to upgrade is weighted against the buffer drain it would
incur, and the current buffer occupancy.

Unlike several other providers, Twitch’s reconstruction re-
veals a willingness to switch qualities often. This is in line
with our experimental observation that Twitch and MPC make
similar number of switches in the same conditions, while other
providers switch much less frequently compared to MPC.
Based on this analysis, if a switching-averse provider wanted
to adopt Twitch’s approach by reconstructing it, they would
have to suitably tweak it to reduce switching.

To summarize, with interpretability, we can catch problems
before they occur, reason about generalization and behavior
across sets of operating conditions instead of just point testing,
and methodically discover and fix encountered problems.

8 LIMITATIONS & FUTURE WORK
Over the course of this work, unsurprisingly, we uncovered
several shortcomings of our approach, which offer interesting
avenues for future exploration:

• Accurate and concise trees require intuitive primitives,
e.g., moving averages, which must be manually encoded
(§4). Perhaps such primitives can be automatically cap-
tured from a corpus of available hand-designed networked
algorithms. But this is likely a challenging task.

• We explored a limited set of features, some across only
a small part of their possible parameter ranges, e.g., only
5 discrete values for the α parameter in moving averages.
A potentially highly effective avenue of improvement lies

in tuning the features using a black box optimizer, e.g., a
Gaussian Process Optimizer [29], to suggest useful values.

• We can only train for an appropriately specified decision
space, as is clear from the failure of our approach for
YouTube (§6.2). We can expand the decision space with the
benefit of manually-drawn observations from experiments,
but automatically discovering it seems difficult.

• We do not expect our approach to always be able to match
a target algorithm. However, failures of our approach also
help: they often flag “atypical” ABR designs for manual
analysis, like for YouTube and Pornhub, and could help
uncover unknown (proprietary) insights.

• We used an intuitive but subjective definition of “inter-
pretable”: trees with under 20 leaves on domain-specific
literals. Our own experience with understanding the results
was positive, but we hope feedback from other researchers
will help sharpen the interpretability goal for future work.

• For providers that customize their ABR for different re-
gions and sets of clients, we can only reconstruct the behav-
ior we observe from our test clients. For future work, this
opens an interesting opportunity: observing differently-
tuned versions of the same ABR, it may be possible to
achieve higher-quality reconstructions, which also identify
the parameters whose tuning varies across regions.

9 CONCLUSION
We take the first steps towards an ambitious goal: reconstruct-
ing unknown proprietary streaming algorithms in a human-
interpretable manner. We customize and evaluate a rule-set
approach, achieving good results for reproducing the behav-
ior of algorithms deployed at several popular online services.
Our approach produces succinct output open to expert inter-
pretation and modification, and we discuss through several
examples, the utility of this interpretability.

While promising, our results also expose a likely funda-
mental limitation — we need to encode and make available
suitable domain knowledge to the learning approach. This can
be interpreted as suggesting that we should reconcile learning
with our already acquired human expertise, instead of starting
afresh. We hope to apply this approach, suitably customized,
to congestion control as well, where it is unclear how much
diversity there is in actual deployment of different, unknown
congestion control algorithms across popular Web services.

Acknowledgments
We are grateful to Martin Vechev, Ce Zhang, our anonymous
reviewers, and our shepherd Junchen Jiang, for valuable dis-
cussions and feedback. This work is supported by the Swiss
National Science Foundation under grant number 182409.

540 2020 USENIX Annual Technical Conference USENIX Association

References
[1] Anne Aaron, Zhi Li, Megha Manohara, Jan De Cock,

and David Ronca. Per-title encode optimization. https:
//link.medium.com/jEeb6GV0ZW.

[2] Saamer Akhshabi, Ali Begen, and Constantine Dovro-
lis. An experimental evaluation of rate-adaptation al-
gorithms in adaptive streaming over HTTP. In ACM
MMSys, 2011.

[3] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan,
Sanjay Rao, Jessica Chen, Ethan Katz-Bassett, Bruno
Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: auto-tuning
video ABR algorithms to network conditions. In ACM
SIGCOMM, 2018.

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia,
Camil Demetrescu, and Irene Finocchi. A survey of sym-
bolic execution techniques. ACM Computing Surveys,
2018.

[5] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama.
Verifiable reinforcement learning via policy extraction.
In NeurIPS, 2018.

[6] Lionel Blondé and Alexandros Kalousis. Sample-
efficient imitation learning via generative adversarial
nets. In PMLR, 2019.

[7] Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre,
F Bougares, H Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. In EMNLP, 2014.

[8] Federal Communications Commission. Validated
data September 2017 - measuring broadband Amer-
ica. https://www.fcc.gov/reports-research/
reports/.

[9] Luca De Cicco and Saveri o Mascolo. An experimental
investigation of the Akamai adaptive video streaming.
In USAB, 2010.

[10] Arnaud Dethise, Marco Canini, and Srikanth Kandula.
Cracking open the black box: What observations can
tell us about reinforcement learning agents. In ACM
NetAI, 2019.

[11] Anis Elgabli and Vaneet Aggarwal. Fastscan: Ro-
bust low-complexity rate adaptation algorithm for video
streaming over HTTP. In IEEE TCSVT, 2019.

[12] Maximilian Grüner, Melissa Licciardello, and Ankit
Singla. Reconstructing proprietary video streaming
algorithms. https://github.com/magruener/
reconstructing-proprietary-video-streaming-
algorithms, 2020.

[13] H. Guo, Q. Zhang, and A. K. Nandi. Feature generation
using genetic programming based on fisher criterion. In
IEEE EUSIPCO, 2007.

[14] Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. In NIPS, 2016.

[15] Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: Evidence from a large video
streaming service. In ACM SIGCOMM, 2014.

[16] Ayad Ibrahim, Im Youngbin, Keller Eric, and Ha Sang-
tae. A practical evaluation of rate adaptation algorithms
in HTTP-based adaptive streaming. In Computer Net-
works, 2018.

[17] Yafim Kazak, Clark Barrett, Guy Katz, and Michael
Schapira. Verifying deep-RL-driven systems. In ACM
NetAI, 2019.

[18] Breiman L., Friedman J. H., Olshen R. A., and Stone C.
J. Classification and Regression Trees. Wadsworth and
Brooks, 1984.

[19] De Cicco L. and Mascolo S. A mathematical model of
the Skype VoIP congestion control algorithm. In IEEE
Transactions on Automatic Control, 2010.

[20] Zhi Li, Anne Aaron, Ioannis Katsavounidis,
Anush Moorthy, and Megha Manohara. To-
ward a practical perceptual video quality metric.
https://medium.com/netflix-techblog/toward-
a-practical-perceptual-video-quality-
metric-653f208b9652, 2016.

[21] Melissa Licciardello, Maximilian Grüner, and Ankit
Singla. Understanding video streaming algorithms in
the wild. In PAM, 2020.

[22] F. T. Liu, K. M. Ting, and Z. Zhou. Isolation forest. In
IEEE ICDM, 2008.

[23] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with Pensieve. In ACM
SIGCOMM, 2017.

[24] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with Pensieve. https:
//github.com/hongzimao/pensieve, 2017.

[25] Zili Meng, Jing Chen, Yaning Guo, Chen Sun, Hongxin
Hu, and Mingwei Xu. PiTree: Practical implementa-
tion of ABR algorithms using decision trees. In ACM
Multimedia, 2019.

[26] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu,
Hongzi Mao, and Hongxin Hu. Explaining deep
learning-based networked systems. arXiv:1910.03835,
2019.

USENIX Association 2020 USENIX Annual Technical Conference 541

https://link.medium.com/jEeb6GV0ZW
https://link.medium.com/jEeb6GV0ZW
https://www.fcc.gov/reports-research/reports/
https://www.fcc.gov/reports-research/reports/
https://github.com/magruener/reconstructing-proprietary-video-streaming-algorithms
https://github.com/magruener/reconstructing-proprietary-video-streaming-algorithms
https://github.com/magruener/reconstructing-proprietary-video-streaming-algorithms
 https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652
 https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652
 https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://github.com/hongzimao/pensieve
https://github.com/hongzimao/pensieve

[27] Abhijit Mondal, Satadal Sengupta, Bachu Rikith Reddy,
M. J.V. Koundinya, Chander Govindarajan, Pradipta De,
Niloy Ganguly, and Sandip Chakraborty. Candid with
YouTube: Adaptive streaming behavior and implications
on data consumption. In ACM NOSSDAV, 2017.

[28] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichan-
dra Addanki, Mehrdad Khani, Prateesh Goyal, and Mo-
hammad Alizadeh. End-to-end transport for video QoE
fairness. In ACM SIGCOMM, 2019.

[29] Michael Osborne, Roman Garnett, and Stephen Roberts.
Gaussian processes for global optimization. In Interna-
tional Conference on Learning and Intelligent Optimiza-
tion, 2009.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 2011.

[31] Yanyuan Qin, Shuai Hao, Krishna R Pattipati, Feng Qian,
Subhabrata Sen, Bing Wang, and Chaoqun Yue. ABR
streaming of VBR-encoded videos: characterization,
challenges, and solutions. In ACM CoNEXT, 2018.

[32] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and
Pål Halvorsen. Commute path bandwidth traces from
3G networks: analysis and applications. In MMSys,
2013.

[33] Reudismam Rolim, Gustavo Soares, Loris D’Antoni,
Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo
Suzuki, and Björn Hartmann. Learning syntactic pro-
gram transformations from examples. In ICSE, 2017.

[34] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In PMLR, 2011.

[35] Sandvine. The global Internet phenomena report.
https://www.sandvine.com/press-releases/
sandvine-releases-2019-global-internet-
phenomena-report, 2019.

[36] Reliable Secure and Intelligent Systems Lab. JSNice -
statistical renaming, type inference and deobfuscation.
http://jsnice.org/, 2018.

[37] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio.
From theory to practice: Improving bitrate adaptation in
the DASH reference player. In ACM MMSys, 2018.

[38] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitara-
man. BOLA: Near-optimal bitrate adaptation for online
videos. In IEEE INFOCOM, 2016.

[39] Trevor Stephens. Genetic programming in Python.
https://github.com/trevorstephens/gplearn,
2017.

[40] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huy-
segems, P. R. Alface, T. Bostoen, and F. De Turck.
HTTP/2-based adaptive streaming of HEVC video over
4G/LTE networks. In IEEE Communications Letters,
2016.

[41] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh,
Pushmeet Kohli, and Swarat Chaudhuri. Programmat-
ically interpretable reinforcement learning. In PMLR,
2018.

[42] Ruohan Wang, Carlo Ciliberto, Pierluigi Vito Amadori,
and Yiannis Demiris. Random expert distillation: Imi-
tation learning via expert policy support estimation. In
PMLR, 2019.

[43] Shichang Xu, Subhabrata Sen, and Z. Morley Mao. CSI:
Inferring mobile ABR video adaptation behavior under
HTTPS and QUIC. In ACM EuroSys, 2020.

[44] Y. Xu, C. Yu, J. Li, and Y. Liu. Video telephony for
end-consumers: Measurement study of Google+, iChat,
and Skype. In IEEE/ACM Transactions on Networking,
2013.

[45] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo
Shin, and Dongsu Han. Neural adaptive content-aware
Internet video delivery. In USENIX OSDI, 2018.

[46] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Si-
nopoli. A control-theoretic approach for dynamic adap-
tive video streaming over HTTP. In ACM SIGCOMM,
2015.

542 2020 USENIX Annual Technical Conference USENIX Association

https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report
https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report
https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report
http://jsnice.org/
https://github.com/trevorstephens/gplearn

Midgress-aware traffic provisioning for content delivery

Aditya Sundarrajan
UMass Amherst

Mangesh Kasbekar
Akamai Technologies

Ramesh K. Sitaraman
UMass Amherst

& Akamai Technologies

Samta Shukla
CVS Health

Abstract
Content delivery networks (CDNs) cache and deliver hun-

dreds of trillions of user requests each day from hundreds
of thousands of servers around the world. The traffic served
by CDNs can be partitioned into hundreds of traffic classes,
each with different user access patterns, popularity distribu-
tions, object sizes, and performance requirements. Midgress
is the cache miss traffic between the CDN’s servers and the
content provider origins. A major goal of a CDN is to mini-
mize its midgress, since higher midgress translates to higher
bandwidth costs and increased user-perceived latency.

We propose algorithms that provision traffic classes to
servers such that midgress is minimized. Using extensive
traces from Akamai’s CDN, we show that our midgress-aware
traffic provisioning schemes can reduce midgress by nearly
20% in comparison with the midgress-unaware schemes cur-
rently in use. We also propose an efficient heuristic for traffic
provisioning that achieves near-optimal midgress and is suit-
able for use in production settings. Further, we show how
our algorithms can be extended to other settings that require
minimum caching performance per traffic class and minimum
content duplication for fault tolerance. Finally, our paper pro-
vides a strong case for implementing midgress-aware traffic
provisioning in production CDNs.

1 Introduction

Content delivery networks (CDNs) carry more than 50% of all
Internet traffic today [35] and that fraction is projected to in-
crease over the coming years. Modern CDNs host a wide vari-
ety of content such as videos, software downloads, web pages,
etc. that belong to hundreds of content providers. CDNs de-
ploy hundreds of thousands of servers in clusters at the edge
of the Internet to serve the hosted content to billions of end-
users around the world. If the requested content is available
in the edge server, a cache hit occurs and the end-user expe-
riences a quicker response with lower latency. Otherwise, a
cache miss occurs, and the edge server must fetch the content

from the content provider’s origin. A cache miss increases
the user-perceived latency for a response and also increases
the “midgress” traffic, which is the cache miss traffic between
the CDN’s edge servers and the content provider origins.

A CDN has many performance and cost objectives that
must be optimized. Three important metrics are origin of-
fload that is the amount of traffic offloaded from the origin
servers, end-user latency that is the time between request and
response for content as perceived by the end-user, and the
midgress bandwidth cost1 that is the cost of internal traffic
in the CDN caused mainly due to cache misses at the edge
servers. A metric that ties the three objectives together is
the cache miss rate2 which is the fraction of content bytes
that were not present in the edge caches and needed to be
fetched from origin. Smaller miss rate implies lesser cache
miss traffic. Reduced cache miss traffic in turn implies in-
creased origin offload, reduced end-user latency and reduced
midgress bandwidth cost. Hence, minimizing the midgress, is
a key performance objective from multiple perspectives.

Traffic classes. When users request content that is hosted
on a CDN, the requests are classified into traffic classes. A
traffic class is a collection of domains that host a specific type
of content belonging to one or more content providers with
similar requirements. For example, CNN videos and Apple
iOS software downloads are each examples of a traffic class.
Large CDNs host content that belong to hundreds of traffic
classes. Recent work [66] has shown that traffic classes hosted
on CDNs exhibit wide variations in popularity distributions,
object size distributions and caching characteristics.

How CDNs serve content to users. Two interacting sys-
tems determine how content is served to users.

1) The traffic provisioning system decides which servers
serve what fraction of each traffic class. Traffic provisioning

1The CDN also incurs a bandwidth cost for the “egress” traffic of content
sent from the edge servers to the end-users. However, content providers
pay the CDN for their egress traffic, while the midgress traffic is purely an
overhead for the CDN operator that must be minimized.

2The miss rate metric that we use in this paper is sometimes called byte
miss rate. An alternate definition is the (unweighted) fraction of requests that
are cache misses and is less relevant for our work.

USENIX Association 2020 USENIX Annual Technical Conference 543

is performed periodically (say, once every few hours) as an
offline process and uses the predicted user demand for the
traffic classes and available server resources to produce an
assignment of traffic classes to servers. Subsequently, each
user request of each traffic class is routed [12] in real-time to
a server that is provisioned to serve that traffic class3.

2) Each CDN server has a cache that stores the content
requested by users. Each server employs a cache management
system that implements policies for managing the cache, such
as an admission policy to decide what objects are cached and
an eviction policy to decide what objects are evicted.

Minimizing midgress. The midgress bandwidth could cost
tens of millions of dollars a year4. Thus, even a small reduc-
tion in midgress can be significant. Much of the prior work
has focused on better cache management for reducing cache
misses The past decades have seen research on numerous
caching algorithms, such as Adapt-Size [4], Cliffhanger [15],
SLRU [40], TLRU [23], S4LRU [34], CFLRU [59], ARC [53],
LRU-S [65], LRU-K [56], and GDS [7]. However, the com-
plementary problem of optimizing the traffic provisioning
process to minimize midgress has not received much atten-
tion. In the current state-of-the-art, production CDNs assign
traffic classes to servers with the goal of not overloading the
servers, without explicitly minimizing midgress.

Our work shows that traffic provisioning in a midgress-
aware manner can provide additional benefits to what can
accrue from better cache management alone. Our traffic provi-
sioning approach incorporates both traditional load balancing
and the newer midgress considerations to minimize midgress
traffic. The main thesis of the paper is that by explicitly in-
corporating midgress considerations, it is possible to devise
traffic provisioning schemes that minimize midgress traffic
by nearly 20%, potentially resulting in millions of dollars of
bandwidth cost savings. Further, the midgress reduction due
to better traffic provisioning is complementary to any improve-
ments in cache management. As CDNs already implement
traffic provisioning algorithms, albeit in a midgress-unaware
manner, our contribution can be viewed as a drop-in replace-
ment for an existing (midgress-unaware) traffic provisioning
system.

Why be midgress-aware? “Midgress-aware” traffic pro-
visioning algorithms explicitly incorporate cache miss traffic
in addition to “balancing” the load. We illustrate the need
for midgress awareness through a simple example. Consider
two servers and three traffic classes. Each server has a cache
size of 4 TB and sufficient capacity to serve all traffic classes.
The three traffic classes have equal load of λ that need to be
assigned to the two servers. The miss rate curves (MRCs) for

3The results of the traffic provisioning are used to create DNS records
that can be resolved by the user in real-time using a DNS lookup [12].

4As a back-of-the-envelope calculation, a large CDN serving 50 Tbps of
egress traffic at a 20% miss rate at the edge has a midgress traffic of 10 Tbps.
The price of network bandwidth varies greatly throughout out the world.
Though hard to estimate accurately, assuming a blended price of 50 cents per
Mbps per month, midgress bandwidth costs 60 million dollars per year.

the three traffic classes are as shown in Figure 1. The MRCs
of traffic classes TC1 and TC3 flatten out quickly. This means
that they require very little cache space to achieve the best
possible performance. On the other hand, traffic class TC2
has a slowly decreasing gradient. Thus, the miss rate of TC2
keeps decreasing as more cache space is allocated to it.

0

20

40

60

80

100

0 1 2 3 4 5 6

Ca
ch

e
m

iss
 ra

te
, %

Cache size, TB

TC_1
TC_2
TC_3

Figure 1: MRCs of traffic classes TC1, TC2 and TC3.

Current traffic provisioning algorithms are midgress-
unaware in that they only ensure that no server is overloaded.
Such an algorithm could choose any assignment of traffic
classes to servers, since any server has sufficient capacity
to serve all classes, e.g., assigning TC1 and TC2 to server 1
and TC3 to server 2 is one possible solution. More generally,
any assignment with (x+ y+ z)× λ traffic to server 1 and
((1− x)+(1− y)+(1− x))×λ traffic to server 2 is feasible,
where x,y and z ∈ [0,1], are the traffic fractions of TC1, TC2
and TC3 respectively. Note that in this paper, we split the load
of a traffic class by requests.

On the other hand, a midgress-aware algorithm would
choose an assignment that minimizes the overall cache miss
traffic from the two servers, while also ensuring that no server
is overloaded. In the above example, assigning all of TC1 and
TC3 to server 1 and all of TC2 to server 2 would result in the
least amount of cache miss traffic from the two servers. This
is because TC2 gets the largest cache space possible for its
entire load and TC1 and TC3 get enough space to achieve the
smallest cache miss rates.

1.1 Contributions

We make the following contributions.
1) We develop an optimization model for midgress-aware

traffic provisioning that assigns traffic classes to servers in a
manner that minimizes midgress traffic. The model is a non-
convex mixed-integer linear program (MILP) that we solve
using CPLEX. Our work is the first to explicitly model and
minimize midgress in the traffic provisioning process. Since
a large CDN could incur a midgress of 10+ Tbps at a cost of
$60+ million/year, even a small midgress reduction translates
into large cost savings for the CDN.

544 2020 USENIX Annual Technical Conference USENIX Association

2) We apply our optimization solution to metro-level traffic
provisioning where the traffic classes provisioned to server
clusters within a metro area (e.g., NY city) are re-provisioned
to minimize midgress. Metro-level traffic re-provisioning is
a common operation, since the latency impact of moving a
traffic classes across clusters within the same metro is likely
minimal. Using extensive production traces from Akamai, we
show that our midgress-aware traffic provisioning can reduce
the midgress of a metro-area by 18.37% on average compared
to midgress-unaware provisioning.

3) We also use our optimization solution for cluster-level
provisioning where the traffic classes assigned to servers
within a cluster are re-provisioned to minimize midgress.
Cluster-level traffic (re-)provisioning is also a common opera-
tion since moving a traffic class across servers within the same
cluster will likely not impact end-user latencies. Using produc-
tion traces from Akamai’s CDN, we show that cluster-level
provisioning in conjunction with metro-level provisioning can
reduce the midgress of a traffic class by 41.07% on average
compared to midgress-unaware provisioning.

4) To be useful in practice, midgress-aware traffic provi-
sioning has to be computationally efficient. We propose a
midgress-aware heuristic called local search that is fast
and near-optimal. The midgress achieved by local search
was within 1.1% of optimal for both the metro-level and the
cluster-level traffic provisioning. Further, in our experiments,
local search completed in only 2 minutes, while finding
the optimal took several hours.

5) We also show that our traffic provisioning algorithms
are robust across different cache management policies and
provide a midgress reduction in the range of 7.76% - 13.3%.

6) CDN operators often have to deal with additional con-
straints such as maintaining a certain level of traffic class
redundancy or guaranteeing a minimum level of caching per-
formance for traffic classes. We show how the optimization
model for midgress-aware traffic provisioning and the heuris-
tic algorithm, local search, can be extended to accommo-
date such constraints.

7) While the above results are for “shared” caches where
a single unpartitioned cache is used to store objects from all
traffic classes, we show that our traffic provisioning approach
can be modified to work with “partitioned” caches where each
traffic class is assigned a separate cache partition. We show
that the midgress of partitioned caches can be reduced by
more than 14% using our midgress-aware traffic provisioning
approach, when compared to a midgress-unaware baseline.

1.2 Roadmap

The rest of the paper is organized as follows. In Section 2, we
model midgress-aware traffic provisioning as a non-convex
mixed-integer optimization problem. In Section 3, we pro-
pose a faster heuristic for midgress-aware traffic provision-
ing called local search, as well as a midgress-unaware

baseline called baseline fit. In Section 4, we evaluate
our optimization model and heuristics using extensive traces
from Akamai’s production CDN to empirically understand the
midgress reduction achieved by our algorithms. In Section 5,
we extend and evaluate our midgress-aware traffic provision-
ing algorithms to include other constraints such as minimum
redundancy and maximum cache miss rates. Further, we ex-
tend our work to partitioned caches. We discuss some related
work in Section 6 and conclude in Section 7.

2 Optimization model for traffic provisioning

We model traffic provisioning in a CDN as follows. We are
given a set of N traffic classes. For each traffic class j, we are
given the (predicted) amount of load of λ j Gbps,∀ j ∈ 1 . . .N.
The predicted load for traffic provisioning is derived from
historical load values for these classes by the CDN. Further,
we are given M sites where the ith site has a cache of size
Ci TB and a capacity of Ti Gbps,∀i ∈ 1 . . .M. In cluster-level
traffic provisioning, each site models a single CDN server
within a cluster of M servers. In the more complex setting of
metro-level traffic provisioning, we model an entire cluster
as a single site within a metro area with M clusters. While
not strictly accurate, we show that viewing the entire cluster
as a single site in the metro-area setting is useful in practice.
The capacity (resp. cache size) of each site is calculated as
either the capacity (resp. cache size) of a single server in the
former setting or as the aggregate capacity (resp. cache size)
of the entire cluster in the latter setting. Henceforth, a site
refers to a server in the cluster-level setting and a cluster in
the metro-level setting.

The goal of traffic provisioning is to produce an assignment
of traffic classes to sites, such that the total midgress across
all the sites is minimized within the constraint that no site
is assigned more load than its capacity. Note that a traffic
class may be fractionally assigned across multiple sites, e.g.,
a traffic class with 10 Gbps of load can be assigned across
two sites to host 7 Gpbs and 3 Gbps each of that class5.

2.1 Modeling cache eviction and midgress
Given a site with an assignment of traffic classes, we need
to model the miss traffic (i.e., midgress) that will result from
serving those classes. The miss traffic is dependent on the
cache management policies used by the sites. Nearly all pro-
duction CDN caches use LRU (least-recently-used) variants
as their eviction policy, since it is very efficient and achieves
a comparable (byte) miss rate for typical CDN content traf-
fic in comparison with other more complex eviction policies.
For example, Akamai servers evict content using LRU, while
admitting objects on second hit [47]. Production installations
of the popular content caches Varnish [39] and NGINX [63]

5A CDN can implement such a fractionally-provisioned traffic class via
a DNS mechanism that returns the ip address of the first site 70% and ip
address of the second site 30% of the time.

USENIX Association 2020 USENIX Annual Technical Conference 545

also use LRU variants, as do recent academic work on content
caching such as AdaptSize [4].

Production CDN servers also typically use a shared cache
architecture where each server uses a single unpartitioned
cache to serve all its traffic classes [66]. It is known that a
partitioned cache that is sized in an optimal fashion can yield
a greater reduction in midgress over a shared unpartitioned
cache under the independent reference model (IRM) traffic
assumptions [20]. However, in a production CDN, each server
hosts a large number of traffic classes. Further, both the set
of traffic classes hosted by a given server and the volume of
traffic served per class by that server varies throughout the day.
Thus, there is significant overhead involved in maintaining
multiple cache partitions whose sizes must be dynamically
varied throughout the day. The constant resizing of cache par-
titions could itself also lead to an increase in the midgress [61].
For these reasons, a shared unpartitioned cache is typically
used by CDNs in practice.

In light of the above discussion, since our goal is to devise
traffic provisioning algorithms to reduce midgress in produc-
tion CDN settings, we develop a model for sites that use an
LRU cache eviction policy with a shared cache architecture.
But, later, we show empirically that our optimization model
and algorithms produce a significant reduction in midgress,
even if the CDN were to use other eviction policies (Sec-
tion 4.3). Further, we show that our approach can also be
easily extended to provide midgress reduction in a partitioned
cache architecture (Section 5.3).

Eviction age equality. The eviction age of an object in
cache is the difference between the time the object is evicted
and the time that it was last accessed. In an LRU cache, at
the time of access, the object goes to the head of the LRU list.
Then, the eviction age of the object is the time for that object
to move from the head to the tail of the LRU list and then
get evicted. Thus, this time is about the same for all objects,
when the size of an object is small with respect to the size of
the cache. We make the modeling assumption that the eviction
age of all objects in cache are equal. This assumption is also
borne out in production caches and the common eviction age
of the objects is logged as the eviction age of the cache.

The notion of eviction age can be extended to a traffic class
by averaging the eviction age of all the requested objects from
that traffic class. Since we model each object as having the
same eviction age, all traffic classes assigned to a site share
the same cache, and so they must have the same eviction age,
which we also denote to be the eviction age of the cache.
The eviction age of a cache has a direct relationship with the
cache hit rate. Requests that have inter-arrival times less than
or equal to the eviction age experience a cache hit and the rest
experience a cache miss. So, for a given mix of traffic classes,
as the cache size increases, the eviction age increases and so
does the cache hit rate. Eviction age of a cache is similar to
the concept of window size in [24]. Eviction age equality is
crucial in our modeling of the midgress of traffic classes that

share a single LRU cache.

2.2 Formulation of our optimization model
We now formulate our optimization model (referred to as OPT
henceforth) for midgress-aware traffic provisioning.

Inputs of OPT. The input parameters used in the model
are summarized in Table 1. We are given N traffic classes and
M sites. The load λ j of the jth traffic class is given, for all
1 ≤ j ≤ N. The cache size Ci and the capacity Ti of the ith

site is also given, for all 1≤ i≤M. Further, for each traffic
class, we are given the miss rate curve (MRC) and eviction
age function as described below.

1) Miss rate curve (MRC), M j(c). The MRC of a traffic
class plots the cache miss rate as a function of cache size c. In
this work, we assume that this function is convex (decreasing)
which is generally true for stack-based algorithms [66]. As
examples, MRC of two traffic classes, traffic class 2 and 14
(see Table 3) are shown in Figure 2.

0

20

40

60

80

100

0 5 10 15 20 25 30

Ca
ch

e
m

is
s r

at
e,

 %

Cache size, TB

Traffic class 2

Traffic class 14

Figure 2: MRCs of two traffic classes.

From Figure 2, we can see that the MRCs are both convex.
However, their gradients vary at different rates. Traffic class
2 has higher gradient at very small cache sizes but gradually
flattens out as it reaches a cache space of 30 TB. Traffic class
14 on the other hand has a relatively high gradient until about
15 TB after which the MRC flattens out.

2) Eviction age function, T j(c,λ). The eviction age function
of a traffic class plots the eviction age at load λ as a function
of the cache size c. The eviction age function also gives us
information about footprint pressure of a traffic class, which
is a relative measure of the amount of unique bytes accessed
over a time period. A traffic class has high footprint pressure
if a large number of unique bytes are accessed over a short
time period. In this work, we assume that the eviction age
function is convex (increasing) based on observations from
production traces. The eviction age functions of two traffic
classes, 2 and 14 (see Table 3) are shown in Figure 3.

From Figure 3, we can see that the eviction age functions
are convex. As expected, at the given load, the eviction age
increases with increase in cache size. Note that until about an
eviction age of 2.1 days, traffic class 14 has higher footprint

546 2020 USENIX Annual Technical Conference USENIX Association

Figure 3: Eviction age functions of two traffic classes.

pressure when compared to traffic class 2, after which this
behavior is flipped. Hence, if traffic classes 2 and 14 are
assigned to the same site, traffic class 14 gets more cache
space at smaller eviction ages (≤ 2.1 days) due to higher
footprint pressure and lesser cache space at larger eviction
ages (> 2.1 days) due to smaller footprint pressure.

To efficiently compute the MRC and eviction age function
for every traffic class, we use a succinct space-time represen-
tation of the cacheability properties of a traffic class known
as footprint descriptors [66].

We now briefly describe footprint descriptors.
Footprint descriptors. A footprint descriptor is a space-time

representation of the caching properties of a traffic class. It
is the joint probability distribution of the stack distance [51]
(aka reuse distance) and the interarrival time distributions of
a traffic class. A footprint descriptor can be used to determine
the cache size and the eviction age that is required to achieve
a certain cache hit rate, as a function of the traffic load. A
footprint descriptor can also be used to determine the eviction
age of a cache at different cache sizes and vice versa.

A reuse sequence is a sequence of requests where the first
and the last request in the sequence is for the same object and
that object is not requested anywhere else in that sequence. A
simplified version of a footprint descriptor of a traffic class
j is a tuple < λ j,Pr(s, t)) > where λ j is the load of traffic
class j and Pr(s, t) is the reuse-sequence descriptor which is
the joint probability distribution that a reuse sequence of the
traffic class has s unique bytes and time duration t. Given
a footprint descriptor, the miss rate curve at cache size s is
defined as MRC(s) = 1− ∑

s′≤s
∑
t

Pr(s′, t). The eviction age

function T j(s,λ j), is computed from Pr(s, t) by plotting the
duration t as a function of unique bytes s at load λ j.

Given the footprint descriptor of different traffic classes, the
footprint descriptor of a traffic mix can be computed using the
addition operator (⊕) of the footprint descriptor calculus [66].
The crux of the addition operation is the convolution of the
joint probability distribution, Pr(s, t), of all the traffic classes,
which can be efficiently computed using the Fast Fourier

Transform algorithm. The MRC of the traffic mix can then
be computed from the footprint descriptor of the traffic mix
as described above. Note that the request characteristics of
a traffic class could change slowly over time, requiring the
footprint descriptor to be recomputed periodically.

Outputs of OPT. The output parameters of OPT are pre-
sented in Table 2. The primary output is xi j that represents
the fraction of traffic class j assigned to site i.

Notation Description
N Number of traffic classes
M Number of sites
λ j Load of traffic class j
M j(ci j) Miss rate of traffic class j at cache capacity

ci j in site i
T j(ci j,λ j) Eviction age of traffic class j at cache capac-

ity ci j and load λ j in site i
Ci Cache size of site i
Ti Capacity of site i

Table 1: Input parameters of optimization model.

Notation Description
ci j Cache size occupied by traffic class j in site i
ρi Eviction age of site i and of traffic classes

assigned to site i
xi j Fraction of λ j ∈ [0,1] assigned to site i

Table 2: Output parameters of optimization model.

Objective function. The objective of midgress-aware traf-
fic provisioning is to assign the N traffic classes to the M sites
such that the midgress traffic from all the sites is minimized
as follows.

min.
M

∑
i=1

N

∑
j=1

xi jλ jM j(ci j) (1)

Resource constraints. The first set of constraints are the
cache size and the capacity constraints of each site.

N

∑
j=1

ci j ≤Ci ∀i = 1 . . .M (2)

N

∑
j=1

xi jλ j ≤ Ti ∀i = 1 . . .M (3)

The cache size constraint (Equation 2) states that the cache
size occupied by all traffic classes assigned to all sites must
not exceed the cache size of the site. The capacity constraint
(Equation 3) states that the load of all traffic classes assigned
to all sites should not exceed the capacity of the site.

Eviction age equality constraint. The eviction age func-
tion, T j(ci j,λ j) is defined at load λ j for traffic class j. When
traffic class j is assigned to site i, its load can be less than

USENIX Association 2020 USENIX Annual Technical Conference 547

or equal to λ j due to fractional assignments. Let the load of
traffic class j assigned to site i be λ′j ≤ λ j. Then, the eviction
age of traffic class j in site i is.

T j(ci j,λ
′
j) =

T j(ci j,λ j)

λ′j/λ j
=

T j(ci j,λ j)

xi j
= ρi

The first equality is due to the fact that decreasing the load
of a traffic class by a factor increases the eviction age of that
class by the same factor, since eviction rate decreases by that
factor. In the last equality, ρi is the eviction age of site i which
is also the eviction age of all traffic classes that are assigned
to site i. The eviction age equality constraint for all traffic
classes at all sites is then given by

T j(ci j,λ j) = ρixi j ∀ j(i) = 1 . . .N(M). (4)

As previously discussed, the eviction age equality constraint
in Equation 4 establishes the condition under which traffic
classes assigned to site i share the cache.

Load assignment constraint. The load of a given traffic
class can be fractionally assigned across sites. This means that
for some traffic class j, 50% of the load λ j could be assigned
to site 1, 30% to site 2 and the remaining 20% to site 3, and
so on. The load assignment constraint ensures that all the load
of each traffic class is assigned to one or more sites.

M

∑
i=1

xi j = 1 ∀ j = 1 . . .N (5)

Non-negativity constraints. The output parameters ρi, ci j
and xi j should be non-negative.

ρi > 0 ∀i = 1 . . .M (6)
ci j ≥ 0 ∀ j = 1 . . .N (7)

xi j ∈ [0,1] ∀ j(i) = 1 . . .N(M) (8)

Together, Equations 1-8 constitute the optimization model
for midgress-aware traffic provisioning OPT.

2.3 Solving the optimization model OPT

The complexity of solving the optimization model OPT pro-
posed in Section 2.2 is evaluated as follows. The objective
function (Equation 1) is biconvex since the load fraction xi j
is linear and the MRC M j(ci j) is convex. Equations 2-3, 5-8
are affine constraints. The eviction age function T j(ci j) is
convex and the product term ρixi j is bilinear. Equation 4 is a
non-convex constraint because the feasible set defined by this
constraint is non-convex. Overall, the optimization problem
is non-convex and in general an NP-hard problem. We make
a number of mathematical transformations to convert the opti-
mization problem to a mixed integer linear program (MILP),
which in turn can be solved efficiently using CPLEX.

3 Traffic provisioning heuristics

The optimization model OPT proposed in Section 2.2 is an
NP-hard problem and it can take several hours for a solver
to obtain the exact optimal solution. A faster but approxi-
mate solution is valuable for a large production CDN that has
hundreds of traffic classes, 1000+ clusters with deployments
in every major metro region of the world. To that end, we
propose a traffic provisioning heuristic called local search
that is fast and sufficiently accurate to be used in produc-
tion. Intuitively, our traffic provisioning heuristic is a “hill
climbing” solution for our optimization model in Section 2.2.
We also consider a midgress-unaware traffic provisioning al-
gorithm called baseline fit that we use as a baseline to
evaluate the benefits of being midgress-aware. The baseline
fit algorithm is similar to the midgress-unaware algorithms
currently used in production settings.

3.1 Midgress-unaware baseline

The midgress-unaware traffic provisioning algorithm called
baseline fit (see Algorithm 1) is based on consistent hash-
ing, similar to the algorithms used in production settings [47].
The algorithm takes as input the set of N traffic classes and
the set of M sites that are both hashed to points on a unit
circle. The traffic classes are picked in a random order and
assigned to sites as follows. Each traffic class j is assigned to
the nearest site i on the unit circle in the clockwise direction.
If the chosen site i does not have enough capacity to host
the entire load λ j, then a first fit algorithm is used, starting
from the chosen site i, and continuing to subsequent sites on
the unit circle in the clockwise direction, until all traffic is
assigned. The key point to note is that baseline fit does
not explicitly minimize the miss traffic, but rather it only en-
sures that no site gets more load than its capacity. That is, it
produces a feasible solution for our model OPT by obeying
Equations 2 - 8, but does not minimize midgress.

Algorithm 1 Baseline fit algorithm
Input: N,M,λ j,Ci,Ti
Output: Fraction of traffic class j assigned to site i, xi j,∀ j(i) =

1 . . .N(M)
1: xi j = 0
2: TCset = set of all traffic classes arranged in random order
3: Sset = set of all sites hashed to a unit circle
4: for all j ∈ TCset do
5: i = Site chosen by consistent hashing
6: if site i has remaining traffic capacity ≥ λ j then
7: xi j += 1
8: else
9: Assign traffic fraction λ j using first fit starting from site

i on the unit circle

548 2020 USENIX Annual Technical Conference USENIX Association

3.2 Midgress-aware local search

We propose a midgress-aware traffic provisioning algorithm
called local search (see Algorithm 2) that uses a hill climb-
ing approach to solve the optimization model OPT. It is de-
signed to be fast, but may not always produce the optimal
solution. The algorithm local search begins with a feasible
assignment as determined by baseline fit. The algorithm
operates in rounds where every traffic class is picked one at
a time in each round. The traffic class that is picked is re-
assigned in small increments of a fraction δ (0 < δ < 1) of
its load to the server that minimizes the midgress objective
while maintaining feasibility. If a round does not decrease the
midgress traffic objective by at least a specified ε << 1, the
algorithm stops and outputs the final assignment.

Note that local search could end up in a local opti-
mum that isn’t close to the global optimum. However, local
search is efficient enough that it can be run multiple times
(in parallel) with different starting points to improve a sub-
optimal solution. We discuss the running time of local
search in Section 4.

Computing the midgress of a traffic assignment. The
local search algorithm requires an efficient way to com-
pute the midgress traffic of each site, given a traffic class
assignment. A known technique for computing miss traffic
of a site is footprint descriptor calculus [66]. Knowing the
footprint descriptor of each traffic class that is assigned to
a site, we use the calculus to efficiently derive the footprint
descriptor for the traffic mix, that in turn provides the MRC
of the traffic mix, from which we derive the midgress of the
traffic mix.

4 Experimental evaluation

Using production traces collected from a metro area of Aka-
mai’s CDN, we compare the midgress of OPT with that of
baseline fit and local search in both metro-level and
cluster-level traffic provisioning. We perform the evaluation
in two steps: 1) We evaluate metro-level traffic provision-
ing by viewing each cluster as a site. The site is assumed to
have cache size and capacity equal to the sum of the cache
sizes and capacities of all servers in that cluster. The output
of metro-level traffic provisioning is an assignment of traffic
classes to clusters that minimizes the midgress of the metro
area. 2) The output of metro-level traffic provisioning is the
input to cluster-level traffic provisioning. We evaluate cluster-
level traffic provisioning by assigning traffic classes to servers
within a cluster to further minimize midgress.

Production traces. To perform our evaluation, we collect
production traces from all Akamai CDN servers from a metro
area serving traffic for 25 traffic classes over a period of
16 days. The characteristics of the traffic classes are listed
in Table 3. From Table 3, we see that, in this metro area, 9
traffic classes serve web content, 11 traffic classes serve media

Algorithm 2 Local search algorithm
Input: N,M,λ j,Ci,Ti
Output: Fraction of traffic class j assigned to site i, xi j,∀ j(i) =

1 . . .N(M)
1: Get feasible assignment using baseline fit algorithm
2: TCset = set of all traffic classes arranged in random order
3: Sset = set of all sites
4: while True do
5: mgcurr = midgress of current assignment
6: for all j ∈ TCset do
7: xi j = 0 ∀i = 1 . . .M
8: λ′ = λ j
9: while λ′ > 0 do

10: S j
set ⊆ Sset = set of all sites with remaining traffic

capacity ≥ δλ j

11: if S j
set 6= /0 then

12: i = site in S j
set that gives the lowest overall

midgress after assigning TC j
13: xi j += δ

14: else
15: Assign load δλ j using fractional first fit starting

from a random site
16: λ′ −= δ

17: mgnew = midgress of new assignment
18: if mgcurr−mgnew < ε then
19: break

content and the remaining 5 traffic classes serve software
downloads. The traffic classes exhibit a wide variation in load
(Gbps), arrival rate (requests/sec), content footprint (in unique
bytes), and number of objects. The majority of the load is for
media content at 47.3% followed by software downloads at
41.5% and web content at 11.2%. In terms of the unique bytes
that are cached in the metro area, the majority is again for
media content at 60.9%, followed by 25.6% for web content
and 13.5% for software downloads.

Footprint descriptors described in [66] are periodically
computed for all traffic classes on the production CDN. We
use these footprint descriptors to compute the MRCs and the
eviction age functions for the 25 traffic classes in Table 3, to
be used as inputs to our traffic provisioning algorithms.

Evaluation setup. To evaluate the traffic provisioning al-
gorithms, we simulate a small metro region with 10 clusters,
each containing 10 servers6. The capacity of the metro region
is set so that the average load is 70% of capacity to reflect
the load-to-capacity ratio in a typical CDN. We evaluate the
traffic provisioning algorithms at different cache sizes per
cluster of 1 TB, 5 TB, 10 TB, 20 TB, 40 TB and 50 TB. For
simplicity, we assume that every cluster in the metro area has
equal capacity and cache size. Every server within a cluster is
also assumed to have equal capacity and cache size.

OPT is solved using CPLEX as part of the GAMS modeling

6While a metro region in a large CDN typically has much larger server
deployments, we simulate a scaled-down version to keep our experiments
computationally tractable.

USENIX Association 2020 USENIX Annual Technical Conference 549

Traffic
class
id

Content
type

Load
(Gbps)

Arrival
rate
(req/s)

Unique
bytes
(TB)

Unique
objects
(million)

1 web 0.39 438.41 1.83 16.36
2 web 1.12 232.48 70.74 38.38
3 media 3.75 345.94 198.85 176.68
4 web 0.24 143.67 0.008 0.03
5 web 0.17 145.13 0.03 0.08
6 download 4.74 1338.91 28.16 19.55
7 web 0.30 851.73 6.21 70.23
8 web 0.58 1213.87 6.38 137.60
9 web 1.59 714.42 22.58 52.91
10 download 0.39 307.92 1.68 0.82
11 download 10.66 809.29 22.74 10.75
12 media 0.43 110.22 14.13 24.41
13 web 0.0013 136.32 0.04 3.58
14 media 7.54 93.01 30.55 2.90
15 media 7.22 89.28 30.14 2.86
16 media 6.04 75.14 30.38 2.89
17 media 0.37 139.23 12.41 26.59
18 web 2.12 935.76 83.42 93.54
19 media 0.35 134.87 24.48 25.12
20 download 1.36 276.63 3.12 2.07
21 media 0.08 9.94 7.31 6.43
22 media 0.90 214.53 43.48 77.90
23 media 0.44 48.28 28.53 26.83
24 media 0.38 78.09 35.25 55.06
25 download 6.99 1879.65 44.94 21.02

Table 3: Traffic class characteristics

language. We use a macOS machine with a 3 GHz Intel
Xeon processor with 10 cores and 128 GB RAM for all our
experiments. The GAMS program is set to run in parallel
mode using 20 threads with a relative optimality gap of 1e-9
and a maximum run time of 40,000 s. Given the complexity
of the optimization model, the GAMS program almost always
runs for 40,000 s. At that point, the solver has converged to a
solution that seldom changes and achieves a relative gap of
under 5% at smaller cluster cache sizes less than or equal to
10TB and a relative gap of under 10% at larger cache sizes. A
single run of baseline fit takes about 1 s and a single run
of local search takes about 120 s.

4.1 Metro-level traffic provisioning
We evaluate OPT, baseline fit, and local search by
computing the cache miss rate of the entire 10-cluster metro
area for different cache sizes. These three algorithms each
assign the set of 25 input traffic classes to the clusters in the
metro. In the case of baseline fit and local search, we
report the average cache miss rate of 100 runs, where each
run considers the traffic classes in a random order. The 95%
confidence intervals of the expected cache miss rates have a
margin of error of less than 0.4%.

From Figure 4 we can see that OPT gives a 18.37% re-
duction in midgress on average compared to the midgress-

unaware baseline fit algorithm. This is because OPT
takes into account the impact on midgress while assigning
traffic classes to clusters in the metro area. This significant
improvement in midgress makes the case for implementing
midgress-aware traffic provisioning algorithms in CDNs.

From Figure 4, we also see that local search performs
quite well and gives a 15.44% reduction in midgress on av-
erage compared to baseline fit. local search also per-
forms fairly well compared to OPT, with a modest 3.69%
increase in midgress compared to OPT on average.

0

10

20

30

40

50

60

0 100 200 300 400 500 600

Ca
ch

e
m

is
s r

at
e,

 %

Cache size, TB

OPT

local search

baseline fit

Figure 4: MRCs of OPT, local search and baseline fit.

4.1.1 How traffic provisioning impacts midgress

In Figure 5, we plot the cache miss rate of the 25 traffic classes
when they are provisioned using OPT versus the midgress-
unaware baseline fit, when the cumulative cache size of
clusters in the metro area is 100TB. In addition, we also plot
the average number of sites (across the 100 runs) that each
traffic class is assigned to in Figure 6. From these figures,
we see that OPT reduces the cache miss rate of 21 traffic
classes when compared to baseline fit. In the case of traf-
fic class 11, OPT results in almost 97% reduction in miss rate
when compared to baseline fit. On the other hand, OPT
increases the cache miss rate of four traffic classes, namely
4, 5, 13 and 19. By trading off the cache miss rates for these
four traffic classes, OPT is able to reduce the overall midgress.
But why does OPT choose this trade-off? There are three key
insights that midgress-aware traffic provisioning takes into
account to optimize midgress that baseline fit does not.

1) In OPT’s solution, traffic classes that have higher load,
higher footprint pressure and greater MRC gradients get to
occupy larger portions of the available cache space. A traffic
class has high footprint pressure if a large amount of unique
content bytes is requested in a short period of time. This is
true for traffic classes 11, 14, 15, 25 and 16 that account for
66.04% of the total load. OPT assigns traffic class 11 to two
clusters because its load is greater than the capacity of a single
cluster, resulting in that traffic class occupying 6 TB in one

550 2020 USENIX Annual Technical Conference USENIX Association

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ca
ch

e
m

is
s r

at
e,

 %

Traffic classes

OPT baseline fit

Figure 5: Average miss rate of each traffic class in a metro area of cache size 100 TB.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N
um

be
r o

f s
ite

s

Traffic classes

OPT baseline fit

Figure 6: Average number of sites each traffic class is assigned to in a metro area of cache size 100 TB.

cluster with a miss rate of 0.5% and 7 TB in another cluster
with a miss rate of nearly 0%. OPT also assigns an entire
cluster each to traffic classes 14, 15, 25 and 16.

2) OPT may split a traffic class and assigns it to multiple
clusters if it has a relatively flat MRC. This is true of traffic
class 1 which has a relatively flat MRC and is assigned to
two clusters. By reducing its footprint pressure in each of its
assigned clusters, traffic class 1 is able to cede cache space to
other traffic classes that are in more need.

3) In OPT’s solution, traffic classes that have lower foot-
print pressure occupy smaller portions of the available cache
space. This is true for traffic classes 4, 5 and 13. It also hap-
pens to be the case that these 3 traffic classes have very low
load among the traffic classes considered. Both these factors
render a higher cache miss rate relative to baseline fit
that is midgress unaware. Note that low load alone does not
indicate that it will occupy a smaller portion of the cache. For
instance, traffic class 24 has moderate load but it has high
footprint pressure and a greater MRC gradient, and ends up
occupying 4.2 TB in one cluster.

4.2 Cluster-level traffic provisioning
The goal of cluster-level load balancing is to assign traffic
classes to servers such that the midgress of the cluster is
minimized. In our evaluation, we take the output of metro-
level traffic provisioning from Section 4.1 that assigns traffic

classes to each cluster and treat them as the inputs to cluster-
level traffic provisioning. In this manner, we are able to un-
derstand the additional midgress reduction that is achievable
by performing optimization at the cluster level, given that the
metro level has already been optimized.

For cluster-level traffic provisioning, each traffic class de-
fined at the metro-level is typically split into multiple finer-
grained subclasses. The subclasses allow better allocation of
traffic classes within a cluster. Traffic class 14 has very high
load and hence was assigned to a cluster all by itself (Figure 6)
by OPT at the metro-level. We considered that cluster for our
evaluation of cluster-level traffic provisioning. Traffic class
14 consisted of 66 traffic subclasses that must be assigned to
the 10 servers within a cluster, each server with a 1 TB cache.

OPT reduced the midgress for traffic class 14 by 31.26%
after the metro-level optimization, when compared to the
midgress achieved by baseline fit. Further, after using
OPT for cluster-level provisioning, the midgress for traffic
class 14 reduced further by 14.26%. In aggregate, the over-
all reduction of the midgress due to both provisioning steps
of OPT is 41.07%, when compared to the baseline. Algo-
rithm local search provided nearly as much reduction as
OPT. For instance, local search provided a midgress reduc-
tion of 35.49%, compared to the baseline. However, local
search was much faster and completed within 2 minutes, as
opposed to the nearly 40,000 s (∼11 hours) taken by OPT.

USENIX Association 2020 USENIX Annual Technical Conference 551

4.3 Robustness to cache management policies
So far, we have developed traffic provisioning algorithms
that model an LRU cache and evaluated the midgress reduc-
tion resulting when the sites also use LRU. The past decades
have seen much academic research on numerous cache man-
agement algorithms that admit and evict objects using some
combination of recency of access, frequency of access and
object size to reduce cache miss rates (see Table 2 of [4]).
We show that midgress-aware traffic provisioning algorithms
proposed in this work, that model an LRU cache, achieve
significant midgress reduction even when a CDN does not
actually implement LRU at its sites.

We choose three typical algorithms from the literature for
our evaluation. The first is an LRU variant called second-
hit-LRU (or, SH-LRU) where the object is admitted to an
LRU cache on second hit. The second is segmented LRU
(SLRU) [40] that uses both recency and frequency for cache
management. Finally, we implement the Greed-Dual-Size-
Frequency (GDSF) [13] that uses all three of recency, fre-
quency and size. Our evaluation uses the same cluster-level
scenario as described in Section 4.2, where the goal is to
assign the 66 traffic subclasses of traffic class 14 across 10
servers of size 1 TB each. First, we solve OPT that models
LRU to get the optimal traffic class assignment across all
servers within the cluster. The midgress of OPT’s assignment
is then computed by simulating the different cache manage-
ment algorithms using the request traces of the subclasses. For
comparison, we use the midgress-unaware baseline fit for
traffic provisioning followed by a trace-based simulation of
the different cache management algorithms to provide a base-
line. When LRU cache management is used, OPT reduces
the midgress by 13.3% when compared to baseline fit.
In comparison, OPT reduces the midgress by 7.78%, 8.45%
and 7.76% for SH-LRU, SLRU and GDSF respectively. The
midgress reduction for the non-LRU algorithms is not as much
as that for LRU. However, the midgress reductions for other
algorithms are still quite robust and significant. The reason is
that even when other factors are used for cache management
decisions, most reasonable algorithms still use recency of ac-
cess in a very significant way, and recency is well-captured in
OPT. It is plausible that OPT can be reformulated to capture
other cache management policies besides LRU and such an
extension is a topic for future work.

5 Extending midgress-aware provisioning

We propose two extensions of midgress-aware traffic provi-
sioning that address constraints in production settings. The
first extension enforces a minimum number of sites that a
traffic class must be assigned to and the second extension
enforces a maximum cache miss rate per traffic class.

All results presented until now are for shared caches. While
partitioned caches are not commonly used in production set-

tings due to the overheads of dynamically resizing those par-
titions, there is increasing interest to implement and evaluate
partitioned caches [1,5,9,14,16,21,25,36,43,44,46,62,67,69].
We propose a third extension to show that our traffic provi-
sioning approach can reduce midgress in partitioned caches.

5.1 Minimum redundancy guarantee
Let M j be the minimum number of sites that traffic class j
should be assigned to. M j is an integer ∈ [1,M], where M
is the total number of sites. Let yi j be an indicator variable
that is set to 1 when xi j > 0 and 0 otherwise. Then, the load
assignment constraint in Section 2.2 is appended to include
the following minimum redundancy constraints.

yi j = dxi je ∀ j = 1 . . .N (9)
M

∑
i=1

yi j >= M j ∀ j = 1 . . .N (10)

yi j ∈ {0,1} (11)

Equations 9 and 10 ensure that traffic class j is assigned
to at least M j sites. We call the modified optimization model
OPT-M. The additional constraints are affine and they do not
increase the complexity of the optimization problem. Both
local search and baseline fit can also be modified to
incorporate the redundancy constraint by simply ensuring that
each traffic class j is assigned to at least M j sites in each
(re-)provisioning step.

Experimental evaluation. We measure the reduction in
midgress by OPT-M and the modified local search when
compared to the modified baseline fit. We use the same
evaluation parameters as Section 4.1 where the cache size
of each cluster in the metro area is 10 TB. We find that the
cache miss rates increase with increase in redundancy for
all three algorithms. We also find that the cache miss rate
of baseline fit with minimum redundancy = 1 (resp. 2)
is similar to the cache miss rate of local search and OPT-
M with minimum redundancy 2 (resp. 3). This shows that
midgress-aware traffic provisioning can provide the same
midgress as baseline fit with added redundancy.

5.2 Maximum cache miss rate guarantee
Let MR j be the maximum cache miss rate for traffic class j.
Then, the optimization model in Section 2.2 can be extended
to incorporate the maximum cache miss rate guarantee.

M

∑
i=1

xi jm j(ci j)≤MR j ∀ j = 1 . . .N (12)

Equation 12 states that the average miss rate of traffic class
j across all M sites should be at most MR j. We call the modi-
fied optimization model, OPT-MR. Equation 12 is a biconvex
constraint and doesn’t increase the complexity of the problem.

552 2020 USENIX Annual Technical Conference USENIX Association

We make two modifications to local search. First,
baseline fit in the first step does not always provide a fea-
sible solution when MR j < 100%. This is because baseline
fit is midgress unaware. Hence, we start with all traffic
classes being unassigned. Second, the re-provisioning step
assigns a traffic class to a site only when the miss rate guaran-
tees of all traffic classes assigned to that site are not violated.

Infeasible solutions. OPT-MR can be infeasible in cases
where certain traffic classes fail to meet the maximum cache
miss rate MR j guarantee. For example consider a cache size
of 10 TB. The lowest miss rate that traffic class 3 (Table 3)
can possibly achieve at 10 TB is 91%. Hence, any maximum
cache miss rate target less than 91% cannot be achieved.

Experimental evaluation. We choose traffic classes 13,
23 and 24 that have high miss rates in OPT and set their max-
imum cache miss rates to 70%. We evaluate the performance
of metro-level traffic provisioning under the same conditions
as in Section 4.1 where the cache size is 10 TB.

OPT-MR returns a feasible solution. The overall miss rate
of the metro area is 20.04%, a 3.24% increase in midgress
compared to OPT. In the process, three traffic classes ex-
perience a significant increase in their respective miss rates
relative to OPT. The miss rate of traffic class 2 increases from
50.12% to 65.85%, of traffic class 17 from 36.11% to 54.2%
and of traffic class 21 from 61.22% to 68.01%. This is be-
cause traffic classes 13 and 24 occupy more cache space with
OPT-MR than they do in OPT, so they meet their miss rate
guarantee, despite traffic class 13 having the lowest load and
low footprint pressure, and traffic class 24 having low load.

We run the modified local search 100 times with dif-
ferent random orderings of the input traffic classes. local
search returns a feasible solution 67% of the time indicat-
ing that its feasibility depends on the ordering of the traffic
class inputs. For feasible assignments, local search has an
average miss rate of 21.69%, about 8.23% more than that
of OPT-MR. baseline fit is footprint-unaware and cannot
guarantee cache miss rates.

5.3 Traffic provisioning in partitioned caches
In a partitioned cache, each traffic class is assigned to its
own separate cache partition and each partition performs evic-
tions independently. Production CDNs do not typically im-
plement partitioned caches due to the significant overheads
involved in implementing and dynamically maintaining the
partitions. However, we show that our optimization model for
midgress-aware traffic provisioning can be extended to work
with partitioned caches.

Modeling and implementing traffic provisioning for
partitioned caches. In partitioned caches, every traffic class
occupies a separate partition with its own LRU list, assuming
the LRU eviction policy. Thus, the eviction age of each traffic
class assigned to the same cache can be different. Therefore,
the optimization model for midgress-aware traffic provision-
ing for partitioned caches is the same as that of OPT (Section

2.2), minus the eviction age constraint. Hence, Equations 1-3
and 5-8 accurately model midgress minimization for parti-
tioned caches. We call this modified model OPT-part.

We implement a baseline midgress-unaware algorithm
called baseline fit-part for partitioned caches that is
based on consistent hashing. The algorithm takes as input
the set of N traffic classes and the set of M sites that are both
hashed to points on a unit circle. Each traffic class j is as-
signed to the nearest site i on the unit circle in the clockwise
direction. If the chosen site i does not have enough capacity to
host the entire load λ j, then a first fit algorithm is used, starting
from the chosen site i, and continuing to subsequent sites on
the circle in the clockwise direction, until all load is assigned.
After all traffic class assignments are made, in each site, we
determine the sizes of the partitions that host each traffic class.
To compute the partition sizes, we use a known gradient de-
scent algorithm [62] that minimizes the midgress of each site.
The total midgress achieved by baseline fit-part is then
the sum of the midgress across all sites.

0

10

20

30

40

50

60

0 100 200 300 400 500 600

Ca
ch

e
m

is
s

ra
te

, %

Cache size, TB

OPT-share
baseline fit-share
OPT-part
baseline fit-part

OPT
baseline fit
OPT – part
baseline fit – part

Figure 7: MRC of OPT and baseline fit on shared and parti-
tioned caches.

Experimental evaluation. We evaluate baseline
fit-part and OPT-part at the metro-level using production
traces described in Section 4 and at different cache sizes per
cluster of 1 TB, 5 TB, 10 TB, 20 TB, 40 TB and 50 TB. We
report the average cache miss rate of 100 runs. The 95%
confidence intervals of the expected cache miss rates have a
margin of error of less than 0.4%.

As shown in Figure 7 we find that OPT-part reduces
midgress when compared to baseline fit-part by more
than 14%, on average across the different cache sizes. Thus
midgress-aware traffic provisioning can significantly reduce
the midgress even for partitioned caches. As comparison, in
Figure 7, we also plot OPT and baseline fit that we de-
scribed for shared caches in Sections 2 and 3. Interestingly,
we find that the cache miss rate of OPT-part is only 0.49%
less than that of OPT, on average across the different cache
sizes. Hence, while OPT-part has the lowest cache miss rate,

USENIX Association 2020 USENIX Annual Technical Conference 553

OPT has nearly the same miss rate without the additional
overhead of cache partitioning.

5.3.1 Implementing cache partitioning for traffic provi-
sioning in production settings

In the previous section, we have seen that cache partitioning
can further reduce the midgress of a metro area since each
traffic class occupies a separate partition and traffic classes
assigned to the same site could have different eviction ages.
But it is not implemented in practice for traffic provisioning
due to the following reasons.

1) In large CDNs, many different traffic classes must share
a cache. Further, the mix of traffic classes sharing a cache
and their respective loads change frequently over time at the
whim of the load balancer. To obtain the benefits of cache
partitioning, the partitions need to be constantly resized by
shrinking cache space for certain traffic classes and expanding
the cache space for others. Such resizing is resource inten-
sive. Further, constantly resizing dynamic partitions may not
lead to lower midgress, especially during transitions between
cache sizes. While partitioning the cache statically is easier
to implement, static partitions do not adjust to changes in the
traffic mix, leading to sub-optimal performance. On the other
hand, an unpartitioned shared cache dynamically adjusts the
cache space occupied by different traffic classes based on
the load and the traffic characteristics, without the need for
complex (re)partitioning operations.

2) From the previous section, we see that traffic provision-
ing in a shared unpartitioned cache provides nearly the same
midgress as a partitioned cache. Thus, there is little incen-
tive to redesign the traffic provisioning system to work with
partitioned caches and incurring the additional software com-
plexity and resource overhead.

For the reasons outlined above, the shared unpartitioned
cache studied in our work is the implementation of choice for
many major CDNs, including Akamai.

6 Related work

Traffic provisioning in CDNs has been studied in the context
of load balancing. However, the load balancing algorithms
focus on ensuring that servers are not overloaded and do not
explicitly minimize midgress. Likewise, minimizing cache
misses through better cache management policies has a rich
literature. However, we view cache management as comple-
mentary to midgress-aware traffic provisioning. We review
relevant existing literature in these areas.

Load balancing. Request redirection schemes at the net-
work layer, based on DNS [8,32], and at the application layer,
based on URL rewriting or HTTP redirection [48], have been
proposed to load balance traffic across multiple servers. Dy-
namic load balancing algorithms [10, 11, 71] continuously
measure the load on different servers and load balance end-

user requests to improve performance. Consistent-hashing
and randomized load balancing algorithms [41, 42, 54, 55]
have also been proposed to load balance end-user requests in
content delivery systems. Extensions to traditional load bal-
ancing, that minimize the energy consumption of CDNs [50]
have also been proposed in the literature. Much of the work
above are in the context of routing user requests in real-time
to servers. But, they can be adapted to our context of perform-
ing (offline) traffic provisioning, a step that precedes request
routing in a production CDN. However, there is no prior work
on explicitly minimizing midgress.

Cache management. There has been a significant amount
of research on cache management policies to minimize cache
miss rates [2, 3, 6, 17–19, 22, 26–31, 33, 37, 38, 45, 49, 52, 57,
58, 60, 64, 68, 70]. Some proposed caching policies include
Adapt-Size [4], Cliffhanger [15], SLRU [40], TLRU [23],
S4LRU [34], CFLRU [59], ARC [53], LRU-S [65], LRU-
K [56], and GDS [7]. Dynamically partitioning the cache to
reduce miss rates has also been explored [1,5,9,14,16,21,25,
36, 43, 44, 46, 62, 67, 69]. However, production CDNs do not
employ dynamically-partitioned caches since it introduces
significant performance and operational overheads. We view
work on cache management as a complementary technique to
traffic provisioning, both with the goal of midgress reduction.

Recent work on footprint descriptors [66] is focused on
efficient techniques for evaluating the miss rates of traffic
mixes. We use footprint descriptors to quickly compute the
midgress of a traffic class assignment, as well as to efficiently
compute the MRC and eviction age function of traffic classes.
However, the work on footprint descriptors does not minimize
midgress.

7 Conclusion

We propose midgress-aware traffic provisioning that explic-
itly minimizes the midgress traffic of a CDN, while ensuring
that no server or cluster is overloaded. Using extensive traces
for 25 traffic classes from Akamai’s CDN, we show that the
midgress of a metro can be reduced by 18.37% when com-
pared to a midgress-unaware baseline. We propose a midgress-
aware heuristic, local search, that provisions traffic classes
to achieve a midgress reduction that is within 1.1% of the op-
timum, and is very fast and well suited for production settings.
We also show that using our traffic provisioning algorithms at
the cluster level results in significant reductions in midgress.
Given that a large CDN can have midgress of over 10 Tbps,
even a small reduction in midgress can result in millions of
dollars of savings per year. Our work provides a strong case
for implementing midgress-aware provisioning in CDNs.

8 Acknowledgments

We thank our reviewers and our shepherd Kiran Kumar Mu-
niswamy Reddy for their great feedback. This research was
supported in part by NSF grant CNS-1763617.

554 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan
Sundararaman, and Ming Zhao. Cloudcache: On-
demand flash cache management for cloud computing.
In FAST, pages 355–369, 2016.

[2] Daniel S. Berger, Philipp Gland, Sahil Singla, and Florin
Ciucu. Exact analysis of TTL cache networks. Perform.
Eval., 79:2 – 23, 2014. Special Issue: Performance 2014.

[3] Daniel S Berger, Sebastian Henningsen, Florin Ciucu,
and Jens B Schmitt. Maximizing cache hit ratios by
variance reduction. ACM SIGMETRICS Performance
Evaluation Review, 43(2):57–59, 2015.

[4] Daniel S Berger, Ramesh K Sitaraman, and Mor
Harchol-Balter. Adaptsize: Orchestrating the hot ob-
ject memory cache in a content delivery network. In
NSDI, pages 483–498, 2017.

[5] Sem Borst, Varun Gupta, and Anwar Walid. Distributed
caching algorithms for content distribution networks. In
INFOCOM, 2010 Proceedings IEEE, pages 1–9. Cite-
seer, 2010.

[6] PJ Burville and JFC Kingman. On a model for storage
and search. Journal of Applied Probability, pages 697–
701, 1973.

[7] Pei Cao and Sandy Irani. Cost-aware WWW proxy
caching algorithms. In USENIX symposium on Internet
technologies and systems, volume 12, pages 193–206,
1997.

[8] Valeria Cardellini, Michele Colajanni, and Philip S. Yu.
Request redirection algorithms for distributed web sys-
tems. IEEE transactions on parallel and distributed
systems, 14(4):355–368, 2003.

[9] Damiano Carra and Pietro Michiardi. Memory partition-
ing and management in memcached. IEEE Transactions
on Services Computing, 2016.

[10] Robert L Carter and Mark E Crovella. Server selec-
tion using dynamic path characterization in wide-area
networks. In INFOCOM’97. Sixteenth Annual Joint
Conference of the IEEE Computer and Communications
Societies. Driving the Information Revolution., Proceed-
ings IEEE, volume 3, pages 1014–1021. IEEE, 1997.

[11] Chung-Min Chen, Yibei Ling, Marcus Pang, Wai Chen,
Shengwei Cai, Yoshihisa Suwa, and Onur Altintas. Scal-
able request routing with next-neighbor load sharing in
multi-server environments. In Advanced Information
Networking and Applications, 2005. AINA 2005. 19th
International Conference on, volume 1, pages 441–446.
IEEE, 2005.

[12] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres.
End-user mapping: Next generation request routing for
content delivery. In ACM SIGCOMM Computer Com-
munication Review, volume 45, pages 167–181. ACM,
2015.

[13] Ludmila Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching policy.
Hewlett-Packard Laboratories, 1998.

[14] Weibo Chu, Mostafa Dehghan, John CS Lui, Don
Towsley, and Zhi-Li Zhang. Joint cache resource alloca-
tion and request routing for in-network caching services.
Computer Networks, 131:1–14, 2018.

[15] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs in
web memory caches. In USENIX NSDI, pages 379–392,
2016.

[16] Asaf Cidon, Daniel Rushton, Stephen M Rumble, and
Ryan Stutsman. Memshare: a dynamic multi-tenant
key-value cache. In Usenix ATC, 2017.

[17] Edward G. Coffman and Predrag Jelenković. Perfor-
mance of the move-to-front algorithm with Markov-
modulated request sequences. Operations Research
Letters, 25:109–118, 1999.

[18] Edward Grady Coffman and Peter J Denning. Operating
systems theory. Prentice-Hall, 1973.

[19] Asit Dan and Don Towsley. An approximate analysis
of the LRU and FIFO buffer replacement schemes. In
ACM SIGMETRICS, pages 143–152, 1990.

[20] Mostafa Dehghan, Weibo Chu, Philippe Nain, Don
Towsley, and Zhi-Li Zhang. Sharing cache re-
sources among content providers: A utility-based ap-
proach. IEEE/ACM Transactions on Networking (TON),
27(2):477–490, 2019.

[21] Mostafa Dehghan, Laurent Massoulie, Don Towsley,
Daniel Menasche, and Yong Chiang Tay. A utility
optimization approach to network cache design. In
Computer Communications, IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on, pages
1–9. IEEE, 2016.

[22] Robert P Dobrow and James Allen Fill. The move-to-
front rule for self-organizing lists with Markov depen-
dent requests. In Discrete Probability and Algorithms,
pages 57–80. Springer, 1995.

[23] Gil Einziger and Roy Friedman. Tinylfu: A highly effi-
cient cache admission policy. In IEE Euromicro PDP,
pages 146–153, 2014.

USENIX Association 2020 USENIX Annual Technical Conference 555

[24] Ronald Fagin. Asymptotic miss ratios over independent
references. Journal of Computer and System Sciences,
14(2):222–250, 1977.

[25] Michal Feldman and John Chuang. Service differenti-
ation in web caching and content distribution. In Pro-
ceedings of the IASTED International Conference on
Communications and Computer Networks, 2002.

[26] James Allen Fill and Lars Holst. On the distribution of
search cost for the move-to-front rule. Random Struc-
tures & Algorithms, 8:179–186, 1996.

[27] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier.
Birthday paradox, coupon collectors, caching algorithms
and self-organizing search. Discrete Applied Mathemat-
ics, 39:207–229, 1992.

[28] Christine Fricker, Philippe Robert, and James Roberts.
A versatile and accurate approximation for LRU cache
performance. In ITC, page 8, 2012.

[29] Massimo Gallo, Bruno Kauffmann, Luca Muscariello,
Alain Simonian, and Christian Tanguy. Performance
evaluation of the random replacement policy for net-
works of caches. In ACM SIGMETRICS/ PERFOR-
MANCE, pages 395–396, 2012.

[30] Nicolas Gast and Benny Van Houdt. Transient and
steady-state regime of a family of list-based cache re-
placement algorithms. In ACM SIGMETRICS, pages
123–136, 2015.

[31] Erol Gelenbe. A unified approach to the evaluation of a
class of replacement algorithms. IEEE Transactions on
Computers, 100:611–618, 1973.

[32] Michel Goemans. Load balancing in content deliverynet-
works. MA Annual Program Year Workshop:Network
Management and Design, April 2003.

[33] WJ Hendricks. The stationary distribution of an inter-
esting Markov chain. Journal of Applied Probability,
pages 231–233, 1972.

[34] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An analysis of
Facebook photo caching. In ACM SOSP, pages 167–181,
2013.

[35] Cisco Visual Networking Index. The zettabyte era:
Trends and analysis. June 2017.

[36] Stratis Ioannidis and Edmund Yeh. Jointly optimal rout-
ing and caching for arbitrary network topologies. IEEE
Journal on Selected Areas in Communications, 2018.

[37] Predrag R Jelenković. Asymptotic approximation of the
move-to-front search cost distribution and least-recently
used caching fault probabilities. The Annals of Applied
Probability, 9:430–464, 1999.

[38] Predrag R Jelenković and Ana Radovanović. Least-
recently-used caching with dependent requests. Theo-
retical computer science, 326:293–327, 2004.

[39] Poul-Henning Kamp. Varnish LRU architecture, June
2007. Available at https://www.varnish-cache.
org/trac/wiki/ArchitectureLRU, accessed
09/12/16.

[40] Ramakrishna Karedla, J Spencer Love, and Bradley G
Wherry. Caching strategies to improve disk system
performance. Computer, (3):38–46, 1994.

[41] David Karger, Eric Lehman, Tom Leighton, Rina Pani-
grahy, Matthew Levine, and Daniel Lewin. Consistent
hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In Pro-
ceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 654–663. ACM, 1997.

[42] David Karger, Alex Sherman, Andy Berkheimer, Bill
Bogstad, Rizwan Dhanidina, Ken Iwamoto, Brian Kim,
Luke Matkins, and Yoav Yerushalmi. Web caching with
consistent hashing. Computer Networks, 31(11):1203–
1213, 1999.

[43] Terence Kelly, Yee Man Chan, Sugih Jamin, and Jeffrey
MacKie-Mason. Biased replacement policies for web
caches: Differential quality-of-service and aggregate
user value. 1999.

[44] Seongbeom Kim, Dhruba Chandra, and Yan Solihin.
Fair cache sharing and partitioning in a chip multipro-
cessor architecture. In Proceedings of the 13th Interna-
tional Conference on Parallel Architectures and Com-
pilation Techniques, pages 111–122. IEEE Computer
Society, 2004.

[45] W. Frank King. Analysis of demand paging algorithms.
In IFIP Congress (1), pages 485–490, 1971.

[46] Bong-Jun Ko, Kang-Won Lee, Khalil Amiri, and
Seraphin Calo. Scalable service differentiation in a
shared storage cache. In Distributed Computing Sys-
tems, 2003. Proceedings. 23rd International Conference
on, pages 184–193. IEEE, 2003.

[47] Bruce M Maggs and Ramesh K Sitaraman. Algorithmic
nuggets in content delivery. ACM SIGCOMM Computer
Communication Review, 45(3):52–66, 2015.

[48] Sabato Manfredi, Francesco Oliviero, and Simon Pietro
Romano. A distributed control law for load balancing

556 2020 USENIX Annual Technical Conference USENIX Association

https://www.varnish-cache.org/trac/wiki/ArchitectureLRU
https://www.varnish-cache.org/trac/wiki/ArchitectureLRU

in content delivery networks. IEEE/ACM Transactions
on Networking (TON), 21(1):55–68, 2013.

[49] Valentina Martina, Michele Garetto, and Emilio
Leonardi. A unified approach to the performance analy-
sis of caching systems. In IEEE INFOCOM, 2014.

[50] Vimal Mathew, Ramesh K Sitaraman, and Prashant
Shenoy. Energy-aware load balancing in content deliv-
ery networks. In INFOCOM, 2012 Proceedings IEEE,
pages 954–962. IEEE, 2012.

[51] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and
Irving L. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[52] John McCabe. On serial files with relocatable records.
Operations Research, 13:609–618, 1965.

[53] Nimrod Megiddo and Dharmendra S Modha. ARC:
A self-tuning, low overhead replacement cache. In
USENIX FAST, volume 3, pages 115–130, 2003.

[54] Vahab Mirrokni, Mikkel Thorup, and Morteza Zadi-
moghaddam. Consistent hashing with bounded loads.
arXiv preprint arXiv:1608.01350, 2016.

[55] Michael Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1094–1104, 2001.

[56] Elizabeth J O’Neil, Patrick E O’Neil, and Gerhard
Weikum. The LRU-K page replacement algorithm for
database disk buffering. ACM SIGMOD, 22(2):297–306,
1993.

[57] Elizabeth J O’Neil, Patrick E O’Neil, and Gerhard
Weikum. An optimality proof of the LRU-K page re-
placement algorithm. JACM, 46:92–112, 1999.

[58] Antonis Panagakis, Athanasios Vaios, and Ioannis
Stavrakakis. Approximate analysis of LRU in the case
of short term correlations. Computer Networks, 52:1142–
1152, 2008.

[59] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-
soo Kim, and Joonwon Lee. CFLRU: a replacement
algorithm for flash memory. In ACM/IEEE CASES,
pages 234–241, 2006.

[60] Konstantinos Psounis, An Zhu, Balaji Prabhakar, and Ra-
jeev Motwani. Modeling correlations in web traces and
implications for designing replacement policies. Com-
puter Networks, 45:379–398, 2004.

[61] Guocong Quan, Jian Tan, Atilla Eryilmaz, and Ness
Shroff. A new flexible multi-flow lru cache manage-
ment paradigm for minimizing misses. Proceedings of

the ACM on Measurement and Analysis of Computing
Systems, 3(2):39, 2019.

[62] Moinuddin K Qureshi and Yale N Patt. Utility-based
cache partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In
Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on, pages 423–432.
IEEE, 2006.

[63] Will Reese. Nginx: the high-performance web server
and reverse proxy. Linux Journal, 2008(173):2, 2008.

[64] Eliane R Rodrigues. The performance of the move-to-
front scheme under some particular forms of Markov
requests. Journal of applied probability, pages 1089–
1102, 1995.

[65] David Starobinski and David Tse. Probabilistic methods
for web caching. Perform. Eval., 46:125–137, 2001.

[66] Aditya Sundarrajan, Mingdong Feng, Mangesh Kas-
bekar, and Ramesh Sitaraman. Footprint descriptors:
Theory and practice of cache provisioning in a global
cdn. In Proceedings of the 13th International Confer-
ence on emerging Networking EXperiments and Tech-
nologies, pages 55–67. ACM, 2017.

[67] Dominique Thiébaut, Harold S. Stone, and Joel L Wolf.
Improving disk cache hit-ratios through cache partition-
ing. IEEE Transactions on Computers, 41(6):665–676,
1992.

[68] Naoki Tsukada, Ryo Hirade, and Naoto Miyoshi. Fluid
limit analysis of FIFO and RR caching for independent
reference model. Perform. Eval., 69:403–412, Septem-
ber 2012.

[69] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. Col-
oris: a dynamic cache partitioning system using page
coloring. In Parallel Architecture and Compilation Tech-
niques (PACT), 2014 23rd International Conference on,
pages 381–392. IEEE, 2014.

[70] Neal E Young. Online paging against adversarially
biased random inputs. Journal of Algorithms, 37:218–
235, 2000.

[71] Zeng Zeng and Bharadwaj Veeravalli. Design and per-
formance evaluation of queue-and-rate-adjustment dy-
namic load balancing policies for distributed networks.
IEEE Transactions on Computers, 55(11):1410–1422,
2006.

USENIX Association 2020 USENIX Annual Technical Conference 557

GraphWalker: An I/O-Efficient and Resource-Friendly Graph Analytic System
for Fast and Scalable Random Walks

Rui Wang1, Yongkun Li1, Hong Xie2, Yinlong Xu1, John C.S. Lui3
1University of Science and Technology of China

2Chongqing University 3The Chinese University of Hong Kong

Abstract

Traditional graph systems mainly use the iteration-based
model which iteratively loads graph blocks into memory for
analysis so as to reduce random I/Os. However, this iteration-
based model limits the efficiency and scalability of running
random walk, which is a fundamental technique to analyze
large graphs. In this paper, we propose GraphWalker, an
I/O-efficient graph system for random walks by deploying
a novel state-aware I/O model with asynchronous walk up-
dating. GraphWalker is efficient to handle very large disk-
resident graphs consisting of hundreds of billions of edges
with only a single commodity machine, and it is also scalable
to run tens of billions of random walks with thousands of
steps long. Experiments on our prototype system show that
GraphWalker can achieve more than an order of magnitude
speedup when running a large amount of long random walks
when compared with DrunkardMob, which is tailored for ran-
dom walk based on the classical system GraphChi, as well as
two state-of-the-art single-machine graph systems, Graphene
and GraFSoft. Furthermore, comparing with the most recent
distributed system KnightKing, which optimizes for random
walks and runs on cluster machines, GraphWalker achieves
comparable performance with only a single machine, thereby
making it a more cost-effective alternative.

1 Introduction
To improve the performance of analyzing large graphs on
a single-machine, many out-of-core graph processing sys-
tems are proposed [6, 10, 11, 20, 24, 29, 31, 37, 42, 43, 49].
One major effort of these systems is to reduce random disk
I/Os. Generally, when a graph is too large to fit into the
memory, these systems partition the entire graph into many
subgraphs, and store each subgraph as a block on disk, e.g.,
shard in GraphChi [24]. To carry graph analysis, they adopt
an iteration-based model. In each iteration, blocks are se-
quentially loaded into memory, then analysis related to the
loaded subgraph is performed. This way, it turns massive
random I/Os into a series of sequential I/Os, and guarantees
synchronized analysis over all blocks in each iteration.

Random walks have been proven to be efficient to analyze
large graphs [7,12,15,19,23,26,27,36,38]. For example, Per-
sonalized PageRank (PPR) [12, 23] starts thousands of walks
from the source vertex to compute visit frequencies in order to

approximate PageRank values. SimRank (SR) [19] computes
the similarity for a vertex pair by first starting many random
walks from each of the vertex pair, and then computing the
expected meeting time. Random walk domination (RWD)
[27] starts walks from all vertices to measure the influence
diffusion over the whole graph. To compute PPR for all
vertices, and all-pair similarity, it is also required to start
random walks from every vertex, which results in massive
concurrent walks.

We observe that current graph systems with the iteration-
based model cannot efficiently support random walks. The
major limitations are three folds. First, due to the high
randomness nature, many walks are unevenly scattered at dif-
ferent parts of the graph, so some subgraphs may contain only
few walks. However, the iteration-based model is unaware
of these walk states, and just sequentially loads all needed
subgraphs into memory for analysis, so it results in very low
I/O utilization. Second, as the iteration-based model ensures
a synchronized analysis, all walks move exactly one step in
each iteration. As a result, the walk updating efficiency is
also limited and thus further exacerbates the I/O efficiency.
This is true especially for applications demanding long walks.
Lastly, due to the randomness of walks, the number of walks
at each vertex varies dynamically, so existing graph systems
usually use massive dynamic arrays to record the walks cur-
rently traveling through each edge or each vertex in the graph.
However, this indexing design requires large memory space
and thus limits the scalability of handling very large graphs.

Various design efforts are made in recent years to im-
prove the I/O efficiency of the iteration-based model, e.g.,
DynamicShards [43] and Graphene [29] dynamically adjust
the layout of graph blocks to reduce the loading of useless
data in each iteration. CLIP [6] proposes the re-entry scheme
and Lumos [42] proposes the cross-iteration value propaga-
tion technique, and both of them aim to make full use of
the loaded blocks to avoid loading the corresponding graph
portions in future iterations. These systems greatly improve
the performance, but they do not take into account the ran-
dom walk features. To efficiently support parallel random
walks, DrunkardMob [23]proposes several optimizations to
reduce the memory usage of walk indexes so as to support
a large amount of random walks. However, its scalability
is still limited, e.g., it costs 2.3 hours to run one billion
random walks with ten-step long on a medium-scale graph

USENIX Association 2020 USENIX Annual Technical Conference 559

YahooWeb [5], and it is even unable to run random walks on
very large graphs like CrawlWeb [3] due to its high memory
consumption. KnightKing [46] is the most recent distributed
graph system which is also optimized for random walks.
It provides a unified framework to support various random
walks, and mainly focuses on optimizing the walking process
without addressing disk I/Os.

To address the I/O efficiency problem so as to efficiently
support fast and scalable random walks, we develop
GraphWalker, which is an I/O-efficient and resource-
friendly graph system. GraphWalker mainly focuses on
improving the I/O efficiency by developing a state-aware
I/O model with asynchronous walk updating. It also utilizes
a lightweight block-centric walk management scheme
to improve memory efficiency. In summary, our main
contributions are as follows.

• We develop a novel state-aware I/O model, which lever-
ages the state of each random walk to preferentially load
the graph block with the most walks from disk into
memory, so as to improve the I/O utilization. We also
propose a walk-conscious caching scheme to improve
cache efficiency.

• We adopt an asynchronous walk updating scheme based
on the re-entry method [6], which allows each walk to
move as many steps as possible so as to fully utilize the
loaded subgraph and greatly accelerate the progress of
random walks. To address the straggler issues caused
by asynchronous update, we also employ a probabilistic
approach to balance the progress of each walk.

• We propose a lightweight block-centric indexing scheme
to manage walk states and adopt a fixed-length walk
buffering strategy to reduce the memory cost for record-
ing walk states. We also develop a disk-based walk
management scheme and use asynchronous batched I/Os
to write walk states back to disk so as to support running
massive random walks in parallel on huge graphs.

• We implement a prototype and conduct extensive ex-
periments to demonstrate its efficiency. Results show
that GraphWalker can achieve more than an order of
magnitude speedup compared with the random-walk-
specific system DrunkardMob [23], as well as two state-
of-the-art single-machine graph systems, Graphene [29]
and GraFSoft [20]. Furthermore, GraphWalker is more
resource friendly as its performance is even comparable
with the state-of-the-art distributed random walk system
KnightKing [46] running on a cluster of machines.

2 Background and Motivation
We first introduce the storage and computation process of the
iteration-based model, then analyze its limitations in support-
ing random walks.

2.1 Iteration-based Graph Computation
For simplicity, we take GraphChi [24], the pioneering single-
machine iteration-based graph system, as an example to il-
lustrate its key idea. We like to point out that this iteration-
based model is widely used in many graph systems like
[10,11,20,29,37,42,43,49]. GraphChi splits all vertices into
disjoint intervals and associates each interval with a shard,
which stores all the edges whose destination vertices lie in
this interval. Edges in each shard are sorted according to their
source vertices. For example, for the graph in Figure 1(a), its
data organization in shards is illustrated in Figure 1(b).

To perform analysis, GraphChi loads all subgraphs iter-
atively by using the parallel sliding window (PSW), which
is illustrated in Figure 1(c). In each iteration, it loads the
subgraphs in a round-robin order and guarantees synchro-
nization between all computation tasks over the whole graph.
Specifically, at each time slot, GraphChi loads one subgraph
corresponding to one interval into memory for analysis. It
first loads the in-edges from its corresponding shard, then
loads the out-edges from other shards. As edges are sorted
by source vertices in each shard, at most P sequential disk
reads are needed to load the subgraph corresponding to one
interval if there are P shards. Then GraphChi traverses the
vertices of the loaded subgraph and conduct computation.
This way, GraphChi transfers random accesses to a series of
sequential accesses and greatly improves the performance of
disk-resident graph processing.

2.2 Limitations in Supporting Random Walks
A random walk proceeds by starting at a source vertex, then
repeats the process of randomly selecting a neighbor to visit.
Many applications often need to simultaneously run massive
random walks [12, 27, 44, 47]. When supporting massive
parallel random walks, graph systems with the iteration-based
model suffer from several limitations, e.g., low I/O utilization
and low walk updating rate, as well as high memory cost
for managing walks. In the following, we analyze these
limitations in details.
Limitation 1: Low I/O utilization. First of all, the iteration-
based model leads to low I/O utilization for random walks,
which is defined as the number of edges used for updating
walks divided by the number of edges loaded in one I/O, i.e.,
a subgraph loading. The main reason is that walks may be
unevenly scattered across the entire graph after a few steps
even if they started from the same source vertex. As a result,
even if there are only few walks in some blocks, they are still
required to be loaded into memory, so it brings extremely low
I/O utilization. Some recent works like DynamicShards [43]
and Graphene [29] adopt an on-demand I/O strategy to dy-
namically adjust graph block layout and skip loading blocks
which do not contain any walks so as to reduce the loading of
useless edges, but the low I/O utilization problem is still not
fully addressed. As long as there is one walk in a block, then
this block still has to be loaded into memory for computation.

560 2020 USENIX Annual Technical Conference USENIX Association

0

1

3

4

2

7

5

6

8

9

Shard 2
(2, 6)
(3, 6)
(4, 5)
(4, 6)
(5, 6)
(8, 6)

0 1 2 3 4 5 6 7 8 9
Vertices

Interval 1 Interval 2 Interval 3

Shard 1
(0, 1)
(0, 2)
(0, 3)
(0, 4)
(1, 2)
(3, 4)
(6, 4)

Shard 3
(2, 7)
(5, 8)
(6, 7)
(7, 9)
(8, 7)
(9, 8)

Shard 1 Shard 2 Shard 3
(0, 1) (2, 6) (2, 7)
(0, 2) (3, 6) (5, 8)
(0, 3) (4, 5) (6, 7)
(0, 4) (4, 6) (7, 9)
(1, 2) (5, 6) (8, 7)
(3, 4) (8, 6) (9, 8)
(6, 4)

Subgraph of Interval 1

Shard 1 Shard 2 Shard 3
(0, 1) (2, 6) (2, 7)
(0, 2) (3, 6) (5, 8)
(0, 3) (4, 5) (6, 7)
(0, 4) (4, 6) (7, 9)
(1, 2) (5, 6) (8, 7)
(3, 4) (8, 6) (9, 8)
(6, 4)

Shard 1 Shard 2 Shard 3
(0, 1) (2, 6) (2, 7)
(0, 2) (3, 6) (5, 8)
(0, 3) (4, 5) (6, 7)
(0, 4) (4, 6) (7, 9)
(1, 2) (5, 6) (8, 7)
(3, 4) (8, 6) (9, 8)
(6, 4)

Subgraph of Interval 2 Subgraph of Interval 3

(a) Example graph (b) Data organization in shards (c) Graph loading with parallel sliding window
Figure 1: Storage and I/O model in GraphChi

We also run experiments to demonstrate the skewed walk
distribution and low I/O utilization. We use DrunkardMob to
run 104, 106 and 108 walks of length ten on the Friendster
graph consisting of 68.3 million vertices, and consider start-
ing random walks from a single source (SSRW) or multiple
random sources (MSRW). Please refer to §4.1 for detailed
experiment setting. Figure 2(a) shows the average I/O uti-
lization, which is 3.1 ⇥ 10�6, 3.2 ⇥ 10�4 and 0.032 for
SSRW with 104, 106 and 108 walks, respectively, and the
results are similar for MSRW. We point out that the I/O
utilization is very low, especially for the case of small number
of walks. Figure 2(b) further shows the distribution of walks
over blocks after four iterations when running 106 walks
started from a single source, which demonstrates heavily
skewed distribution. We also run the same experiments with
Graphene, the average I/O utilization is 6.1⇥10�3, 3.1⇥10�3

and 0.032 for MSRW when running 104, 106 and 108 walks,
respectively. We find that Graphene can greatly improve the
I/O utilization when the number of walks is small, but the I/O
efficiency is still limited when running massive walks.

In our GraphWalker, we propose a state-aware I/O model,
which loads graph blocks by considering the states of walks.
Precisely, it always preferentially chooses to load the block
with the maximum number of walks so as to make more walks
get updated by using an I/O. Our experiment results show that
GraphWalker brings 2⇥ to 4⇥ I/O utilization (see §4.2.3).
Limitation 2: Low walk updating rate. The iteration-based
model also leads to low walk updating rate, which is defined
as the sum of walked steps of all walks in the loaded subgraph
divided by the total steps needed to walk. This is because
with the iteration-based model, each walk can only move one
step in each iteration in a synchronized pace, which severely
wastes the data in memory as many walks can still make more
moves over the loaded subgraph. To demonstrate, we run
106 random walks started from a single vertex by using the

104 106 108

#Walks

10-7

10-5

0.1%

10%

A
vg

.I
/O

 u
til

iz
a
tio

n

SSRW

MSRW

0 20 40

Interval ID

102

103

104

105

#
W

a
lk

s

(a) I/O utilization (b) Distribution of walks
Figure 2: I/O utilization under different walk settings and the
distribution of number of walks over blocks (intervals).

same setting as above. Figure 3(a) shows the walk updating
rate. We find that all walks together move only 1K steps on
average in one I/O, except for the first one, but we have total
109 steps to walk, so the updating rate is as low as 10�6.
We also count the fraction of walks that still remain in the
first block in each iteration as shown in Figure 3(b). We find
that on average, 75.3% walks still remain in the first block,
and they could move more steps in the current iteration, so it
results in the low walk updating rate. Recently, CLIP [6] pro-
poses a re-entry method and Lumos [42] proposed the cross-
iteration value propagation technique to reuse the loaded data
to improve the I/O and computing efficiency, but it also brings
extra cost as it accesses the whole subgraph multiple times.

In GraphWalker, we propose an asynchronous walk up-
dating scheme based on the re-entry technique to allow walks
to move as many steps as possible within the currently
loaded subgraph without extra subgraph accesses.With our
asynchronous walk updating scheme, GraphWalker greatly
increases the walk updating rate and reduces the completion
time of all walks. We also develop a probabilistic approach
to balance walk progress so as to address the straggler issues.
Limitation 3: High memory cost for managing walk data.
Since the number of walks at each vertex is dynamic and
unpredictable, walks are usually stored with massive dynamic
arrays, e.g., GraphChi associates each edge with a dynamic
array to store the walks currently traveling through the edge.
This design incurs high memory cost, e.g., it needs at least
26.4 GB space to store only the walk array indexes, not
including the walk states information, for a medium scale
graph like YahooWeb [5], which has 1.4 billion vertices and
6.6 billion edges.Some systems use a vertex-centric way to
manage walks [6,10,29], but it also incurs high memory cost,
e.g., 5.6 GB to store the walk array indexes for YahooWeb.

DrunkardMob encodes the states of a walk into a 32-bit or
64-bit representation and puts walks of adjacent 128 vertices

0 100 200 300 400

I/O number

0

0.05

0.1

W
a
lk

 u
p
d
a
tin

g
 r

a
te

1 2 3 4 5 6 7 8 9 10

Iteration number

0

20%

40%

60%

80%

100%

%
w

a
lk

s

(a) Walk updating rate (b) Walks in the 1st interval
Figure 3: Walk updating rate and the fraction of walks that
still remain in the first block in each iteration.

USENIX Association 2020 USENIX Annual Technical Conference 561

into the same walk buffer to reduce the total size of walk
indexes. It reduces the size of walk array indexes to 1/128
of that of the vertex-centric management, e.g., only 44.8 MB
for YahooWeb. However, each walk buffer in DrunkardMob
is also managed with a dynamic array, so it still suffers from
the scalability problem. First, as it creates too many dynamic
arrays for large graphs, e.g., 11.2 million for YahooWeb, it
causes frequent memory re-allocation, which not only intro-
duces memory fragmentation, but also brings extra time cost
and limits the graph scale that could be analyzed. Second,
DrunkardMob keeps all walks in memory, so the number of
walks is limited by memory space, e.g., 10 billion walks cost
at least 40GB memory. Besides, it also incurs high cost to
flush walk indexes to disk as they are related to many files.

In our GraphWalker, we adopt a block-centric method
to manage walk data, so it greatly reduces the size of walk
indexes. We also use fixed-length buffers to cache walks so as
to avoid frequent memory re-allocation. With our lightweight
scheme, both the scale of graphs and the number of walks that
can be handled are no longer limited by memory capacity.

3 Design of GraphWalker
In this section, we first introduce the main idea of
GraphWalker, which is an I/O-efficient and resource-
friendly design targeted for random walks on single machine.
We then present the details of its key design techniques,
including state-aware graph loading, asynchronous walk
updating, and lightweight walk management.

3.1 Main Idea
We target for supporting not only a very large number of
walks, say tens of billions of walks, but also very long walks,
say thousands of steps for each walk. To achieve this goal,
the main idea is to adopt a state-aware model which leverages
the states of each walk, e.g., the current vertex at which the
walk stays. Briefly speaking, unlike the iteration-based model
which blindly loads graph blocks sequentially, the state-aware
model chooses to load the graph block containing the largest
number of walks, and makes each walk move as many steps as
possible until it reaches the boundary of the loaded subgraph.
By doing this, walks can get updated as much as possible

!0

3

4

5

0

1 2

7

6

8

9 3

4

5

0

1 2

7

6

8

9 3

4

5

0

1 2

7

6

8

9

#$: 	$ → (→)
#*: 	$ → (→ +
#(: 	$ → ,

3

4

0

1 2

7

6

!1

!2

!0

#$:) → / → 0
#*:+ → ,

7

6

8

9

!1
!0

4

!2

3

4

5

6

8
!2

#*: , → +
#(: , → 1 → 0 →)

M
em

or
y

D
is
k

1st I/O:
Load b0

2nd I/O:
Load b2

3rd I/O:
Load b1

block b0

block b2
block b1

block b0

block b2

block
b0

block b2

!1!2

!0!1!2
!1

!1

block b1 block b1

Figure 4: Main idea of the state-aware model

D
is

k

graph
data

block1 block2 block3

M
em

or
y asynchronous walk updating

jump to block0
jump to block2
jump to block3

block-centric walk indexing

state-aware graph loading

 append to disk w
alk pool

block1

block1 walk state

walk
state

block0

 walk buffer

Figure 5: Overall design of GraphWalker

within each I/O. As a result, both the low I/O utilization and
low walk updating rate problems can be efficiently addressed.

To further illustrate the above idea and analyze its benefits,
we still consider the example graph in Figure 1(a). Suppose
that we have to run three random walks which start at node 0
and have to move four steps. Figure 4 shows the process of
graph loading and walk updating with the state-aware model.
Specifically, in the first I/O, graph block b0 is loaded into
memory as it contains all the three walks. With the loaded
graph block b0, walk w0 and w1 move two steps, and w2

moves only one step as it requires other graph blocks which
are not in memory for walking more steps. As two walks
fall into block b2, in the second I/O, block b2 is loaded into
memory, and walk w0 finishes and w1 can move one step.
Finally, both the remaining two walks are in block b1, so we
load b1 into memory, and all walks can be finished. Note that
only three I/Os are required in this example. However, for the
iteration-based model, it may need 12 I/Os, because it uses
four iterations, and generates three I/Os in each iteration.
Remark. We would like to emphasize that the state-aware
model is different from the on-demand I/O model proposed
in DynamicShards [43] and Graphene [29]. Note that the
on-demand I/O model dynamically adjusts the graph blocks
layout in each iteration and skips the blocks without contain-
ing any walks, but it still follows the iteration-based manner.
Besides, even if there is only one walk in a block, it has to
load the block into memory for analysis.

Based on the above idea, we develop an I/O-efficient graph
system, GraphWalker, which supports fast and scalable ran-
dom walks. GraphWalker mainly consists of three parts: (1)
State-aware graph loading, (2) Asynchronous walk updating,
and (3) Block-centric walk management. The overall design
of GraphWalker is also illustrated in Figure 5. In the follow-
ing subsections, we present its design in details.

3.2 State-Aware Graph Loading
Graph data organization and partition. GraphWalker
manages graph data with the widely used Compressed Sparse
Row (CSR) format, which sequentially stores the out neigh-
bors of vertices as a csr file on disk, and uses an index file
to record the beginning position of each vertex in the csr
file. GraphWalker partitions a graph into blocks according
to vertex IDs. Specifically, we sequentially add vertices and

562 2020 USENIX Annual Technical Conference USENIX Association

0 3 6 10

1 3 4 2 0 6 7 2 6 5 6 6 8 4 7 9 6 7 8

0 3 4 7 9 11 13 15 16 18 19

1

csr file
(out-neighbors)

index file
(offset in csr file)

block file
(offset in index file)

block 1 - vertices : 3, 4, 5
- edges : 3 → 2, 3 → 6, 4 → 5,

4 → 6, 5 → 6, 5 → 8.

Figure 6: Graph data organization of the example graph in
Figure 1(a). The graph is stored in CSR format and block
partition ranges are recorded in the block file.

their out-edges into a block according to the ascending order
of their IDs until the data volume in the block exceeds a pre-
defined block size, and then we create a new block. Figure 6
shows the data layout of the example graph in Figure 1(a).
Besides, this lightweight graph data organization decreases
the storage cost of each subgraph, and thus reduces the time
cost of graph loading. As GraphWalker partitions a graph
by simply reading through the index file once to record the
beginning vertex of each block, it is also flexible to adjust
block size for different applications.

For setting the graph block size, we find that a trade-off ex-
ists. That is, using smaller blocks can avoid loading more data
which are not needed for updating random walks, while using
larger blocks can have more walks getting updated in each
subgraph loading. Besides, different analysis tasks require
different walk scales, and thus prefer different block sizes.
Lightweight tasks with a small number of walks prefer a small
block size as the I/O utilization can get improved under this
setting. In contrast, heavyweight tasks with a large number of
walks prefer a large block size as large block size can increase
the walk updating rate. Based on this understanding, we use
an empirical analysis (see §4.4), and set the default block size
as 2(log10 R+2) MB, where R is the total number of random
walks. For example, in the case of running one billion walks,
the default block size is 2 GB, which is usually smaller than
the memory capacity of a commodity machine, so it is easy
to keep a graph block in memory.
Graph loading and block caching. GraphWalker con-
verts the graph format and partitions graph blocks in pre-
processing phase. During the phase of running random walks,
GraphWalker chooses a graph block and loads it into mem-
ory according to the the states of walks, and in particular, it
loads the block containing the largest number of walks. After
finishing analysis over the loaded graph block, it then chooses
another block to load in the same way.

To ease the impact of block size and improve cache effi-
ciency, GraphWalker also enables block caching by develop-
ing a walk-conscious caching scheme to keep multiple blocks
in memory. The rationale is that blocks with more walks
are more likely to be needed again in near future. Thus, the
graph loading process with block caching works as follows.
As illustrated in Figure 7, we first select a candidate block
based on the state-aware model, to load this block, we check
whether it is cached in memory or not. If it is already in
memory, then we directly access memory to perform analysis.

1. kick out the
block with

fewest walks

D
is

k
M

em
or

y

block 0 block 1 block 2 block 3

cache two
blocks

block 0 block 3

2. load in the block with most walks

Figure 7: State-aware graph loading with block caching

Otherwise, we load it from disk, and also evict out the block
in memory containing the fewest walks if the cache is full.
The maximum number of blocks cached in memory depends
on the usable memory size.

We emphasize that this walk-conscious block caching
scheme differs from conventional page cache in the following
aspects. First, we do not adopt prefetching as the state-aware
model does not prefer to access graph blocks sequentially.
Second, page cache manages data in memory at a page
granularity, while we manage at a block granularity so as
to fit the block-based graph loading and computing. Last
but not least, the eviction policy also leverages walk states,
which is different from LRU. Our experiments show that the
walk-conscious block caching scheme always outperforms
conventional page cache scheme.

3.3 Asynchronous Walk Updating
Note that in iteration-based systems, after loading a graph
block, each walk in the loaded subgraph walks only one step,
which induces to very low walk updating rate. In fact, after
walking one step, many walks are still staying at the vertices
in the current subgraph, so they can be further updated with
more steps. To improve the I/O efficiency, some works use
the loaded data re-entry [6], which allows the walks to reuse
the loaded data. Lumos [42] uses cross-iteration value propa-
gation to formalize reusing of loaded data for the subsequent
iteration in order to provide synchronous guarantees. The
idea is to re-enter the subgraph again to walk one more step
by traversing the vertices in the subgraph again. Moreover,
one can also keep re-entering the subgraph until all of the
walks reach the boundary of the subgraph.

However, the re-entering scheme may cause local straggler
problem. That is, many walks are able to move one step at
the first time when the graph block was just loaded, and as
the number of re-entries increases, most walks may reach
the boundary of the subgraph, and only few walks remain
in the subgraph, and they cost multiple re-entries to finish.
Our experiments show that the last 20% of walks in a block
may cost 60% of re-entries. These re-entries have very low
utilization and cost a lot of time. We also find that simply
stopping walking over the currently loaded subgraph after
certain re-entries cannot address the local straggler problem
either, and it does not reduce the completion time as the last
few walks still remain in the subgraph and we still need to

USENIX Association 2020 USENIX Annual Technical Conference 563

Figure 8: Asynchronous walk updating in parallel

re-load it with extra I/Os to finish the walks.
To further improve the I/O utilization and walk updating

rate, GraphWalker adopts an asynchronous walk updating
strategy, which allows each walk to keep updating until it
reaches the boundary of the loaded graph block. After fin-
ishing a walk, we choose another walk to process until all
walks in the current graph block are processed. Then we load
another graph block based on the state-aware model described
above. Figure 8 shows an example of processing two walks
within the same graph block. To accelerate the computation,
we also use multi-threading to update walks in parallel. We
emphasize that with our asynchronous walk updating model,
we completely avoid useless visits of vertices and eliminate
the local straggler problem.

However, the state-aware model may lead to the global
straggler problem. That is, some walks may move very fast
and make a large progress as the graph data they needed can
always be satisfied, while some other walks may move very
slowly as they may be trapped in some coldblocks which
are not loaded into memory for a long time. As a result,
GraphWalker can quickly complete most walks, but takes a
long time to finish the remaining few walks. Our experiments
show that a few walks often incur nearly half of total I/Os.

To address the global straggler problem, we introduce a
probabilistic approach into the state-aware graph loading pro-
cess in GraphWalker. The idea is to give stragglers a chance
to move some steps such that they can catch up the progress of
most walks. Specifically, every time when we choose a graph
block to load, we assign a probability p to choose the block
containing walks with the slowest progress, i.e., with the
smallest number of walked steps, and with probability 1� p,
we still load the block with the most walks. Note that the
global straggler problem will be mitigated more efficiently as
p increases, but the efficiency of the majority of walks will
decrease. So there is a trade-off for setting p. Based on our
empirical analysis, we find that p = 0.2 is an appropriate
setting, and we can get 20% improvement in some cases.

3.4 Block-Centric Walk Management
We record each walk with three variables, source, current
and step, which indicate the start vertex, the offset of the
current vertex in the block, and the number of moved steps,
respectively. We record each walk with 64 bits. The number
of bits allocated for each variable is shown in Figure 9. This
data structure can support starting random walks at 224 source
vertices simultaneously and it also allows each walk to move
up to 214 steps. Note that there is no limit on the total number
of walks as we can start many walks at each vertex.

0

1

block array fixed-length
walk buffer

…
block 0

block 1

walk pool
in disk file

Pblock P

… source current step
0133963 1440

encoded walk presentation

Figure 9: Block-centric walk management

To reduce the memory overhead of managing all walk
states, we propose a block-centric scheme. For each graph
block, we use a walk pool to record the walks which are
currently in the block, referring to Figure 9. We implement
each walk pool as a fixed-length buffer, which stores at most
1024 walks by default, so as to avoid dynamic memory
allocation cost. When there are more than 1024 walks in a
block, we flush them to disk and store them as a file called
walk pool file. Note that we encode each walk with a 64-
bit long data type, so each walk pool only costs 8 KB. This
way, the memory cost for managing walk state is very low.
For example, for running one billion walks in YahooWeb,
GraphWalker costs only 800 KB if it uses 100 graph blocks.
However, DrunkardMob costs more than 4 GB as each walk
uses at least four bytes. Besides, these walks jump among the
11.2M dynamic arrays (refer to §2.2), and thus cause frequent
memory re-allocation and bring extra time cost.

When we load a graph block into memory, we also load its
walk pool file into memory and merge the walks with those
stored in the in-memory walk pool. Then we perform random
walks and update walks in current walk pool. During the
update process, when a walk pool is full, we flush all walks in
the walk pool to disk by appending them to the corresponding
walk pool file and clear the buffer. When finish computing
with the loaded graph block, we clear the current walk pool
and sum up the walks in both walk buffer and walk pool file
of each block so as to update the walk states.

With this lightweight walk management, we save a lot of
memory cost for storing walk states, thus it is able to support
massive concurrent walks. Besides, the fixed-length walk
buffering strategy turns many small I/Os for updating walk
states into several large I/Os, which largely reduces the I/O
cost for providing persistent storage of walk states.

4 Evaluation
GraphWalker aims for providing fast and scalable random
walks, so we take DrunkardMob [23], the state-of-the-art
single-machine random walk specific graph system, as a
baseline for performance comparison. Besides, there are
also a number of single-machine graph systems, which fur-
ther optimize the system performance from different as-
pects. For completeness, we also compare GraphWalker
with two state-of-the-art graph systems Graphene [29] and
GraFSoft [20]. To further validate its scalability, we compare
GraphWalker with the most recent distributed random walk
graph system, i.e., KnightKing [46].

564 2020 USENIX Annual Technical Conference USENIX Association

4.1 Experiment Settings
Testbed. All experiments are performed on a Dell Power
Edge R730 machine with 64GB memory and 24 Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz processors. The entire
graph data are stored on a 3.2TB RAID-0 consisting of seven
500GB SamSung 860 SSDs if we do not state specifically. We
also study the performance of GraphWalker on HDDs. For
the distributed system KnightKing [46], it is run on an 8-node
cluster with 10Gbps Ethernet inter connection, each node is
equipped with two 8-core Intel Xeon E5-2620 v4 processors
with 20MB L3 cache and 64GB DRAM.
Dataset. Table 1 lists the statistics of the six graph datasets
we used. TT [4], FS [1], YW [5] and CW [3] are real-world
graphs. K30 and K31 are two synthetic graphs generated with
Graph500 kronecker [2]. These graphs are all widely used in
graph system evaluations. CSR Size indicates the minimum
storage cost by storing graphs in CSR format, and Text Size
is the size of the dataset stored in text format as an edge list.
We point out that Kron30, Kron31 and CW are large graphs
that can not be entirely put into the memory in our testbed,
and CW is the largest web corpus available in public.

Dataset |V | |E| CSR Size Text Size
Twitter (TT) 61.6M 1.5B 6.2GB 26.2GB

Friendster (FS) 68.3M 2.6B 10.7GB 47.3GB
YahooWeb (YW) 1.4B 6.6B 37.6GB 108.5GB

Kron30 (K30) 1B 32B 136GB 638GB
Kron31 (K31) 2B 64B 272GB 1.4TB

CrawlWeb (CW) 3.5B 128B 540GB 2.6TB

Table 1: Statistics of Datasets

Graph algorithms. Besides directly evaluating the perfor-
mance of running random walks, we also consider the fol-
lowing four common random walk based algorithms.

• Random Walk Domination (RWD) [27]. We start one
walk of length six from each vertex in the graph to find
a vertex set which has the maximum influence diffusion.

• Graphlet Concentration (Graphlet) [34, 35]. We use a
special graphlet, triangle, as a study case. We randomly
start 100 thousand random walks of length four to esti-
mate the ratio of triangles in the graph.

• Personalized PageRank (PPR) [12]. We simulate 2000
random walks of length 10 starting at each query source
vertex to approximate the PPR, which was shown to be
sufficient to ensure the accuracy.

• SimRank (SR) [19]. We start 2000 random walks of
length 11 respectively from the query pair vertices to
compute the expected meeting time,

Remark. The first two are graph computation algorithms
which utilize the entire graph, while the other two are graph
query algorithms which need only a portion of the graph.
We point out that all of them are classical and representative
graph algorithms. We run each experiment ten times and

compute the average completion time. Before each execution,
we also clear the page cache to avoid its impact.

4.2 Comparison with RW-Specific Systems
We validate the efficiency of GraphWalker by comparing it
with DrunkardMob, the state-of-the-art single-machine sys-
tem that is specially optimized for random walk. Both
GraphWalker and DrunkardMob are implemented based on
GraphChi. Note that random walk based algorithms usually
require to start certain number of random walks with certain
walk length, so we evaluate the performance by considering
different random walk configurations, so as to study the
performance of the entire design space and demonstrate the
scalability of GraphWalker in supporting large amount of
random walks with very long walk length. We also show the
performance of the four random walk based algorithms. Fi-
nally, we justify the improvement achieved by GraphWalker
by using micro-benchmark results.

4.2.1 Performance Study in Entire Design Space

We first show the results by fixing the walk length to ten,
but varying the number of walks from 103 to 1010, as de-
picted in Figure 10. In each figure, the x-axis indicates the
number of walks configured in each experiment, and the y-
axis shows the time needed to finish running all these walks.
First, we can see that GraphWalker is consistently faster
than DrunkardMob under all settings for different numbers
of walks and different graph datasets. In particular, in the
case of running 106 walks on YahooWeb, DrunkardMob
costs near 20 minutes, while GraphWalker takes only 17.8
seconds. That is, GraphWalker achieves 70⇥ speedup. In
general, GraphWalker achieves 16⇥ to 70⇥ speedup under
all settings. In addition, for the case when the number of
walks is not too large, then I/O cost is a dominate factor, so
the total time of running different number of walks is almost
a constant. However, as the number of walks continues to
increase, computation cost becomes larger, so the total time
cost also increases linearly when we run more random walks.

One attractive feature of GraphWalker we like to highlight
is its scalability. We point out that even for running tens of
billions of random walks on large graphs, GraphWalker can
still finish within a reasonable time. However, DrunkardMob
even fails to run 1010 walks on large graphs, due to the out-of-
memory error, so we do not show the results of DrunkardMob
in the setting of more than 1010 walks. More importantly,
when the graph becomes really large, DrunkardMob may fail
to run. For example, for Kron31 and CrawlWeb, Drunkard-
Mob also encounters the out-of-memory error. Thus, we do
not show the results on them for the interest of space. The
main reasons are as follows: (1) DrunkardMob keeps all walk
states in memory, so it’s hard to support massive walks. (2)
DrunkardMob employs a dynamic array index for every 128
vertices, so it incurs a large memory overhead when the graph
becomes really large, and its also hard to write the walks to

USENIX Association 2020 USENIX Annual Technical Conference 565

103 104 105 106 107 108

Number of walks

100

101

102

103
tim

e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

103 104 105 106 107 108

Number of walks

100

101

102

103

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

103 104 105 106 107 108 109 1010

Number of walks

100

101

102

103

104

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

103 104 105 106 107 108 109 1010

Number of walks

100

101

102

103

104

105

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

(a) Twitter (b) Friendster (c) YahooWeb (d) Kron30

Figure 10: Performance of random walks with different number of walks by fixing walk length as 10.

22 23 24 25 26 27 28 29 210

Length of walks

100

101

102

103

104

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

22 23 24 25 26 27 28 29 210

Length of walks

100

101

102

103

104

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

22 23 24 25 26 27 28 29 210

Length of walks

100

101

102

103

104

105

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

22 23 24 25 26 27 28 29 210

Length of walks

102

103

104

105

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

(a) Twitter (b) Friendster (c) YahooWeb (d) Kron30

Figure 11: Performance of random walks with different walk lengths by fixing the number of walks as 105.

disk for too many open files needed. However, because of the
block-centric walk indexing design and keeping walk states
on disk, GraphWalker is capable to support huge graphs,
e.g., Kron31 and CrawlWeb, even for running tens of billions
of random walks, e.g., GraphWalker finishes running 1010

walks on CrawlWeb within around one hour.
We also evaluate the performance by varying the walk

length. Here we fix the number of walks as 105 and vary
the length of each walk from 22 to 210. The results are
shown in Figure 11. First, we can see that GraphWalker
is always much faster than DrunkardMob, and it achieves
even more than three orders of magnitude in the best case.
In particular, when the graph is not extremely large, e.g., for
Twitter, Friendster, and YahooWeb, the time cost of Drunk-
ardMob continues to increase when running longer walks,
while that of GraphWalker is almost a constant, this is
because GraphWalker can cache almost the whole graph
in memory for medium-sized graphs, due to the lightweight
block storage and optimized block catching strategy, and thus
incurs very low I/O cost. For very large graphs which can
not be fully put in memory, e.g., Kron30, the time cost of
both DrunkardMob and GraphWalker increases as walks get
longer, as GraphWalker needs to swap in and kick out blocks
between memory and disk in this case. However, we point out
that GraphWalker is much faster, e.g., it achieves 7⇥ to 10⇥
speedup even for Kron30. This experiment also demonstrates
the scalability of GraphWalker in supporting long random
walks which have thousands of steps.

4.2.2 Performance of Random Walk based Algorithms

We now evaluate the performance of the four common
random walk based algorithms described in §4.1. From
Figure 12, we can see that GraphWalker achieves 9⇥ to

48⇥ speedup upon DrunkardMob. In particular, in some
special cases, e.g., running PPR and SR on YahooWeb,
GraphWalker even achieves more than three orders of
magnitude speedup, this is because YahooWeb has a very
good locality at the query vertices, so GraphWalker only
needs to load several corresponding subgraphs to run random
walks. However, DrunkardMob needs to iteratively scan the
entire graph and updates walks in a synchronized manner, so
it has a very low I/O utilization and takes long time.

We like to point out that DrunkardMob again fails to handle
the two largest graphs. due to the same reason explained in
§4.2.1, so we skip the results in these cases. Note that this ex-
periment also demonstrates the scalability of GraphWalker
in supporting massive walks and huge graphs.

4.2.3 Micro-benchmarks

Recall that the inefficiency of existing systems in running
random walks mainly come from the iteration-based I/O
model, and thus they suffer from low I/O utilization and low
walk updating rate (refer to §2). To better understand why
GraphWalker could significantly improve the overall perfor-
mance as presented in the last subsection, we further consider
these two micro-benchmarks to show how the state-aware
I/O model in GraphWalker address the limitations. We also
show the time cost breakdown to see how GraphWalker
improves the performance of each part along the random walk
process. We only show the results of running RWD algorithm
on YahooWeb, and results are similar for other settings.
I/O utilization. I/O utilization is defined as the edge usage
amount for updating walks divided by the total number of
edges loaded by one I/O. Note that an edge may be reused by
different walks, so we sum up the total times of being used for
all edges. Thus, the I/O utilization defined here may exceed

566 2020 USENIX Annual Technical Conference USENIX Association

TT FS YW K30 K31 CW

101

102

103

104

105

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

TT FS YW K30 K31 CW

101

102

103

104

105

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

TT FS YW K30 K31 CW
100

101

102

103

104

105

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

TT FS YW K30 K31 CW

101

102

103

104

105

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

(a) Personalized PageRank (b) SimRank (c) Graphlet (d) Random Walk Domination

Figure 12: Performance of random walk based algorithms.

100% when one edge is used by multiple walks. We point
out that DrunkardMob partitions the YahooWeb graph into
25 shards, and the walk length is six, so the total number of
I/Os required by DrunkardMob is 150. We can see that the
I/O utilization is only around 20% as shown in Figure 13(a).
In contrast, GraphWalker needs only 46 I/Os to complete all
walks, so the number of I/Os is significantly reduced. The
I/O utilization of GraphWalker is also much higher than that
of DrunkardMob. Specifically, the utilization of the first few
I/Os reaches up to 80%-160%, this is because the subgraphs
loaded by the first few I/Os have the most walks, and many of
them may use more than one edge to update. Even for most
I/Os, the I/O utilization of GraphWalker is between 40% to
80%, which is 2⇥ to 4⇥ compared to that of DrunkardMob.
Walk updating rate. Now we study the walk updating rate,
shown in Figure 13(b). Recall that DrunkardMob updates
50 million steps per I/O on average and costs 150 I/Os to
finish the computation. While GraphWalker significantly
improves the walk updating rate, it only needs 46 I/Os to
complete all walks and updates 185 million steps per I/O on
average, which is 3.7⇥ higher than that of DrunkardMob. The
main reason is that DrunkardMob adopts the iteration-based
I/O model, it walks only one step for each walk when loading
one block. In contrast, GraphWalker develops an asyn-
chronous walk updating method to fully utilize the loaded
graph data in memory (see §3.3), so each walk may move
multiple steps over the subgraph loaded by each I/O. As a
result, GraphWalker saves a lot of I/Os and completes all
random walks more quickly than DrunkardMob.
Time cost breakdown. To better understand the effect of the
design optimizations in GraphWalker, we also show the time
cost breakdown in Table 2. Note that in the whole execution
procedure, there are three key operations: (1) graph loading,

0 50 100 150
I/O number

0

40%

80%

120%

160%

I/
O

 u
til

iz
a

tio
n DrunkardMob

GraphWalker

0 50 100 150
I/O number

0

20%

40%

60%

80%

100%

F
ra

c.
 o

f
w

a
lk

s DrunkardMob
GraphWalker

(a) I/O utilization (b) Walk updating rate

Figure 13: I/O utilization and walk updating rate (Drunkard-
Mob needs 150 I/Os and GraphWalker only needs 46 I/Os)

which loads graph blocks into memory with disk I/Os, (2)
walk updating, which updates the walk states maintained in
memory, and (3) walk persisting, which includes to read walk
states from disk into memory and write back updated states
to disk for persistency. Besides, the three operations are pro-
ceeded in an interleaved way, so we aggregate the total time
of executing each operation. From the results, we can see that
GraphWalker outperforms DrunkardMob in all aspects. The
improvement is achieved by the integration of multiple design
optimizations, which all contribute to the high efficiency of
GraphWalker, e.g., the improvement of graph loading per-
formance mainly comes from the state-aware scheme with
the lightweight data organization and block caching policy,
and it also benefits from the asynchronous updating strategy.

4.3 Comparison with State-of-the-art Systems
Single-machine graph systems. There are a number of
optimizations being proposed in recent single-machine graph
systems, e.g., fine-grained block partition, asynchronous I/O
to support pipeline between I/O and computation, huge page
support to reduce TLB miss, etc. These optimizations are not
specific for random walks, so many of them are also orthog-
onal to the optimizations in GraphWalker. Thus, to further
demonstrate the efficiency of GraphWalker, we also com-
pare it with two state-of-the-art open-source single-machine
systems, Graphene [29] and GraFBoost [20]. For fair com-
parison, we only focus on the pure software implementation
of GraFBoost called GraFSoft. Note that GraphWalker is
implemented based on the baseline system GraphChi, so it
does not include the above mentioned design optimizations.

In this experiment, we focus on the case of running random
walks starting from a single source due to page limit. We fix
the walk length as ten and vary the number of walks. Note
that Graphene is a semi-external system which stores graph
data on disk while keeps all walk states in memory, so it is
unable to handle the case of massive walks, e.g., greater than
109 walks, or large graphs, e.g., larger than Friendster, due to
its high memory cost. In the interest of space, we only show

Time cost (s) DrunkardMob GraphWalker Speedup
Graph Loading 1005 47 21⇥
Walk Updating 3029 214 14⇥
Walk Persisting 1056 16 66⇥
Total Runtime 5110 278 18⇥

Table 2: Time cost breakdown

USENIX Association 2020 USENIX Annual Technical Conference 567

103 105 107 109

Number of walks

100

101

102

103

tim
e

 c
o

st
 (

se
c)

Graphene

GraFSoft

GraphWalker

103 105 107 109

Number of walks

100

101

102

103

104

105

tim
e

 c
o

st
 (

se
c)

Graphene

GraFSoft

GraphWalker

(a) Friendster (b) CrawlWeb

Figure 14: Comparison with Graphene and GraFSoft

the results for Friendster, the largest graph that Graphene can
process, as well as the largest graph CrawlWeb. We observe
similar results for other graphs.

The results are shown in Figure 14, and we can have
several conclusions. First, GraphWalker consistently out-
performs Graphene even though Graphene is a semi-external
system which does not require I/Os to write back walk states,
and it achieves up to 19⇥ speedup. More importantly,
GraphWalker is also scalable to run huge amount of walks,
as well as process extremely large graphs, while Graphene
fails to run in these cases due to its high memory cost caused
by the semi-external design. Second, compared with GraF-
Soft, when the number of walks is small, the improvement
of GraphWalker is limited, because each block can only
have a few walks given the small total number and the state-
aware I/O model can not bring too much benefit. However,
the improvement of GraphWalker increases as the number
of random walks gets larger.For example, when running one
billion random walks on CrawlWeb, GraphWalker spends
only 21.8 minutes while GraFSoft can not even complete
the task within 24 hours. That is, GraphWalker achieves at
least 40⇥ speedup. More importantly, as we increase the
number of walks, the increase of time for GraphWalker is
sub-linear and much slower than that of GraFSoft, this further
demonstrates the scalability of GraphWalker in supporting
huge amount of random walks.
Distributed random walk system. To further demonstrate
the scalability of GraphWalker, and its resource-friendly
feature, we also compare it with a distributed graph system,
KnightKing [46], which is the most recent distributed graph
system optimized for random walks. In the interest of space,
we focus on a random walk based algorithm which is also
used in KnightKing, i.e., PPR. Specifically, it starts one walk
at each vertex, and each walk terminates with probability t
in each step. We set t = 0.15, which is a very common
setting in various applications [12, 25]. Note that smaller t
means larger average number of walk steps and requires more
computations, so KnightKing uses a small t to demonstrate
its computing efficiency. As KnightKing uses a cluster of
eight machines for evaluation in its paper, to enable cross-
validation, we also use eight machines at most, and focus on
the largest two graphs that can be handled by KnightKing
with eight machines, i.e., Twitter and Friendster. We also
convert the two graphs to be undirected as in KnightKing.

Figure 15 shows the results, and the number after each

KnightKing(2)

KnightKing(4)

KnightKing(8)

GraphWalker(1
)

0

100

200

300

tim
e

 c
o

st
 (

se
c) Graph Loading

Walk Updating

KnightKing(2)

KnightKing(4)

KnightKing(8)

GraphWalker(1
)

0

100

200

300

tim
e

 c
o

st
 (

se
c) Graph Loading

Walk Updating

(a) Twitter (b) Friendster

Figure 15: Comparison with KnightKing

PPR SR Graphlet RWD
100

101

102

103

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

PPR SR Graphlet RWD
100

101

102

103

104

105

tim
e
 c

o
st

 (
se

c)

DrunkardMob

GraphWalker

(a) Friendster (b) YahooWeb

Figure 16: Performance on HDDs

system name denotes the number of machines being used.
We can see that for KnightKing, as the cluster size increases,
the computing time, i.e., the time for updating walks, gets
reduced greatly, but it still costs a lot of time for processing
I/Os, i.e., loading graph blocks. This is because KnightKing
mainly focuses on optimizing the computing efficiency, but
not disk I/Os. Note that the results of the computing time in
this experiment are consistent with those in the KnightKing
paper. In contrast, GraphWalker mainly targets for the I/O
efficiency problem, and also adapts the walk updating process
accordingly based on its I/O model, so it can realize very
fast random walks over disk-resident graphs. Here the walk
updating time also incudes the time for walk index persis-
tency. We also see that GraphWalker achieves comparable
performance even compared with KnightKing running on
eight machines. Even more, for the largest graph CrawlWeb,
KnightKing may need a larger cluster to run according to
the estimation of its used resources when processing other
smaller graphs. Thus, we can conclude that GraphWalker is
also a more resource-friendly alternative.

4.4 Impact of System Configurations
Performance on HDDs. We also study the impact of storage
devices by running experiments on hard disk drives (HDDs).
Figure 16 shows the time cost of running the four algorithms
we considered in this paper, and we only show the results
for Friendster and YahooWeb here. Since HDDs have much
lower random I/O performance than SSDs, the time cost of
both DrunkardMob and GraphWalker is increased. When
comparing GraphWalker with DrunkardMob, we observe
similar results as in the case of SSDs studied before. Pre-
cisely, GraphWalker achieves 3⇥ to 135⇥ speedup under
different settings.
Impact of block size. In GraphWalker, block size has
an impact on both I/O utilization and walk updating rate.

568 2020 USENIX Annual Technical Conference USENIX Association

Specifically, smaller block size improves the I/O utilization,
while larger blocks can make walks move more steps for each
single I/O and thus improves the walk updating rate. To study
the impact of block size, we keep only one block in memory
and run the PPR algorithm on CrawlWeb as a study case.
Here, we consider two PPR algorithms which start random
walks from 1000 and 100000 sources, respectively. Note
that the two cases are representative to denote two typical
scenarios of accessing only a part of the graph or accessing
most of the entire graph.

Figure 17 shows the results. We find that it necessitates an
appropriate block size setting to achieve the best performance
due to the above analyzed tradeoff. The insight is that small
blocks may be beneficial to lightweight tasks which require
only a small number of random walks, as the I/O utilization
can get improved under this setting. In contrast, large blocks
may be beneficial to heavyweight tasks which require a large
number of random walks, as large block setting increases
the walk updating rate. Based on this observation, we also
propose a method to set the block size, which is determined
according to the number of walks (see §3.2).

1MB
2MB

4MB
8MB

16MB
32MB

0

20

40

60

80

tim
e
 c

o
st

 (
se

c)

8MB
32MB

128MB

512MB
2GB

0

500

1000

1500

tim
e
 c

o
st

 (
se

c)

(a) PPR with 103 sources (b) PPR with 105 sources

Figure 17: Impact of block size

5 Related Work
A number of graph systems have been proposed in recent
years, and some of them develop distributed systems based
on a cluster of machines so as to handle very large graphs
which can not reside on a single machine [8, 9, 13, 14, 21,
30, 32, 40, 48]. However, distributed graph systems usually
require efficient graph partition and low-cost communication
between machines. Besides, research efforts are also made to
leverage large memory in analyzing large graphs [16, 33, 39]
or utilizing GPUs to accelerate the computation [22, 28, 45].

Graph processing on single machine for disk-resident
graphs also receives a lot of attentions. GraphChi [24]
is the pioneering work, and X-Stream [37] further
develops a different computation model based on edge
streams. GridGraph [49] optimizes I/Os by selectively
loading needed graph blocks to bypass useless graph data.
DynamicShards [43] and Graphene [29] also aim to reduce
the loading of useless edges by dynamically adjusting the
graph partition layout. CLIP [6] and Lumos [42] improve
the utilization of the loaded graph blocks so as to reduce
the number of I/Os. There are also a body of works to
leverage high-performance emerging devices to improve

performances [10, 11, 20, 31]. The above systems are not
designed specially for random walks, so most of them still
follow the iteration-based model. Different from them,
GraphWalker targets for supporting massive concurrent
random walks in a fast and scalable way, and its key idea
is to utilize the states of walks to optimize the process of
graph loading and computing so as to improve the I/O and
computing efficiency.

In terms of random walk, besides developing new algo-
rithms, such as random walk with restart [41], FolkRank
[17] and TrustWalker [18], etc., there are also some works
focusing on system design. To support massive random walks
on large graphs, DrunkardMob [23] proposes an encoded
representation and a lightweight efficient index so as to be
able to run billions of random walks on a single machine.
As it follows the iteration-based model, it still suffers from
the I/O deficiency problem. Different from DrunkardMob,
GraphWalker focuses on optimizing the I/O management,
and it develops a new state-aware model with asynchronous
walk updating to improve I/O performance. In addition,
GraphWalker also allows walk states to be stored on disk,
instead of putting only in memory as in DrunkardMob, so it
is more scalable to run more walks on larger graphs.

Besides single-machine random walk systems, there is also
a distributed system KnightKing [46], which is recently pro-
posed and also optimized for random walks. It provides a
unified framework to support various random walks and fo-
cuses on optimizing the walking process without addressing
disk I/Os. Different from KnightKing, GraphWalker mainly
targets for addressing the I/O problem, and it is also more
resource friendly as it can process massive random walks on
large graphs on just a single machine.

6 Conclusion
In this paper, we proposed GraphWalker which is an I/O-
efficient system for supporting fast and scalable random
walks over large graphs on a single machine. GraphWalker
carefully manages graph data and walk indexes, and op-
timizes I/O efficiency by using state-aware graph loading
and asynchronous walk updating. Experiment results on our
prototype show that GraphWalker outperforms state-of-the-
art single-machine systems, and it also achieves comparable
performance with distributed graph system running on a clus-
ter machine. In the future work, we will consider to extend
the state-aware design idea in GraphWalker to distributed
clusters so as to process massive analytic tasks in parallel.

Acknowledgments: We thank our shepherd and the anony-
mous reviewers for their comments. This work is sup-
ported in part by the National Key R&D Program of China
(2018YFB1800203), NSFC (61772484), Youth Innovation
Promotion Association CAS, and USTC Research Funds of
the Double First-Class Initiative (YD2150002003). Yongkun
Li is USTC Tang Scholar, and he is the corresponding author.

USENIX Association 2020 USENIX Annual Technical Conference 569

References
[1] Friendster. http://konect.uni-koblenz.de/

networks/friendster.

[2] Graph500. https://graph500.org/.

[3] The 2012 common crawl graph. http:
//webdatacommons.org.

[4] Twitter. http://an.kaist.ac.kr/traces/
WWW2010.html.

[5] Yahoo Webscope Program. http://webscope.
sandbox.yahoo.com.

[6] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai
Qian, Kang Chen, and Weimin Zheng. Squeezing Out
All the Value of Loaded Data: An Out-of-core Graph
Processing System with Reduced Disk I/O. In USENIX
ATC, 2017.

[7] Ziv Bar-Yossef, Alexander Berg, Steve Chien, Jittat
Fakcharoenphol, and Dror Weitz. Approximating Ag-
gregate Queries about Web Pages via Random Walks.
In VLDB, 2000.

[8] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan,
Da Yan, and James Cheng. G-Miner: an Efficient Task-
Oriented Graph Mining System. In ACN EuroSys, 2018.

[9] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen.
Powerlyra: Differentiated Graph Computation and Par-
titioning on Skewed Graphs. In EuroSys. ACM, 2015.

[10] Disa Mhembere Da Zheng, Randal Burns, Joshua Vo-
gelstein, Carey E Priebe, and Alexander S Szalay.
FlashGraph: Processing Billion-node Graphs on an Ar-
ray of Commodity SSDs. In USENIX FAST, 2015.

[11] Nima Elyasi, Changho Choi, and Anand Sivasubra-
maniam. Large-Scale Graph Processing on Emerging
Storage Devices. In FAST. USENIX, 2019.

[12] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and
Tamás Sarlós. Towards Scaling Fully Personalized
Pagerank: Algorithms, Lower Bounds, and Experi-
ments. Internet Mathematics, 2(3):333–358, 2005.

[13] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. PowerGraph: Distributed
Graph-Parallel Computation on Natural Graphs. In
OSDI. USENIX, 2012.

[14] Joseph E Gonzalez, Reynold S Xin, Ankur Dave,
Daniel Crankshaw, Michael J Franklin, and Ion Stoica.
GraphX: Graph Processing in a Distributed Dataflow
Framework. In OSDI. USENIX, 2014.

[15] Monika R Henzinger, Allan Heydon, Michael Mitzen-
macher, and Marc Najork. Measuring Index Quality
using Random Walks on the Web. Computer Networks,
31(11):1291–1303, 1999.

[16] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle
Olukotun. Green-Marl: a DSL for Easy and Efficient
Graph Analysis. In Proceedings of the ACM SIGARCH
Computer Architecture News, 2012.

[17] Andreas Hotho, Robert Jäschke, Christoph Schmitz,
Gerd Stumme, and Klaus-Dieter Althoff. Folkrank: A
Ranking Algorithm for Folksonomies. In Lwa, 2006.

[18] Mohsen Jamali and Martin Ester. Trustwalker: a Ran-
dom Walk Model for Combining Trust-Based and Ttem-
Based Recommendation. In ACM SIGKDD, 2009.

[19] Glen Jeh and Jennifer Widom. SimRank: a Measure of
Structural-context Similarity. In ACM SIGKDD, 2002.

[20] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao
Xu, et al. GraFBoost: Using Accelerated Flash Storage
for External Graph Analytics. In ISCA. IEEE, 2018.

[21] Arijit Khan, Gustavo Segovia, and Donald Kossmann.
On Smart Query Routing: for Distributed Graph Query-
ing with Decoupled Storage. In ATC. USENIX, 2018.

[22] Farzad Khorasani, Keval Vora, Rajiv Gupta, and
Laxmi N Bhuyan. CuSha: vertex-centric graph pro-
cessing on GPUs. In Proceedings of the 23rd inter-
national symposium on High-performance parallel and
distributed computing. ACM, 2014.

[23] Aapo Kyrola. Drunkardmob: Billions of Random Walks
on Just a PC. In ACM RecSys, 2013.

[24] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin.
Graphchi: Large-scale Graph Computation on Just a
PC. In OSDI, 2012.

[25] Meyer C D. Langville A N. Deeper inside Pagerank. In
Internet Mathematics, 2004.

[26] Chul-Ho Lee, Xin Xu, and Do Young Eun. Beyond Ran-
dom Walk and Metropolis-hastings Samplers: Why You
Should Not Backtrack for Unbiased Graph Sampling. In
SIGMETRICS, 2012.

[27] Rong-Hua Li, Jeffrey Xu Yu, Xin Huang, and Hong
Cheng. Random-walk Domination in Large Graphs. In
ICDE. IEEE, 2014.

[28] Hang Liu and H Howie Huang. Enterprise: Breadth-
first graph traversal on GPUs. In Proceedings of the SC-
International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 2015.

[29] Hang Liu and H Howie Huang. Graphene: Fine-
Grained IO Management for Graph Computing. In
FAST. USENIX, 2017.

[30] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos
Guestrin, Aapo Kyrola, and Joseph M Hellerstein. Dis-
tributed GraphLab: a Framework for Machine Learning
and Data Mining in the Cloud. VLDB, 2012.

570 2020 USENIX Annual Technical Conference USENIX Association

[31] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim. Mo-
saic: Processing a Trillion-edge Graph on a Single Ma-
chine. In EuroSys. ACM, 2017.

[32] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik,
James C Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A System for Large-scale Graph
Processing. In SIGMOD. ACM, 2010.

[33] Donald Nguyen, Andrew Lenharth, and Keshav Pingali.
A Lightweight Infrastructure for Graph Analytics. In
SOSP. ACM, 2013.

[34] Nataša Pržulj. Biological Network Comparison Us-
ing Graphlet Degree Distribution. Bioinformatics,
23(2):e177–e183, 2007.

[35] Nataša Pržulj, Derek G Corneil, and Igor Jurisica. Mod-
eling Interactome: Scale-Free or Geometric? Bioinfor-
matics, 20(18):3508–3515, 2004.

[36] Bruno Ribeiro and Don Towsley. Estimating and Sam-
pling Graphs with Multidimensional Random Walks. In
SIGCOMM, 2010.

[37] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-stream: Edge-centric Graph Processing Using
Streaming Partitions. In SOSP. ACM, 2013.

[38] Paat Rusmevichientong, David M Pennock, Steve
Lawrence, and C Lee Giles. Methods for Sampling
Pages Uniformly from the World Wide Web. In Pro-
ceedings of the AAAI Fall Symposium on Using Uncer-
tainty Within Computation, 2001.

[39] Julian Shun and Guy E Blelloch. Ligra: a Lightweight
Graph Processing Framework for Shared Memory. In
ACM SIGPLAN, 2013.

[40] Carlos HC Teixeira, Alexandre J Fonseca, Marco Ser-
afini, Georgos Siganos, Mohammed J Zaki, and Ashraf
Aboulnaga. Arabesque: A System for Distributed
Graph Mining. In SOSP. ACM, 2015.

[41] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan.
Fast Random Walk with Restart and Its Applications.
In ICDM. IEEE, 2006.

[42] Keval Vora. LUMOS: Dependency-Driven Disk-based
Graph Processing. In ATC. USENIX, 2019.

[43] Keval Vora, Guoqing (Harry) Xu, and Rajiv Gupta.
Load the Edges You Need: A Generic I/O Optimization
for Disk-based Graph Processing. In USENIX ATC,
2016.

[44] Rui Wang, Min Lv, Zhiyong Wu, Yongkun Li, and
Yinlong Xu. Fast Graph Centrality Computation via
Sampling: a Case Study of Influence Maximisation
over OSNs. International Journal of High Performance
Computing and Networking, 14(1):92–101, 2019.

[45] Yangzihao Wang, Andrew Davidson, Yuechao Pan,
Yuduo Wu, Andy Riffel, and John D Owens. Gunrock:
A high-performance graph processing library on the
GPU. In ACM SIGPLAN, 2016.

[46] Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma,
Yang Bai, and Yong Jiang. KnightKing: A Fast Dis-
tributed Graph Random Walk Engine. In SOSP. ACM,
2019.

[47] Pengpeng Zhao, Yongkun Li, Hong Xie, Zhiyong Wu,
Yinlong Xu, and John CS Lui. Measuring and Maxi-
mizing Influence via Random Walk in Social Activity
Networks. In International Conference on Database
Systems for Advanced Applications, pages 323–338.
Springer, 2017.

[48] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and
Xiaosong Ma. Gemini: A Computation-Centric Dis-
tributed Graph Processing System. In OSDI. USENIX,
2016.

[49] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
Graph: Large-Scale Graph Processing on a Single
Machine Using 2-Level Hierarchical Partitioning. In
USENIX ATC, 2015.

USENIX Association 2020 USENIX Annual Technical Conference 571

Scaph: Scalable GPU-Accelerated Graph Processing
with Value-Driven Differential Scheduling

Long Zheng1 Xianliang Li1 Yaohui Zheng1 Yu Huang1 Xiaofei Liao1 Hai Jin1

Jingling Xue2 Zhiyuan Shao1 Qiang-Sheng Hua1

1National Engineering Research Center for Big Data Technology and System/Service Computing Technology
and System Lab/Cluster and Grid Computing Lab, Huazhong University of Science and Technology

2UNSW Sydney
{longzh, xianliang, yaohui, yuh, xfliao, hjin, zyshao, qshua}@hust.edu.cn; j.xue@unsw.edu.au

Abstract
We introduce Scaph, a GPU-accelerated graph system that

achieves scale-up graph processing on large-scale graphs that
are initially partitioned into subgraphs at the host to enable it-
erative graph computations on the subgraphs on the GPU. For
active subgraphs to be processed on GPU at an iteration, the
prior work always streams each in its entirety to GPU, even
though only the neighboring information for its active ver-
tices will ever be used. In contrast, Scaph boosts performance
significantly by reducing the amount of such redundant data
transferred, thereby improving the effective utilization of the
host-GPU bandwidth drastically. The key novelty of Scaph is
to classify adaptively at each iteration whether a subgraph is a
high-value subgraph (if it is likely to be traversed extensively
in the current and future iterations) or a low-value subgraph
(otherwise). Scaph then schedules a sub-graph for graph pro-
cessing on GPU using two graph processing engines, one for
high-value subgraphs, which will be streamed to GPU entirely
and iterated over repeatedly, one for low-value subgraphs, for
which only the neighboring information needed for its active
vertices is transferred. Evaluation on real-world and synthe-
sized large-scale graphs shows that Scaph outperforms the
state-of-the-art, Totem (4.12×), Graphie (8.93×), and Garaph
(3.71×), on average.

1 Introduction

Graph processing is used in a variety of real-world applica-
tions, including path navigation [23], social network analy-
sis [9], and financial fraud detection [27]. Graph processing,
typically memory-bound, often benefits substantially from
memory optimizations [50]. Compared to CPU-based graph
systems [15, 16, 30, 36, 40, 46, 51, 68], GPU-accelerated graph
systems can have high internal bandwidth and massive par-
allelism, therefore offering superior speedup [19, 25, 39, 66],
even for graph algorithms that involve substantial light-weight
integer and comparison-based operations [28].

Unfortunately, many real-world graphs still cannot fit into
GPU memory to enjoy high-performance in-memory graph

GTX980 K40 P100
Arch. Maxwell Kepler Pascal
#SMXs 16 15 56
#Cores 2048 2880 3584
Memory 4GB 12GB 16GB
BW 224 GB/s 288 GB/s 720 GB/s C C S S S P M S T 0 . 0

0 . 5

1 . 0

No
rm

ali
ze

d S
pe

ed
up G T X 9 8 0 K 4 0 P 1 0 0

Figure 1: Performance of Graphie [17] for three representative
graph algorithms on fb-2009 (a graph with 139.1M vertices
and 12.3B edges, taking 137.8GB (unweighted) and 275.6GB
(weighted)) on three different generations of GPUs plugged
(separately) in a 28-core host machine with 512GB memory

processing. For example, NVIDIA’s high-end Tesla V100
has 32GB global memory [42], while real-world graphs such
as Facebook’s can easily reach the terabyte-scale [9]. This
gap has spurred the development of many distributed graph
systems, which partition a graph into sub-graphs and then
assign these sub-graphs to different machines for distributed
computing [13, 15, 16, 33, 36, 67]. However, these distributed
graph systems suffer from prohibitive communication over-
heads [8,15,58] and also require an extensive range of domain
knowledge to maintain [11, 16, 24, 38, 56, 59].

There is nowadays a viable alternative of turning a single
machine plugged in with a GPU to support scale-up large-
scale graph processing. Such a GPU-accelerated heteroge-
neous platform is easy to use and maintain [30, 62, 68]. In
addition, we can take advantage of the large host memory
(at the terabyte scale) to store large-scale graphs while still
enjoying high-performance graph processing on GPU.

In this paper, we focus on building graph systems on
GPU-accelerated heterogeneous platforms to achieve scale-
up graph processing for large graphs that cannot fit into GPU
memory. This would enable high-performance graph analytics
on large-scale graphs everywhere by simply plugging a GPU
into an off-the-shelf commodity PC. In this case, a large graph
must be partitioned into subgraphs at the host. Any subgraphs
to be processed on GPU must be streamed asynchronously to
GPU when some previously transferred subgraphs are being
concurrently processed on GPU (in an overlapping manner).
We consider vertex-centric graph processing [36], where a

USENIX Association 2020 USENIX Annual Technical Conference 573

graph algorithm is performed in a sequence of iterations until
convergence [15,36]. In each iteration, a graph algorithm pro-
cesses only the active vertices (vertices with ongoing updates)
in each subgraph, updates their neighbors (along their out-
going edges) and activates the neighbors whose values have
been updated. In this paper, we restrict ourselves to handle
large-scale graphs that can entirely fit into the host memory.
Meanwhile, all the vertex data, including vertex states (active
or not), are assumed to be resident in the GPU memory. In
contrast, the edge data of a graph are stored at the host and
partitioned into subgraphs. During graph processing, active
subgraphs (containing all out-going edges of an active vertex)
must be transferred to GPU for iterative processing.

Achieving scale-up graph processing for large-scale graphs
on GPU-accelerated heterogeneous platforms is challenging.
The power-law graphs [15] can result in substantial load im-
balance among threads and warps [39]. Irregular data accesses
made in graph algorithms often lead to non-coalesced mem-
ory accesses for GPU graph processing. Fortunately, effective
techniques for addressing these performance-limiting issues
exist [14, 17, 34]. Currently, the performance bottleneck in
a GPU-accelerated graph system has shifted to the limited
host-GPU bandwidth, which was relatively sufficient in the
past (e.g., ∼11.4GB/s for PCI-Express 3.0). However, exist-
ing graph processing engines [17, 26, 34, 47] focus still on
overcoming the GPU memory capacity limitation to enable
large-scale graph processing, without paying adequate atten-
tion to the effective utilization of the host-GPU bandwidth.

Simple heuristics are used to reduce the number of data
transfers. Totem [14] partitions a graph into two subgraphs,
one for the host and one for GPU, by keeping the amount of
data transfers to a minimum at the expense of severe load
imbalance. Garaph [34] concurrently processes all active sub-
graphs on both the host and GPU. Graphie [17] processes
all subgraphs on GPU but re-processes only the recently pro-
cessed subgraphs in the next iteration (before they are re-
moved from GPU memory). However, these graph systems
always transfer an active subgraph in its entirety to GPU
(even though only the neighboring information for its active
vertices will usually be used), resulting in poor utilization of
the host-GPU bandwidth. To see this, Figure 1 compares the
performance results of Graphie [17] for running three graph
algorithms on a large graph on a PC with three generations of
GPUs (one at a time). We see little performance gains when
increasingly more powerful GPUs are used. For example,
P100 has over 3× as many #SMX’s and 4× as much memory
as GTX980, but it offers small performance improvements.

Recently, hardware vendors have launched several ad-
vanced interconnect technologies to mitigate the impact of
the “bandwidth wall”. For example, compared to PCI-E 3.0,
NVLINK 2.0 (50GB/s per link) and PCI-E 4.0 (32GB/s) are
several times faster, but still cannot keep up with the growth
in GPU computing capabilities. Specifically, these advanced
technologies cannot yet provide∼500GB/s required by graph

analytics under existing computing platforms [1].
In this work, we argue that we can improve the perfor-

mance of large-scale graph processing on a GPU-accelerated
architecture significantly by improving the effective utiliza-
tion of the host-GPU bandwidth. Our key observation is that
the majority of the data in an active subgraph (once streamed
to GPU) are never used in current and future iterations (§2.2).
We introduce Scaph that achieves significantly improved per-
formance than state of the art by adopting value-driven dif-
ferential scheduling for active subgraphs. The key novelty is
to classify an active subgraph adaptively into a high-value
subgraph (if it will be extensively traversed in current and
future iterations) and a low-value subgraph (otherwise). Thus,
a high-value subgraph contains a significant amount of useful
data (UD) to be used by active vertices in the current itera-
tion and of potentially useful data (PUD) to be used by its
future active vertices in future iterations. On the other hand, a
low-value subgraph contains a lot of never-used data (NUD)
in current and future iterations.

Unlike earlier graph systems [17,26,34,47], which transfer
an active subgraph to GPU in its entirety (but with only its
UD used usually), Scaph uses the host to stream an active
sub-graph to GPU by using two graph processing engines for
handling high-value and low-value subgraphs, respectively.
For the high-value subgraph, it will be transferred to GPU
entirely. Inspired by the data movement reduction in out-of-
core settings [2, 53, 69], we propose to compute each high-
value subgraph multiple times to exploit its PUD ahead of
schedule for accelerating convergence. Unlike these earlier
efforts focusing on exploiting only the PUD in a subgraph, we
present a GPU-context-friendly delayed scheduling to enable
exploiting the PUD across subgraphs on GPU such that the
value of the high-value subgraphs can be maximized. For the
low-value subgraph, only the neighboring information for its
active vertices is transferred and scheduled once.

In summary, this paper makes the following contributions:

• Subgraph Value Characterization. We quantify the value
of a subgraph adaptively (dynamically) in terms of its UD
and PUD used in current and future iterations.

• Value-Driven Differential Scheduling. We propose a sched-
uler that adaptively distinguishes high- and low-value sub-
graphs in each iteration and dispatches a subgraph to an
appropriate graph processing engine for acceleration.

• Value-Driven Graph Processing Engines. We introduce two
graph processing engines to squeeze the most value out of
high- and low-value subgraphs to maximize the effective
utilization of the host-GPU bandwidth in each case.

• Evaluation. We evaluate Scaph on both real-world and syn-
thesized large graphs. Scaph outperforms state-of-the-art
heterogeneous graph systems, Totem (4.12×) [14], Graphie
(8.93×) [17], and Garaph (3.71×) [34], on average.

The rest of this paper is organized as follows. §2 describes
the background and motivation. §3 gives an overview of

574 2020 USENIX Annual Technical Conference USENIX Association

Host Mem.

High Medium
Low

SMX

SMXSMX

SMXSMX

SMX

SMX SMX SMX

M
C

M
C

PCI-E

core core

core core

core core

core core

Global Mem.

......

Large

Small

Host
Processor 0 Processor 1 ...

...

...

GPU Accelerator

register file

shared memory

instruction buffer

warp scheduler

core ...

warp

core core

warp

...

Figure 2: A GPU-accelerated heterogeneous architecture

Scaph. §4 describes value-driven differential scheduling while
§5 discusses how to accomplish this effectively. §6 presents
results. §7 discusses the related work. Finally, §8 concludes.

2 Background and Motivation

We first review the background. We then present some case
studies to reveal why the poor host-GPU bandwidth utilization
has limited the performance achieved by existing heteroge-
neous graph systems, finally motivating Scaph.

2.1 Host-GPU Heterogeneous Architectures
Figure 2 shows a representative GPU-accelerated heteroge-
neous architecture that integrates the hardware advantages
of the host (with a larger host memory) and the GPU (with
a stronger computing ability). A GPU consists of multiple
streaming multiprocessors (SMXs), each of which includes
hundreds of cores. Compared to the high-speed internal band-
width (e.g., ∼720GB/s for NVIDIA Tesla P100 [41]) of GPU
cores accessing global memory, a GPU is generally connected
to the host with a relatively slow interface. For example, the
host-GPU bandwidth via PCI Express 3.0 can be limited to
be as low as ∼11.4GB/s in practice [5]. This significant per-
formance gap often severely limits the performance potential
achieved on a GPU-accelerated heterogeneous architecture if
the host-GPU data transfers are frequent [17, 26]. This work
makes use of a PCI Express interconnect since it is commonly
used in the current commodity market.

2.2 A Motivating Study
Existing heterogeneous graph systems [17, 26, 47], with Gra-
phie [17] as a representative compared against in our evalua-
tion, generally use host memory to store large-scale graphs
(partitioned into subgraphs) and rely on GPUs exclusively to
accelerate graph analytics on these subgraphs. Figure 3 de-
picts their generic graph processing engine used, with the func-
tion calls in blue executed on GPU. Due to the limited GPU
memory, a graph G is first divided into subgraphs, G̃1, · · · , G̃n
(line 2). During the entire iterative graph processing, the ver-
tex data of G always reside in GPU memory, but the edge
data of G, which are spread across these subgraphs, will be
streamed to GPU on-demand [17, 26, 34, 47].

At each iteration (lines 5 – 12), G̃active represents the set
of active subgraphs, i.e., the ones containing some out-going
edges of an active vertex. In each iteration, all active vertices

1 Procedure SimpleSubgraphEngine(Graph G)
2 Load G̃’s subgraphs in {G̃1, · · · , G̃n} into the host
3 VertexInitialization(G)
4 G̃active← FindActiveSubgraph(G)
5 while G̃active 6= /0 do
6 foreach G̃i ∈ G̃active do
7 stream← DispatchStream(G̃i)
8 if G̃i is not resident in GPU memory then
9 GBuf← AllocateDeviceMemory()

10 TransferData(stream, GBuf, G̃i, CPU2GPU)

11 Kernel (stream, G̃i)

12 G̃active← FindActiveSubgraph(G)

/* Graph Processing Kernel on the GPU */
13 Procedure Kernel(Subgraph G̃)
14 foreach v ∈ G̃.SetOfVertices do
15 if v is active then
16 foreach e ∈ v.outedges do
17 if Update(v, e) = SUCCESS then
18 Activate(e.destination_vertex)

Figure 3: Existing graph processing engine on a GPU-
accelerated heterogeneous architecture (with the function
calls in blue executed on GPU and all the rest on the host)

Table 1: The amount of
used/unused data in the sub-
graphs transferred to GPU

Algo. Used Unused

TW
CC 12.15GB 21.44GB

SSSP 22.74GB 77.42GB
MST 25.78GB 106.47GB

UK
CC 43.41GB 688.43GB

SSSP 81.64GB 1302.85GB
MST 134.97GB 2099.25GB

 C C
 S S S P
 M S T

0 2 4 6 8 1 0 1 2 1 4 1 6

0 . 0 5

0 . 1 0

0 . 1 5

Gig
a T

ran
ve

rse
d E

dg
es

 Pe
r S

ec
.

S M X

Figure 4: Performance of
Graphie for TW with differ-
ent number of SMXs

are processed. If their out-going edges are not in the GPU,
their containing (active) subgraphs are transferred to GPU
in their entirety. Afterward, these active vertices will be pro-
cessed on the GPU (lines 13 – 18) to activate more destination
vertices possibly. Note that Graphie [17] may schedule first
the subgraphs processed at the end of the previous iteration
as they are still in GPU memory (line 8).

This simple graph processing engine does not effectively
utilize the limited, scarce host-GPU bandwidth since many
vertices in an active subgraph are not active. Simply transfer-
ring an entire subgraph to GPU (line 10) but consuming only
a fraction of its data (lines 14 – 15) will waste a considerable
amount of the host-GPU bandwidth. As a result, all the re-
quired data cannot arrive at the GPU promptly, limiting the
performance that can be potentially achieved on GPU.

Let us examine the ratios of the unused over used data in the
subgraphs transferred to GPU for three graph algorithms oper-
ating on two graphs, twitter (TW) [29] and uk-2007 (UK) [6],
by Graphie [17] using the graph processing engine given
in Figure 3. Table 1 gives the results obtained through an
offline trace analysis, showing that these ratios range from
6.29 to 36.17. This indicates that the host-GPU bandwidth
under Graphie is utilized rather ineffectively. Consequently,
as shown further in Figure 4, the performance of Graphie for

USENIX Association 2020 USENIX Annual Technical Conference 575

V2

V1

2

4

V3

1

V4

7

V5

6 V7

V6

5

4

3

Current Iteration Future Iterations

 Active
 Vertices

UD

PUD

NUD

Figure 5: UD, PUD, and NUD in a subgraph, which may
change across the iterations, illustrated for SSSP. The weight
of an edge denotes its distance. The shortest distance found
so far by SSSP at a vertex is depicted next to it in orange.

1 6 11 16 21 26
0

1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

11k

12k

13k
 NUD PUD UD

D
a
ta

 S
iz

e
(M

B
)

(a) CC
1 3 5 7 9 11 13 15 17

0

2k

4k

6k

8k

10k

12k

14k

16k
 NUD PUD UD

D
a
ta

 S
iz

e
(M

B
)

(b) SSSP
1 2 3 4 5 6 7 8 9 10 11 12

0

1k

2k

3k

4k

5k

6k

7k
 NUD PUD UD

D
a
ta

 S
iz

e
(M

B
)

(c) MST
Figure 6: The amount of UD, PUD, and NUD across the
iterations for three graph algorithms on twitter (TW) [29]

each graph algorithm (operating on TW) has plateaued as
soon as #SMXs = 4. However, mainstream GPU accelerators
usually have far more than 4 SMXs. For example, NVIDIA’s
Tesla K80 has 26 SMXs, while P100 has been integrated with
56 SMXs. Thus, a significant gap remains between the poor
provision of data and high-speed computation of GPU.

2.3 Value-Driven Subgraph Scheduling
For a subgraph, its active vertices vary across the iterations.
However, from the perspective of an active vertex, it always
contains three types of edge data, as illustrated in Figure 5:

• Useful Data (UD). These are the edge data associated with
all the active vertices in a subgraph, i.e., V1

2−→V3, V1
3−→V4,

and V2
1−→V4 in Figure 5. UD will definitely be used in the

current iteration (lines 15 – 16 in Figure 3) and must be
transferred to GPU [17, 26, 47].

• Potentially Useful Data (PUD). These are the edge data
associated with all the future active vertices in future itera-
tions in a subgraph. In Figure 5, PUD will be just V4

4−→V5,
since V4 will be the only one activated by both V1 and V2
in current and future iterations. Unlike UD, PUD is not ac-
tually used in the current iteration, but may be transferred
repeatedly to GPU if not handled carefully (as in the case
of Figure 3 where PUD is usually discarded).

• Never Used Data (NUD). These are the edge data that
will never be used again in a subgraph, associated with its
vertices that have converged and will thus never be active.
In Figure 5, NUD are V3

5−→V6 and V3
6−→V7.

Note that the same vertex may be activated many times
in different iterations. Given a subgraph, its UD, PUD, and
NUD computed at different iterations can vary dynamically.

Figure 6 shows the amount of UD, PUD, and NUD for the

Subgraphs

Subgraph
Dispatcher

High-value
subgraphs

Low-value
subgraphs

UD
Extraction Single-Round Processing

Multi-Round Processing

Low-Value Subgraph Processing Engine

High-Value Subgraph Processing Engine

HOST GPU

Value
Assessment

1

2

3

4

UD PUD NUD

Subgraph Scheduler

Figure 7: The workflow of Scaph

active subgraphs across all the iterations for three graph algo-
rithms operating on twitter (TW) [29], partitioned sequentially
into subgraphs of 32MB each. Graphie [17], a representative
of existing heterogeneous graph systems [17, 26, 47], wastes
the host-GPU bandwidth in two ways (Figure 3). First, PUD,
usually discarded by Graphie but needed in future iterations,
is substantial in earlier iterations. Second, NUD, which is
becoming increasingly more dominant as the iteration pro-
gresses, is streamed to GPU redundantly.

For a subgraph, it will be cost-ineffective to stream just
its UD, since its PUD cannot be exploited simultaneously.
Instead, our key insight for improving the effective utilization
of the host-GPU bandwidth is to look beyond the current iter-
ation, by considering not only its UD in the current iteration
but also its PUD in future iterations. Based on a cost-benefit
analysis, we aim to leverage rather than discard its PUD (once
streamed to GPU) in iterative graph processing. Thus, the
value of a subgraph at an iteration should be measured in
terms of not only its UD but also its PUD.

Now, how do we extract the UD and PUD from a subgraph
at a given iteration so that both can be transferred to GPU?
Extracting the UD from a subgraph is easy as its active ver-
tices in the current iteration are known (lines 4 and 12 in
Figure 3). However, extracting precisely the PUD (without
NUD) from a subgraph is difficult, as its future active vertices
are not known yet during the current iteration.

For a given subgraph, we propose to predict its PUD size
at an iteration from the UD sizes in the current and past
iterations. This enables to adopt a value-driven differential
scheduler that computes the value of a subgraph adaptively
and schedules it depending on if it has a high value (when its
UD and PUD are dominant) or a low value (otherwise).

3 Scaph Overview
Figure 7 shows the workflow of Scaph, in which all the sub-
graphs of a graph are computed on the GPU while the host
is responsible for their preparation. At each iteration, its dis-
patcher classifies a subgraph into either a high-value or low-
value subgraph and sends it to its corresponding engine to
facilitate value-driven differential scheduling. Both engines
schedule their subgraphs for acceleration on GPU indepen-
dently but concurrently.

Value-Driven Subgraph Dispatcher. Conceptually, the
value of a subgraph at a given iteration is proportional to the

576 2020 USENIX Annual Technical Conference USENIX Association

amount of its UD and PUD. The key insight here is that, for
a given subgraph, although accurately computing its PUD is
difficult, its PUD size can be approximated based on the UD
sizes in the current and past iterations. For a subgraph at a
given iteration, Scaph’s subgraph dispatcher (§4), classifies it
adaptively as a high-value subgraph if it contains a sufficient
amount of UD and PUD to justify its transfer in its entirety to
GPU and a low-value subgraph to request only its UD to be
transferred to GPU otherwise. This is done adaptively as the
value of a subgraph changes as the iteration progresses.

Value-Driven Subgraph Scheduler. Scaph has two sep-
arate graph processing engines, described in §5, to process
differentially high- and low-value subgraphs. For a high-value
subgraph, we use a queue-assisted multi-round processing en-
gine, which streams it entirely from the host to GPU (if it
is not in GPU memory) and exploits both its UD and PUD
adequately to enable faster convergence. For a low-value sub-
graph, Scaph relies on the graph processing engine given
in Figure 3 but transfers only its UD to GPU, with the UD
extracted in a NUMA-aware manner on the host.

Scaph is essentially a hybrid graph system that allows out-
of-order computation of high-value subgraphs in each syn-
chronous iteration. The use of asynchronous execution allows
fast convergence but also changes the vertex scheduling prior-
ity of subgraphs. Therefore, a graph algorithm can use Scaph
safely for preserving the convergence and the converged val-
ues, if it satisfies the correctness condition that the final vertex
results are insensitive to the value propagation order.

4 Value-Driven Subgraph Dispatching
In Section 4.1, we quantify the value of a subgraph. In Sec-
tion 4.2, we discuss how to estimate the value of a subgraph
to support value-driven differential scheduling.

4.1 Quantifying the Value of a Subgraph

Graph computations proceed iteratively until convergence.
Conceptually, the value of a subgraph G̃ can be measured
in terms of its UD used in the current iteration and its PUD
used in future iterations. Therefore, the value of G̃, denoted
Val(G̃), from the current iteration Cur to the MAX-th iteration
(beyond which G̃ is no longer active), is defined as:

Val(G̃) =
MAX

∑
i=Cur

∑
v∈G̃.SetOfVertices

D(v)∗Ai(v) (1)

where D(v) represents the number of out-going edges of ver-
tex v restricted to G̃ and Ai(v) ∈ {0,1} indicates that v is ac-
tive (inactive) in the i-th iteration when Ai(v) = 1 (Ai(v) = 0).
Val(G̃) represents the amount of computations arising from
G̃ from the current iteration until convergence. According
to Equation (1), the PUD of a subgraph is quantized by the
number of its edges that will be used in future iterations.

The value of a subgraph depends upon its active vertices
and their degrees. In the case of uniform degree distribu-
tions, the activation status of vertices can still differentiate the
amount of UD, PUD, and NUD for a subgraph.

4.2 Value-Driven Differential Scheduling
Scaph emphasizes value-driven data transfers, which should
directly reflect how the bandwidth is effectively utilized in
order to enable faster convergence.

The intuition behind Val(G̃) is clear. If Val(G̃) is high, G̃
should be a high-value subgraph. Then we should transfer
G̃ as a whole to GPU and also exploit its UD and PUD ade-
quately by iterating over G̃ multiple times before it is removed
from GPU memory. Otherwise, G̃ should be treated as a low-
value subgraph. In this case, we will opt to transfer only its
UD to GPU and just iterate over the resulting G̃ once.

If G̃ is a high-value subgraph, then the throughput of pro-
cessing G̃ on GPU can be measured as follows:

THV (G̃) =
|UD|+λ|PUD|
|G̃|/BW + tbarrier

(2)

The denominator |G̃|/BW + tbarrier, which represents the
data transfer time for G̃, is used to approximate the time
elapsed on processing G̃ by assuming a complete overlap
between data transfers and computations on GPU. As G̃ is
transferred in its entirety to GPU, |G̃| denotes the amount of
data thus transferred, BW represents the host-GPU bandwidth,
and Tbarrier is the synchronization overhead for G̃ (amortized
by the number of active subgraphs processed). The numerator
|UD|+ λ ∗ |PUD| represents the amount of UD and PUD
accessed when G̃ is iterated over on GPU. We use a balancing
factor λ to decay |PUD|, where 0 6 λ 6 1, to signify the
actual amount of PUD accessed.

If G̃ is a low-value subgraph, then we have:

TLV (G̃) =
|UD|

|UD|/BW + tbarrier
(3)

This time, only the UD of G̃ is streamed to GPU.
Now, G̃ is a high-value subgraph if THV (G̃)> TLV (G̃) and

a low-value subgraph otherwise. Thus, we need to analyze:

|UD|+λ|PUD|(1+ tbarrier

|UD|/BW
)> |G̃| (4)

To verify THV (G̃) > TLV (G̃), the key lies in determining
|PUD|, which is difficult to obtain directly. In fact, for a sub-
graph, its PUD is technically activated from its UD, motivat-
ing us to estimate the PUD of a subgraph heuristically based
on the UD of the same subgraph. In this work, we consider a
subgraph to have a high value if either of the following two
conditions (which we found to work well across all of our ap-
plications, as confirmed in §6) holds to simplify Equation (4):

USENIX Association 2020 USENIX Annual Technical Conference 577

1 Procedure VDDSEngine(Graph G)
2 Distribute G’s subgraphs {G̃1,· · · ,G̃n} to NUMA

nodes
3 VertexInitialization(G)
4 G̃active← FindActiveSubgraph(G)
5 Transfer VertexStates from GPU to CPU
6 while G̃active 6= /0 do
7 foreach G̃ ∈ G̃active do
8 if Predictor(G̃) = “HIGH-VALUE” then
9 Push(HVworklist, G̃)

10 else
11 Push(LVworklist, G̃)

12 HVSPEngine(HVworklist)
13 LVSPEngine(LVworklist, VertexStates)
14 G̃active← FindActiveSubgraph(G)
15 Transfer VertexStates from GPU to CPU

Figure 8: Value-driven differential scheduling for high- and
low-value subgraphs, with the calls in blue executed on GPU

• |UD|/|G̃)|> α. This indicates that UD is dominant among
G̃. Intuitively, G̃ is a high-value subgraph.

• |UDcurrent |− |UDlast |> 0 and |UD|/|G̃|> β. UD remains
a medium level and is also growing increasingly over iter-
ation, indicating the potentially growing PUD. G̃ can be
thus treated as a high-value subgraph.

When α is relatively large, which implies that the UD in
a subgraph tends to be dominant, we can determine if it is a
high-value subgraph by considering only its UD. β is needed
to identify the high-value subgraphs where the amount of UD
is relatively low and that of PUD is potentially high. Thus,
β is often smaller than α. As shown in Table 1, considering
both together is often more effective than considering either
alone. In this work, α and β are set empirically as 50% and
30% to represent a nice point for yielding good results.

Figure 8 gives our value-driven differential scheduler,
VDDSEngine(), for scheduling a graph G. Initially, G is parti-
tioned into subgraphs, G̃1, · · · , G̃n, at the host and distributed
across its NUMA nodes (to facilitate their scheduling). Scaph
uses two graph processing engines, as described in §5 be-
low, HVSPEngine() for scheduling high-value subgraphs, and
LVSPEngine() for scheduling low-value subgraphs. In line 8,
Scaph uses the above heuristic predictor to estimate the value
of an active subgraph. Note that both engines work indepen-
dently but concurrently. LVSPEngine() needs VertexStates
in order to perform UD extraction for the active vertices in
each subgraph. The UD extraction can be overlapped effec-
tively with the data transfers in HVSPEngine(). At the end
of each iteration (line 15), Scaph will transfer back the up-
dated vertices from the GPU to the CPU. Edges, which are
not modified, are thus not transferred.

5 Value-Driven Subgraph Processing

Scaph has two graph processing engines. We describe the one
for handling high-value subgraphs in §5.1 and the one for
handling low-value subgraphs in §5.2.

95

1

63
2

4
7

8

G1 G2 G3UD

PUD

NUD

Active
Vertices

Figure 9: An example illustrating value propagation across
the subgraphs, with ¶ activatable by ¹ and ¼. The PUD in
G̃1 can be exploited only if G̃2 and/or G̃3 are processed first.

5.1 High-Value Subgraph Processing

The key to extracting the most value out of high-value sub-
graphs lies in how to fully exploit their PUD. A useful idea
of running each loaded subgraph multiple times is leveraged
in the out-of-core settings [2, 53, 69] to exploit the intrinsic
value in a subgraph for reducing the number of I/Os between
memory and disk. However, under a GPU-accelerated hetero-
geneous architecture, subgraphs must often be small enough
(in several tens of millions of bytes [17, 26]) against the ones
in out-of-core settings, to enable fine-grained GPU scheduling.
In this case, simply iterating over such a small-sized subgraph
multiple times is often ineffective, since it can exploit only the
PUD of its active vertices activated by its other active vertices
but not active vertices from other subgraphs.

In Scaph, we improve the PUD exploitation significantly by
enabling exploiting the external value across the subgraphs.
Our key observation is that: given a subgraph already avail-
able in GPU memory, scheduling it again after a period of
delay can expose its PUD more fully than processing it repeat-
edly. Figure 9 illustrates this with three subgraphs, exhibiting
some complex inter-subgraph data dependencies (as is often
the case in practice). We see that ¶ in G̃1 can be activated by
¹ in G̃2 and ¼ in G̃3. Once ¶ in G̃1 is activated, · in G̃1 may
get activated (as shown). In this case, the edge data for ¶→·,
¶→¸, and ·→¸ are part of the PUD of G̃1. By process-
ing G̃1 after G̃2 or G̃3 or both (even better), we can exploit
such PUD to enable faster convergence. That is, repeatedly
processing G̃1 would not help.

Queue-Assisted Multi-Round Processing. The schedul-
ing of high-value subgraphs at a given iteration is shown in
Figure 10. We use a k-level priority queue (PQ1, . . . ,PQk)
to enable re-scheduling a GPU-resident subgraph after some
delay, where k indicates the maximum number of times some
subgraphs have been processed in the current iteration. Thus,
k varies from iteration to iteration. Figure 11 shows a case.

In each differential scheduling iteration orchestrated by
VDDSEngine (Figure 8), HVSPEngine(worklist) is invoked,
where worklist contains all the high-value subgraphs in this it-
eration. During the pre-processing (lines 2–6), each subgraph
G̃i in worklist is examined in turn. G̃i will be enqueued into
PQ1 (if not already there) if G̃i remains to be GPU-resident
(i.e., in one of {PQ1, . . . ,PQk}) from the previous iteration
and inserted into TransSet (waiting to be streamed to GPU)
otherwise. Thus, there are two concurrently executed modules,

578 2020 USENIX Annual Technical Conference USENIX Association

1 Procedure HVSPEngine(worklist)
2 foreach G̃i ∈ worklist do
3 if G̃i is resident in GPU memory then
4 Push(PQ1, i)
5 else
6 Push(TransSet, i)

/* Subgraph Transferring Module */
7 while TransSet 6= /0 do
8 if copystream is available then
9 i← Pop(TransSet)

10 if GPU has available memory for one subgraph then
11 Gbuf← AllocateDeviceMemory()
12 else
13 j← Pop(PQk)
14 Gbuf← GetGbuf(G̃ j)

15 TransferData(copystream, Gbuf, G̃i, CPU2GPU)
16 Push(PQ1, i)

/* Subgraph Scheduling Module */
17 while worklist 6= /0 do
18 if at least one stream in execstreams is available then
19 stream← Available(execstreams)

/* Exploit the UD of a subgraph in PQ1 */
20 if PQ1 6= /0 then
21 i← Pop(PQ1)
22 Kernel(stream,G̃i)
23 Erase(worklist, G̃i)

/* Exploit the PUD of a subgraph in PQi, where i6=1
*/

24 else
25 for p← 2 to k do
26 if PQp 6= /0 then
27 i← Pop(PQp)
28 Kernel(stream,G̃i)
29 break

30 priority← GetPriority(G̃i)
31 Push(PQpriority+1, G̃i)

Figure 10: High-value subgraph processing in each iteration
(called from Figure 8). The Kernel function is from Figure 3.
The two colored code regions are executed in parallel.

Subgraph Transferring and Subgraph Scheduling.
The Subgraph Transferring module (lines 7 – 16) is respon-

sible for streaming asynchronously the subgraphs in TransSet
to GPU. This is done by using some free GPU memory when-
ever possible (line 11) or making some free by dequeuing a
subgraph from the multi-level queue (lines 13 – 14). Due to
lines 4 and 16, all subgraphs in worklist are initially enqueued
into PQ1, and thus assigned with the highest priority.

The Subgraph Scheduling module (lines 17 – 31) is re-
sponsible for scheduling the subgraphs in PQ1, · · · ,PQk. The
subgraphs in PQ1 are processed first (for the first time in
the current iteration) to exploit their UD (lines 21 – 23). If
PQ1 = /0 (implying that some subgraphs are still being trans-
ferred to GPU asynchronously), the scheduler will dequeue a
subgraph from a non-empty PQi, where i is the smallest, to
exploit its PUD (lines 25 – 29), as this will be the i-th time
that the subgraph is processed (in the i-th round) of the current
iteration. Simultaneously, the data transfers for PQ1 and the
computations for PQ2, · · · ,PQk are maximally overlapped,
too. In either case, the priority of a subgraph, once processed,
drops by one (lines 30 – 31). This delayed re-scheduling at-

TransSet
Scheduling
Priority...

PQk

PQ2

PQ1

G9

G7 G4 G3

G8 G6

G5 G2 G1

Figure 11: Subgraph processing with a k-level priority queue.
PQi represents a queue PQ with the i-th priority. The smaller
i is, the higher the priority is. All the subgraphs streamed from
the host to GPU enter into PQ1 initially.

tempts to maximize the PUD exploitation, by, e.g., increasing
the chances for G̃1 to be processed after G̃2 and/or G̃3 in Fig-
ure 9 (as motivated earlier). Consider G̃3, which resides in
PQ1, in Figure 11. Once we have exploited its UD, we will
move it to PQ2 so that we can exploit its PUD after G̃7, G̃4,
G̃8, and G̃6 have been processed.

Our scheduler with a multi-level priority queue guarantees
that subgraphs are scheduled fairly, preventing them from
bearing too many useless computations in the sense that the
data of a vertex is computed but not updated.

Time and Space Complexity Analysis. k is expected to
be bounded by BW ′

BW where BW ′ is the internal bandwidth of
GPU and BW is the host-GPU bandwidth. In our computing
platform, BW ′ = 224GB/s and BW = 11.4GB/s. Thus, k 6 20
is typically expected.

As for the space complexity, a k-level priority queue is
used to keep track of only the indices of the active sub-
graphs processed in an iteration. Thus, the worst complexity is
O(MemGPU × sizeof(SubgraphIndex)

|G̃|), where MemGPU is the global

memory size and |G̃| is the size of a subgraph G̃. In our com-
puting platform, we have used 4GB×4B

32MB = 0.5KB.

5.2 Low-Value Subgraph Processing
The key to exploiting the most value of low-value subgraphs is
to extract their UD efficiently. We use multiple CPU cores at
the host to parallelize the UD extraction. Due to non-uniform
memory access (NUMA), however, scanning naively all the
vertices in a subgraph to extract its UD can still be costly. In
addition, different subgraphs exhibit different amounts of UD.
Such scanning tasks are also prone to load imbalance.

Figure 12 gives our scheduler for low-value subgraphs.
In each value-driven scheduling iteration orchestrated
by VDDSEngine() in Figure 8, LVSPEngine(worklist,
VertexStates) is invoked, where worklist contains all the
low-value subgraphs that are active in this iteration, with their
active vertices indicated in VertexStates. There are three mod-
ules, UD Extraction, Subgraph Transferring, and Subgraph
Scheduling, which all execute concurrently. The major contri-
bution here is a NUMA-aware parallel UD extraction.

UD Extraction. Initially, all the subgraphs partitioned
from a graph are evenly distributed to different NUMA nodes,

USENIX Association 2020 USENIX Annual Technical Conference 579

1 Procedure LVSPEngine(worklist, VertexStates)
/* UD Extraction Module */

2 para_for G̃i ∈ worklist do
3 G̃′i ← UDExtraction(G̃i, VertexStates)
4 Push(TransSet, i)

/* Subgraph Transferring Module */
5 while TransSet 6= /0 do
6 if copystream is available then
7 i← Pop(TransSet)
8 Gbuf← AllocateDeviceMemory()
9 TransferData(copystream, Gbuf, G̃′i, CPU2GPU)

10 Push(ExecFIFO, i)

/* Subgraph Scheduling Module */
11 while worklist 6= /0 do
12 if at least one stream in execstreams is available then
13 stream← Available(execstreams)
14 i← Pop(ExecFIFO)
15 Kernel(stream, G̃′i)
16 Erase(worklist, G̃i)

/* Extract UD on the host */
17 Procedure UDExtraction(G̃, VertexStates)
18 G̃′ ← /0

19 Offset← 0
20 while offset 6 |G̃.SetOfVertices| do
21 WORD← Load(VertexStates(G̃).bitmap, offset, 32)
22 if WORD 6= 0 then
23 foreach BYTE ∈WORD do
24 if BYTE 6= 0 then
25 foreach BIT ∈ BYTE do
26 if BIT = 1 then
27 v← GetVert(offset, BYTE,

BIT)
28 G̃′ ← G̃′

⋃
v.outedges

29 offset← offset + 32

30 return G̃′

Figure 12: Low-value subgraph processing in each iteration
(called from Figure 8). The Kernel function is from Figure 3.
The three shaded code regions are executed in parallel.

with a NUMA node consisting of a CPU socket and its own
memory banks (line 2 in Figure 8). The UD extraction module
is given in terms of lines 2 – 4 and lines 17 – 30. To boost
performance and improve intra-node load balancing, the UD
extraction for each subgraph is done in its own thread, which
is bound to the NUMA node storing the subgraph (line 3).
To improve inter-node load balancing (as a minor optimiza-
tion), we also duplicate in a NUMA node an equal number of
randomly selected subgraphs from the other nodes (if there
is still some memory space available). We adopt a simple
bitmap-based approach to extract the UD from a subgraph G̃
efficiently (lines 17–30). All its vertices are stored in a bitmap,
VertexStates(G̃).bitmap, with 1 (0) indicating that the corre-
sponding vertex in G̃ is active (inactive). To accelerate its
construction, the total of active vertices is computed on GPU.

Unlike high-value subgraphs, which can each be stored
in the same-sized chunk in GPU memory (§5.1), low-value
subgraphs may give rise to UD-induced subgraphs of varying
sizes. To reduce fragmentation, Scaph further divides each
chunk for storing a subgraph into smaller tiles (totaling 32
in our implementation). To store a UD-induced subgraph in
GPU memory, Scaph will try to find consecutive tiles first in

a partially filled chunk and then in a vacant chunk.
Subgraph Transferring. As in the case of high-value sub-

graph streaming in Figure 10, this module proceeds similarly
except that a multi-level queue is no longer used.

Subgraph Scheduling. As in the case of scheduling high-
value subgraphs to GPU in Figure 10, this module schedules
UD-induced subgraphs (without using a multi-level queue).

6 Evaluation
We evaluate the efficiency and scalability of Scaph by answer-
ing the following four research questions (RQs):

• RQ1: How much more efficient is Scaph over state-of-the-
art heterogeneous graph systems?

• RQ2: How effective is Scaph’s value-driven differential
scheduling in helping it achieve the overall performance?

• RQ3: How well does Scaph scale?
• RQ4: How much runtime overhead does Scaph introduce?

6.1 Experimental Setup
We compare Scaph with the following three state-of-the-art
CPU-GPU heterogeneous graph systems:

• Totem [14]. A graph is divided into two subgraphs, which
are processed by CPU and GPU, respectively. At the end
of each iteration, the states of the active vertices that are
activated reciprocally by the two subgraphs are exchanged.

• Graphie [17]. Like Scaph, a graph is initially partitioned at
the host CPU and the subgraphs are then streamed to GPU
for graph processing. Unlike Scaph, however, all active
subgraphs are transferred to GPU in their entirety.

• Garaph [34]. At an iteration, all the subgraphs that are
partitioned from a graph are processed concurrently by
both the host and GPU if the number of outgoing edges of
all active vertices in the entire graph exceeds 50% of the
total number of edges and on the host only otherwise.

Subgraph Size. For Totem, Graphie, and Garaph, the sizes
of subgraphs are selected from their papers. In Scaph, a graph
is partitioned into subgraphs of 32MB each for several reasons.
First, the host-GPU bandwidth tends to be under utilized with
smaller sizes. Second, subgraphs will be streamed to GPU
more frequently with larger sizes, as they tend to contain ac-
tive vertices for more iterations. Finally, the kernel launching
overheads appear to be well hidden with 32MB.

Graph Applications. We consider the first three typical
graph algorithms (from different categories) and the latter
two actual graph workloads (with different complexities): (1)
Single-Source Shortest Path (SSSP) [60]–Sequential traver-
sal, (2) Connected Components (CC) [20]–Parallel traversal,
(3) Minimum Spanning Tree (MST) [37]–Graph mutation,
(4) Neural Network Digit Recognition (NNDR) [4], and (5)
Graph-based Circuit Simulation (GCS) [25]. All these al-
gorithms fit the correctness criteria discussed in §3, though
NNDR and GCS are already typically executed in an asyn-

580 2020 USENIX Annual Technical Conference USENIX Association

Table 2: Graph datasets. The graph size is evaluated in the
weighted edgelist representation.

Dataset #Vertices #Edges Avg. Degree Size
twitter (TW) 41.7M 1.47B 39.5 32.8GB

comfriend (FR) 124.8M 1.81B 14.5 40.4GB
sk-2005 (SK) 50.6 M 1.95B 38.5 43.6GB
uk-2007 (UK) 105.9M 3.74B 35.3 83.6GB

altavista-2002 (AV) 1.41G 6.64B 4.695 148.3GB
fb-2009 (FB) 139.1M 12.3B 88.7 275.6GB

RMAT-k (25<k<31) 2k 2k+4 16 -

Table 3: Execution times of Scaph, Totem, Graphie, and
Garaph. Here, ‘N/A’ indicates that a graph algorithm has
abnormally terminated due to some runtime error.
Algorithm System Execution Time (Secs)

TW FR SK UK AV FB

CC

Totem 2.41 5.01 2.72 9.32 N/A N/A
Graphie 1.89 4.46 16.53 23.61 57.49 133.21
Garaph 1.17 2.53 2.90 7.07 31.46 86.24
Scaph 0.28 0.91 1.08 2.47 7.08 15.35

SSSP

Totem 5.94 5.78 7.07 19.21 N/A N/A
Graphie 5.32 9.24 52.01 89.44 218.51 413.07
Garaph 3.71 4.45 6.83 16.52 114.68 204.35
Scaph 0.92 1.67 3.17 6.64 29.06 38.87

MST

Totem 7.93 10.90 21.33 42.84 N/A N/A
Graphie 8.45 16.24 32.19 53.22 198.85 304.51
Garaph 4.14 7.38 12.35 25.82 101.25 131.45
Scaph 1.39 1.99 2.93 6.36 25.23 35.41

NNDR

Totem 6.47 6.63 12.17 29.43 N/A N/A
Graphie 5.38 7.32 28.19 49.81 234.04 457.13
Garaph 3.41 4.76 9.28 28.74 116.34 175.34
Scaph 1.77 2.08 2.99 5.13 20.19 33.55

GCS

Totem 19.77 23.04 59.51 98.11 N/A N/A
Graphie 24.08 38.84 50.34 93.29 454.41 834.59
Garaph 10.53 15.56 20.438 39.45 185.58 299.76
Scaph 3.33 4.08 10.46 16.13 39.52 54.94

chronous way, while the other algorithms are typically run in
a synchronous, iterative manner.

Graph Datasets. We use (1) 6 real-world graphs [6, 31])
for performance evaluation, and (2) 5 large synthesized graphs
(generated by the RMAT tool [7]) for scalability evaluation.
Table 2 gives all the graphs used. For SSSP and MST that
work on the weighted graphs, we randomly assign each edge
of an unweighted graph with a weight ranging from 1 to 100.

Computing Platform. We evaluate Scaph on a machine
where the host is equipped with two Intel 14-core Xeon CPUs,
E5-2680v4@2.40GHz with 512GB memory (256GB on each
of the two NUMA nodes). The GPU is NVIDIA P100 (with
56 SMXs, 3584 cores, and 16GB memory), connected to the
host via the PCI Express 3.0 at 16x. The host-GPU bandwidth
is around 11.4GB/s. We use NVCC V8.0.61 and g++ V5.4.0
to compile all the applications under “-O3”. The operating
system is Ubuntu 14.04 with Linux kernel 4.13.

6.2 RQ1: Efficiency

To answer RQ1, we compare Scaph against Totem [14], Gra-
phie [17], and Garaph [34]. Table 3 depicts the results.

Scaph vs. Totem. The speedup of Scaph over Totem ranges
from 2.23× (for SSSP on SK) to 7.64× (for CC on TW) with
an average of 4.12×. Totem’s critical performance bottleneck
lies in its severe load imbalance, as it partitions each graph
into only two subgraphs, one for the host (with 512GB mem-
ory) and one for GPU (with only 16GB memory). As a result,
Totem cannot tap GPU’s processing power to exploit ade-
quately the UD and PUD in a graph. Its bottleneck is to ask
the CPU to process most of the graph data, which would have
been processed more efficiently by the GPU otherwise. A typ-
ical measurement for FB is for the CPU to handle 358.1GB
and the GPU to handle only 16GB. In contrast, Scaph streams
all subgraphs dynamically to GPU with value-driven differ-
ential scheduling, thereby exploiting more adequately GPU’s
processing power, and consequently, the UD and PUD in all
the subgraphs. In the case of CC operating on FR, SK, and
UK, their GPU portions under Totem are 39.6%, 36.7%, and
19.1%, respectively. As a result, Scaph outperforms Totem by
5.51x (FR), 2.52x (SK), and 3.77x (UK).

Scaph vs. Graphie. Scaph is faster than Graphie by 8.93×
on average, with its speedup ranging from 3.03× (for NNDR
on TW) to 16.41× (for SSSP on SK). Both Graphie and
Scaph process all subgraphs on GPU only. So Graphie can
be understood as a version of Scaph, where every subgraph
is treated as a high-value subgraph except that only its UD is
used but its PUD is exploited rather inadequately. Graphie is
inferior to Scaph for several reasons. First, Graphie transfers
an active subgraph entirely to GPU even though it contains
only a few active vertices (i.e., a lot of NUD), wasting the
host-GPU bandwidth. Second, Graphie exploits the UD only
but PUD inadequately in an active subgraph.

Let us examine SSSP on SK, where the speedup of Scaph
over Graphie is the highest (at 16.41×). Graphie converges
in 75 iterations, by transferring 18,019 subgraphs totaling
374.4GB data to GPU. In contrast, Scaph converges in 16 iter-
ations, by transferring 9,897 subgraphs totaling only 19.6GB
data, comprising 13.2GB for 798 high-value subgraphs and
6.4GB for 9,099 low-value subgraphs. For Scaph, its signifi-
cantly improved utilization for the host-GPU bandwidth has
resulted in its significantly improved overall performance.

Scaph vs. Garaph. Scaph is faster than Garaph by 3.71×,
with an overall rang from 1.93× (for NNDR on TW) to 5.62×
(for CC on FB). Unlike Scaph, Garaph processes all the sub-
graphs on both the host and GPU if the active vertices in the
entire graph have a lot of outgoing edges and on the host only
otherwise (§6.1). Despite this, Garaph cannot distinguish high-
value from low-value subgraphs as Scaph does. While being
more effective than Graphie in reducing the amount of NUD
transferred, Garaph is inferior to Scaph as it still transfers
more NUD to GPU and exploits PUD less adequately.

Let us examine CC on FB, where the speedup of Scaph
over Garaph is the highest (at 5.62×). Garaph processes all
the subgraphs on the host only (as the outgoing edges of FB’s
active vertices over the total is under 6.9% at any iteration), by

USENIX Association 2020 USENIX Annual Technical Conference 581

TW SK FR
U

K
R
28

R
29

R
30

A
V

G
TW SK FR

U
K

R
28

R
29

R
30

A
V

G
TW SK FR

U
K

R
28

R
29

R
30

A
V

G
TW SK FR

U
K

R
28

R
29

R
30

A
V

G
TW SK FR

U
K

R
28

R
29

R
30

A
V

G
0

2

4

6

8

GCSNNDRMSTSSSP

S
p

e
e
d

u
p

 Scaph-LBASE Scaph-HBASE Scaph-HVSP Scaph-LVSP Scaph

CC

Figure 13: Speedup of Scaph, Scaph-HVSP, and Scaph-LVSP (normalized to Scaph-LBASE)

using a so-called notify-pull model. In contrast, Scaph uses
a fine-grained value-driven differential scheduler to identify
high-value and low-value subgraphs even though it has active
vertices only in its local regions at any iteration, so that the
GPU’s processing power is adequately exploited.

6.3 RQ2: Effectiveness
To answer RQ2, we consider four variations of Scaph: (1)
Scaph-HVSP, where all the low-value subgraphs can be un-
derstood as being misidentified as high-value subgraphs, (2)
Scaph-LVSP, where all the high-value subgraphs can be un-
derstood as being misidentified as low-value subgraphs, (3)
Scaph-HBASE, which applies the differential processing, but
every subgraph transferred to the GPU has kept computation
with a specific number of times (without using queue-based
delayed scheduling), as used in CLIP [2], and (4) Scaph-
LBASE, a variation of Scaph-LVSP except that every sub-
graph is streamed to GPU entirely (without UD extraction),
as used in Graphie [17].

Figure 13 gives the results. We see that neither of Scaph-
HVSP and Scaph-LVSP is always better than the other, and
also Scaph is the best performer for all the algorithms on all
the graphs. Thus, Scaph’s value-driven differential scheduling
with heuristic subgraph identification is highly effective.

Scaph-HVSP. Scaph-HVSP achieves better speedups for
the graphs where algorithms take longer iterations to con-
verge, as this allows it to exploit PUD more adequately and
thus stream less redundant data to GPU. For example, each
algorithm on SK has the longest number of iterations against
on other graphs, thereby delivering considerable speedups.
We also see that Scaph-HBASE is significantly inferior to
Scaph-HVSP. This is because small subgraphs often contain
very little PUD from themselves worthy of being exploited.
Our queue-based scheduling allows the availability of PUD
from other subgraphs via delayed scheduling. Thus, multi-
time processing under Scaph-HVSP can expose significantly
more PUD than that under Scaph-HBASE (i.e., by simply
applying the idea from CLIP) for boosting performance.

Scaph-LVSP. Just like Scaph-HVSP, Scaph-LVSP can be
quite effective in some cases. For example, the top two
speedups achieved by Scaph-LVSP for MST are 5.26x and
3.58x on SK (14.8GB) and UK (27.61GB), respectively. The
corresponding speedups from Scaph are 5.99x and 4.19x.
However, Scaph-LVSP can be rather ineffective for the graphs
that can nearly fit into the 16GB GPU memory, since Scaph-

LBASE will then make GPU-resident for nearly all the sub-
graphs. For R28 with 16.78GB (unweighted) and 29.48GB
(weighted), Scaph-LVSP offers little or even negative benefits
for CC, NNDR, and GCS (on unweighted graphs) but positive
ones for SSSP and MST (on weighted graphs).

Scaph. Scaph obtains the best of both worlds, Scaph-HVSP
and Scaph-LVSP. For CC, SSSP, MST, NNDR, and GCS, the
average speedups achieved by Scaph-HVSP (Scaph-LVSP)
are 1.63x, 1.87x, 1.66x, 1.84, and 2.18x (1.33x, 2.12x, 2.41x,
2.15x, and 1.90x), respectively. As for Scaph, these average
speedups are 2.38x, 3.79x, 3.01x, 3.12x, and 3.44x. Note that
Scaph has the highest gain on SK, where Scaph-HVLP and
Scaph-LVSP are also most effective.

6.4 RQ3: Sensitivity Study
To answer RQ3, we investigate Scaph’s scalability in terms
of #SMXs, graph sizes, memory sizes, and GPU generations.
We select Graphie as a reference on CC, MST, and NNDR.

#SMXs. Figure 14(a) compares Scaph and Graphie in
terms of CC, MST, and NNDR on UK [6] for varying #SMXs
by using all the 8GB GPU memory available. Scaph is signifi-
cantly more scalable than Graphie for all the three graph algo-
rithms, since Scaph can utilize the host-GPU bandwidth more
effectively as already motivated earlier (Figures 1 and 4). For
example, Graphie-MST reaches its plateau when #SMXs = 2,
but Scaph-MST continues to offer a scalable performance
improvement. CC and NNDR exhibit a similar trend.

However, Scaph’s scalability degrades gradually as #SMXs
increases, due to the integrated impacts of the intrinsic random
accesses of graph processing on GPU [5, 25, 57] and the in-
creasingly more SMXs competing for the memory bandwidth.
As also shown in Figure 14(a), Groute [5], an in-memory
graph system that can not handle over-subscription, on UK-
2007@1M [6] (a sample graph with 1M vertices and 41M
edges generated from UK), suffers from exactly the same
scalability problem, which is beyond the scope of this work.
We leave addressing this problem in future work.

Graph Sizes. Figure 14(b) compares Scaph and Graphie
as the graph size increases. For CC and NNDR working on
unweighted graphs, Scaph (Graphie) can store up to 4 billion
(2 billion) edges in GPU memory. For MST working on the
weighted graph, these edge counts drop to roughly 2 billion
and 1 billion. Both Scaph and Graphie maintain their through-
put well as the graph size increases but degrade visibly for
the graphs that can no longer fit into GPU memory. However,

582 2020 USENIX Annual Technical Conference USENIX Association

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
0

5

10

15

20

25

30

 Grounte-CC

 Groute-MST

 Groute-NNDRN
o

rm
al

iz
ed

 S
p

ee
d

u
p

 Graphie-CC

 Graphie-MST

 Graphie-NNDR

 Scaph-CC

 Scaph-MST

 Scaph-NNDR

(a) #SMXs
512M 1B 2B 4B 8B 16B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

 N
o

rm
al

iz
ed

 S
p

ee
d

u
p

 Scaph-NNDR

 Scaph-CC

 Scaph-MST

 Graphie-NNDR

 Graphie-CC

 Graphie-MST

(b) Edge sizes
10 11 12 13 14 15 16

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

 Scaph-NNDR

 Scaph-CC

 Scaph-MST

 Graphie-NNDR

 Graphie-CC

 Graphie-MST

(c) GPU memory (GB)
CC MST NNDR

0

1

2

3

4

5

6

7

N
o

rm
al

iz
ed

 s
p

ee
d

u
p

 GTX980

 K40

 P100

(d) GPU generations
CC MST NNDR

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li

z
e
d
 R

u
n
ti

m
e

 A1 (0%, 0%)

 A2 (25%, 15%)

 A3 (50%, 30%)

 A4 (75%, 45%)

 A5 (100%, 60%)

(e) Varying α and β

Figure 14: Performance of Scaph and Graphie (including Groute for (a) only) in terms of varying (a) #SMXs: UK [6] and 8GB
GPU memory, (b) graph sizes: R26–R30 [7] and 16GB GPU memory and #SMX=56, (c) GPU memory capacities: FB [31] and
#SMX=56, (d) GPU genreations: FB [31], and (e) configurations of (α, β): FB [31], respectively. All results are normalized to
the one obtained by itself with the smallest configuration.

Scaph has a slower performance reduction rate than Graphie,
for two reasons. First, Scaph can better tap GPU’s processing
power due to its use of a multi-level priority queue for exploit-
ing PUD more adequately and overlapping data transfers and
GPU computation more effectively. Second, Scaph avoids
transferring a large amount of NUD for low-value subgraphs.

GPU Memory Capacities. Figure 14(c) compares Scaph
and Graphie for varying GPU memory sizes. Graphie is highly
sensitive to the GPU memory capacity used, which determines
directly how many subgraphs can be resident on GPU at an
iteration and how many of these get re-processed in the ensu-
ing iteration (before they are removed from GPU memory). In
contrast, Scaph is nearly insensitive, since it exploits UD and
PUD for high-value subgraphs and UD only for low-value
subgraphs always. Note that Scaph is significantly faster than
Graphie (Table 3). In Figure 14(c), Graphie improves over it-
self (normalized to 10GB) as the GPU memory size increases.

GPU Generations. Figure 14(d) characterizes the perfor-
mance of Scaph on different GPU generations. Compared to
Graphie that shows few speedups as shown in Figure 1, Scaph
enables the significant speedups for K40 (1.99×∼3.12×) and
P100 (4.26×∼5.02×) against that of GTX980.

Varying α and β. Figure 14(e) shows the sensitivity of the
performance results of Scaph with respect to α and β. Here,
A1 can be understood as Scaph-HVSP and A5 as Scaph-LVSP.
Looking at A3, we see that increasing α and β causes more
subgraphs to be mis-identified as low-value subgraphs (A4
and A5) and decreasing α and β causes more subgraphs to be
mis-identified as high-value subgraphs (A1 and A2). Thus,
A3 seems to represent a nice sweet spot for yielding good
performance results. As for the problem of finding an optimal
setting, we leave it as future work.

6.5 RQ4: Runtime Overhead
We discuss Scaph’s overheads incurred in its value-driven
differential scheduling (VDDS) given in Figure 8, high-value
subgraph processing (HVSP) given in Figure 10, and low-
value subgraph processing (LVSP) given in Figure 12.

VDDS. The cost of computing the subgraph value comes
from computing the UD size for each iteration, on GPU, in
line 8 of Figure 8. This is negligible, as shown in Figure 15(a).

 UD Sizing

 Graph Processing

1 3 5 7 9 11 13
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
(s

ec
s)

(a) VDDS

 Scaph-LBASE

 Queuing

 Graph Processing

1 6 11 16 21 26
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
im

e
(s

ec
s)

(b) HVSP

 Bitmap Transferring

 Graph Processing

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
(s

ec
s)

(c) LVSP
Figure 15: Scaph’s runtime overhead for running CC on UK
[6] across the iterations

HVSP. The main overhead of HVSP lies in its queue man-
agement. In Figure 15(b), the cost incurred per iteration is
small, representing an average of 0.79% of the total process-
ing time. This small overhead is more than offset by the
benefit reaped. In particular, the iteration count is reduced
since most of the PUD can be computed ahead of schedule.
The per-iteration time can be improved mainly because most
of the NUD is discarded (rather than transferred expensively).

LVSP. The main overhead of LVSP lies in transferring a
bitmap representation for all the active vertices in a subgraph
from GPU to the host. As shown in Figure 15(c), the aver-
age cost incurred per iteration represents 4.3% of the total
graph processing time. However, this cost increases relatively
towards the last few iterations, reaching 57.4% at the end,
where each subgraph has little UD to be acted upon.

6.6 Limitations
Graph Partition. Various partitions may show different value
variations of subgraph at runtime. Scaph adopts a greedy
vertex-cut partition [15] with the time taken depending on
the number of partitions. It would be interesting future work
to find a more reasonable partition method that can make
most of UD and PUD exploited in the early stage of graph
processing for faster convergence.

Disk-based Heterogeneous Graph Systems. The perfor-
mance of Scaph is insensitive to the difference between CPU
and GPU memory, given that the whole graph is assumed
to fit into the CPU memory. To support even larger graphs
on a single machine, using the disk (e.g., SSD) as secondary
storage is promising. In this case, a new dimension of perfor-
mance bottleneck will be the I/O inefficiency, which has been
studied in prior work [2, 32, 35, 55]. We can combine Scaph

USENIX Association 2020 USENIX Annual Technical Conference 583

with these past disk-based solutions to cooperatively handle
graphs that cannot fit into the host memory.

Performance Profitability. Scaph delivers performance
benefits by processing all the subgraphs differentially. Scaph
is currently not expected to be applied to graph algorithms
where the set of active vertices does not shrink as computation
goes on. For example, all vertices in PageRank are active in
every iteration. Thus, all the data of a subgraph can be re-
garded as UD without any PUD. In fact, we can extend Scaph
to distinguish these all-active subgraphs further for PageRank
by considering not only the degrees and the activation but also
the state variation rate for each vertex, which is a potential
direction of future work.

7 Related Work
Heterogeneous Graph Systems. Such systems have been
studied on a range of heterogeneous architectures equipped
with varying hardware resources [21, 35, 44]. Compared to
GPU-accelerated solutions [43, 47], FPGA-accelerated alter-
natives are advantageous in energy-efficiency [10, 61]. In
developing Scaph, we focus on improving host-accelerator
bandwidth utilization. The basic idea behind can also be ap-
plied to improve the scalability of FPGA-accelerated hetero-
geneous graph systems with a few hardware specializations.

Distributed Graph Systems. The rationale is to aggre-
gate multiple machines to enable processing large-scale
graphs. The main challenge lies in obtaining good graph
partitions [3, 8, 16, 48, 52] so as to minimize the communica-
tion overheads across the machines. Some recent studies take
advantage of emerging high-speed networks (e.g., RDMA)
to reduce communication overheads [49, 58]. Aspire [54] de-
signs a relaxed consistency model to exploit asynchronous
parallelism for iterative algorithms. Gemini [67] includes a
series of adaptive runtime optimizations to enable obtaining
an attractive scale-out efficiency.

Disk-based Graph Systems. Many disk-based graph sys-
tems [12,45,64,65] exist for supporting large-scale graph pro-
cessing. GraphChi [30] relies on parallel sliding windows to
optimize disk accesses. GridGraph [68] uses 2-level hierarchi-
cal partitioning to reduce the I/O overhead. TurboGraph [18]
applies a pin-and-slide model to exploit the multicore and
I/O parallelism. Due to the low disk-to-memory bandwidth,
disk-based graph systems are often at least two orders-of-
magnitude slower than heterogeneous solutions.

Data Movement Reduction. Several previous studies
leverage an analogous idea of running graph partitions multi-
ple times for different purposes. CLIP [2] iterates over each
loaded subgraph multiple times to squeeze out the value of
each subgraph so that less amount of disk I/O is required.
GraphQ [69] enables computing the local subgraphs multiple
times in order to tolerate long latency across the compute
nodes. Unlike these efforts, Scaph emphasizes on a GPU
context that often requires small-size subgraphs to enable
fine-grained scheduling. Thus, simply computing a subgraph

multiple times is not sufficient to exploit its PUD fully. Scaph
enables value exploitation not only within a subgraph but also
across the subgraphs via a delayed scheduling mechanism.

In LUMOS [53], a subgraph in an iteration can be ex-
ploited asynchronously iff its updated values are independent
of the subsequent iteration. This dependency-aware technique
allows enjoying the efficiency of asynchronous execution
while ensuring synchronous processing semantics. Applying
this technique into Scaph can help identify the high-value
subgraphs that contain across-iteration dependencies, so that
Scaph can be extended to handle synchronous algorithms [22]
safely by scheduling these high-value subgraphs once. How-
ever, the downside is that many dependency-free low-value
subgraphs may also be allowed to be computed multiple times,
wasting the GPU computational and storage resources.

Wonderland [63] uses graph abstraction as a bridge over
on-disk subgraphs to speed up convergence. However, under
the context of small-sized subgraphs, such a graph abstraction
is often hard to keep concise, and extracting it from the whole
graph is also non-trivial. PowerLayer [8] presents differen-
tiated processing on high-degree and low-degree vertices to
improve the trade-off between load balance and communi-
cation overheads in a distributed setting. However, applying
the idea of PowerLayer cannot often identify the value of a
subgraph accurately while Scaph does with a fine-grained so-
lution. Mosaic [35] adopts a subgraph compression technique,
which can be used to work together with Scaph to improve the
bandwidth-efficiency of heterogeneous graph system further.

8 Conclusion

This paper tackles the challenge faced in achieving scale-up
large-scale graph processing on a GPU-accelerated hetero-
geneous architecture. We introduce Scaph, a value-driven
heterogeneous graph system that differentially schedules the
subgraphs partitioned from a graph according to their values
in order to improve the effective utilization of the host-GPU
bandwidth. Scaph outperforms state of the art, as evaluated
with representative graph algorithms operating on a range of
graph datasets. In addition, these performance benefits scale
up as more computing resources are available.

Acknowledgments
We thank the anonymous reviewers for their insightful com-
ments. In particular, we thank our shepherd, Xiaosong Ma,
for her valuable suggestions. We would also like to thank
Pengcheng Yao, Chuangyi Gui, Qinggang Wang, and Jieshao
Zhao for their support. This work is supported by the Na-
tional Key Research and Development Program of China un-
der Grant No. 2018YFB1003502, National Natural Science
Foundation of China under Grant No. 61702201, 61825202,
61832006 and 61929103, and Australian Research Council
DP180104069. The correspondence of this paper should be
addressed to Xiaofei Liao.

584 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur
Mutlu, and Kiyoung Choi. A scalable processing-in-
memory accelerator for parallel graph processing. In
Proceedings of the 42nd ACM/IEEE Annual Interna-
tional Symposium on Computer Architecture (ISCA),
pages 105–117. IEEE, 2015.

[2] Zhiyuan Ai, Mingxing Zhang, and Yongwei Wu. Squeez-
ing out all the value of loaded data: An out-of-core graph
processing system with reduced disk i/o. In Proceedings
of the USENIX Annual Technical Conference (USENIX
ATC), pages 125–137, 2017.

[3] Ching Avery. Giraph: Large-scale graph processing
infrastructure on hadoop. In Proceedings of the Hadoop
Summit, volume 11, pages 5–9, 2011.

[4] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung,
Henry Wong, and Tor M. Aamodt. Analyzing cuda work-
loads using a detailed gpu simulator. In Proceedingns
of the IEEE International Symposium on Performance
Analysis of Systems and Software, pages 163–174, 2009.

[5] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav
Pingali. Groute: An asynchronous multi-gpu program-
ming model for irregular computations. In Proceedings
of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages
235–248. ACM, 2017.

[6] Paolo Boldi and Sebastiano Vigna. The webgraph frame-
work I: Compression techniques. In Proceedings of the
13th International World Wide Web Conference (WWW),
pages 595–601, Manhattan, USA, 2004. ACM.

[7] Deepayan Chakrabarti, Yiping Zhan, and Christos
Faloutsos. R-mat: A recursive model for graph mining.
In Proceedings of the 2004 SIAM International Confer-
ence on Data Mining (SDM), pages 442–446. SIAM,
2004.

[8] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen.
Powerlyra: Differentiated graph computation and parti-
tioning on skewed graphs. In Proceedings of the 10th
European Conference on Computer Systems (Eurosys),
pages 13–21. ACM, 2015.

[9] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios
Logothetis, and Sambavi Muthukrishnan. One trillion
edges: Graph processing at facebook-scale. Proceedings
of the VLDB Endowment, 8(12):1804–1815, 2015.

[10] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu,
Yu Wang, and Huazhong Yang. Foregraph: Explor-
ing large-scale graph processing on multi-fpga archi-

tecture. In Proceedings of the 2017 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate
Arrays (FPGA), pages 217–226. ACM, 2017.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[12] Nima Elyasi, Changho Choi, and Anand Sivasubrama-
niam. Large-scale graph processing on emerging storage
devices. In Proceedings of the 17th USENIX Confer-
ence on File and Storage Technologies (USENIX FAST),
pages 309–316. USENIX, 2019.

[13] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Ji-
axin Jiang, Zeyu Zheng, Bohan Zhang, Yang Cao, and
Chao Tian. Parallelizing sequential graph computa-
tions. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD), pages
495–510. ACM, 2017.

[14] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu
Santos-Neto, and Matei Ripeanu. A yoke of oxen and
a thousand chickens for heavy lifting graph processing.
In Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques
(PACT), pages 345–354. ACM, 2012.

[15] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In Pro-
ceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 17–
30. USENIX, 2012.

[16] Joseph E. Gonzalez, Reynold S Xin, Ankur Dave, Daniel
Crankshaw, Michael J Franklin, and Ion Stoica. Graphx:
Graph processing in a distributed dataflow framework.
In Proceedings of the 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 599–613, 2014.

[17] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Bu-
land. Graphie: Large-scale asynchronous graph traver-
sals on just a gpu. In Proceedings of the 26th Interna-
tional Conference on Parallel Architectures and Compi-
lation Techniques (PACT), pages 233–245. IEEE, 2017.

[18] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-
Hoon Lee, Min-Soo Kim, Jinha Kim, and Hwanjo Yu.
Turbograph: a fast parallel graph engine handling billion-
scale graphs in a single pc. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pages 77–85.
ACM, 2013.

USENIX Association 2020 USENIX Annual Technical Conference 585

[19] Pawan Harish and Petter J. Narayanan. Accelerating
large graph algorithms on the gpu using cuda. In
Proceedings of the 2007 International Conference on
high-performance computing (HiPC), pages 197–208.
Springer, 2007.

[20] Lifeng He, Xiwei Ren, Qihang Gao, Xiao Zhao, Bin
Yao, and Yuyan Chao. The connected-component la-
beling problem: A review of state-of-the-art algorithms.
Pattern Recognition, 70(6):25–43, 2017.

[21] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun.
Efficient parallel graph exploration on multi-core cpu
and gpu. In Proceedings of the 20th International Con-
ference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 78–88. IEEE, 2011.

[22] Unit Kang, Duen Horng “Polo” Chau, and Christos
Faloutsos. Inference of beliefs on billion-scale graphs.
In Proceedings of KDD Workshop on Large-scale Data
Mining: Theory and Applications (LDMTA), pages 1–7,
2010.

[23] Gary J. Katz and Joseph T. Kider. All-pairs shortest-
paths for large graphs on the gpu. In Proceedings of the
23rd ACM SIGGRAPH/EUROGRAPHICS Symposium
on Graphics Hardware, pages 47–55. Eurographics As-
sociation, 2008.

[24] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani
Jamjoom, Dan Williams, and Panos Kalnis. Mizan: a
system for dynamic load balancing in large-scale graph
processing. In Proceedings of the 8th ACM European
Conference on Computer Systems (Eurosys), pages 169–
182. ACM, 2013.

[25] Farzad Khorasani, Keval Vora, Rajiv Gupta, and
Laxmi N. Bhuyan. Cusha: Vertex-centric graph pro-
cessing on gpus. In Proceedings of the 23rd Interna-
tional Symposium on High Performance Parallel and
Distributed Computing (HPDC), pages 239–252, 2014.

[26] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok
Seo, and Jinwook Kim. Gts: A fast and scalable graph
processing method based on streaming topology to gpus.
In Proceedings of the 2016 International Conference on
Management of Data (SIGMOD), pages 447–461. ACM,
2016.

[27] Efstathios Kirkos, Charalambos Spathis, and Yannis
Manolopoulos. Data mining techniques for the detec-
tion of fraudulent financial statements. Expert systems
with applications, 32(4):995–1003, 2007.

[28] Yusuke Kozawa, Toshiyuki Amagasa, and Hiroyuki Kita-
gawa. Gpu-accelerated graph clustering via parallel la-
bel propagation. In Proceedings of ACM Conference

on Information and Knowledge Management (CIKM),
page 567–576, 2017.

[29] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. What is twitter, a social network or a news
media? In Proceedings of the 19th International Confer-
ence on World Wide Web, pages 591–600. ACM, 2010.

[30] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a pc.
In Proceedings of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 31–46. USENIX, 2012.

[31] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

[32] Hang Liu and Howie H. Huang. Graphene: Fine-
grained io management for graph computing. In Pro-
ceedings of the 2015 USENIX Annual Technical Confer-
ence (USENIX ATC), pages 285–300. USENIX, 2017.

[33] Yucheng Low, Danny Bickson, Joseph Gonzalez, Car-
los Guestrin, Aapo Kyrola, and Joseph M Hellerstein.
Distributed graphlab: a framework for machine learning
and data mining in the cloud. Proceedings of the VLDB
Endowment, 5(8):716–727, 2012.

[34] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and
Yafei Dai. Garaph: Efficient gpu-accelerated graph pro-
cessing on a single machine with balanced replication.
In Proceedings of the USENIX Annual Technical Con-
ference (USENIX ATC), pages 195–207, 2017.

[35] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim. Mo-
saic: Processing a trillion-edge graph on a single ma-
chine. In Proceedings of the 12th European Conference
on Computer Systems (EuroSys), pages 527–543. ACM,
2017.

[36] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: a system for large-scale graph pro-
cessing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data (SIG-
MOD), pages 135–146. ACM, 2010.

[37] Abdullah A. Mamun and Sanguthevar Rajasekaran. An
efficient minimum spanning tree algorithm. In Pro-
ceedings of the IEEE Symposium on Computers and
Communication (ISCC), pages 1047–1052, 2016.

[38] Christian Mayer, Muhammad Adnan Tariq, Chen Li,
and Kurt Rothermel. Graph: Heterogeneity-aware graph

586 2020 USENIX Annual Technical Conference USENIX Association

http://snap.stanford.edu/data
http://snap.stanford.edu/data

computation with adaptive partitioning. In Proceed-
ings of the 36th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), pages 118–128.
IEEE, 2016.

[39] Duane Merrill, Michael Garland, and Andrew Grimshaw.
Scalable gpu graph traversal. In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), volume 47, pages
117–128. ACM, 2012.

[40] Donald Nguyen, Andrew Lenharth, and Keshav Pingali.
A lightweight infrastructure for graph analytics. In Pro-
ceedings of the 24th ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 456–471. ACM, 2013.

[41] Tesla NVIDIA. P100. The Most Advanced Datacen-
ter Accelerator Ever Built Featuring Pascal GP100, the
World’s Fastest GPU, White paper, NVIDIA, 2016.

[42] Tesla NVIDIA. V100. NVIDIA Tesla V100 GPU Archi-
tecture Whitepaper, THE WORLD’S MOST ADVANCED
DATA CENTER GPU, NVIDIA, 2017.

[43] Sreepathi Pai and Keshav Pingali. A compiler for
throughput optimization of graph algorithms on gpus.
In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), volume 51, pages 1–19. ACM, 2016.

[44] Zhen Peng, Alexander Powell, Bo Wu, Tekin Bicer, and
Bin Ren. Graphphi: efficient parallel graph processing
on emerging throughput-oriented architectures. In Pro-
ceedings of the 27th International Conference on Paral-
lel Architectures and Compilation Techniques (PACT),
pages 1–14. ACM, 2018.

[45] Amitabha Roy, Laurent Bindschaedler, Jasmina Malice-
vic, and Willy Zwaenepoel. Chaos: Scale-out graph
processing from secondary storage. In Proceedings of
the 25th Symposium on Operating Systems Principles
(SOSP), pages 410–424. ACM, 2015.

[46] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-stream: Edge-centric graph processing using stream-
ing partitions. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP), pages
472–488. ACM, 2013.

[47] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agar-
wal, and Karsten Schwan. Graphreduce: processing
large-scale graphs on accelerator-based systems. In
Proceedings of the 27th International Conference for
High Performance Computing, Networking, Storage and
Analysis (SC), pages 28:1–28:12. ACM, 2015.

[48] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A dis-
tributed graph engine on a memory cloud. In Proceed-
ings of the 2013 International Conference on Manage-
ment of Data (SIGMOD), pages 505–516. ACM, 2013.

[49] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and concurrent rdf queries with rdma-
based distributed graph exploration. In Proceedings of
the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI), pages 317–332.
USENIX, 2016.

[50] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin,
Ligang He, Bo Liu, and Qiang-Sheng Hua. Graph pro-
cessing on gpus: A survey. ACM Computing Surveys,
50(6), 2018.

[51] Julian Shun and Guy E. Blelloch. Ligra: a lightweight
graph processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), volume 48, pages 135–146. ACM, 2013.

[52] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Ser-
afini, Georgos Siganos, Mohammed J. Zaki, and Ashraf
Aboulnaga. Arabesque: a system for distributed graph
mining. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (SOSP), pages 425–440. ACM,
2015.

[53] Keval Vora. Lumos: Dependency-driven disk-based
graph processing. In Proceedings of the USENIX Confer-
ence on Usenix Annual Technical Conference (USENIX
ATC), page 429–442, 2019.

[54] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. As-
pire: Exploiting asynchronous parallelism in iterative
algorithms using a relaxed consistency based dsm. In
Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and
Applications (OOPSLA), page 861–878, 2014.

[55] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the
edges you need: A generic i/o optimization for disk-
based graph processing. In Proceedings of the 2016
USENIX Annual Technical Conference (USENIX ATC),
pages 507–522. USENIX, 2016.

[56] Peng Wang, Kaiyuan Zhang, Rong Chen, Haibo Chen,
and Haibing Guan. Replication-based fault-tolerance
for large-scale graph processing. In Proceedings of the
44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 562–
573. IEEE, 2014.

[57] Yangzihao Wang, Andrew Davidson, Yuechao Pan,
Yuduo Wu, Andy Riffel, and John D Owens. Gunrock:

USENIX Association 2020 USENIX Annual Technical Conference 587

A high-performance graph processing library on the gpu.
In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), pages 11–21. ACM, 2016.

[58] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao,
Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and
Lidong Zhou. Gram: scaling graph computation to the
trillions. In Proceedings of the 6th ACM Symposium on
Cloud Computing (SoCC), pages 408–421. ACM, 2015.

[59] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation (NSDI), pages 15–28. USENIX, 2012.

[60] F. Benjamin Zhan. Three fastest shortest path algorithms
on real road networks: Data structures and procedures.
Journal of Geographic Information and Decision Analy-
sis, 1(1):70–82, 1997.

[61] Jialiang Zhang, Soroosh Khoram, and Jing Li. Boosting
the performance of fpga-based graph processor using
hybrid memory cube: A case for breadth first search. In
Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (FPGA),
pages 207–216. USENIX, 2017.

[62] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-
aware graph-structured analytics. In Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 183–
193. ACM, 2015.

[63] Mingxing Zhang, Yongwei Wu, Youwei Zhuo, Xuehai
Qian, Chengying Huan, and Kang Chen. Wonderland:
A novel abstraction-based out-of-core graph process-
ing system. In Proceedings of the Twenty-Third In-
ternational Conference on Architectural Support for

Programming Languages and Operating Systems (ASP-
LOS), page 608–621, 2018.

[64] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Ligang He,
Bingsheng He, and Haikun Liu. Cgraph: a correlations-
aware approach for efficient concurrent iterative graph
processing. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), pages 441–452.
USENIX, 2018.

[65] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogel-
stein, Carey E. Priebe, and Alexander S. Szalay. Flash-
graph: Processing billion-node graphs on an array of
commodity ssds. In Proceedings of 13th USENIX Con-
ference on File and Storage Technologies (USENIX
FAST), pages 45–58. USENIX, 2015.

[66] Jianlong Zhong and Bingsheng He. Medusa: Simplified
graph processing on gpus. IEEE Transactions on Paral-
lel and Distributed Systems, 25(6):1543–1552, 2014.

[67] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and
Xiaosong Ma. Gemini: A computation-centric dis-
tributed graph processing system. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 301–316. USENIX,
2016.

[68] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
graph: Large-scale graph processing on a single ma-
chine using 2-level hierarchical partitioning. In Proceed-
ings of the 2015 USENIX Annual Technical Conference
(USENIX ATC), pages 375–386, 2015.

[69] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang,
Dimin Niu, Yanzhi Wang, and Xuehai Qian. GraphQ:
Scalable pim-based graph processing. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), page 712–725, 2019.

588 2020 USENIX Annual Technical Conference USENIX Association

Peregreen – modular database for efficient storage
of historical time series in cloud environments

Alexander A. Visheratin
ITMO University

Alexey Struckov
ITMO University

Semen Yufa
ITMO University

Alexey Muratov
ITMO University

Denis Nasonov
ITMO University

Nikolay Butakov
ITMO University

Yury Kuznetsov
Siemens

Michael May
Siemens

Abstract
The rapid development of scientific and industrial areas, which
rely on time series data processing, raises the demand for
storage that would be able to process tens and hundreds of
terabytes of data efficiently. And by efficiency, one should
understand not only the speed of data processing operations
execution but also the volume of the data stored and oper-
ational costs when deploying the storage in a production
environment such as cloud.

In this paper, we propose a concept for storing and indexing
numeric time series that allows creating compact data repre-
sentations optimized for cloud storages and perform typical
operations – uploading, extracting, sampling, statistical ag-
gregations, and transformations – at high speed. Our modular
database that implements the proposed approach – Peregreen
– can achieve a throughput of 3 million entries per second for
uploading and 48 million entries per second for extraction
in Amazon EC2 while having only Amazon S3 as storage
backend for all the data.

1 Introduction

Time series data plays a very important role in the modern
world. Many fields of science and industry rely on storing and
processing large amounts of time series – economics and fi-
nances [6], medicine [7], Internet of Things [10], environmen-
tal protection [11], hardware monitoring [9] and many others.
Growing industry demand for functional capabilities and pro-
cessing speed led to the sharp rise of specialized time series
databases TSDB [16] and development of custom TSDB so-
lutions by large companies, e.g. Gorilla [18] by Facebook and
Atlas by Netflix.

One of the most challenging applications of TSDBs, which
becomes especially demanded by industrial companies like
Siemens, is processing of long periods of historical time series
data. Historical data can contain tens and hundreds terabytes
of data thus making usage of in-memory databases too expen-
sive. Standard solutions like relational databases or key-value

storages struggle to efficiently process such large amounts
of time series data [8, 23]. Thus it is very important for a
TSDB to achieve the best balance between execution speed
and operational cost.

A platform for historical time series analysis groups the
data by sensors – modules responsible for capturing one spe-
cific phenomenon, e.g. tickers in stock market, temperature
sensor for industrial machines or pulse sensor in a hospital
equipment. There can be distinguished several typical scenar-
ios of users interaction with the platform for historical data
analysis. In the first case, user browses the whole dataset con-
taining millions of sensors and years of data. User can select
any sensor to investigate its behavior at any period of time.
The platform must visualize the data for the user and allow to
quickly zoom in and out, e.g. from years interval into months
into days and hours and backwards. To successfully perform
in this scenario, the underlying time series storage must pro-
vide fast access to any part of the data and be able to extract
aggregated values when visualizing long time intervals.

In the second case, user analyzes a specific sensor and
wants to look into time intervals, in which the value satis-
fies some condition, for example amplitude search or outliers
search. For this user first searches for all time intervals meet-
ing the condition and after that he or she selects the interval
of interest and the platform visualizes the data for this in-
terval. For this scenario the underlying time series storage
must be able to perform fast search for time intervals in the
whole volume of data and perform fast extraction – loading
time series for a specified period – along with aggregation
(e.g. average and standard deviation) and transformation (e.g.
moving average).

Another important feature for any data processing system
is an ability to use it in cloud platforms, like Amazon Web
Services, Google Cloud or Microsoft Azure, since they allow
the system to be globally available and increase the number
of potential users and customers. Considering this the target
TSDB must provide a good compression of the raw data
along with the small internal footprint to minimize the cost of
storing the data in cloud platform. Additional advantage for

USENIX Association 2020 USENIX Annual Technical Conference 589

the target TSDB would be an integration with cheaper data
storage cloud services, e.g. Amazon S3 or Google Storage.

Summarizing the above, we faced following challenging
requirements for the target time series storage in the beginning
of the joint project between Siemens and ITMO University:

1. Store terabytes of time series data for tens of years.
2. 1 second for conditional search in whole database.
3. Execution speed of 450,000 entries per second per node.
4. All data must be stored in Amazon S3.
To address described above requirements we propose an ap-

proach for storing numeric time series that is based on twofold
split of the data into segments and blocks. Statistical informa-
tion about segments and blocks is incorporated into three-tier
indices, which are independent for every stored sensor. For
building an internal data representation we use read-optimized
series encoding that is based on delta encoding and Zstandard
algorithm and achieves up to 6.5x compression ratio.

We also present design and implementation of the modu-
lar distributed database based on the proposed concept. The
database is called Peregreen in honor of the fastest bird on
Earth. In the experimental studies we demonstrate that Pere-
green outperforms leading solutions – InfluxDB and Click-
House – in the described above use cases. We also show that
our solution is able to operate fast in the Amazon EC2 en-
vironment while storing all indices and data in Amazon S3
object storage.

Currently Peregreen is being integrated into internal
projects of Siemens related to real-time analysis of historical
data and development of complex workflows for processing
long time series.

2 Proposed approach

The main challenge of development a database that would
operate in a cloud environment and store its data solely in a
remote object storage is minimizing network overheads. The
first aspect of this problem is that there is no reasonable way
to perform scans on database files to find appropriate data for
the request. Because of that the index of the database has to
contain metadata that would allow to navigate to exact parts of
database files where the data is located. The second aspect is
that we need to minimize the amount of network connections
required for data uploading and extraction. For achieving this
goal there is a need to develop a format for database files
that would allow writing and reading all required data within
one request. And the third aspect is minimizing sizes of both
database and index files. The smaller files are the cheaper their
storage is. And additional advantage of small index files is that
more indices can be loaded into the RAM of the processing
node.

In this section we give a detailed description of our ap-
proach for indexing and storing time series data for fast op-
eration in cloud environments. Target use cases of the initial
project included processing of numeric time series that means

sequences of pairs (timestamp,value) without any tags. To
achieve high speed of parallel uploads and ease of operation,
every sensor has its own index and processed independently
from others. Input time series data is indexed via three-tier
data indexing mechanism and converted into the internal rep-
resentation using read-optimized series encoding. Details on
how this approach helps to optimize data processing and fit
to the project requirements are given in Section 3.1.

2.1 Three-tier data indexing

The first part of the approach is a three-tier data indexing.
Schema of the indexing is presented in Figure 1. At the first
step the input data is divided into data chunks – subsets con-
taining (timestamp,value) pairs. Time interval for data chunks
split is a parameter called block interval. After that for every
data chunk we create an index block that contains meta in-
formation required for data extraction and a set of metrics –
aggregated statistics for the data chunk, e.g. minimum, maxi-
mum or average. Metrics are used for conditional search for
time intervals in the index, details on it are given in Section
3.1. Block meta includes following fields: number of ele-
ments in the data chunk, length of the encoded representation
(more details on it in Section 2.2), and a flag whether encoded
representation is compressed.

Index blocks are incorporated into an index segment.
Blocks in the segment are located in the chronological order,
which allows fast calculation of required parts of the segment
file as will be described further. During segment creation we
initialize all the blocks in it empty, and all changes modify
the existing blocks.

The time interval that every segment covers is set by a
parameter called segment interval. Every segment has its meta
information and a set of metrics. Segment meta contains a
unique identifier (ID), start time, which is calculated during
segment creation, and a version of the segment. Segment ID
sets the name of the segment binary file in the storage backend.
The presence of the segment start time makes possible fast
and compact encoding of timestamps in blocks as described
in Section 2.2.

The start time for a new segment is calculated according
to the first timestamp of the indexed data chunk and existing
segments in the index. If there are no segments in the index,
the start time of the segment is set to the first timestamp of
the data chunk. Otherwise, the start time of the segment is
calculated so that it is separated by a multiple of the segment
intervals from other segments and is as close as possible
from the bottom to the first timestamp in the data chunk. The
version of the segment is an integer number that increments
every time the segment is changed.

Segment metrics are calculated by combining metrics of
its blocks. There are two types of metrics – cumulative and
non-cumulative. The difference between them is that for com-
bining cumulative metrics there is no need to have all values

590 2020 USENIX Annual Technical Conference USENIX Association

Figure 1: Schema of three-tier data indexing

Figure 2: Schema of read-optimized series encoding

based on which these metrics were calculated. For example,
minimum and maximum are cumulative metrics, and standard
deviation and median are non-cumulative. For cumulative
metrics combining function uses only their values while for
non-cumulative metrics it uses all input values used to calcu-
late these metrics. Metric instances of blocks and segments
store input values during data uploading and delete them af-
terwards.

Segments are then incorporated into an index. Segments in
the index are located in the chronological order. Index meta
information includes unique identifier (name of the corre-
sponding sensor), data type, segment interval, block interval
and version. Data type determines the way how values are
processed during data encoding. Supported data types are 8-
bit integer, 16-bit integer, 32-bit integer, 64-bit integer, 32-bit
float and 64-bit float. Block and segment intervals define time
intervals for blocks and segments generation as it was dis-
cussed above. The version of the index is an integer number
that increments every time the index is changed.

Indices are stored in the storage backend as individual files.
File names for each individual index consist of index ID and
index version.

2.2 Read-optimized series encoding

Since one of the most challenging requirements for our
database was storing all data in Amazon S3, we needed an in-
ternal representation format that would allow performing data
uploading and extraction in the best possible way. It is well
known that one of the main factors that affect the speed of
interaction with remote services is the network (connections
instantiating, latency, etc.). That is why we aimed to create
a format that would minimize the number of requests to the
storage backend during extraction as much as possible.

The schema of the developed read-optimized encoding is
presented in Figure 2. As the input we have a sequence of
(timestamp,value) pairs from the data chunk. Timestamps are
64-bit integers and thus have the size of 8 bytes. The binary
size of values N depends on the underlying data type and thus
can be from 1 to 8.

The first part of the series processing is the delta encoding –
instead of timestamps and values we store differences between
current and previous items. It allows to reduce the amount
of data required for storing timestamps from 8 to 4 bytes by
assuming that difference between two consecutive timestamps
would not be greater than≈ 49 days ((232−1) ms, maximum
value of unsigned 32-bit integer). Delta for the first timestamp
is calculated as a difference between the timestamp and block
start (BS in the schema) that is calculated from the segment
start time and the order of the block corresponding to the
data chunk. The way how the algorithm generates stored
differences for values depends on the processed data type:
for integers diff is calculated as a subtraction of the next
value from the previous one, and for floating point values
a difference is generated as a difference between IEEE 754
binary representations of consecutive values, because such
approach produces longer zero-filled bit sequences and can
be compressed better.

At the second step calculated deltas are written in the same
order as input values into the binary array (see Figure 2). At
this point we already get some level of compression. And
to get even more we use a high-performance algorithm Zs-
tandard for compression of the obtained binary array. Our
experiments shown that usage of the compression adds 10-
15% overhead for data reading.

As a result we get a highly compressed representation of the
input data chunk – data blocks. During uploading data blocks
are written successively into a single array – data segment –
that is written as a file into storage backend.

2.3 Discussion

It can be noted that the way of data organization in the pre-
sented approach resonates with columnar data formats, like
Parquet and Apache ORC, or storage schema of other time
series databases [12]. The most distinct and significant dif-
ference is that timestamps and values in our case are stored

USENIX Association 2020 USENIX Annual Technical Conference 591

Figure 3: Overview schema of Peregreen. Every node in the
Raft cluster includes Peregreen core and five modules.

not separately in different columns/series but together, one
(timestamp,value) pair after another. This approach along with
utilizing binary offsets allows the required parts of segment
files to be extracted in a single I/O operation instead of many
for other formats (timestamps reading and values reading).
When using remote storage backends (Amazon S3 or HDFS)
these additional I/O operations significantly decrease perfor-
mance of data extraction. A possible logical drawback of our
approach is a lower level of compression because of mixed
sequences; however, experiments described in Section 4.1
show that read-optimized data encoding is more compact than
in other solutions.

Another possibly questionable aspect of the proposed ap-
proach is the index organization when blocks in a segment
and segments in an index are stored in the array rather than
access-optimized data structures like trees. During develop-
ment we experimented with different ways of organizing tiers
in the index. We discovered that when having a reasonable
number of blocks per segment and segment per index (up to
10,000) array-based index provides almost the same perfor-
mance as B-tree-based index in terms of elements filtering.
This is due to the simplistic logic of the array-based index
and absence of recursion calls during the search.

3 Peregreen overview

Peregreen is a distributed modular database that was built to
satisfy requirements described in Section 1. Peregreen was
developed using Go programming language. Peregreen archi-
tecturally consists of three parts – core, modules, and cluster.
This section describes these parts and gives information about
limitations of the current implementation of the database.
Overview schema of Peregreen is presented in Figure 3.

3.1 Peregreen core
Peregreen core is a backbone of the whole system. It imple-
ments concepts described in the previous section in a module
responsible for the following CRUD operations.

Uploading. Data uploading procedure combines the three-
tier indexing mechanism and read-optimized series encoding.
At the first step input data is split into data chunks. If there
is an existing data for the time interval covered by the new
data, Peregreen core extracts it from the storage backend and
combines new and existing data. After that the core goes
through data chunks and simultaneously converts them into
data blocks as described in Section 2.2 and creates index
blocks as described in Section 2.1. The core then combines
data blocks into segment files and index blocks into index
segments. New version of the segment is embedded into the
name of the segment file. After combining index segments
into the index, segment files and the index are written to the
storage backend.

Deletion. On deletion user specifies a time interval, in
which the data must be deleted. Indexing engine extracts
the data covering target interval from the storage backend,
removes all entries that lie in between the start and finish
timestamps, updates index and internal representation and
loads them into the storage backend.

Search by value. This operation is designed to extract time
intervals, values in which satisfy some conditions. Distinctive
feature of search operation is that it does not access the data
stored in the storage backend, but instead it works only with
segments and blocks of the index. It allows to perform very
fast search with complex queries over large amounts of loaded
data. Time resolution of returned intervals equals to the block
interval of the index.

During the search Peregreen core scans through segments
of the index and checks whether they fall into the search
interval. If a segment belongs to the search interval, indexer
iterates over blocks of the segment and checks them for both
matching to the search interval and to search query. Metrics
available for search queries are all metrics that were computed
during the uploading. If new metrics are added after the data
was loaded, it is possible to recalculate new metrics for the
existing data.

Peregreen provides an easy syntax for describing search
queries. Queries consist of conditions combined by logical
operators. Conditions have the following form:

metric operator value

where metric is a name of the metric in index blocks,
operator is a conditional operator, and value is a value against
which a value of the metric will be compared. Conditional
operators used are very close to select operators in MongoDB
– lt (lower than), lte (lower than or equal), gt (greater than),
gte (greater than or equal) and eq (equal). Logical operators
used for conditions combining include & (conjunction) and |
(disjunction). For example, the following command: "min lte
200 & max gte 50 | avg eq 75" describes a query for search-
ing time intervals where one of the following conditions is
satisfied: (1) minimum metric is lower or equal to 200 and

592 2020 USENIX Annual Technical Conference USENIX Association

maximum metric is greater or equal to 50, (2) average metric
is equal to 75.

Extraction. Peregreen provides a powerful extraction
mechanism that allows performing a fast retrieval of large
amounts of data along with data sampling, aggregations and
transformations. For extraction, the user specifies sensor iden-
tifier, start and finish timestamps, partitioning time interval,
and aggregation metrics or transformation functions. Four
types of extraction are activated depending on these parame-
ters:

1. Full extraction. This extraction is performed when the
user does not specify partitioning time interval and aggre-
gation metrics or transformation functions. In this case, the
Peregreen core obtains all points from the storage backend.

2. Sampling. This extraction is performed when the user
specifies a partitioning time interval and no aggregation met-
rics. Data sampling is the extraction of points, timestamps of
which differ by user-specified interval, from the storage back-
end. This operation is useful in cases when the user wants
to get a general picture of the data for some time interval.
For sampling, the Peregreen core calculates time intervals
according to start and finish timestamps, and extracts the first
point for every time interval.

3. Aggregation. This extraction is performed when the user
specifies a partitioning time interval and some aggregation
metrics. This extraction provides the user with a deeper un-
derstanding of what is happening in the target time interval.
For aggregation, the Peregreen core calculates time intervals
according to start and finish timestamps, and generates a set
of metrics for every time interval. Metrics available for aggre-
gation include all metrics supported by Peregreen.

4. Transformation. This extraction is performed when the
user specifies a partitioning time interval and some transfor-
mation functions. This extraction is useful when there is a
need for modifying the initial form of the data, e.g. rolling
average. For transformation, the Peregreen core applies speci-
fied transformation functions to values as they are retrieved.

For extracting values from the storage backend, Peregreen
core utilizes meta information stored in all three tiers of the
index. Based on start and finish timestamps the core calculates
which segments have to be used. For this it uses segments’
start times and segment interval from the index. For every
segment the core then determines which blocks to extract
using segment start time, block interval and blocks ordering.
After that the core uses length of the encoded representation
of blocks in the segment to calculate the range of bytes need
to be extracted from the segment file. The core then extracts
only the required part of the segment file, and for every data
block of that part performs the actions of the encoding in the
reverse order – decompress data with Zstandard, convert raw
bytes to deltas and apply delta decoding for them. During
decoding stage, Peregreen core applies required aggregations
and transformations to the data if specified by user.

It can be seen that the way how internal representation in

the Peregreen core is organized allows to achieve the opti-
mal interaction with the storage backend by having only one
read operation per segment file. This is the reason why the
encoding is called read-optimized.

3.2 Peregreen modules
One of the most powerful features of Peregreen is its ex-
tensibility. This section describes five types of modules that
allow to integrate various types of storage backends, aggre-
gated statistics, transformations, input and output data types.
In terms of implementation, modules are programming inter-
faces that provide a required set of methods.

Storage. Storage is a module, which is responsible for a
proper integration of Peregreen with the storage backend.
These methods include reading and writing indices, writ-
ing segment files and reading binary data for specified index
blocks. Currently Peregreen contains three storage implemen-
tations out of the box – local file system, HDFS and Amazon
S3. Local and HDFS storages allow to work with a data placed
within a file system or HDFS respectively. They make use
of file offsets for navigating in segment files and extracting
only required data parts from them during data reading. S3
storage allows working with a data placed in the Amazon
S3 object storage. It stores all data in one bucket specified
in configuration file. S3 storage extracts only required data
parts from segment files stored in S3 using HTTP bytes range
headers.

Reader. Reader module is responsible for reading data
elements from the input stream. It has only one method for
reading a single data element. This is related to the internal
mechanics of data reading in Peregreen – it creates data parts,
which will be then converted into data blocks, on the fly to
minimize memory consumption and total number of opera-
tions. That is why there is no need for a method to read all
input data at once. The way how Reader will extract the data
is defined by its implementation and two parameters – data
type and format. Data type is a name of one of six supported
data types – byte, short, integer, long, float and double. De-
pending on the data type the way of how Reader extracts
element might slightly change. Format describes the rules of
searching timestamps and values in the input stream. Lets
examine how it works on the example of Reader implemen-
tation for CSV format, which is available in Peregreen by
default. Its format definition looks as follows:

tsPos-valPos-sep

where tsPos is position of the timestamp in the string, valPos
is position of the value in the string, and sep is a separator
symbol. This simple notation allows to cover a wide range of
CSV files layouts. Peregreen also supports JSON and Mes-
sagePack as input data formats.

Writer. There are four types of data that Peregreen can
return on requests – search results, timestamp-value pairs,

USENIX Association 2020 USENIX Annual Technical Conference 593

aggregations and transformations. Writer module describes
methods for converting these types into desirable output for-
mat. At the moment Peregreen supports three types of output
formats – CSV, MessagePack and JSON.

Metric. In order to provide a flexible search on the loaded
data, Peregreen allows configuring and extending aggregated
statistical characteristics calculated for the data with the help
of Metric module. It describes three methods, by implement-
ing which one can create new custom metric for the storage, –
inserting a value to the metric, getting a value from the metric
and combining two metrics into one. The latter method is
used for creating metrics for long time intervals from metrics
for short intervals. Currently Peregreen has implementations
for count, minimum, maximum, average, standard deviation,
median, percentile and mode metrics.

Transformation. Transformations allow to change the data
as it is extracted. To do that the module provides a single
method that converts input value in its new form. Specific im-
plementations, like moving average, might have internal struc-
tures for storing intermediate values. Currently Peregreen has
implementations for absolute value, difference, summation,
subtraction, multiplication and moving average transforma-
tions.

3.3 Peregreen cluster
Peregreen cluster provides users horizontal scalability and
fault tolerance. Our cluster operates over HashiCorp imple-
mentation1 of the Raft consensus algorithm [17]. This algo-
rithm provides consistency of a cluster. It is especially im-
portant for Peregreen because to eliminate the need to handle
collisions only one sensor update at a time is allowed. That is
why on every update we need to know where required indices
are located in order to properly update them.

In Raft cluster write requests go through the leader node
so Peregreen also has leader node in the cluster. All upload
queries go through the leader node to get redirected to the
node that will process uploading. Read requests are redirected
directly to the responsible node by any of the cluster nodes.
During the first start of the cluster, one node starts as a leader
and all other nodes join to that node as followers.

Peregreen cluster state consists of three components:
1. List of nodes. It stores information required for nodes to

connect with each other and with clients – node name, internal
and external addresses and ports.

2. List of nodes per index. It stores information about map-
ping of indices onto cluster nodes. Every index is replicated
to several nodes in runtime to achieve high availability. If the
first node in the list is down, the second one will process the
request, etc.

3. Number of indices per node. It stores information about
how many indices are stored on every node of the cluster. This
is required for the load balancing of the cluster.

1https://github.com/hashicorp/raft

Raft log in Peregreen stores information necessary for recre-
ation of the cluster state when the node starts, i.e. information
about the events that change the cluster state – addition of a
new node, failure of a node, uploading of a new sensor and
changing the replication factor.

3.4 Peregreen limitations

Since Peregreen and its underlying concepts are purposefully
designed for storing large amounts of historical time series, it
has a number of limitations when considering a general task
of time series processing.

1. Preferably batch uploads. Although it is possible to load
points one by one, it would be highly inefficient because
on every such operation the whole data segment file will
be downloaded from the storage backend and rebuilt. Even
considering that every Peregreen node has a in-memory cache,
loading single points brings too much overheads. But the main
use case for Peregreen is loading large amounts of time series
data at once and the longer input sequence, the better overall
performance of Peregreen becomes.

2. One sensor update at a time. When leader receives an
update request for a sensor, it locks index for that sensor until
the request finishes. This approach was introduced into Pere-
green architecture to eliminate the need for collision detection
and resolution when more than one node modifies the data
for some sensor. We will investigate the best practices for
collisions resolution and address this limitation in the future.

3. No multi-sensor operations. All operations in Peregreen
require the client to specify the target sensor in the request,
and there are no options to specify several sensors. This comes
from the fact that the project requirements specifically cov-
ered single-sensor operations. At the moment clients make
several single-sensor requests for Peregreen and due to the
high execution speed they still achieve good performance.

4. No SQL-like syntax. Peregreen has quite minimalistic
REST API designed to execute CRUD operations as described
in Section 3.1. We understand that supporting SQL would
extend the number of use cases but integration of SQL into
Peregreen would require significant changes to the architec-
ture of the database.

4 Experimental evaluation

This section describes two series of experiments that were con-
ducted to check different aspects of Peregreen performance
in a range of conditions. The first experiment was performed
in an on-premise environment on a rack of blade servers,
whereas the second experiment was set in the Amazon AWS
cloud. Data used in experiments was generated based on a
sample of real data with a frequency about 1 Hz. We gen-
erated 1 year of data for 1000 sensors that resulted in 31.5
billion records and the total volume of 750 GB.

594 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/hashicorp/raft

4.1 On-premise experiment

In order to check the performance of Peregreen compared
to existing databases, we performed a detailed experimental
evaluation of various data processing operations for Peregreen
and two other solutions widely used for time series storage
– InfluxDB and ClickHouse. InfluxDB [13] is an open-core
time series data store that provides high throughput of ingest,
compression and real-time querying. As of November 2018 it
is the most popular time series storage [15]. ClickHouse [25]
is an open source distributed column-oriented DBMS that
provides a rich set of features to its users. Due to the Merge-
Tree table engine and time oriented functions, ClickHouse has
proven to be efficient for working with time series data [5,20].

Hardware setup for the first experiment consists of IBM
blade servers, each of which has the following characteristics:
2x Intel Xeon 8C E7-2830 (32 vCPUs), 128 GB RAM, 100GB
SSD local storage and 2000 GB attached storage from IBM
Storwise V3700 storage system connected via fiber channel.
All databases were deployed at the local storage whereas the
data was stored in the attached storage. In our experiments
we used 1, 4 and 7 instances of blade servers.

InfluxDB configuration. In our experiment we used de-
fault configuration of InfluxDB provided by its developers
with two minor changes. The first is that limit on maximum
size of the client request was disabled to upload historical data
split by months. And the second, to perform search by values
in more equal conditions we created additional aggregation
table, which contained 1 hour time intervals and minimum
and maximum values for these intervals. Schema of both main
and aggregation tables can be found in the listing2.

When performing several SELECT requests for different
time intervals there are two options for InfluxDB – several
individual requests or one request with subrequests. Our em-
pirical study3 shown that making several simultaneous re-
quests is faster than one request with the same number of
subrequests. That is why in our experiments we abandoned
usage of subrequests.

It must also be mentioned that the trial enterprise version
of InfluxDB cluster we used in experiments could not be
deployed on 7 instances and because of that experiments for
InfluxDB were conducted only for 1 and 4 instances.

ClickHouse configuration. ClickHouse was configured
to use the following table schema: date Date, timestamp
UInt64, sensorId UInt16, value Float64. Partitioning for the
table was set by year and month using toYYYYMM func-
tion by date column. The primary key and thus physical or-
der of the records was formed by sensorId and timestamp
fields. Table for time series indexing was created as a mate-
rialized view of the previous table using ’group by’ aggre-
gation by date, sensorId, floor(divide(timestamp, <tdisr>)),
where ’tdisr’ is a block interval equal to 3600000 ms (1 hour).

2https://bit.ly/2P8d4B7
3https://bit.ly/2KIKTrG

Table 1: Data upload time for on-premise experiment, minutes
1 instance 4 instances 7 instances

Peregreen 891 243 150
ClickHouse 530 193 83
InfluxDB 1847 583 n/a

Table 2: Total stored data volume, GB
Peregreen ClickHouse InfluxDB

172 301 272

The materialized view had the following schema: date, sen-
sorId, min(timestamp) AS mnts, max(timestamp) as mxts,
min(value) AS mnval, max(value) AS mxval. The primary
key of the materialized view was formed by sensorId, mnval
and mxval fields. For both tables we used MergeTree engine,
which provides the best combination of scan performance,
data insertion speed and storing reliability.

These two tables were created on each node due to master-
master architecture of ClickHouse. Materialized view tables
are updated automatically upon insertion into the main tables.
Compression method was changed to Zstandard for all nodes.
Index granularity of raw tables was left 8192 as it does not
contribute significantly to the increase of data size stored on
the disk but allows to position more precisely for 1 hour in-
terval queries. Max thread setting was set to 16 for queries
with a single client using SET instruction supported by SQL
dialect of the ClickHouse. Other settings were left at their de-
fault values. To perform queries to ClickHouse, its native tool
called clickhouse-client was used. In experiments with multi-
ple clients, multiple processes were spawned each sending its
own SQL query. Native format was used by clickhouse-client
to retrieve data.

Peregreen configuration. For all experiments Peregreen
was configured as follows: block interval was set to 3,600,000
ms (1 hour), segment interval was set to 31,622,400,000 ms
(366 days), compression was enabled. With these settings
an average block size was 15 KB, and the segment size was
about 130 MB.

Data uploading. In this experiment data uploading re-
quests were sent to storages from all instances of the cluster.
It means that for setup with 1 instance it sent all 1000 sen-
sors, with 4 instances each instance sent 250 sensors, and
with 7 instances each sent 142-143 sensors. It allows to check
scalability of the databases in terms of data uploading.

Results of data uploading time for different sets of nodes
are presented in Table 1. It can be seen that ClickHouse pro-
vides the highest speed of uploading with the rate of 8 GB per
minute on 7 instances. InfluxDB uploading speed was slightly
less than two other solutions, but on 4 nodes it demonstrated
the uploading rate of ~900,000 records per second, which is
quite close to the InfluxData official benchmarks [8].

Table 2 shows the total volume of internal data representa-

USENIX Association 2020 USENIX Annual Technical Conference 595

https://bit.ly/2P8d4B7
https://bit.ly/2KIKTrG

Figure 4: Values search execution time for 4 instances

tion stored by three solutions. With the help of delta encoding
and Zstandard compression Peregreen is able to compress the
raw data 4 times to 172 GB from 750 GB. Other storages also
provide quite high compression rates – 2.5x for ClickHouse
and 2.7x for InfluxDB. Despite using Zstandard algorithm,
compression rate for ClickHouse is lower than demonstrated
in other benchmarks [1]. But compressibility heavily depends
on the data characteristics (schema, frequency, etc.) and thus
direct comparison of two benchmarks for different datasets
would be far from the mark.

It also should be mentioned that indices for all 1000 sensors
in Peregreen have the total size of 110 MB, 110 KB per sensor.
Such small size ensures minimal footprint of the system and
allows to store all indices in the memory in the runtime.

Values range search. In this series of experiments we sim-
ulated behavior of clients who try to perform various search by
values requests. Number of clients varied in range [1,10,100],
number of sensors for which search requests were made by
each client varied in range [1,10,100]. Every request was am-
plitude search, where minimum and maximum values cover
all values in the dataset, so all solutions had to perform full
scan of their storages. In Figure 4 results of this experiment
for 4 instances are presented. Columns captions encode ex-
periment types – c stands for the number of clients, s stands
for the number of sensors per client. From the figure we can
clearly see that Peregreen significantly outperforms two other
solutions in all scenarios. This is related to the fact that search
operations in Peregreen are performed using only indices,
which are stored in the memory, whereas ClickHouse and
InfluxDB select results from the tables that are stored on the
disk.

Data extraction. These experiments were designed to in-
vestigate how well target storages can handle data extrac-
tion workloads of various sizes. Number of clients for this
series varied in range [1,10,100], number of sensors for
which extraction requests were made by each client varied in
range [1,10,100], time interval for extraction varied in range
[1,24,240] hours. The largest case – 100 clients, 100 sensors

Figure 5: Data extraction time for small requests on 1 instance

Figure 6: Data extraction time for large requests on 1 instance,
logarithmic time scale

per client, 240 hours – is a very extreme scenario that involves
extraction of 8.6 billion records.

Sample results for small requests (1 hour, 100 clients, 1, 10,
100 sensors per client) execution on 1 instance are presented
in Figure 5. Columns captions encode experiment types – h
stands for the extracted time interval, c stands for the num-
ber of clients, s stands for the number of sensors per client.
Execution time for Peregreen is much lower than for other
systems, because it quickly navigates in segment files using
the index and extract only required data blocks (no more than
two for these experiments). InfluxDB in these experiments
significantly outperformed ClickHouse, which is expected
because InfluxDB is designed for working with short time
series.

But the situation dramatically changes if we try to extract a
lot of long time intervals. In Figure 6 results for large re-
quests (1 hour, 100 clients, 1, 10, 100 sensors per client)
are presented. Plots were generated using logarithmic time
scale because results differ by orders of magnitude. InfluxDB
demonstrates very low extraction speed, since extraction of
this many long time intervals is far from its standard use
case. ClickHouse, on the other hand, is very good at reading
long sequences of data and because of that it demonstrates
impressive results of 43,000,000 records per second for the
scenario 240h-100c-1s. Although Peregreen performs almost
twice slower in this scenario, with increase of parallel requests
it starts to outperform ClickHouse and for the hardest case
it demonstrates execution speed of 24,000,000 records per
second against 18,000,000 for ClickHouse.

596 2020 USENIX Annual Technical Conference USENIX Association

Figure 7: Data extraction time for 7 instances

In Figure 7 experimental results for all types of requests are
presented. These experiments were conducted on 7 instances
and because of that there are no results for InfluxDB. For rel-
atively small requests, which are shown on the left plot, Pere-
green and ClickHouse demonstrate comparable performance.
But as the workload grows transcendence of Peregreen also
grows. In the hardest scenario 240h-100c-100s Peregreen
achieves the speed of 49,500,000 records per second. The
speed of ClickHouse is slightly lower, but also very high –
37,000,000 records per second. Difference in the processing
speed can be explained by following factors: (1) ClickHouse
has lower compression rate (difference in blocks organiza-
tion and no delta encoding) and because of that has to read
more data from the disk during extraction; (2) data parts in
ClickHouse are organized by size, not by time, that is why
ClickHouse has to read some unnecessary data during extrac-
tion by time intervals; (3) ClickHouse creates large number
of files with data parts and during extraction it has to read
from a lot of files, which increases a number of random reads
from disk, whereas Peregreen reads from very small number
of segment files.

4.2 EC2 experiment

The second series of experiments was aimed to evaluate per-
formance of Peregreen in a cloud environment for two types
of storage backend – local file system and Amazon S3.

Hardware setup for this experiment consists of Amazon
EC2 instances of c5.4xlarge type with 16 vCPUs, 32 GB
RAM, 8 GB internal SSD storage and 500 GB attached EBS
storage. All instances were localed in us-east-1 region. Pere-
green was deployed on the local storage whereas the data was
stored in the attached storage. Testbed contained 1, 4 and 7
instances.

Benchmarking utility was deployed on a dedicated instance
to avoid its influence at performance of Peregreen nodes.

Data uploading. This experiment was designed the same
way as in Section 4.1 – data is loaded from all instances of
the cluster. Experimental results are presented in Table 3. We
can see that in all cases uploading to the cluster with EBS

Table 3: Data uploading time for EC2 experiment, minutes
1 instance 4 instances 7 instances

EBS backend 573 122 75
S3 backend 702 175 97

storage backend is faster than to the one with S3 storage
backend. It is expected because in the second case segment
files are uploaded into remote web service. Nevertheless, both
storages provide high uploading rates, 21-23 MB/s per node
for EBS storage and 17-18 MB/s per node for S3 storage.
Also, both storages demonstrate close to linear change in
uploading time with increasing in number of instances, which
is very important for the solution deployment on a large scale.

Search by values. In this series of experiments we
performed various amount of parallel search by values
requests. Number of parallel requests varied in range
[1,10,100,1000,10000]. Since search by values request does
not depend on storage backend, we did not compare setups
with different backends, and only checked how well Peregreen
handles increasing load. In order to make Peregreen process
all segments and blocks, we used the following condition in
search requests:

min lte 500 & max gte -200

Due to the fact that searching through indices located in RAM
is a very lightweight operation, results for setups with 1, 4
and 7 did not differ significantly. In Figure 8 experimental
results for 4 instances are presented. It is clear that search
request scales very well and provides a sub-second execution
time even for 10000 simultaneous requests.

Data extraction. In this series of experiments we investi-
gated, how well can Peregreen with different storage back-
ends perform under wide range of data extraction requests,
and whether usage S3 as a persistent storage of large amounts
of time series data can bring performance comparable to the
EBS storage. For this we varied number of concurrent requests
made to the manager node in range [1,10,100,1000,10000]
and extracted time interval in range [1,6,24,240] hours. Due
to the extremely large memory requirements and limited

USENIX Association 2020 USENIX Annual Technical Conference 597

Figure 8: Data search execution time for 4 instances in EC2

Figure 9: Efficiency of S3 storage backend with regard to
EBS storage backend for 4 nodes in EC2

amount of RAM on EC2 instances (320 GB in total) maxi-
mal request (10000 requests for 240 hours each) could not
be executed, but all other requests completed successfully.
All requests were performed 10 times to downplay possible
network and hardware effects.

To compare performance of Peregreen with S3 storage
backend and with EBSstorage backend we performed all de-
scribed above experiments in both settings and calculated
relative efficiency of S3 as a ratio of execution time with S3
backend to execution time with EBS backend. In Figure 9
S3 relative efficiency plot is presented. Experiment with 100
parallel extraction requests for 1 hour shows the worst S3
efficiency – 49 ms for EBS backend and 351 ms for S3 back-
end. But as the load (number of parallel requests and interval
length) grows, S3 relative efficiency increases, and starting
from 1000 requests for 6 hours S3 becomes more efficient
than EBS (1320 ms for S3 and 1605 ms for EBS). Maximal
loads (100 and 1000 requests for 240 hours) demonstrate two
times lower execution time for S3 storage backend – 35096
ms for EBS backend and 18156 ms for S3 backend for 1000
requests. Such difference can be explained by the fact that
EBS volumes have limits on a throughput and number of I/O
operations per second [2]. S3, on the other hand, does not
have such limitations [3], which allows it to scale better under
the high workload.

Figure 10: Data extraction results for 4 instances in EC2

Figure 11: Data extraction results for 7 instances in EC2

In order to further investigate scaling of two storage back-
ends, we analyzed performance of the same set of requests
for different sets of nodes. In Figures 10 and 11 we present
experimental results for 1000 parallel requests for extraction
of 1, 6, 24 and 240 hours on 4 and 7 instances respectively.
It is interesting to mention that for 6h-1000 scenario on 4
instances S3 storage backend is slightly more efficient than
EBS (1320 ms and 1605 ms), whereas in case of 7 instances
EBS backend provides smaller execution time (1233 ms and
1782 ms). But the most important observation is in the 240h-
1000 scenario. When Peregreen deployed on 4 instances S3
provides twice faster execution, but for 7 nodes EBS storage
demonstrates the same result as S3 storage, and execution
time for S3 storage does not change. The reason why this sce-
nario cannot be finished in less than 18 seconds is a network
bandwidth limitations – this request generates 864 million
data records with the volume of almost 18 GB. Even with
a very high EC2 inter-instance throughput [4] it takes a fair
amount of time to transfer such data volume to the testing
instance.

5 Alternatives comparison

Today there are plenty of time series oriented databases and
storages. In this section, we give a brief description of the
most popular and mature solutions, which are used for storing
time series data, and investigate how they compare against
Peregreen. Comparison criteria are based on requirements

598 2020 USENIX Annual Technical Conference USENIX Association

Table 4: Comparison of databases for storing time series
InfluxDB ClickHouse Kudu Cassandra Gorilla Gnocchi

Index type sparse
controlled

sparse precise precise sparse external

Internal data structures
LSM+
MVCC LSM

LSM+
MVCC

LSM+
MVCC PSP n/a

Data layout column column column row-wise ts-specific n/a
TS-specific compression yes no no no yes n/a

Values-based index mat. view mat. view no
special
index no no

Aggregations yes yes no no no yes
SQL-like query syntax yes yes no yes no no

In-memory no yes no no yes no
Low-cost object storage no no no no no yes

TimescaleDB OpenTSDB Snowflake Prometheus Peregreen

Index type various sparse no sparse
controlled

sparse

Internal data structures
B-tree+
MVCC n/a tables custom custom

Data layout row-wise column column ts-specific ts-specific
TS-specific compression yes yes no yes yes

Values-based index
special
index no no

special
index

special
index

Aggregations yes yes yes yes yes
SQL-like query syntax yes no yes no no

In-memory no no no yes no
Low-cost object storage no no partly no yes

from Section 1 and common use cases of working with time
series. Results of the comparison are presented in Table 4.

InfluxDB is an open-core time series data store that pro-
vides high throughput of ingest, compression and real-time
querying. As of November 2018 it is the most popular time
series storage [15]. ClickHouse is an open source distributed
column-oriented DBMS that provides a rich set of features to
its users. Due to the MergeTree table engine and time oriented
functions, ClickHouse has proven to be efficient for working
with time series data [5, 20]. TimescaleDB is an open-source
extension of PostgreSQL designed to overcome limitations
of PostgreSQL when it comes to working with time series.
TimescaleDB introduces hypertable – an entity, which has the
same interface for the user as a simple table, but internally
is an abstraction consisting of many tables called chunks.
This mechanism allows avoiding slow disk operations by stor-
ing in memory only the chunk of the latest period. Apache
Kudu [14] is a column-oriented data store that enables fast
analytics in the Hadoop ecosystem. Apache Cassandra is a
general-purpose distributed NoSQL storage, the main aims of

which are to provide linear scalability and fault tolerance. Go-
rilla [18] is a fast in-memory time series database developed
by Facebook. Gnocchi is an open-source TSDB that aims to
handle large amounts of aggregated data. OpenTSDBis an
open-source scalable, distributed time series database written
in Java and built on top of HBase. Snowflake is an analytic
data warehouse provided as Software-as-a-Service (SaaS). It
uses custom SQL database engine with a unique architecture
designed for the cloud. Prometheus is an open-source systems
monitoring and alerting toolkit that has a powerful time series
storage engine.

The first criterion for the comparison is an index type. Pre-
cise indices in Kudu and Cassandra make possible fast search
of exact data entries, but they generally do not increase the
speed of long continuous time series extraction compared to
sparse indices in other solutions, and moreover, index sizes
in Kudu and Cassandra are very large. A sparse index is
much more suitable for the extraction of long time series, and
control over the sparsity of the index is an additional advan-
tage. Gnocchi relies on external indexing by PostgreSQL or

USENIX Association 2020 USENIX Annual Technical Conference 599

MySQL. The interesting fact about Snowflake is that it does
not have indices and instead relies on data micro-partitioning
and clustering [22] that have proven to be very effective on a
large scale.

In terms of internal data structures, log-structured merge-
tree (LSM) is the most widespread way to store the data.
But InfluxDB, Kudu and Cassandra also use multiversion
concurrency control (MVCC) to handle concurrent data mod-
ifications. And when using MVCC there can exist several
versions of the data, and if these versions were not merged
into one during the reading operation, the storage will have
to merge versions upon reading, which decreases the over-
all performance. On the other hand, plain sorted partitions
(PSP) used in Gorilla, make possible fast navigation and ex-
traction of large amounts of data. OpenTSDB relies on the
backend storage, usually HBase, for storing the actual data.
Snowflake tables are the part of the proprietary platform thus
no detailed information on them is available. The schema of
storing the data in Prometheus includes custom data format
for chunks and write ahead logs that are optimized for reading.
Peregreen also has a custom format based on read-optimized
series encoding.

The next criterion is an internal data layout. Row-wise store
data layout of Cassandra and TimescaleDB can be efficient
for sequential reads only when there are no other columns
except timestamp and value. InfluxDB stores timestamps and
values as two separate sequences in its blocks and in that
sense its layout is also columnar. OpenTSDB stores the data
in columnar storages, like HBase or Bigtable, and because of
that provides good speed of data extraction. Prometheus [19]
as well as Peregreen has time series specific data layout for-
mat. Regarding the time series specific compression, general
purpose databases do not have special methods for efficient
time series compression, like delta or delta-of-deltas com-
pression. It is worth mentioning that TimescaleDB allows to
compress the data by chunks but compressed chunks cannot
be updated [24].

The next criteria are related to search by values and data
aggregations. The best way to perform a fast search based on
values conditions is to have some sort of values-based index.
ClickHouse and InfuxDB provide such functionality through
materialized views and continuous queries. Cassandra and
TimescaleDB can easily create a secondary index over the
values column and thus provide very fast search. Snowflake
relies on clustering and intelligent query optimization for
providing high speed of searching across values conditions.
Prometheus allows querying the data based on values of the
tags. Index of Peregreen stores aggregated metrics for blocks
and segments that makes possible fast search in the large
data volumes. All solutions except for Kudu, Cassandra and
Gorilla, support data aggregation during extraction.

SQL-like query syntax is a great feature for any database
since SQL is familiar to many developers and analysts.
Prometheus provides a query language called PromQL that

lets users select and aggregate time series data. It should also
be noted that Peregreen has no support for SQL syntax and
has a set of purposefully built operations available through
API.

The last set of features is related to the support of various
storage backends. Only ClickHouse, Gorilla and Prometheus
can store the data in memory to provide the maximal speed
of data access. The most interesting criterion is the ability of
the storage to use low-cost object storages, like Amazon S3
or Google Cloud, because it is a very important advantage in
terms of cost of usage. Apart from Peregreen only Gnocchi
support such functionality. Snowflake supports integration
with Amazon S3 but in order to efficiently perform operations
over the data it have to be loaded into Snowflake tables [21].

As can be seen from the presented comparison, modern
databases provide users with great functionality when speak-
ing about working with time series. Nevertheless, Peregreen
provides a unique set of features – high performance along
with cloud object storage integration – for working with large
volumes of historical time series.

6 Conclusion

In this paper we presented Peregreen – high performance
storage for numeric time series. Peregreen is based on a three-
tier indexing mechanism and read-optimized series encoding,
which allows it to achieve high compression rate, small index
size and high execution speed of data processing operations.
Experimental results show that Peregreen performs better than
InfluxDB and ClickHouse in operations of data search and
extraction over large amounts of historical time series data.
Peregreen also provides integration with Amazon S3 as a
backend data storage out of the box, which means that it can
greatly reduce the cost of data storing while increasing the
overall efficiency compared to storing the data in EBS, as our
experiments demonstrate.

7 Acknowledgements

We would like to thank our shepherd Gustavo Alonso and
anonymous reviewers for their valuable feedback. This work
is carried out in the Siemens-ITMO Industrial Cognitive Tech-
nologies Lab and is funded by Siemens.

References

[1] Altinity. Compression in ClickHouse, 2017.

[2] Amazon. Amazon EBS Volume Types, 2018.

[3] Amazon. Request Rate and Performance Guidelines,
2018.

600 2020 USENIX Annual Technical Conference USENIX Association

[4] Amazon. The Floodgates Are Open – Increased Net-
work Bandwidth for EC2 Instances, 2018.

[5] Dmitry Andreev. ClickHouse as Time-Series Storage
for Graphite, 2017.

[6] W Brian Arthur. Asset pricing under endogenous ex-
pectations in an artificial stock market. In The economy
as an evolving complex system II, pages 31–60. CRC
Press, 2018.

[7] James Lopez Bernal, Steven Cummins, and Antonio
Gasparrini. Interrupted time series regression for the
evaluation of public health interventions: a tutorial.
International journal of epidemiology, 46(1):348–355,
2017.

[8] Chris Churilo. InfluxDB Tops Cassandra in Time Series
Data and Metrics Benchmark, 2018.

[9] Carlo Curino, Evan PC Jones, Samuel Madden, and Hari
Balakrishnan. Workload-aware database monitoring
and consolidation. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of
data, pages 313–324. ACM, 2011.

[10] Manuel Díaz, Cristian Martín, and Bartolomé Rubio.
State-of-the-art, challenges, and open issues in the inte-
gration of internet of things and cloud computing. Jour-
nal of Network and Computer applications, 67:99–117,
2016.

[11] Chris C Funk, Pete J Peterson, Martin F Landsfeld,
Diego H Pedreros, James P Verdin, James D Rowland,
Bo E Romero, Gregory J Husak, Joel C Michaelsen, An-
drew P Verdin, et al. A quasi-global precipitation time
series for drought monitoring. US Geological Survey
Data Series, 832(4), 2014.

[12] InfluxData. In-memory indexing and the Time-
Structured Merge Tree, 2018.

[13] InfluxData. InfluxDB home page, 2018.

[14] Todd Lipcon, David Alves, Dan Burkert, Jean-Daniel
Cryans, Adar Dembo, Mike Percy, Silvius Rus, Dave
Wang, Matteo Bertozzi, Colin Patrick McCabe, et al.
Kudu: storage for fast analytics on fast data. Retrieved
June from http://getkudu. io/kudu. pdf. Pages„ and,
2015.

[15] Knowledge Base of Relational and NoSQL
Database Management Systems. DB-Engines
Ranking of Time Series DBMS, 2018.

[16] Knowledge Base of Relational and NoSQL
Database Management Systems. DBMS popularity
broken down by database model, 2018.

[17] Diego Ongaro and John K Ousterhout. In search of
an understandable consensus algorithm. In USENIX
Annual Technical Conference, pages 305–319, 2014.

[18] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul
Cavallaro, Qi Huang, Justin Meza, and Kaushik Veer-
araghavan. Gorilla: A fast, scalable, in-memory time
series database. Proceedings of the VLDB Endowment,
8(12):1816–1827, 2015.

[19] Prometheus. Prometheus storage schema, 2020.

[20] Alexander Rubin. A Look at ClickHouse: A New Open
Source Columnar Database, 2017.

[21] Snowflake. Bulk Loading from Amazon S3, 2020.

[22] Snowflake. Micro-partitions Data Clustering, 2020.

[23] Timescale. TimescaleDB vs. PostgreSQL for time-
series, 2017.

[24] Timescale. TimescaleDB compression, 2020.

[25] Yandex. ClickHouse home page, 2018.

USENIX Association 2020 USENIX Annual Technical Conference 601

AC-Key: Adaptive Caching for LSM-based Key-Value Stores

Fenggang Wu Ming-Hong Yang Baoquan Zhang David H.C. Du
University of Minnesota, Twin Cities

Abstract
Read performance of LSM-tree-based Key-Value Stores suf-
fers from serious read amplification caused by the leveled
structure used to improve write performance. Caching is one
of the main techniques to improve the performance of read
operations. Designing an efficient caching algorithm is chal-
lenging because the leveled structure obscures the cost and
benefit of caching a particular key, and the trade-off between
point lookup and range query operations further complicates
the cache replacement decisions.

We propose AC-Key, an Adaptive Caching enabled Key-
Value Store to address these challenges. AC-Key manages
three different caching components, namely key-value cache,
key-pointer cache, and block cache, and adjust their sizes
according to the workload. AC-Key leverages a novel caching
efficiency factor to capture the heterogeneity of the caching
costs and benefits of cached entries. We implement AC-Key
by modifying RocksDB. The evaluation results show that
the performance of AC-Key is higher than that of RocksDB
in various workloads and is even better than the best offline
fix-sized caching scheme in phase-change workloads.

1 Introduction
The persistent Key-Value Store (KVS) has become an in-

dispensable storage engine in many applications [1–4] for its
flexibility and scalability. Existing KVSs, e.g., LevelDB [5],
RocksDB [6], Cassandra [7], etc., use a Log-Structured Merge
(LSM) tree [8] to improve the performance of write opera-
tions. However, their read performance is sacrificed because
of the log-structured nature of LSM trees, where finding a key
by searching several levels could incur multiple storage I/Os
[9–11].

Caching is one of the main techniques to improve read
performance since workloads usually demonstrate certain
amounts of access locality. Studies show that read opera-
tions exhibit “hot spots” in enterprise workloads on LSM-
tree-based KVSs (LSM-KVS) for both point lookups [12–14]
and range queries [15, 16]. In Facebook, some large-scale
production use cases of RocksDB exhibit good locality [17]:

fewer than 3% of the keys were accessed during a 24-hour
UDB workload; in the ZippyDB workload about 1% of the
KV-pairs are accountable for 50% of the total Gets.

There are two major unique challenges in designing an
efficient caching scheme for LSM-KVS. First, LSM has a
multi-level design where the storage I/O saved by each cached
key-value pair (caching benefit) could be different. The deeper
the level where the KV pair resides, the more storage I/Os can
be saved if it is cached. Additionally, the DRAM caching size
taken by one key-value pair (caching cost) is also different
with different key and value sizes. It is challenging for the
caching scheme to estimate the cost and benefit and make
replacement decisions accordingly. Second, the two types
of read operations, namely point lookup and range query,
exhibit quite different caching requirements. Point lookup
prefers caching an individual key-value pair (KV) for space
efficiency [6, 7]. If the value is large, another alternative is to
cache a key-pointer pair (KP, where the pointer refers to the
location of the value in storage) [7]. In contrast, a range query
cannot be served by caching sporadic individual keys, so peo-
ple resort to caching blocks to support range queries [5, 6]. It
is difficult to disentangle the trade-offs among caching KV,
KP, and blocks, as each of them has certain types of favor-
able workloads. Additionally, designing an adaptive caching
scheme that can deal with dynamic workloads is more chal-
lenging.

Existing caching schemes [5–7, 18, 19] only consider one
or two types of entries to cache among KV, KP, and block,
and they have a fixed allocated cache budget for one type of
entry. Therefore, they cannot leverage all of their merits to
cope with various workload scenarios, and cannot adjust the
caching space when the workload changes. Besides, to the
best of our knowledge, there is no existing work addressing
the heterogeneous caching costs and benefits in the unique
LSM-KVS scenario.

We comprehensively study the trade-offs among caching
KV, KP, and blocks, and propose AC-Key, Adaptive Caching
for LSM-based Key-Value Stores, to combine their advan-
tages in handling different workloads. AC-Key uses one des-

USENIX Association 2020 USENIX Annual Technical Conference 603

ignated caching component for each type of the entries (KV,
KP, and block). The size of each caching component is dynam-
ically adjusted by the proposed hierarchical adaptive caching
algorithm that uses ghost caches to guide the size adjust-
ment. AC-Key leverages a novel caching efficiency factor that
quantifies the different caching costs and benefits to aid the
boundary adjustment among the caching components as well
as the replacement decision within each caching component.

We implement AC-Key based on RocksDB [6]. Our bench-
mark evaluations show that the read performance of AC-Key
is higher than that of the default RocksDB by up to 57.1%. In
the phase-change workloads, AC-Key can achieve even better
performance than the best offline fix-sized caching scheme.
We also evaluate AC-Key using YCSB [15] where AC-Key
outperforms the default RocksDB by up to 59.9%.

The rest of the paper is organized as follows. We first pro-
vide the background and motivation in §2 and §3, respectively.
Then we present the design of AC-Key in §4 and analyze the
performance of AC-Key in §5. §6 concludes the paper.

2 Background and Related Work

2.1 LSM-Tree-Based Key-Value Store
Popular implementations of LSM-tree-based Key-value

stores (LSM-KVSs), such as LevelDB [5] and RocksDB [6],
consist of two parts, a memory component and a storage com-
ponent. The memory component, or MemTable, is typically
implemented using in-place sorted data structures such as
skip-list or B+ tree. The storage component is implemented as
levels of files storing sorted runs of key-value pairs compactly.
As shown in Fig. 1, one level is partitioned into multiple
sorted string table files, or SSTs. Each SST has a configurable
size limit, typically 2MB~64MB.

When the MemTable is full, it will be formatted into an
SST and written to the storage component. This procedure is
called the flush operation. Each level in the storage component
has an exponentially increasing size limit (by default 10 times
larger than the previous level). Therefore, larger levels will
have more SSTs. L0 SSTs will be merged with the L1 SSTs
when the specified size limit is reached. After that, L1 SSTs
will then be merged with L2 SSTs, so on and so forth. This is
called the compaction operation.

Every level is a single sorted run (except L0) where the
SSTs have disjoint key ranges. The sorted run of key-value
pairs of an SST are divided into multiple data blocks, and the
boundary keys between every two adjacent data blocks are
stored in an index block with the corresponding data block
offset within the SST. Besides, SST also contains a bloom
filter block (BF block) to determine the existence of a key in
this SST hence to save unnecessary storage I/Os. Block is the
basic storage I/O unit in LSM-KVS.

There are two types of read operations in LSM-based key-
value stores, namely point-lookup (or Get) and range query
(or Scan). Get is to retrieve the value of a specific key in the

… …

…

SST Files

L0
L1
L2

LN

Storage

DRAM

MemTable

Caching Spaceflush

compaction Data Block 1

Data Block 2
…

Data Block n

BF Block

Index Block

Footer

K/V
K/V

…

K/V

Figure 1: LSM-based Key-value Store (LSM-KVS).

following sequence: MemTable, every SST in L0 from the
youngest to the oldest, then L1 to LN . If the key is found in the
MemTable, it will return with the value without any storage
access. Otherwise, the key-value store will search the SSTs in
the storage component. It will first check the bloom filter of
one SST and skip the SST if the bloom filter indicates that the
key does not exist. Otherwise, the index block will be read to
locate the corresponding data block. Finally, the data block
is retrieved and searched for the key. Therefore, a key-value
store needs at most three storage I/Os when searching an SST
for a specific key.

LSM-KVS performs a range query using a starting key
and an ending key or a number specifying how many key-
value pairs to return. To execute a range query, the KVS uses
a Seek() function to construct a merging iterator that can
iterate through the MemTable, all SSTs in L0, and one SST in
each of the larger levels at the same time. Then, the KVS will
call a Next() function to return the next larger key. When the
key returned by the Next() function is larger than the ending
key, or the number of the returned key-value pairs has reached
the specified number, the range query will be terminated.

2.2 Related Work

2.2.1 Caching Schemes in LSM-KVS
There are three type of entries that can be cached in LSM-

KVS: block, KV, and KP (Fig. 2).
LevelDB [5] only adopts the Block Cache (Fig. 2a), where

the blocks could be data block, index block, or Bloom Filter
(BF) block. The blocks in the Block Cache are indexed using
the SST file ID and the block offset (<SstID|BlockOffset>).
Block Cache can be beneficial for both point lookup and range
query operations. Storage I/Os can be saved as long as the
target block is cached. However, Block Cache is not space-
efficient to serve point lookup, as the whole block has to be
cached even though only a small portion of the keys in the
block are accessed frequently.

RocksDB [6] has both Block Cache (Fig. 2a) and KV Cache
(Fig. 2b). The KV Cache stores KV pairs that can serve point
lookup. However, the sizes of the Block and KV Caches in
RocksDB are predefined and fixed. When the KV cache is
enabled, point lookup will first consult the KV cache if the
write buffer does not contain the key. If the key was not
cached in the KV Cache, RocksDB will follow the normal
read process using Block Cache as LevelDB does, and insert

604 2020 USENIX Annual Technical Conference USENIX Association

… …

L0 Storage
DRAM

K/V
K/V
…
K/V

…
…

……
…

…

K/V
K/V
…
K/V

K/V
K/V
…
K/V

K/V
K/V
…
K/V

Get and Scan

Block Cache

Caching Space

Data
Block

SST Files

LN

(a) Block Cache

… …

L0 Storage
DRAM

K/V

…
…

……
…

…

Get

KV Cache

Caching Space

K/V

K/V

K/V

K/V

K/V

K/V

K/V

K/V

K/V

K/V

K/V

SST Files

LN

(b) KV Cache

… …

SST FilesL0 Storage
DRAM

K/P

…
LN

…
……

…
…

Get (w/ one extra I/O)

KP Cache

Caching Space

K/P

K/P

K/P

K/P

K/P
K/P

K/P

K/P

K/P

K/P

K/P

… BLK …

(c) KP Cache

Figure 2: Three Types of Entries to Cache in LSM-KVS.

Frequency Recency

Target Boundary

Ghost Cache Real Cache Ghost Cache

Recency Ghost
Cache Hit

LRU LRU LRU LRU

Frequency Recency

Target Boundary

Ghost Cache Real Cache Ghost Cache
LRU LRU

Freq. Ghost
Cache Hit

LRU LRU

Figure 3: ARC Algorithm.

the KV pair into the KV cache afterwards. Range queries are
supported by the Block Cache.

Cassandra [7] does not have a Block Cache but has both KV
Cache (Fig. 2b) and KP Cache (Fig. 2c. In the KP Cache, the
locations of the values in the storage are cached in memory as
pointers). On a hit in the KP Cache, one point lookup can be
served with only one storage I/O, skipping all the shallower
levels in the storage component. Compared with KV Cache,
KP Cache is more space-efficient for large value sizes at a
price of one extra storage I/O. Similar to KV Cache, KP Cache
cannot handle range queries. When promoting a key from KP
Cache to KV Cache, Cassandra does not remove the KP entry.

zExpander [18] is a KVS caching scheme which caches
key-value pairs only. It partitions caching space into a com-
pressed zone (Z-zone) and an uncompressed zone (N-zone)
and can adapt the boundary between them. LSbM [19] has a
small on-disk compaction buffer that keeps old, but hot data
from being deleted during compaction to reduce the block
cache invalidation due to compaction. It needs extra storage
space for compaction buffer, and does not take advantage of
the more efficient KV or KP Cache to support point lookup.

2.2.2 General Caching Algorithms
The page cache replacement problem has been studied for

decades [20]. Adaptive Replacement Cache (ARC) [21] is a
dynamic page replacement algorithm designed for managing
the page cache in DRAM. As shown in Fig. 3, ARC divides
the caching space into two parts, the recency cache and the
frequency cache, each of which is an LRU cache. A page
is brought into the recency cache when first encountered.
If the page gets a second access before being evicted, it is
considered a frequently accessed page and will be migrated
to the frequency cache.

The space distribution between the recency cache and the
frequency cache is dynamic. ARC uses two ghost caches
to store metadata of evicted pages (page number) from the
recency and frequency cache respectively. The pages stored
in the ghost cache will be a future reference for adjusting the
allocated space for each part. Compared with the real cache,
i.e., the cache stores the actual page contents, the size of the
ghost cache is negligible since they only store page numbers.

A hit on the recency ghost cache indicates the recency

cache should have been larger, so the target boundary will be
moved leftwards (top figure in Fig. 3) and vice versa (bottom
figure in Fig. 3). As a result, the size of the corresponding
real cache will be increased or decreased according to the
workload.

CAR [22] also maintains a dynamic partition between the
recency and frequency cache using ghost caches, but it uses
CLOCK instead of LRU to manage each caching component
to reduce overhead. H-ARC [23] uses Non-Volatile Memory
(NVM) to cache both clean and dirty pages and propose a
hierarchical algorithm to adaptively handle the page replace-
ment.

Such page-based caching algorithms (e.g. ARC [21],
CAR [22], H-ARC [23]) do not fit LSM-KVS well because
they are based on identical page sizes and caching benefits (i.e.
storage I/Os saved by caching an entry), whereas the entry
sizes and caching benefits in LSM-KVS are no longer uniform.
Similarly, pure frequency-based cache eviction algorithms
(e.g. WLFU [24]) and admission policies (e.g. TinyLFU [25])
assume homogeneous entry size and caching benefit too and
make replacement decisions solely based on the access fre-
quency. However, in LSM-KVS, the difference in entry size
and caching benefit should also be considered along with
frequency. Web caching algorithms often take into account
the entry size information [26]. In LSM-KVS, however, be-
sides entry size, the caching benefit for different entries is
also diverse. For example, caching a KV from a deeper level
will save more storage I/Os than caching one from a shal-
lower level. Such special knowledge of the leveled structure
of LSM-tree should be exploited to aid caching decisions in
LSM-KVS.

3 Motivation
3.1 Unique Challenges in Caching for LSM

Comparing with the page cache replacement problem [20–
23], where the pages have identical sizes, keys and values
in the LSM tree do not necessarily have the same size. The
caching algorithm in LSM should also take the size difference
into consideration when designing the replacement algorithm.

Hash-based KVS [27, 28] does not support range queries.
In contrast, LSM-KVS has two distinct read operations, point

USENIX Association 2020 USENIX Annual Technical Conference 605

Table 1: LSM-KVS Caching Scheme Comparison

Cached Entry Space Efficiency Extra I/O Get Existing Get Missing Scan Compaction Flush Favorite Workload

Block Low No Helpful Helpful (BF block) Helpful Affected Not Affected Scan / Get (missing)
KV High No Helpful Not Helpful Not Helpful Not Affected Affected Get (hot/small value)
KP High Yes Helpful Not Helpful Not Helpful Affected Affected Get (warm/large value)

lookup and range query, that exhibit quite different caching
requirements, and brings additional challenges in the design
of LSM caching algorithms.

B+ tree-based KVS [29] supports both point lookup and
range query. LSM-KVS is different as it has a leveled structure
that diversifies the caching benefit of KV pairs on different
levels. The deeper level the KV resides, the more storage
I/O can be saved by caching this KV pair. Besides, native
operations in LSM-KVS such as compaction and flush do not
exist in B+ tree-based KVS, but they will invalidate cached
entries and need special treatment in the design.

To motivate our design, we discuss two key question about
the LSM-KVS caching: what to cache, and how to perform
replacement, while summarizing the lesson learned.

3.2 What to Cache in LSM-KVS
For point lookup which retrieves the value for a given key,

it’s natural to directly cache the hot KV pairs in the DRAM
cache. However, when the value size is large, and/or the ac-
cess is less frequent, another alternative is to cache a pointer
referring to the location of the value on the storage component.
When looking for this key, the value can be fetched using one
storage I/O instead of performing multiple I/Os along every
SST from L0 down to the level where the KV resides. By
storing a smaller pointer instead of the original larger value,
KP Cache can hold more entries. The hit ratio of KP Cache
will be higher than that of a KV Cache and can potentially
save more I/Os. Comparing KV with KP entry, a hit on a KV
entry can save more storage I/Os since a KP hit still needs one
storage I/O to get the value. On the other hand, caching KP
entries is more space-efficient in the case of relatively large
value sizes.

Lesson 1: The merits of caching KV and KP entries should
be combined to efficiently serve point lookups.

Unfortunately, cached KV and KP entries cannot help with
range queries. Given the staring key of a range query, the
next larger key cannot be determined by only examining the
sporadic cached KV or KP entries. Therefore, some LSM-
KVS implementations such as LevelDB [5] and RocksDB [6]
cache data blocks for range queries.

Cached data blocks can serve point lookup too. However,
retaining a whole block for point lookup is not space-efficient
as it keeps a whole block in the DRAM even only a few
keys are frequently looked up. Beside data blocks, frequently
accessed index blocks and bloom filter blocks (BF blocks) are
also cached in Block Cache.

Lesson 2: Cached blocks and KV/KP entries each have
their advantage to support range query and point lookup.

3.3 How to Perform Replacement
From the discussion above, we reach to the conclusion

that caching KV, KP, and block each has its own favorable
workload scenario. We have a comprehensive comparison
summarized in Table 1. However, designing the replacement
algorithm for a cache that consists of all these three different
entries is challenging.

A straightforward approach is to treat all the cached entries
(KP entries, KP entries, or blocks) equally and borrow exist-
ing replacing schemes, such as LRU (Least Recently Used) or
LFU (Least Frequently Used), to manage the cache. Each en-
try is inserted or evicted according to the corresponding evic-
tion policy. Therefore, the number of cached entries among
the cached KV entries, KP entries, and blocks are solely deter-
mined by the access pattern. However, this “unified” caching
approach is too simplified and cannot distinguish the differ-
ences between these cached entries. First, different cached
entries have different sizes. For example, one cached block
may take up the DRAM space which can hold tens or hun-
dreds of KV/KP entries. Second, different cached entries have
different numbers of saved storage I/Os. For example, one
cached block saves one I/O if hit, but one cached KV en-
try could save multiple storage I/Os for all the SSTs to be
accessed for a point lookup. Besides, KV/KP entries on dif-
ferent levels will have different numbers of storage I/O saved
too. General cost-aware caching schemes [30, 31] does not
have special analysis on the caching cost and benefit in this
LSM-KVS scenario either. Third, if there is a single-pass
large range query, the fetched blocks will evict useful entries
out of cache without bringing any benefit.

Lesson 3: The caching algorithm should consider the dif-
ference of DRAM size taken and number of storage I/O saved
among different cached entries, respecting the unique leveled
structure of LSM-KVS.

Another approach is to have designated fix-sized KV Cache,
KP Cache, and Block Cache for the corresponding entries,
and perform independent eviction decisions based on pop-
ular caching algorithms, such as LRU or LFU. In this case,
the cache is resilient to the large single-pass range query (as
mentioned before) because the each caching component has
a bounded capacity and will not influence the other caching
components. However, this fix-sized approach has some prob-
lems. First, it is difficult to get the size distribution right in the
first place. Second, even if we could have a favorable fix-size
configuration at the beginning, it might not be suitable later
on as the access pattern of workloads could change over time.
For example, a workload has a phase change from range query

606 2020 USENIX Annual Technical Conference USENIX Association

… …

L0 Storage
DRAM

K/V

…
…

……
…

…

Get
(w/ extra I/O)

KV Cache

Caching Space

K/V

K/V

SST Files

LN

K/P

K/P

K/P

K/V
K/V
…
K/V

K/V
K/V
…
K/V

KP Cache Block Cache

Get and ScanGet

Dynamic
Boundary

Figure 4: AC-Key Caching Components

dominant into point lookup dominant. If the fixed configura-
tion is good for the range query at first, i.e., majority of the
cache space is used as Block Cache, in the point lookup phase,
it is clearly not efficient.

Lesson 4: The caching algorithm should be adaptive to the
workload changes.

4 AC-Key Design
AC-Key (Fig. 4) caches all three types of entries – KV, KP,

and block – with designated caching components for each of
the three. Different from the fix-sized scheme described in the
previous section, AC-Key has dynamic sizes for each of the
caching components. The sizes are adjusted by the proposed
hierarchical adaptive caching algorithm. Considering the
heterogeneous costs and benefits of different cached entries
and the unique leveled structure of LSM-KVS, AC-Key uses
the proposed caching efficiency factor to quantitatively guide
the size adjustment among the caching components as well
as the replacement policy within each caching component.

4.1 AC-Key Caching Components
The AC-Key system architecture is depicted in Fig. 4. The

storage component is identical to popular LSM implementa-
tions (§2). The DRAM caching space has three components:
the KV Cache, the KP Cache, and the Block Cache. The Block,
KP, and KV Caches are managed by E-LRU, an improved
LRU with cache efficiency factor based eviction (see §4.2).

KV cache stores the key-value pairs directly. KP Cache
holds keys with pointers, where the pointers are in a format
of <SstID|BlockOffset>. When a KP Cache entry is hit, it
takes only one storage I/O for the KVS to fetch the data block
which contains the target key-value pair. Block Cache stores
frequently accessed blocks, which can be either a data block,
an index block, or a Bloom Filter (BF) block.

Remarks on the KV and KP Cache. In a point lookup
operation, if a lookup-key is accessed for the first time, it will
be brought to the KP Cache. A key cached in KP cache is
called a warm key. If a warm key in KP cache is hit again, we
consider the key as a hot key. We anticipate that it has a higher
probability to be accessed again in the future. Therefore, we
“promote” the key to KV Cache to potentially save more I/Os
from the future accesses. Different from the existing solution
in [7] that still keeps key in the KP Cache, AC-Key removes

the key from KP Cache to avoid the duplicity and achieve
better space-efficiency.

In our current design, we will not “demote” a hot key from
KV Cache to KP Cache since we no longer have the pointer
information. Another design alternative is to have both the
pointer and value stored in KV Cache. However, the accom-
panying pointer will occupy extra cache space of the KV
Cache hence we do not take this approach. As an optimiza-
tion, if the value size of a KV pair is smaller than the pointer
size (implementation-dependent, 24 B in our case), we will
cache the value with the key into the KP Cache instead of
the pointer to save the extra I/O without paying more DRAM
caching space. This entry still needs another hit to be pro-
moted to the KV Cache. AC-Key does not directly insert this
KV entry to the KV cache. The reason is that if this key is not
“hot” enough, i.e., having less chance to be hit again, it will
evict other “hot” entries from the KV Cache. For example,
the workload at a certain time starts to access through a sub-
stantial number of keys with small values without a second
hit, those keys will occupy the whole KV cache, kicking out
useful KV pairs without bringing any benefit.

4.1.1 Get Handling
Get Existing Key. Denote K as the key to search. First,

the MemTable is searched for K as it potentially has the lat-
est version of the value. If not found, then the KV and KP
Cache is searched for the key. One of the following cases will
happen.

• Case I: Hit in KV Cache. The value is returned without
any I/O incurred.

• Case II: Miss in KV Cache but hit in KP Cache.
Using the cached pointer (<SstID|BlockOffset>) as
block handle, AC-Key will check whether the data block
is already cached in the Block Cache. If not, AC-Key
will load the data block into the Block Cache. Using
binary search, AC-Key locates the KV pair in the data
block and then serves the Get request. Besides, the key
will be migrated to the KV Cache, promoting the cached
entry from key-pointer format to key-value format.

• Case III: Miss both in KV Cache and KP Cache. AC-
Key will examine every sorted run level by level, iden-
tifying each SST that has a key range overlaps K, from
the youngest to the oldest. Once the key is found in a
certain SST, AC-Key will stop searching and return the
result directly. Besides, the location of the KV pair, i.e.,
the pointer, will be recorded and cached in the KP Cache
indexed by the key.

In case III, when searching one SST, AC-Key first consults
the BF block of this SST. If the BF block is not in the Block
Cache, it will be fetched from the storage and inserted into
the Block Cache. If the BF block indicates the key is not
in the SST, AC-Key will skip this SST and proceed to the

USENIX Association 2020 USENIX Annual Technical Conference 607

next SST. Otherwise, AC-Key will access the index block
to narrow down the scope and pinpoint which data block to
search. The index block and data block will be fetched from
storage and inserted to the Block Cache if not already cached.
The BF block, index block, and data block share the Block
Cache similar to RocksDB [6].
Get Missing Key. When looking up a missing key K in

AC-Key, Case I and II of §4.1.1 will not happen as there will
be cache miss in both KV and KP Caches.

Similarly, in Case III, the Block Cache will be searched
for the corresponding BF block and one storage I/O will be
saved if hit. Getting missing keys is the “worst” case where
all the overlapping SSTs will be checked. However, by using
the cached BF blocks in the Block Cache, multiple storage
I/Os can be saved.

4.1.2 Flush Handling
Flush will dump the MemTable that contains the latest

version of the values into the storage component as an L0
SST. It is possible that a key inserted to the MemTable is
already cached in either KV or KP cache. Insertions (also
called Put operations) to the MemTable will obsolete the
corresponding cached entries. As long as the new version of
value is still in MemTable, obsolete entries in the caches do
not matter because point lookup operation will always consult
the MemTable first. However, the cached KV and KP entries
must be synced before the keys is flushed to the storage to
avoid returning stale results.

We have two alternatives of the timing of the sync: during
Put or during Flush. If during Put, the KV and KP Caches
will be checked for potential obsolete entries in each Put and
update the KV entry or delete the KP entry accordingly. Note
that during Put, AC-Key cannot update the KP entry since
the latest value of such key has not been written into an SST
yet, hence there is no way to know where the pointer should
point to. This approach introduces significant performance
overhead because of the extra checking during every Put op-
eration. Besides, if a key gets multiple updates before flushed
from MemTable, we have to repeatedly check both KV and
KP Cache for it, which further increases the sync overhead.

Therefore, AC-Key takes another alternative to sync the
caches only during Flush time. It can accumulate multiple
updates to the same key and only sync the KV or KP cache
once for each key. Besides, during Flush time, AC-Key can
figure out the new pointers of keys in the KP Cache and
update them accordingly.

4.1.3 Compaction Handling
Compaction will affect KP and Block Caches since it cre-

ates new SSTs and delete old ones. The old SSTs deleted dur-
ing compaction may contain blocks that are already cached
in the Block Cache. Such deleted SSTs may also contain data
blocks being referenced by the pointers cached in the KP
Cache. However, it will not affect the entries in KV Cache
because compaction reorders and consolidates old KV pairs

instead of inserting new ones. AC-Key updates KP and block
Caches when compaction affects any of cached KP entries or
blocks.

For the KP Cache, during the compaction, AC-Key iden-
tifies affected KP entries in the KP-Cache and update the
pointers to point to the new data blocks that contain the keys.
For the Block Cache, if one cached data block is to be invali-
dated during compaction, AC-Key will replace the invalidated
data block with one new data block generated by compaction
to avoid the invalidated block wasting the Block Cache’s ca-
pacity. The key range of the newly generated data block may
not be exactly the same as the old one. AC-Key chooses the
block that has the largest overlap with the old cached block
and repopulates it back to the Block Cache. Similarly, invali-
dated cached BF blocks and index blocks are also replaced
by the new ones with the most overlapping key ranges. Such
block replacement does not incur extra I/O, as the new blocks
are generated in memory during compaction.

4.2 Caching Efficiency Factor
To quantitatively analyze the trade-off between the costs

and benefits of the cache entries, we propose the novel caching
efficiency factor that takes into account the unique level struc-
ture of LSM-KVS. Using this caching efficiency factor, AC-
Key improves LRU into E-LRU to manage cache evictions
within each caching component, and modifies ARC into E-
ARC to adjust the size of each caching component. We intro-
duce the caching efficiency factor and E-LRU in this section,
and discuss E-ARC in the next section.

We define the caching efficiency factor E (E standing for
Efficiency) for one cached entry as the following equation.
The meaning of this caching efficiency factor is “the number
of saved I/O per byte of DRAM caching space”.

E =
b
s
, (1)

where: E = caching efficiency factor of one cached entry,
b = number of saved storage I/O if cached,
s = caching space taken by this entry.

For example, one typical cached KV entry will take one or
several hundreds of bytes, one KP entry will normally take
less than one hundred bytes, and one cached block will take
4~16KB. b denotes the number of I/O being saved if this entry
is cached. It is given by:

b =

1 if block,
f (m) if KV entry,
f (m)−1 if KP entry.

(2)

where: m = number of SSTs to search for the key,
f (m) = number I/Os to get a key. It is a function

of m.

608 2020 USENIX Annual Technical Conference USENIX Association

The function f (m) depends on the LSM-KVS implemen-
tation. Typically, f (m) = m+ 2, where we have to read m
bloom filters each from one SST along the searching path, as
well as one index block and one data block in the SST that
contains the lookup-key. The number of SSTs to search, m, is
estimated by the level l where the key resides:

m =

{
n0/2 if l = 0,
l +n0 if l >= 1.

(3)

where: n0 = max number of SSTs L0 can hold,
l = the level where the key resides.

If l = 0, the key is in L0. AC-Key assumes m = n0/2 as
an estimate of the average number of SST to search for a
key in L0. If the lookup key resides in levels greater than L0,
potentially every SST in level L0 will be checked. So, AC-Key
uses n0, the max number of files in L0, to estimate m.

E-LRU. Traditional LRU only considers the access pattern
without taking care of the different benefits and costs of the
cached entry. We develop E-LRU, the efficiency-based LRU,
to address this issue. E-LRU checks the least used a cached
entries and evict one with the least caching efficiency E. The
value of a depends on the variance of the caching efficiency
factor E of the cached entries. It is given by a = ev, where v
is the standard deviation of the caching efficiency factor E
of sampled entries in the caching component. When v = 0,
meaning cached entries has identical efficiency, then a = 1,
and E-LRU degenerates to the original LRU algorithm that
evicts the last one entry from the list. The larger v, the more
variance of the efficiency E, the greater a should be used to
select a better candidate to evict. In the current implementa-
tion, we have a cap on a to avoid AC-Key checking too many
entries when making eviction decision. We use E-LRU for
simplicity, yet other cost-aware caching schemes [30, 31] can
be adapted here using our proposed caching efficiency factor.

4.3 HAC: Hierarchical Adaptive Caching
Hierarchical Adaptive Caching (HAC) has a two-level hier-

archy to manage different caching components (Fig. 5). On
the upper level, the cache is divided into two components: the
Point Cache and the Block Cache. The boundary between the
Point Cache and the Block Cache is dynamically adjusted.
On the lower level, the Point Cache is further divided into KV
Cache and KP Cache with an adjustable boundary too. HAC
maintains ghost caches to keep a record of the evicted entries
from the KV, KP, and Block Cache. On the upper level, there
are two ghost caches for the Point Cache and the Block Cache
respectively, while in the lower level, there are two ghost
caches each for the KV and KP Cache. Opposed to ghost
caches, the original KV, KP, and Block Caches are called real
caches. Here the KV and KP Real Caches collectively make
up the Point Real Cache. The ghost caches do not hold the
real entry, but only metadata of the evicted entries. A hit in

Point Cache Block Cache

Block

KV Cache KP Cache

KPKV

Upper Level

Lower Level

Real Cache Ghost Cache

dynamic boundary

Figure 5: Hierarchical Adaptive Caching (HAC) Algorithm.

the ghost cache means it could have been a real cache hit
if the corresponding real cache was larger. By using ghost
cache with the caching efficiency factor, we design E-ARC
(caching Efficiency enabled ARC) to adjust the size of the
corresponding real cache.

4.3.1 Lower-Level HAC
AC-Key uses E-ARC, or efficiency based ARC, to man-

age the lower-level HAC. On the lower-level HAC, the Point
Cache is divided into the KV Real Cache (Rkv) and KP Real
Cache (Rkp). That is: |Rkv|+ |Rkp|= Spoint , where | · | means
size, and Spoint denotes the Point Cache size. AC-Key main-
tains the KV Ghost Cache as if the KV Real Cache Rkv plus
the KV Ghost Cache Gkv equals to the total size of the Point
Cache. Note that the KV Ghost Cache only holds the meta-
data of the keys evicted from the KV Cache. Denote |Gkv|
as the size if they were storing the whole KV pair, then
|Rkv|+ |Gkv| = Spoint . Similarly, with Gkp denoting the KP
Ghost Cache, we have |Rkp|+ |Gkp|= Spoint .

Therefore, the following equation is always maintained:

Spoint = |Rkv|+ |Rkp|= |Rkv|+ |Gkv|= |Rkp|+ |Gkp|. (4)

We show how E-ARC handles cache hits and misses in the
following cases:

• Case I: Real Cache Hit. Cache hits on Rkv or Rkp. Move
the hit entry to the MRU end of Rkv. Especially, if the
hit happens on Rkp, AC-Key needs one storage I/O to
get the value. Then the key and value is inserted into Rkv
(promotion).

• Case II: KV Ghost Cache Hit. Cache hits on Gkv means
the size of Rkv should have been larger. Shift the target
boundary towards the KP Cache end by δ = kE, where
E is the caching efficiency factor of the hit entry on Gkv.
Here k is a configurable learning rate. After fetching
from storage, insert the fetched KV to the MRU end of
Rkv. To make room for this KV entry, evict from Rkv
(resp. Rkp) if the target boundary is within Rkv (resp.
Rkp), meaning that the target size of Rkv (resp. Rkp) is
smaller than its actual size.

• Case III: KP Ghost Cache Hit. Cache hits on Gkp
means the size of Rkp should have been larger. Shift the
target boundary towards the KV Cache end by δ = kE.

USENIX Association 2020 USENIX Annual Technical Conference 609

E is the caching efficiency factor of the hit entry on Gkp.
After fetching from storage, insert the fetched KV to the
MRU end of Rkv. To make room for this KV entry, evict
from Rkv (resp. Rkp) if the target boundary is within Rkv
(resp. Rkp), similar to Case II.

• Case IV: Cache Miss. Retrieve the entry from storage
and cache to Rkp in KP format. To make room for this
KP entry, if the target boundary is within KV cache, evict
from Rkv. Otherwise evict from Rkp.

The target boundary between the KV Real Cache Rkv and
KP Real Cache Rkp indicates the direction the actual boundary
should move. The actual boundary will normally lag behind
the target boundary. The high level sequence of operations is
as follows: 1) ghost hit adjusts the target boundary; 2) entry
insertion or promotion shifts the actual boundary towards the
target boundary, and as a result, real cache sizes |Rkv| and
|Rkp| are updated; 3) ghost cache sizes are adjusted based on
the new real cache sizes using the Eqn. 4; and 4) real and
ghost caches perform eviction if necessary to fit the updated
sizes using E-LRU (§4.2).

Remarks on E-ARC. Although we follow a similar logic
of the canonical ARC algorithm, the original ARC does not
have the size and cost differences. In the original ARC, the
saved block access b and space cost s for each entry are always
the same. E-ARC’s definition of δ = kE = k b

s is a generaliza-
tion of that of the canonical ARC, and the ARC’s definition
of the adjustment is a special case of E-ARC’s formula where
b
s = 1.

4.3.2 Upper-Level HAC
On the upper level of HAC, we re-apply the E-ARC scheme

to adjust the boundary between Point Cache and Block Cache.
Block Cache and Point Cache each has a real cache (Rblock
and Rpoint) and a ghost cache (Gblock and Gpoint). Rkv and Rkp
collectively forms Rpoint . Blocks evicted from Rblock enter
Gblock. On the other hand, entries evicted from Rpoint (Rkv or
Rkp) will be inserted to Gpoint . Note that the evicted entry will
also be inserted to the corresponding KV or KP Ghost Caches
(Gkv or Gkp) in the lower level (§4.3.1). Similarly to the low
level of HAC, the sum of the virtual “size” of the real cache
and ghost cache of the Block Cache (resp. Point Cache) will
be the total available cache size:

Stotal = |Rblock|+ |Rpoint |
= |Rblock|+ |Gblock|= |Rpoint |+ |Gpoint |.

(5)

Target Boundary Adjustment. A ghost hit on Gblock will
move the target boundary between Rpoint and Rblock toward
Rpoint by ∆ = kE, where E is the caching efficiency factor
of the entry on Gblock being hit, and k is the learning rate as
defined earlier. As a result, the target size of Rpoint will be
reduced by ∆. Then, in the lower level, the amount of the
adjustment will be distributed between the target size of Rkv
and Rkp proportionally to their current target size ratio. In

this example, target size of Rpoint is shrinking by ∆. Denoting
the current target size of Rkv as |R∗kv| and the target size Rkp
as |R∗kp|, they will be updated as follows: |R∗kv| ← |R∗kv| −

∆
|R∗kv|

|R∗kv|+|R
∗
kp|

, and |R∗kp| ← |R∗kp|−∆
|R∗kp|

|R∗kv|+|R
∗
kp|

.

On the other hand, a ghost hit on Gpoint will move the
target boundary toward Rblock, i.e., making the target size
of Rblock smaller and that of Rpoint larger. The adjustment
amount is also ∆ = kE. The caching efficiency factor E of
an entry in Gpoint will normally be larger that that in Gblock,
as a Point Cache entry (either KV or KP entry) takes less
DRAM caching space and save a greater number of storage
I/Os than one Block entry. While there is a ghost hit on Gpoint
on the upper level, normally there will be a ghost hit in the
lower level too, either in Gkv or Gkp. In this case, the lower
level target boundary will be adjusted first, then that of the
upper level. For example, if the ghost hit happens both in the
KV Ghost Cache Gkv and the Point Ghost Cache Gpoint , the
target size of Rkv and Rkp will first be updated as described in
§4.3.1), then increment of ∆ is distributed proportionally to
the new target size of Rkv and Rkp accordingly.

Actual Boundary Adjustment. On a block miss when
this block needs to be inserted to the Block Cache, if the
current Block Cache size plus the new block is greater than
the target block size, the Block Cache will not grow. It will
evict one block from itself to make space for the new-coming
block. Otherwise, if the current Block Cache size plus the new
block is within the target Block Cache size, the Block Cache
will expand by inserting the new block, and the Point Cache
will shrink to make room for the growth of the Block Cache.
Typically, more than one KV and KP entries will be evicted
because a block is normally larger than cached KV and KP
entries. The number of KV or KP entries to be evicted will be
based on current target size of the KV and KP Real Caches.

On the other hand, when the Point Cache demands more
capacity, (i.e., when new KP entry is inserted to the KP Cache,
or when a KP entry is promoted to KV Cache and takes more
space), HAC estimates the new Point Cache size after the
growth and compares it with the target Point Cache. If the
estimated new Point Cache size is within the target Point
Cache, one block from the Block Cache will be evicted to
make the room for the Point Cache to grow. On the other hand,
if the estimated new Point Cache size is above the target Point
Cache size, Point Cache will not expand, and the eviction will
happen within the Point Cache, following the current target
KV and KP Real Cache sizes. One problem is that increasing
the size of Point Cache by small amount may result in a whole
block evicted from the Block Cache. To address this, not until
the target boundary is within the Block Cache for at least one
block’s size (typically 4KB or 16KB) does HAC evict blocks
from the Block Cache. In other words, the size of the Point
Cache will grow at the expense of evicting from the Block
Cache only when the target Point Cache size is greater by the
current actual Point Cache by a whole block size.

610 2020 USENIX Annual Technical Conference USENIX Association

4.3.3 Reduce Ghost Cache Size
In the ARC design [21], when a page is evicted from the

real cache, the page content is dropped, and only the page num-
ber is retained in the ghost cache. The size of the page number
is negligible compared to the page content. Similarly, in AC-
Key, the ghost cache for the Block Cache Gblock only stores
the block handle in the format of <SstID|BlockOffset> (24
B in our implementation) which is also negligible compared
to the cache block contents (typically 4~16 KB). However, the
ghost caches of Gpoint , Gkv, and Gkp have significant overhead
that can no longer be ignored. For example, assuming a key
size of 16 B and the value size of 100 B, one real KV entry
takes 116 B. When this entry is evicted from the real cache,
the value is dropped, and the key is inserted into the KV ghost
cache which still takes 16 B. As the key size is no longer
negligible when comparing to the value size and pointer size,
a ghost cache potentially occupies a substantial portion of the
limited caching space, impair the caching efficiency.

We propose two ways to reduce the space overhead of the
ghost caches. First, instead of using the original key of the
evicted KV or KP entries, AC-Key only stores a hash value of
the evicted key as a “fingerprint”. In this way, AC-Key reduces
the ghost cache size overhead while sacrificing the ghost
cache hit accuracy. Hash collision will cause false-positive
ghost hits, resulting in imprecise adjustment decisions. In our
implementation, we found a hash value of 4 B shows a good
trade-off between the ghost cache overhead and accuracy.

Although using a hash-based fingerprint to replace the key
in ghost cache reduces the overhead, a hash value (for exam-
ple, 4 B) is still taking significant space compared with the real
KV and KP Caches. We further propose another optimization
to eliminate such ghost cache overhead by disabling ghost
cache when the adaptive scheme settles to a favorable capac-
ity distribution among the KV, KP, and Block Cache. If the
changes of hit ratios of all the caching components remains
within a threshold θ (called ghost cache turnoff threshold, 5%
by default), the ghost cache mechanism will be turned off,
and the space taken by the ghost caches will be reclaimed for
real caches. The size of the real caches will be proportionally
scaled up to use all the available cache capacity when the
ghost cache’s space is released. Later, when the access pattern
switches and the current size distribution is not favorable, the
change in the hit ratio will flag the phase transition. When the
hit ratio fluctuates beyond the threshold of θ, the AC-Key will
turn the ghost cache mechanism back on until the hit ratio
converges again (fluctuating within the threshold θ).

5 Evaluation

5.1 Implementation and Setup
We implement AC-Key based on RocksDB version 6.2

with roughly 5.6K lines of change in C++ code. We carry out
our experiment on a Dell PowerEdge R430 1U Server. It has
two six-core Intel Xeon E5-2620 v3 @ 2.40 GHz processors

0 0.2 0.4 0.6 0.8 1

0
500
1000
1500

0
0.4

0.8
Block Cache

Ratio

Q
PS

KP Cache
Ratio

1000-1500
500-1000
0-500

best configuration

Figure 6: The offline scheme tries out on different configurations
(at a smallest granularity of 1/10 of the cache size) and select the
fix-sized configuration with the best result.

and 64 GB of DDR3 memory. The operating system is Ubuntu
LTS 18.04 with Linux kernel version 4.15.0. The storage
device is a 372 GB Intel DC P3700 PCIe SSD formatted as
xfs.

We load a 100GB database with randomly generated
keys [9, 11]. The default key size is 16 B and value size
is 100 B, which is the default value of RocksDB [32]. The
length of range scans is set as 100, which is close to the
length used in literature [15,33–35]. The default point lookup
to range query ratio is set to 1:1. We use the existing expo-
nential function based workload generator in RocksDB [32]
to generate workloads with different skewness of hot keys
(point lookup key and scan starting key). In our experiments,
we take the default skewness as the hottest 1% keys taking
up the 99% of the accesses (including both the key for point
lookup and the starting key for range query). The default
learning rate k is 100K (see §4.3) and default ghost cache
turnoff threshold θ is 5%. Data compression is disabled to
rule out unrelated performance interference and simplify the
analysis as in literature [9, 36]. We specify identical cache
sizes in the configuration files of RocksDB and YCSB to en-
sure the same amount of caching budget is used in competing
schemes. Page-based direct I/O [37] is enabled to rule out the
interference of the OS buffer cache, similar to [38, 39].

The following schemes are compared.

• pure-kv: The whole caching space is used as KV Cache.

• pure-kp: The whole caching space is used as KP Cache.

• rocksdb: Off-the-shelf RocksDB with default setting.
Note that RocksDB disables KV cache by default and
the whole caching space is used as Block Cache.

• offline: We try combinations of different component
size with the granularity of 1/10 of the cache size and
select the best fix-sized configuration. Note that such best
configuration is determined offline, and is not applicable
in a real-time caching system (Fig. 6).

• ac-key: Our AC-Key scheme.

USENIX Association 2020 USENIX Annual Technical Conference 611

0
500

1000
1500
2000
2500

1MB 10MB 100MB 1GB 10GB

Q
PS

Cache Size

ac-key rocksdb pure-kv pure-kp offline

Figure 7: Varying Cache Size.

100

1000

10000

100000

1% 50% 90% 99% 99.9%

Q
PS

Hot Key Access Ratio

ac-key rocksdb pure-kv pure-kp offline

Figure 8: Varying Skewness.

0

1000
2000

3000
4000

0% 20% 40% 60% 80% 100%

Q
PS

Range Query Ratio

ac-key rocksdb pure-kv pure-kp offline

Figure 9: Varying Range Query Ratio.

0

1000

2000

3000

4000

50B 100B 200B

Q
PS

Value Size

ac-key rocksdb pure-kv pure-kp offline

Figure 10: Varying Value Size.

1320 1247 934 914
1358

34%
30%

35% 35% 36%

0%

10%

20%

30%

40%

0

500

1000

1500

2000

ac-
key

roc
ksd

b

pu
re-

kv

pu
re-

kp
off

lin
e

CP
U

 U
til

iz
at

io
n

Q
PS

qps cpu

Figure 11: CPU Utilization Comparison.

0
2000
4000
6000

0 0.5 1 1.5 2 2.5 3

Q
PS

Operations (million)

ac-key offline

0
400
800

1200

0 0.5 1 1.5 2 2.5 3

Si
ze

 (K
B

)

block kp kv

Figure 12: Adaptive Adjustment in AC-Key.

5.2 Micro-benchmark
Varying cache size. We vary the cache size from 1 MB to

10 GB, collect the Query Per Second (QPS) and plot them in
Fig. 7. As the cache size increases, the QPS also increases for
ac-key, rocksdb, and offline, as larger cache can poten-
tially cache more entries, hence results in less cache misses.
In contrast, pure-kv and pure-kp do not improve much be-
cause they do not support range queries, and therefore the
range queries will cause many storage I/Os. ac-key outper-
forms other caching schemes that have only a single type
of caching component (better than rocksdb by 5.0%~9.1%,
pure-kv by 47.1%~97.7%, and pure-kp by 52.8%~104.5%)
since they cannot serve both point lookups and range queries
efficiently. Comparing with offline, ac-key performs close
to or even better than offline because of the ability to adap-
tively configure the size of each caching component. The
reason for the better performance of ac-key in some cases
is because offline cannot exhaust all the possibilities of
configurations as offline only tries out the cache size at a
granularity of one-tenth of the total cache size (Fig. 6).

Varying skewness. We vary the access skewness of the
point lookup and the range query using RocksDB’s native
benchmark tool [32]. In Fig. 8, x-axis shows the access ratio of
the hottest 1% ranges from 1% (no skew, uniform distribution)
to 99.9% (very skewed). Note that the y-axis is set to log-scale
to enhance readability. We can see that when the access is uni-
formly distributed (left-most cluster of bars) over all the keys,
the QPS is similarly low for all the caching schemes. This
is because in a uniform-distributed workload, every caching
scheme has hardly any hit. In contrast, as the access becomes
increasingly skewed, the performance of all the schemes rises,
and ac-key outperforms rocksdb by 3.6%~57.1%, pure-kv
by 5%~17.6×, and pure-kp by 7%~16.5×.

Varying range query ratio. We change the ratio of
the point lookup and range query in the workload, rang-
ing the range query ratio from 0% (pure point lookup) to
100% (pure range query) to create Fig. 9. In this figure,
we see that as the range query ratio increases, the QPS de-
creases. This is because a range query has more potential
storage I/Os and occupies more caching space. ac-key has
similar result as offline and is better than rocksdb (by
1.1%~42.6%), pure-kv (by 30.4%~54.7%), and pure-kp (by
43.0%~52.8%).

When increasing the range query ratio from 0% to 20%,
the performance of rocksdb becomes better and exceeds
pure-kv. This is because KV Cache cannot serve range
queries. In contrast, Block Cache supports both point lookups
and range queries. However, the space efficiency of Block
Cache is low which misses the opportunity to cache more
useful entries. ac-key adaptively combines Block Cache, KV
Cache, and KP Cache and delivers the best performance.

Varying value size. We try different value sizes ranging
from 50B to 200B (Fig. 10). As the value size increases,
the performance of all caching schemes decreases. This is
because larger value size incurs more storage I/O overhead per
each key being read. pure-kv performs better than pure-kp
at small value but is exceeded by pure-kp as the value size
increases. This is because the total number of keys can be
cached for pure-kv decreases as the value size increases,
hence the performance of pure-kv becomes not as good as
that of pure-kp. rocksdb still performs better than pure-kv
and pure-kp, as half of the requests are range queries that
cannot be served by the KV or KP Caches. ac-key performs
close to offline, and constantly better than rocksdb (by
5.9%~22.4%), pure-kv (by 41.4%~83.6%), and pure-kp (by
44.5%~96.0%) because of the use of the hierarchical adaptive

612 2020 USENIX Annual Technical Conference USENIX Association

caching in adjusting the size of each component.

CPU Utilization Comparison. With the default settings
(§5.1), we record the CPU utilization by the Linux native time
command and plot them in Fig. 11. The QPS is also plotted
to better illustrate the trade-off. We can see that rocksdb
consumes less CPU resource than the other schemes (ac-key,
pure-kv, pure-kp, and offline) because they all use Point
Cache and thus need to calculate the hash value of every key
inserted to check if they were cached. We can also observe
that although ac-key has extra operations to adapt the size of
caching components, the CPU utilization is not increased sig-
nificantly comparing with pure-kv, pure-kp, and offline.
Besides, ac-key performs close to offline and is better than
rocksdb, pure-kv, and pure-kp.

5.3 Adaptive Adjustment in AC-Key

To verify the adaptive adjustment process of AC-Key, we
construct a workload with two phases: 1 million range queries
with random starting key, then 2 million random point lookups.
We plot the size of the caching components – Block, KV, and
KP Caches – to show the direct evidence of the adaptation
process (Fig. 12 top figure). Besides, we also compare the real-
time QPS of ac-key and offline (Fig. 12 bottom figure).

We can see from the top figure of Fig. 12 that during the
first 1 million queries, the sizes of the KV and KP Cache
are reduced to zero to maximize the Block Cache since they
cannot serve range queries. When the workload changes from
pure range query to pure point lookup after the first 1 million
queries, the Block Cache shrinks sharply, and the KV and KP
Cache start to grow. This is because Point Cache (KV and
KP Cache) are more space-efficient in caching point lookups,
so the HAC algorithm adjusts in favor of the Point Cache
(including both the KV and KP Caches). The KP Cache grows
faster than the KV Cache at the beginning because every entry
is first cached in the KP Cache, and only a small amount of
“hot” KVs with a second access will be migrated to the KV
Cache. At the beginning of the second phase, both KV and
KP Cache grow as they are “stealing” space from the Block
Cache. After the size of the Block Cache declines to almost
zero, the KV and KP Cache start to compete with each other
for space, and it is when KP Cache starts to shrink. The size
of the KP and KV Cache finally converges to 19% and 80% of
the total cache size. In different workload settings, the Block,
KP, and KV Cache will stabilize into different ratio.

ac-key is adaptive and can adjust the size of the caching
components based on the workload. We also run the offline
scheme, which tries to find the best fix-sized configuration.
However, such one-size-fit-all configuration is not tailored for
the special workload of each phase, thus has inferior perfor-
mance than ac-key in each phase: ac-key is 32%~66% bet-
ter in the range query phase, and 2%~20% better in the point
lookup phase after convergence (bottom figure in Fig. 12).

0

2000

4000

6000

8000

A B C D E F

Q
PS

YCSB Workloads

ac-key rocksdb pure-kv pure-kp offline

Figure 13: Macro-benchmark YCSB Evaluation.

Table 2: Average Write Latency (µs) and Regression.

Workload A B C D E F

RocksDB 242.8 238.0 N/A 21.7 32.8 28.6
AC-Key 241.1 241.4 N/A 22.7 33.5 26.7

Regression -0.7% 1.4% N/A 4.9% 2.0% -6.8%

5.4 Macro-benchmark YCSB Evaluation
We also use six workloads in YCSB [15] to further verify

the performance of our design in near-production workloads.
As can be seen in Fig. 13, the overall QPS of ac-key is higher
than rocksdb (by 3.6%~59.9%), pure-kv (by 0.1%~20.7%),
and pure-kp (by 1.2%~25.2%).

We also measure the regression of write performance of
AC-Key from RocksDB (Table 2) and find the regression is
below 5%. This shows that ac-key does not incur significant
overhead on the write operations while improving the overall
performance.

5.5 Sensitivity on Parameters
Using the default setting in §5.1, we range the learning rate

k in the adaptive algorithm (see §4.3) from 1K to 10M, i.e.
(1K, 10K, 100K, 1M, 10M). The fluctuation of the QPS is
within 3.9%, ranging from 1461 to 1520 operation/s. We also
test the ghost cache turnoff threshold θ (§4.3.3) from 0%, 5%
, · · · , 30%, and the QPS stays nearly constant (1418~1459,
varying within 2.8%). As the two parameters do not have a
significant impact on the result, we set their default values as
k = 100K and θ = 5%.

6 Conclusion
Caching is one of the essential techniques to improve the

read performance of LSM-tree-based key-value stores. We in-
vestigate three different types of entries being cached, namely
block, KV, and KP, and incorporate them into one integrated
cache. We propose a Hierarchical Adaptive Caching (HAC)
scheme to dynamically adjust the size of the block, KV, and
KP caching components. To deal with the heterogeneous costs
and benefits of the cached entries, we leverage a novel caching
efficiency factor to aid the size adjustment among caching
components and the eviction decisions within each caching
component. We implement the proposed AC-Key by modify-
ing RocksDB. Evaluations show that AC-Key improves the
read performance of default RocksDB by up to 57.1% without
significant impact on write performance.

USENIX Association 2020 USENIX Annual Technical Conference 613

Acknowledgments
We thank the anonymous ATC reviewers and our anony-

mous shepherds for their feedback. This work was partially
supported by NSF I/UCRC Center Research in Intelligent
Storage and the following NSF awards 1439622, 1525617,
and 1812537.

References
[1] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available
key-value store. In ACM SIGOPS operating systems
review, volume 41, pages 205–220. ACM, 2007.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4,
2008.

[3] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel,
Peter Vajgel, et al. Finding a needle in haystack: Face-
book’s photo storage. In OSDI, volume 10, pages 1–8,
2010.

[4] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin,
Guangyu Sun, Zhenyu Hou, Can Cui, and Jason Cong.
Atlas: Baidu’s key-value storage system for cloud data.
In 2015 31st Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–14. IEEE, 2015.

[5] Google. Leveldb. https://leveldb.org/.

[6] Facebook. Rocksdb. https://rocksdb.org/.

[7] Apache. Cassandra. http://cassandra.apache.
org/.

[8] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (lsm-tree).
Acta Informatica, 33(4):351–385, 1996.

[9] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Wisckey: Separating keys from values in ssd-conscious
storage. In 14th USENIX Conference on File and
Storage Technologies (FAST 16), pages 133–148, Santa
Clara, CA, 2016. USENIX Association.

[10] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tucana: Design and
implementation of a fast and efficient scale-up key-value
store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 537–550, 2016.

[11] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and
Yinlong Xu. Elasticbf: elastic bloom filter with hot-
ness awareness for boosting read performance in large
key-value stores. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 739–752, 2019.

[12] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, et al. Tao: Face-
book’s distributed data store for the social graph. In
Presented as part of the 2013 USENIX Annual Techni-
cal Conference (USENIX ATC 13), pages 49–60, 2013.

[13] John Liang, James Luo, Mark Drayton, Rajesh Nishtala,
Richard Liu, Nick Hammer, Jason Taylor, and Bill Jia.
Storage and performance optimization of long tail key
access in a social network. In Proceedings of the 3rd
International Workshop on Cloud Data and Platforms,
pages 1–6. ACM, 2013.

[14] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 40, pages 53–64.
ACM, 2012.

[15] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[16] Eran Gilad, Edward Bortnikov, Anastasia Braginsky,
Yonatan Gottesman, Eshcar Hillel, Idit Keidar, Nurit
Moscovici, and Rana Shahout. Evendb: optimizing key-
value storage for spatial locality. In Proceedings of the
Fifteenth European Conference on Computer Systems,
pages 1–16, 2020.

[17] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 209–223, 2020.

[18] Xingbo Wu, Li Zhang, Yandong Wang, Yufei Ren,
Michel Hack, and Song Jiang. zexpander: a key-value
cache with both high performance and fewer misses. In
Proceedings of the Eleventh European Conference on
Computer Systems, page 14. ACM, 2016.

[19] Dejun Teng, Lei Guo, Rubao Lee, Feng Chen, Yanfeng
Zhang, Siyuan Ma, and Xiaodong Zhang. A low-cost
disk solution enabling lsm-tree to achieve high perfor-
mance for mixed read/write workloads. ACM Transac-
tions on Storage (TOS), 14(2):15, 2018.

614 2020 USENIX Annual Technical Conference USENIX Association

https://leveldb.org/
https://rocksdb.org/
http://cassandra.apache.org/
http://cassandra.apache.org/

[20] Laszlo A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems journal,
5(2):78–101, 1966.

[21] Nimrod Megiddo and Dharmendra S Modha. Arc: A
self-tuning, low overhead replacement cache. In FAST,
volume 3, pages 115–130, 2003.

[22] Sorav Bansal and Dharmendra S Modha. Car: Clock
with adaptive replacement. In FAST, volume 4, pages
187–200, 2004.

[23] Ziqi Fan, David HC Du, and Doug Voigt. H-arc: A non-
volatile memory based cache policy for solid state drives.
In 2014 30th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–11. IEEE, 2014.

[24] George Karakostas and Dimitrios N Serpanos. Exploita-
tion of different types of locality for web caches. In Pro-
ceedings ISCC 2002 Seventh International Symposium
on Computers and Communications, pages 207–212.
IEEE, 2002.

[25] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu:
A highly efficient cache admission policy. ACM Trans-
actions on Storage (ToS), 13(4):1–31, 2017.

[26] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla,
Edward A. Fox, and Stephen Williams. Removal poli-
cies in network caches for world-wide web documents.
page 293–305, 1996.

[27] Ashok Anand, Chitra Muthukrishnan, Steven Kappes,
Aditya Akella, and Suman Nath. Cheap and large cams
for high performance data-intensive networked systems.
In NSDI, volume 10, pages 29–29, 2010.

[28] Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. Silt: A memory-efficient, high-
performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 1–13. ACM, 2011.

[29] MySQL 8.0 Reference Manual. The innodb storage
engine. https://dev.mysql.com/doc/refman/8.0/
en/innodb-storage-engine.html.

[30] Pei Cao and Sandy Irani. Cost-aware www proxy
caching algorithms. In Usenix symposium on internet
technologies and systems, volume 12, pages 193–206,
1997.

[31] Jaeheon Jeong and Michel Dubois. Cost-sensitive cache
replacement algorithms. In The Ninth International
Symposium on High-Performance Computer Architec-
ture, 2003. HPCA-9 2003. Proceedings., pages 327–337.
IEEE, 2003.

[32] Facebook. Rocksdb – benchmarking tools.
https://github.com/facebook/rocksdb/wiki/
Benchmarking-tools.

[33] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. Linkbench: a database
benchmark based on the facebook social graph. In
Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 1185–1196.
ACM, 2013.

[34] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G
Andersen, Michael Kaminsky, Kimberly Keeton, and
Andrew Pavlo. Surf: Practical range query filtering with
fast succinct stries. In Proceedings of the 2018 Inter-
national Conference on Management of Data, pages
323–336. ACM, 2018.

[35] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. Silk: Preventing latency spikes in log-structured
merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 753–766,
2019.

[36] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value stores
using fragmented log-structured merge trees. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 497–514. ACM, 2017.

[37] Jonathan Corbet. Page-based direct i/o. https://lwn.
net/Articles/348719/, 2009.

[38] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, pages 79–94. ACM, 2017.

[39] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-
time trade-offs for lsm-tree based key-value stores via
adaptive removal of superfluous merging. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, pages 505–520. ACM, 2018.

USENIX Association 2020 USENIX Annual Technical Conference 615

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://lwn.net/Articles/348719/
https://lwn.net/Articles/348719/

POSH: A Data-Aware Shell

Deepti Raghavan Sadjad Fouladi Philip Levis Matei Zaharia

Stanford University

Abstract
We present POSH, a framework that accelerates shell appli-

cations with I/O-heavy components, such as data analytics with
command-line utilities. Remote storage such as networked
filesystems can severely limit the performance of these appli-
cations: data makes a round trip over the network for relatively
little computation at the client. Reducing the data movement
by moving the code to the data can improve performance.

POSH automatically optimizes unmodified I/O-intensive
shell applications running over remote storage by offloading
the I/O-intensive portions to proxy servers closer to the data.
A proxy can run directly on a storage server, or on a machine
closer to the storage layer than the client. POSH intercepts
shell pipelines and uses metadata called annotations to decide
where to run each command within the pipeline. We address
three principal challenges that arise: an annotation language
that allows POSH to understand which files a command will
access, a scheduling algorithm that places commands to
minimize data movement, and a system runtime to execute
a distributed schedule but retain local semantics.

We benchmark POSH on real shell pipelines such as image
processing, network security analysis, log analysis, distributed
system debugging, and git. We find that POSH provides
speedups ranging from 1.6× to 15× compared to NFS, without
requiring any modifications to the applications.

1 INTRODUCTION

The UNIX shell is a linchpin in computing systems and
workflows. Developers use many tools at the command-line
level for data processing [33], from core bash utilities,
including sort, head, cat and grep to more complicated
programs such as git [22], ImageMagick [30] and FFmpeg [4].
Network security engineers use shell pipelines to find potential
patterns in gigabytes of logs. The shell’s continued importance
over many decades and generations of computing systems
shows just how flexible and powerful a tool it is.

The UNIX shell, however, was designed in a time dominated
by local and then LAN storage, when file access was limited
by disk access times, such that the overhead of network storage
was an acceptable trade-off. Today, however, solid-state disks
have reduced access times by orders of magnitude. At the same
time, networked attached storage, especially for the enterprise,
remains extremely popular [9, 57, 60]. Mounting filesystems
across the wide area could incur tens of milliseconds of
latency. Furthermore, many applications use wide area storage
systems, via cloud blob storage [25, 54] or cloud-backed
filesystems [7, 48, 50, 51, 58].

Running I/O-intensive shell pipelines over the network
requires transferring huge amounts of data for little compu-

tation. For example, consider generating a tar archive on
NFS. The tar utility effectively copies the source files and
adds a small amount of metadata: the server reads blocks and
sends them over a network to a client, who shifts their offsets
slightly and sends them back. NFS mitigates this problem by
offering compound operations [29] and server-side support
for primitive commands such as cp [41]. However, something
as simple as tar requires large network transfers.

The result of these changing performance trends is that
network transfer is an increasingly large overhead on shell
scripts. For example, unzipping a dataset of size 0.5 GB with
tar -x over NFS within a cloud datacenter takes 7× longer
than on a local disk. While intra-datacenter networking is
fast, it is not as fast as a local flash drive. Some workflows are
so slow over the network that they are effectively unusable:
running git status on the Chromium repository [24] takes
2 seconds locally, but if the repository is stored in a nearby
datacenter, it takes over 20 minutes.

The underlying performance problem of using the shell
with remote data is locality: because the shell executes locally,
it must move large amounts of data to and from remote servers.
Data movement is usually the most expensive (time and energy)
part of a computation and shell workloads are no exception.
Near-data processing [1, 5, 14, 47, 52, 59] can reduce data
movement overheads. Data-parallel processing systems such
as Spark [61], stored procedures in SQL databases [43,44], and
native data structures in key-value stores such as Redis [40]
all bring computation closer to the data. However, many of
these systems require applications to use their APIs: they can
supplement, but not replace shell pipelines.

To address the shell performance problem of data locality,
this paper proposes POSH, the “Process Offload Shell”, a
system that offloads portions of unmodified shell commands to
proxy servers closer to the data. A proxy server can run on the
actual remote fileserver storing the data, or on a different node
that is much closer to the data (e.g., within the same datacenter)
than the client. POSH improves shell-based I/O workloads
through three techniques. First, it identifies parts of complex
pipelines that can be safely offloaded to a proxy server. Second,
it selects which candidates run on a proxy, in order to minimize
network data movement. Finally, it executes the pipeline
across an underlying runtime, stitching together the distributed
computations while maintaining the exact output semantics
expected by a local program. Correctly and efficiently imple-
menting these three techniques has three principal challenges:

1. Correctly understanding the semantics of shell command-
line invocations in order to deduce which files each
command in the pipeline accesses and determine which

USENIX Association 2020 USENIX Annual Technical Conference 617

commands can be offloaded.
2. Distributing the entire pipeline across different machines

to minimize overall data movement, based on the
“closest” execution environment (client or proxy) for
each command and its file dependencies.

3. Automatically parallelizing pipelines that access many
files while ensuring the output maintains a sequential
execution order.

In order to address the challenge of understanding the
semantics of shell command-line invocations, POSH uses
annotations. POSH’s key insight is that many shell applications
only read and write to files specified in their command-line
invocation, so POSH can deduce which files a command
accesses from a model of the application’s argument structure.
Annotations store a model of each command’s (e.g., cat’s or
grep’s) semantics and arguments, stored locally at the client’s
shell. These annotations, inspired by recent proposals to
annotate library function calls for automatic pipelining and
parallelization [46], assign types to the possible arguments
of command-line applications. At runtime, POSH can parse
which arguments are files and use the underlying storage
configuration to determine where those files are located.

Next, POSH must schedule the entire pipeline across the
execution engine in a way that reduces data movement as much
as possible. However, POSH does not know explicitly how
much data is transferred across each pipe in the entire pipeline.
If the output of grep or awk is piped to another command, POSH

cannot know how much data will travel over the pipe without
running the command. POSH constructs a DAG representation
of the entire command and associated metadata and applies a
greedy algorithm, that estimates how much data travels across
each pipe, to determine the best way to schedule the DAG.

Finally, POSH further improves performance when it knows
it can split commands into multiple data-parallel processes.
POSH ensures that each split parallel invocation retains the
same argument structure as the original command and that the
output is stitched together in the correct order. It does so by us-
ing information about each argument stored in the annotation
to safely split the command. POSH’s execution engine seri-
alizes output from any parallel processes in the correct order,
before writing to the final destination (e.g., client stdout).

This paper makes the following contributions:

1. An expressive annotation language for shell com-

mands: Annotations capture the dominant grammar of
most shell commands and summarize which inputs to
command invocations are files as well as semantics to
safely split command invocations across inputs.

2. A greedy scheduling algorithm that reduces data

movement for unmodified shell pipelines: POSH’s
scheduling mechanism decides which parts of pipelines
can be offloaded to proxy servers closer to the data
and which parts of pipelines can be parallelized, while
preserving the correctness of the output.

We evaluate POSH on a variety of workloads, including
an image processing pipeline that creates thumbnails, a git

command workflow on the Chromium repository, and log pro-
cessing pipelines from research project analysis. On one hand,
for a more compute-heavy log analysis application that in-
cludes a data transfer of one large file, POSH provides a 1.6×
speedup over running bash over NFS. In the best case, for a git
command workflow, POSH provides a 10-15× speedup over
running bash over NFS, even when the client and the server are
in the same datacenter. Section 8 contains the set of full results.

2 RELATED WORK

Near-data computing (NDP). POSH draws upon previous
work that “ships computation closer to the data.” Previous
approaches to NDP, surveyed in [5], focus on two paradigms:
PIM (processing in-memory), where compute is co-located
with memory [28, 45, 47], or ISC (in-storage computing),
where processors or accelerators are co-located with persistent
memory or storage [1,14,52,55,59]. POSH follows the second
approach and pushes portions of arbitrary shell applications
to proxy servers, compute units running on general-purpose
servers, either co-located with storage devices or closer to
storage devices than the client.

Barbalace et al. [5] propose an entire operating system
architecture for NDP with features such as locality-driven
scheduling. Various systems focus on offloading database
query computation into smart SSDs [14] or FPGA accelera-
tors [32, 52, 59]. The Metal FS framework [52] allows users
to run reusable compute kernels, that perform operations
such as encryption or filtering, on FPGA accelerators near the
storage. They can be programmed with standard shell syntax
such as pipes to chain many near-data operations together.
Seshadri et al. [55] propose an extensible programmable SSD
interface where users can push specific pieces of functionality,
e.g., to run filesystem appends, to the SSD. Finally, many
databases allow users to write SQL queries to run as stored
procedures [43, 44]. Similarly, many key-value stores, such as
Redis [40], Splinter [39] and Comet [21] support extensibility
with user-defined functions. POSH, in contrast, focuses just
on a locality-aware shell, to enable the extensibility of remote
filesystems. POSH pushes computation to proxy servers (that
do not require custom hardware), without forcing the user to
explicitly decide which operations should be offloaded.

NFS Optimizations and filesystems. NFS, starting in
version 4.2 [29], offers support for some server-side operations,
such as server-side copy [41]; however, NFS does not have
support for offloading arbitrary programs. NFS allows batch-
ing operations via compound operations [29]; Juszczak [37]
describes techniques to batch writes. vNFS [10] offers a new
API for NFS that supports batching and vectorizing filesystem
operations. This technique reduces the latency of running
commands such as tar over NFS, but still requires moving the
data across the network, instead of pushing the computation
to the data. CA-NFS [6] attempts to improve application per-

618 2020 USENIX Annual Technical Conference USENIX Association

formance in a multi-tenant scenario by adaptively scheduling
certain client operations to run asynchronously during periods
of high system load. POSH currently does not handle multi-
tenancy, but could use similar methods to factor system load
to adapt scheduling decisions. BlueSky [58] proposes running
proxy servers in the cloud that serve data from slower blob
storage; these proxy servers can expose NFS access to the data.
POSH, in contrast, uses proxy servers to push application code.

Distributed execution engines. Distributed cluster com-
putation systems such as Spark [61], MapReduce [13],
Dryad [31], Hadoop [19] also automatically parallelize compu-
tation on large datasets, but require that users follow a specific
API. Systems such as gg [17] and UCop [15] take “everyday
applications,” such as software compilation, unit testing and
video encoding, and automatically parallelize them in the
cloud. These systems focus on compute-intensive workloads,
not I/O-intensive, and do not necessarily make decisions about
scheduling computation to preserve data locality, unlike POSH.

Code offloading and type systems. Many systems enable
code offloading, to implement distributed applications on
many mobile devices that can benefit from computation on
nearby servers [8, 26, 35]. Some of these systems require
specific programming language constructs to offload processes
and partition programs [8, 27, 34–36]. Recently, Pyxis [11]
optimizes database applications by automatically offloading
procedures to run at the database server. It uses program
analysis to determine what to offload, while POSH uses
per-command annotations. Split Annotations [46] proposes
using per-function annotations to determine how to split and
pipeline function calls in data analytics workloads, to enable
cross-function cache pipelining and parallelization. These
annotations are fundamentally different from POSH’s shell
annotations: POSH’s annotations attempt to understand the
command-line semantics of shell commands, which tend to
have a much more varied structure than function calls.

Command-line tools. Many command-line tools allow
users to automatically parallelize and execute shell commands
remotely. rsh [3] enables remote execution of shell commands.
pssh [12] allows users to execute commands over SSH in
parallel on other machines. GNU Parallel [56] splits input
arguments and executes jobs over these inputs in parallel across
one or more machines. POSH also parallelizes commands on
remote machines, but automatically decides how to offload
and schedule commands so users do not need to explicitly
program when to offload code. POSH does not rely on SSH
access to the storage servers and can be used on top of a service
such as NFS, where remote shell access may be prohibited.

3 SYSTEM OVERVIEW

POSH consists of three main components: a shell annotation
interface (§4), a parser and scheduler (§5), and an execution
engine (§6). This section briefly describes each component
and how they link together, pictured in Figure 1.

B

A

STDERRSTDOUT

Execution Engine

bar y

foo x

Parser

STDERRSTDOUT

DAG Representation

bar y

foo x

Scheduler

/mnt/a → A
/mnt/b → B

C

awk

bar
foo
cut

cat

...

Annotations

Configuration

❯ foo x | bar y

POSH

Figure 1: In POSH’s main workflow, a shell command is passed to the
parser, which uses the annotations to generate and schedule a DAG
representation of the command. The DAG includes which machine to
run each command on, A, B, or C (client) here. The execution engine
finally runs the resulting DAG.

Annotation interface. POSH, on bootup, requires users to
provide a file containing a list of annotations for any commands
they want POSH to consider offloading. Annotations are
written once per command, e.g., once for grep or once for awk,
so POSH can then accelerate shell pipelines that combine these
commands with standard constructs, such as anonymous pipes.
We envision that developers can share annotations for popular
programs, so users do not necessarily need to write their own
annotations; crowdsourcing annotations has seen success with
TypeScript [2, 42, 49].

Parser and scheduler. Given a shell program, the POSH

parser turns each pipeline (each line of the program, potentially
consisting of several commands combined by pipes and
redirects) into a directed acyclic graph (DAG). This graph
represents the input-output relationship between commands,
the standard I/O streams (stdin, stdout and stderr) and
redirection targets, as shown in Figure 1. POSH then parses
each individual command and its arguments using the cor-
responding annotation and completes the DAG by including
additional input and output dependencies of the pipeline.

The parser finally runs a scheduling algorithm on the
DAG and assigns an execution location to each command
in the pipeline. In order to do this, the parser requires extra
configuration information that specifies a mapping between
each mounted client directory and the address for a machine
running a proxy server for the corresponding directory (if any).

USENIX Association 2020 USENIX Annual Technical Conference 619

Execution engine. After POSH has parsed and scheduled a
shell pipeline, it executes the command across the underlying
execution engine. The execution engine consists of one or
more proxy servers, each associated with a specific remote
client mount, either at the storage server, or in a nearby node
with access to the same data. Additionally, one “proxy server”
runs at the client to execute any local computation. POSH

ensures that the entire command looks like it has been running
locally, even if processes had been offloaded to proxy servers.

4 SHELL ANNOTATIONS

POSH must correctly understand the semantics of shell com-
mands, which can be challenging because of the wide range of
syntax allowed by command lines. In this section, we discuss
the motivation and design of POSH’s shell annotation layer.

4.1 Motivation for Shell Annotations

In order to schedule and execute shell pipelines in a way that
minimizes data movement, POSH must understand the seman-
tics of command-line pipelines. Concretely, annotations must
reveal enough information that allows POSH to determine:

1. Which commands can be safely offloaded to proxy
servers.

2. If any commands in the pipeline filter their input.
3. If any commands can be split in a data-parallel way into

multiple processes.

Consider a simple pipeline: cat A B C D | grep "foo" | tee

local_file.txt. POSH could try to offload any of the three
commands: cat, grep, or tee. To determine which commands
are safe to offload, POSH must understand which files (if
any) cat, grep and tee access, and where these files live.
Therefore, POSH must determine which arguments to the
three commands represent file paths. However, outside of the
program, all of these arguments are seen as generic strings.
For example, consider the following four commands:

cat A B C D | grep "foo"

tar -cvf output.tar.gz input/

tar -xvf input.tar.gz

git status

The cat command takes in four input files, while the
argument to grep is a string. The second command, tar -cvf,
takes an output file argument followed by -f, followed by an
input file argument (not preceded by a short option). The third
command, also tar, takes an input file argument followed
by -f and implicitly takes its output argument as the current
directory. Finally, git also implicitly relies on the current
directory as a dependency. Without a formal way to model
the argument structure for each command, POSH could not
determine the file dependencies for each command.

Secondly, in order to produce an execution schedule that
reduces data movement, POSH needs to know the relationship
between the inputs and outputs of a command. In the cat | grep

example, if the file argument to cat is remote, to minimize data
movement, POSH cannot just offload the cat command. Since
cat usually produces the same amount of output as input, but
grep usually filters its input, POSH must also offload grep.

Finally, suppose cat had multiple file arguments, but these
files lived on different mounts (e.g., a pipeline that processes
logs from different servers). POSH could not safely offload this
command to a single proxy server, as the proxy server may not
have access to all the mounts. However, many command-line
programs perform map functions over each line in the file in
sequence. For example, cat prints all lines to the output, and
grep filters the input line by line. Therefore, these commands
can be split into processes across their input files and then
offloaded to different proxy servers. However, parallelization
is not safe for all commands: wc, for example, “reduces” the
input. Without a formal model for the command’s semantics,
POSH could not make optimal scheduling decisions.

4.2 Annotation Interface

Annotations need enough information to allow POSH to
deconstruct, parse and schedule each command. Annotations
contain two types of information: argument-specific and
command-specific information. First, they contain a list of
arguments along with a type assignment for each argument.
Second, they contain information relevant to parsing the
entire command line, either semantic information relevant to
scheduling, or custom parsing options. The annotation inter-
face is inspired by the POSIX conventions for command-line
arguments and their GNU extensions [23], which are followed
by a multitude of UNIX utilities. If a program does not follow
these conventions, POSH may not be able to determine how to
accelerate it. We describe both parts of the annotation in turn.

4.2.1 Argument-Specific Information

POSH supports the following classes of command-line
arguments:

1. A single option with no arguments (e.g., -d or --debug).
2. An option, followed by one or more parameters (e.g. -f

<file>).
3. A parameter without a preceding option (e.g. the

arguments in cat A B C D).

The annotations must specify the following information for
each argument that has associated parameters:

1. The short or long option name: This is only relevant for
arguments preceded by options.

2. The type: input_file, output_file, or string.
3. The size: 1, specific_size(x), or list (for variable

size).
4. If the argument is splittable: If an argument has multi-

ple parameters, the splittable keyword specifies that the
command can be split in a data-parallel way across this ar-
gument (this is only allowed for up to a single argument).

620 2020 USENIX Annual Technical Conference USENIX Association

The above format applies to many popular UNIX commands
and core utilities. For example, the annotation for cat may
look like:

cat:

- PARAMS:

- type:input_file,splittable,size:list

This specifies that cat takes in one or more input files, and it
can be split across its inputs.

4.2.2 Command-Specific Information

Annotations contain information relevant to the semantics of
the entire command, specified by the following keywords:

• needs_current_dir: Whether the command implicitly
relies on the current directory.

• splittable_across_input: Whether the command can be
split across its standard input. In the example pipeline, if
the cat is split into separate cats, POSH would also need
to split the grep command into separate commands to
truly take advantage of parallelism.

• filters_input: Whether the command is likely to have
a smaller output than input.

• long_arg_single_dash: Most programs use double
dashes before long arguments (e.g. --debug), but some
programs require long arguments be preceded by a single
dash. (e.g. -debug).

4.2.3 Annotation Conflicts

Some commands can be invoked with flags whose behavior
changes depending on which other flags are present. For
example, the annotation for a tar invocation used to create

an archive could be:

tar: [filters_input]

- FLAGS:

- short:c

- short:z

- OPTPARAMS:

- short:f,type:output_file,size:1

- PARAMS:

- type:input_file,size:list

However, developers commonly invoke both tar -x and tar

-c, to extract and create a tarball, respectively. The assignment
for the -f flag conflicts; it would be an input_file in the -x

case, but an output_file in the -c case. POSH supports this
by allowing multiple annotations per command. In particular,
a client can include one annotation per type of invocation for
every binary, and POSH will try all annotations until it finds
one that fits the current invocation.

4.3 Correctness and Coverage

Potential mistakes. POSH depends on correct annotations
for optimal execution: if the annotations are incorrect in some

way, POSH does not make guarantees about the correctness
or the performance of the resulting execution. Annotations
with incorrect type semantics (assigning an argument with str

instead of input_file) or parallelization semantics (specifying
a command is splittable when the command needs all input
files concurrently) could cause execution errors. POSH might
schedule the command on a machine without access to a nec-
essary file, or incorrectly try to split the command into parallel
workers. Annotations might not include potential optimization
information, by omitting that a command filters its input or
it can be parallelized. In this case POSH might not make the
optimal scheduling decision, but execution will still be correct.

Finally, a command, such as awk, could either filter or
increase its input depending on its invocation. awk could
include multiple annotations for each separate program string,
which separately specify or omit the filters_input keyword.

Mitigations. In practice, we expect that a community of
developers would maintain and crowdsource a set of “verified”
annotations; other annotation-based systems such as Type-
script [42] make this assumption. To prevent incorrect type
semantics, POSH could use a sandbox on top of the filesystem
interface that checks if the program only reads and writes to
files specified by the annotation, and crash the execution if the
program accesses a file outside of its dependency list [17, 20].
Finally, future work could explore profiling commands to
automatically deduce whether command invocations produce
less, more or the same amount of input data as output data.

Coverage. The POSH interface covers the command-line
syntax for a wide range of command line programs, as spec-
ified by the GNU command-line standard syntax and exten-
sions [23]. Along with the source code of POSH, we provide an-
notations for 21 different commands, which cover a wide range
of unmodified shell applications used in our evaluation (§7).

However, POSH will not cover all parsing options for all pro-
grams. While POSH can interpret wildcards (“*”) when listing
file paths, it will not do any custom parsing to list paths. For ex-
ample, ffmpeg allows users to provide input files (input frames)
based on a pattern, such as “%04d.jpg”, which corresponds
to all files between 0000-9999.jpg. POSH will not parse com-
mands whose file dependencies are specified dynamically, via
a pipe: e.g., “find . -type -iname "*.jpg" | xargs -i mogrify

-resize 100x100” could be used to dynamically list all jpg files
and resize them with ImageMagick. Since POSH does not know
what the file inputs to the mogrify command are upfront, it
cannot decide whether to offload the mogrify command or not.

5 POSH’s PARSER AND SCHEDULER

This section discusses how POSH solves two challenges in
executing shell commands efficiently across a set of proxy
servers: (1) scheduling pipelines to minimize data movement
(§5.2) and (2) correctly parallelizing pipelines (§5.3). We
begin by discussing how POSH constructs an intermediate
program representation of the command that allows it to

USENIX Association 2020 USENIX Annual Technical Conference 621

Client

Server 0 Server 1

cat 01.log 02.log

 03.log 04.log

grep 128.151.150.12

cat 05.log 06.log

 07.log 08.log

grep 128.151.150.12

STDERR

tee output.txt

STDOUToutput.txt

$ cat mount0/*.log mount1/*.log

 | grep 128.151.150.12

 | tee output.txt

STDERR

Figure 2: DAG representation of a simple shell program that uses
cat and grep to analyze logs across different mounts. POSH uses
its scheduling and parallelization mechanisms to offload the cat and
grep to each server.

effectively solve these two problems.

5.1 POSH’s Program Representation

POSH needs a program representation that allows the runtime
to see every data source (file that is read), data sink (output file
that is written to), and flow (pipe) that connects two commands
within the pipeline. Understanding which files commands read
and write allows POSH to determine the execution location
closest to the data for each command. Understanding the
connections in the pipeline allows POSH to see how data
flows between commands and allows POSH to preserve
dependencies when parallelizing nodes.

POSH represents parsed shell pipelines as directed acyclic
graphs (DAGs), which contain nodes and streams. Nodes
represent single commands (command nodes) along with each
of their arguments, and parsed annotation metadata (argument
types, if it is splittable, and if it filters its input). Nodes also
represent sources and sinks in the entire pipeline: reading from
stdin (read nodes) or writing to stdout or a file (write nodes).
Streams represent the data flows in and out of these nodes.

Given a shell pipeline, POSH constructs a DAG that models
the dependencies between commands (UNIX pipes) and stan-
dard I/O streams (stdin, stdout and stderr). POSH then builds
a custom argument parser for each command from the anno-
tations, to determine which arguments actually appear in each
command’s invocation and what their corresponding types are.
For example, if a tar -c invocation contained the -f argument,
POSH knows the string following -f is an output_file.

Figure 2 shows an example DAG generated for the simple
program discussed in §4.1, that runs cat and grep on files
stored in different mounts and pipes the final output to tee.

Algorithm 1 POSH Scheduling Algorithm

1: function SCHEDULE(dag)
2: for node ∈ dag.GETNODES do

3: if CONSTRAINT(node) != NULL then

4: node.location ← CONSTRAINT(node)

5: for source_node ∈ dag.GETSOURCES do

6: path ← GETPATHTOSINK(dag,source_node)
7: sink_node ← path[path.length() - 1]
8: if source_node.location == sink_node.location then

9: for node ∈ path do

10: if node.location == NULL then

11: node.location ← source_node.location

12: else

13: min_weigℎt←1

14: edges ← {}
15: for (node,next) ∈ path do

16: if ISFILTERNODE(node) then

17: min_weigℎt←min_weigℎt∕2

18: edges[(node.id,next.id)] =min_weigℎt

19: for (node,next) ∈ path do

20: if node.location == NULL then

21: if edges[(node.id,next.id)] ≥min_weigℎt then

22: node.location ← source_node.location
23: else

24: node.location ← sink_node.location

25: else if node.location != CONSTRAINT(node) then

26: node.location ← CLIENT

POSH schedules and parallelizes the workload by first splitting
the command into separate cat and grep commands that run
at each proxy server and then merging the outputs at the client.
Sections 5.2 and 5.3 discuss these steps in turn.

5.2 Scheduling

POSH’s scheduling algorithm seeks to minimize data move-
ment, as it assumes that in scenarios where the computation is
I/O bound rather than CPU bound, minimizing data movement
will reduce end-to-end latency. However, POSH does not know
how much data a command will produce prior to execution.
We describe the exact setup of the problem and POSH’s greedy
algorithm that uses information from POSH’s annotations to
estimate how to minimize data movement.

Problem setup. The POSH scheduling algorithm, summa-
rized in Algorithm 1, takes the DAG representation of the
command discussed in §5.1 and assigns an execution location
to each node. POSH must pay attention to two concerns:
constraints on where certain nodes can execute and the number

of bytes transferred across edges in the DAG. The first concern
arises because certain proxy servers might not be able to exe-
cute certain nodes as they do not have access to all the necessary
files. The second concern arises because POSH seeks to min-
imize the number of bytes transferred between two locations
across the network. Concretely, consider a cat node (operating
on a remote file) that pipes its output to a grep node, that filters

622 2020 USENIX Annual Technical Conference USENIX Association

Algorithm 2 POSH Scheduling Algorithm Helper Functions

1: /* Returns constrained location assignment for node, if any. */
2: function CONSTRAINT(node)
3: loc ← NULL
4: if ISREADNODE(node) then

5: loc ← GETREADLOC(node)
6: else if ISWRITENODE(node) then

7: loc ← GETWRITELOC(node)
8: else if ISCMDNODE(node) then

9: deps ← Set()
10: for file ∈ GETFILEDEPENDENCIES(node) do

11: deps.append(GETLOCATION(file))

12: if deps.length() > 1 then

13: loc ← CLIENT
14: else if deps.length() == 1 then

15: loc ← deps[0]

16: return cost
17: /* Given a source node, trace a path to the sink via stdout paths. */
18: function GETPATHTOSINK(dag,node)
19: path ← [node]
20: while node.children.length() > 0 do

21: path.append(GETSTDOUT(node))

22: return path

its input, which in turn writes its output to stdout on the client.
To schedule the least data movement across the network,
POSH should offload both the cat and grep commands: in the
path through the cat, grep and the stdout nodes, the minimum
cut (edge with least data transferred) occurs after grep.

Step 1: Resolving constraints on each node. Algorithm 2
summarizes the helper functions for the scheduling algorithm,
including a function, Constraint, that determines whether a
node in the DAG has any constraints on execution location
(lines 1-16). Read and write nodes are assigned to the location
of their input or output data streams (lines 4-7). Command
nodes that access files on a single mount are greedily assigned
to execute on the proxy server corresponding to that mount
(lines 14-15). Finally, command nodes that access files from
multiple different mounts are always assigned to execute
on the client (lines 12-13). Only the client has access to all
mounts; by default, proxy servers only serve requests for a
single mount. We discuss an optimization to this decision in
§5.3, for special cases where the command can be parallelized.

Step 2: Minimizing data transfer. In Algorithm 1, after
assigning locations to nodes with constraints (lines 1-4), POSH

assigns locations for the remaining command nodes. POSH

first iterates through all the source nodes of the graph, traces the
path from each source to a sink node with the GetPathToSink

helper function defined in lines 18-19 of Algorithm 2, and
considers each path individually. Each path is guaranteed to
be linear because each node in the graph effectively has one
child. POSH assumes most data transfer occurs along stdout

streams: even though command nodes have two children (one

edge to stdout and one to stderr), POSH only pays attention
to stdout connections. Read nodes can have one child by
definition, and write nodes are sinks, so have no children.

Within a path, when the source and sink nodes have the same
location, scheduling is simple: all nodes along the path from
the source to the sink are assigned that location (lines 8-11).
However, when the source and sink have different locations, the
scheduler must find the edge along which cross-location data
transfer should occur: to minimize data transfer, this should be
the edge where the least data flows. POSH first iterates along
each edge in a path and assigns relative weights according
to heuristics (lines 13-18). POSH assumes nodes produce the
same amount of output as input, or filters input by half (lines 16-
18). The helper function IsFilterNode called on line 16 returns
true for commands whose annotations indicate that they filter
their input from the filters_input keyword. This heuristic,
that filter commands halve their input, obviously does not fit all
cases. Some filters, such as wc, usually produce much less than
half the input. To find the minimum cut, only the relative order-
ing of edges matters, rather than the absolute weight values.

POSH then iterates along each path and schedules each
unassigned node’s location to be either the source location
or the sink location, depending on if the node is before or
after the minimum cut edge. For example, if a path contains
cat, grep, and cut, and writes to stdout on the client, POSH

determines the minimum weight edge is in between cut and
the stdout write node. When there are conflicting assignments
from nodes appearing in two different paths, POSH schedules
the node on the client (lines 25-26).

5.3 Parallelization

The second challenge POSH resolves is determining when
commands are safe to parallelize and then guaranteeing
correct execution while parallelizing nodes. After determining
a command is safe to split, correctly executing the command
in a data-parallel way requires: (1) splitting the command
only across the argument that can be split while preserving the
other arguments and (2) stitching the outputs of the command
back together in the correct order.

Determining which nodes to parallelize. POSH can auto-
matically parallelize nodes that are safe to parallelize across
the files they access, or across their input edges. In the first
case, to parallelize the command cat -n A.txt B.txt C.txt,
POSH needs to know that the file arguments are A.txt, B.txt

and C.txt, and that the “-n” flag must be preserved. POSH uses
the per-argument splittable keyword in an annotation, which
indicates that the command can be split across a particular
argument (here, the file argument). In the above example,
POSH would replace the single node for cat with three nodes,
each with the -n flag and one of A.txt, B.txt or C.txt.

In the second case, POSH allows nodes to also be par-
allelized across their input streams. Concretely, if the cat

above piped its output to grep, there would not be much
performance benefit to parallelizing cat, unless POSH also

USENIX Association 2020 USENIX Annual Technical Conference 623

split grep across the three input cat nodes. POSH determines
which commands this parallelization is safe for via the
splittable_across_input keyword. The annotation for grep
would include this keyword, so POSH would replace the grep

node with three grep nodes for each cat node. This is not safe
for commands that reduce or merge the input such as word
count (wc): since the annotation for wc would not include this
keyword, POSH would ensure that the output of the prior
commands are merged before executing wc.

Splitting across mounts. When POSH splits nodes that can
be parallelized, it will inherently split commands that read and
write to different mounts. This allows the scheduler to bypass
the restriction in Algorithm 2, lines 12-13. If a single com-
mand accesses files in different mounts, but the command can
be split, instead of assigning this node to run at the client, POSH

will split it into multiple workers that run in parallel on differ-
ent proxies. POSH by default parallelizes commands across
machines, but within a single machine, the maximum splitting

factor parameter determines the degree to which to split further.
The default value is 1, but increasing the splitting factor to a
value s>1 causes POSH to split a command into s commands
that each operate on n

s
sized chunks of the input files, where n is

the number of files that the node accesses on a single machine.

Correctly preserving output order. In order to ensure that
the output of the entire pipeline is correct, when POSH splits
a command in parallel, it must ensure that any node that reads
the output of this node now reads the output of the replacement
nodes in sequence. When nodes execute, they process their
inputs in sequential order, guaranteeing correct output order.

6 POSH CONFIGURATION AND EXECUTION

In this section, we discuss how to configure POSH and how
POSH executes programs.

6.1 POSH Configuration

To understand how to setup and configure POSH, consider a
client that has access to folders on two NFS servers, within
a nearby datacenter. Each NFS administrator has agreed to
allow a separate proxy server, that resides within the same
datacenter, to access the same mounts on behalf of the client
(via NFS).1 To use POSH, each of the two proxy servers must
run the POSH server program, which is configured with a list
of client credentials mapped to the folder paths each client has
access to (which the proxy servers themselves access via NFS).
The client must run the POSH client program, which takes in
a file containing the shell annotations, and a configuration file
that specifies a mapping from locally mounted folders, to the
addresses for proxy servers for those mounts. In the previous
example, the client’s configuration file would map each of
the two mounted folders to the corresponding proxy server.
Together, the client and the two proxy servers make up POSH’s

1The remote fileserver itself can also run the POSH server program and
act as a proxy server.

execution engine, which can be used to execute any schedules
POSH’s parser creates.

6.2 Execution Engine

After the client schedules a shell pipeline, the execution engine
can execute the DAG.

Setup Phase. First, the client divides the DAG into sub-
graphs that need to execute on different machines (including
a subgraph that will execute on the client itself). The client
handles setting up persistent connections with proxy servers
for any pipes between DAG nodes assigned to two different
machines. Finally, when all pipes are setup, the client sends
a request to each proxy server to start executing their portion
of the DAG.

Execution Phase. Once each proxy server receives a
request to execute a subprogram DAG, it will first spawn all
the nodes in the DAG corresponding to processes that need
to be executed (e.g., cat or grep). To redirect I/O between
processes, POSH spawns a thread for each redirection that
needs to occur and copies the output from each node to the
correct pipe, TCP stream or file. For nodes that have multiple
inputs, nodes process these inputs sequentially. Nodes that
send output to nodes with multiple inputs buffer the content
until the receiver starts processing that node’s output.

6.3 Implementation

POSH is implemented in about 12,400 lines of Rust code.
POSH uses Rust’s CLAP library [38] to build custom parsers
for each command, based on the command’s annotation, to find
out which arguments are actually present in an invocation.2

7 METHODOLOGY

We evaluate POSH by measuring its performance impact over
five unmodified I/O-intensive shell applications. This section
describes our evaluation methodology: the applications, why
they cover a broad range of I/O-intensive shell applications,
and our experimental setups.

7.1 Applications

For each application, in our evaluation setting, we assume that
all input data files and intermediate files live on a remote NFS
mount, so POSH accelerates these applications by preventing
unnecessary data movement. Some applications require
writing the final output to stdout or a file on the client; we
specify this on a per-application basis.

Ray-tracing log analysis. The first application represents a
best-case workload for POSH: it is computationally light, can
be parallelized, and its output is a tiny fraction of the data it
reads. The application analyzes logs of a massively distributed
research ray-tracing (computer graphics) system [18], to track a

2The implementation of POSH is available at https://github.com/deeptir18/
posh.

624 2020 USENIX Annual Technical Conference USENIX Association

task (a simulated ray of light) through the path of workers it tra-
versed. The analysis first cleans and aggregates each worker’s
log into one file with cat, grep, head and cut. It then runs sed
to search for the path of a single ray (e.g., a straggler) across
all the workers and stores the final output on a file at the client.

Thumbnail generation. The next application is CPU-
intensive, but still produces output that is a tiny fraction of its
input, and is highly parallelizable. The application uses Im-
ageMagick [30] to generate thumbnails of size 10KB for each
image in a folder of about 1090 images, each about 4MB large;
the output thumbnails are also written to the remote mount.

Port scan analysis. The third application is computationally
heavy, but not parallelizable, and involves data transfers of
large files. ZMap [16] is a network scanning tool that performs
Internet-wide scans of the public IPv4 address space. Network
security researchers run the following shell application to
analyze 40GB subset of a full Internet scan of port 80; the
final output file is stored in the remote mount.

1. Clean the raw data with a program called zannotate.
2. Use a JSON processing tool, jq, to isolate the IP and

AS ID# (Autonomous System ID) columns.
3. Use pr to merge the columns together.
4. Use awk to count the number of IPs per AS.

Distributed log analysis. The next application is a syn-
thetic benchmark that models system administrators running
analysis on logs across different storage servers, to search for
an IP address within the access logs stored across different
machines. It is computationally light, highly parallelizable,
and the output is a tiny fraction of the input. This workload
runs cat over all of the files and then filters for a particular IP
with grep and writes the results back to the file stored locally at
the client. Each of five storage servers contains approximately
15GB of logs from the SEC’s EDGAR Log File Data Set [53].

Git workflow. The final application, a git pipeline on the
Chromium [24] repository, attempts to imitate a developer’s
git workflow and is extremely metadata-heavy. After rolling
back the repository by 20 commits and saving each commit’s
patch, the workload successively applies each patch and runs
three git commands: git status,git add ., and git commit -m.

7.2 Setup and Baselines

Baselines. For all workloads, we compare POSH to two
NFS configurations, one with with synchronous operations
(rw,sync,no_subtree_check) and the other with asynchronous
operations (rw,async,no_subtree_check).

POSH configuration. For all experiments, unless otherwise
specified, the POSH proxy runs on the same machine as the
NFS server. The POSH client also mounts the NFS folder
locally in case some computations must run on the client.
Section 8.2.1 evaluates the impact of placing the proxy directly
at the storage server versus on another machine.

Network settings. We focus on two network scenarios:

1. Client and server in the same Google Compute Platform
(GCP) region (us-west2). The RTT and throughput
between the two machines are 0.5ms and 5-10Gbps, as
measured by ping and iperf.

2. Client in a university network (at Stanford) and server in a
nearby GCP region (us-west2). The RTT and throughput
between the client and server are approximately 20ms

and 600Mbps.

Setup. GCP client, proxy, and storage machines are
configured with 4 vCPUs, 15GB of memory, and 10Gbps

egress network bandwidth (n1-standard-4); they run Ubuntu
19.04. The client at Stanford runs Ubuntu 18.04. All storage
servers store data on regional persistent SSDs.

8 EVALUATION

Our evaluation seeks to answer several questions: (1) Can
POSH accelerate end-to-end pipelines that use many different
command-line tools to access remote data over NFS (§8.1)?
(2) What is the best way to configure POSH (§8.2)? (3) Where
do performance benefits come from (§8.3)?

8.1 End-to-End Application Performance

For each workload described in §7.1, Figures 3 and 4 show the
performance of POSH compared to bash over NFS for two net-
work settings: one where the client is in the same GCP region as
the storage server (“cloud”) and one where the client is in a uni-
versity network outside the datacenter (“university”). For git,
Figure 4 only shows results for a client in the same datacenter.

Summary of all results. On the university-to-cloud
network, POSH performs 8× better than bash over NFS on the
ray-tracing workload, 1-2× better on the thumbnail generation
and port scan analysis workloads, and 12.7× better on the
distributed log analysis workload. On the cloud-to-cloud net-
work, POSH outperforms bash over NFS for the git workload
and distributed log analysis workload; however, POSH does
not outperform bash over NFS on the other three applications,
partially because these applications are more bandwidth than
latency sensitive. We discuss each set of applications below.

Ray-tracing log analysis. This workload sees an 8×
improvement on the university-to-cloud network and no
improvement on the cloud-to-cloud network. The workload
reads 6GB of input from about 2000 files over NFS, and
aggregates them into one 4GB file, which is written back
to NFS. The final output of sed on the aggregated file is
much smaller (20 lines). POSH prevents 10GB of data
from being copied across the network unnecessarily. On
the cloud-to-cloud network, both the overheads of separate
filesystem requests (to open and read 2000 files) and the
overheads of transferring data to the client are not as large.

Thumbnail generation. This workload sees a 1.7× im-
provement in the university-to-cloud setting and no improve-

USENIX Association 2020 USENIX Annual Technical Conference 625

 51 46 61 70
 51 46

458456

0

100

200

300

400

cloud university

Client Network

Ti
m

e
(s

)

nfs−sync nfs−async local posh

(a) Ray-Tracing Log Analysis

 668 661 666 673 679 661

11571181

0

400

800

1200

cloud university

Client Network
Ti

m
e

(s
)

nfs−sync nfs−async local posh

(b) Thumbnail Generation

2411227624262442 24162276

4101

3892

0

1000

2000

3000

4000

cloud university

Client Network

Ti
m

e
(s

)

nfs−sync nfs−async local posh

(c) Port Scan Analysis

 206
 419

 573

 212

2696
2563

0

1000

2000

3000

cloud university

Client Network

Ti
m

e
(s

)

nfs−sync nfs−async posh

(d) Distributed Log Analysis

Figure 3: End to end latency of POSH on four applications, compared to NFS sync, NFS async and local execution time for two networks: one
where the client is in a university network and one where the client is in the same GCP region as the storage server. The POSH proxy runs directly
on the NFS server. POSH provides between 1.6-12.7× speedups in the university-to-cloud network compared to NFS. Using POSH from a client
outside the datacenter results in about same latency as a client inside the datacenter using NFS, with barely any overhead over local execution.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

status

commit

add

0 5 10 15 20

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

Commit Number

Ti
m

e
(s

)

● posh nfs−sync nfs−async local

Figure 4: Average latency of 20 git status, git add, and git

commit commands run on Chromium repo, of POSH compared to
NFS and local execution, for a client in the same cloud datacenter
as the storage server. POSH provides up to 10-15× speedups by
preventing round trips for filesystem metadata calls.

ment in the cloud-to-cloud setting. Generating thumbnails with
ImageMagick is computationally heavy: it takes 12 minutes to
finish when running locally. While generating thumbnails pro-
duces a smaller input (12MB of thumbnails vs. 15GB of input
images), in the cloud network, transferring 15GB of data to
the client will take about 12 seconds on a 10Gbps connection.
However, in the university-to-cloud setting, POSH attenuates
the added delay from transferring data over a slower network.

Port scan analysis. The scanning analysis workload sees a
1.6× benefit with POSH in the university-to-cloud setting, but
no benefit in the cloud-to-cloud setting. The scanning workload
starts by processing one large 40GB file with zannotate and
writing the result back to NFS. This is more bandwidth than
latency sensitive, as the application makes fewer filesystem
requests across the network than the ray-tracing or thumbnail
generation workloads. In addition, zannotate is CPU-intensive

as it must parse each line of JSON in the input file.

Distributed log analysis. This workload sees a 12.7×
improvement in the university-to-cloud setting, because POSH

is able to parallelize the computation across the five different
mounts and only aggregate the result locally. Both offloading
the computation in order to prevent data movement as well
as running the work on each machine in parallel, instead
of sequentially, reduces latency. Even in the cloud-to-cloud
setting, this results in a 2× speedup.

Git workflow. POSH sees the greatest performance benefit,
a 10-15× latency improvement, when running git commands
over NFS. Figure 4 shows the time for each git status,
git add, and git commit commands for 20 commits, in the
cloud-to-cloud network. We did not perform this full analysis
for the university-to-cloud network, because the time to run
a single add was up to two hours. git repositories typically
contain many small files; commands like status and add

check the status of every file in the folders to see if it has been
modified. This results in NFS making filesystem requests such
as stat for every file. As a comparison, the ray-tracing log
analysis workload makes around 2,500 open() calls and 2,500
stat() class. For a git add in this workload, these numbers
are 34,000 and 340,000, respectively, measured by strace. By
offloading these commands to the server, POSH avoids many
unnecessary roundtrips.

8.2 POSH Configuration

We evaluate two aspects of POSH’s configuration: placement
of proxy servers and maximum parallelization factor within
a single machine.

8.2.1 Proxy Placement

Figures 5 and 6 shows the cost of placing the proxy server on
a different machine from the storage server, within the same
datacenter, for the client at Stanford, for three applications:
ray-tracing, thumbnail generation, and git. The proxy server is
closer to the data than the client; it has both a higher bandwidth

626 2020 USENIX Annual Technical Conference USENIX Association

469

 58 81

0

200

400

nfs−sync posh posh−proxy

Configuration

Ti
m

e
(s

)

(a) Ray-Tracing Log Analysis

1153

 713 775

0

400

800

1200

nfs−sync posh posh−proxy

Configuration

Ti
m

e
(s

)
(b) Thumbnail Generation

Figure 5: Cost of running the POSH proxy on a separate server from
the storage server, for a client outside the datacenter (“POSH-proxy”,
versus POSH where the proxy is at the storage server (“POSH”),
and the baseline NFS sync execution time. POSH-proxy has a low
overhead over POSH because there is not much overhead to running
NFS between two machines in the datacenter.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

status

commit

add

0 5 10 15 20

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

Commit Number

Ti
m

e
(s

)

● posh posh−proxy

Figure 6: Cost of running the POSH proxy on a separate server
from the storage server for a client outside the datacenter for the git
workload. There is a 10-15x slowdown over POSH running directly at
the storage server because running bash over NFS for this workload
results in a 10-15x slowdown, due to filesystem metadata calls.

(10Gbps vs. 600Mbps) as well as lower latency (0.5ms vs.
20ms) connection to the storage server. However, in this
setting, the proxy server will have at least the same latency
as bash over NFS for the cloud-to-cloud setting. The proxy
still must perform remote filesystem requests and transfer all
the necessary data within the datacenter, because it mounts
the data over NFS as well. bash over NFS does not have
much overhead for the ray-tracing and thumbnail generation
workloads, but has a 10-15× overhead for the git workload,
due to many filesystem metadata calls. However, running git

at the client outside the datacenter over NFS would have taken
on the order of hours; POSH merely takes seconds.

8.2.2 Parallelization on a Single Machine

For a 16-core machine, Figure 7 shows the effects of varying
the maximum splitting factor for the ray-tracing and thumbnail
generation workload. The latency of the ray-tracing workload
decreases until s=4 processes and the latency of the thumbnail

●

●

● ● ●

●

32

29

25 25 25

28

0

10

20

30

40

1 2 4 8 16 32

Parallelization Factor

Ti
m

e(
s)

(a) Ray-Tracing Parallelization

●

●

●

●
● ●

65
0

33
0

16
8

14
7

13
8

13
7

0

200

400

600

1 2 4 8 16 32

Parallelization Factor

Ti
m

e(
s)

(b) Thumbnail Generation Paral-
lelization

Figure 7: Latency improvements from using POSH to parallelize
pipelines within a single machine, for the ray tracing and thumbnail
generation workloads.

Application NFS POSH

Ray-Tracing Log Analysis 10GB 3KB

Thumbnail Generation 15GB 0
Port Scan Analysis 175GB 0
Distributed Log Analysis 80GB 76.3KB

Table 1: Bytes transferred over the network. Data movements are
significantly reduced by POSH.

Application Setup Time

Ray-Tracing Log Analysis 50ms

Thumbnail Generation 30ms

Port Scan Analysis 10ms

Distributed Log Analysis 10ms

git status 0ms

Table 2: Median setup time.

generation workload decreases until s=16processes. The limit
at 16 is expected for a machine that only has 16 cores. In addi-
tion, with higher splitting factors, there is a higher overhead to
spawning more threads and context switching. The ray-tracing
workload does not benefit from parallelism past 4 threads be-
cause it already consists of multiple processes running in paral-
lel, as the workload has many commands (cat, grep, cut, head):
splitting this further does not provide further benefit.

8.3 Performance Improvements Analysis

Data movement reductions. For each of the log analysis
applications and the thumbnail generation application, Table 1
reports the number of bytes of data transferred over the
network that this application would generate, as well as the
number transferred with POSH and its scheduling mechanism.

POSH overheads. Table 2 reports the latency of POSH’s
parsing and scheduling steps before execution for a single
pipeline (single line of the script) from each application. The
overheads are on the order of 10s of milliseconds and barely

USENIX Association 2020 USENIX Annual Technical Conference 627

Scenario Latency Data Movement

NFS Sync 225.8s ± 36.1s 6.38GB

POSH 221.6s ± 22.1s 6.38GB

POSH-OPT 33.27s 3.11GB

Table 3: Expected latency of running POSH with a scheduler that
can handle commands that need files from different mounts, for the
command comm A B, for the university to cloud network.

affect total end-to-end latency. This includes time to parse the
configuration file, parse all annotations (which is done once
on shell startup), and parse and schedule each command in the
pipeline. The ray-tracing and thumbnail generation workloads
require resolving more filepaths, causing a larger overhead
than the other applications.

9 LIMITATIONS AND FUTURE WORK

Algorithm limitations. POSH’s scheduling algorithm
handles pipelines that access data on different mounts in a map-
reduce style pattern [13], but cannot handle commands which
access data on different mounts that cannot be split. Consider
a command such as comm, that finds the common lines between
two files on different mounts: POSH would schedule this com-
mand to run at the client, causing no performance benefits over
bash over NFS. However, if POSH scheduled this command on
one of the proxy servers, rather than the client, and transferred
the necessary files beforehand, POSH could provide a benefit
over NFS. To produce such a schedule, POSH could consider
the input files for each command, the data transfer speeds
between the proxy machines and the dependencies of the DAG
to construct an optimization problem and use standard graph
partitioning techniques to solve for the optimal execution
location of all nodes. Table 3 shows the expected benefits of
a such a scheduler (“POSH-OPT”), for a comm command that
correlates two 3 GB files stored at two different proxies. It
estimates execution time by summing the local execution time
of comm with the time to transfer one of the files (measured by
the time to scp the file between the two machines).

Security. POSH allows users to offload parts of shell
commands to proxy servers, which could be running directly at
the storage layer. POSH currently does not address the security
implications of this system design. POSH might allow users
to access files such as /proc/sys on the storage server which
should be restricted. To mitigate this, POSH could ensure that
offloaded programs run with limited file access permissions,
so they do not access restricted files, and only access files that
are specified by the input and output arguments parsed from
the annotations. POSH could use sandboxing [20] mechanisms,
for example, to restrict users from running offloaded programs
that access the network.

Resource management. Since POSH proxy servers could
run directly at the storage server, a shared storage server
could result in an overloaded CPU and longer latencies for

users who expected their commands to take less time since
they were offloaded, as well as slowdowns to regular remote
filesystem requests. POSH does not currently have policies for
load balancing and multitenancy, but could explore policies
suggested by prior work [6]. However, initial experiments
show that POSH could use a simple policy on the storage server
such as monitoring how many cores are in use, and refusing
to run programs at the storage server when it is overloaded.

Failure recovery. Currently, POSH does not recover from
server-side failures; it does not have mechanisms to migrate
or restart jobs if single commands within pipelines fail.
Since POSH aims to provide shell semantics, which involves
streaming data without providing fault tolerance for failed
commands, POSH currently does not provide the fault
tolerance mechanisms present in standard cluster computing
frameworks [17, 31, 61]. However, this is an interesting area
of future work: POSH knows exactly what files are being mod-
ified or created from the annotations, so POSH could modify
programs to write to temporary locations, and only write to
the final location when the entire operation is successful.

10 CONCLUSION

I/O-intensive shell pipelines that run over networked storage
incur a significant cost from moving data over the network. We
present POSH, a framework that accelerates unmodified shell
pipelines with I/O heavy components that access networked
storage such as NFS. POSH intercepts shell pipelines and
moves individual commands closer to the data by offloading
them to run on proxy servers closer to the data than the client.
POSH uses metadata about shell commands, written once per
command, called annotations, that specify information relevant
to safely offloading these commands to proxy servers as well as
scheduling them to minimize data movement. POSH uses anno-
tations to schedule and automatically parallelize shell pipelines
across the client and proxy servers, while maintaining local
execution semantics. We showed that POSH can accelerate a
wide range of unmodified shell applications running over NFS
and allow them to achieve local execution times.

ACKNOWLEDGMENTS

We thank our shepherd, Mahadev Satyanarayanan, and the
anonymous ATC reviewers for their invaluable feedback. We
are grateful to Shoumik Palkar, Deepak Narayanan, Riad
Wahby, Keith Winstein, Liz Izhikevich, Akshay Narayan and
members of the Stanford Future Data and SING Research
groups for their comments on various versions of this work.
This research was supported in part by affiliate members and
other supporters of the Stanford DAWN project—Ant Finan-
cial, Facebook, Google, Infosys, NEC, and VMware, as well
as the NSF under CAREER grant CNS-1651570 and Graduate
Research Fellowship grant DGE-1656518. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

628 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active
disks: Programming model, algorithms and evaluation.
In ASPLOS, 1998.

[2] Christopher Anderson, Paola Giannini, and Sophia
Drossopoulou. Towards type inference for JavaScript.
In Proceedings of the 19th European Conference on

Object-Oriented Programming, 2005.

[3] BSD Authors. rsh. https://linux.die.net/man/1/rsh.

[4] FFmpeg Authors. FFmpeg. https://ffmpeg.org/.

[5] Antonio Barbalace, Anthony Iliopoulos, Holm Rauch-
fuss, and Goetz Brasche. It’s time to think about an
operating system for near data processing architectures.
In HotOS, 2017.

[6] Alexandros Batsakis, Randal Burns, Arkady Kanevsky,
James Lentini, and Thomas Talpey. CA-NFS: A
congestion-aware network file system. ACM Transac-

tions on Storage (TOS), 2009.

[7] Alysson Bessani, Ricardo Mendes, Tiago Oliveira,
Nuno Neves, Miguel Correia, Marcelo Pasin, and Paulo
Verissimo. SCFS: A shared cloud-backed file system.
In Usenix ATC, 2014.

[8] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward
Wobber. Network objects. In SOSP, 1993.

[9] Ming Chen, Dean Hildebrand, Geoff Kuenning, Sou-
janya Shankaranarayana, Bharat Singh, and Erez Zadok.
Newer is sometimes better: An evaluation of NFSv4.1.
In SIGMETRICS, 2015.

[10] Ming Chen, Dean Hildebrand, Henry Nelson, Jasmit
Saluja, Ashok Sankar Harihara Subramony, and Erez
Zadok. vNFS: Maximizing NFS performance with
compounds and vectorized i/o. In FAST, 2017.

[11] Alvin Cheung, Owen Arden, Samuel Madden, and
Andrew C. Myers. Speeding up database applications
with Pyxis. In SIGMOD, 2013.

[12] Brent Chun and Andrew McNabb. pssh.
https://code.google.com/archive/p/parallel-ssh/.

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified data processing on large clusters. In OSDI, 2004.

[14] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik
Park, Kwanghyun Park, and David J. DeWitt. Query
processing on smart SSDs: Opportunities and challenges.
In SIGMOD, 2013.

[15] John R Douceur, Jeremy Elson, Jon Howell, and Jacob R
Lorch. The utility coprocessor: Massively parallel
computation from the coffee shop. In Usenix ATC, 2010.

[16] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
Zmap: Fast internet-wide scanning and its security
applications. In Usenix Security, 2013.

[17] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From laptop to lambda: Outsourcing
everyday jobs to thousands of transient functional
containers. In Usenix ATC, 2019.

[18] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. Outsourcing everyday jobs to thou-
sands of cloud functions with gg. Usenix Login, 2020.

[19] Apache Software Foundation. Hadoop.
http://hadoop.apache.org/.

[20] Tal Garfinkel et al. Traps and pitfalls: Practical problems
in system call interposition based security tools. In
NDSS, 2003.

[21] Roxana Geambasu, Amit A Levy, Tadayoshi Kohno,
Arvind Krishnamurthy, and Henry M Levy. Comet: An
active distributed key-value store. In OSDI, 2010.

[22] Git SCM. https://git-scm.com/.

[23] GNU. Program argument syntax conventions.
https://www.gnu.org/software/libc/manual/html_
node/Argument-Syntax.html, 2020 (Accessed March
28,2020.).

[24] Google. Chromium. https://chromium.googlesource.
com/chromium/src, 2020 (Accessed January 4, 2020).

[25] Google. Cloud storage. https://cloud.google.com/
storage, 2020 (Accessed May 29, 2020).

[26] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke,
Z. Morley Mao, and Xu Chen. COMET: Code offload
by migrating execution transparently. In OSDI, 2012.

[27] Robert S Gray. Agent Tcl: A flexible and secure
mobile-agent system. In Tcl/Tk Workshop, 1996.

[28] Mary Hall, Peter Kogge, Jeff Koller, Pedro Diniz,
Jacqueline Chame, Jeff Draper, Jeff LaCoss, John
Granacki, Jay Brockman, Apoorv Srivastava, William
Athas, Vincent Freeh, Jaewook Shin, and Joonseok Park.
Mapping irregular applications to DIVA, a PIM-based
data-intensive architecture. In Proceedings of the 1999

ACM/IEEE Conference on Supercomputing, 1999.

USENIX Association 2020 USENIX Annual Technical Conference 629

[29] T. Haynes. NFS Version 4 Minor Version 2. https://tools.
ietf.org/html/draft-ietf-nfsv4-minorversion2-41, 2016.

[30] ImageMagick – convert, edit, or compose bitmap images.
https://imagemagick.org/.

[31] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel pro-
grams from sequential building blocks. In EuroSys, 2007.

[32] Zsolt István, David Sidler, and Gustavo Alonso. Caribou:
intelligent distributed storage. VLDB, 2017.

[33] Jeroen Janssens. Data Science at the Command Line:

Facing the Future with Time-Tested Tools. O’Reilly
Media, Inc., 1st edition, 2014.

[34] Rakesh Jha, Dennis T. Cornhill, and J. Michael Kamrad.
Ada program partitioning language: A notion for dis-
tributing ada programs. IEEE Trans. Softw. Eng., 1989.

[35] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K.
Gifford, and M. F. Kaashoek. Rover: A toolkit for mobile
information access. In SOSP, 1995.

[36] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
grained mobility in the emerald system. In SOSP, 1987.

[37] Chet Juszczak et al. Improving the write performance
of an NFS server. In USENIX Winter, 1994.

[38] Kevin K. Command line argument parser.
https://crates.io/crates/clap, 2019.

[39] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter:
Bare-metal extensions for multi-tenant low-latency
storage. In OSDI, 2018.

[40] Redis Labs. Redis. https://redis.io/.

[41] James Lentine, Anshul Madan, and Trond Myklebust.
Accelerating nfs with server-side copy. In FAST, 2011.

[42] Microsoft. TypeScript. https://www.typescriptlang.org/.

[43] Microsoft. CREATE PROCEDURE (Transact-SQL).
https://docs.microsoft.com/en-us/sql/t-sql/statements/
create-procedure-transact-sql?view=sql-server-ver15,
2017.

[44] Oracle. Developing and using stored procedures. https:
//docs.oracle.com/cd/B28359_01/appdev.111/b28843/
tdddg_procedures.htm, 2020 (accessed May 27, 2020).

[45] Mark Oskin, Frederic T. Chong, and Timothy Sherwood.
Active pages: A computation model for intelligent
memory. In ISCA, 1998.

[46] Shoumik Palkar and Matei Zaharia. Optimizing
data-intensive computations in existing libraries with
split annotations. In SOSP, 2019.

[47] David Patterson, Thomas Anderson, Neal Cardwell,
Richard Fromm, Kimberly Keeton, Christoforos
Kozyrakis, Randi Thomas, and Katherine Yelick. A case
for intelligent RAM. IEEE Micro, 1997.

[48] Google Cloud Platform. A user-space file sys-
tem for interacting with Google Cloud Storage.
https://github.com/GoogleCloudPlatform/gcsfuse, 2020
(Accessed May 29, 2020).

[49] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin
Bierman, and Panagiotis Vekris. Safe & efficient gradual
typing for TypeScript. In POPL, 2015.

[50] s3fs fuse. FUSE-based file system backed by amazon S3.
https://github.com/s3fs-fuse/s3fs-fuse, 2020 (Accessed
May 29, 2020).

[51] s3ql. A full featured file system for online data storage.
https://github.com/s3ql/s3ql, 2020 (Accessed May 29,
2020).

[52] Robert Schmid, Max Plauth, Lukas Wenzel, Felix
Eberhardt, and Andreas Polze. Accessible near-storage
computing with fpgas. In EuroSys, 2020.

[53] U.S. Securities, Division of Economic Exchange Com-
mission, and Risk Analysis. Edgar log file data set.

[54] Amazon Web Services. Amazon S3. https:
//aws.amazon.com/s3/, 2020 (Accessed May 29, 2020).

[55] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin, Yang
Liu, and Steven Swanson. Willow: A user-programmable
SSD. In OSDI, 2014.

[56] Ole Tange. GNU Parallel 2018. https:
//doi.org/10.5281/zenodo.1146014, March 2018.

[57] Vasily Tarasov, Dean Hildebrand, Geoff Kuenning, and
Erez Zadok. Virtual machine workloads: The case for
new NAS benchmarks. In FAST, 2013.

[58] Michael Vrable, Stefan Savage, and Geoffrey M Voelker.
BlueSky: A cloud-backed file system for the enterprise.
In FAST, 2012.

[59] Louis Woods, Jens Teubner, and Gustavo Alonso. Less
watts, more performance: An intelligent storage engine
for data appliances. In SIGMOD, 2013.

[60] N Yezhkova, L Conner, R Villars, and B Woo. World-
wide enterprise storage systems 2010–2014 forecast:
recovery, efficiency, and digitization shaping customer
requirements for storage systems. IDC, May, 2010.

630 2020 USENIX Annual Technical Conference USENIX Association

[61] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI, 2012.

USENIX Association 2020 USENIX Annual Technical Conference 631

FineStream: Fine-Grained Window-Based Stream Processing on
CPU-GPU Integrated Architectures

Feng Zhang1, Lin Yang1, Shuhao Zhang2,3, Bingsheng He3, Wei Lu1, Xiaoyong Du1

1Key Laboratory of Data Engineering and Knowledge Engineering (MOE), and School of Information,
Renmin University of China

2DIMA, Technische Universität Berlin
3School of Computing, National University of Singapore

fengzhang@ruc.edu.cn, yanglin2330@ruc.edu.cn, shuhao.zhang@tu-berlin.de, hebs@comp.nus.edu.sg,
lu-wei@ruc.edu.cn, duyong@ruc.edu.cn

Abstract
Accelerating SQL queries on stream processing by utilizing
heterogeneous coprocessors, such as GPUs, has shown to be
an effective approach. Most works show that heterogeneous
coprocessors bring significant performance improvement be-
cause of their high parallelism and computation capacity.
However, the discrete memory architectures with relatively
low PCI-e bandwidth and high latency have dragged down
the benefits of heterogeneous coprocessors. Recently, hard-
ware vendors propose CPU-GPU integrated architectures that
integrate CPU and GPU on the same chip. This integration
provides new opportunities for fine-grained cooperation be-
tween CPU and GPU for optimizing SQL queries on stream
processing. In this paper, we propose a data stream system,
called FineStream, for efficient window-based stream pro-
cessing on integrated architectures. Particularly, FineStream
performs fine-grained workload scheduling between CPU
and GPU to take advantage of both architectures, and it also
provides efficient mechanism for handling dynamic stream
queries. Our experimental results show that 1) on integrated ar-
chitectures, FineStream achieves an average 52% throughput
improvement and 36% lower latency over the state-of-the-art
stream processing engine; 2) compared to the stream process-
ing engine on the discrete architecture, FineStream on the
integrated architecture achieves 10.4x price-throughput ratio,
1.8x energy efficiency, and can enjoy lower latency benefits.

1 Introduction

Optimizing the performance of stream processing systems
has been a hot research topic due to the rigid requirement
on the event processing latency and throughput. Stream pro-
cessing on GPUs has been shown to be an effective method
to improve its performance [23, 33, 34, 41, 54, 62, 67]. GPUs
consist of a large amount of lightweight computing cores,
which are naturally suitable for data-parallel stream process-
ing. GPUs are often used as coprocessors that are connected
to CPUs through PCI-e [42]. Under such discrete architec-
tures, stream data need to be copied from the main memory to

GPU memory via PCI-e before GPU processing, but the low
bandwidth of PCI-e limits the performance of stream process-
ing on GPUs. Hence, stream processing on GPUs needs to be
carefully designed to hide the PCI-e overhead. For example,
prior works have explored pipelining the computation and
communication to hide the PCI-e transmission cost [34, 54].

Despite of various studies in previous stream processing
engines on general-purpose applications [5, 23, 25, 33, 54, 62],
relatively few studies focus on SQL-based relational stream
processing. Supporting relational stream processing involves
additional complexities, such as how to support window-
based query semantics and how to utilize the parallelism
with a small window or slide size efficiently. Existing engines,
such as Spark Streaming [57], struggle to support small win-
dow and slide sizes, while the state-of-the-art window-based
query engine, Saber [34], adopts a bulk-synchronous parallel
model [66] for hiding PCI-e transmission overhead.

In recent years, hardware vendors have released integrated
architectures, which completely remove PCI-e overhead. We
have seen CPU-GPU integrated architectures such as NVIDIA
Denver [13], AMD Kaveri [15], and Intel Skylake [27]. They
fuse CPUs and GPUs on the same chip, and let both CPUs
and GPUs share the same memory, thus avoiding the PCI-e
data transmission. Such integration poses new opportunities
for window-based streaming SQL queries from both hardware
and software perspectives.

First, different from the separate memory hierarchy of dis-
crete CPU-GPU architectures, the integrated architectures
provide unified physical memory. The input stream data can
be processed in the same memory for both CPUs and GPUs,
which eliminates the data transmission between two memory
hierarchies, thus eliminating the data copy via PCI-e.

Second, the integrated architecture makes it possible for
processing dynamic relational workloads via fine-grained co-
operations between CPUs and GPUs. A streaming query can
consist of multiple operators with varying performance fea-
tures on different processors. Furthermore, stream processing
often involves dynamic input workload, which affects opera-
tor performance behaviors as well. We can place operators on

USENIX Association 2020 USENIX Annual Technical Conference 633

different devices with proper workloads in a fine-grained man-
ner, without worrying about transmission overhead between
CPUs and GPUs.

Based on the above analysis, we argue that stream process-
ing on integrated architectures can have much more desir-
able properties than that on discrete CPU-GPU architectures.
To fully exploit the benefits of integrated architectures for
stream processing, we propose a fine-grained stream process-
ing framework, called FineStream. Specifically, we propose
the following key techniques. First, a performance model is
proposed considering both operator topologies and different
architecture characteristics of integrated architectures. Sec-
ond, a light-weight scheduler is developed to efficiently assign
the operators of a query plan to different processors. Third,
online profiling with computing resource and topology adjust-
ment are involved for dynamic workloads.

We evaluate FineStream on two platforms, AMD A10-
7850K, and Ryzen 5 2400G. Experiments show that
FineStream achieves 52% throughput improvement and 36%
lower latency over the state-of-the-art CPU-GPU stream pro-
cessing engine on the integrated architecture. Compared to
the best single processor throughput, it achieves 88% perfor-
mance improvement.

We also compare stream processing on integrated archi-
tectures with that on discrete CPU-GPU architectures. Our
evaluation shows that FineStream on integrated architectures
achieves 10.4x price-throughput ratio, and 1.8x energy ef-
ficiency. Under certain circumstances, it is able to achieve
lower processing latency, compared to the state-of-the-art ex-
ecution on discrete architectures. This further validates the
large potential of exploring the integrated architectures for
data stream processing.

Overall, we make the following contributions:

• We propose the first fine-grained window-based rela-
tional stream processing framework that takes the advan-
tages of the special features of integrated architectures.

• We develop lightweight query plan adaptations for han-
dling dynamic workloads with the performance model
that considers both the operator and architecture charac-
teristics.

• We evaluate FineStream on a set of stream queries to
demonstrate the performance benefits over current ap-
proaches.

2 Background

2.1 Integrated Architecture
We show an architectural overview of the CPU-GPU inte-
grated architecture in Figure 1. The integrated architecture
consists of a CPU, a GPU, a shared memory management
unit, and system DRAM. CPUs and GPUs have their own

caches. Some models of integrated architectures, such as Intel
Haswell i7-4770R processor [3], integrate a shared last level
cache for both CPUs and GPUs. The shared memory man-
agement unit is responsible for scheduling accesses to system
DRAM by different devices. Compared to the discrete CPU-
GPU architecture, both CPUs and GPUs are integrated on the
same chip. The most attractive feature of such integration is
the shared main memory which is available to both devices.
With the shared main memory, CPUs and GPUs can have
more opportunities for fine-grained cooperation. The most
commonly used programming model for integrated architec-
tures is OpenCL [49], which regards the CPU and the GPU as
devices. Each device consists of several compute units (CUs),
which are the CPU and GPU cores in Figure 1.

System DRAM

CPU
core

…

CPU

CPU
core

CPU
core

GPU
core

…

GPU

GPU
core

GPU
core

Shared Memory Management Unit

CPU Cache GPU Cache

Figure 1: A general overview of the integrated architecture.

We show a comparison between the integrated and discrete
architectures (discrete GPUs) in Table 1. These architectures
are used in our evaluation (Section 7). Although the integrated
architectures have lower computation capacity than the dis-
crete architectures currently, the integrated architecture is a
potential trend for a future generation of processors. Hardware
vendors, including AMD [15], Intel [27] and NVIDIA [13],
all release their integrated architectures. Moreover, future inte-
grated architectures can be much more powerful, even can be a
competitive building block for exascale HPC systems [47,55],
and the insights and methods in this paper still can be applied.
Besides, the integrated architectures are attractive due to their
efficient power consumption [15, 60] and low price [31].

Table 1: Integrated architectures vs. discrete architectures.
Integrated Architectures Discrete Architectures

Architecture A10-7850K Ryzen5 2400G GTX 1080Ti V100
cores 512+4 704+4 3584 5120

TFLOPS 0.9 1.7 11.3 14.1
bandwidth (GB/s) 25.6 38.4 484.4 900

price ($) 209 169 1100 8999
TDP (W) 95 65 250 300

The number of cores for each integrated architecture includes four CPU cores. For
discrete architectures, we only show the GPU device.

2.2 Stream Processing with SQL
Although various heterogeneous stream processing systems
have appeared [23, 33, 34, 41, 54, 62, 67], we find that most

634 2020 USENIX Annual Technical Conference USENIX Association

of these systems are used to process unstructured data, and
only one work, Saber [34], is developed for structured stream
processing on GPUs. Saber supports structured query lan-
guage (SQL) on stream data [6]. The benefits of supporting
SQL come from two aspects. First, with SQL, users can use
familiar SQL commands to access the required records, which
makes the system easy to use. Second, supporting SQL elimi-
nates the tedious programming operations about how to reach
a required record, which greatly expands the flexibility of
its usage. Based on the analysis, this work explores stream
processing with SQL on integrated architectures.

We consider supporting the basic SQL functions with
stream processing, as shown in Figure 2. According to [6],
SQL on stream processing consists of the following four ma-
jor concepts: 1) Data stream S, which is a sequence of tuples,
< t1,t2,...>, where ti is a tuple. A tuple is a finite ordered list
of elements, and each tuple has a timestamp. 2) Window w,
which refers to a finite sequence of tuples, which is the data
unit to be processed in a query. The window in stream has
two features: window size and window slide. Window size rep-
resents the size of the data unit to be processed, and window
slide denotes the sliding distance between two adjacent win-
dows. 3) Operators, which are the minimum processing units
for the data in a window. In this work, we support common
relational operators including projection, selection, aggrega-
tion, group-by, and join. 4) Queries, which are a form of data
processing, each of which consists of at least one operator and
is based on windows. Additionally, note that in real stream
processing systems such as Saber [34], data are processed in
batch granularity, instead of window granularity. A batch can
be a group of windows when the window size is small, or a
part of a window when the window size is extremely large.

tuple …

window w1

window w2

window size

window slide

data stream

…

…

query

results

operators

Figure 2: Stream processing with SQL.

3 Revisiting Stream Processing

We discuss the new opportunities (Section 3.1) and challenges
(Section 3.2) for stream processing on integrated architectures
in this section, which motivate this work.

3.1 Varying Operator-Device Preference

Opportunities: Due to the elimination of transmission cost
between CPU and GPU devices on integrated architectures,
we can assign operators to CPU and GPU devices in a fine-
grained manner according to their device-preference.

We analyze the operators in a query, and find that different
operators show various device preferences on integrated ar-
chitectures. Some operators achieve higher performance on
the CPU device, and others have higher performance on the
GPU device. We use a simple query of group-by and aggrega-
tion on the integrated architecture for illustration, as shown in
Figure 3. The GPU queue is used to sequentially execute the
queries on the GPU, while the CPU queue is used to execute
the related queries on the CPU. The window size is 256 tuples
and the window slide is 64. Each batch contains 64,000 tuples,
and each tuple is 32 bytes. The input data are synthetically
generated, which is described in Section 7.1. When the query
runs on the CPU, group-by takes about 18.2 ms and aggre-
gation takes about 5.2 ms. However, when the query runs on
the GPU, group-by takes about 6.7 ms and aggregation takes
about 5.8 ms.

CPU queue:

GPU queue:

time

operator 2
aggregation

operator 1
group-by

operator 1
group-by

operator 2
aggregation

query on CPU query on GPU

18.2 ms 5.2 ms

5.8 ms6.7 ms

Figure 3: An example of operator-device preference.

We further evaluate the performance of operators on a
single device in Table 2. Table 2 shows that using a single
type of device cannot achieve the optimal performance for
all operators. The aggregation includes the operators of sum,
count, and average, and they have similar performance. We
use sum as a representative for aggregation. From Table 2, we
can see that projection, selection, and group-by achieve better
performance on the GPU than on the CPU, while aggregation
and join achieve better performance on the CPU than on the
GPU. Additionally, projection shows similar performance
on CPU and GPU devices. Specifically, for join, the CPU
performance is about 6x the GPU performance. Such different
device preferences inspire us to perform fine-grained stream
processing on integrated architectures.

Integrated architectures eliminate data transmission cost
between CPU and GPU devices. This provides opportunities
for stream processing with operator-level fine-grained place-
ment. The operators that can fully utilize the GPU capacity
exhibit higher performance on GPUs than on CPUs, so these
operators shall be executed on GPUs. In contrast, the opera-
tors with low parallelism shall be executed on CPUs. Please
note that such fine-grained cooperations is inefficient on dis-

USENIX Association 2020 USENIX Annual Technical Conference 635

Table 2: Performance (tuples/s) of operators on the CPU and
the GPU of the integrated architecture.

Operator CPU only (106) GPU only (106) Device choice
projection 14.2 14.3 GPU
selection 13.1 14.1 GPU

aggregation 14.7 13.5 CPU
group-by 8.1 12.4 GPU

join 0.7 0.1 CPU

crete CPU-GPU architectures due to transmission overhead.
For example, Saber [34], one of the state-of-the-art stream
processing engines utilizing the discrete CPU-GPU architec-
tures, is designed aiming to hide PCI-e overhead. It adopts
a bulk-synchronous parallel model, where all operators of a
query are scheduled to one processor to process a micro-batch
of data [53].

3.2 Fine-Grained Stream Processing

Challenges: A fine-grained stream processing that consid-
ers both architecture characteristics and operator preference
shall have better performance, but this involves several chal-
lenges, from both application and architecture perspectives.

Based on the analysis, we argue that stream processing on
integrated architectures can have much desirable properties
than that on discrete CPU-GPU architectures. Particularly,
this work introduces a concept of fine-grained stream process-
ing: co-running the operators to utilize the shared memory
on integrated architectures, and dispatching the operators on
devices with both architecture characteristics and operator
features considered.

However, enabling fine-grained stream processing on in-
tegrated architectures is complicated by the features of SQL
stream processing and integrated architectures. We summa-
rize three major challenges as follows.

Challenge 1: Application topology combined with ar-
chitectural characteristics. Application topology in stream
processing refers to the organization and execution order of
the operators in a SQL query. First, the relation among oper-
ators could be more complicated in practice. The operators
may be represented as a directed acyclic graph (DAG), in-
stead of a chain, which contains more parallel acceleration
opportunities. Second, with architectural characteristics con-
sidered, such as the CPU and GPU architectural differences,
the topology with computing resource distribution becomes
very complex. In such situations, how to perform fine-grained
operator placement for application topology on different de-
vices of integrated architectures becomes a challenge. Third,
to assist effective scheduling decisions, a performance model
is needed to predict the benefits from various perspectives.

Challenge 2: SQL query plan optimization with shared
main memory. First, a SQL query in stream processing can

consist of many operators, and the execution plan of these
operators may cause different bandwidth pressures and device
preferences. Second, in many cases, independent operators
may not consume all the memory bandwidth, but co-running
them together could exceed the bandwidth limit. We need to
analyze the memory bandwidth requirement of co-running.
Third, CPUs and GPUs have different preferred memory ac-
cess patterns. Current methods [5,23,25,33,34,54,62] do not
consider these complex situations of shared main memory in
integrated architectures.

Challenge 3: Adjustment for dynamic workload. Dur-
ing stream processing, stream data are changing dynamically
in distributions and arrival speeds, which is challenging to
adapt. First, workload change detection and computing re-
source adjustment need to be done in a lightweight manner,
and they are critical to performance. Second, the query plan
may also need to be updated adaptively, because the operator
placement strategy based on the initial state may not be suit-
able when the workload changes. Third, during adaptation,
online stream processing needs to be served efficiently. Re-
source adjustment and query plan adaptation on the fly may
incur runtime overhead, because we need to adjust not only
the operators in the DAG but also the hardware computing re-
sources to each operator. Additionally, the adjustment among
different streams also needs to be considered.

4 FineStream Overview

We propose a framework, called FineStream, for fine-grained
stream processing on integrated architectures. The overview
of FineStream is shown in Figure 4. FineStream consists of
three major components, including performance model, on-
line profiling, and dispatcher. The online profiling module
is used to analyze input batches and queries for useful infor-
mation, which is then fed into the performance model. The
performance model module uses the collected data to build
models for queries with both CPUs and GPUs to assist opera-
tor dispatching. The dispatcher module assigns stream data
to operators with proper processors according to the perfor-
mance model on the fly.

Next, we discuss the ideas in FineStream, including its
workflow, query plan generation, processing granularity, op-
erator mapping, and solutions to the challenges mentioned in
Section 3.2.

Workflow. The workflow of FineStream is as follows.
When the engine starts, it first processes several batches using
only the CPUs or the GPUs to gather useful data. Second,
based on these data, it builds a performance model for oper-
ators of a query on different devices. Third, after the perfor-
mance model is built, the dispatcher starts to work, and the
fine-grained stream processing begins. Each operator shall
be assigned to the cores of the CPU or the GPU for paral-
lel execution. Additionally, the workload could be dynamic.

636 2020 USENIX Annual Technical Conference USENIX Association

For dynamic workload, query plan adjustment and resource
reallocation need to be conducted.

…

batch

online
profiling

performance
model

op1 op2 op1

operators

dev dev dev

device mapping

dispatcher

results

…

streambatch

SQL

FineStream

Figure 4: FineStream overview.

Topology. The query plan can be represented as a DAG. In
this paper, we concentrate on relational queries. We show an
example in Figure 5, where OPi represents an operator. OP7
and OP11 can represent joins. We follow the terminology in
compiler domain [52], and call the operators from the begin-
ning or the operator after join to the operator that merges with
another operator as a branch. Hence, the query plan is also a
branch DAG. For example, the operators of OP1, OP2, and
OP3 form a branch in Figure 5. The main reason we use the
branch concept is for parallelism: operators within a branch
can be evaluated in a pipeline, and different branches can
be executed in parallel, which shall be detailed in Section 5.
The execution time in processing one batch is equal to the
traversal time from the beginning to the end of the DAG. Be-
cause branches can be processed in parallel, the branch with
the longest execution time dominates the execution time. We
call the operator path that determines the total execution time
as pathcritical , so the branch with the longest execution time
belongs to pathcritical . For example, we assume that branch2
has the longest execution time among the branches, its time
is tbranch2, and the execution time for OPi is tOP_i. OP7 and
OP11 can also be regarded as branches. Only when the out-
comes of OP3 and OP6 are available, then OP7 can proceed.
So do to the operators of OP7 and OP10 to OP11. Assuming
OP7 and OP11 are blocking join operators, the total execution
time for this query is the sum of tbranch2, tOP7, and tOP11.

OP1 OP2 OP3

OP4 OP5 OP6

OP8 OP9 OP10

OP7

OP11

OP1 OP2 … OP i

OP3 OP4 … OP j

OP5 OP6 … OP k

OP x

OP y

branch1

branch2

branch3

pathcritical

Figure 5: An example of query operators in DAG representa-
tion, where OPi represents an operator.

Operator Mapping. The fine-grained scheduling lies in
how to map the operators to the limited resources on inte-
grated architectures. In FineStream, we allow an operator to
use one or several cores of the CPU or the GPU device. When
the platform cannot provide enough resources for all the oper-
ators, some operators may share the same compute units. For
example, in Figure 5, OP1 and OP2 can share the same CPU
cores. If so, the input batches sequentially goes through OP1
and OP2 and no pipeline exists between two batches for OP1
and OP2.

Solutions to Challenges. FineStream addresses all the
challenges mentioned in Section 3.2. For the first challenge,
the performance model module estimates the overall perfor-
mance with the help of the online profiling module by sam-
pling on a small number of batches, and the dispatcher dy-
namically puts the operators on the preferred devices. For the
second challenge, we have considered the bandwidth factor
when building the performance model, which can be used to
guide the parallelism for operators with limited bandwidth
considered. For the third challenge, the online profiling checks
both the stream and the operators to measure the data inges-
tion rate, and FineStream responses to these situations with
different strategies based on the analysis for dynamic work-
loads. Next, we show the details of our system design.

5 Model for Parallelism Utilization

Guideline: A performance model is necessary for operator
placement in FineStream, especially for the complicated
operator relations in the DAG structure. The overhead of
building fine-grained performance model for a query is lim-
ited because the placement strategy from the model can be
reused for the continuous stream data.

We model the performance of executing a query in this sec-
tion. The operators of the input query are organized as a DAG.
In the performance model, we consider two kinds of paral-
lelism. First, for intra-batch parallelism, we consider branch
co-running, which means co-running operators in processing
one batch. Second, for inter-batch parallelism, we consider
batch pipeline, which means processing different batches in
pipelines.

5.1 Branch Co-Running
Independent branches can be executed in parallel. With lim-
ited computation resources and bandwidth, we build a model
for branch co-running behaviors in this part. We use Bmax
to denote the maximum bandwidth the platform can provide.
If the sum of bandwidth utilization from different parallel
branches, Bsum, exceeds Bmax, we assume that the through-
put degrades proportionally to the Bmax/Bsum of the through-
put with enough bandwidth [60]. To measure the bandwidth
utilization, generally, for n co-running tasks, we have n co-

USENIX Association 2020 USENIX Annual Technical Conference 637

running stages, because tasks complete one by one. When
multiple tasks finish at the same time, the number of stages
decreases accordingly.

We use the example in Figure 5 for illustration. Assume that
the time for different branches is shown in Figure 6 (a). If we
co-run the three branches simultaneously, then the execution
can be partitioned into three stages with different overlapping
situations. We use tstage1, tstage2, and tstage3 to represent the
related stage time when the system has enough bandwidth.
Then, if the required bandwidth for stagei exceeds Bmax, the
related real execution time tstage_i’ also extends accordingly.
We define tstage_i’ in Equation 1. When the platform can pro-
vide the required bandwidth, ri is equal to one. Otherwise, ri
is the ratio of the required bandwidth divided by Bmax.

tstage3

OP1 OP2 OP3

OP4 OP5 OP6

OP8 OP9 OP10

OP7

OP11

branch1

branch2

branch3

pathcritical

timebranch 3

branch 2

branch 1

tstage1 tstage2 tstage3

timebranch 3

branch 2

branch 1

tstage1 tstage2

branch 3

(a) Branch parallelism. (b) Branch scheduling optimization.

Figure 6: An example of branch parallelism and optimization.

tstage_i
′ = ri · tstage_i (1)

To estimate the time for processing a batch in the critical
path, generally for the branch DAG, we perform topology sort
to organize the branches into different layers, and then we co-
run branches on layer granularity. In each layer, we perform
the above branch co-running. Then, the total execution time
is the sum of time of all layers, as shown in Equation 2.

ttotal =

nlayer

∑
j=0

nstage

∑
i=0

tstage_i,layer_ j
′ (2)

The throughput is the number of tuples divided by the
execution time. Assume the number of tuples in a batch is m,
then, the throughput is shown in Equation 3.

throughputbranchCoRun =
m

ttotal
(3)

Optimization. We can perform branch scheduling for op-
timization, which has two major benefits. First, by moving
branches from the stage with fully occupied bandwidth utiliza-
tion to the stage with surplus bandwidth, the bandwidth can
be better utilized. For example, in Figure 6 (b), assume that in
stage1, the required bandwidth exceeds Bmax, but the sum of
the required bandwidth of branch2 and branch3 is lower than
Bmax, then we can move the execution of branch3 after the
execution of branch1 for better bandwidth utilization. Second,
the system may not have enough computation resources for all
branches so that we can reschedule branches for better compu-
tation resource utilization. In stage1 of Figure 6 (a), when the

platform cannot provide enough computing resources for all
the three branches, we can perform the scheduling in Figure 6
(b). Additionally, We can perform batch pipeline between
operators in each branch, which shall be discussed next.

5.2 Batch Pipeline
We can also partition the DAG into phases, and perform co-
running in pipeline between phases for processing different
batches. For simplicity, in this part, we assume that the num-
ber of phases in the DAG is two. Please note that when the
platform has enough resources, the pipeline for operators can
be deeper. We show a simple example in Figure 7 (a). The
operators in phase1 and the operators in phase2 need to be
mapped into different compute units, so that these two phases
can co-run in the pipeline. Figure 7 (b) shows the execution
flow in pipeline. When FineStream completes the processing
for batch1 in phase1 and starts to process batch1 in phase2,
FineStream can start to process batch2 in phase1 simultane-
ously. Phase1 and phase2 can co-run because they rely on
different compute units.

OP3

OP6

OP10

OP7

OP11

phase 1 phase 2

STG2
B1

STG1 B1stage 1:

stage 2:

time

STG2
B2

STG1 B2

STG2
Bn

STG1 Bn

…

…

PH i: phase i B i: batch i
OP1 OP2

OP4 OP5

OP8 OP9
PH1 B1 PH1 B2 …

PH2 B1 PH2 B2

time

(a) Phase partitioning. (b) Batch pipeline.

Figure 7: An example of partitioning phases for batch
pipeline.

We need to estimate the bandwidth of two overlapping
phases, so that we can further estimate the batch pipeline
throughput. The time for a phase, tphase_i, is the sum of the
execution time of the operators in the phase for processing
a batch. We use tphase1 to denote the time for phase1 while
tphase2 for phase2. When two batches are being processed in
different phases in the engine, FineStream tries to maximize
the overlapping of tphase1 and tphase2 of the two batches. How-
ever, the overlapping can be affected by memory bandwidth
utilization. The online profiling in Section 6.3 collects the
size of memory accesses si,dev (including read and write) and
the execution time ti,dev for each operator. The bandwidth of
the two overlapping phases is described as Equation 4.

bandwidthoverlap = MIN(Bmax, ∑
m
i=0 si,dev
tphase1

+
∑

n
i=m+1 si,dev

tphase2
)

(4)
When bandwidthoverlap does not reach Bmax, the execution

time for processing n batches, tnBatches, is shown in Equation 5.

tnBatches = n ·MAX(tphase1, tphase2)+MIN(tphase1, tphase2) (5)

638 2020 USENIX Annual Technical Conference USENIX Association

When bandwidthoverlap reaches Bmax, the execution time
of co-running two phases in the pipeline on different batches
is longer than any of their independent execution time. We
assume that the independent execution time of the longer
phase is tl and the independent time for the shorter phase is
ts. Then, the overlapping ratio for the two phases rol p is ts
divided by tl . Assuming the total size of the memory accesses
for the longer phase is sl , and the total size for the shorter
phase is ss, then the execution time of the overlapping interval,
tol p, is shown in Equation 6.

tol p =
ss + rol p · sl

bandwidthoverlap
(6)

To estimate the time of the rest part in the longer phase, we
assume that the bandwidth of the independent execution of
the longer phase is bandwidthl . Then, the execution time trest
is shown in Equation 7.

trest =
(1− rol p) · sl

bandwidthl
(7)

Then, when bandwidth Bmax is reached, the execution time
tnBatches to process n batches is shown in Equation 8.

tnBatches = n · (tol p + trest) (8)

We assume that a batch contains m tuples, and then, the
throughput can be expressed by Equation 9. When bandwidth
is sufficient, tnBatches is described as Equation 5; otherwise,
Equation 8.

throughputbatchPipeline =
m ·n

tnBatches
(9)

Optimization. Branch co-running can also be conducted
in batch pipeline. For example, in Figure 7, the branches in
phase1 can be corun when the system can provide sufficient
computing resources and bandwidth. The only thing we need
to do is to integrate the branch co-running technique in the
potential phases.

5.3 Handling Dynamic Workload
In branch co-running, the hardware resource binded to each
branch is based on the characteristics of both the operator
and the workload. During workload migration, the workload
pressure for each branch may be different from the original
state. Hence, the static computing resource allocation may
not be suitable for dynamic workload.

A possible solution is to redistribute computing resources
to operators in each branch according to the performance
model. However, this solution has the following two draw-
backs. First, only adjusting the hardware resources on differ-
ent branches may not be able to maintain the performance,
because query plan topology may not fit the current stream-
ing application. In such cases, the query plan needs to be

reoptimized for system performance. Second, resource re-
distribution incurs overhead. Therefore, efficient resource
reallocation and query plan adjustment are necessary for
FineStream handling dynamic workload.

Light-Weight Resource Reallocation. In FineStream, we
use a light-weight dynamic resource reallocation strategy.
When the workload ingestion rate of a branch decreases, we
can calculate the reduced ratio, and assume that such propor-
tion of computing resources in that branch can be transferred
to the other branches. We use an example in Figure 8 for
illustration. In Figure 8 (a), 90% workload after operator OP1
flow to OP2. When the workload state changes to the state in
Figure 8 (b), part of the computing resource associated with
OP2 shall be assigned to OP3 accordingly.

OP3

OP1

OP290%

10%

OP3

OP1

OP2
10%

90%

(a) 90% workload goes to OP2. (b) 90% workload goes to OP3.

Shared memory

GPU
CUs

CPU
CUs

Integrated
architectures

OP3

OP1

OP210%

90%

Shared memory

CPU
CUs

GPU
CUs

Integrated
architectures

Figure 8: An example of adjustment for dynamic workload.

In detail, for the ingestion-rate-falling branch (data arrival
rate of this branch is decreasing) [30], we assume that the
initial ingestion rate is rinit , while the current ingestion rate is
rcur. Then, the computing resource that shall be reallocated
to the other branches is shown in Equation 10. This adap-
tive strategy is very light-weight, because we can monitor
the ingestion rate during batch loading and redistribute the
proportion of reduced computing resources to the branch that
has a higher ingestion rate. In the case of Figure 8 (b), we can
keep limited hardware resource in OP2 and redistribute the
rest to OP3 after processing the current batch.

resourceredistribute_i =
rinit − rcurr

rinit
· resourceOPi (10)

Query Plan Adjustment. With reference to [30],
FineStream generates not only the query plan that soon will
be used in the stream processing, but also several possible
alternatives. During stream processing, FineStream monitors
the size of intermediate results. If the performance degrades
and the size of intermediate results varies greatly, FineStream
shall switch to another alternative query plan topology. In the
implementation, FineStream generates three additional plans
by default, and picks them based on the performance model.

6 Implementation Details

6.1 How FineStream Works
We present the system workflow in Figure 9. In Figure 9,
thread1 is used to cache input data, while thread2 is used to

USENIX Association 2020 USENIX Annual Technical Conference 639

process the cached data. The detailed workflow is as follows.
First, when FineStream starts a new query, the dispatcher
executes the query on the CPU for batch1 and then on the
GPU for batch2. Second, during these single-device execu-
tions, FineStream conducts online profiling, during which
the operator-related data that are used to build the perfor-
mance model are obtained, including the CPU and GPU
performance, and bandwidth utilization. Third, with these
data, FineStream builds the performance model considering
branch co-running and batch pipeline. Fourth, after building
the model, FineStream generates several query plans with
detailed resource distribution. With the generated query plan,
the dispatcher performs fine-grained scheduling for process-
ing the following batches. When dynamic workload is de-
tected, FineStream performs related adjustment mentioned
in Section 5.3. For the operators in FineStream, we reuse the
operator code from OmniDB [64]. Please note that the goal
of this work is to provide a fine-grained stream processing
method on integrated architectures. The same methodology
can also be applied for using other OpenCL processing engine
such as Voodoo [45].

thread 1

stream 1

CPU

GPU

thread 2
operators

OPi

CPU

GPU

bandwidth
utilization

performance

OP1
…

parallelism
utilization

Branch
Co-Running

Batch
Pipeline

DAG 1
OP CPU% GPU%

OP1 … …
… … …

OPi … …

batch3

batch4
dynamic-
workload
detection

operator
dataflow

monitoring

still low
performance?…

time

…

yes resource
reallocation

migration
detected

DAG i
…
…
…
…

default

batch1

batch2

…
…
…
…

query plan
adjustment

Figure 9: FineStream workflow.

Additionally, when users change the window size of a query
on the fly, FineStream updates the window size parameter
after the related batch processing is completed, and then con-
tinues to run with performance detection. If the performance
decreases below a given value (70% of the original perfor-
mance by default), FineStream re-determines the query plan
with computing resource based on the parameters and the
performance model.

6.2 Dispatcher
The dispatcher of FineStream is a module for assigning stream
data to the related operators with hardware resources. The dis-
patcher has two functions. First, it splits the stream data into
batches with a fixed size. Second, it sends the batches to the
corresponding operators with proper hardware resources for
execution. The goal of the dispatcher is to schedule operator
tasks to the appropriate devices to fully utilize the capacity of
the integrated architecture.

Algorithm 1 is the pseudocode of the dispatcher. When
a stream is firstly presented in the engine, FineStream con-
ducts branch co-running and batch pipeline according to the

performance model mentioned in Section 5 (Lines 2 to 5).
FineStream also detects dynamic workload (Lines 6 to 15).
If dynamic workload is detected, FineStream conducts the
related resource reallocation. If such reallocation does not
help, it further conducts query plan adjustment.

Algorithm 1: Scheduling Algorithm in FineStream
1 Function dispatch(batch,resource,model):
2 if taskFirstRun then
3 branchCoRun(resource,model)
4 batchPipeline(resource,model)
5 taskFirstRun = f alse

// Handling dynamic workload and query plan optimization
6 if detectDynamicWorkload() then
7 resourceReallocate()
8 if resourceChanged == true then
9 if performanceDegrade() then

10 ad justQueryPlan()
11 queryChanged = true

12 resourceChanged = true
13 if queryChanged == true then
14 resourceChanged = f alse
15 queryChanged = f alse

6.3 Online Profiling
The purpose of online profiling is to collect useful perfor-
mance data to support building the performance model.

In online profiling, we have two concerns. The first is what
data to generate in this module. This is decided by the perfor-
mance model. These data include the data size, execution time,
bandwidth utilization, and throughput for each operator on
devices. The second is, to generate the data, what information
we shall collect from stream processing.

FineStream performs online profiling for operators from
memory bandwidth and computation perspectives.

Memory Bandwidth Perspective. Based on the above
analysis, we use bandwidth, defined as the transmitted data
size divided by the execution time, to depict the characteris-
tics from data perspective of an operator. The transmitted data
for an operator consists of input and output. The input relates
to the batch while the output relates to both the operator and
the batch. We define the bandwidth of the operator i on de-
vice dev in Equation 11. The parameters sinput_i and sout put_i
denote the estimated input and the output sizes of the operator
i, and ti,dev represents the execution time of the operator i on
device dev.

bandwidthi,dev =
sinput_i + sout put_i

ti,dev
(11)

Computation Perspective. To depict the characteristics
from the computation perspective, we use throughputi,dev,
which is defined as the total number of processed tuples ntuples
divided by the time ti,dev for operator i on device dev. All these
values can be obtained from online profiling.

640 2020 USENIX Annual Technical Conference USENIX Association

Table 3: The queries used in evaluation.
Query Detail

Q1 select timestamp, category, sum(cpu) as totalCPU from TaskEvents [range 256 slide 1] group by category

Q2 select timestamp, jobID, avg(cpu) as avgCPU from TaskEvents [range 256 slide 1] where eventType == 1 group by jobId

Q3 select timestamp, eventType, userId, max(disk) as maxDisk from TaskEvents [range 256 slide 1] group by eventType, userId

Q4 select timestamp, avg (value) as globalAvgLoad from SmartGridStr [range 512 slide 1]

Q5 select timestamp, plug, household, house, avg(value) as localAvgLoad from SmartGridStr [range 512 slide 1] group by plug,

household, house

Q6 (select L.timestamp, L.plug, L.household, L.house from LocalLoadStr [range 1 slide 1] as L, GlobalLoadStr [range 1 slide 1] as

G where L.house == G.house and L.localAvgLoad >G.globalAvgLoad) as R - select timestamp, house, count(*) from R group by house

Q7 (select timestamp, vehicle, speed, highway, lane, direction, (position/5280) as segment from PosSpeedStr [range unbounded])

as SegSpeedStr - select distinct L.timestamp, L.vehicle, L.speed, L.highway, L.lane, L.direction, L.segment from SegSpeedStr

[range 30 slide 1] as A, SegSpeedStr [partition by vehicle rows 1] as L where A.vehicle == L.vehicle

Q8 select timestamp, vehicle, count(direction) from PosSpeedStr [range 256 slide 1] group by vehicle

Q9 select timestamp, max(speed), highway, lane, direction from PosSpeedStr [range 256 slide 1] group by highway,lane,direction

7 Evaluation

7.1 Methodology

The baseline method used in our comparison is Saber [34],
while our method is denoted as “FineStream”. Saber is the
state-of-the-art window-based stream processing engine for
discrete architectures. It adopts a bulk-synchronous parallel
model [66]. The whole query execution on a batch is dis-
tributed to a device, the GPU or the CPU, without further
distributing operators of a query to different devices. The
original CPU operators in Saber are written in Java, and we
further rewrite the CPU operators in Saber in OpenCL for
higher efficiency. Our comparisons to Saber examine whether
our fine-grained method delivers better performance. To val-
idate the co-running benefits of the two devices, we also
measure the performance using only the CPU and the per-
formance using only the GPU, denoted as “CPU-only” and
“GPU-only”. Further, to understand the advantage of using
the integrated architecture to accelerate stream processing, we
compare FineStream on integrated architectures with Saber
on discrete CPU-GPU architectures.

Platforms. We perform experiments on four platforms, two
integrated platforms and two discrete platforms. The first in-
tegrated platform uses the integrated architecture AMD A10-
7850K [15], and it has 32 GB memory. The second integrated
platform uses the integrated architecture Ryzen 5 2400G,
which is the latest integrated architecture, and this platform
has 32 GB memory. The first discrete platform is equipped
with an Intel i7-8700K CPU and an NVIDIA GeForce GTX
1080Ti GPU, and along with 32 GB memory. The second dis-
crete platform is equipped with two Intel E5-2640 v4 CPUs
and an NVIDIA V100-32GB GPU, and has 264 GB memory.

Datasets. We use four datasets in the evaluation. The first
dataset is Google compute cluster monitoring [2], which em-
ulates a cluster management scenario. The second dataset is
anomaly detection in smart grids [68], which is about detec-
tion in energy consumption from different devices of a smart

electricity grid. The third dataset is linear road benchmark [7],
which models a network of toll roads. These traces come from
real-world applications, and are widely used in previous stud-
ies such as [19, 34, 39]. The fourth dataset is a synthetically
generated dataset [34] for evaluating independent operators,
where each tuple consists of a 64-bit timestamp and six 32-bit
attributes drawn from a uniform distribution. To overfeed the
system and test its performance capacity, we load the data
from memory. This method avoids network being bottleneck.
In practice, the system obtains stream data via network.

Benchmarks. We use nine queries to evaluate the overall
performance of the fine-grained stream processing engine on
the integrated architectures. Similar benchmarks have been
used in [34]. The details of the nine queries are shown in
Table 3. Q1, Q2, and Q3 are conducted on the Google compute
cluster monitoring dataset. Q4, Q5, and Q6 are for the dataset
of anomaly detection in smart grids. Q7, Q8, and Q9 are for
the dataset from the linear road benchmark.

Dynamic Workload Generation. We use the datasets and
benchmarks to generate dynamic workload. For the first
dataset of cluster monitoring, the seventh attribute of cate-
gory gradually changes from type 1 to type 2 within 10,000
batches. We use the query Q1 for illustration, and we denote
it as T1. Similar evaluations are also conducted on the second
dataset of smart grid with the query Q5, which is denoted as
T2, and the third dataset of linear road benchmark with the
query Q8, which is denoted as T3.

7.2 Performance Comparison

Throughput. We explore the throughput of FineStream for
the nine queries. Figure 10 shows the processing throughput
of the best single device, Saber, and FineStream for these
queries on both the A10-7850K and Ryzen 5 2400G plat-
forms. Please note that the y-axis of the figure is in log scale.
We have the following observations. First, on the A10-7850K
platform, FineStream achieves 88% throughput improvement

USENIX Association 2020 USENIX Annual Technical Conference 641

over the best single device performance on average; com-
pared to Saber, FineStream achieves 52% throughput improve-
ment. Because of the efficient CPU and GPU co-running,
FineStream nearly doubles the performance compared to the
method of using only a single device. Because FineStream
adopts the continuous operator model where each operator
could be scheduled on its preferred device, FineStream uti-
lizes the integrated architecture better than Saber that uses the
bulk-synchronous parallel model. Such result clearly shows
the advantage of fine-grained stream processing on the inte-
grated architecture. Second, on the Ryzen 5 2400G platform,
all hardware configurations have been upgraded in compar-
ison with A10-7850K, especially the CPUs; the CPU-only
throughput on Ryzen 5 2400G is much higher than that on
A10-7850K. Moreover, Saber achieves a 56% throughput
improvement compared to the throughput of the best single
device, and FineStream is still 14% higher than Saber on
this platform. Similar phenomena have also been observed
in [58–60].

 0.1

 1

 10

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

th
ro

u
g
h
p

u
t

(1
0
5
 t

u
p

le
s/

s)

CPU-only
GPU-only

Saber
FineStream

Ryzen 5 2400GA10-7850K

Figure 10: Throughput of different queries.

Latency. Figure 11 reports the latency of different queries
on the integrated architectures. In this work, latency is defined
as the end-to-end time from the time a query starts to the time
it ends. FineStream has the lowest latency among these meth-
ods. First, on the A10-7850K platform, FineStream’s latency
is 10% lower than that of the best single device, and 36%
lower than the latency of Saber. Second, on Ryzen 5 2400G
platform, it is 2% lower than that of the best single device, and
9% lower than that of Saber. The reason is that FineStream
considers device preference for operators and assigns the op-
erators to their suitable devices. In this way, each batch can be
processed in a more efficient manner, leading to lower latency.

 0

 5

 10

 15

 20

 0 0.3 0.6 0.9 1.2

th
ro

u
g
h
p
u
t

(1
0

5
 t

u
p
le

s/
s)

latency (s)

FineStream(A10-7850K)
Saber(A10-7850K)

FineStream(Ryzen5)
Saber(Ryzen5)

Figure 12: Throughput vs. latency.

Profiling. We
show the rela-
tionship between
throughput and
latency of both
FineStream and
Saber in Figure 12.
Figure 12 shows
that queries with
high throughput
usually have low latency, and vice versa.

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

la
te

n
cy

 (
s)

CPU-only
GPU-only

Saber
FineStream

Ryzen 5 2400GA10-7850K

Figure 11: Latency of different queries.

We further study the CPU and GPU utilization of Saber
and FineStream, and use the A10-7850K platform for illus-
tration, as shown in Figure 13. In most cases, FineStream
utilizes the GPU device better on the integrated architecture.
As for Q4, the CPU processes most of the workload. On aver-
age, FineStream improves 23% GPU utilization compared to
Saber, and have roughly the same CPU utilization as Saber.
Since FineStream achieves better throughput and latency than
Saber, such utilization results indicate that FineStream gener-
ates effective strategies in determining device preferences for
individual operators.

 0

 20

 40

 60

 80

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

u
ti

liz
a
ti

o
n
 (

%
)

Saber FineStream

GPUCPU

Figure 13: Utilization of the integrated architecture.

7.3 Comparison with Discrete Architectures
In this part, we compare FineStream on the integrated archi-
tectures and Saber on the discrete architectures from three
perspectives: performance, price, and energy-efficiency.

caused by
data transfer
from host
memory to
GPU memory

latency

ratio

PROJ AGGJOIN SELT GRPBY

integrated
architecture

discrete
architecture

Figure 14: Latency comparison of
different operators.

Performance
Comparison. The
current GPU on the
integrated architec-
ture is less powerful
than the discrete
GPU, as mentioned
in Section 2.1. The
discrete GPUs ex-
hibit 1.8x to 5.7x
higher throughput
than the integrated

642 2020 USENIX Annual Technical Conference USENIX Association

architectures, due to the more computational power of
discrete GPUs. However, the integrated architecture demon-
strates lower processing latency compared to the discrete
architecture when the data transmission cost between the host
memory and GPU memory in the workload is significant. For
example, the latencies for pro jection, selection, aggregation,
group-by, and join are 0.6, 1.5, 1.0, 10.6, and 1924.5 ms on
Ryzen 5 2400G platform, while 1.1, 1.2, 1.2, 1.6, and 7600.1
ms on GTX 1080Ti platform; these operators are distributed
in Figure 14, where join (JOIN), pro jection (PROJ), and
aggregation (AGG) achieve lower latency on the integrated
architecture, while selection (SELT), and group-by (GRPBY)
prefer the discrete architecture. The x-axis represents the
ratio of mcompute/(swrite+sread) where mcompute denotes the
kernel computation workload size, and twrite and sread denote
the data transmission sizes from the host memory to the GPU
memory and from the GPU memory to the host memory
via PCI-e. For further explanation, to execute a kernel on
discrete GPUs, the execution time ttotal includes 1) the time
twrite of data transmission from the host memory to the GPU
memory via PCI-e, 2) the time tcompute for data processing
kernel execution, and 3) the time tread of data transmission
from the GPU memory to the host memory. As for executing
a kernel on the integrated architecture, although its tcompute
is longer than that on discrete GPUs, its twrite and tread can
be avoided. For the queries in Table 3, the data movement
overhead on discrete architectures ranges from 31 to 62%.

Price-Throughput Ratio Comparison. FineStream on in-
tegrated architectures shows a high price-throughput ratio,
compared to Saber on the discrete architectures. The price of
the 1080Ti discrete architecture is about 7x higher than that
of the A10-7850K integrated architecture, and the price of the
V100 discrete architecture is about 64x higher than that of
the Ryzen 5 2400G integrated architecture. Figure 15 shows
the comparison of their price-throughput ratio. On average,
FineStream on the integrated architectures outperforms Saber
on the discrete architectures by 10.4x.

 10

 100

 1000

 10000

 100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

p
ri

ce
-t

h
ro

u
g
h
p
u
t

ra
ti

o
(t

h
ro

u
g
h
p
u
t/

U
S
D

) Saber(discrete-1080Ti)
Saber(discrete-V100)

FineStream(A10-7850K)
FineStream(Ryzen5)

Figure 15: Comparison of price-throughput ratio.

Energy Efficiency Comparison. We also analyze the en-
ergy efficiency of FineStream and Saber. The Thermal Design
Power (TDP) is 95W on A10-7850K, and 65W on Ryzen
5 2400G. For the 1080Ti platform, the TDP of the Intel i7-
8700K CPU and NVIDIA GTX 1080Ti GPU are 95W and

250W, respectively. For the V100 platform, the TDP of the
Intel E5-2640 v4 CPU and NVIDIA V100 GPU are 90W and
300W, respectively. Similar to [61], we use performance per
Watt to define energy efficiency. On average, FineStream on
the integrated architectures is 1.8x energy-efficient than Saber
on the discrete architectures.

7.4 Handling Dynamic Workload
In this section, we discuss how to handle dynamic work-
loads. To demonstrate the capability of FineStream to han-
dle dynamic workload, we evaluate FineStream on the dy-
namic workloads mentioned in Section 7.1. On average,
FineStream achieves a performance of 323,727 tuples per sec-
ond, which outperforms the static method (we denote “static”
for FineStream without adapting to dynamic workload) by
28.6%, as shown in Table 4.

Table 4: Throughput of the queries on dynamic workloads.
Dynamic A10-7850K (105 tuples/s) Ryzen 5 2400G (105 tuples/s)
Workload Static FineStream Static FineStream

T1 4.2 5.1 4.4 5.1
T2 0.8 1.2 1.1 1.5
T3 1.9 2.8 2.7 3.7

We use T1 as an example, and show the detailed throughput
along with the number of batches in Figure 16. In the timeline
process, the static method decreases due to the improper hard-
ware resource distribution. As for FineStream, the hardware
computing resources can be dynamically adjusted according
to the data distribution, so the performance does not decline
with the changes.

 0

 2

 4

 6

 8

 10

1000 4000 7000 10000

th
ro

u
g
h
p
u
t

(1
0

5
 t

u
p
le

s/
s)

process

Static
FineStream

(a) A10-7850K.

 0
 2
 4
 6
 8

 10
 12

1000 4000 7000 10000

th
ro

u
g
h
p
u
t

(1
0

5
 t

u
p
le

s/
s)

process

Static
FineStream

(b) Ryzen 5 2400G.

Figure 16: Throughput of T1 on dynamic workloads.

7.5 Detailed Analysis
Performance Model Accuracy. In stream processing, after
each batch is processed, we use the measured batch process-
ing speed to correct our model. We use the example of Q1 for
illustration, as shown in Figure 17. We use the percent devia-
tion to measure the accuracy of our performance model. The
percent deviation is defined as the absolute value of the real
throughput minus the estimated throughput, divided by the
real throughput. The smaller the percent deviation is, the more

USENIX Association 2020 USENIX Annual Technical Conference 643

accurate the predicted result is. The deviation decreases as
the number of processed batches increases. After 20 batches
are processed, we can reduce the deviation to less than 10%.
Please note that in stream processing scenarios, input tuples
are continuously coming, so the time for correcting perfor-
mance prediction can be ignored in stream processing. For
dynamic workload, the accuracy also depends on the intensity
of workload changes.

 0

 20

 40

 60

 80

 100

2 5 10 15 20 50

d
e
v
ia

ti
o
n
 (

%
)

number of processed batches

A10-7850K
Ryzen 5 2400G

Figure 17: Deviation of Q1.

Runtime Overhead
Analysis. FineStream in-
curs runtime overhead
in the batch processing
phase from two aspects.
First, it detects whether
the input stream be-
longs to dynamic work-
load, which causes time
overhead. Second, the
scheduling also takes time. In our evaluation, we observe that
the time overhead accounts for less than 2% of the processing
time, which can be ignored in stream processing.

8 Related Work

Parallel stream processing [4, 10, 12, 21, 28, 29, 34, 43, 46, 63],
query processing [9, 14, 16, 20, 22, 56], and heterogeneous
systems [11, 17, 24, 26, 32, 35–38, 45, 48, 50] are hot research
topics in recent years. Different from these works, FineStream
targets sliding window-based stream processing, which fo-
cuses on window handling with SQL and dynamic adjustment.
GPUs have massive threads and high bandwidth, and have

emerged to be one of the most promising heterogeneous ac-
celerators to speedup stream processing. Verner et al. [54]
presented a stream processing algorithm considering various
latency and throughput requirements on GPUs. Alghabi et
al. [5] developed a framework for stateful stream data pro-
cessing on multiple GPUs. De Matteis et al. [25] developed
Gasser system for offloading operators on GPUs. Pinnecke
et al. [44] studied how to efficiently process large windows
on GPUs. Chen et al. [23] extended the popular stream pro-
cessing system, Storm [1], to GPU platforms. Augonnet et
al. [8] explored data-aware task scheduling for multi-devices,
which can be integrated into this work. FineStream differs
from those previous works in two aspects: firstly on integrated
architectures, and secondly for SQL streaming processing.

The closest work to FineStream is Saber [34], which aims
to utilize discrete CPU-GPU architectures. Saber [34] adopts
a bulk-synchronous parallel model [53, 66], where the whole
query (with multiple operators) on each batch of input data
is dispatched on one device. Such a mechanism naturally
minimizes the communication overhead among operators in-
side the same query. It is hence suitable in discrete CPU-
GPU architectures, where PCI-e overhead is significant and
shall be avoided as much as possible. However, it may re-

sult in suboptimality in integrated architectures for mainly
two reasons. First, it overlooks the performance difference
between different devices for each operator. Second, the
communication overhead between the CPU and the GPU
in integrated architectures is negligible. Targeting at inte-
grated architectures, FineStream adopts continuous operator
model [53, 66], where each operator of a query can be inde-
pendently placed at a device. We further build a performance
model to guide operator-device placement optimization. It is
noteworthy that our fine-grained operator placement is dif-
ferent from classical placement strategies for general stream
processing [18, 19, 40, 51, 65] for their different design goals.
In particular, most prior works aim at reducing communi-
cation overhead among operators, which is not an issue in
FineStream. Instead, FineStream needs to take device prefer-
ence into consideration during placement optimization, which
has not been considered before.

9 Conclusion

Stream processing has shown significant performance bene-
fits on GPUs. However, the data transmission via PCI-e hin-
ders its further performance improvement. This paper revisits
window-based stream processing on the promising CPU-GPU
integrated architectures, and with CPUs and GPUs integrated
on the same chip, the data transmission overhead is eliminated.
Furthermore, such integration opens up new opportunities for
fine-grained cooperation between different devices, and we de-
velop a framework called FineStream for fine-grained stream
processing on the integrated architecture. This study shows
that integrated CPU-GPU architectures can be more desirable
alternative architectures for low-latency and high-throughput
data strream processing, in comparison with discrete archi-
tectures. Experiments show that FineStream can improve the
performance by 52% over the state-of-the-art method on the
integrated architecture. Compared to the stream processing
engine on the discrete architecture, FineStream on the inte-
grated architecture achieves 10.4x price-throughput ratio, 1.8x
energy efficiency, and can enjoy lower latency benefits.

Acknowledgments

We sincerely thank our shepherd Sergey Blagodurov and
the anonymous reviewers for their insightful comments
and suggestions. This work is supported by the National
Key Research and Development Program of China (No.
2018YFB1004401), National Natural Science Foundation of
China (No. 61732014, 61802412, 61972402, and 61972403),
and Beijing Natural Science Foundation (No. L192027),
and is also supported by a MoE AcRF Tier 1 grant (T1
251RES1824) and Tier 2 grant (MOE2017-T2-1-122) in Sin-
gapore. Xiaoyong Du is the corresponding author of this
paper.

644 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Apache Storm. http://storm.apache.org/.

[2] More google cluster data. https://ai.googleblog.
com/2011/11/more-google-cluster-data.html.

[3] The Compute Architecture of Intel Processor Graphics
Gen7.5. https://software.intel.com/.

[4] Nitin Agrawal and Ashish Vulimiri. Low-Latency An-
alytics on Colossal Data Streams with SummaryStore.
In SOSP, 2017.

[5] Farhoosh Alghabi, Ulrich Schipper, and Andreas Kolb.
A scalable software framework for stateful stream data
processing on multiple gpus and applications. In GPU
Computing and Applications. 2015.

[6] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The
CQL continuous query language: semantic foundations
and query execution. The VLDB Journal, 2006.

[7] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David
Maier, Anurag S Maskey, Esther Ryvkina, Michael
Stonebraker, and Richard Tibbetts. Linear road: a stream
data management benchmark. In PVLDB, 2004.

[8] Cédric Augonnet, Jérôme Clet-Ortega, Samuel Thibault,
and Raymond Namyst. Data-aware task scheduling on
multi-accelerator based platforms. In ICPADS, 2010.

[9] Peter Bakkum and Kevin Skadron. Accelerating SQL
Database Operations on a GPU with CUDA. In Pro-
ceedings of the 3rd Workshop on General-Purpose Com-
putation on Graphics Processing Units, 2010.

[10] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron
Kassner. Heavy hitters in streams and sliding windows.
In INFOCOM, 2016.

[11] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and
Mark Silberstein. SPIN: seamless operating system
integration of peer-to-peer DMA between SSDs and
GPUs. In USENIX ATC, 2017.

[12] Ketan Bhardwaj, Pragya Agrawal, Ada Gavrilowska,
Karsten Schwan, and Adam Allred. Appflux: Taming
app delivery via streaming. Proc. of the Usenix TRIOS,
2015.

[13] D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman.
Denver: Nvidia’s First 64-bit ARM Processor. Micro,
2015.

[14] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold.
Breaking the Memory Wall in MonetDB. Commun.
ACM, 2008.

[15] Dan Bouvier and Ben Sander. Applying AMD’s Kaveri
APU for heterogeneous computing. In Hot Chips Sym-
posium, 2014.

[16] Sebastian Breß and Gunter Saake. Why It is Time for a
HyPE: A Hybrid Query Processing Engine for Efficient
GPU Coprocessing in DBMS. PVLDB, 2013.

[17] Qingqing Cao, Niranjan Balasubramanian, and Aruna
Balasubramanian. Mobirnn: Efficient recurrent neural
network execution on mobile GPU. In Proceedings of
the 1st International Workshop on Deep Learning for
Mobile Systems and Applications, 2017.

[18] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Com-
mittee on Data Engineering, 2015.

[19] Raul Castro Fernandez, Matteo Migliavacca, Evangelia
Kalyvianaki, and Peter Pietzuch. Integrating scale out
and fault tolerance in stream processing using operator
state management. In SIGMOD, 2013.

[20] Badrish Chandramouli, Raul Castro Fernandez,
Jonathan Goldstein, Ahmed Eldawy, and Abdul Quamar.
Quill: efficient, transferable, and rich analytics at scale.
PVLDB, 2016.

[21] Badrish Chandramouli, Jonathan Goldstein, Roger
Barga, Mirek Riedewald, and Ivo Santos. Accurate la-
tency estimation in a distributed event processing system.
In ICDE, 2011.

[22] Badrish Chandramouli, Jonathan Goldstein, Mike Bar-
nett, Robert DeLine, Danyel Fisher, John C Platt,
James F Terwilliger, and John Wernsing. Trill: A high-
performance incremental query processor for diverse
analytics. PVLDB, 2014.

[23] Zhenhua Chen, Jielong Xu, Jian Tang, Kevin Kwiat,
and Charles Kamhoua. G-Storm: GPU-enabled high-
throughput online data processing in Storm. In Big Data,
2015.

[24] Periklis Chrysogelos, Manos Karpathiotakis, Raja Ap-
puswamy, and Anastasia Ailamaki. HetExchange: En-
capsulating heterogeneous CPU-GPU parallelism in JIT
compiled engines. Proceedings of the VLDB Endow-
ment, 2019.

[25] Tiziano De Matteis, Gabriele Mencagli, Daniele
De Sensi, Massimo Torquati, and Marco Danelutto.
GASSER: An Auto-Tunable System for General Sliding-
Window Streaming Operators on GPUs. IEEE Access,
2019.

USENIX Association 2020 USENIX Annual Technical Conference 645

 http://storm.apache.org/.
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://software.intel.com/

[26] Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav
Vishnu, Sudhanva Gurumurthi, and Ada Gavrilovska.
Kleio: A Hybrid Memory Page Scheduler with Machine
Intelligence. In HPDC, 2019.

[27] J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Ra-
hatekar, L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz.
Inside 6th-Generation Intel Core: New Microarchitec-
ture Code-Named Skylake. Micro, 2017.

[28] Pradeep Fernando, Ada Gavrilovska, Sudarsun Kannan,
and Greg Eisenhauer. NVStream: accelerating HPC
workflows with NVRAM-based transport for streaming
objects. In HPDC, 2018.

[29] Xinwei Fu, Talha Ghaffar, James C Davis, and Dongy-
oon Lee. Edgewise: a better stream processing engine
for the edge. In USENIX ATC, 2019.

[30] Buğra Gedik, Scott Schneider, Martin Hirzel, and Kun-
Lung Wu. Elastic scaling for data stream processing.
TPDS, 2013.

[31] Younghwan Go, Muhammad Asim Jamshed, Young-
Gyoun Moon, Changho Hwang, and KyoungSoo Park.
APUNet: Revitalizing GPU as Packet Processing Accel-
erator. In NSDI, 2017.

[32] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xi-
aokui Xiao, and Kian-Lee Tan. GPU-Accelerated Sub-
graph Enumeration on Partitioned Graphs. In SIGMOD,
2020.

[33] Chandima HewaNadungodage, Yuni Xia, and John Jae-
hwan Lee. GStreamMiner: a GPU-accelerated data
stream mining framework. In CIKM, 2016.

[34] Alexandros Koliousis and et al. Saber: Window-based
hybrid stream processing for heterogeneous architec-
tures. In SIGMOD, 2016.

[35] Xinyu Li, Lei Liu, Shengjie Yang, Lu Peng, and Jiefan
Qiu. Thinking about A New Mechanism for Huge Page
Management. In Proceedings of the 10th ACM SIGOPS
Asia-Pacific Workshop on Systems, 2019.

[36] Lei Liu, Shengjie Yang, Lu Peng, and Xinyu Li. Hierar-
chical Hybrid Memory Management in OS for Tiered
Memory Systems. TPDS, 2019.

[37] Alexander M Merritt, Vishakha Gupta, Abhishek Verma,
Ada Gavrilovska, and Karsten Schwan. Shadowfax:
scaling in heterogeneous cluster systems via GPGPU
assemblies. In VTDC, 2011.

[38] Mitesh R Meswani, Sergey Blagodurov, David Roberts,
John Slice, Mike Ignatowski, and Gabriel H Loh. Het-
erogeneous memory architectures: A HW/SW approach

for mixing die-stacked and off-package memories. In
HPCA, 2015.

[39] Ismael Solis Moreno, Peter Garraghan, Paul Townend,
and Jie Xu. Analysis, modeling and simulation of work-
load patterns in a large-scale utility cloud. IEEE Trans-
actions on Cloud Computing, 2014.

[40] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and
Anand Kesari. S4: Distributed stream computing plat-
form. In ICDM Workshops, 2010.

[41] Dong Nguyen and Jongeun Lee. Communication-aware
mapping of stream graphs for multi-GPU platforms. In
CGO, 2016.

[42] John Nickolls and William J Dally. The GPU computing
era. Micro, 2010.

[43] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneid-
man, Mema Roussopoulos, Matt Welsh, and Margo
Seltzer. Network-aware operator placement for
stream-processing systems. In ICDE, 2006.

[44] Marcus Pinnecke, David Broneske, and Gunter Saake.
Toward GPU Accelerated Data Stream Processing. In
GvD, 2015.

[45] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Mad-
den. Voodoo - a Vector Algebra for Portable Database
Performance on Modern Hardware. PVLDB, 2016.

[46] Arosha Rodrigo, Miyuru Dayarathna, and Sanath
Jayasena. Latency-Aware Secure Elastic Stream Pro-
cessing with Homomorphic Encryption. Data Science
and Engineering, 2019.

[47] Michael J Schulte, Mike Ignatowski, Gabriel H Loh,
Bradford M Beckmann, William C Brantley, Sudhanva
Gurumurthi, Nuwan Jayasena, Indrani Paul, Steven K
Reinhardt, and Gregory Rodgers. Achieving exascale
capabilities through heterogeneous computing. Micro,
2015.

[48] Mark Silberstein, Sangman Kim, Seonggu Huh, Xinya
Zhang, Yige Hu, Amir Wated, and Emmett Witchel.
GPUnet: Networking abstractions for GPU programs.
TOCS, 2016.

[49] John E Stone, David Gohara, and Guochun Shi.
OpenCL: A parallel programming standard for hetero-
geneous computing systems. Computing in science &
engineering, 2010.

[50] Zhi Tang and Youjip Won. Multithread content based
file chunking system in CPU-GPGPU heterogeneous
architecture. In 2011 First International Conference on
Data Compression, Communications and Processing,
2011.

646 2020 USENIX Annual Technical Conference USENIX Association

[51] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik
Ramasamy, Jignesh M Patel, Sanjeev Kulkarni, Jason
Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al.
Storm@ twitter. In SIGMOD, 2014.

[52] Sid Touati and Benoit Dupont De Dinechin. Advanced
Backend Code Optimization. John Wiley & Sons, 2014.

[53] Shivaram Venkataraman, Aurojit Panda, Kay Ouster-
hout, Michael Armbrust, Ali Ghodsi, Michael J Franklin,
Benjamin Recht, and Ion Stoica. Drizzle: Fast and adapt-
able stream processing at scale. In SOSP, 2017.

[54] Uri Verner, Assaf Schuster, and Mark Silberstein. Pro-
cessing data streams with hard real-time constraints on
heterogeneous systems. In ICS, 2011.

[55] Thiruvengadam Vijayaraghavan, Yasuko Eckert,
Gabriel H Loh, Michael J Schulte, Mike Ignatowski,
Bradford M Beckmann, William C Brantley, Joseph L
Greathouse, Wei Huang, Arun Karunanithi, et al. De-
sign and Analysis of an APU for Exascale Computing.
In HPCA, 2017.

[56] Thomas F Wenisch, Michael Ferdman, Anastasia Aila-
maki, Babak Falsafi, and Andreas Moshovos. Practical
off-chip meta-data for temporal memory streaming. In
HPCA, 2009.

[57] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy
Hunter, Scott Shenker, and Ion Stoica. Discretized
streams: Fault-tolerant streaming computation at scale.
In SOSP, 2013.

[58] Feng Zhang, Bo Wu, Jidong Zhai, Bingsheng He, and
Wenguang Chen. FinePar: Irregularity-aware fine-
grained workload partitioning on integrated architec-
tures. In CGO, 2017.

[59] Feng Zhang, Bo Wu, Jidong Zhai, Bingsheng He, Wen-
guang Chen, and Xiaoyong Du. Automatic Irregularity-

Aware Fine-Grained Workload Partitioning on Inte-
grated Architectures. TKDE, 2019.

[60] Feng Zhang, Jidong Zhai, Bingsheng He, Shuhao Zhang,
and Wenguang Chen. Understanding co-running behav-
iors on integrated cpu/gpu architectures. TPDS, 2017.

[61] Kai Zhang, Jiayu Hu, Bingsheng He, and Bei Hua.
DIDO: Dynamic pipelines for in-memory key-value
stores on coupled CPU-GPU architectures. In ICDE,
2017.

[62] Kai Zhang, Jiayu Hu, and Bei Hua. A holistic approach
to build real-time stream processing system with GPU.
JPDC, 2015.

[63] Shuhao Zhang, Bingsheng He, Daniel Dahlmeier,
Amelie Chi Zhou, and Thomas Heinze. Revisiting the
design of data stream processing systems on multi-core
processors. In ICDE, 2017.

[64] Shuhao Zhang, Jiong He, Bingsheng He, and Mian Lu.
OmniDB: Towards portable and efficient query process-
ing on parallel CPU/GPU architectures. PVLDB, 2013.

[65] Shuhao Zhang, Jiong He, Amelie Chi Zhou, and Bing-
sheng He. Briskstream: Scaling Data Stream Processing
on Multicore Architectures. In SIGMOD, 2019.

[66] Shuhao Zhang, Feng Zhang, Yingjun Wu, Bingsheng He,
and Paul Johns. Hardware-conscious stream processing:
A survey. SIGMOD Rec., 2020.

[67] Yongpeng Zhang and Frank Mueller. GStream: A
general-purpose data streaming framework on GPU clus-
ters. In ICPP, 2011.

[68] Holger Ziekow and Zbigniew Jerzak. The DEBS 2014
grand challenge. In DEBS, 2014.

USENIX Association 2020 USENIX Annual Technical Conference 647

OpenExpress: Fully Hardware Automated Open Research Framework for
Future Fast NVMe Devices

Myoungsoo Jung
Computer Architecture and Memory Systems Laboratory

Korea Advanced Institute of Science and Technology (KAIST)
http://camelab.org

Abstract
NVMe is widely used by diverse types of storage and non-
volatile memories subsystems as a de-facto fast I/O commu-
nication interface. Industries secure their own intellectual
property (IP) for high-speed NVMe controllers and explore
challenges of software stack with future fast NVMe storage
cards. Unfortunately, such NVMe controller IPs are often in-
accessible to academia. The research community, however,
requires an open-source hardware framework to build new
storage stack and controllers for the fast NVMe devices.

In this work, we present OpenExpress, a fully hardware
automated framework that has no software intervention to
process concurrent NVMe requests while supporting scalable
data submission, rich outstanding I/O command queues, and
submission/completion queue management. OpenExpress is
available to download and offers a maximum bandwidth of
around 7GB/s without a silicon fabrication.

1 Introduction

NVM Express (NVMe) is successful in bringing diverse
solid state drive (SSD) and non-volatile memory (NVM)
technologies closer to CPUs. NVMe supports many current
I/O submissions and completions for higher throughput com-
pared to traditional block storage interfaces. The storage-level
firmware and host-side software can synchronize their com-
munication over a flexible queueing method [26]. NVMe also
provides a data transfer mechanism that allows the under-
lying NVMe devices to leverage abundant system memory
resources of the host via physical region page (PRP) lists.

As NVMe devices have been widely used in a broad spec-
trum of computing domains [10, 17, 21], storage vendors se-
cure their own intellectual property (IP) cores to build high-
speed NVMe controllers. The NVMe specification stipulates
these NVMe controller IP cores to be implemented in either
firmware or hardware [26]. Considering the design flexibility
of the underlying SSD architecture, many storage vendors and
communities typically implement the controller IP cores as
firmware [20,31,39]. Even though firmware-based controllers
are sufficient to manage flash, their firmware execution can
be a critical performance bottleneck when used in conjunc-
tion with faster NVM media, such as phase change mem-
ory (PRAM) and magnetoresistive memory (MRAM) [8, 23].
Since the latency of the emerging fast NVMs is shorter than
that of flash by an order of magnitude, CPU cycles to execute

0.913
0.134

0.087
0.866

0.997

Flash

PRAM

MRAM

0.0 0.2 0.4 0.6 0.8 1.0

 Frontend Firmware Backend Memory

Figure 1: Decomposition comparison for execution cycles
with different non-volatile memories.

the firmware cannot be hidden behind or overlapped with I/O
burst times of the underlying NVM backend.

To illustrate this overhead, we perform an emulation study
to decompose the latency of an NVMe SSD into two parts:
i) NVMe firmware execution time (Frontend) and ii) NVM
backend access latency (Backend). In this study, we intermix
read and write requests (1:1) and issue them to our PCIe hard-
ware platform; this platform executes the NVMe firmware
on a 1 GHz processor and emulates three different types of
NVM backends, each employing 16 flash chips [14], and 16
PRAM [23] chips, and 16 MRAM chips [8], respectively. As
shown in Figure 1, the access latency of flash-based back-
end contributes 91% of the total NVMe service time, which
makes it possible to hide the front-end firmware latency by
interleaving with flash I/O bursts. In contrast, the firmware
execution cannot be overlapped with the I/O burst times of
PRAMs and MRAMs as its execution time accounts for 86%
and 99% of the total I/O latency. To address this challenge,
industries have begun to employ hardware automated NVMe
controller IP cores [9,24]. For example, recent state-of-the-art
prototypes [9] automate NVMe control logic in an SSD to
achieve 1 million I/O per second (IOPS).

Unfortunately, such NVMe hardware IP cores are prohib-
ited to access and redesign from academia. There exist a few
third-party vendors that do hardware IP business [7, 15, 16].
However, their IP cores require expensive “per-month” uni-
tary prices, ranging from $30K ∼ $45K; the price of single-
use source code is around $100K. There are even restric-
tions on modifying the hardware IP and architecture, which
is inadmissible in research communities. Because of such
unapproachability and high costs of NVMe IP cores, many
recent studies that redesign the existing storage stack, such
as bypass kernel designs or NVM file systems implemented
atop a fast NVMe device, are mostly performed by a simula-
tion [11, 12, 19, 34] or an emulation [22, 37, 40]. In addition,
most academic studies related to SSDs such as firmware al-
gorithm developments [4, 6, 25, 29] and cross-layer optimiza-
tions [5,18,38], are all performed by the simulation/emulation.

USENIX Association 2020 USENIX Annual Technical Conference 649

���������	
����
����
�

����������
	�
�
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�	����
�	��������

�
��

���������
��		�
���

� ����������
��������
��

�	������
�	����������
���

�
����
��
��
��
��
��
��
��
��
��

����

������

�
��
��������
�������
�
�
�����
���
�
����
�

�
������������
����
��

���������

� �������
��� �
�����
�����
�����
�

���
���
���
���
���
���
���
���
���

�	����
�	����

�	��
���
����
����
����

�����
����
	�
�
 �

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

����

�
��

�����
��
!���
���

�	������

 �
��!��
""

�!����
"��
�

#
��
������
������
��		�
�

�!������"��
�

�!������"��
�

!����������
���
�����$

% �����!������������
��

��������	�
������
����

!�	������

�
�
��
��
���
�
	�

�
�
� ����
�����&'"

	
����

��������(&�

�
����

���������

����
����

&��)
���

(*

+, �

�����
�����

+��
��'���

��������

����
���

(&��
����

(
���

���������
��"��(*

������

����	
����

�	
	�

��	�������

������
���

�	����

(��������

�	
�
��
�
�
��
�
�
�
�
�
�

�
�
�

������������������
����������
������	�
����

�
!����
�������
�����������#����
������ �

��
��
��
��
��
��
��
��
��

����

�
�����
���
��

�
�
��
��
�
��
�
	

�
�
�
�

�	
	���	�������
������
����	����

Figure 2: Overview and hardware details of the proposed OpenExpress.

While there are benefits for the simulation/emulation-
based studies (e.g., fast prototyping and validation), many
researchers still require real NVMe devices that they can
modify to develop full-system prototypes and perform end-to-
end performance evaluation with no strings attached. In this
work, we propose OpenExpress, a framework that fully auto-
mates NVMe control logic in hardware to make it possible to
build customizable NVMe devices. To the best of our knowl-
edge, OpenExpress is only the open research framework that
realizes NVMe hardware accelerator IPs 1, which does not re-
quire any software intervention to process concurrent read and
write NVMe requests. Considering diverse demands of the
academic research, OpenExpress leverages multiple DRAM
channels and modules as storage backend and supports scal-
able data submission, rich outstanding NVMe commands and
submission/completion queue management.

We prototype OpenExpress with a commercially available
Xilinx FPGA board [3] and optimize all its logic components
to operate at a high frequency. Even though it is a well-known
fact that FPGAs are slower than CPUs, we demonstrate that
OpenExpress can expose the true performance of backend
memory modules to users over PCIe. At its peak, OpenEx-
press provides an access bandwidth of 7GB/s. Our evaluation
also shows that OpenExpress can, on average, exhibit 76.3%
better performance than an Optane SSD [13], which is one of
the fast NVMe devices in the market.

2 Module Design of OpenExpress

Overview. Figure 2a illustrates a high-level view of Open-
Express, which is composed of three groups of hardware
modules: i) queue dispatching, ii) data transferring, and iii)
completion handling. At the beginning of OpenExpress’s dat-
apath, queue dispatching hardware modules fetch and decode
all incoming I/O requests by monitoring multiple NVMe sub-
mission queues (SQs). Data transferring hardware modules
then check the host system memory over physical region page
(PRP) lists, and perform DMA for both host and backend

1The intellectual property (IP) cores and/or register transfer level (RTL)
code our OpenExpress is available to download for non-commercial and
academic uses from http://openexpress.camelab.org.

memories. Once the data is successfully served by the back-
end, OpenExpress’s completion handling modules manage
interrupts and NVMe completion queues (CQs) over a set of
registers (doorbells) mapped to a system-on-chip (SoC) inter-
nal memory bus. The details of the three different hardware
module groups are explained in Figure 2b.

Queue dispatching modules. [1© ∼ 5©] of Figure 2b de-
scribe the queue dispatching functions that OpenExpress im-
plements over hardware, including a set of procedures for
automatic NVMe doorbell monitoring, command fetches,
and command decodes. Specifically, when the host issues
an NVMe command by pushing an SQ entry into the per-core
queue [1©], it should also write (i.e., ring) the corresponding
entry of the doorbell (DB). Thus, OpenExpress creates a DB
entry per queue by grouping two sets of DBs, each keeping
track of a tail pointer per SQ and a head pointer per CQ.
We map these sets of DBs, called DB region, to the internal
SoC memory bus address space, and in parallel, we expose
it to a PCIe’s base address register (BAR) [2©]. Since our
fetch and decode modules can detect any DB updates (made
by the host) through the memory-mapped DB region, Open-
Express is able to synchronize the host NVMe queue states
with its internal NVMe queue states. Note that ringing a DB
at the host side is the same as writing a PCIe packet (i.e.,
PCIe inbound) in NVMe. Therefore, OpenExpress can sim-
ply catch each ringing event by monitoring the memory bus
address space mapped to the DB region for changes. When-
ever OpenExpress observes an update of a DB that exists in
the SQ-tail DB region and CQ-head DB region, it generates
an event signal [3©]. This event signal includes information
relevant to the target SQ, and is passed to the underlying
SQ entry fetch manager. Since multiple event signals can
arise simultaneously, our fetch manager arbitrates between
different NVMe queues in a round robin manner as speci-
fied by NVMe 1.4 [26]. The fetch manager then checks the
delivered information and copies the 16-double-word (DW)
NVMe command, associated with the target SQ entry, from
the host-side system memory. After fetching the command,
OpenExpress can see all relevant request information, such
as the operation code (opcode), logical block address (LBA),
block size, and PRPs [4©]. Our fetch manager finally parses

650 2020 USENIX Annual Technical Conference USENIX Association

����������	
���
���������

����������	��
���
�������������

����������	���
�����
��
����
�
�����

����

����

����

����

����

�
�
��

 !"
���#����!

���������	
�

 	$�""��
%�������&"
�
��
���������

���������	
�

����
���

������

����������

���' ����

����������	

����������	�

����������	�

����&"

�
�����

�
�����

��
�
�
�
�
�

�
�
��
�
�
�
�
�

�%(�����

���������������������������

�������	������	��

�
����	
��
�����	��

�����

��
����
���
����

����
���	��

��
���
�
���
����

��������������	��

	����

������
��������������

������
�����

Figure 3: Implementation View of OpenExpress.

the request information and forwards it to the underlying PRP
engine. To enhance responsiveness of the storage frontend
(i.e., queue dispatching), the fetch manager pipelines its pro-
cessing of other remaining requests with other operations of
data transferring and completion handling modules [5©].

Data transferring modules. To handle page-aligned data,
our PRP engine accesses the location of the host-side system
memory via a PRP, which in turn generates an out-bound
PCIe packet. The PRP engine then initiates data transfer by
setting the source address (i.e., host-side system memory)
and the destination address (i.e., OpenExpress’s memory) of
our backend DMA engine [6©]. The PRP engine copies the
data from the host DRAM to our DMA engine for each 512B
chunk to make device memory compatible with sector-based
block I/O services. On the other hand, the DMA engine em-
ploys multiple DMA IP cores (as many as FPGA’s backend
memory channels) to fully parallelize data transfers. Specifi-
cally, the DMA engine splits the data of a single request into
multiple small-sized data chunks and spreads them across the
multiple DMA engine IP cores of the target backend. Doing
so will help shorten the I/O latency of underlying NVM emu-
lation memories. Note that the payload size of a PCIe packet
is 4KB. Thus, if the request offset is not aligned to a 4KB
boundary, the target data can exist in two different system
memory pages of the host-side DRAM. To manage this case,
as shown in Figure 3a, the PRP engine fetches the target data
from two different host locations, referred by PRP1 and PRP2,
respectively. Specifically, if the request size is greater than a
page, the PRP engine brings a page and the PRP list, indicated
by PRP1 and PRP2, respectively, from the host DRAM and
parses each entry of the list. The PRP engine then traverses
all entries of the PRP list and transfers the data of each en-
try from the host system memory pages to the underlying
memories. Once the data transfers are completed by the DMA
engine, the PRP engine signals the completion handler, which
in turn creates a completion request (CQ entry), and manages
an message-signaled interrupt (MSI) packet corresponding
to the submission request.

Completion handling modules. The functions of comple-
tion handling that we implement include I/O completion (CQ
management) and interrupt processing. Based on the NVMe

specification states, an NVMe queue is logically composed by
a pair of an SQ and a CQ. Thus, to make the NVMe queues
easy to manage, one may locate the SQ-tail DB region with
the CQ-head DB region, side-by-side. However, as in-flow
velocities of NVMe submissions and NVMe completions are
asymmetric, a physical integration of the SQ-tail DB region
and CQ-head DB region close together is not ideal from both
performance and implementation angles. Thus, OpenExpress
completely separates the SQ-tail DB region and CQ-head
DB region. To pair OpenExpress’s CQ and SQ status in an
appropriate manner, we introduce a completion handler that
automatically detects which CQ is engaged with the I/O re-
quest finished to process by the data transferring modules.
Specifically, the detection is performed by checking the cor-
responding request information, which is forwarded from the
SQ entry fetch manager of the queue dispatching modules.
Once the completion handler finds out the appropriate CQ,
the handler posts the target CQ entry by directly writing it
to the corresponding host-side system memory (BAR) [7©].
The completion handler then interrupts the host by pushing
(writing) a PCIe packet to an MSI region that the host driver
manages to inform the host of the I/O service completion [8©].
The host driver later invokes its own interrupt service routine,
which will notify the completion to the user who requested
such I/O service. The host finally terminates the I/O service
and synchronizes its CQ state with OpenExpress by updating
the CQ-head DB region [9©]. Note that queue synchronization
means that the completion handler releases the target SQ and
CQ entry pair from the corresponding NVMe queue. In this
way, the internal CQ and SQ states of our OpenExpress can
be consistent with the host-side SQ and CQ states of NVMe
driver(s).

3 Hardware Prototyping

We implement OpenExpress on an Xilinx FPGA board [3]
that employs an UltraScale [36] chip and PCIe Gen3 inter-
face, which are shown in Figure 3b. We use four 288-pin
DDR4 dual in-line memory modules (DIMMs) for storage-
backend emulation. In our implementation, the FPGA logic
modules are classified into two: frontend and backend automa-

USENIX Association 2020 USENIX Annual Technical Conference 651

4KB 8KB 16KB 32KB

2.4

3.6

4.8

6.0

7.2
Ba

nd
w

id
th

 (G
B/

s)

Request size

 Writes
 Reads

7.0 GB/s

4.7 GB/s
2.8 GB/s

3.0

(a) Sequential bandwidth.

4KB 8KB 16KB 32KB

2.4

3.6

4.8

6.0

7.2

Ba
nd

w
id

th
 (G

B/
s)

Request size

 Writes
 Reads

7.0 GB/s

4.6 GB/s2.9
2.7 GB/s

(b) Random bandwidth.

4KB 8KB 16KB 32KB
0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
te

nc
y

(m
s)

Request size

 Writes
 Reads

357.7 us

554.1 us

77.5 us
72.7 us

(c) Sequential latency.

4KB 8KB 16KB 32KB
0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
te

nc
y

(m
s)

Request size

 Writes
 Reads

358.3 us
72.7 us

77.6 us

549.0 us

(d) Random latency.

Figure 4: Bandwidth and latency performance for multi-block I/Os.
tions. The frontend automation contains most logic modules
for queue dispatching and completion handling. It also ex-
poses PCIe BAR registers and maps them into the internal
advanced extensible interface (AXI) memory crossbar [1, 35].
The queue dispatching IP cores fetch and decode NVMe com-
mands issued by the host while completion handling logic
manages all aspects of I/O request completion, including inter-
rupt handling. The completion handling logic also maintains
all the contexts to automatically pair different SQs and CQs
by collaborating with queue dispatching cores. On the other
hand, the backend automation consists of data transferring IP
cores, DDR4 memory controllers, and a DMA engine. The
data transferring IP cores traverse all PRP entries and migrate
the corresponding data between the host’s system memory
and FPGA memory modules through the DDR4 memory con-
trollers and DMA engine.

Frequency tuning. To satisfy diverse demands of NVMe-
related academic research, employing reconfigurable hard-
ware such as FPGA is essential. However, its slow clock
speed is one of challenges for our prototyping to overcome.
We therefore minimize the number of connections among
all logic modules to make OpenExpress operate with the
highest frequency of our FPGA platform. Specifically, in our
implementation, the logic modules are directly engaged one-
to-one, and their input and output ports are connected in a
undirectional manner. The target logic can directly retrieve
any necessary information that is not forwarded from a source
module by accessing the memory address space of the AXI
crossbar. Note that all these hardware IP cores process differ-
ent parts of I/O request(s) in a pipelined manner to improve
I/O bandwidth.

Our frequency tuning process involves gradual trial-and-
error attempts to reduce the amount of route delay in a crit-
ical path. Since the delay is not straightly related to logic
design, it cannot be reduced by revamping only the design
itself. Instead, we perform multiple iterations of the FPGA
implementation process (i.e., physical design layout decision),
including a translate, map, and place-and-route (PAR) for dif-
ferent high-clock frequencies, ranging from 50MHz to 250
MHz. Typically, applying a higher clock frequency introduces
different timing constraint violations. Unfortunately, fixing
the timing violation of one core has an impact on other cores’
timing characteristics. Thus, we separate the memory con-
troller IPs from OpenExpress logic modules to the extent
permitted by each each module’s timing constraint, and then,
we group the logic together by considering a boundary of su-

per logic region (SLR) that contains multiple fabric modules
and IP cores. The result of our design is a physical layout
that is able to successfully operate at the highest frequency of
the target FPGA platform as shown in Figure 3c. While all
the logic modules of OpenExpress are located around PCIe
and AXI crossbar, the modules associated with data transfer-
ring and DMA engine, including the memory controller IP
cores, occupy only two SLRs. Lastly, the memory backend
is emulated as NVMe’s low-level storage complex over four
channel FPGA memory IP cores. Note that, while the current
prototype uses DRAM memory channels and components for
the storage backend, OpenExpress IP cores can be integrated
with other persistent memories.

4 Evaluation

The host system that we tested employs 8-core, 3.3GHz In-
tel Skylake-X processor (i9-9820X) with 32GB DDR4. Our
OpenExpress prototype is attached to the host over PCIe
Gen3 [30]. In this evaluation, we mainly focus on demon-
strating that OpenExpress can be adopted in a real system
as an open-source hardware research platform.We character-
ize the performance behaviors of OpenExpress (Section 4.1)
and then show the performance enhancement by tuning the
FPGA clock frequency (Section 4.2). We also compare the
performance of OpenExpress with that of an Optane SSD [13]
under diverse real workloads [32]. Note that we do not claim
that OpenExpress can be faster than other fast NVMe devices.
Instead, the evaluation results show that, despite the slow
clock-frequency, an FPGA-based design and implementation
for NVMe IP cores can offer good performance to make it a
viable candidate for use in storage systems research. We use
FIO [2] and execute diverse types of real workloads [32] for
the user-level. We observe that the computation of a single
I/O thread is insufficient to extract the maximum performance
of OpenExpress. Thus, we execute FIO with a ten I/O threads,
each having its own NVMe queue and I/O workload execu-
tion.

4.1 OpenExpress Characterization

Bandwidth. Figures 4a and 4b show the bandwidth trends of
sequential and random I/O requests whose size varies ranging
from 4 KB to 32KB, respectively. We observe that all device
tests exhibit the best performance at the queue depth 8, and
thus, we present only the results at such queue depth. There

652 2020 USENIX Annual Technical Conference USENIX Association

4KB 8KB
16KB

32KB
0

10

20

30

40

50

60

Im
pr

ov
em

en
t (

%
)

 170MHz
 190MHz
 210MHz
 230MHz
 250MHz

(a) Read imprv.

4KB 8KB
16KB

32KB
0

10

20

30

40

50

60

Im
pr

ov
em

en
t (

%
)

 170MHz
 190MHz
 210MHz
 230MHz
 250MHz

(b) Write imprv.

24H
RFIU
Dev

Div
Ser

verTPC
E

0.0

1.0

2.0

3.0

4.0

5.0

6.0

M
B/
s

 Optane SSD
 OpenExpress

(c) Bandwidth.

24H
RFIU
Dev

Div
Ser

verTPC
E

0

100

200

300

400
 Optane SSD
 OpenExpress

M
ic
ro
se
c

(d) Latency.

24HR FIU
DevDiv

Server
TPCE

0.0

0.2

0.4

0.6

0.8

1.0

Ba
nd

w
id

th
 b

re
ak

do
w

n

 Reads
 Writes

(e) BW. brkdown.

24HR FIU
DevDiv

Server
TPCE

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

br
ea

kd
ow

n

 Reads
 Writes

(f) Lat. brkdown.

0 4 8 12 16 20 24 28 32 36 40 44 48 52

500

1000

1500

 OpenExpress
 OptaneSSD

W
rit

e
Ba

nd
w

id
th

Write-Intensive Workload (24HR)

0 4 8 12 16 20 24 28 32 36 40 44 48 52

1000

2000

3000

 OpenExpress
 OptaneSSDR

ea
d

Ba
nd

w
id

th

Read-Intensive Workload (DevDiv)

(g) Random bandwidth.

Figure 5: Performance improvement analysis and in-depth performance comparison analysis with real workloads

is no much bandwidth difference between reads and writes at
the page-size (4KB) I/O service; 3.0 GB/s and 2.8 GB/s for se-
quential reads and writes, respectively. As the I/O request size
increases, the read and write performance improve. Note that
OpenExpress reaches the maximum bandwidth with 16KB-
sized I/O services; the write and read maximum bandwidth for
both random and sequential are 4.6∼4.7GB/s and 7.0 GB/s,
respectively. Interestingly, as the request size increases, the
read bandwidth gets better than the write bandwidth. This
is because of PCIe packet management issues, impacted by
what we tuned for a high FPGA clock frequency, which will
be analyzed in details in Section 4.2. Generally speaking,
the data and command movement of reads are not congested
as much as that of writes; all doorbell register updates, and
command/write data payloads come together through PCIe
inbound links.

Latency. Figures 4c and 4d present the latency of sequen-
tial and random I/O requests, respectively. Like the bandwidth
behaviors of OpenExpress, the trend of latency curve with
varying request sizes for sequential and random is similar to
each other; for both reads and writes, their latency increases
as the request size grows; the average latency of page-sized
reads and writes is 72.7 us and 77.5 us, respectively. This is
because OpenExpress exhibits the same execution latency for
data transferring at a same queue depth condition. In addition,
the latency of backend memory accesses with a bulk of pages
does not depend on their access patterns. Even though write
latency characteristics are similar to those of reads for 4∼8
KB sized requests, as increasing the I/O sizes, the latency
disparity becomes more distinguishable. Specifically, the read
and write latency of 32KB-sized requests is 358 us and 551.5
us, on average, respectively; for both sequential and random
patterns, the writes are 54% slower than reads, on average.

Note that the latency of page-sized requests is observed
with high queue depths to achieve the best bandwidth. While
bandwidth is the matter on block storage, OpenExpress can
reduce the latency by 62% with single queue depth operations
(by sacrificing the bandwidth). Specifically, the latency of
4KB-sized requests (72.7us ∼ 77.5us) are evaluated with 8
queue depths to achieve the max bandwidth that OpenExpress
can offer. Optane SSD’s latency for 4KB-sized requests is

120 ∼ 150us with those queue depths. The user-level latency
of 4KB-sized requests for OpenExpress is 27us ∼ 30us with a
single queue-depth, which is similar to the latency that Optane
SSD provides.

4.2 Frequency Tuning and Real Workload

FPGA clock frequency optimization. Figure 5a and 5b
show the percentage of bandwidth improvement (as repre-
sentative) by tuning the FPGA clock frequency, ranging from
150 MHz to 250 MHz. We normalize all the results to the
bandwidth that we can achieve by executing OpenExpress at
150 MHz. As shown in Figure 5b, the write bandwidth im-
provement is 8.6%, on average. Our frequency tuning exhibits
higher bandwidth improvements in cases of larger size re-
quests. This is related to the amount of data (per request) that
OpenExpress should move between the host and underlying
memory backend. The small requests (4 KB∼16 KB) have a
few system addresses that OpenExpress needs to be involved
in parsing the PPR entries and perform DMA, which implies
that there are more operations related to NVMe protocol man-
agement of SQ, CQ, doorbell, etc. To handle the large requests
(32 KB), data transferring modules successfully remove the
software intervention related to all PRP traversing, address
parsing and DMA control. They are also well operated with
other hardware automation modules in a pipeline manner,
which can improve the overall performance by 17.1%. We
observe that the performance improvement of reads are more
significant (Figure 5a). The read bandwidth improvement for
4 KB, 8 KB, 16 KB and 32 KB-sized requests is 5%, 6.1%,
16.4% and 59.4%, on average, respectively. All NVMe-related
traffic for the reads are not congested as much as that of the
writes thanks to the dual-simplex design of PCIe. Specifically,
as the operations of queue dispatching modules are mostly
engaged with PCIe inbound links, data transferring modules
can write up data to the host system memory in serving the
read requests via PCIe outbound links, in parallel. Because
of this, our hardware automation becomes more promising to
serve the large block-sized read requests than the writes.

Real workload. We compare the bandwidth and latency of
OpenExpress with those of Optane SSD by executing diverse

USENIX Association 2020 USENIX Annual Technical Conference 653

workloads, and the results are shown in Figures 5c and 5d,
respectively. For better understanding, we decompose the
bandwidth and latency for each workload, which are shown in
Figures 5e and 5f, respectively. The bandwidth and latency of
OpenExpress are better than that of Optane SSD by 76.3% and
68.6%, on average, respectively. Since our frequency turning
gives better performance on reads, the performance on read-
intensive workloads (DevDiv and Server) is better than write-
intensive workloads (24HR, FIU and TPCE). In particular,
OpenExpress achieves more than 4 GB/s on DevDiv workload
execution, which is 111.5% higher than the performance that
Optane SSD provides (2.1 GB/s).

To see each of device bandwidth behaviors, Figure 5g
shows the time series analysis of read-only and write-only
bandwidth for DevDiv and 24HR workloads in a certain
amount of I/O processing periods. As reads are dominant on
DevDiv, the read-only bandwidth of OpenExpress is 27.1%
better than Optane SSD. In contrast, the write-only bandwidth
of OpenExpress for 24HR shows a similar or a little bit worse
characteristic, compared to Optane SSD. We conjecture that
Optane SSD buffers write requests into its internal DRAM,
and thus, FPGA-based automation makes the performance
difference between OpenExpress and Optane SSD (all logic
is built on an ASIC). For both read and write bandwidth, the
trends of dynamic performance curve for OpenExpress and
Optane SSD are similar to each other.

5 Discussion, Related Work and Future Work

Related work. There are only a handful of frameworks that
enable NVM-related storage systems research. OpenSSD
[27, 28] provides flash software, which can be modified
by users based on their research demands. We believe that
OpenSSD offers yet an excellent opportunity to examine the
diversity in flash management, but it only supports low speed
SATA and non-standard interfaces. Unfortunately, their low
performance (<350MB/s [33]) is not suitable for conducting
research related with high-speed NVM technologies. In ad-
dition, OpenSSD does not allow users to modify hardware
design and architecture. Note that OpenSSD is also not a
cost-free open-source platform; Jasmine and Cosmos require
around $2K and $3.5K per-device license fees, respectively.

Dragon fire card (DFC) implements a customized FPGA
design, but it is only used for back-end flash controllers. All
other functionalities are managed by software and a heavy
operating system, which executes on multiple CPU cores.
DFC is not in a public domain yet and unfortunately available
for only a small, closed research community. Note that, in
addition to the lack of open licensing and limitations with
respect to support for fast, NVM devices, all the above frame-
works require software to manage the host communication
and NVMe protocol in contrast to OpenExpress.

Limits. Our hardware automated logic can remove soft-
ware involvement for NVMe management, thus, providing

performance inline with the expected user case – a fast PCIe
storage card for NVM research. However, the automated hard-
ware modules may require more technical efforts than what
software-based NVMe utilities need to pay for a change, in
cases where one needs to either apply the hardware logic to
different types of FPGA technologies, or employ additional
hardware/software logic. While OpenExpress implements
most critical modules on both read and write paths, it requires
users to modify the hardware logic to add new NVMe fea-
tures and other commands for good measure. Even with these
limits, we believe that OpenExpress is worthwhile to explore,
as third-part NVMe IP cores are hard nut to crack to access
for research purposes because of their expensive per-month
unitary prices and restrictions to modify.

Future work and use cases. As an on-going research, we
are updating the existing Linux storage stack and memory
subsystem modules to exploit the true performance, exposed
by different types of emerging NVMs. We are also fully updat-
ing OpenExpress to have a real NVM storage backend rather
than DRAM emulation for a device-level study. This project
requires a set of extra RTL designs and modifications to re-
move all firmware executions from the internal I/O path of
an existing SSD. It also needs new types of NVM controllers
the corresponding and physical layers to correctly handle the
NVM backend complex with a low power. Lastly, we leverage
a part of OpenExpress to i) build disaggregated pooled mem-
ory over a cache coherent interconnect for accelerators and
ii) process data near storage class memory, which requires
different computational IP cores for such new interface and
in-storage processing acceleration.

6 Acknowledge

The author thanks Raja Appuswamy and Heiner Litz for shep-
herding this paper. The author also thanks anonymous review-
ers for their constructive feedback as well as MemRay for
their sample donations and technical support. This work is
supported by MemRay grant (G01190170) and performed as
a part of its open NVMe interface research project.

7 Conclusion

We propose an open-source hardware research platform,
called OpenExpress. OpenExpress is an NVMe host accelera-
tor IP for the integration with an easy-to-access FPGA design.
We prototype OpenExpress on a commercially available Xil-
inx FPGA board and optimize all the logic modules to operate
a high frequency. Using a thorough evaluation, we demon-
strate that OpenExpress, with a maximum bandwidth of 7
GB/s, is an open research platform that can further storage
system research related to fast NVM devices.

654 2020 USENIX Annual Technical Conference USENIX Association

References

[1] ARM. AMBA AXI and ACE protocol specifica-
tion. https://static.docs.arm.com/ihi0022/d/
IHI0022D_amba_axi_protocol_spec.pdf.

[2] AXBOE, J. Flexible I/O tester. https://github.com/
axboe/fio.

[3] BITTWARE. Xilinx ultrascale 3/4-length pcie
board. http://www.bittware.com/wp-content/
uploads/datasheets/ds-xusp3r.pdf.

[4] CHOI, W., JUNG, M., AND KANDEMIR, M. Paralleliz-
ing garbage collection with I/O to improve flash resource
utilization. In the 27th International Symposium on
High-Performance Parallel and Distributed Computing
(HPDC) (2018).

[5] DAYAN, N., KJÆR SVENDSEN, M., BJØRLING, M.,
BONNET, P., AND BOUGANIM, L. Eagletree: explor-
ing the design space of ssd-based algorithms. In Pro-
ceedings of the VLDB Endowment (2013), vol. 6, ACM,
pp. 1290–1293.

[6] ELYASI, N., ARJOMAND, M., SIVASUBRAMANIAM,
A., KANDEMIR, M. T., DAS, C. R., AND JUNG, M. Ex-
ploiting intra-request slack to improve ssd performance.
In the 27th International Conference on Architectural
Support for Programming anguages and Operating Sys-
tems (ASPLOS) (2017).

[7] EPOSTAR-ELECTRONICS. Meissa nvme.
http://www.epostar-elec.com/products_IP_
Cores_Meissa.html.

[8] EVERSPIN. MR2A16A. https://www.everspin.
com/supportdocs/all.

[9] FADU. Fadu annapurna ssd controller.
http://fadutec.com/wp-content/uploads/2019/
08/FADU-Annapurna-Brief-073019-WEB.pdf.

[10] FLASHMEMORYSUMMIT. PCIe/NVMe in mo-
bile devices. https://www.flashmemorysummit.
com/English/Collaterals/Proceedings/2015/
20150811_S101C_Baram.pdf.

[11] GOUK, D., KWON, M., ZHANG, J., KOH, S., CHOI,
W., KIM, N. S., KANDEMIR, M., AND JUNG, M. Am-
ber: Enabling precise full-system simulation with de-
tailed modeling of all ssd resources. In 51th IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO) (2018).

[12] HU, Y., JIANG, H., FENG, D., TIAN, L., LUO, H., AND
ZHANG, S. Performance impact and interplay of ssd par-
allelism through advanced commands, allocation strat-
egy and data granularity. In Proceedings of the Interna-
tional Conference on Supercomputing (ICS) (2011).

[13] INTEL. INTEL® OPTANE™ SSD DC P4800X
SERIES. https://www.intel.com/content/dam/
www/public/us/en/documents/product-briefs/
optane-ssd-dc-p4800x-p4801x-brief.pdf.

[14] INTEL. PF29F64G08LCMFS.

[15] INTELLIPROP. NVMe target core. http:
//intelliprop.com/hardware-storage-design/
ip-cores/nvme-target-ip-core-IPC-NV163-DT.
htm.

[16] IP-MAKER. NVMe product overview. https:
//www.ip-maker.com/index.php?option=com_
phocadownload&view=category&download=34:
nvme_product_overview&id=6:nvm.

[17] JIN, Y. T., AHN, S., AND LEE, S. Performance analysis
of nvme ssd-based all-flash array systems. In Interna-
tional Symposium on Performance Analysis of Systems
and Software (ISPASS) (2018), IEEE.

[18] JUNG, M., AND KANDEMIR, M. Middleware -
firmware cooperation for high-speed solid state drives.
In Middleware ’12 (2012).

[19] JUNG, M., ZHANG, J., ABULILA, A., KWON, M.,
SHAHIDI, N., SHALF, J., KIM, N. S., AND KANDEMIR,
M. Simplessd: modeling solid state drives for holistic
system simulation. IEEE Computer Architecture Letters
17, 1 (2017), 37–41.

[20] KIM, J., LEE, D., AND NOH, S. H. Towards SLO
complying ssds through OPS isolation. In 13th USENIX
Conference on File and Storage Technologies (FAST 15)
(2015), USENIX Association.

[21] KLIMOVIC, A., LITZ, H., AND KOZYRAKIS, C. Re-
flex: Remote flash = local flash. In Proceedings of the
Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’17.

[22] LI, H., HAO, M., TONG, M. H., SUNDARARAMAN,
S., BJØRLING, M., AND GUNAWI, H. S. The case of
FEMU: cheap, accurate, scalable and extensible flash
emulator. In Proceedings of the 16th USENIX Confer-
ence on File and Storage Technologies (FAST) (2018).

[23] MICRON. P8P parallel phase change mem-
ory. https://media.digikey.com/pdf/Data%
20Sheets/Micron%20Technology%20Inc%20PDFs/
NP8P128Ax60E_Rev_K.pdf.

[24] MICROSEMI. Flashtec NVMe Controllers. https:
//www.microsemi.com/product-directory/
storage/3687-flashtec-nvme-controllers.

USENIX Association 2020 USENIX Annual Technical Conference 655

[25] MURUGAN, M., AND DU, D. Rejuvenator: A static
wear leveling algorithm for nand flash memory with min-
imized overhead. In 27th Symposium on Mass Storage
Systems and Technologies (MSST) (2011).

[26] NVM EXPRESS INC. NVM express base specification.
https://nvmexpress.org/wp-content/uploads/
NVM-Express-1_4-2019.06.10-Ratified.pdf,
2017.

[27] OPENSSDTEAM. Cosmos openssd platforms.
http://www.openssd-project.org/wiki/Cosmos_
OpenSSD_Platform.

[28] OPENSSDTEAM. Jasmine openssd platforms.
http://www.openssd-project.org/wiki/
Jasmine_OpenSSD_Platform.

[29] PARK, J. K., LEE, J.-Y., AND NOH, S. H. Divided disk
cache and ssd ftl for improving performance in storage.
JOURNAL OF SEMICONDUCTOR TECHNOLOGY
AND SCIENCE 17, 1 (2017), 15–22.

[30] PCI-SIG. PCI express base specification revision 3.1a,
2015.

[31] SK HYNIX. PCIe NVMe controller firmware
and drivers. https://www.flashmemorysummit.
com/English/Collaterals/Proceedings/2015/
20150813_FJ31_Parepalli.pdf.

[32] SNIA. Block I/O traces. http://iotta.snia.org/
traces/list/BlockIO.

[33] SONG, Y. H., JUNG, S., LEE, S.-W., AND KIM, J.-S.
A pcie-based open source ssd platform. https://www.
flashmemorysummit.com/English/Collaterals/
Proceedings/2014/20140807_301B_Song.pdf.

[34] TAVAKKOL, A., GOMEZ-LUNA, J., SADROSADATI,
M., GHOSE, S., AND MUTLU, O. MQSim: A frame-

work for enabling realistic studies of modern multi-
queue ssd devices. In 16th USENIX Conference on
File and Storage Technologies (FAST) (2018).

[35] XILINX. AXI Bridge for PCI Express. https:
//www.xilinx.com/support/documentation/
ip_documentation/axi_pcie3/v3_0/
pg194-axi-bridge-pcie-gen3.pdf.

[36] XILINX. Ultrascale architecture and product
data sheet: Overview. https://www.xilinx.
com/support/documentation/data_sheets/
ds890-ultrascale-overview.pdf.

[37] YOO, J., WON, Y., HWANG, J., KANG, S., CHOI, J.,
YOON, S., AND CHA, J. Vssim: Virtual machine based
ssd simulator. In Proceedings of the 29th IEEE Sym-
posium on Massive Storage Systems and Technologies
(MSST) (2013).

[38] ZHANG, J., KWON, M., GOUK, D., KOH, S., LEE,
C., ALIAN, M., CHUN, M., KANDEMIR, M. T., KIM,
N. S., KIM, J., AND JUNG, M. Flashshare: Punching
through server storage stack from kernel to firmware
for ultra-low latency ssds. In the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI) (2018).

[39] ZHANG, J., KWON, M., SWIFT, M., AND JUNG, M.
Scalable parallel flash firmware for many-core architec-
tures. In 18th USENIX Conference on File and Storage
Technologies (FAST 20) (2020), USENIX Association.

[40] ZHANG, Y., PRASATH ARULRAJ, L., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
De-indirection for flash-based ssds with nameless
writes. In Proceedings of the 10th USENIX Symposium
on File and Storage Technologies (FAST) (2012).

656 2020 USENIX Annual Technical Conference USENIX Association

Fast Software Cache Design for Network Appliances

Dong Zhou♣ ∗, Huacheng Yu♦, Michael Kaminsky♥, David G. Andersen♥ ♠

Tsinghua University♣, Princeton University♦, BrdgAI♥, Carnegie Mellon University♠

Abstract

The high packet rates handled by network appliances and

similar software-based packet processing applications place

a challenging load on caches such as flow caches. In these

environments, both hit rate and cache hit latency are critical

to throughput. Much recent work, however, has focused exclu-

sively on one of these two desiderata, missing opportunities

to further improve overall system throughput. This paper in-

troduces Bounded Linear Probing (BLP), a new cache design

optimized for network appliances. BLP works well across

different workloads and cache sizes by balancing between hit

rate and lookup latency. To accompany BLP, we also present

a new, lightweight cache eviction policy called Probabilistic

Bubble LRU that achieves near-optimal cache hit rate (assum-

ing the algorithm is offline) without using any extra space. We

make three main contributions: a theoretical analysis of BLP,

a comparison between existing and proposed cache designs

using microbenchmarks, and an end-to-end evaluation of BLP

in the popular Open vSwitch (OvS) system. Our end-to-end

experiments show that BLP is effective in practice: replacing

the microflow cache in OvS with BLP improves throughput

by up to 15%.

1 Introduction

Network virtualization is a core infrastructure component for

cloud computing. In virtualized networks, virtual switches

route packets between virtual machines (VMs) and between

VMs and the outside world. Like the VMs themselves, the

virtual switch resides in the hypervisor. The high speed of mod-

ern NICs—40Gb/s, 100Gb/s, and even 200Gb/s [2]—makes

virtual switches a critical network performance bottleneck.

Many software-based network systems, such as appliances,

middleboxes, packet analytic frameworks, and virtual switches,

rely on fast flow caches to achieve good average-case perfor-

mance [10, 38]. These environments impose challenging—

and, indeed, somewhat contradictory—requirements upon the

caches they use. First, of course, they benefit from high hit

rates. But, either to avoid wasting memory or to fit in faster

levels of the CPU cache, they also strive to be compact. In

addition, because of the high rates at which packet-centric

systems operate, the flow cache lookups must have extremely

low latency.

∗work started while at Carnegie Mellon University

These competing requirements place such systems in an

interesting middle ground compared to much of the prior work,

which usually fall into one of the two extremes. Higher-level

caching systems such as web caches and memcached often

adopt comparatively expensive cache designs and replacement

algorithms to maximize hit rate [9, 26]. On the other hand,

CPU caches have such tight timing requirements that they use

very simple set associative designs that sacrifice hit rate for

extremely low access time measured in clock cycles.

In this paper, we present the design, theoretical analysis, and

empirical evaluation of a new cache design called Bounded

Linear Probing, or BLP, that provides higher cache hit rates

than simple set-associative designs, while remaining fast and

hardware-friendly. BLP achieves low latency by ensuring

purely local access to the cache data structure: Look-ups

require a single read that spans at most two consecutive

CPU cache lines. At the same time, BLP allows non-local

propagation of full buckets. A basic set-associative cache

provides only one location for a given set of objects. BLP

allows those objects to creep into later bins, and over repeated

inserts and evictions, this property allows high-occupancy

bins to shift some of their load to nearby, less-occupied bins.

To better serve skewed workloads, we accompany it with a

cache eviction algorithm called Probabilistic Bubble LRU, or

PBLRU, that fulfills the same design goals as BLP: It requires

no extra space, adds little latency overhead and achieves

near-optimal cache hit rate.

BLP is a simple and effective design for performance-

critical software caches; despite its simplicity, we believe it to

be a novel design point in the space of “cache table” designs,

and provide a theoretical analysis of why it provides an im-

proved hit rate over basic set-associative designs that access

the same number of elements. The result is a design that per-

forms nearly as well as the fastest set-associative designs, with

hit rates that are closer to that of more advanced, yet expen-

sive, designs such as cuckoo or hopscotch-based caches. We

validate these results empirically using both microbenchmarks

and by incorporating BLP into Open vSwitch [30], the most

popular virtual switch, which is widely used in production.

Replacing the microflow cache in OvS with BLP improves

throughput by up to 15%: Its lookup latency is about 10 clock

cycles longer than that of the basic set-associative design, but

BLP’s increased cache hit rate more than compensates for

the higher latency. In contrast, many of the more expensive

USENIX Association 2020 USENIX Annual Technical Conference 657

Microflow Cache

Megaflow Cache

Packet Classifier

Hash

Table

Hash

Table

with Mask

Hash

Table

with Mask

…
Hash

Table

with Mask

UpdateMiss

Miss Update

Figure 1: Flow Caching Hierarchy in Open vSwitch

cache designs that can achieve high cache hit rates do not

justify their huge latency penalties. Our new cache eviction

algorithm PBLRU further improves the throughput by up to

10% even if the workload is only modestly skewed.

2 Flow Caching in Open vSwitch

Open vSwitch achieves high performance through extensive

flow caching. Open vSwitch’s caching hierarchy consists of

three layers: a microflow cache, a megaflow cache, and a

caching-aware packet classifier, as illustrated in Figure 1.

The first cache that a packet encounters in OvS is the

microflow cache, which caches forwarding decisions for each

transport connection (or microflow). The microflow cache is a

hash table that maps microflows to OpenFlow flows if there is

an exact match using all the packet header fields. If the packet

misses in the microflow cache, then OvS does a lookup in

its megaflow cache. This cache supports wildcard matching

but does not use flow priorities. The megaflow cache is a

set of n hash tables, each with a unique wildcard mask. For

each hash table, the lookup key is the packet header after

applying the mask associated with the table. These hash tables

are reactively created and populated by the packet classifier.

Because looking up a packet in the megaflow cache searches

all n hash tables, it is more expensive than a microflow cache

lookup. Therefore, the cache hit rate of the microflow cache

(the first cache) is critical to the performance of OvS.

The key observation that inspired our work is that although

a microflow cache miss is expensive, it is not immensely

more expensive than a microflow hit. In typical deployments,

where the average number of hash table searches per megaflow

lookup is small (as noted in Section 7.2 of Pfaff et al. [30]),

the microflow miss penalty is only hundreds to thousands of

cycles on modern server CPUs. Hence, making the correct

tradeoff between cache hit rate and lookup latency is crucial to

the system throughput. In contrast, much of the previous work

on software cache designs focuses primarily on improving

cache hit rate [9, 14, 18, 13]. In the situations studied by

previous work, optimizing for hit rate makes sense: the cache

misses in these systems were much more expensive than a

hit because they often involved querying very slow backend

services such as a database. The cache hit rate, therefore,

determines not only the throughput, but also end-to-end

request latency [14, 27].

The rest of this paper uses the OvS microflow cache as a

case study to analyze and evaluate various design options and

demonstrate the effectiveness of our new caching algorithm,

Bounded Linear Probing (BLP). We show how BLP can

balance cache hit rate (and thus miss penalty) and lookup

latency to improve the throughput of Open vSwitch compared

to alternate designs.

3 Background and Related Work

3.1 Network Packet and Flow Caching

Caching is a common and effective technique for speeding

up network packet processing; existing solutions include

hardware-based [12, 38, 29] and software-based [10] ap-

proaches. Many early hardware routers used flow caching

to achieve fast average-case performance. In the modern

era, most hardware routers and switches have moved to more

costly, but guaranteed-performance designs, such as TCAMs,

to be able to provide their maximum forwarding rate under

arbitrary (and possibly malicious) traffic. Software switches,

however, broadly retain a cache-based design [3, 36].

3.2 Hash Table Options For Caching

Caching is typically managed using a hash table as its basic

data structure, but unlike the “full” problem of a general hash

table, caches gain an extra degree of freedom: By definition,

they do not need to store all possible keys and may choose to

evict an existing item.

One of the contributions of this paper is to explore the

tradeoff between the cache’s hit rate and the lookup/insertion

cost imposed by its hash table structure. To illustrate this

tradeoff, we begin in Section 4 by describing points that

operate at two extremes of the spectrum: First, a basic set-

associative cache, in which an item can be stored only in

one of m different slots shared by all other items that hash

to the same bucket (row) of the hash table. This design is

fast but achieves a relatively low hit rate. Next, we introduce

two more advanced cache designs that incorporate ideas from

cuckoo and hopscotch hashing, which can achieve much

higher table occupancy (and thus hit rates), but at the cost

of more expensive inserts and lookups. In the rest of this

section, we present prior work on fast caches, including a

brief introduction to cuckoo and hopscotch hashing.

Cuckoo and hopscotch hashing Cuckoo [28] and hop-

scotch [21] hashing both aim to achieve high table occupancy

(upwards of 90%) in an “open-addressed” hash table design,

i.e., one that does not need to use linked lists to store data

items. The pointer chasing of a linked-list design adds sub-

stantial lookup latency, and the pointers themselves can add

substantial memory overhead, especially when the entries in

the table are small, which is the case for flow caches.

658 2020 USENIX Annual Technical Conference USENIX Association

USENIX Association 2020 USENIX Annual Technical Conference 659

that it allows a key to be placed in one of the H buckets starting

from the one it is hashed to.

3.3 Hardware Cache Designs

Although the focus of this work is on software caches, there

are many parallels to related work on hardware caches.

Cache hit rate versus lookup latency Balancing the cache

hit rate and lookup latency has been studied in the context

of DRAM hardware caches. Alloy Cache [31], for example,

improved performance over prior work by reducing the hit

latency, even though doing so slightly reduced the hit rate.

Set-associative caches Hardware caches are often organized

into rows (i.e., buckets) and ways (i.e., slots). An m-way

set-associative cache uses a subset of the address bits to index

into a row; the cache block (cache line) can be stored in

one of the row’s m ways. To balance the load across rows,

researchers have proposed using a hash of the block address

as the index [23] as is commonly done in software-based hash

tables and caches.

Skewed-associative caches and cuckoo-like cache designs

Skewed-associative caches [35] extend this idea and allow

each way to be indexed with a different hash function. In an

m-way skewed-associative cache, a cache block B could be

stored in row hi(B) for way i, for 0 ≤ i < m.

Inspired by cuckoo hashing, zcache [34] is an extension of

skewed-associative caching. Instead of replacing one of the

m existing blocks on a cache miss, it performs a breadth-first

search to find additional eviction candidates. After picking

a victim entry, it relocates blocks on the cuckoo path to

accommodate the new block. These designs are not well-

suited for high speed, low latency software caches for packet

processing, as they require several cache line reads per lookup.

3.4 Cache Design and Eviction Policy

A large amount of prior work on caching [7, 20, 32, 9, 8, 14, 13]

focuses on cache eviction policies. Improved policies, ranging

from LRU and LFU to modern alternatives such as LHD [9],

increase cache hit rate under skewed workload distributions

by biasing eviction towards likely less-useful candidates.

The majority of prior cache eviction algorithms require

additional tracking metadata to implement their eviction poli-

cies. In contrast, our new algorithm, PBLRU, adds no space

overhead. The most related work to our algorithm is an earlier

paper by Zhang and Xue [39] that explores the same bubbling

idea. We discuss the differences between PBLRU and their

algorithm, DC-Bubble, in Section 5.3.

4 Design and Analysis

We begin by presenting two baseline cache designs, a set-

associative option and a “cuckoo-like” option, and analyze

their expected hit rates. We then introduce bounded linear

probing and its analysis using the same framework.

To understand the expected hit rate, we assume that the

working set is fixed, and that each lookup key is drawn

uniformly at random from that working set. We only analyze

uniform distributions in this section, for the following two

reasons: a) prior works studied caching performance on

uniformly-distributed workloads [25] and b) the expected hit

rate under the uniform distribution is easier to analyze, yet

it provides a lower bound on the hit rate under any other

distribution (see Appendix C for a formal argument). We use

α to denote the ratio of the working set size to the number of

entries in the cache table, which we call the oversubscription

factor. When α < 1, the cache has more capacity than there

are items in the working set. We determine hit rate in terms of

α, and then provide numerical interpretations for some values

observed in the OvS workloads, such asα = 0.95. In Section 7,

we show empirical hit rate curves for real implementations

across a range of α values.

All of the designs we evaluate use some amount of set-

associativity. The caches are partitioned into n buckets, each

containing m entries. To determine if an item is in a bucket,

the implementation examines whether it is stored in any of

the entries in the bucket. The table contains a total of n × m

entries, and the working set has size α × n × m. To store

a key-value pair (k, v), one hashes the key and determines

in a table-specific way a set of (one or more) buckets that

could hold the key, and stores both fingerprint(k) and v in an

appropriate entry. In OvS, v is a pointer to a megaflow cache

entry. Each design uses a different algorithm to decide which

entry of the table will store a given pair.

4.1 Analytical Framework for Hit Rate

To analyze the expected hit rate of a cache design, it suffices

to estimate the expected number of keys the cache could hold

after a sufficiently long warm-up period. This is because, in

our formulation, each cache access is uniformly random, so

the cache hit rate is equal to the total number of cached keys

divided by the size of the working set. Moreover, the number

of keys stored in all the cache designs we evaluate never

decreases with an increasing number of cache accesses, and it

has a maximum value of n × m. Therefore, it will eventually

stop increasing. Denote the final number of occupied entries

in bucket i by ci . The probability of a cache hit is equal to

c0 + · · · + cn−1

αnm
. (1)

By symmetry, all ci have the same expected value. Hence,

by linearity of expectation, the expected cache hit rate is

E[ci]/(αm). For each cache design, we describe how its hit

rate is estimated from a high level, and leave all the details to

appendices.

4.2 Set-associative Cache

We start with a simple design—a set-associative cache. In an

m-way set-associative cache, each item is mapped to a bucket

by a hash function h, and each bucket has m slots. Figure 3a

660 2020 USENIX Annual Technical Conference USENIX Association

USENIX Association 2020 USENIX Annual Technical Conference 661

662 2020 USENIX Annual Technical Conference USENIX Association

USENIX Association 2020 USENIX Annual Technical Conference 663

SIMD-optimized Lookup To accelerate lookups, we use

SIMD instructions to compare multiple fingerprints at the

same time (similar to techniques used by Google’s Swiss

Tables [6]). Figure 5 shows how the lookup works in a 4-way

set-associative cache. The stock OvS design does not use

SIMD-accelerated reads for its microflow cache, so to ensure

a fair basis for comparison, we implemented this optimization

and use it as the baseline for comparison.

To search for fingerprint f in a bucket, we first duplicate

it four times and store it in a 64-bit integer match. Then, we

load the first 64 bits of the bucket into another 64-bit integer

sig. We compare the packed 16-bit integers in sig and match

for equality, storing the results in cmp. cmp consists of 4 16-bit

integers r0,r1,r2 and r3, where ri is 0xFFFF if fi = f and 0

otherwise. We can then count the number of trailing zeros in

cmp to figure out which slot f matches in the bucket.

Lookup in an 8-way set-associative cache works similarly

to the 4-way set-associative cache, but uses 128-bit integers

instead of 64-bit integers. For 2-4 cuckoo-lite, because the

eight candidate fingerprints are not consecutive, we have to

first copy the fingerprints from two buckets into one 128-bit

integer, then perform packed integer comparison.

SIMD-accelerated lookup in 2-4 BLP works as follows:

The eight candidate fingerprints are not contiguous in memory

(unlike cuckoo-lite), but are separated by the 64 packed value

bits. Therefore, instead of copying fingerprints, we load both

buckets into a wider 256-bit integer and mask off all the value

bits. Eliminating the extra load instruction reduces the lookup

latency by ∼ 10% and makes BLP more SIMD-friendly than

cuckoo-lite.

Buffer Bucket In 2-4 BLP, if the lookup key hashes to the

last bucket of the table, both the first and the last bucket are

searched. This corner case requires both a second cache

line read and, more importantly, an extra branch. To avoid

incurring branch prediction misses, we added a buffer bucket

following the original cache table. This buffer bucket has

minimal impact on the cache miss rate but improves lookup

speed: When the lookup key hashes to the last bucket, and that

bucket is full, the new key spills to the buffer bucket instead

of wrapping around the table. At lookup time, we search

both the last bucket and this buffer bucket, which avoids the

branch misprediction and allows for processor prefetching4.

One thing which worth mentioning is that this optimization

is specific to BLP and does not work well with other cache

designs — it breaks the alignment of the number of buckets

(typically a power of 2). Moreover, the extra space given by

this buffer bucket is negligible compared to the size of the

cache. We therefore only apply the optimization to BLP.

Batched Lookup with Prefetching We use batched lookup

with prefetching to overlap bucket computation with memory

reads, which minimizes the impact of DRAM access latency.

4Note that this optimization means that no keys will ever spill into the

first bucket.

This technique is common in many existing packet processing

applications and frameworks [40, 22, 11].

7 Evaluation

We present our evaluation top-down: We begin with a descrip-

tion of the experimental setup followed by a set of end-to-end

benchmarks that compare the different cache table designs

(described above) in the context of Open vSwitch. These

results demonstrate the benefits and generality of BLP in a

realistic packet processing application. Next, we use a set of

microbenchmarks to understand more deeply the fundamental

tradeoffs that each of the cache design brings to the table.

7.1 Experiment Setup

Our experiments are conducted on c220g2 instances from

CloudLab [33]. Each of the instances is equipped with the

following hardware:

Hardware Description

CPU 2× Intel Xeon E5-2660v3 CPUs (2.60GHz)

DRAM 160 GiB DDR4 Memory

L3 Cache 2× 24 MiB

NIC Intel X520 dual-port 10GbE

We also controlled for the following factors, which other-

wise had noticeable effects on our results:

Random Number Generator Throughout the experiments,

we use PCG-32 [5], a fast and statistically robust algorithm

for our random number generation.5

Cache Warming As discussed in Section 4, 2-4 cuckoo-lite

and 2-4-BLP do not displace keys. Instead, they depend purely

on cache warming to reach the maximum hit rate. Therefore,

in each experiment, we first warm the testing cache until it

reaches a stable state, i.e., the cache hit rate stops increasing.

All experimental results reported below are the average

of five runs. The variance was low, so we omit error bars

from our graphs. Because the differences between many of

the designs are small—in the range of 10% or so—while the

absolute performance differences between a high cache hit

rate (low alpha) and a low cache hit rate (high alpha) are

relatively large, we deliberately choose not to start axes at 0;

the graphs are “zoomed-in” to the regions of interest.

7.2 End-to-end Benchmarks

As a concrete end-to-end benchmark using an important

application, we modified the microflow cache in Open vSwitch

(v2.10.1) to use the various cache designs described above.

Open vSwitch was running on the a c220g2 instance with

two 10Gb Ethernet ports, port 0 and port 1. To accurately

5The quality of the random number generator directly affects the cache

hit rates. Unintended workload locality (i.e., back-to-back keys that hash

to nearby buckets) produces higher than expected hit rates; poor random

number generators exacerbate this effect. Earlier in the research process for

this work, a bad, hand-crafted random number generator caused this issue.

664 2020 USENIX Annual Technical Conference USENIX Association

USENIX Association 2020 USENIX Annual Technical Conference 665

666 2020 USENIX Annual Technical Conference USENIX Association

USENIX Association 2020 USENIX Annual Technical Conference 667

668 2020 USENIX Annual Technical Conference USENIX Association

References

[1] The open vswitch* exact-match cache. https:

//software.intel.com/en-us/articles/

the-open-vswitch-exact-match-cache, .

[2] Mellanox ConnectX-6 product brief. https:

//www.mellanox.com/related-docs/prod_adapter_

cards/PB_ConnectX-6_EN_Card.pdf, .

[3] Open vSwitch, . http://www.openvswitch.org.

[4] [ovs-dev] [patch v5 1/2] dpif-netdev: Add smc cache after

emc cache. https://mail.openvswitch.org/pipermail/

ovs-dev/2018-July/349395.html, .

[5] Pcg, a family of better rarndom number generators. http:

//www.pcg-random.org, .

[6] Swiss tables and absl::hash. https://abseil.io/blog/

20180927-swisstables, .

[7] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez.

Scavenger: A new last level cache architecture with global block

priority. In 40th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO 2007), pages 421–432, Dec

2007. doi: 10.1109/MICRO.2007.42.

[8] N. Beckmann and D. Sanchez. Modeling cache performance

beyond lru. In 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages 225–236,

March 2016. doi: 10.1109/HPCA.2016.7446067.

[9] N. Beckmann, H. Chen, and A. Cidon. Lhd: Improving cache

hit rate by maximizing hit density. In Proc. 15th USENIX NSDI,

Apr. 2018.

[10] F. Chang, W. chang Feng, and K. Li. Approximate caches for

packet classification. IEEE INFOCOM, 2004.

[11] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Im-

proving hash join performance through prefetching. ACM

Trans. Database Syst., 32(3), Aug. 2007. ISSN 0362-5915. doi:

10.1145/1272743.1272747. URL http://doi.acm.org/10.

1145/1272743.1272747.

[12] T.-C. Chiueh and P. Pradhan. Cache memory design for

network processors. In 6th International Symposium on High-

Performance Computer Architecture (HPCA 2000), 2000.

[13] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Dynacache:

Dynamic cloud caching. In 7th USENIX Workshop on Hot Top-

ics in Cloud Computing (HotCloud 15). USENIX Association,

2015.

[14] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman.

Memshare: a dynamic multi-tenant key-value cache. In 2017

USENIX Annual Technical Conference (USENIX ATC 17),

pages 321–334. USENIX Association, 2017. ISBN 978-1-

931971-38-6.

[15] F. Corbato and M. I. O. T. C. P. MAC. A Paging Experi-

ment with the Multics System. Defense Technical Information

Center, 1968. URL http://books.google.com/books?id=

5wDQNwAACAAJ.

[16] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and

G. Carle. Moongen: A scriptable high-speed packet generator.

In Proceedings of the 15nd ACM SIGCOMM conference on

Internet measurement, IMC ’15, 2015.

[17] U. Erlingsson, M. Manasse, and F. Mcsherry. A cool and

practical alternative to traditional hash tables. In Proc. Seventh

Workshop on Distributed Data and Structures (WDAS’06), Jan.

2006.

[18] B. Fan, D. G. Andersen, and M. Kaminsky. Memc3: Compact

and concurrent memcache with dumber caching and smarter

hashing. In Presented as part of the 10th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 13),

pages 371–384. USENIX, 2013. ISBN 978-1-931971-00-3.

[19] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Wein-

berger. Quickly generating billion-record synthetic databases.

In Proceedings of the 1994 ACM SIGMOD international con-

ference on Management of data, May 1994.

[20] E. G. Hallnor and S. K. Reinhardt. A fully associative software-

managed cache design. In Proceedings of 27th International

Symposium on Computer Architecture (IEEE Cat. No.RS00201),

pages 107–116, June 2000. doi: 10.1145/339647.339660.

[21] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch hashing.

In Proceedings of the 22Nd International Symposium on Dis-

tributed Computing, 2008.

[22] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen. Raising

the bar for using GPUs in software packet processing. In Proc.

12th USENIX NSDI, May 2015.

[23] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee. Using prime

numbers for cache indexing to eliminate conflict misses. In

10th International Symposium on High Performance Computer

Architecture (HPCA’04), pages 288–299, Feb 2004. doi: 10.

1109/HPCA.2004.10015.

[24] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT:

A memory-efficient, high-performance key-value store. In

Proc. 23rd ACM Symposium on Operating Systems Principles

(SOSP), Oct. 2011.

[25] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A

holistic approach to fast in-memory key-value storage. In Proc.

11th USENIX NSDI, Apr. 2014.

[26] Memcached. Memcached: A distributed memory object

caching system. http://memcached.org/, 2011.

[27] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.

Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,

T. Tung, and V. Venkataramani. Scaling memcache at facebook.

In Presented as part of the 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 13),

pages 385–398. USENIX, 2013. ISBN 978-1-931971-00-3.

[28] R. Pagh and F. Rodler. Cuckoo hashing. Journal of Algorithms,

51(2):122–144, May 2004.

[29] C. Partridge and Others. A 50-Gb/s IP router. IEEE/ACM

Transactions on Networking, 6(3):237–248, June 1998.

[30] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Raja-

halme, J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and

M. Casado. The design and implementation of open vswitch.

In Proceedings of the 12th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 2015), 2015.

[31] M. K. Qureshi and G. H. Loh. Fundamental latency trade-off

in architecting dram caches: Outperforming impractical sram-

tags with a simple and practical design. In Proc. ACM MICRO,

2012.

USENIX Association 2020 USENIX Annual Technical Conference 669

https://software.intel.com/en-us/articles/the-open-vswitch-exact-match-cache
https://software.intel.com/en-us/articles/the-open-vswitch-exact-match-cache
https://software.intel.com/en-us/articles/the-open-vswitch-exact-match-cache
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-6_EN_Card.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-6_EN_Card.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-6_EN_Card.pdf
http://www.openvswitch.org
https://mail.openvswitch.org/pipermail/ovs-dev/2018-July/349395.html
https://mail.openvswitch.org/pipermail/ovs-dev/2018-July/349395.html
http://www.pcg-random.org
http://www.pcg-random.org
https://abseil.io/blog/20180927-swisstables
https://abseil.io/blog/20180927-swisstables
http://doi.acm.org/10.1145/1272743.1272747
http://doi.acm.org/10.1145/1272743.1272747
http://books.google.com/books?id=5wDQNwAACAAJ
http://books.google.com/books?id=5wDQNwAACAAJ
http://memcached.org/

[32] M. K. Qureshi, D. Thompson, and Y. N. Patt. The v-way cache:

demand-based associativity via global replacement. In 32nd

International Symposium on Computer Architecture (ISCA’05),

pages 544–555, June 2005. doi: 10.1109/ISCA.2005.52.

[33] R. Ricci, E. Eide, and The CloudLab Team. Introducing Cloud-

Lab: Scientific infrastructure for advancing cloud architectures

and applications. USENIX ;login:, 2014.

[34] D. Sanchez and C. Kozyrakis. The zcache: Decoupling ways

and associativity. In 2010 43rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 187–198, Dec

2010. doi: 10.1109/MICRO.2010.20.

[35] A. Seznec. A case for two-way skewed-associative caches. In

Proceedings of the 20th Annual International Symposium on

Computer Architecture, ISCA ’93, pages 169–178. ACM, 1993.

ISBN 0-8186-3810-9. doi: 10.1145/165123.165152. URL

http://doi.acm.org/10.1145/165123.165152.

[36] N. Shelly, E. J. Jackson, T. Koponen, N. McKeown, and

J. Rajahalme. Flow caching for high entropy packet fields. In

Proceedings of the third workshop on Hot topcis in software

defined networking, HotSDN ’14, 2014.

[37] Y. Wang, T.-Y. C. Tai, R. Wang, S. Gobriel, J. Tseng, and

J. Tsai. Optimizing open vswitch to support millions of flows.

In Proceedings of the 2017 IEEE Global Communications

Conference (GLOBECOM 2017), 2017.

[38] J. Xu, M. Singhal, and J. Degroat. A novel cache architecture

to support layer-four packet classification at memory access

speeds. IEEE INFOCOM, 2000.

[39] C. Zhang and B. Xue. Divide-and-conquer: A bubble re-

placement for low level caches. In Proceedings of the

23rd International Conference on Supercomputing, ICS ’09,

pages 80–89. ACM, 2009. ISBN 978-1-60558-498-0. doi:

10.1145/1542275.1542291. URL http://doi.acm.org/10.

1145/1542275.1542291.

[40] D. Zhou, B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky.

Scalable, High Performance Ethernet Forwarding with Cuck-

ooSwitch. In Proc. 9th International Conference on emerging

Networking EXperiments and Technologies (CoNEXT), Dec.

2013.

A Expected Cache Hit Rate of Set-

associative Caches

In a m-way set-associative cache with n buckets, for each bucket, the

probability that there are exactly t keys mapped to it is

(
αnm

t

)
· n−t · (1 − 1/n)αnm−t

=

αnm(αnm − 1) · · · (αnm − t + 1)

t! · nt
· (1 − 1/n)αnm−t

which when t ≪ αnm, is approximately

(αnm)t

t! · nt
· (1 − 1/n)αnm =

(αm)t

t!
· (1 − 1/n)αnm

which by the fact that 1 − ǫ ≈ e−ǫ for small ǫ , is approximately

(αm)t

t!
· e−αnm/n

=

(αm)t

eαmt!

If t ≤ m, then all t keys will be cached; otherwise, only m will be

cached. Therefore, the expected number of keys that are cached in a

bucket is approximately

m∑

t=0

t ·
(αm)t

eαmt!
+

∞∑

t=m+1

m ·
(αm)t

eαmt!
,

which by the fact that
∑

t≥0
(αm)t

eαmt!
= 1, is equal to

=m −

m∑

t=0

(m − t) ·
(αm)t

eαmt!
,

Hence, the expected cache hit rate is (m −
∑m

t=0
(m − t) ·

(αm)t

eαmt!
)/(αm).

B Expected Cache Hit Rate of 2-4 BLP

Recall that ai is the number of keys from the working set that map

to cache bucket i and bi is the number of keys spill from bucket i to

i + 1 after a sufficiently long warm-up period. For j ≥ 0, we have:

Pr[ai = j] =

(
αnm

j

)
· n−j · (1 − 1/n)αnm−j

.

By the law of total expectation and Equation (2) in Section 4.5, for

0 < l < m, we have

pl ≈

∑m
j′=0

(∑m−j′

j=0
Pr[ai = j]

)
· pj′ if l = 0,

∑l+m
j=l

Pr[ai = j] · pl+m−j if 0 < l < m,

and by the definition of probability distribution,

p0 + · · · + pm = 1.

Solving the above system of linear equations for (p0, . . . , pm) with

m = 4, α = 0.95 gives us p0 = 0.37889778, p1 = 0.15160669,

p2 = 0.14369602, p3 = 0.12041777 and p4 = 0.20538175. By

Equation (3), we get E[ci] = 3.59.

C Expected Hit Rate of BLP under

Non-Uniform Distributions

In the following, we prove that the expected hit rate obtained in

Section 4.5 for the uniform distribution is always a lower bound for

any other distribution. Fix any distribution over the working set S,

let px be the probability of key x. Without loss of generality, we

may assume px > 0 for all x ∈ S, since otherwise, we could simply

remove all x with zero probability from the working set. Recall that

ci denotes the final number of occupied entries in bucket i. Observe

that c0, . . . , cn−1 are determined only by the hash function, i.e., how

many keys are mapped to each bucket. They do not depend on the

probability distribution of the keys (as long as all keys have non-zero

probability), the distribution only affects how fast the final numbers

are achieved.

After a sufficiently long warm-up period, all buckets achieved

their final numbers of occupied entries. Now, consider all possible

memory configurations after the warm-up. Further key lookups

define a Markov chain over them, where the transition probability

from memory configuration A to configuration B is the probability

670 2020 USENIX Annual Technical Conference USENIX Association

http://doi.acm.org/10.1145/165123.165152
http://doi.acm.org/10.1145/1542275.1542291
http://doi.acm.org/10.1145/1542275.1542291

that A becomes B after one lookup. Observe that this Markov chain

is aperiodic (i.e., there does not exist a t > 1 and a state A such

that A can only go back to itself after steps of multiples of t). It is

well-known that for any aperiodic Markov chain and any initial state,

as the number of steps (key lookups) increases, the distribution of the

state will approach some final stationary distribution (note that the

stationary distribution may not be unique, hence the final stationary

distribution may depend on the initial state). The final hit rate is

computed from this stationary distribution and the distribution of

the keys. More specifically, let qx be the expectation, over a random

hash function and random lookups in the warm-up period (which

determine the Markov chain and the distribution of initial state), of

the probability that key x is cached according to the final stationary

distribution. Thus, the expected hit rate is equal to
∑

x∈S pxqx .

Next, by linearity of expectation,
∑

x∈S qx is equal to the expected

total number of occupied entries in the data structure, E[ci] · n. The

key observation is that if px ≥ py then qx ≥ qy , i.e., if a key is more

likely to occur, then it has a higher probability to appear in the final

stationary distribution, over a random hash function and warm-up

period.7 Let Shigh := {x : px ≥ 1/|S |} be the set of keys that occur

with at least the average probability and Slow := {x : px < 1/|S |}

be the set of keys that occur with probability lower than the average,

and let q := minx∈Shigh
qx . Hence, q ≥ qx for all x ∈ Slow. We have

∑

x∈S

pxqx =
∑

x∈S

qx

|S |
+

∑

x∈S

(px − 1/|S |)qx

=

1

|S |

∑

x∈S

qx +
∑

x∈Shigh

(px − 1/|S |)qx +
∑

x∈Slow

(px − 1/|S |)qx

which by the fact that px ≥ 1/|S | and qx ≥ q for x ∈ Shigh, and the

fact that px < 1/|S | and qx ≤ q for x ∈ Slow, is at least

≥
1

|S |

∑

x∈S

qx +
∑

x∈Shigh

(px − 1/|S |)q +
∑

x∈Slow

(px − 1/|S |)q

=
E[ci] · n

|S |
+

∑

x∈S

px · q −
∑

x∈S

1

|S |
· q

=
E[ci] · n

|S |
+ q − q

=
E[ci] · n

|S |
.

The last quantity E
[ci]·n
|S |

is precisely the expected hit rate under

the uniform distribution, as we argued in Section 4. Therefore, the

expected hit rate under any non-uniform distribution is always lower

bounded by the hit rate under the uniform distribution.

D Analysis on Warm-up Time

In the following, we present an informal estimation on the relationship

between the hit rate of BLP and its warm-up time. As we argued in

Section 4.5, the hit rate is equal to the number of occupied entries in

the BLP divided by the size of the working set. In each lookup in

the warm-up period, the key may be either a) in the BLP already, or

b) not in the BLP and the buckets are full, or c) not in the BLP and

the bucket is not full. Only in case c), do we increase the number

of occupied entries by one. Denote the final hit rate by rmax. When

7Note that this is not true if the hash function is fixed.

the current hit rate is r , we are going to approximate the probability

of case c) by rmax − r. That is, we assume there is a fixed set of

(rmax − r) · (αmn) keys in the working set such that they are the

missing keys from the BLP in order to achieve the maximum hit rate

of rmax.

Therefore, let L be the length of the warm-up, we have

dr

dL
=

rmax − r

αmn
,

and when L = 0, r = 0. By solving this ordinary differential equation,

we obtain

r = rmax(1 − e−
L

αmn).

That is, when the length of the warm-up is a large constant times

the working set size, the estimated hit rate becomes very close to

rmax. For α = 0.95, we have verified by experiments that a warm-up

period of length 20 times the working set size is sufficient to obtain

a hit rate that is less than 1% lower than rmax.

USENIX Association 2020 USENIX Annual Technical Conference 671

Reexamining Direct Cache Access to Optimize
I/O Intensive Applications for Multi-hundred-gigabit Networks

Alireza Farshin∗†

KTH Royal Institute of Technology
Amir Roozbeh∗

KTH Royal Institute of Technology
Ericsson Research

Gerald Q. Maguire Jr.
KTH Royal Institute of Technology

Dejan Kostić
KTH Royal Institute of Technology

Abstract
Memory access is the major bottleneck in realizing multi-

hundred-gigabit networks with commodity hardware, hence it
is essential to make good use of cache memory that is a faster,
but smaller memory closer to the processor. Our goal is to
study the impact of cache management on the performance
of I/O intensive applications. Specifically, this paper looks
at one of the bottlenecks in packet processing, i.e., direct
cache access (DCA). We systematically studied the current
implementation of DCA in Intel® processors, particularly
Data Direct I/O technology (DDIO), which directly transfers
data between I/O devices and the processor’s cache. Our
empirical study enables system designers/developers
to optimize DDIO-enabled systems for I/O intensive
applications. We demonstrate that optimizing DDIO could
reduce the latency of I/O intensive network functions running
at 100 Gbps by up to ~30%. Moreover, we show that DDIO
causes a 30% increase in tail latencies when processing
packets at 200 Gbps, hence it is crucial to selectively inject
data into the cache or to explicitly bypass it.

1 Introduction

While the computer architecture community continues to
focus on hardware specialization, the networking community
tries to achieve greater flexibility with Software-defined
Networking (SDN) together with Network Function Virtu-
alization (NFV) by moving from specialized hardware toward
commodity hardware. However, greater flexibility comes
at the price of lower performance compared to specialized
hardware. This approach has become more complex due to the
end of Moore’s law and Dennard scaling [14]. Furthermore,
commercially available 100-Gbps networking interfaces
have revealed many challenges for commodity hardware
to support packet processing at multi-hundred-gigabit rates.
More specifically, the interarrival time of small packets is

∗Both authors contributed equally to the paper.
†This author has made all open-source contributions.

shrinking to a few nanoseconds (i.e., less than Last Level
Cache (LLC) latency). Consequently, any costly computation
prevents commodity hardware from processing packets at
these rates, thereby causing a tremendous amount of buffering
and/or packet loss. As accessing main memory is impossible
at these line rates, it is essential to take greater advantage
of the processor’s cache [81]. Processor vendors (e.g.,
Intel®) introduced new monitoring/controlling capabilities
in the processor’s cache, e.g., Cache Allocation Technology
(CAT) [59]. In alignment with the desire for better cache
management, this paper studies the current implementation
of Direct Cache Access (DCA) in Intel processors, i.e., Data
Direct I/O technology (DDIO), which facilitates the direct
communication between the network interface card (NIC) and
the processor’s cache while avoiding transferring packets to
main memory. Our goal is to complete the recent set of studies
focusing on understanding the leading technologies for fast
networking, i.e., Peripheral Component Interconnect express
(PCIe) [58] and Remote Direct Memory Access (RDMA) [37].
We believe that understanding & optimizing DDIO is the
missing piece of the puzzle to realize high-performance
I/O intensive applications. In this regard, we empirically
reverse-engineer DDIO’s implementation details, evaluate
its effectiveness at 100/200 Gbps, discuss its shortcomings,
and propose a set of optimization guidelines to realize
performance isolation & achieve better performance for multi-
hundred-gigabit rates. Moreover, we exploit a little-discussed
feature of Xeon® processors to demonstrate that fine-tuning
DDIO could improve the performance of I/O intensive
applications by up to ~30%. To the best of our knowledge,
we are the first to: (i) systematically study and reveal details
of DDIO and (ii) take advantage of this knowledge to process
packets more efficiently at 200 Gbps.

Why DCA matters? Meeting strict Service Level Objectives
(SLO) and offering bounded latency for Internet services is
becoming one of the critical challenges of data centers while
operating on commodity hardware [54]. Consequently, it is
essential to identify the sources of performance variability
in commodity hardware and tame them [51]. In computer

USENIX Association 2020 USENIX Annual Technical Conference 673

systems, one of these sources of variability is the cache
hierarchy, which can introduce uncertainty in service times,
especially in tail latencies. Additionally, the advent of
modern network equipment [82] enables applications to push
costly calculations closer to the network while keeping &
performing only stateful functions at the processors [36, 38],
thereby making modern network applications ever more I/O
intensive. Hence, taming the performance variability imposed
by the cache, especially for I/O, is now more crucial than
before. Moreover, as CPU core count goes up, it is important
to be able to deliver appropriate I/O bandwidth to them.
Therefore, we go one level deeper [61] to investigate the
impact of I/O cache management, done by DCA, on the
performance of multi-hundred-gigabit networks.
Contributions. In this paper, we:
1 Design a set of micro-benchmarks to reveal little-known

details of DDIO’s implementation* (§4),
2 Extensively study the characteristics of DDIO in different

scenarios and identify its shortcomings* (§5),
3 Show the importance of balancing load among cores and

tuning DDIO capacity when scaling up (§6),
4 Measure the sensitivity of multiple applications (i.e.,

Memcached, NVMe benchmarks, NFV service chains)
to DDIO (§7),

5 Demonstrate the necessity and benefits of bypassing
cache while receiving packets at 200 Gbps (§8),

6 Discuss the lessons learned from our study that are
essential for optimizing DDIO-enabled systems receiving
traffic at multi-hundred-gigabit rates (§9).

2 Direct Cache Access (DCA)
A standard method to transfer data from an I/O device
to a processor is Direct Memory Access (DMA). In this
mechanism, a processor, typically instructed by software,
provides a set of memory addresses, aka receive (RX)
descriptors, to the I/O device. Later, the I/O device directly
reads/writes data from/to main memory without involving the
processor. For inbound traffic, the processor can be informed
about newly DMA-ed data either by receiving an interrupt
or polling the I/O device. Next, the processor fetches the
I/O data from main memory to its cache in order to process
the data. For outbound traffic, the processor informs the I/O
device (via transmit (TX) descriptors) of data that is ready
to be DMA-ed from main memory to the device. The main
source or destination of traditional DMA transfers is main
memory, see Fig. 1a. However, the data actually needs to be
loaded into the processor’s cache for processing. Therefore,
this method is inefficient and costly in terms of (i) number
of accesses to main memory [43] (i.e., 2n+ 5 for n cache
lines [43]), (ii) access latency to the I/O data, and (iii) memory
bandwidth usage. Moreover, the negative impact of these
inefficiencies becomes increasingly severe with higher link

*The source code is available at: https://github.com/aliireza/
ddio-bench

CPU Socket

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
em

or
y

Co
nt

ro
lle

r

DRAM

(a) Trad. DMA.

CPU Socket

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
em

or
y

Co
nt

ro
lle

r

DRAM

(b) DCA.

CPU Socket

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
em

or
y

Co
nt

ro
lle

r

DRAM

(c) DDIO.

Figure 1: Different approaches of DMA for transferring data
from an I/O device (e.g., NIC). Red arrows show the path that
a packet traverses before reaching the processing core.

speeds. For instance, a server has 6.72 ns to process small
packets at 100 Gbps, whereas every access to main memory
takes ~100 ns, 15× more expensive. Therefore, placing the
I/O data directly in the processor’s cache rather than in main
memory is desirable. The advent of faster I/O technologies
motivated researchers to introduce Direct Cache Access
(DCA) [25, 42, 43]. DCA exploits PCIe Transaction Layer
Packet Processing Hint [30], making it possible to prefetch
portions of I/O data to the processor’s cache, see Fig. 1b.
Potentially, this overcomes the drawbacks of traditional DMA,
thereby achieving maximal I/O bandwidth and reducing
processor stall time. Although this way of realizing DCA
can effectively prefetch the desired portions of I/O data (e.g.,
descriptors and packet header), it is still inefficient in terms
of memory bandwidth usage since the whole packet is DMA-
ed into main memory. Additionally, this requires operating
system (OS) intervention and support from the I/O device,
system chipset, and processor [1]. To address these limitations
and avoid ping-ponging data between main memory & the
processor’s cache, Intel rearchitected the prefetch hint-based
DCA, introducing Data Direct I/O technology (DDIO) [28].

3 Data Direct I/O Technology (DDIO)

Intel introduced DDIO technology with the Xeon E5 family.
With DDIO, I/O devices perform DMA directly to/from
Last Level Cache (LLC) rather than system memory, see
Fig. 1c. DDIO is also known as write-allocate-write-update-
capable DCA (wauDCA) [45], as it uses this policy to update
cache lines in an n-way set associative LLC, where n cache
lines form one set. For packet processing applications, NICs
can send/receive both RX/TX descriptors and the packets
themselves via the LLC, thereby improving applications’
response time & throughput†. DDIO works as follows [41]:
Writing packets. When a NIC writes a cache line to LLC
via PCIe, DDIO overwrites the cache line if it is already
present in any LLC way (aka a PCIe write hit or write update).
Otherwise, the cache line is allocated in the LLC and DDIO
writes the data into the newly allocated cache line (aka a
PCIe write miss or write allocate). In the latter case, DDIO is
restricted to use only a limited portion of LLC when allocating

†We will use the terms I/O device and NIC interchangeably.

674 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/aliireza/ddio-bench
https://github.com/aliireza/ddio-bench

cache lines. It is possible to artificially increase this portion
by warming up the cache with processor writes to the address
of these buffers, then DDIO performs write-updates [16].
Reading packets. A NIC can read a cache line from LLC if
the cache line is present in any LLC way (aka a PCIe read
hit). Otherwise, the NIC reads a cache-line-sized chunk from
system memory (aka a PCIe read miss).

To monitor DDIO and its interaction with I/O devices, Intel
added uncore performance counters to its processors [29].
The Intel Performance Counter Monitor (PCM) tool (e.g.,
pcm-pcie.x*) [86] can count the number of PCIe write
hits/misses (represented as an ItoM event) and PCIe read
hits/misses (represented as a PCIeRdCur event). Next, we
discuss the inherent problem of DDIO, which makes it hard
to achieve low-latency for multi-hundred-gigabit NICs.

3.1 How can DDIO become a Bottleneck?
Researchers have shown some scenarios in which DDIO
cannot provide the expected benefits [11, 41, 50, 83]. Two
typical cases occur when new incoming packets repeatedly
evict the previously DMA-ed packets (i.e., not-yet-processed
and already-processed packets) in the LLC. Consequently, the
processor has to load not-yet-processed packets from main
memory rather than LLC and the NIC needs to DMA the
already-processed packets from the main memory, thereby
missing the benefits of DDIO. Tootoonchian et al. referred
to this problem as the leaky DMA problem [83]. To mitigate
this problem, they proposed reducing the number of “in-flight”
buffers (i.e., descriptors) such that all incoming packets fit in
the limited portion of LLC used for I/O. Thus, performance
isolation can be done using only CAT (i.e., cache partitioning).
Unfortunately, reducing the number of RX descriptors is only
a temporary solution due to increasing link speeds. Multi-
hundred-gigabit NICs introduce new challenges, specifically:
1 Packet loss. At sub-hundred-gigabit link speeds reducing

the number of RX descriptors may not result in a high packet
loss rate, but at ≥100 Gbps packet loss increases due to
the tight processing time budget before buffering/queuing
happens. For instance, every extra ~7 ns spent stalling or
processing/accessing a packet causes another packet to be
buffered when receiving 64-B packets at 100 Gbps. When
there are insufficient resources for immediate processing,
increasing the number of RX descriptors permits packets to
be buffered rather than dropped. Delays in processing might
occur because of interrupt handling, prolonged processing, or
a sudden increase in the packet arrival rate [17]; therefore,
multi-hundred-gigabit networks cannot avoid packet loss
without having a sufficiently large number of descriptors.
Increasing the number of processing cores can reduce the
packet loss rate, but applications that are compute- or memory-
intensive require many cores to operate at the speed of the
underlying hardware, e.g., Thomas et al. [81] mention that

*The description of events can be found in [27] and pp. 63-66 of [41].

a server performing one DRAM access per packet needs 79
cores to process packets at 400 Gbps.
2 TX buffering. One of the scenarios that makes DDIO

inefficient is the eviction of already-processed packets. Re-
ducing the number of RX descriptors may solve this problem
for systems that require a small number of TX descriptors,
but this is not the case for 100-Gbps NICs. Unfortunately,
the de facto medium for DMA-ing packets (i.e., PCIe 3.0)
induces some transmission limitations [58]. Consequently,
packets often need to be buffered in the computer system for
some time before being DMA-ed to the NIC. This buffering
can be realized by either a software queue or increasing
the number of TX descriptors [35]. Unfortunately, either
of these alternatives increases the probability of eviction of
already-processed packets. Therefore, completely solving the
leaky DMA problem requires fine-tuning both the size of the
software queue and the number of RX & TX descriptors.
3 PAUSE frames. To alleviate packet loss, one can use

Ethernet flow control mechanisms (e.g., PAUSE frames)
that cause packets to be buffered earlier in the network,
i.e., PAUSE frames stop the previous network node from
transmitting packets for a short period. However, these
mechanisms are costly in terms of latency, making them
less desirable than packet loss for time-critical applications.
The minimum and maximum pause duration of a 100-Gbps
interface are 5.12 ns and 335.5 µs [56]. Our measurements
show that a core that is simply forwarding packets at 100 Gbps
with 1024 RX & TX descriptors causes the NIC to send
~179 k PAUSE frames while receiving ~80 M packets.
Dynamic reduction. As reducing the number of RX buffers
cannot fully solve the problem and it shifts the problem to
another part of the network, most probably the previous node;
therefore, an alternative is to dynamically reduce the pressure
on the LLC when the number of I/O caused cache evictions
starts to increase†. These cache evictions can be tracked by
monitoring either PCIe events or the length of the software
queue. After detecting a problem, the processor should fetch
a smaller number of packets from the NIC (i.e., reducing
the RX burst size). Thus, the processor passes fewer free
buffers to the NIC, reducing the number of DMA transactions.
Unfortunately, this approach does not perform well, hence we
need a proactive solution, not a reactive one.
Is it sufficient to scale up? Due to the demise of the Dennard
scaling [14], processors are now shipped with more cores
rather than higher clock frequencies. Moreover, the per-core
cache quota (i.e., LLC slices) has decreased in recent Xeon
processors, i.e., the size of LLC slices reduced from 2.5 MiB
to 1.375 MiB in the Xeon scalable family (i.e., Skylake) [55].
This reduction in per-core cache size directly affects the
optimal number of descriptors as these are proportional to the
limited space for DDIO. For instance, using 18 cores, each
having 256 RX descriptors, requires ~6.5 MiB, which is equal

†Our implementation is available at: https://github.com/
tbarbette/fastclick/tree/DMAdynamic

USENIX Association 2020 USENIX Annual Technical Conference 675

https://github.com/tbarbette/fastclick/tree/DMAdynamic
https://github.com/tbarbette/fastclick/tree/DMAdynamic

to ~26.6% of the LLC in this processor and greater than the
available DDIO capacity (see §4.1).
Our approach. To overcome these challenges, it is necessary
to study and analyze DDIO empirically in order to make the
best use of it. A better understanding of DDIO and its imple-
mentation can help us optimize current computer systems and
enables us to propose a better DCA design for future computer
systems that could accommodate the ever-increasing NIC link
speeds. For instance, Fig. 2 demonstrates that tuning DDIO’s
capacity makes it possible to achieve a suitable performance
while using a large number of descriptors (our approach), as
opposed to using a limited number of descriptors (ResQ’s
approach proposed by Tootoonchian et al. [83]).

 0
 300
 600
 900

 1200
 1500
 1800

512 1024 2048 4096

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (µ

s)

Number of RX Descriptors

2W 4W 6W 8W

Figure 2: Using more DDIO ways (“W”) enables 2 cores to
forward 1500-B packets at 100 Gbps with a larger number of
descriptors while achieving better or similar tail latency.

4 Understanding Details of DDIO

This section discusses four questions: 1 What part of
LLC is used for I/O? 2 How does I/O interact with other
applications? 3 Does DMA via remote sockets pollute LLC?
and 4 Is it possible to disable/tune DDIO?
Testbed. We use a testbed with the configuration shown in
Table 1 running Ubuntu 18.04.2 (Linux kernel-4.15.0-54). We
use the Skylake server unless stated otherwise. FastClick [9]
is used to generate & process packets. Additionally, we use a
campus trace as a real workload (with mixed-size packets) and
generate synthetic traces (with fixed-size packets). For our
multicore experiment, we use RSS [24] to distribute packets
among different queues (one queue per core), unless stated
otherwise. Furthermore, we isolate the one CPU socket on
which we run the experiment to increase the accuracy of the
measurements. PAUSE frames are disabled to avoid taking
into account pause duration in the end-to-end latency. In all
experiments, the NIC driver sets the appropriate number of TX

descriptors based on the number of TX queues, and to avoid
extra looping at the transmitting side FastClick buffers up to
1024 packets. We use the Network Performance Framework
(NPF) tool [57] to run the experiments.

4.1 Occupancy
Initially, Intel announced that DDIO only uses 10% of
LLC [28] and did not mention what part of the LLC is used
(i.e., ways, sets, or slices [15]). Recent Intel technical reports
mention that DDIO only uses a subset of LLC ways, by default
two ways [41, 72]. However, it is still unclear whether this
“subset” is fixed or whether it can be dynamically selected
using a variant of Least Recently Used (LRU) policies [33,
34, 65, 87]. Knowledge of these details could avoid I/O
contention and optimize performance isolation [83] by
performing precise cache management/partitioning [13, 62]
(e.g., way partitioning with CAT [59]). This issue becomes
increasingly critical for newer generations of Xeon processors
that have lower LLC set-associativity (e.g., 11 ways in some
Skylake processors, as opposed to 20 ways in Haswell
processors), thereby using a larger portion (2

11 ≈ 18%) of
the LLC for I/O. Lower set-associativity makes the cache less
flexible when the LLC is divided into multiple partitions, each
of which could be used to accommodate different applications’
code & data. To clarify this, we assumed that the ways that
are used for DDIO are fixed and then try to confirm this
with an experiment in which we co-run an I/O and a cache-
sensitive application. To increase the pressure on the LLC
by DMA-ing more cache lines, we used an L2 forwarding
DPDK-based application as the I/O intensive application.
Specifically, it receives large packets (1024-B) at a high
rate (~82 Gbps) using a large number of RX descriptors
(4096 RX descriptors). For the cache-sensitive application,
we chose water_nsquared from the Splash-3 benchmark
suite [62, 66, 69] since it performs a large number of LLC
accesses; hence, it interferes with the I/O application.

Each application is run on a different core and CAT is used
to allocate different cache ways to each core. We allocate two
fixed ways to the I/O application and two variable ways to
the cache-sensitive application. To avoid memory bandwidth
contention, we also used Memory Bandwidth Allocation
(MBA) technology [21] to limit the memory bandwidth of
each core to 40%. Fig. 3a shows the CAT configuration
used in the experiment. We start by allocating the two
leftmost ways (i.e., bitmask of 0x600) to the cache-sensitive
application and then we keep shifting the allocated ways one

Table 1: Details of our testbed. In each case, the NIC is a Mellanox ConnectX-5 VPI.

Machine
Configuration Intel Xeon Processor Memory Last Level Cache (LLC)

Model Frequency #Cores Size Associativity
Packet generator (Skylake) Gold 6134 3.2 GHz 8 512 GiB 18×1.375 MiB 11
Server (Skylake) Gold 6140 2.3 GHz 18 256 GiB 18×1.375 MiB 11
Server (Haswell) E5-2667 v3 3.2 GHz 8 128 GiB 8×2.5 MiB 20

676 2020 USENIX Annual Technical Conference USENIX Association

to the right until we cover all the LLC ways while measuring
the LLC misses of the I/O application. Fig. 3b shows the
results of this experiment. These results demonstrate that the
cache-sensitive application interferes with the I/O application
in two regions. The first (see 0x0C0 in Fig. 3b) occurs
when the cache-sensitive application uses the same ways
as the I/O application, due to the code/data interference
of the two applications. However, the second (see 0x003
in Fig. 3b) cannot be explained with this same argument
since the I/O application is limited to using other ways (i.e.,
0x0C0). Furthermore, since the CPU socket is isolated, no
other application can cause cache misses. CAT only mitigates
the contention induced by code/data not DDIO. Therefore, we
conclude that the second interference is most probably due
to I/O, which means DDIO uses the two rightmost ways in
LLC (i.e., bitmask of 0x003). The interference is proportional
to the number of received packets per second × average
packet size. We expected to see roughly the same amount
of cache misses for bitmasks of 0x180 and 0x060, as they are
completely symmetrical in terms of way occupancy. However,
the undocumented LRU policy of the CPU may affect how
the application uses the cache ways.

Ways used for cache-sensitive application

Ways used for I/O application

Ways used for both applications

Unoccupied ways

0x600

0x300

0x180

0x0C0

0x060

0x030

0x018

0x00C

0x006

0x003

0 0 0 0 1 1 0 0 0 0 0

The bitmask used by CAT
to allocate LLC ways to the
cache-sensitive application

(a) CAT configuration.

 0

 2

 4

 6

 8

 10

0x600 0x300 0x180 0x0C0 0x060 0x030 0x018 0x00C 0x006 0x003

Su
m

 o
f C

ac
he

 M
is

se
s

(M
illi

on
)

Ways Allocated by CAT to the Cache-sensitive Application

No Contention
Contention with I/O App. (Code/Data)
Contention with DDIO

(b) Sum of cache misses for the I/O application.

Figure 3: Interference of an I/O and a cache-sensitive
application using the parsec_native configuration (to cause
a high rate of cache misses) when the cache-sensitive
application uses different LLC ways. The rise in the rightmost
side shows the contention with DDIO ways.

4.2 I/O Contention

One of the established mechanisms to ensure performance
isolation and mitigate cache contention is CAT, which limits
different applications to a subset of LLC ways. However,
§4.1 showed that DDIO uses two fixed LLC ways. Therefore,
isolating applications using CAT may not fully ensure
performance isolation, due to cache contention caused by
I/O. Such contention may occur in two common scenarios:

1 I/O vs. Code/Data. When an application is limited
to using those ways which are also used by DDIO, then
cache lines allocated in LLC for DDIO may evict the
code/data of any application (i.e., either I/O or non-I/O
application). This issue was discussed by Tootoonchian et
al. [83]. Their proposed framework, ResQ, uses only 90% of
LLC to avoid interfering with DDIO’s reserved space, but
does not mention which part of LLC is isolated. §4.1 showed
the destructive (i.e., ~2.5×) impact on the cache misses
of the I/O application due to a cache-hungry application
overlapping with DDIO, see the rise in cache misses at the
right side of Fig. 3b. However, it did not show the impact
of contention on the cache-hungry application; therefore, we
repeated the experiment and measured the cache misses of the
cache-sensitive application while using a lighter configuration.
Fig. 4 illustrates that the cache misses of the cache-sensitive
application were similarly adversely affected. Therefore,
overlapping any application with DDIO ways in LLC can
reduce the performance of both applications. To tackle this,
one can isolate the I/O portion of LLC (e.g., the two ways
used for DDIO) by using CAT so that applications share
the LLC without overlapping with I/O. Comparing Fig. 3b
and 4, we see that an unexpected rise (almost 3×) in cache
misses occurs in a different region (i.e., bitmask of 0x600 in
Fig. 4 as opposed to bitmask of 0x003 in Fig. 3b) when I/O
is evicting code/data. Hence, we speculate that CAT does not
use a bijective function to map I/O & code/data to ways, thus
f : code/data→Ways is not equivalent to g : I/O→Ways .

Specifically, I/O evicts code/data when the latter is located
in the two leftmost ways whereas code/data evicts I/O when
the latter is using the two rightmost ways. Such information
is useful to know, as it will give us an understanding of the
eviction policy and the default priority of code/data and I/O.

2 I/O vs. I/O. When multiple I/O applications are isolated
from each other with CAT, they could still unintentionally
compete for the fixed ways allocated to DDIO. §8.1 elaborates
the negative impact of this type of contention.

Security implication. Since DDIO uses two fixed ways in
LLC, it is possible to extend microarchitectural attacks to
extract useful information from I/O data (e.g., NetCAT [44]
and Packet Chasing [76, 77]). Furthermore, I/O applications
can be vulnerable to performance attacks.

USENIX Association 2020 USENIX Annual Technical Conference 677

 0

 50

 100

 150

 200

 250

 300

 350

 400

0x600 0x300 0x180 0x0C0 0x060 0x030 0x018 0x00C 0x006 0x003

Su
m

 o
f C

ac
he

 M
is

se
s

(k
)

Ways Allocated by CAT to the LLC-sensitive Application

Contention
No Contention

Figure 4: Interference of the cache-sensitive and the I/O
applications. Y axis shows the sum of cache misses of the
cache-sensitive application. The cache-sensitive application
uses a lighter configuration (i.e., ddio_sim), which causes
fewer cache misses than the I/O application.

4.3 DMA via Remote Socket
According to Intel [16, 32], the current implementation of
DDIO only affects the local socket. Consequently, if a core
accesses I/O data from an I/O device connected to a remote
socket, the data has to traverse the inter-core interconnect,
i.e., Intel QuickPath Interconnect (QPI) or Intel Ultra path
Interconnect (UPI). It was uncertain whether data traversing
the inter-core interconnect is loaded into the LLC of the
remote socket or not. We clarified this by running the same
experiment discussed in §4.2 while the NIC is connected to a
remote socket. The result (removed for brevity) showed that
cache misses of neither application were affected by the I/O
cache lines, hence packets coming through the UPI links do
not end up in the local LLC. Additionally, the cache misses
of the I/O application dramatically increased to 20× greater
than when receiving packets via the local socket without any
contention. Thus, DDIO is ineffective for the remote socket
and it pollutes the LLC on the socket connected to the NIC.

4.4 Tuning Occupancy and Disabling DDIO
Although [20, 72] mention that DDIO uses two ways by
default, there is no mention of whether it is possible to
increase or decrease the number of ways used by DDIO. A
little-discussed Model Specific Register (MSR) called “IIO
LLC WAYS” with the address of 0xC8B* is discussed in a
few online resources [64, 79] and server manuals [73, 74].
For Skylake, the default value of this register is equal to
0x600 (i.e., two bits set). While these bits cannot be unset,
it is possible to set additional bits and the maximum value
for this register on our CPU is 0x7FF (i.e., 11 bits set:
the same as the number of LLC ways). New values for
this register follow the same format as CAT bitmasks. On

*One can read/write this register via msr-tools (e.g., rdmsr and wrmsr).

a processor with the Skylake microarchitecture, these new
values should contain consecutive ones, while the Haswell
microarchitecture does not require this (i.e., allowing any
value in [0x60000, 0xFFFFF]).

To see whether this MSR register has an effect on
performance, we measured the PCIe read/write hit rates (i.e.,
ItoM and PCIeRdCur events) while using different values
for IIO LLC WAYS. We calculate the hit rate based on the
number of hits and misses during an experiment where an I/O
application processes packets of 1024 B at 100 Gbps while
using 4096 RX descriptors. Fig. 5 shows that increasing the
value of this MSR register leads to a higher PCIe read/write
hit rate. This suggests that increasing the value of this register
could improve the ability of the system to handle packets
at high rates. We believe that the value of this register is
positively correlated with the fraction of LLC used by DDIO.
Using the technique in §4.1, we could not detect the newly
added I/O ways, thus we speculate that the newly added ways
follow a different policy (e.g., LRU) than the first two ways
used for I/O. Therefore, we assume that the number of bits
set specifies the number of ways used by DDIO.

 0

 20

 40

 60

 80

 100

0x600 0x700 0x780 0x7C0 0x7E0 0x7F0 0x7F8 0x7FC 0x7FE 0x7FF

PC
Ie

 M
et

ric
 -

H
it

Ra
te

 (%
)

Value of IIO LLC WAYS register

Read Write

Figure 5: Tuning IIO LLC WAYS register increases PCIe
read/write hit rates. The achieved throughput is 82-86 Gbps
in this experiment.

Disabling DDIO. DDIO is bundled as a part of Intel
Virtualization Technology (Intel VT), hence it is possible
to enable/disable it in BIOS for some vendors [16, 23, 88].
According to [44, 72], DDIO can be disabled globally
(i.e., by setting the Disable_All_Allocating_Flows
bit in “iiomiscctrl” register) or per-root PCIe port
(i.e., setting bit NoSnoopOpWrEn and unsetting bit
Use_Allocating_Flow_Wr in “perfctrlsts_0” register).
Some brief discussions of the benefits of disabling DDIO
exist [11, 78], but we elaborate this more thoroughly in §7.
We implemented an element for FastClick, called DDIOTune,
which can enable/disable/tune DDIO†.

†The element is available at: https://github.com/tbarbette/
fastclick/wiki/DDIOTune

678 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/tbarbette/fastclick/wiki/DDIOTune
https://github.com/tbarbette/fastclick/wiki/DDIOTune

5 Characterization of DDIO
This section scrutinizes the performance of DDIO in different
scenarios while exploiting the tuning capability of DDIO.
The goal is to show where DDIO becomes a bottleneck
and when tuning DDIO matters. Therefore, we examined
the impact of both system parameters (i.e., #RX descriptors,
#cores, and processing time) and workload characteristics
(i.e., packet size and rate) on DDIO performance. All of
these measurements were done 20 times for both Skylake and
Haswell microarchitectures. We observed the same behavior
in both cases, but only discuss the Skylake results for the
sake of brevity. We initially focus on the performance of
an L2 forwarding network function, as an example of an
I/O intensive application. Later, we discuss the impact of
applications requiring more processing time per packet.

5.1 Packet Size and RX Descriptors

§3.1 discussed the negative consequence of a large number of
RX descriptors on DDIO performance. This section continues
this discussion by looking at the PCIe read/write hit rate
metrics for different numbers of RX descriptors and different
packet sizes. Fig. 6 shows the results of our experiments
for PCIe write hit rate. PCIe read hit rates (not included
for brevity) demonstrate similar behavior. When packets
are >512 B, the PCIe read/write hit rates monotonically
decrease with an increasing number of RX descriptors. More
specifically, sending 1500-B packets, even with a relatively
small number of RX descriptors (i.e., 128), causes 10% misses
for both PCIe read and PCIe write hit rates. Furthermore,
increasing the number of RX descriptors to 4096 makes DDIO
operate at ~40% hit rate, hence 60% of packets require cache
allocation and they had to be DMA-ed back to the NIC from
main memory rather than LLC. Note that the packet generator
is generating packets as fast as possible. Therefore, small
packets show the case when the arrival rate is maximal, while
large packets demonstrate maximal throughput, see Fig. 7.

 0

 20

 40

 60

 80

 100

128 256 512 1024 2048 4096

PC
Ie

 W
rit

e
- H

it
Ra

te
 (%

)

Number of RX Descriptors

256-B Packets
512-B Packets
1024-B Packets
1500-B Packets

Figure 6: Increasing the number of descriptors and/or packet
size adversely affects the performance of 2-way DDIO, while
one core is forwarding packets at the maximum possible rate.
We removed the results for 64-B and 128-B packets, as they
show a behavior similar to 256-B packets.

 0
 2
 4
 6
 8

 10
 12
 14
 16

128 256 512 1024 2048 4096

Ar
riv

al
 R

at
e

(M
illi

on
 P

PS
)

Number of RX Descriptors

64-B Packets
128-B Packets

256-B Packets
512-B Packets

1024-B Packets
1500-B Packets

(a) Arrival rate.

 0

 20

 40

 60

 80

 100

128 256 512 1024 2048 4096

Th
ro

ug
hp

ut
 (G

bp
s)

Number of RX Descriptors

(b) Throughput.

Figure 7: Increasing the packet size reduces the arrival rate,
i.e., the number of received/processed packets per second,
due to NIC and PCIe limitations. Note that our testbed cannot
exceed 90 Gbps when only one core is forwarding packets.

Unexpected I/O evictions. In some cases (e.g., 1500-B
packets with 128 RX descriptors in Fig. 6), the size of
the injected data is smaller than the DDIO capacity (i.e.,
187.5 KiB � 4.5 MiB). Even taking into account the TX
descriptors and the FastClick’s software queue, the maximum
cache footprint of this workload is ~2 MiB. However, DDIO
still experiences ~10% misses. We believe that this behavior
may occur when an application cannot use the whole DDIO
capacity due to (i) the undocumented cache replacement
policy and/or (ii) the cache’s complex addressing [15], thus
multiple buffers may be loaded into the same cache set.

5.2 Packet Rate and Processing Time

§5.1 demonstrated that DDIO performs extremely poorly
when a core does minimal processing at 100 Gbps. Next, we
focus on the worst-case scenario of the previous experiment
(i.e., sending 1500-B packets with 4096 RX descriptors) while
changing the packet rate. To achieve 100 Gbps, we use two
cores. Fig. 8 shows the PCIe read and PCIe write hit rates. The
PCIe read metric results reveal that DDIO performs relatively
well until reaching 98 Gbps. However, the PCIe write results
indicate that DDIO has to continually allocate cache lines in
LLC for 25% of packets at most of these throughputs, due to
insufficient space for all of the buffers. Moreover, throughputs
above 75 Gbps exacerbate this problem.

USENIX Association 2020 USENIX Annual Technical Conference 679

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

PC
Ie

 M
et

ric
s

- H
it

Ra
te

 (%
)

Throughput (Gbps)

Read
Write

Figure 8: Increasing packet rates negatively impact the PCIe
metrics, when 2 cores forward 1500-B packets with 4096 RX
descriptors. The PCIe write metric is more degradation-prone.

So far, we analyzed DDIO performance when cores
performed minimal processing (i.e., swapping MAC
addresses). Now, we analyze DDIO performance for more
compute/memory-intensive I/O applications. Memory-
intensive applications access memory frequently and execute
few instructions per memory access. The time to accessing
memory differs depending upon the availability of a cache
line in a given part of the memory hierarchy. Therefore, we
focus on the number of CPU cycles of the computation;
noting that a memory access can be accounted for as given
number of cycles. Note that increasing the processing time
can change the memory access pattern, as packets continue
to be injected by the NIC while some packets are enqueued
in the LLC. To see the impact of different packet processing
times on the performance of DDIO, we vary the amount of
computation per packet by calling the std::mt1993 random
number generator multiple times. Ten such calls take ~70
cycles. Fig. 9 illustrates the effect of increasing per-packet
processing time on the PCIe metrics & achieved throughput.
These results demonstrate that increasing processing time
slightly improves PCIe read hits rates up to ~60 calls, i.e.,
400 cycles. This is expected, as increasing processing makes
the application less I/O intensive as the application provides
buffers to the NIC at a slower pace. However, increasing
processing causes the available processing power (i.e., #cores)
to become a bottleneck, substantially decreasing throughput.
Similarly, PCIe write hit rates increases after exceeding 60
calls, due to a decrease in throughput & amount of cache
injection. Therefore, DDIO performance matters most when
an application is I/O bound, rather than CPU/memory bound.

5.3 Numbers of Cores and DDIO Capacity

When processing power limits an application’s performance,
the system should scale up/out. However, this scaling can
affect DDIO’s performance. To see the effect of scaling up,
we measured the PCIe metrics while different numbers of
cores were forwarding large packets. Fig. 10 shows that
when an application is I/O intensive, increasing the number

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

PC
Ie

 M
et

ric
 -

H
it

Ra
te

 (%
)

Th
ro

ug
hp

ut
 (G

bp
s)

Number of Calls

Write
Read
Throughput

Figure 9: Making an application more compute-intensive
results in better PCIe metrics, but lower throughput. In
addition to forwarding packets, two cores call a dummy
computation, while receiving 1500-B packets with a total
of 4096 RX descriptors at 100 Gbps.

of cores improves the PCIe read/write hit rate, as it enhances
the packet transmission rate because of more TX queues
and faster consumption of packets enqueued in the LLC.
To avoid synchronization problems, every queue is bound
to one core. However, beyond a certain point (i.e., four
cores in our testbed), increasing the number of cores causes
more contention in the cache, as every core loads packets
independently into the limited DDIO capacity. Furthermore,
since newer processors are shipped with more cores, scaling
up, even with a small number of RX descriptors, eventually
causes the leaky DMA problem–the same problem as having
a large number of descriptors (see §3.1).

Fig. 11 shows PCIe metrics for 1, 2, and 4 cores while
changing the number of DDIO ways. Comparing the DDIO
performance of different numbers of cores/DDIO ways, we
conclude that increasing DDIO capacity leads to similar
improvements for PCIe metrics. Therefore, increasing the
DDIO capacity rather than the number of cores is beneficial
when an application’s bottleneck is not processing power or
number of TX queues. Unless scaling up happens efficiently,
some cores may receive more packets than others, causing

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

PC
Ie

 M
et

ric
 -

H
it

Ra
te

 (%
)

Number of Cores

Write
Read

Figure 10: Increasing the number of cores does not always
improve PCIe metrics for an I/O intensive application.
Different numbers of cores are forwarding 1500-B packets at
100 Gbps with 256 RX descriptors per core.

680 2020 USENIX Annual Technical Conference USENIX Association

performance degradation. We discuss the impact of load
imbalance on DDIO performance in the next section.

 0

 20

 40

 60

 80

 100

2 4 6 8

PC
Ie

 W
rit

e
- H

it
Ra

te
 (%

)

Number of DDIO Ways

1 core
2 cores
4 cores

Figure 11: Increasing the number of DDIO ways can have a
similar positive effect as increasing the number of processing
cores, while forwarding 1500-B packets at 100 Gbps with a
total of 4096 RX descriptors. PCIe read hit rate shows the
same behavior as PCIe writes.

6 Application-level Performance Metrics

The previous section focused on the PCIe read/write hit rates
and showed that increasing link speed & packet size and the
number of descriptors & cores could degrade these metrics.
PCIe read/write hit rates represent the percentage of I/O
evictions (i.e., the performance of DDIO), but also indirectly
affect application performance. The correlation between PCIe
metrics and meaningful performance metrics (e.g., latency
and throughput) depends on an application’s characteristics.
For instance, a low PCIe write hit rate can severely affect an
application that requires the whole DMA-ed data. Conversely,
the impact is much less for an application that needs only a
subset of the DMA-ed packet. Fig. 2 showed one example
of this correlation for the latter case, where the application
only accessed the packet header. These results showed that
even when an application does not require the whole DMA-
ed data, increasing the number of descriptors (i.e., causing
a reduction in PCIe hit rate metrics) could negatively affect
the 99th percentile latency. Note that we observed the same
effect at median latency. This section further elaborates this
impact in two scenarios where a stateful network function is
processing a realistic workload* via 18 cores with a run-to-
completion model [38, 93]. The benefits of increasing cache
performance are not limited to this model and could be even
greater for a pipeline model where fewer cores handle the I/O.
Stateful service chain. To evaluate the effect of increasing
DDIO capacity, we chose a stateful service chain composed
of a router, a network address port translator (NAPT), and a
round-robin load balancer (LB) as a suitable chain to exploit
hardware offloading capabilities of modern NICs while still
keeping state at the processor. In this case, we offload the

*We replay the first 400 k packets of a 28-minute campus trace fifty
times. The full trace has ~800 M packets with an average size of 981 B.

routing table of the router to the NIC and only handle the
stateful tasks (i.e., NAPT + LB) and the basic functionality of
the router in software. We generated 2423 IP filter rules for
the campus trace using the GenerateIPFlowDirector element
in Metron [38] and use DPDK’s Flow API technology [31]
to offload them into a Mellanox NIC. To examine the impact
of load imbalance, we generate two different sets of rules
with different load imbalance factors. One distributes the
rules among 18 cores in a round-robin manner while the
other is load-aware and tries to reduce the flow imbalance
in terms of bytes received by every core. We calculated
the number of packets received by each core for both cases
and the maximum imbalance ratio of a core is 2.78× for
the load-aware technique, while the round-robin technique
causes 1.69× maximum load imbalance. The load-aware
method has a higher load imbalance because we generate
rules for the whole trace, but only replay a subset of it. Fig. 12
shows the 99th percentile latency of this chain for different
load balancing methods (with different load imbalance ratio),
specifically increasing DDIO capacity reduces the 99th

percentile latency by ~21% when the load imbalance is
higher. However, when the load imbalance is lower, these
improvements reduce to ~2%. A higher load imbalance factor
means that a core receives more packets than others, some of
which could be evicted while enqueued in the LLC. Hence,
it is crucial to realize a good balance to get the most out of
DDIO. Furthermore, load imbalance is the root cause of many
other performance degradations and is hard to prevent [8, 10].

 0

 200

 400

 600

 800

 1000

Load-aware Round Robin99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (µ

s)

Load Balance Method

2W 4W 6W 8W

Figure 12: DDIO should be carefully tuned when the load
imbalance factor is higher. The results shows 99th percentile
latency of a stateful network function while 18 cores are
processing mixed-size packets at 100 Gbps. The throughputs
were 94 & 97 Gbps for load-ware (higher imbalance) & round-
robin (lower imbalance) experiments, respectively.

7 Is DDIO Always Beneficial?
The previous section showed that performance could be
improved by tuning DDIO for I/O intensive network functions
operating at ~100 Gbps. However, these results cannot be
generalized, as the improvements are highly dependent on
the application’s characteristics. Moreover, there may be
some applications that do not benefit from DDIO tuning.
To investigate this, we measure the sensitivity of different
applications to DDIO by enabling/disabling it (see §4.4).
Table 2 shows the results for four applications/benchmarks:

USENIX Association 2020 USENIX Annual Technical Conference 681

Table 2: DDIO sensitivity changes for different applications.

Application
DDIO Enabled Disabled Sensitivity

Throughput Median (µs) Avg (µs) 99th (µs) Throughput Median (µs) Avg (µs) 99th (µs)
Memcached (TCP) 1003058 TPS N/A 477.62 N/A 994387 TPS N/A 481.62 N/A Low
Memcached (UDP) 638763 TPS N/A 750.12 N/A 631354 TPS N/A 758.75 N/A Low
NVMe (Full Write) 4427.2 MiB/s 44879.4 44437.6 46452.4 4434.2 MiB/s 44827 44374.68 46452.4 Low
NVMe (Random Read) 3372.4 MiB/s 582 589.67 765.7 3233.7 MiB/s 601.8 614.46 805.7 High
NVMe (Random Write) 1498.3 MiB/s 1307.8 1324.73 1991.2 1499.9 MiB/s 1309.5 1323.38 1971.4 Low
L2 Forwarding 98.01 Gbps 500.82 662 1055.98 87.02 Gbps 1058.15 862 1229.62 High
Stateful Service Chain 63.92 Gbps 665 657 923 63.25 Gbps 672 666 931 Low(without offloading)
Stateful Service Chain 97.35 Gbps 499 505 595 87.46 Gbps 531 924 1981 High(with round-robin offloading)

(i) DPDK-based implementation of Memcached developed
by Seastar [5], (ii) an NVMe benchmarking tool (i.e., fio [4]),
(iii) L2 forwarding application, (iv) a stateful service chain,
used in §6, which performs IP filtering in software rather than
offloading it to the NIC, and (v) the stateful service chain
with round-robin offloading used in §6. We define sensitivity
as “Low” if the maximum impact on the performance of an
application is ≤ 5%. For Memcached, we use the method
recommended by Seastar [2] with 8 instances of memaslap
clients running for 120 s and a Memcached instance with 4
cores. For NVMe benchmarks, we tested a Toshiba NVMe
(KXG50PNV1T02) with 4×1024-GB SSDs according to [3],
where we report the average of 10 runs. The L2 forwarding
application forwards mixed-size packets, while using 4
cores with a total of 4096 RX descriptors. The stateful
service chain without offloading uses RSS to distribute
packets among 18 cores (to increase the throughput) with
18 × 256 RX descriptors. The results demonstrate that
different applications have different levels of sensitivity
to DDIO, which can be exploited by system developers
to optimize their system in a multi-tenant environment,
where multiple I/O applications co-exist, see §8.1. The most
sensitive application is L2 forwarding, which is the most I/O
intensive application among these applications and can run
at line rate. Some applications (e.g., Memcached) experience
less benefit from DDIO, as their performance may be bounded
by other bottlenecks. A more detailed sensitivity analysis of
different applications remains as our future work.

8 Future Directions for DCA
Tuning DDIO occupancy was shown to substantially
improve the performance of some applications. However,
increasing the portion of the cache used for I/O is only a
temporary solution for two reasons: (i) I/O is only a part of
packet processing and (ii) to achieve suitable performance
many networking applications require a large amount of
cache memory for code/data. Moreover, many network
functions would benefit from performing in-cache flow
classification [92]; hence, there is a trade-off between
allocating cache to I/O vs. code/data and this trade-off
depends on the application’s characteristics & cache size.

Additionally, since DDIO is way-based, the granularity of
partitions is quite coarse in recent Intel processors, due to low
set-associativity. Therefore, it is harder to partition the cache
fairly between code/data & I/O. These reasons, together with
the recent trend in Intel processors of decreasing per-core
LLC, eventually make the current implementation of DCA
a major bottleneck to achieving low-latency service times.
Hence, DCA needs to deliver better performance even with
a small fraction of the cache. This makes it necessary to
rethink the current DCA designs with an eye toward realizing
network services running at multi-hundred gigabits per
second. Some possible directions/proposals for future DCA
are: 1 Fine-grained placement: adopting CacheDirector [15]
methodology (i.e., sending packets to the appropriate LLC
slices) and only sending the relevant parts of these packets to
the L2 cache, L1 cache, or potentially CPU registers [26];
2 Selective DMA/DCA: only DMA relevant parts of the

packet (as required by an application) to the cache and buffer
the rest in either main memory, the NIC, or Top-of-Rack
switch; and 3 I/O isolation: extend CAT to include I/O
prioritization in addition to Code and Data Prioritization
(CDP) technology [60] to alleviate I/O contention. These
ideas could be simulated in a cycle accurate simulator (e.g.,
gem5 [6, 12]), which remains as our future work. Next, we
examine one potential solution in the current systems to
better take advantage of DDIO.

8.1 Bypassing Cache

§3.1 explained that one way to prevent unnecessary memory
accesses and the leaky DMA problem is to reduce the number
of descriptors. However, this could increase packet loss and
generate more PAUSE frames at high link rates. Unfortunately,
both can have a severe impact on the service time as they
postpone the service time by at least a couple of microseconds.
Taking these consequences into account, we believe future
DCA technologies should perform cache injection more
effectively: DMA should not be directed to the cache if this
would cause I/O evictions; thus, buffering packets in local
memory (at a cost of only several hundreds of nanoseconds) is
preferable to dropping or enqueuing packets in previous nodes.
Additionally, bypassing cache would be beneficial in a multi-

682 2020 USENIX Annual Technical Conference USENIX Association

tenant scenario where performance isolation is desired. For
instance, low-priority and/or low-DDIO-sensitive applications
could bypass cache to make room for high-priority and/or
high-DDIO-sensitive applications. In addition, one could
prioritize [7] different traffic flows, thus only a subset of
received traffic (and hence cores) would use cache for I/O.
Implementing a system to prioritize DDIO for different
flows either in a programmable switch or modern NICs (e.g.,
Mellanox Socket Direct Adapters) remains as our future work.
Evaluation. To evaluate the benefits of bypassing the
cache, we use two methods: (i) disabling DDIO and (ii)
exploiting DMA via a remote socket (see §4.3). We set
up a 200-Gbps testbed, see Fig. 13. We first connect two
100-Gbps NICs to the same socket. Next, we connect one
of these NICs to a remote socket. We run two instances
of L2 forwarding application located on the first socket,
each of which uses 4 cores and one NIC to forward mixed-
size packets. We chose four cores per NIC because our
earlier experiments (see Fig. 10) showed that DDIO can
achieve an acceptable performance while receiving 1500-B
packets with four cores. To reduce the contention for cache
and memory bandwidth, we apply CAT & MBA to each
application (similar to ResQ [83]). We assume that one of the
applications has a higher priority, and we measure its latency
in five different scenarios: (i) without the presence of the low-
priority application, (ii) when the low-priority application
pollutes the cache via 2-way DDIO (see Fig. 13a), (iii) when
the low-priority application pollutes the cache via 4-way
DDIO, (iv) when the low-priority application bypasses the
cache by DMA-ing packets via a remote socket (see Fig. 13b),
(v) when the low-priority application bypasses the cache via
disabled DDIO. Fig. 14 shows the 99th percentile latency of
the high-priority application–other percentiles show a similar
trend with a smaller difference. These results demonstrate that
bypassing cache via a remote socket (i.e., case iv) achieves
the same latency as when there is no low-priority application
(i.e., case i). However, when both applications are receiving
traffic via DDIO (i.e., case ii), the 99th percentile latency
degrades ~30%. We observe that bypassing cache has the
same benefits as increasing DDIO capacity (i.e., case iii vs.
case iv). Furthermore, comparing cases (iv) and (v) indicates
that disabling DDIO slightly pollutes the cache (as opposed to
bypassing via a remote socket). We speculate that disabling
DDIO only affects the packets, not the descriptors. Therefore,
we conclude that bypassing cache can result in less variability
in performance and potentially better performance isolation.
Additionally, it is clearly necessary to tune DDIO capacity
when moving toward 200 Gbps.

9 Lessons Learned: Optimization Guidelines
This section summarizes our key findings, which could
help system designers/developers to optimize DDIO for
their applications. Furthermore, our study should inspire
computer architects to improve DCA’s performance by

Socket 1

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
em

or
y

Co
nt

ro
lle

r

NIC 1 NIC 2

Main
Memory U

PI

(a) Through local socket.

Socket 1

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
em

or
y

Co
nt

ro
lle

r

NIC 1 NIC 2

Main
Memory U

PI

(b) Through remote socket.

Figure 13: Receiver setup to achieve 200 Gbps. On the right
setup, the second NIC is connected to the remote socket. It
sends packets through UPI link directly to the main memory.

 0
 200
 400
 600
 800

 1000
 1200
 1400

i ii iii iv v

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (µ

s)

Scenario

98.73 Gbps

187.19 Gbps

197.67 Gbps 197.09 Gbps
179.81 Gbps

Figure 14: Bypassing cache and tuning DDIO at 200 Gbps
mitigate I/O contention and improve the tail latency of the
high-priority application up to 30%. Scenarios: (i) 100 Gbps
with no contention; (ii) contention at 200 Gbps; (iii) tuning
DDIO at 200 Gbps; (iv) bypassing cache via a remote socket;
and (v) bypassing cache via disabled DDIO. The total
achieved throughput of the receiver is written on the bars.

offering increasing control. Although we focused on packet
processing, our work is not limited to network functions.
Our investigations could be equally useful in other contexts
(e.g., HPC) that require high-bandwidth I/O when transferring
data via RDMA and processing with GPUs. We showed that
current approaches to avoid DDIO becoming a bottleneck
are only temporary solutions and they are inapplicable to
multi-hundred-gigabit network applications. We proposed
a benchmarking method to understand the unknown &
little-discussed details of DDIO. Later, we characterized the
performance of DDIO in different scenarios and showed the
benefits of bypassing the cache. We concluded that there is no
one-size-fits-all approach to utilize DDIO. Our study reveals:
• The locations of LLC to which DDIO injects data (§4.1).
• Co-locating an application’s code/data with I/O in the cache

could adversely impact its performance (§4.2).
• The way that DDIO behavior changes for different system

parameters and workload characteristics (§5).
• If an application is I/O bound, adding excessive cores could

degrade its performance (Fig. 10).
• If an application is I/O bound, carefully sizing the DDIO

capacity can improve its performance and could lead to the

USENIX Association 2020 USENIX Annual Technical Conference 683

same improvements as adding more cores (Fig. 11).
• If an application starts to become CPU bound, adding more

cores can increase its throughput, but then it has to balance
load among cores to maximize DDIO benefits (Fig. 12).

• If an application is truly CPU/memory bound, DDIO tuning
is less efficient (Fig. 9). However, it can be beneficial to
buffer in DRAM incoming requests/packets which cannot
be processed in time, rather than having the NIC issue
PAUSE frames or drop packets.

• Going beyond ~75 Gbps can cause DDIO to become a
bottleneck (Fig. 8). Therefore, it is essential to bypass cache
to realize performance isolation. Bypassing cache could
be done for low-priority traffic or applications that do not
benefit from DDIO (§8.1).

• Different applications have different levels of sensitivity
to DDIO (§7). Identifying this level is essential to utilize
system resources more efficiently, provide performance
isolation, and improve performance.

10 Related Work
The most relevant work to our study is ResQ [83], which we
discussed thoroughly in §3.1 and §8.1. This section discusses
other efforts relevant to our work.
Injecting I/O into the cache. The idea of loading I/O data
directly to the processor’s cache was initially proposed using
cache injection techniques [52, 63]. Later, it was used to
enhance network performance on commodity servers and was
referred to as DCA [25]. Amit Kumar et al. [42] investigated
the role of coherency protocol in DCA. Their results indicated
that the benefit of DCA would be limited when the network
processing rate cannot match the I/O rate. In addition, [75]
showed that DCA could cause cache pollution; hence they
proposed an alternative cache injection mechanism to mitigate
the problem. A. Kumar et al. [43] characterized DCA for
10-Gbps Ethernet links. Other works have discussed that DCA
is insufficient due to architectural limitations [40, 46, 71]. For
example, the work in [46] proposed a new I/O architecture
that decouples and offloads I/O descriptor management from
the NIC to an on-chip network engine. Similarly, the work
in [40] proposed a flexible network DMA interface which can
support DCA. Last but not least, Wen Su et al. [71] proposed
an improvement to combine DCA with an integrated NIC to
reduce latency.
Efforts toward realizing 100 Gbps. Many have tried to
tackle challenges to achieve suitable performance for fast
networks, mostly in the context of NFV [49] and key-value
stores [19, 45]. Some research has exploited new features
in modern/smart/programmable NICs (e.g., [38, 47, 84, 94])
& switches (e.g., [36]) or proposed new features (e.g., [70])
to offload costly software processing. A number of works
investigate packet processing models (e.g., [9, 39, 93]).
CacheBuilder [80] and CacheDirector [15] have discussed
the importance of cache management in realizing 100-Gbps
networks. HALO [92] exploited the non-uniform cache

architecture (NUCA) characteristics of LLC to perform in-
cache flow classification. Last but not least, IOctopus [68]
proposed a new NIC design and wiring for servers to avoid
non-uniform DMA penalties. Our work is complementary to
these works.
Cache partitioning. Many have tried to overcome cache
contention by performing cache partitioning [53]. These
efforts can be split into two main categories: (i) software
techniques and (ii) hardware techniques. The former group
principally relies on physical addresses to partition cache
based on sets [22, 48, 67] or slices [15]. This way of cache
partitioning does not require any hardware support, but it is
not very commonly used, due to its drawbacks (e.g., OS/App
modification and costly re-partitioning). The latter group
mostly exploits way-partitioning (e.g., CAT) to partition the
cache among different applications [13, 18, 62, 89, 90, 91].
In addition to these techniques, Wang et al. [85] proposed
a hybrid approach that combines both techniques to achieve
finer granularity for partitioning. To the best of our knowledge,
there are only two works (ResQ [83] and CacheDirector [15])
that have specifically tried to exploit cache partitioning
techniques to improve packet processing. ResQ proposes
to isolate a percentage of LLC that is used for I/O and
CacheDirector exploits the NUCA used in Intel processors
to distribute I/O more efficiently among different LLC slices.
Our work is complementary to these works, as most of them
do not consider I/O when partitioning the cache.

11 Conclusion
DCA technologies were introduced to improve the perfor-
mance of networking applications. However, we system-
atically showed that the latest implementation of DCA in
Intel processors (i.e., DDIO) cannot perform as needed with
increasing link speeds. We demonstrated that better I/O man-
agement is required to meet the critical latency requirements
of future networks. Our main goal is to emphasize that
networking is, now more than before, tightly coupled with the
capability of the current hardware. Consequently, realizing
time-critical multi-hundred-gigabit networks is only possible
by (i) increasingly well-documented control over the hardware
and (ii) improved holistic system design optimizations.

Acknowledgments
We would like to thank our shepherd, Mark Silberstein, and
anonymous reviewers for their insightful comments. We are
grateful to Tom Barbette for helping us with his NPF tool.
This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation. The work was
also funded by the Swedish Foundation for Strategic research
(SSF). This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 770889).

684 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Direct Cache Access (DCA), Oct 2010.
ftp://supermicro.com/ISO_Extracted/CDR-X8-
Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/
v16.3/PROXGB/DOCS/SERVER/DCA.htm, accessed
2019-08-05.

[2] Memcached Benchmark, 2015. https://github.com/
scylladb/seastar/wiki/Memcached-Benchmark,
accessed 2019-12-30.

[3] Benchmarking - Benchmarking Linux with Sysbench,
FIO, Ioping, and UnixBench: Lots of Examples. https:
//wiki.mikejung.biz/Benchmarking, 2018.

[4] Flexible I/O Tester (fio). https://fio.readthedocs.
io/en/latest/fio_doc.html, 2019.

[5] Seastar. http://seastar.io/, 2019.

[6] Mohammad Alian, Yifan Yuan, Jie Zhang, Ren Wang,
Myoungsoo Jung, and Nam Sung Kim. Data
Direct I/O Characterization for Future I/O System
Exploration. In 2020 IEEE International Symposium
on Performance Analysis of Systems and Software
(ISPASS), 2020. https://yifanyuan3.github.io/
publication/ddio_gem5, accessed 2020-05-20.

[7] Philip C Arellano and James A Coleman. Method,
apparatus, and system for allocating cache using traffic
class, March 30 2017. US Patent App. 14/866,862.

[8] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire
Jr., and Dejan Kostić. RSS++: Load and State-Aware
Receive Side Scaling. In Proceedings of the 15th
International Conference on Emerging Networking
Experiments And Technologies, CoNEXT ’19, page
318–333, New York, NY, USA, 2019. Association for
Computing Machinery.

[9] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast
Userspace Packet Processing. In Proceedings of
the Eleventh ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS
’15, pages 5–16, Washington, DC, USA, 2015. IEEE
Computer Society.

[10] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić,
Gerald Q. Maguire Jr., Panagiotis Papadimitratos, and
Marco Chiesa. A High-Speed Load-Balancer Design
with Guaranteed Per-Connection-Consistency . In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 667–683, Santa Clara,
CA, February 2020. USENIX Association.

[11] Harsha Basavaraj. A case for effective utilization of
Direct Cache Access for big data workloads. Master’s

thesis, UC San Diego, 2017. https://escholarship.
org/uc/item/0fr3735b, accessed 2019-07-24.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The Gem5 Simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011.

[13] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma,
and D. Sanchez. KPart: A Hybrid Cache Partitioning-
Sharing Technique for Commodity Multicores. In 2018
IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 104–117, Feb
2018.

[14] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankar-
alingam, and D. Burger. Dark silicon and the end of
multicore scaling. In 2011 38th Annual International
Symposium on Computer Architecture (ISCA), pages
365–376, June 2011.

[15] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire
Jr., and Dejan Kostić. Make the Most out of Last
Level Cache in Intel Processors. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 8:1–8:17, New York, NY, USA, 2019. ACM.

[16] Financial Services Industry (FSI) - Frequently Asked
Questions. https://software.intel.com/en-
us/articles/financial-services-industry-
fsi-frequently-asked-questions, accessed
2019-07-24.

[17] Intel Forum. Intel Ethernet X520 to XL710 -
Tuning the buffers: a practical guide to reduce or
avoid packet loss in DPDK applications. https:
//etherealmind.com/wp-content/uploads/2017/
01/X520_to_XL710_Tuning_The_Buffers.pdf,
accessed 2019-07-24.

[18] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf
Schuster. Ginseng: Market-Driven LLC Allocation. In
2016 USENIX Annual Technical Conference (USENIX
ATC 16), pages 295–308, Denver, CO, June 2016.
USENIX Association.

[19] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi,
Nicolai Oswald, Boris Grot, and Vijay Nagarajan.
Scale-out ccNUMA: Exploiting Skew with Strongly
Consistent Caching. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, pages 21:1–21:15,
New York, NY, USA, 2018. ACM.

USENIX Association 2020 USENIX Annual Technical Conference 685

ftp://supermicro.com/ISO_Extracted/CDR-X8-Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/v16.3/PROXGB/DOCS/SERVER/DCA.htm
ftp://supermicro.com/ISO_Extracted/CDR-X8-Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/v16.3/PROXGB/DOCS/SERVER/DCA.htm
ftp://supermicro.com/ISO_Extracted/CDR-X8-Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/v16.3/PROXGB/DOCS/SERVER/DCA.htm
https://github.com/scylladb/seastar/wiki/Memcached-Benchmark
https://github.com/scylladb/seastar/wiki/Memcached-Benchmark
https://wiki.mikejung.biz/Benchmarking
https://wiki.mikejung.biz/Benchmarking
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
http://seastar.io/
https://yifanyuan3.github.io/publication/ddio_gem5
https://yifanyuan3.github.io/publication/ddio_gem5
https://escholarship.org/uc/item/0fr3735b
https://escholarship.org/uc/item/0fr3735b
https://software.intel.com/en-us/articles/financial-services-industry-fsi-frequently-asked-questions
https://software.intel.com/en-us/articles/financial-services-industry-fsi-frequently-asked-questions
https://software.intel.com/en-us/articles/financial-services-industry-fsi-frequently-asked-questions
https://etherealmind.com/wp-content/uploads/2017/01/X520_to_XL710_Tuning_The_Buffers.pdf
https://etherealmind.com/wp-content/uploads/2017/01/X520_to_XL710_Tuning_The_Buffers.pdf
https://etherealmind.com/wp-content/uploads/2017/01/X520_to_XL710_Tuning_The_Buffers.pdf

[20] Jeff Gilbert and Mark Rowland. The Intel
Xeon Processor E5 Family: Architecture,
Power Efficiency, and Performance, August
2012. https://www.hotchips.org/wp-
content/uploads/hc_archives/hc24/HC24-8-
DataCenter/HC24.29.827-Xeon-Rowland-Xeon-
E5-2600-Disclaimer.pdf, accessed 2019-07-24.

[21] Andrew Herdrich, Khawar Abbasi, and Marcel Cornu.
Introduction to Memory Bandwidth Allocation,
March 2019. https://software.intel.com/en-
us/articles/introduction-to-memory-
bandwidth-allocation, accessed 2019-07-24.

[22] J. Herter, P. Backes, F. Haupenthal, and J. Reineke.
CAMA: A Predictable Cache-Aware Memory Allocator.
In 2011 23rd Euromicro Conference on Real-Time
Systems, pages 23–32, July 2011.

[23] How to disable Data Direct I/O (DDIO) on
Intel Xeon E5? https://forums.intel.com/
s/question/0D50P0000490NFhSAM/how-to-
disable-data-direct-io-ddio-on-intel-xeon-
e5?language=en_US, accessed 2019-07-24.

[24] Ted Hudek. Introduction to Receive Side Scaling,
04 2017. https://docs.microsoft.com/en-
us/windows-hardware/drivers/network/
introduction-to-receive-side-scaling,
accessed 2019-12-29.

[25] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache
access for high bandwidth network I/O. In 32nd
International Symposium on Computer Architecture
(ISCA’05), pages 50–59, June 2005.

[26] Stephen Ibanez, Muhammad Shahbaz, and Nick
McKeown. The Case for a Network Fast Path to the
CPU. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, HotNets ’19, page 52–59, New York,
NY, USA, 2019. Association for Computing Machinery.

[27] Information about PCM PCIe counters. https:
//software.intel.com/en-us/forums/software-
tuning-performance-optimization-platform-
monitoring/topic/543883, accessed 2019-07-24.

[28] Intel. Intel Data Direct I/O Technology Overview, 2012.
https://www.intel.com/content/www/us/en/
io/data-direct-i-o-technology-brief.html,
accessed 2019-07-26.

[29] Intel. Intel Xeon Processor Scalable Memory
Family Uncore Performance Monitoring, July 2017.
https://www.intel.com/content/www/us/en/
processors/xeon/scalable/xeon-scalable-
uncore-performance-monitoring-manual.html,
accessed 2019-07-26.

[30] Intel. Intel Arria 10 Avalon-ST Interface
with SR-IOV PCIe Solutions User Guide,
2019. https://www.intel.com/content/
www/us/en/programmable/documentation/
lbl1415123763821.html#lbl1453336559194,
accessed 2019-07-26.

[31] Intel Ethernet Flow Director and Memcached
Performance, 2014. https://www.intel.com/
content/dam/www/public/us/en/documents/
white-papers/intel-ethernet-flow-director.
pdf, accessed 2019-09-09.

[32] IO Issues: Remote Socket Accesses. https:
//software.intel.com/en-us/vtune-amplifier-
cookbook-io-issues-remote-socket-accesses,
accessed 2019-09-01.

[33] Sanjeev Jahagirdar, Varghese George, Inder Sodhi,
and Ryan Wells. Power Management of the Third
Generation Intel Core Micro Architecture formerly
codenamed Ivy Bridge, 2012. https://bit.ly/
2LKVfZr, accessed 2019-07-24.

[34] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely,
Jr., and Joel Emer. High Performance Cache
Replacement Using Re-reference Interval Prediction
(RRIP). In Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA ’10, pages
60–71, New York, NY, USA, 2010. ACM.

[35] Muthurajan Jayakumar. Data Plane Development
Kit: Performance Optimization Guidelines. https:
//software.intel.com/en-us/articles/dpdk-
performance-optimization-guidelines-white-
paper, accessed 2019-07-24.

[36] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 121–136, New York, NY, USA, 2017. ACM.

[37] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design Guidelines for High Performance RDMA
Systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 437–450, Denver, CO, June
2016. USENIX Association.

[38] Georgios P. Katsikas, Tom Barbette, Dejan Kostić,
Rebecca Steinert, and Gerald Q. Maguire Jr. Metron:
NFV Service Chains at the True Speed of the
Underlying Hardware. In 15th USENIX Conference
on Networked Systems Design and Implementation
(NSDI 18), NSDI’18, pages 171–186, Renton, WA, 2018.
USENIX Association.

686 2020 USENIX Annual Technical Conference USENIX Association

https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/programmable/documentation/lbl1415123763821.html#lbl1453336559194
https://www.intel.com/content/www/us/en/programmable/documentation/lbl1415123763821.html#lbl1453336559194
https://www.intel.com/content/www/us/en/programmable/documentation/lbl1415123763821.html#lbl1453336559194
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://software.intel.com/en-us/vtune-amplifier-cookbook-io-issues-remote-socket-accesses
https://software.intel.com/en-us/vtune-amplifier-cookbook-io-issues-remote-socket-accesses
https://software.intel.com/en-us/vtune-amplifier-cookbook-io-issues-remote-socket-accesses
https://bit.ly/2LKVfZr
https://bit.ly/2LKVfZr
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper

[39] Georgios P. Katsikas, Marcel Enguehard, Maciej
Kuźniar, Gerald Q. Maguire Jr., and Dejan Kostić. SNF:
synthesizing high performance NFV service chains.
PeerJ Computer Science, 2:e98, November 2016.

[40] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
Performance Packet Processing with FlexNIC. SIG-
PLAN Not., 51(4):67–81, March 2016.

[41] Maciek Konstantynowicz, Patrick Lu, and Shrikant M.
Shah. Benchmarking and Analysis of Software Data
Planes. Technical report, Cisco, Intel Corporation, FD.io,
Dec 2017. https://fd.io/wp-content/uploads/
sites/34/2018/01/performance_analysis_sw_
data_planes_dec21_2017.pdf, accessed 2019-07-
24.

[42] A. Kumar and R. Huggahalli. Impact of Cache
Coherence Protocols on the Processing of Network
Traffic. In 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007), pages
161–171, Dec 2007.

[43] A. Kumar, R. Huggahalli, and S. Makineni. Character-
ization of Direct Cache Access on multi-core systems
and 10GbE. In 2009 IEEE 15th International Sym-
posium on High Performance Computer Architecture,
pages 341–352, Feb 2009.

[44] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical Cache Attacks from the Network. In S&P,
May 2020. Intel Bounty Reward.

[45] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn,
Anuj Kalia, Michael Kaminsky, David G. Andersen,
Seongil O, Sukhan Lee, and Pradeep Dubey. Full-
Stack Architecting to Achieve a Billion-Requests-Per-
Second Throughput on a Single Key-Value Store Server
Platform. ACM Trans. Comput. Syst., 34(2):5:1–5:30,
April 2016.

[46] G. Liao, X. Znu, and L. Bnuyan. A new server I/O
architecture for high speed networks. In 2011 IEEE
17th International Symposium on High Performance
Computer Architecture, pages 255–265, Feb 2011.

[47] Hyeontaek Lim, Dongsu Han, David G. Andersen,
and Michael Kaminsky. MICA: A holistic approach
to fast in-memory key-value storage. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 429–444, Seattle, WA,
2014. USENIX Association.

[48] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang,
Xiaodong Zhang, and P. Sadayappan. Gaining insights

into multicore cache partitioning: Bridging the gap
between simulation and real systems. In 2008 IEEE
14th International Symposium on High Performance
Computer Architecture, pages 367–378, Feb 2008.

[49] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári,
D. Rossi, T. Zinner, R. Bifulco, M. Jarschel, and
G. Bianchi. Survey of Performance Acceleration
Techniques for Network Function Virtualization.
Proceedings of the IEEE, 107(4):746–764, April 2019.

[50] Patrick Lu. Performance Considerations for
Packet Processing on Intel Architecture, May 2017.
https://fdio-vpp.readthedocs.io/en/latest/
events/Summits/FDioMiniSummit/OSS_2017/
2017_05_10_performanceconsideration.html,
accessed 2019-07-24.

[51] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,
Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.
Taming Performance Variability. In 13th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 409–425, Carlsbad,
CA, October 2018. USENIX Association.

[52] V. Milutinovic, A. Milenkovic, and G. Sheaffer. The
cache injection/cofetch architecture: initial performance
evaluation. In Proceedings Fifth International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 63–
64, Jan 1997.

[53] Sparsh Mittal. A Survey of Techniques for Cache
Partitioning in Multicore Processors. ACM Comput.
Surv., 50(2):27:1–27:39, May 2017.

[54] Jeffrey C. Mogul and John Wilkes. Nines are Not
Enough: Meaningful Metrics for Clouds. In Proc. 17th
Workshop on Hot Topics in Operating Systems (HoTOS),
2019.

[55] David Mulnix. Intel Xeon Processor Scalable
Family Technical Overview, Sep 2017. https:
//software.intel.com/en-us/articles/intel-
xeon-processor-scalable-family-technical-
overview, accessed 2019-07-24.

[56] NetApp. What is the potential impact of PAUSE frames
on a network connection?, Nov 2017. https://ntap.
com/2RpAx1Q, accessed 2019-07-24.

[57] Network Performance Framework. https://github.
com/tbarbette/npf, accessed 2019-07-24.

[58] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding PCIe Performance for End
Host Networking. In Proceedings of the 2018

USENIX Association 2020 USENIX Annual Technical Conference 687

https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fdio-vpp.readthedocs.io/en/latest/events/Summits/FDioMiniSummit/OSS_2017/2017_05_10_performanceconsideration.html
https://fdio-vpp.readthedocs.io/en/latest/events/Summits/FDioMiniSummit/OSS_2017/2017_05_10_performanceconsideration.html
https://fdio-vpp.readthedocs.io/en/latest/events/Summits/FDioMiniSummit/OSS_2017/2017_05_10_performanceconsideration.html
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://ntap.com/2RpAx1Q
https://ntap.com/2RpAx1Q
https://github.com/tbarbette/npf
https://github.com/tbarbette/npf

Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’18, pages 327–341, New
York, NY, USA, 2018. ACM.

[59] Khang Nguyen. Introduction to Cache Allocation
Technology in the Intel Xeon Processor E5 v4 Family,
Feb 2016. https://software.intel.com/en-
us/articles/introduction-to-cache-
allocation-technology, accessed 2019-07-24.

[60] Khang T Nguyen. Code and Data Prioritization
- Introduction and Usage Models in the
Intel® Xeon® Processor E5 v4 Family,
2016. https://software.intel.com/en-
us/articles/introduction-to-code-and-data-
prioritization-with-usage-models, accessed
2019-07-26.

[61] John Ousterhout. Always Measure One Level Deeper.
Commun. ACM, 61(7):74–83, June 2018.

[62] Jinsu Park, Seongbeom Park, and Woongki Baek.
CoPart: Coordinated Partitioning of Last-Level Cache
and Memory Bandwidth for Fairness-Aware Workload
Consolidation on Commodity Servers. In Proceedings
of the Fourteenth EuroSys Conference 2019, EuroSys
’19, pages 10:1–10:16, New York, NY, USA, 2019.
ACM.

[63] Hazim Shafi Patrick Joseph Bohrer, Ramakrishnan Ra-
jamony. Method and apparatus for accelerating
input/output processing using cache injections , March
2004. US Patent No. US6711650B1.

[64] PCIe Bandwidth Drops on Skylake-SP. https:
//software.intel.com/en-us/forums/software-
tuning-performance-optimization-platform-
monitoring/topic/741386, accessed 2019-07-24.

[65] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt,
Simon C. Steely, and Joel Emer. Adaptive Insertion
Policies for High Performance Caching. In Proceedings
of the 34th Annual International Symposium on
Computer Architecture, ISCA ’07, pages 381–391, New
York, NY, USA, 2007. ACM.

[66] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros.
Splash-3: A Properly Synchronized Benchmark Suite
for Contemporary Research. In 2016 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 101–111, April 2016.

[67] Timothy Sherwood, Brad Calder, and Joel Emer.
Reducing Cache Misses Using Hardware and Software
Page Placement. In Proceedings of the 13th
International Conference on Supercomputing, ICS ’99,
pages 155–164, New York, NY, USA, 1999. ACM.

[68] Igor Smolyar, Alex Markuze, Boris Pismenny, Haggai
Eran, Gerd Zellweger, Austin Bolen, Liran Liss, Adam
Morrison, and Dan Tsafrir. IOctopus: Outsmarting
Nonuniform DMA. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’20, page 101–115, New York, NY, USA, 2020.
Association for Computing Machinery.

[69] Splash-3 Benchmark Suite. https://github.com/
SakalisC/Splash-3, accessed 2019-07-24.

[70] Brent Stephens, Aditya Akella, and Michael Swift.
Loom: Flexible and Efficient NIC Packet Scheduling. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 33–46, Boston,
MA, February 2019. USENIX Association.

[71] W. Su, L. Zhang, D. Tang, and X. Gao. Using
Direct Cache Access Combined with Integrated NIC
Architecture to Accelerate Network Processing. In
2012 IEEE 14th International Conference on High
Performance Computing and Communication 2012
IEEE 9th International Conference on Embedded
Software and Systems, pages 509–515, June 2012.

[72] Roman Sudarikov and Patrick Lu. Hardware-Level
Performance Analysis of Platform I/O, June 2018.
https://dpdkprcsummit2018.sched.com/event/
EsPa/hardware-level-performance-analysis-
of-platform-io, accessed 2019-07-24.

[73] Supermicro. 1028UX-LL1-B8, 1028UX-LL2-B8,
and 1028-LL3-B8 User’s Manual. https://www.
supermicro.com/manuals/superserver/1U/MNL-
1886.pdf, accessed 2019-07-24.

[74] Supermicro. 6028UX-TR4 User’s Manual.
https://www.supermicro.com/manuals/
superserver/2U/MNL-1706.pdf, accessed 2019-07-
24.

[75] D. Tang, Y. Bao, W. Hu, and M. Chen. DMA cache:
Using on-chip storage to architecturally separate I/O
data from CPU data for improving I/O performance. In
HPCA - 16 2010 The Sixteenth International Symposium
on High-Performance Computer Architecture, pages 1–
12, Jan 2010.

[76] Mohammadkazem Taram, Ashish Venkat, and Dean
Tullsen. Packet Chasing: Spying on Network Packets
over a Cache Side-Channel, 2019. https://arxiv.
org/pdf/1909.04841.pdf, accessed 2019-09-15.

[77] Mohammadkazem Taram, Ashish Venkat, and Dean
Tullsen. Packet Chasing: Observing Network Packets
over a Cache Side-Channel. In Proceedings of the 47th

688 2020 USENIX Annual Technical Conference USENIX Association

https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://github.com/SakalisC/Splash-3
https://github.com/SakalisC/Splash-3
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://www.supermicro.com/manuals/superserver/1U/MNL-1886.pdf
https://www.supermicro.com/manuals/superserver/1U/MNL-1886.pdf
https://www.supermicro.com/manuals/superserver/1U/MNL-1886.pdf
https://www.supermicro.com/manuals/superserver/2U/MNL-1706.pdf
https://www.supermicro.com/manuals/superserver/2U/MNL-1706.pdf
https://arxiv.org/pdf/1909.04841.pdf
https://arxiv.org/pdf/1909.04841.pdf

International Symposium on Computer Architecture,
ISCA ’20, New York, NY, USA, 2020.

[78] Arash Tavakkol, Aasheesh Kolli, Stanko Novakovic,
Kaveh Razavi, Juan Gómez-Luna, Hasan Hassan,
Claude Barthels, Yaohua Wang, Mohammad Sadrosa-
dati, Saugata Ghose, Ankit Singla, Pratap Subrah-
manyam, and Onur Mutlu. Enabling Efficient RDMA-
based Synchronous Mirroring of Persistent Memory
Transactions. CoRR, abs/1810.09360, 2018.

[79] Temporary PCIe Bandwidth Drops on Haswell-v3.
https://software.intel.com/en-us/forums/
software-tuning-performance-optimization-
platform-monitoring/topic/600913, accessed
2019-07-24.

[80] Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker,
and George Porter. Dark Packets and the End of Network
Scaling. In Proceedings of the 2018 Symposium
on Architectures for Networking and Communications
Systems, ANCS ’18, pages 1–14, New York, NY, USA,
2018. ACM.

[81] Shelby Thomas, Geoffrey M. Voelker, and George
Porter. CacheCloud: Towards Speed-of-light Datacenter
Communication. In 10th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 18), Boston, MA,
July 2018. USENIX Association.

[82] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone,
Robert Soulé, and Noa Zilberman. The Case For In-
Network Computing On Demand. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 21:1–21:16, New York, NY, USA, 2019. ACM.

[83] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin
Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott
Shenker. ResQ: Enabling SLOs in Network Function
Virtualization. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 283–297, Renton, WA, April 2018. USENIX
Association.

[84] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx:
A SmartNIC-Driven Accelerator-Centric Architecture
for Network Servers. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’20, page 117–131, New York, NY, USA, 2020.
Association for Computing Machinery.

[85] X. Wang, S. Chen, J. Setter, and J. F. Martínez. SWAP:
Effective Fine-Grain Management of Shared Last-Level
Caches with Minimum Hardware Support. In 2017
IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 121–132, Feb
2017.

[86] Thomas Willhalm, Roman Dementiev, and Patrick
Fay. Intel Performance Counter Monitor - A
Better Way to Measure CPU Utilization, Jan 2017.
https://software.intel.com/en-us/articles/
intel-performance-counter-monitor, accessed
2019-07-24.

[87] Henry Wong. Intel Ivy Bridge Cache Replacement
Policy. http://blog.stuffedcow.net/2013/01/
ivb-cache-replacement/, accessed 2019-07-24.

[88] Xeon E5 disable DDIO in OS? https://forums.
intel.com/s/question/0D50P0000490VP0SAM/
xeon-e5-disable-ddio-in-os?language=en_US,
accessed 2019-07-24.

[89] Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu
Wang, Yingwei Luo, and Zhenlin Wang. DCAPS:
Dynamic Cache Allocation with Partial Sharing. In
Proceedings of the Thirteenth EuroSys Conference,
EuroSys ’18, pages 13:1–13:15, New York, NY, USA,
2018. ACM.

[90] Cong Xu, Karthick Rajamani, Alexandre Ferreira,
Wesley Felter, Juan Rubio, and Yang Li. dCat: Dynamic
Cache Management for Efficient, Performance-sensitive
Infrastructure-as-a-service. In Proceedings of the
Thirteenth EuroSys Conference, EuroSys ’18, pages
14:1–14:13, New York, NY, USA, 2018. ACM.

[91] M. Xu, L. Thi, X. Phan, H. Y. Choi, and I. Lee. vCAT:
Dynamic Cache Management Using CAT Virtualization.
In 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 211–222, April
2017.

[92] Yifan Yuan, Yipeng Wang, Ren Wang, and Jian Huang.
HALO: Accelerating Flow Classification for Scalable
Packet Processing in NFV. In Proceedings of the 46th
International Symposium on Computer Architecture,
ISCA ’19, pages 601–614, New York, NY, USA, 2019.
ACM.

[93] Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. A
Closer Look at NFV Execution Models. In Proceedings
of the 3rd Asia-Pacific Workshop on Networking 2019,
APNet ’19, pages 85–91, New York, NY, USA, 2019.
ACM.

[94] N. Zilberman, Y. Audzevich, G. A. Covington, and
A. W. Moore. NetFPGA SUME: Toward 100 Gbps
as Research Commodity. IEEE Micro, 34(5):32–41,
Sep. 2014.

USENIX Association 2020 USENIX Annual Technical Conference 689

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/600913
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/600913
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/600913
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
https://forums.intel.com/s/question/0D50P0000490VP0SAM/xeon-e5-disable-ddio-in-os?language=en_US
https://forums.intel.com/s/question/0D50P0000490VP0SAM/xeon-e5-disable-ddio-in-os?language=en_US
https://forums.intel.com/s/question/0D50P0000490VP0SAM/xeon-e5-disable-ddio-in-os?language=en_US

sRDMA — Efficient NIC-based Authentication and Encryption
for Remote Direct Memory Access

Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler
Department of Computer Science, ETH Zurich

Abstract
State-of-the-art remote direct memory access (RDMA) tech-
nologies have shown to be vulnerable against attacks by in-
network adversaries, as they provide only a weak form of
protection by including access tokens in each message. A
network eavesdropper can easily obtain sensitive information
and modify bypassing packets, affecting not only secrecy but
also integrity. Tampering with packets can have drastic con-
sequences. For example, when memory pages with code are
changed remotely, altering packet contents enables remote
code injection. We propose sRDMA, a protocol that provides
efficient authentication and encryption for RDMA to prevent
information leakage and message tampering. sRDMA uses
symmetric cryptography and employs network interface cards
to perform cryptographic operations. Additionally, we pro-
vide an implementation for sRDMA using programmable
network adapters.

1 Introduction

Despite numerous state-of-the-art systems [8, 11, 30] lever-
aging remote direct memory access (RDMA) primitives to
achieve high performance guarantees and resource utilization,
current RDMA technologies lack any form of cryptographic
authentication or encryption. Instead RDMA mechanisms
provide a weak form of protection by including access tokens
in each message. Given that RDMA networks are mainly used
in data-center environments and at large-scale deployments,
detecting bugged wires is seemingly impossible. But not only
in-network adversaries are an issue, also malicious end hosts
can affect the security of an RDMA network. If an adver-
sary is able to obtain control over a machine in an RDMA
network (e.g., by escaping its virtual machine or hypervisor
confinement in a cloud service [42]), it can fabricate and in-
ject arbitrary packets. If the adversary can guess or obtain the
protection domain and memory protection tokens (which are
transmitted in plaintext), it can read and write memory loca-
tions that have been exposed using RDMA on any machine

in the network, leading to a powerful attack vector for lateral
movement in a data center network.

Given these threats, the security of current RDMA data
center networks highly depends on isolation. However, even
isolation cannot defend against in-network attackers. Thus,
RDMA networks require cryptographic authentication and
encryption. Unfortunately, application-level encryption (e.g.,
TLS [34]) is not possible, since RDMA read and write can
operate as purely one-sided communication routines. Further-
more, such an approach requires employing a temporal buffer
for incoming encrypted messages. The message would then
be decrypted by the CPU and copied to the desired location,
which would cause high overhead—negating RDMA’s advan-
tages. Additionally, cryptographic protection using IPSec [10]
does not support RDMA traffic as the protocol is unaware
of the underlying RDMA headers and achieves no source
authentication (see Section 7).

In our work, we introduce a secure RDMA (sRDMA) de-
sign using a secure reliable connection (SRC) queue pair
(QP) that uses symmetric cryptography for source and data au-
thentication and employs Network Interface Cards (NICs) to
perform cryptographic operations. Symmetric cryptography
reduces the computational overhead compared to asymmetric
cryptography by 3–5 orders of magnitude. Thus, it is suitable
for high-performance and low-latency applications based on
RDMA, e.g., [8, 17, 39]. Since symmetric cryptography in-
troduces per-connection memory overhead and memory on
NICs is constrained, we augment our proposed mechanisms
using protection domain level keys and efficient dynamic
key derivation, which eliminates the need for storing QP-level
keys and drastically reduces the memory overhead on RDMA-
capable NICs (RNICs). Additionally, we propose extended
memory protection mechanisms that enable delegation of
memory access to other trusted peers without requiring addi-
tional communication with the accessed host (e.g., an access
control proxy for databases [29]).

In summary, we make the following contributions:
• we design a SRC QP that effectively prevents attacks in

an RDMA network, with minimal changes to the current

USENIX Association 2020 USENIX Annual Technical Conference 691

InfiniBand Architecture (IBA) standard (Section 4.2);
• we improve our design by introducing PD-level keys to

reduce the memory overhead on the RNIC (Section 4.5),
and augment IBA with extended memory protection that
enables delegation of memory accesses to third parties
without the need of direct communication to the target
entity (Section 4.6);

• we provide an implementation of our design using
modern programmable network adapters equipped with
ARM multi-core processors [7, 40] (Section 5);

• we extensively evaluate our design using artificial and
real-world traces. Additionally, we modified the RDMA-
based key value store, HERD [17], to make use of
sRDMA (Section 6).

2 Remote Direct Memory Access

RDMA is a mechanism allowing one machine to directly
access data in remote machines across the network.

Memory accesses are performed using dedicated hardware
without any CPU intervention or context switches, which de-
creases CPU usage on both the initiator and the target. When
an application performs an RDMA read or write request, the
application data is delivered directly to the network, reducing
latency and enabling fast message transfer. RDMA also ex-
hibits the concept of one-sided operations when the CPU at a
target node is not notified of incoming RDMA requests.

Several network architectures support RDMA: InfiniBand
(IB) [4] , RDMA over Converged Ethernet (RoCE) [5], and in-
ternet Wide Area RDMA Protocol (iWARP) [33]. InfiniBand
is a network architecture fully designed to enable reliable
RDMA with its own hardware and protocol specification.
RoCE is an extension to Ethernet to enable RDMA over an
Ethernet network. Finally, iWARP is a protocol that allows
using RDMA over TCP/IP. In this work, we focus on the
InfiniBand architecture (IBA) and RoCE as they are the most
widely used interconnect for RDMA, but the proposed ideas
can be easily extended to other RDMA architectures.

2.1 InfiniBand Transport
Several transport types are supported by the IBA to communi-
cate between endpoints: reliable connection (RC), unreliable
connection, unreliable datagram, extended reliable connec-
tion, and raw packet. In this paper, we only consider the RC
transport type, since it is the only type that supports both
RDMA read and write requests.

The RC transport type establishes a queue pair (QP) be-
tween the two communicating parties. QPs are bi-directional
message transport engines used to send and receive data in
InfiniBand. Endpoints of a single RC QP can only commu-
nicate with each other but not with any other QP in the same
or any other target adapter. Each QP endpoint has a queue
pair number (QPN) assigned by the RNIC which uniquely
identifies the QP within the RNIC.

The RC transport uses several techniques to ensure reliabil-
ity. The target must respond to each request packet with a pos-
itive acknowledge packet or a negative acknowledge packet.
The acknowledgement-based protocol permits the requester
to verify that all packets are delivered to the target. To ensure
the integrity of a packet, each packet contains two checksums
that are verified by the target node. Finally, the RNIC counts
received and sent packets using a packet sequence number
(PSN), which is included in each packet. Thus, endpoints of
a QP must know the PSN of each other to enforce in-order
delivery and detect duplicate and lost packets.

2.2 IBA Memory Protection
The IBA protection mechanisms provide protection from
unauthorized access to the local memory by network con-
trollers. The local memory can also be protected against pro-
hibited memory accesses. Three mechanisms exist to enforce
memory access restrictions: Memory Regions, Protection Do-
mains (PD), and Memory Windows.

Memory Regions. To get access to host memory, the RNIC
must first allocate a corresponding memory region. This pro-
cess involves copying page table entries of the corresponding
memory to the memory management unit of the RNIC. When
a memory region is created, the RNIC generates keys for local
and remote accesses, namely l_key and r_key. The memory
region can be accessed by any local QP which has the l_key
as long as they are in the same PD, and by their remote QP
endpoints which have the r_key. The endpoints must prove
the possession of this key by including it in every RDMA
request, such as RDMA Write and Read. r_key is not used in
any form of cryptographic computation, but rather is used as
access tokens that are transmitted in plaintext.

Protection Domain. PDs provide protection from unautho-
rized or inadvertent use of memory regions. PDs group IB
resources such as QP connections and memory regions that
can work together: QP connections created in one PD can-
not access memory regions allocated in another PD. In other
words, a memory region can be accessed by any QP from its
PD. All QPs and memory regions must have a PD and can be
a member of one PD only.

Memory Windows. Memory windows extend protection of
memory regions by allowing remote QPs to have different
access rights within a memory region and grant access to only
a slice of the memory region.

3 Problem Definition

This section describes the adversary model we consider, out-
lines different types of attacks, and the security properties we
strive to achieve.

3.1 Desired Security Properties
The current IBA protection mechanisms do not suffice to
ensure secure communication between endpoints, allowing

692 2020 USENIX Annual Technical Conference USENIX Association

adversaries numerous attacks. Thus, the primary goal of our
work is to secure RDMA protocols against attacks by provid-
ing source and data authentication along with data secrecy
and data freshness. Source authentication denotes the verifi-
cation of the source address of a host that sends a packet and
is designed to determine whether a packet originated from the
claimed source. Data authentication ensures that the packet
content has not been modified. Data secrecy ensures that the
data remains hidden from a network eavesdropper. Data fresh-
ness ensures that data has not been recorded and replayed by
a network attacker. Additionally, our proposal should require
minimal changes to the protocol, and introduce only a minor
performance overhead. This does not only include latency
and processing overhead for RDMA requests but also memory
state overhead on the RNIC.

3.2 Adversary Model

In our adversary model we consider end hosts that are
equipped with RNICs and interact with each other through
RDMA, and an adversary with the following parameters.

Location. We assume that the adversary can reside at arbi-
trary locations within the network. Thus, we consider both
network-based adversaries (e.g., rogue cloud provider, rogue
administrator, malicious bump-in-the-wire device) and adver-
saries located at end hosts (e.g., compromise of an end host).
This includes compromise of the machines of communicat-
ing parties. However, we assume that RNICs are trusted by
their host. This could be achieved using remote attestation,
whereby a trusted party checks the internal state of a poten-
tially compromised network device. We further assume that
the internal bus is trusted, such that the CPU can securely
communicate with the RNIC.

Capabilities. A network-based adversary can passively
eavesdrop on messages, but also actively tamper with the
communication. Since RDMA communication is performed
in plaintext, an adversary that is located on the path between
communicating parties can obtain any information in all IB
and Ethernet headers. Furthermore, he can also alter any of
these values, as this only requires recalculation of packet
checksums, whose algorithms and seeds are known and spec-
ified by the IBA.

Given these capabilities, the adversary can also fabricate
packets and send them towards a destination of its choice
using spoofed QP numbers, r_keys, and PSNs (e.g., to mod-
ify a memory region without authorization to influence the
behavior of applications running on the remote host).

Cryptography. The adversary has no efficient way of break-
ing cryptographic primitives. For pseudorandom function
families, this means that no efficient algorithm can distin-
guish between an output of a function chosen randomly from
the pseudorandom function family (PRF) and a random value.

Table 1: Notation used in this paper.

‖ Bitstring concatenation
PRFK(·) Pseudorandom function using key K

MACK(·) Message authentication code using key K
A, B Endpoints uniquely identified by the combination of

the adapter port address (APA) and Queue Pair Num-
bers (QPN)

KA,B Symmetric key shared between node A and B
nonceA→B cryptographic nonce used for communication in the

direction from node A to node B
KPD, KMR,

KSR

Symmetric key used for protection domain, memory
region, or sub memory region

4 Secure RDMA System Design

We propose a new transport type for reliable communication
based on the IBA. We introduce a secure reliable connec-
tion (SRC) QP that uses symmetric cryptography for source
and data authentication, and thus provides guarantees for the
origin of a packet, data authenticity and payload secrecy.

To require minimal changes to the current IBA specifica-
tion, our proposed design of the SRC QP consists of two main
changes: 1) we add symmetric key initialization for QPs, and
2) we propose a new packet header called secure transport
header (STH) which contains a message authentication code
(MAC) providing integrity of the packet content. The STH
must be included in all requests and response packets corre-
sponding to RDMA reads and writes.

Besides basic QP-channel protection, we also propose PD
level protection eliminating the need for storing cryptographic
keys for each QP, which drastically reduces the memory over-
head on RNICs. Additionally, it enables extended memory
protection that provides memory access control based on en-
cryption and the ability of delegating memory access to other
trusted entities without additional communication to the ac-
cessed host. All QPs and memory regions created in a secure
PD will be inherently secured by it.

Table 1 lists the security-related notation used in this paper.

4.1 Assumptions
Trust in RNIC. We assume that the RNIC is trusted by its host.
It can not only perform authentication of outgoing packets,
but is also trusted to perform en-/decryption of the packet
payload. We further assume that the internal bus is trusted,
such that the CPU can securely communicate with the RNIC.

QP-level Key Establishment. Our system enables the estab-
lishment of a QP-level symmetric key. To guarantee interop-
erability, our design is agnostic of this underlying mechanism.
IBA could use for instance a (D)TLS [34] or QUIC [15] hand-
shake as a mechanism to obtain a QP-level symmetric key.

Key Validity. As the validity period of a QP-level symmet-
ric key is bound to the lifetime of a QP, key rollover can be
performed by closing and reopening a QP between the com-
municating entities. Thus, key lifetime can be managed on
the application level.

USENIX Association 2020 USENIX Annual Technical Conference 693

Size (bits) 0 96 128 160 224 256 384 512

Value 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

Table 2: Possible sizes of STH, depending on the 3 bit value
indicated in the Base Transport Header of an IB packet.

4.2 Secure Reliable Connection Queue Pair
We propose new transport type—Secure Reliable Connec-
tion (SRC) QP—that uses symmetric cryptography for source
and data authentication. The introduction of SRC requires
minimal changes to the current specification. Specifically, the
QP initialization requires specifying a protection algorithm
and a symmetric key. This allows us to bootstrap secrecy and
authentication for QP-based communication.

Secure Transport Header. Secure Transport Header (STH)
consists of MAC to provide header and packet authentication.
The STH must be included in all request and response packets
of sRDMA. Depending on the authentication mode installed
to the secure QP, the MAC either authenticates only the packet
header or the entire packet. To specify the length of the STH,
we use 3 (out of 7) reserved invariant bits in the Base Trans-
port Header. Based on the 3 bit value (see Table 2), the size of
the MAC changes: minimum 96 bits, and maximum 512 bits.
If the reserved 3 bits are all zero, then the STH is not present
in the packet, thereby enabling support of both classical and
secure QP connections.

Reusing PSN as a Per-Packet Nonce. sRDMA prevents
replay attacks by including a unique nonce in the MAC com-
putation of each packet (Section 4.3). Nonces are used as
initialization vectors for ciphers to ensure that every packet is
unique. They must only be used once, but their choice can be
predictable and they can be transmitted in clear [19, 37]. In
case a nonce is reused, the cryptographic properties of a cipher
are affected (e.g., “sudden death” property of Poly1305 [6]).

A naive solution is to transmit a nonce as cleartext with
each packet (e.g., as in TLS up to version 1.2 [36]). However,
this would incur an additional transmission overhead of at
least 64 bits, and additional 64 bits memory overhead on
RNICs memory to store the nonce.

To avoid the overhead of transmitting the nonce, our proto-
col takes advantage of the sequential nature of IB packets. It
uses the sequence number as nonces as they are tracked by end
points and can never be reused. The approach resembles how
TLS 1.3 [35] exploits the packet number as a nonce; however,
the size of the PSN in the IB packet is only 24 bits, which
would cause a reuse of a nonce after 80 ms assuming that an
RNIC is able to send 200 million packets per second [28].

sRDMA extends the local PSN counters for inbound and
outbound packets on the RNIC to 64 bits each, and reuse them
as a per-packet nonce, thereby introducing only 40 bits over-
head for each nonce. However, the size of the PSN transmitted
on the wire remains unchanged (24 bits) and contains the least
significant bits of the 64 bit counter. sRDMA is able to infer

Table 3: Overheads of sRDMA for N RC QP connections with
AES-128 cipher in 4 different protection modes. Here, pd-
prot and ext-mem stand for PD-level protection and extended
memory protection, and are described in Section 4.5 and 4.6.

AES-128 protection Key overhead Nonce Header

basic 16B * N 10B * N 16B
pd-prot 16B 10B * N 16B
ext-mem 16B * N + 16B 10B * N 16B
pd-prot + ext-mem 16B + 16B 10B * N 16B

the 64 bit nonce used to secure the packet using only the 24
bit PSN specified in the header. Under the same assumption
on the packet rate, the reuse of nonce occurs after 3,000 years.

To ensure that the nonce never gets reused by both end-
points, we use the most significant bit to identify the direction
of communication between the entities A and B using their
endpoint identifiers: the combination of adapter port address
and Queue Pair Number (QPN).

4.3 Header Authentication
To perform header authentication, sRDMA uses the estab-
lished symmetric keys and calculates a MAC for each packet:

machdr = MACKA,B(nonceA→B ‖ RH ‖ BTH)

Here, RH denotes the routing header, which defines the
adapter port address, and BT H the base transport header,
which includes destination QPN. Note that these headers
uniquely identify the sender and receiver RNIC, and limit the
input size of the MAC computation (only the packet header in-
stead of the entire packet with arbitrary payload length). Thus,
assuming an block-cipher-based MAC is used, a fixed number
invocations of the block-cipher are required to calculate a
MAC.

The RNIC of the receiving node will recompute the MAC
for each packet and compare it to the MAC appended in the
STH. Fields that are modified during the packet’s transmission
are replaced with ones during the MAC computation (same
as for invariant checksum).

Header authentication prevents not only source-address-
spoofing attacks, but also unauthorized access to memory
regions by augmenting the existing IBA memory-protection
mechanisms (i.e., r_key and memory windows).

4.4 Packet Authentication and Encryption
For packet authentication and payload encryption, we assume
that the RNIC is trusted. Thus, the host is allowed to offload
all cryptographic operations to the RNIC. We use authenti-
cated encryption with associated data (AEAD), to simultane-
ously obtain secrecy and authenticity for the payload. The
authentication tag is transmitted using the MAC field in the
STH.

694 2020 USENIX Annual Technical Conference USENIX Association

4.5 PD-level Protection
Introducing QP-level keys requires storing a 16 byte key per
QP (see Table 3). As an RNIC might have a large number
of QPs simultaneously, this can lead to a significant memory
overhead on the RNIC. Memory on RNICs is a constrained
resource, and a large part is consumed by IB connection con-
texts and page-table entries for registered memory. Multiple
works report significant performance degradation of RDMA
operations when the amount of memory registered or the
number of QPs is increased [11, 18]. This is due to the RNIC
running out of memory for storing page-table entries and start-
ing to fetch them from system memory across the PCI bus.
For instance, Dragojevic et al. [11] observe ~4x throughput
drop in their evaluation when 4,096 memory pages are regis-
tered within the RNIC compared to a single-page experiment.
Thus, we aim to mitigate the memory overheads introduced
by QP-level keys.

To reduce the memory overhead and eliminate the need
of storing a symmetric key per QP, we introduce PD-level
protection. In this mechanism, we assign a symmetric key KPD
to each protection domain PD and use this key to derive QP-
level keys using efficient key derivation [14]. PD-level keys
are exchanged using the same mechanism as QP-level keys
(see Section 4.1). The derivation process works as follows:

KA,B = PRFKPD(APAA ‖ QPNA ‖ APAA ‖ QPNB)

PRF denotes a pseudorandom function with a PD-level key
KPD and a pair of unique end point identifiers (i.e., adapter
port address (APA) and queue pair number (QPN)) as input.
When an RDMA request targets a QP that is located within
a protection domain PD, the RNIC uses the corresponding
symmetric key KPD to derive the QP-level key on-the-fly.
The QP-level key is then used to perform authentication and
encryption. Thus, instead of storing a symmetric key per QP,
the RNIC is only required to store a key per PD. To minimize
the processing overhead, the RNIC can cache the derived
QP-level keys (e.g., after the first packet of a message arrives).
KPD is initialized upon creation of the PD and thus the lifetime
of KPD is bound to the lifetime of the PD. In order to perform
a key rollover, a new protection domain must be created.

4.6 Extended Memory Protection
Using encryption of memory regions enables an even stronger
mechanism for access control, as only entities in possession
of the required key are able to read the content of a memory
region. For this purpose, we use PD-level memory protection
and derive memory level keys from KPD for memory regions
that are created within the protection domain. The derivation
process works as follows:

KMR = PRFKPD(STARTMR ‖ ENDMR ‖ r_keyMR)

Alternatively, the KMR can be provided by the application
to protect memory from unauthorized accesses.

KMR

KSR1

KSR2

KSR3

m m+8m+4
SR 2

SR 3SR 1

Figure 1: Access Sub-Delegation with one-way tree.

When remote parties want to access a subregion (SR) of
the region MR, they need to prove the possession of the KMR
by computing a key to the SR:

KSR = PRFKMR(STARTSR ‖ ENDSR) (1)

Nonce for Key Derivation. To avoid replay attacks, our
system must use a separate nonce for each memory region.
However, it is not possible to use a memory access counter as
nonce, as multiple QPs can access the same memory region.
Therefore, this would require the RNIC to include a random
nonce in each packet, which must be unique among all nonces
used to access the memory region. Given that multiple parties
have access to the region, this property is hard to achieve.
Additionally, we want to avoid transferring a separate MAC
for memory access in the packet header. Thus, we suggest to
reuse the MAC of the header by overwriting it as follows:

machdr = MACKA,B(KSR||machdr)

Such design allows sRDMA to reuse the per-packet nonce
used in computation of machdr and ensure the possession of
KMR to access memory. This construction is secure since the
key is unknown to an adversary.

4.7 Sub-Delegation of Access to Memory
To allow sub-delegation of access to memory regions, we
further extend the proposed extended memory protection with
a binary one-way function tree [26]. The one-way function
tree is built top-down where the memory region key KMR is
represented by the root of the binary tree and all child nodes
are generated by applying the PRF:

KMRchild = PRFKMRparent
(STARTMRchild ‖ ENDMRchild)

Each memory block represents a leaf of the binary one-way
tree (see Figure 1). Thus, the height of the tree depends on
the size of the region and on the memory block size. Dele-
gating access to a subregion works by sending the key of an
intermediate node to a remote party. Given the key for a mem-
ory region, the subregion offset and subregion size uniquely
identify which inner node is required for delegation.

USENIX Association 2020 USENIX Annual Technical Conference 695

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0
1
2
3
4
5
6
7
8
9

10

La
te

n
cy

 (
s)

Latency and throughput of memory key derivation

Tree depth

0K

400K

800K

1200K

1600K

2000K

2400K

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

latencythroughput

Figure 2: Performance of KMR derivation for different tree
depths. The derivation is performed sequentially, thus latency
grows linearly and the throughput decreases exponentially.

An example of the delegation process is illustrated in Fig-
ure 1. To obtain a key for subregion 3, the entity must derive
an intermediate key first, which can then be used to derive
KSR3 . To delegate access for subregion 2 to another host, a
host in possession of KSR1 derives KSR2 and then shares this
key with the delegated host. This allows access to subregion
2, but not to any other part of the memory region.

Only logarithmically many derivations are needed to obtain
a key for memory access. For example, a key for accessing a 1
MiB subregion of a 16 MiB memory region can be obtained in
at most 4 steps, which takes 2 µs on our RNIC (see Figure 2).
Additionally, to prevent long key derivation chains, sRDMA
allows users to limit the number of steps in the key derivation
process. The sub-delegation is optional and can be disabled
by restricting the tree depth to zero. In this case, the key
derivation works as in Equation 1.

Advantages. This approach offers multiple advantages: 1)
It trivially enables sub-delegation, as the delegated party can
also calculate inner nodes of the subtree that is rooted at the
subregion key. 2) The block size and thus the tree size is
variable and can be adjusted for each memory region, e.g.,
depending on window size, depth of sub-delegation, or com-
putational power of the corresponding nodes. This also allows
limiting the depth of the tree to restrict the computational
overhead. 3) The RNIC is required to compute only a single
branch of the tree to verify. 4) The larger the delegate memory
space, the smaller is the computational overhead on the RNIC.
5) The packet size remains constant as accessing a memory
subregion requires only the start and size of the region, the
offset and the size of subregion, and a MAC computed using
the appropriate key.

Restrictions. We restrict delegation to powers of two to
ensure that a single key is sufficient to delegate access to any
sub-region. Alternatively, a solution based on segment trees
would overcome this limitation, but require the exchange of
multiple keys.

5 Implementation

Towards our goal of supporting secure QP connections, this
section describes how we implement the sRDMA protocol
using modern programmable network adapters equipped with

ARM multi-core processors [7, 40]. sRDMA core primitives
are implemented in 3,500 lines of C++ code and rely on var-
ious libraries: libibverbs, an implementation of the RDMA
verbs; librdmacm, an implementation of the RDMA connec-
tion manager; Openssl 1.1.1a, a general-purpose cryptography
library; and libev, a high-performance event loop. Our im-
plementation supports more than 20 different cryptographic
algorithms, such as the AES cipher and SHA hash families,
to enable authentication and data secrecy for secure QPs. The
implementation, all tests, and benchmark scripts are available
in the open-source release.*

5.1 Notation and Experimental Setup
In the rest of the paper, we refer to a programmable network
adapter as a SmartNIC. Our SmartNIC is capable of running
a full Linux stack, supports RDMA over RoCEv2 and has
crypto acceleration enabled. When RDMA requests are ini-
tiated on the SmartNIC and target the local host we refer to
them as DMA requests as they only pass across the PCIe bus.

Our implementation is bi-directional, i.e., sRDMA writes
and reads can be sent in both directions passing through both
SmartNICs of the initiator and the target. Therefore, we dis-
tinguish between three roles as depicted in Figure 4: Initiator,
SmartNIC, and Target, and the initiator always communicates
with the target via two SmartNICs. Such a design allows full
offloading of cryptographic computations from the initiator
and the target to their respective SmartNICs.

5.2 Implementation of the Secure QP
We provide a library that models a secure QP connection
between an initiator and a target as three standard RC QPs:
one DMA connection between the SmartNIC and the host on
each endpoint, and one connection between the SmartNICs.

Connection Establishment. Our secure QP library encapsu-
lates connection establishment, which is performed in three
stages as for a classical RC QP. When an application wants to
establish a secure QP, it first creates a local QP in the INIT
state. In this state, the connection between the host and the
SmartNIC is created, and all necessary symmetric keys are
copied to the SmartNIC. Then the QP must be transitioned to
the RTR state by passing information about the target such as
the QPN, the LID, and the PSN. To perform this transition we
establish an RC QP connection between the two SmartNICs
and create a special connection context on each SmartNIC.
Finally, to send messages we transit the secure QP to the RTS
state by passing the local send PSN. The application workers
on the SmartNIC are responsible for packet counting, key
derivation, and cryptographic algorithms.

Memory Registration. When a memory region should be
secured with extended memory protection, the library inter-
cepts a memory registration request and sends memory region
information to a thread on the local SmartNIC.

*https://spcl.inf.ethz.ch/Research/Security/sRDMA/

696 2020 USENIX Annual Technical Conference USENIX Association

https://spcl.inf.ethz.ch/Research/Security/sRDMA/

yes yes
no

yes

yes

no
no

Incoming
packet

Drop
packet

Forward
packet

Key derivation
required?

Is payload
protected?yes

Calculate memory region
key from PD’s memory key

and append it to AEAD

no
decrypt
payload

Append payload
to AEAD

1. Create AEAD context with the key
2. Append nonce to AEAD input
3. Append header to AEAD input

Is payload
encrypted?

yes
no

no
Do MACs
match?

Derive key
from PD key

Is extended memory
protection enabled?

Take QP key

Is QP
secure?

Figure 3: RNIC packet processing on receive.

Secure QP communication. The initiator uses IB Send to
deliver packets for both sRDMA reads and writes to its Smart-
NIC. The SmartNIC uses IB Receive to receive incoming
packets from DMA connections and from remote SmartNICs.
The SmartNIC secures all incoming packets from a DMA
connection according to the cryptographic mechanism agreed
on with the target. To secure a packet, the SmartNIC appends
the IB transport and RDMA headers along with the generated
MAC to the packet header. In our implementation, we use IB
scatter/gather entries to attach an additional header before the
main payload provided by the initiator. Scatter/gather entries
allow building up an outgoing message from multiple buffers.
After that, the packets are forwarded to the SmartNIC of the
target QP. The target’s SmartNIC verifies the security header
as depicted in Figure 3, and decides on initiating an RDMA
Read or RDMA write depending on the type of the request to-
wards the target’s host. The replies from the target are secured
by its SmartNIC and forwarded back to the initiator.

sRDMA request completion. If the initiator expects an ac-
knowledgment for a signaled request, the SmartNIC is respon-
sible for acknowledging the initiator about the completion
of the request. We use IB requests with immediate data to
generate completion events on the host. The secure QP library
is able to intercept completion events to distinguish between
classical IB completions and sRDMA completions. The in-
tercepted sRDMA completions are modified to inform the
initiator about the sRDMA completion instead of the classical
IB completion.

Packet security. The whole process of packet verification
and key generation is shown in Figure 3. The SmartNIC per-
forms header authentication, packet authentication, or payload
encryption depending on which security protocol has been set
up for the QP and which packet is processed. The SmartNIC
will derive the QP’s key if the QP is initialized in a secure PD,
and also verify extended memory protection if the registered
memory region has extended memory protection set up. On
receiving, the SmartNIC also checks whether the QP is indeed
a secure QP, as our implementation also supports classical
insecure RC QPs. For insecure RC QPs, packets do not carry
a MAC and are always trusted by SmartNICs.

5.3 sRDMA requests
Figure 4(a) depicts the implementation of an sRDMA write.
The initiator ¶ sends a packet to the local SmartNIC con-
taining the payload and the remote memory address. The
local SmartNIC · appends the IB header and the STH and

Zero
Write

with IMM

Target server

SmartNIC Host

 Send
5) Write

6) Signal

4) Packet
validation

7) Packet
protection

Initiator server

SmartNICHost

 Packet
protection

9) Packet
validation

 Send

 Send

❿

❶ ❷ ❸ ❹ ❺

❻❼❽❾

(a) sRDMA writes

1 0) Write
(with IMM)

Target server

SmartNIC Host

1) Send
5) Read

6) Signal

4) Packet
validation

7) Packet
protection

Initiator server

SmartNICHost

2) Packet
protection

9) Packet
validation

3) Send

8) Send

❶ ❷ ❸ ❹ ❺

❻❼❽❾❿

(b) sRDMA reads

Figure 4: Implementation of RDMA operations.

¸ sends the secured packet to the remote SmartNIC. The
remote SmartNIC ¹ processes the header and º initiates
a signaled DMA write to the host memory specified in the
header. Upon » the completion of the DMA write, the Smart-
NIC, depending on whether the sRDMA write is signaled,
¼½ sends an authenticated Ack packet to the initiator’s Smart-
NIC. The SmartNIC of the initiator then ¾ verifies the packet
and ¿ performs an empty RDMA write with immediate data
to its host, which consumes one posted receive at the host
application. Finally, the secure QP interface intercepts such
completions and modifies them to notify the application about
the secure request completion.

sRDMA also implements secure Send operations which are
similar to sRDMA writes, but they always generate the com-
pletion on the target and do not require knowing destination
buffers. Since a Send request does not contain the header with
destination buffer, it does not support memory protection.

sRDMA read has a similar structure as an sRDMA write as
depicted in Figure 4(b) but there are some subtle differences.
The initiator ¶ sends the message containing remote and local
memory addresses and their r_keys to the local SmartNIC.
The initiator’s SmartNIC creates a special local read comple-
tion context with the initiator’s memory address where the
remote data must be copied to. Then the local SmartNIC ·¸
sends the authenticated read request to the remote SmartNIC,
which ¹ verifies the request and º initiates a signaled DMA
read from the target host memory to one of the SmartNIC’s
buffers. When » the completion of a DMA read is generated,

USENIX Association 2020 USENIX Annual Technical Conference 697

the SmartNIC ¼½ sends an authenticated read response with
read data to the initiator’s SmartNIC. The initiator’s Smart-
NIC ¾ verifies the MAC of response packets and decides
whether to ¿ write their content to the memory address spec-
ified in the matched local read completion context using a
DMA write request. The DMA write will be with immediate
data if the sRDMA read is signaled.

6 Evaluation

We conduct a series of benchmarks to thoroughly profile our
system. To evaluate the overall sRDMA performance and
the impact of cryptographic operations, we first evaluate the
performance of each cryptographic algorithm. Secondly, we
evaluate the latency and bandwidth of sRDMA writes and
reads to assess the overheads of secure QPs over insecure
QPs. Subsequently, we study the impact of bulk sRDMA op-
erations by measuring the achievable bandwidth for different
read/write ratios. Later, we evaluate the performance of the
HERD key-value store [17] to examine the impact of sRDMA.

Test settings. The experiments are conducted on two servers
directly connected to each other using the RoCEv2 proto-
col. These servers run Ubuntu 18.04.1 LTS with a 4.15.0-43-
generic Linux kernel. Each server is equipped with a Broad-
com PS225 25 Gbit/s programmable network controller. Both
network adapters have eight-core 64-bit ARM Cortex-A72 3.0
GHz processors and 8 GiB of dual-channel DDR4 DRAM.

6.1 Authentication performance
We first study the performance of the cryptographic engine
installed in the SmartNICs. We evaluate 7 different cryp-
tographic algorithms of the openssl 1.1.1a library for mes-
sage authentication: aes-128, aes-192, aes-256, chacha20-
poly1305, sha1-160, sha2-256, sha2-512.

Figure 5 depicts the achievable throughput in Gbit/s of
those algorithms for different numbers of threads and block
sizes. The line rate of the tested RNIC over the RoCEv2
protocol is 20.6 Gbit/s, which is goodput of 25 Gbit/s link.
AES algorithms are the fastest for small blocks and achieve
8 Gbit/s for 64 byte blocks using single thread. Thus, our
sRDMA library uses the AES128 algorithm as the PRF func-
tion needed for key derivation. For larger blocks hash-based
methods perform almost as fast as cipher-based algorithms.
We observe that chacha20-poly1305 is ~4x slower on average
than the AES algorithms. The data also reveals that we cannot
achieve the line rate for packet authentication with SHA512.

For varying key sizes of AES algorithms, we have not
noticed significant differences in performance and hereafter
report results exclusively for the AES128 algorithm. As
SHA1-based authentication provides similar performance as
SHA256 in all tests, we omit its data in all plots. Additionally,
we label chacha20-poly1305 in Figures as poly1305.

1
2
4
8
16
32
64
128 64 bytes block line rate 20.6 Gbit/s

1
2
4
8
16
32
64
128 1024 bytes block

1 2 3 4 5 6 7 8
of threads

1
2
4
8
16
32
64
128 2048 bytes block

Gbit/s

aes128 aes192 aes256 poly1305 sha1 sha256 sha512

Figure 5: Authentication performance using openssl.

6.2 Evaluation modes
All evaluations have been performed with no security enabled
(NO security) and in four protection modes:

No security. In No security mode RDMA reads and writes
are performed as described in Section 5.3 but with skipping
packet protection and validation (·¹¼¾ in Figure 4).

Basic mode. In basic mode the key is attached to the secure
QP connection directly, so the key is in the RNIC’s cache
when an incoming packet must be processed.

Pd-prot mode. The secure QP is created without an individ-
ual key, but in the secure PD (pd-prot) with a key derivation
algorithm. We consider the case when the RNIC does not
cache derived keys, and therefore, every time a packet arrives,
the RNIC must derive the QP key from the PD key. In these
experiments we want to show the performance of the system
with constant cache misses. Using the cache we expect the
same performance as in basic mode without key derivation.

Ext-mem mode. In this mode, the QP is created with an in-
dividual key and with extended memory protection (ext-mem)
enabled. Extended memory protection requires derivation of
memory level keys from a PD-level key. In this case, when a
packet arrives, the RNIC must generate a key to access mem-
ory specified in the RDMA header from the PD-level key and
include the generated key in MAC calculation. For this test
we also consider that the initiator has the primary memory key
which grants access to whole memory region, so the memory
key can be derived in one step (depth 0 in Figure 1).

Pd-prot + ext-mem mode. The last mode combines our two
protection methods: secure PD and extended memory protec-
tion (pd-prot + ext-mem). Therefore, the RNIC is responsible
for generating both keys when a packet should be processed.

6.3 Latency
To evaluate the overall sRDMA performance and the impact
of cryptographic operations, we split latency tests in two cate-

698 2020 USENIX Annual Technical Conference USENIX Association

sha256
sha512

aes128
poly1305

0

5

10

15

20

25

30

Write latency (RTT/2)us

NO Security

sha256
sha512

aes128
poly1305

Read latency (RTT)

basic pd-prot ext-mem pd-prot+ext-mem

Figure 6: Source authentication latency of reads
and writes carrying 32 Bytes payload.

32
128

512
2048

0
5

10
15
20
25
30
35
40

PCK sha256us

32
128

512
2048

PCK sha512

32
128

512
2048

PCK aes128

32
128

512
2048

PCK poly1305

32
128

512
2048

AEAD aes128

32
128

512
2048

AEAD poly1305

basic write

basic read

write+pd-prot

read+pd-prot

write+ext-mem

read+ext-mem

write+pd-prot+ext-mem

read+pd-prot+ext-mem

Figure 7: Latency of packet authentication (PCK) and encryption (AEAD)
as a function of payload sizes.

gories: header authentication only and full packet security.
Header authentication. Figure 6 presents the median la-

tency of sRDMA reads and writes in all four protection modes
for header authentication. The figure reports the median only
as for all measurements deviation from the median is less than
0.4 µs. All measurements are done for packets carrying the
payload of 32 bytes. sRDMA write latency is measured for
a half round trip, whereas sRDMA reads are for a full round
trip. The latency of sRDMA writes without security is 9.55
µs and of sRDMA reads is 18.2 µs which build the baseline
for our experiments.

Figure 6 shows that all tested security algorithms in the
first mode add about 0.9 µs for sRDMA writes which is ap-
proximately 9% more than the insecure version. Another
interesting observation is that the QP key derivation is more
expensive than memory key derivation. The difference stems
from the fact that a key-derivation process involves reinitial-
ization of cryptographic contexts and different algorithms
have different reinitialization performance (e.g., AES gen-
erates round keys [9]). The same phenomenon occurs for
sRDMA reads. As expected, the highest latency is achieved
for sRDMA operations with both key derivation and extended
memory protection.

Packet security. We evaluate the latency of packet authenti-
cation (PCK) and packet encryption (AEAD) for different pay-
load sizes and in four protection modes. Figure 7 illustrates
the median latency of sRDMA reads and writes for SHA256,
SHA512, AES128, and POLY1305. In each subplot, the top
four lines illustrate sRDMA read round-trip latency, and the
bottom four lines half-round-trip latency of sRDMA writes.

Figure 7 highlights that payload authentication is more
expensive than header authentication. It takes 15 µs to write
and secure 2 KiB payload in the first mode in comparison
to header authentication of the same packet with the median
of 12 µs. The graph also illustrates that latency increases for
both reads and writes with payload size as more data must
be authenticated. For AEAD, latency goes up even faster
with respect to payload size since more data is en-/decrypted.
As anticipated, SHA512 has the highest latency as the most
expensive algorithm. We observe that for smaller payload
sizes payload authentication and payload encryption achieves

approximately the same performance in terms of latency.

6.4 Bandwidth
We measure performance separately for sRDMA reads and
writes. As for latency benchmarks, all evaluations are per-
formed in four protection modes. Our implementation is multi-
threaded where each thread can process requests from a single
secure QP. The number of threads represents the number of
connections between endpoints. For n threads, each host es-
tablishes n secure connections with its SmartNIC, and Smart-
NICs establish n connections between each other. Thread
workers on a SmartNIC do not share any resources and are
pinned to distinct cores. In all evaluations the initiator issues
requests continuously to the target, but with a limited number
of outstanding requests (96 per connection). Once the initiator
receives the signal for an sRDMA request completion it posts
new requests to maintain 96 outstanding requests. The pay-
load size is 2,048 bytes and bandwidth is measured in Gbit/s
of goodput. We also assume the worst case scenario for the
secure PD mode (pd-prot): the RNIC derives the QP key from
the PD key for each packet. In other words, we consider the
case when the RNIC does not cache derived keys. The main
reason for that is that pd-prot mode with caching has the same
performance as basic mode.

Figure 8 depicts communication bandwidth for sRDMA
writes with different cryptographic algorithms. The black line
(NO) in the header column stands for sRDMA writes with no
security enabled. We observe that the single-threaded test with
no security achieves only 8 Gbit/s while the highest RDMA
goodput bandwidth achievable on our interconnect is 20.6
Gbit/s. The slowdown is caused by processing and parsing
headers of messages by the general purpose ARM CPUs of
the SmartNICs. Even if no security is enabled, a thread worker
reads and parses headers of incoming packets and, depending
on the operation code, initiates RDMA requests according to
our implementation described in Section 5.3. In our tests we
treat performance of secure operations with no security as the
baseline. The highest achievable goodput bandwidth with no
security is 20.5 Gbit/s which is line rate.

Figure 8 illustrates that sRDMA writes with header authen-
tication can achieve line rate in all four protection modes

USENIX Association 2020 USENIX Annual Technical Conference 699

5
10
15
20

Header AuthGbit/s Packet Auth AEAD

b
a
si

c

5
10
15
20

p
d

-p
ro

t

5
10
15
20

ex
t-

m
em

1 2 3 4 5 6 7 8
of threads

0
5

10
15
20

1 2 3 4 5 6 7 8
of threads

1 2 3 4 5 6 7 8
of threads

ex
t-

m
em

p
d

-p
ro

t

NO sha256 sha512 aes128 poly1305

Figure 8: Bandwidth of sRDMA Writes in four different pro-
tection modes, and with NO security enabled.

if we use all 8 threads. The slowest header authentication
is observed for SHA512 due to hashing performance. For
full packet authentication SHA512 reaches only a goodput
of 13 Gbit/s which is even slower than AEAD algorithms. In
the payload encryption mode, our implementation can also
achieve line rate for the SHA256 and POLY1305 algorithms.
AES128 based authentication achieves 19.6 Gbit/s which is
95% of the line rate. The data also demonstrates that key
derivation algorithms slow down sRDMA writes by 2 Gbit/s
on average. However, in header authentication mode all algo-
rithms can achieve 20 Gbit/s without performance loss when
all 8 threads are used. Another interesting observation is that
POLY1305 is faster than AES128 in packet-authentication
mode, but slower in packet-encryption one. In AEAD mode,
the highest write bandwidth of 19 Gbit/s is observed for the
AES128 algorithm.

We have performed a similar benchmark for sRDMA reads
in various protection modes. Results of our evaluations are
depicted in Figure 9. Again, the black line (NO) stands for
no security installed and represents the baseline for sRDMA
reads. sRDMA reads are more expensive than writes despite
the fact that they transfer the same amount of protected bytes
as signaled sRDMA writes. Both sRDMA operations require
six hops for a full round trip, and they both transfer the same
payload size but in different directions. For writes, data is sent
from the initiator to the target, and for reads from the target
to the initiator. The differences in performance stem from the
fact that an sRDMA read is a more complex operation than
an sRDMA write and requires to create a special read context
and matching it at initiator’s SmartNIC (see Section 5.3). In
addition, receive buffers on SmartNICs for reads and writes
have different lifetimes. For example, a receive buffer can
be released on the target SmartNIC once the completion of
the RDMA write is received (» in Figure 4(a)), however, for
reads the buffer on the target SmartNIC can be released once

5
10
15
20

Header AuthGbit/s Packet Auth AEAD

b
a
si

c

5
10
15
20

p
d

-p
ro

t

5
10
15
20

ex
t-

m
em

1 2 3 4 5 6 7 8
of threads

0
5

10
15
20

1 2 3 4 5 6 7 8
of threads

1 2 3 4 5 6 7 8
of threads

ex
t-

m
em

p
d

-p
ro

t

NO sha256 sha512 aes128 poly1305

Figure 9: Bandwidth of sRDMA Reads in four different pro-
tection modes, and with NO security enabled.

the completion of ½ is received from Figure 4(b). According
to the data, the highest achievable sRDMA read bandwidth
is 16.71 GBit/s for 8 threads and about 4.7 Gbit/s for single-
threaded test. Overall, our measurements indicate that reads
are 16% slower than writes for all tests due to the complexity
of sRDMA reads.

CPU Usage in Bandwidth Experiments. In our experiments,
sRDMA introduces no overhead on the host CPU usage as
packet processing is fully offloaded to the SmartNIC. The
host application only needs to submit an RDMA request to the
SmartNIC, which performs all cryptographic computations
as described in Section 5.3. The SmartNIC, on the other hand,
has full CPU usage in almost all experiments, which can be
observed in the inability of the majority of security schemes
to achieve line rate. The main reason for that is the SmartNIC
needs to load the incoming packets from its DRAM to the L1
cache of its CPU cores in order to process the packets depend-
ing on the installed security level. Thus, all protection levels
which require the CPU to read the whole packet have 800%
CPU usage for 8 worker threads, even though in authentica-
tion performance experiment (see Figure 5) all authentication
algorithms achieves the line rate for 2 KiB blocks. It comes
from the fact that the packet authentication and AEAD are
memory-bound problems, and, therefore, CPU works at full
capacity to copy the data to its caches.

Header authentication requires reading only the header
to authenticate the packet. Thus, header authentication algo-
rithms could achieve 100% of line-rate, although, the perfor-
mance still suffers from cache misses. The lowest CPU usage
is observed for AES128 authentication scheme, which is 440%
CPU usage for the bandwidth experiment with sRDMA Write
requests. The sRDMA reads, on other hand, consume almost
750% on the target SmartNIC.

700 2020 USENIX Annual Technical Conference USENIX Association

30K
60K
90K

120K
150K basic

req/sec

30K
60K
90K

120K
150K pd-prot

req/sec

30K
60K
90K

120K
150K ext-mem

req/sec

NO

HDR sha256

HDR sha512

HDR aes128

HDR poly1305

PCK sha256

PCK sha512

PCK aes128

PCK poly1305

AEAD aes128

AEAD poly1305

30K
60K
90K

120K
150K pd-prot + ext-mem

req/sec

0%/100% 5%/95% 50%/50% 95%/5% 100%/0%

Figure 10: Throughput of mixed read/write benchmark.

6.5 Mixed write/read workload
The results of Figure 8 and Figure 9 are valid for either
read-only or write-only workloads, which are uncommon for
read-world applications. Therefore, we measure the through-
put of sRDMA in a more realistic scenario as used in key-
value stores that exploit one-sided RDMA operations. Fig-
ure 10 shows the throughput for workloads with different
(read/write) ratios, including write only (0%/100%), write
mostly (5%/95%), equal-shares (50%/50%), read-mostly
(95%/5%) and read-only (100%/0%). The read-heavy work-
load is representative for applications such as photo tagging.
The update-heavy workload is typical for applications such as
an advertisement log that records recent user activities. In this
benchmark the payload size is 2,048 bytes, and sRDMA is
deployed with all 8 workers. We also consider the worst case
scenario for the secure PD mode (pd-prot), when the RNIC
derives the QP key for each packet. The pd-prot mode with
QP key caching has the same performance as basic mode.

Figure 10 illustrates that (5%/95%) workload performs
better than (0%/100%) one. The reason for that is better uti-
lization of the bi-directional connection between endpoints
since sRDMA writes send data from the initiator to the target,
whereas sRDMA reads from the target to the initiator. There-
fore, in that case we achieve a better utilization of the connec-
tion in the direction of the initiator. In theory, a (50%/50%)
ratio would lead to the highest throughput as both links would
be loaded evenly; however the lower performance of sRDMA
reads overwhelms benefits of the network utilization. For the
same reason, the throughput decreases for higher read ratios.

6.6 Key-value store workload
HERD [17] is an RDMA-accelerated key-value store which
uses a mix of RDMA write and IB send verbs. HERD uses
MICA’s [25] algorithm for both GETs and PUTs: each GET
requires up to two random memory lookups, and each PUT

get get
pd-prot

get
ext-mem

get
pd-prot
ext-mem

put put
pd-prot

put
ext-mem

put
pd-prot
ext-mem

50K

150K

250K

350K

450K
req/sec

tree depth ≈ 21

NO: 475K
NO: 492K

tree depth ≈ 20

HDR PCK AEAD

Figure 11: Throughput of the HERD kvs over sRDMA.

requires one. In HERD, clients transmit their request to the
server’s memory using RDMA writes, and get responses via
unreliable datagram QPs. To comply with our sRDMA design,
we made some changes to the original HERD implementa-
tion. First of all, we replace all unreliable datagram QPs with
RC QPs as they are not reliable and not point-to-point and
thus incompatible with sRDMA. That is, the server replies to
clients via RC QPs, but still uses IB Send verbs. For that, we
also implement secure SEND operations which are similar
to sRDMA writes, but they always generate the completion
on the target and do not require knowing destination buffers.
Since an IB Send request does not contain the header with
destination buffer, it does not support extended memory pro-
tection. The second change is that clients send requests via
reliable sRDMA writes instead of unreliable writes.

Key-value-store (KVS) experiments use one server ma-
chine and one client machine. The server machine has only
one worker process when the client machine has 8 processes.
Each client process establishes an sRDMA connection to
the server. The key size is 16 bytes and the value size is 32
bytes. Therefore, clients send and receive small messages of
less than 40 bytes. The KVS contains 8,388,608 keys and
occupies 1 GiB of memory. Figure 11 depicts the through-
put for puts and gets in different protections modes based on
the AES128 cipher. We also measure HERD’s throughput
with NO protection which is 475K req/sec for gets and 492K
req/sec for puts. Puts are faster than gets because they cause
fewer lookups in internal memory structures.

According to the data in Figure 11, basic packet authen-
tication without key-derivation algorithms achieves almost
the same throughput as the unprotected version. Interestingly,
even the AEAD mode decreases the throughput by 7.3%. In
the setting with a secure PD when the key must be generated
for each request, we observe a 21% slow down in both puts
and gets. It is worth mentioning that we intentionally derive
the QP keys for each request in the secure PD mode (pd-prot)
to see the effect of constant misses in QP keys. In real settings,
an RNIC would have a cache with generated keys to reduce
computation. In such case, the pd-prot mode has the same
performance as basic mode.

A drastic decrease in performance can be observed for
evaluations with enabled extended memory protection. The
reason for this is that HERD’s clients WRITE their GET

USENIX Association 2020 USENIX Annual Technical Conference 701

Table 4: Comp. of sRDMA to IPSec and TLS over RoCE.

Protocol
Sec.
comm.

IBA
supp.

One-sided
comm.

Hdr
overhead.

RDMA 7 3 3 -
IPSec 3 7 7 50-80 B
(d)TLS 3 7 7 25-40 B
[23, 24] 7 7 3 12-16 B
sRDMA 3 3 3 12-64 B

requests of 17 bytes and PUT requests of 40 bytes to the
contiguous memory region of 16 MiB on the server machine.
Therefore, it takes on average 20 steps for PUTs and 21 steps
for GETs to derive the memory MAC using our binary tree
approach, which causes such significant drop in performance.
To alleviate the problem, the depth of the tree can be limited to
0, and then the ext-mem would achieve the same performance
as the pd-prot case.

7 Related Work on Securing IBA

RFC 5042 [32] analyzes the security issues around uses of
RDMA protocols. It reviews various attacks against resources
including spoofing, tampering, information disclosure, and
DoS. As a countermeasure the authors suggest to employ
IPsec authentication and encryption [10]. However, IPSec cur-
rently does not support RDMA traffic, because it is unaware
of the encapsulated RDMA headers and thus cannot distin-
guish QP endpoints. A naive application of IPSec to RoCE
packets would not achieve source authentication as all RoCE
traffic is destined to the same UDP port (and not the QPN).
Thus, the use of IPsec would incur changes in the packet for-
mat, whereas sRDMA is supported by native IBA and RoCE.
Additionally, the complexity of IPsec and its high processing
overheads [31] make it ill-suited for high-performance and
low-latency applications and would introduce a header over-
head of 50-80 bytes [21]. While the IPsec-enabled Cavium
LiquidIO II [2] and Mellanox Innova [3] NICs support RoCE,
they do not support IPsec-based protection of RoCE packets.

Lee et al. [23,24] discuss security vulnerabilities in IBA and
show that they could be exploited by an adversary with mod-
erate overhead. The authors suggest to replace the Invariant
CRC field with a MAC to achieve packet authentication. Un-
fortunately, this might lead to routers dropping packets with
invalid ICRC, making the proposed solution incompatible
with legacy routers. Additionally, they discuss how IBA could
reduce its key exposure risk by introducing partition- and
queue-level key distributions. However, modifying partition-
level keys can lead to packets being dropped as they might be
used by routers and switches to enforce partitioning. Further-
more, their design uses the 24 bit PSN as a nonce which cause
a reuse of a PSN after 80 ms on modern RNICs [28]. Finally,

the authors provide no implementation of their system, but
rather simulate the performance of symmetric ciphers to show
that they are suitable for high performance networking.

RDMA Side-Channel Attack. Kurth et al. [22] have shown
that the Intel DDIO [1] and RDMA features facilitate a side-
channel attack named NetCAT. Intel DDIO technology allows
RDMA reads and writes access not only the pinned memory
region but also parts of the last level cache of the CPU. Net-
CAT remotely measures cache activity caused by a victim
SSH connection to perform a keystroke timing analysis. An
attacker can make use of the attack to recover words typed by
a victim client in the SSH session from another computer.

Tsai et al. [41] implemented a set of RDMA-based remote
sidechannel attacks that allow an attacker on one client ma-
chine to learn how victims on other client machines access
data. They further extend their work by building side-channel
attacks on Crail [38].

Using sRDMA a large attack surface could be removed by
permitting only trusted entities to initiate RDMA requests.

8 Conclusion

Using NIC-based authentication and encryption enables se-
cure communication for systems that require high perfor-
mance guarantees such as RDMA mechanisms. sRDMA pro-
vides strong authenticity and secrecy, and prevents several
forms of DoS attacks. Thus, safety- and security-critical ap-
plications that rely on RDMA must use sRDMA to prevent
attacks by malicious entities within the same network.

Our software implementation on the SmartNIC causes a
high load due to data movement overheads. The datapath
could be optimized with a different architecture using special-
ized programmable packet processing units [13, 20]. Further-
more, sRDMA could also be hardened into fixed logic as the
area and power consumption overhead are marginal compared
to regular input/output processing [12, 16, 27]. Additionally,
sRDMA minimizes memory consumption on the RNIC using
PD-level protection.

Acknowledgment

We thank our shepherd, Heming Cui, and the anonymous
reviewers for their helpful feedback. We thank Broadcom Inc.,
especially Fazil Osman, for the donation of two SmartNICs
as well as continuous support. We gratefully acknowledge
support from ETH Zurich, and from the Zurich Information
Security and Privacy Center (ZISC). Furthermore, we thank
for Microsoft Swiss Joint Research Centre for support.

References

[1] Intel® Data Direct I/O Technology Overview.
https : / / www . intel . co . jp / content / dam /

702 2020 USENIX Annual Technical Conference USENIX Association

https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf

www/public/us/en/documents/white-papers/
data-direct-i-o-technology-overview-paper .
pdf, 2019. [Accessed 15-May-2020].

[2] LiquidIO®II 10/25G Smart NIC Family.
https : / / www . marvell . com / documents /
08icqisgkbtn6kstgzh4/, 2019. [Accessed 15-
May-2020].

[3] Mellanox Innova-2 Flex Open Programmable SmartNIC.
https://www.mellanox.com/related-docs/prod_
adapter_cards/PB_Innova-2_Flex.pdf, 2019. [Ac-
cessed 15-May-2020].

[4] InfiniBand Trade Association et al. The InfiniBand
architecture specification. 2000.

[5] Infiniband Trade Association et al. Supplement to Infini-
Band Architecture Specification Volume 1, Release 1.2.
annex A16: RDMA over Converged Ethernet (RoCE),
2010.

[6] Daniel J Bernstein. The Poly1305-AES message-
authentication code. In International Workshop on Fast
Software Encryption, pages 32–49. Springer, 2005.

[7] Broadcom. Stingray 2x25Gb High-Performance Data
Center Smart NIC. https://www.broadcom.com/
products / ethernet-connectivity / smartnic /
ps225, 2019. [Accessed 15-May-2020].

[8] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient distributed
memory management with rdma and caching. Proc.
VLDB Endow., 11(11):1604–1617, July 2018.

[9] Joan Daemen and Vincent Rijmen. AES proposal: Rijn-
dael. 1999.

[10] Naganand Doraswamy and Dan Harkins. IPSec: the
new security standard for the Internet, intranets, and
virtual private networks. Prentice Hall Professional,
2003.

[11] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. Farm: Fast remote memory.
In Proceedings of USENIX Conference on Networked
Systems Design and Implementation, NSDI, pages 401–
414, 2014.

[12] Kris Gaj and Pawel Chodowiec. FPGA and ASIC im-
plementations of AES. In Cryptographic engineering,
pages 235–294. Springer, 2009.

[13] Torsten Hoefler, Salvatore Di Girolamo, Konstantin
Taranov, Ryan E Grant, and Ron Brightwell. spin: High-
performance streaming processing in the network. In

Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–16, 2017.

[14] Russell Impagliazzo, Leonid A Levin, and Michael Luby.
Pseudo-random generation from one-way functions. In
Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 12–24. ACM, 1989.

[15] Jana Iyengar and Martin Thomson. QUIC: A UDP-
Based Multiplexed and Secure Transport. Internet-Draft
draft-ietf-quic-transport-17, Internet Engineering Task
Force, December 2018. Work in Progress.

[16] Hyun-Wook Jin, Pavan Balaji, Chuck Yoo, Jin-Young
Choi, and Dhabaleswar K Panda. Exploiting nic ar-
chitectural support for enhancing ip-based protocols on
high-performance networks. Journal of Parallel and
Distributed Computing, 65(11):1348–1365, 2005.

[17] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using rdma efficiently for key-value services. In
Proceedings of ACM SIGCOMM, pages 295–306, 2014.

[18] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance rdma systems.
In Proceedings of the USENIX Annual Technical Con-
ference, ATC, pages 437–450, 2016.

[19] Jonathan Katz, Alfred J Menezes, Paul C Van Oorschot,
and Scott A Vanstone. Handbook of applied cryptogra-
phy. CRC press, 1996.

[20] Antoine Kaufmann, Simon Peter, Naveen Kr Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
performance packet processing with flexnic. In Proceed-
ings of the Twenty-First International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 67–81, 2016.

[21] Stephen Kent. IP authentication header. Technical
report, 2005.

[22] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical Cache Attacks from the Network. In S&P,
May 2020. Intel Bounty Reward.

[23] Manhee Lee and Eun Jung Kim. A comprehensive
framework for enhancing security in InfiniBand archi-
tecture. IEEE Transactions on Parallel and Distributed
Systems, 18(10), 2007.

[24] Manhee Lee, Eun Jung Kim, and Mazin Yousif. Security
enhancement in InfiniBand architecture. In Parallel and
Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pages 10–pp. IEEE, 2005.

USENIX Association 2020 USENIX Annual Technical Conference 703

https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.marvell.com/documents/08icqisgkbtn6kstgzh4/
https://www.marvell.com/documents/08icqisgkbtn6kstgzh4/
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225

[25] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. Mica: A holistic approach to fast in-
memory key-value storage. In Proceedings of USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI, pages 429–444, 2014.

[26] Chu-Hsing Lin. Dynamic key management schemes for
access control in a hierarchy. Computer communica-
tions, 20(15):1381–1385, 1997.

[27] Bin Liu and Bevan M Baas. Parallel AES encryption
engines for many-core processor arrays. IEEE transac-
tions on computers, 62(3):536–547, 2013.

[28] Mellanox. ConnectX-6 EN Single/Dual-Port
Adapter. https://www.mellanox.com/products/
infiniband-adapters/connectx-6, 2019. [Ac-
cessed 15-May-2020].

[29] B Clifford Neuman. Proxy-based authorization and
accounting for distributed systems. In Proceedings of
IEEE International Conference on Distributed Comput-
ing Systems-ICDCS, pages 283–291. IEEE, 1993.

[30] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego On-
garo, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang.
The ramcloud storage system. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, August 2015.

[31] Jungho Park, Wookeun Jung, Gangwon Jo, Ilkoo Lee,
and Jaejin Lee. Pipsea: A practical ipsec gateway on
embedded apus. In Proceedings of ACM Conference on
Computer and Communications Security, CCS, pages
1255–1267, 2016.

[32] J. Pinkerton and E. Deleganes. Direct Data Placement
Protocol (DDP) / Remote Direct Memory Access Proto-
col (RDMAP) Security. RFC 5042, October 2007.

[33] Renato Recio, Bernard Metzler, Paul Culley, Jeff Hil-
land, and Dave Garcia. A remote direct memory access
protocol specification. Technical report, 2007.

[34] E. Rescorla and N. Modadugu. Datagram Transport
Layer Security Version 1.2. RFC 6347, January 2012.

[35] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018.

[36] Eric Rescorla and Tim Dierks. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246, August
2008.

[37] Phillip Rogaway. Nonce-based symmetric encryption.
In International Workshop on Fast Software Encryption,
pages 348–358. Springer, 2004.

[38] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu
Stoica, Bernard Metzler, Nikolas Ioannou, and Ioannis
Koltsidas. Crail: A high-performance I/O architecture
for distributed data processing. IEEE Data Eng. Bull.,
40(1):38–49, 2017.

[39] Konstantin Taranov, Gustavo Alonso, and Torsten Hoe-
fler. Fast and strongly-consistent per-item resilience in
key-value stores. In Proceedings of EuroSys Conference,
EuroSys, pages 39:1–39:14, 2018.

[40] Mellanox Technologies. Mellanox BlueField Smart-
NIC. http://www.mellanox.com/related-docs/
prod_adapter_cards/PB_BlueField_Smart_NIC.
pdf, 2019. [Accessed 15-May-2020].

[41] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.
Pythia: remote oracles for the masses. In 28th USENIX
Security Symposium (USENIX Security 19), pages 693–
710, 2019.

[42] VMWare. ESXi VM and Hypervisor Escape Advisory.
https://blogs.vmware.com/security/2018/11/
vmware-and-the-geekpwn2018-event.html, 2019.
[Accessed 15-May-2020].

704 2020 USENIX Annual Technical Conference USENIX Association

https://www.mellanox.com/products/infiniband-adapters/connectx-6
https://www.mellanox.com/products/infiniband-adapters/connectx-6
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://blogs.vmware.com/security/2018/11/vmware-and-the-geekpwn2018-event.html
https://blogs.vmware.com/security/2018/11/vmware-and-the-geekpwn2018-event.html

UREQA: Leveraging Operation-Aware Error Rates for Effective Quantum
Circuit Mapping on NISQ-Era Quantum Computers

Tirthak Patel, Baolin Li, Rohan Basu Roy, and Devesh Tiwari
Northeastern University

Abstract
Noisy Intermediate-Scale Quantum (NISQ) computers
are enabling development and evaluation of real quan-
tum algorithms, but due to their highly erroneous nature,
careful selection of qubits to map the algorithm on to real
hardware is required to minimize the error rate of the al-
gorithm output. In this paper, we propose UREQA, a new
approach that introduces quantum-operation-aware error
rate prediction to minimize of output errors of quantum
algorithms running on NISQ devices.

1 Introduction
Noisy Intermediate-Scale Quantum (NISQ) computers
are enabling development and evaluation of quantum al-
gorithms in various domains including chemistry and
physics simulations, combinatorial and black-box opti-
mization, and quantum cryptography [16, 20]. A major
challenge toward increasing the practicality and wide-
adoption of quantum computing is the high error rate ob-
served on current NISQ devices, often orders of magni-
tude higher than the classical computing systems [16,20].
This challenge is likely to remain prevalent in the near-
term, and requires innovative techniques to mitigate the
side-effects of quantum errors [6, 12, 16, 20]. Next, we
provide a brief background of quantum computers, er-
rors, and algorithm execution.

Background and Problem Statement. In quantum
computers, a qubit is the fundamental unit, analogous
to a classical bit. A qubit state (|Ψ〉) can be expressed
as a superposition of the two basis states: |0〉 and |1〉.
More formally, |Ψ〉 = a |0〉+ b |1〉, where a and b are
complex numbers such that ‖a‖2 +‖b‖2 = 1. Due to the
quantum physical behavior of qubits, upon measurement,
this superposition collapses, and the qubit is found either
in state |0〉 (with probability ‖a‖2) or in state |1〉 (with
probability ‖b‖2). Multiple operations can be sequen-
tially performed on a set of qubits on a computer to run a
quantum algorithm. Upon the completion of the execu-
tion of a quantum algorithm, the qubit state is measured
for all qubits and the output is analyzed.

The qubit operations, referred to as quantum opera-
tions, are of three types: 1-qubit gates, 2-qubit gates and
readout. 1-qubit gates operates on a single qubit and
change the superposition state of the qubit. 2-qubit gates

H

H

Rx Rz

Rz H

H

M

MQubit 0

Qubit 1

Qubit 2

0

0

0
3.14

-1.57

1. Code Circuit for
nnQuantum Algorithm
2. Determine Optimal
nnCircuit Map
3. Execute Circuit

Classical Computer Quantum Computer

4. Wait for Results
5. Analyze Results

3.14
M

Figure 1: Execution flow of Quantum Phase Estimation (QPE)
algorithm mapped to a quantum circuit. Each horizontal line
represents a qubit, and each box represents a quantum opera-
tion. The time order of operations flows from left to right.

entangle two qubits and can change the state of the “tar-
get” qubit depending on the state of the “control” qubit
(Sec. 2 provides more details on these operations). The
readout operation simply refers to measuring a qubit’s
state. The readout operation is applied only at the end of
the execution as it destroys the qubit’s state. A quantum
algorithm is expressed as a sequence of gate operations
operating on multiple qubits. The mapping of a logi-
cal quantum algorithm on the physical qubits of a quan-
tum computer is referred to as a quantum circuit — a set
of quantum operations and the corresponding qubits on
which the operation is being performed. An example of
the execution of a quantum circuit is shown in Fig. 1.
This example circuit has three qubits all initialized to
the ground state |0〉. A few quantum gates are applied
to them (details provided in Sec. 2) and their states are
measured at the end and transferred over to a classical
computer. It is important to note that a single quantum
algorithm can map to multiple circuits in different ways
on the same computer, much like how a classical algo-
rithm can be executed on any permutation of transistors.

Unfortunately, qubits and operations on NISQ ma-
chines are highly error-prone and hence, quantum cir-
cuits have erroneous output. State-of-the-art approaches
carefully choose the qubits and operations with the low-
est overall error rate for determining the best circuit
map [3, 15, 18, 25–28, 31, 33]. Error rate of each opera-
tion is estimated based on the historical information (e.g.,
IBM calibrates and publishes error rate for all qubits of
a machine on a twice-a-day basis). Based on these er-
ror rates, a “good” circuit map is chosen to obtain an
outcome that has a high probability of being close to
the correct output. Estimating error rate correctly is
the key to choosing the optimal circuit map for a given

USENIX Association 2020 USENIX Annual Technical Conference 705

quantum algorithm. For example, if the estimated er-
ror rate of each qubit is significantly different than the
actual error rate when the circuit map is executed, then
these differences add up over the circuit map execution
and result in a significantly inaccurate outcome. There-
fore, previous works have focused on estimating the error
rates accurately and using that to find the optimal circuit
map [3, 15, 18, 25, 26, 28].

What is Missing from Existing Solutions? Current ap-
proaches use a single number to characterize the error
rate of a given qubit irrespective of the different quantum
operations being performed on the qubit [25, 26, 28, 31].
For the first time, we show that error rate is not only
qubit-specific, but also operation-specific (as explained
in Sec. 2, a 1-qubit gate can perform different types of
quantum operations on a single qubit). We show that
quantum error rates can vary significantly depending on
the specific quantum operation that is being performed,
even if other conditions are kept constant (i.e., the phys-
ical qubit and the machine). Some qubits with low ag-
gregate average error rate might experience high error
rate for specific quantum operations. Hence, these qubits
should be avoided for a circuit-map selection if a partic-
ular circuit consists of many such specific quantum op-
erations. The reason for this phenomena is the unstable
nature of current NISQ technology where qubits are erro-
neous and do not have consistent properties as different
qubits interact differently with external control and the
environmental features. This is the first work to discover
and leverage the above insight to choose better circuit
maps that lower the impact of quantum errors, and push
the state-of-the-art in improving the efficiency of quan-
tum algorithm execution on NISQ computers.

UREQA Solution. UREQA1 builds a data driven model
for correctly estimating the error rates of operations on
different qubits of a quantum computer, and then, lever-
ages this information to find the most optimized circuit
for a quantum algorithm. UREQA builds its error rate
prediction model by performing a large number of ex-
periments on real IBM NISQ computers. Our evaluation
shows that these error rate prediction methods are more
accurate than current state-of-the-art approaches of sim-
ply using a general error rate number periodically pub-
lished by the quantum computing platform provider.

To demonstrate UREQA’s effectiveness, we evaluate
UREQA for a diverse set of quantum benchmarks, con-
ducting experiments over more than 50 days on four dif-
ferent quantum computers in the IBM QX cloud. Our
results show that our operation-aware solution achieves
a small median prediction error rate of 1%. Using these
operation error-rate prediction models, UREQA’s opti-

1UREQA (Eureka) stands for utilizing operation-aware error rate
predictions (for better circuit mapping) on quantum computers.

Table 1: IBM QX quantum computers.
Online Date Computers (Num. Qubits)
Nov 06, 2018 Melbourne (14), Yorktown (5)
Jul 03, 2019 Ourense (5), Vigo (5)

Melbourne Yorktown Ourense & Vigo

Figure 2: Layout of IBM quantum computers. The circles rep-
resent qubits. The arrows show possible 2-qubit gates: the di-
rection points from control to target qubit.

mized circuit map selection achieves up to 15% reduc-
tion in error rate for a quantum algorithm, compared to
the current approaches which rely on a single aggregated
number for error rate estimation based on historical data.

UREQA’s quantum error prediction model and
circuit mapping framework is open-sourced at
https://github.com/GoodwillComputingLab/UREQA.

2 UREQA: The Solution
Background. This study is performed on the IBM Quan-
tum Experience (QX) - a public cloud service. We use
the IBM QX machines listed in Table 1. They cover a
diverse range of quantum architectures in terms of error-
rates, topology, and time of introduction (Fig. 2).

Quantum operations on these computers include both
the gate and readout operations. Primary 1-qubit gates
include the Hadamard (H) gate which puts the two ba-
sis states into equal superposition and the x-, y-, and z-
rotation gates (Rx, Ry, and Rz, respectively) which rotate
the qubit about the x-axis, y-axis and z-axis on the Bloch
Sphere, respectively. The Bloch Sphere is a unit sphere
with the |0〉 state represented as a vector pointing toward
the positive z-axis and the |1〉 state is represented on the
negative z-axis. The other two axis represent the qubit
phase. The qubit state vector can point anywhere on the
Bloch Sphere, but upon readout, it collapses to the posi-
tive (|0〉) or negative (|1〉) z-axis. As an example, Fig. 3
uses the Bloch Sphere to show the state changes after ap-
plying a H gate followed by a Rz gate with π rotation to a
single qubit. When the H gate is applied, the qubit state
vector points toward the positive x-axis and the qubit is
equally probable to be measured as |0〉 or |1〉. This prob-
ability of measurement remains the same even after a Rz
rotation is applied, except the qubit has a negative phase.

All 1-qubit gates have 2-qubit variants (CH, CRx, CRy
and CRz) where one qubit is the control and the other is
the target. The respective 1-qubit gate is applied to the
target qubit depending on the superposition of the control
qubit. In Fig. 1, the connection between qubit 0 and Rz
gate of qubit 1 means it is a CRz gate with qubit 0 as
control and qubit 1 as target.

These qubit operations can be erroneous. IBM’s qubits
are fixed-frequency superconducting Transmon qubits

706 2020 USENIX Annual Technical Conference USENIX Association

Figure 3: A qubit (green arrow tip) on a Bloch sphere. The
qubit in (a) first gets manipulated by an H gate to state in (b),
then by a Rz gate to state in (c).

Qubit 0

Qubit 1

Coupling
ResonatorReadout

Resonator

Readout
Resonator

Superconducting
Josephson Junction

Capacitor

Figure 4: Design of IBM’s superconducting qubits technology.

based on Josephson Junctions, and the Transmon fre-
quency is referred to as the qubit frequency. On IBM’s
quantum computers, the qubits are implemented using
Josephson Junctions created by separated superconduct-
ing electrodes and capacitors as shown in Fig. 4. 1-
qubit gates are performed by applying external controls
in the form of microwave pulses. Errors in applying these
pulses cause 1-qubit gate errors. Entanglement be-
tween two qubits is performed using coupling resonators.
These coupling resonators can be highly erroneous caus-
ing 2-qubit gate errors. Lastly, readout operation (or
qubit state measurement) is performed using readout res-
onators as shown in Fig. 4. The readout resonators are
also highly error-prone and cause readout errors when
qubit states are measured. In fact, other factors can also
affect error rates. Once initialized, a qubit can only re-
tain its state for a limited time (coherence time). There
are two types of coherence times: (1) The T1 coher-
ence time is associated with amplitude damping due to
the qubit’s natural energy decay to the ground state. (2)
The T2 coherence time is associated with phase damp-
ing due to environmental factors.

IBM’s computers are calibrated twice a day, and the
qubit coherence times change after each calibration. We
note that the error rates are determined when calibration
tasks are performed for all the operations of a quantum
computer. Calibration is the task of determining qubit
frequency and accordingly, setting the properties of the
microwave tone which changes the state of a qubit. Dur-
ing calibration, operation characteristics such as the fre-
quency of a qubit and the optimal microwave tone am-
plitude are determined based on new properties of the
qubit. These characteristics are then used to perform all
the operations. These new characteristics determine the
error rate of the operation. The effect of environmental
factors (such as the electromagnetic interference, fluctu-

|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩
State

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty
of

St
at

e Low Quality Circuit Map (CM) Optimal CM Correct Output

Figure 5: Choice of circuit map can greatly impact overall out-
put error: different circuit maps for the QPE algorithm.

ating temperature, or mechanical vibrations) is already
captured in the operation error rates. Coherence times
are also measured immediately after calibration is per-
formed. Note that regular circuits (jobs) cannot run on
machines when calibration is being performed. Thus,
it is impractical to constantly keep calibrating the ma-
chines, and hence, this practical constraint forces the cal-
ibration to be performed typically twice daily.

Current Efforts in Circuit Mapping. IBM posts a sin-
gle error number for all 1-qubit and 2-qubit gates for each
qubit twice a day. One solution to the aforementioned
circuit mapping problem can be to map quantum opera-
tions on qubits which have the minimum operation error
rates according to these posted numbers [10, 25, 26, 28].
The idea is to maximize the Estimated Success Proba-
bility (ESP) of a quantum circuit [25]. The ESP is cal-
culated as ∏

Ngates
i=1 gi ∗∏

Nreadout
j=1 m j, where g is the success

rate of gates and m is the success rate of readout (suc-
cess rate = 1 - error rate). The circuit map with highest
ESP is the optimal circuit map. Fig. 5 shows the im-
pact of choosing a low quality circuit map vs. an optimal
circuit map for executing the quantum phase estimation
(QPE) algorithm. The correct output of QPE has states
|100〉, |101〉, and |111〉 with probability 0.125, and state
|110〉 with probability 0.625. On real-systems, executing
a circuit map results in state probabilities that are dif-
ferent than the correct probabilities. Using the correct
probabilities as reference, the optimal circuit map has an
overall error of 6% (sum of errors of all states divided
by 2), while the low quality circuit has an overall error
of 28%. Thus, estimating the ESP of a circuit map ac-
curately (and hence, in turn estimating the error rate of
quantum operations) is critical for mitigating the side-
effects of erroneous quantum operations. However, cur-
rent approach of using the published numbers to estimate
the error rates implicitly assumes that all 1-qubit opera-
tions have uniform errors and that all 2-qubit operations
also have uniform errors. This is far from the actual be-
havior of errors as we show next.

Different quantum operations exhibit significant
variation in observed error rates. Fig.6 shows that
quantum errors are correlated with the specific type of
operation being performed (on the same qubit; results
are averaged over all available qubits and platforms for
simplicity). For example, on IBM computers Rz is imple-

USENIX Association 2020 USENIX Annual Technical Conference 707

H Rx Ry Rz CH CRx CRy CRz M
0

5

10

15
Er

ro
r

R
at

e
of

O
pe

ra
tio

n
(%

)

Figure 6: Different quantum operations can have significant
different error rates with a high degree of variance.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Qubit

0

5

10

15

Er
ro

r
R

at
e

of
R

x
O

pe
ra

tio
n

(%
)

Melbourne

0 1 2 3 4
Qubit

0

2

4

6

8 Vigo

Figure 7: Error rate of a quantum operation varies across ma-
chines and among qubits within the same machine.

mented as a simple frame change with no physical com-
putation; hence, it has close to 0 error rate. The H gate
also has a low error rate; however, the error rates of the
other two 1-qubit gates Rx and Ry are much higher. 2-
qubit gates like CH and CRz also have high error rates. It
is a conventional belief that 2-qubit gates have a higher
error rate than 1-qubit gates [10, 23, 27]. However, our
analysis reveals that while on average 2-qubit gates have
higher error rates than 1-qubit gates, certain types of 1-
qubit gates such as Rx and Ry have error rates comparable
to 2-qubit error rates and readout (M) error rate.

A potential reason for varying error rates among dif-
ferent quantum operations can be the difference in mi-
crowave tones that are applied to implement the opera-
tion on a gate. For example, an Rx gate with a π rotation
(on a single qubit) is applied using a Gaussian microwave
pulse of a certain calibrated amplitude A. On the other
hand, the H gate (also, on a single qubit) is implemented
using a Gaussian microwave pulse of half the amplitude
(A/2) and pre- and post- pulse frame changes. It can lead
to a lower error rate because its pulse has half the ampli-
tude of the Rx gate and the frame changes have zero er-
ror. Overall, this finding of operation-specific error rates
motivates the need for accounting for the operation type
when estimating the error rates.

Errors rates also vary temporally and spatially across
computers and qubits. In Fig. 6, the error bars show
the high standard deviation (variation) of operation error
rates across time. This situation is further exacerbated
by the fact that error rates for the same operation also
vary across different computers and qubits, as shown in
Fig. 7 for the Rx gate. The variation in the error rates
for Rx across different qubits is considerable and has not
decreased even in the newest IBM quantum computer,
Vigo. The error rates vary across qubits and across oper-
ations performed on the same qubit.

UREQA Overview. While using published errors does
offer simplicity, accurate estimation of ESP needs bet-

Collect qubit coherence
times, clock frequency, and

operation errors data

Train and
Optimize

KNN Models

Generate models for 1-
and 2- qubit gate errors,

and readout errors

Predict
operation
error rates

Select circuit map
with least estimated

error rates

Execute
quantum
algorithm

Training
Phase

Execution
PhaseU

R
EQ

A
 /

 U
R

EQ
A

+
+

Estimate
circuit map
error rates

Figure 8: Key steps in UREQAworkflow.

Table 2: Predictive features of different operations.
Operation Predictive Features

1-Qubit Gate Computer ID, Qubit T1 Coherence Time, Qubit T2 Coherence
Time, Qubit Frequency, Gate Type (H, Rx, Ry, Rz)

2-Qubit Gate Computer ID, Control Qubit T1 Coherence Time, Control
Qubit T2 Coherence Time, Control Qubit Frequency, Target
Qubit T1 Coherence Time, Target Qubit T2 Coherence Time,
Target Qubit Frequency, Gate Type (CH, CRx, CRy, CRz)

Measurement
(Readout)

Computer ID, Qubit T1 Coherence Time, Qubit T2 Coherence
Time, Qubit Frequency

ter prediction of operation error rates. The high degree
of instability and uncertainty makes it difficult to model
the behavior of these errors using analytical or rule-based
models. Therefore, UREQA takes a data-driven machine-
learning-based approach, as shown in Fig. 8. We develop
a data-driven model which helps perform accurate pre-
dictions of error rates of individual operations. Then,
when executing quantum algorithms, these pre-trained
models can be used to estimate circuit map error rates
and the best circuit map can thus be selected to execute
the algorithm with minimal errors.

UREQA Model Development. To collect the error rate
data for different types of operations, we developed mi-
cro benchmarks that perform a specific operation on ev-
ery qubit of all available quantum computers. For exam-
ple, to get the readout error, every qubit was measured
in its initialization state of |0〉 without running any gate
operation. To get the error of H, Rx, Ry, Rz, CH, CRx,
CRy, and CRz, the corresponding gate-operation was per-
formed, and result was measured and compared against
the ground truth. Our automated workflow collected over
20,000 samples. Each run consisted of 1024 trials —
multiple trials need to be conducted because the output
of a quantum circuit is probabilistic. Other data such
as coherence times and frequencies of individual qubits
were obtained from IBM’s daily calibration results.

The goal of model development is to predict the error
rate of a given operation given a set of predictive fea-
tures. A complete list of these features is provided in
Table 2 for the three types of quantum operations. For
example, given qubit 0 on Melbourne computer’s T1 co-
herence time, T2 coherence time, and frequency after to-
day’s calibration, predict its readout error rate. The pre-
dictive features are chosen based on their availability on
the IBM QX machines and based on their relevance to
the qubit operation (e.g., T1 coherence time of qubit 1 is
relevant to the 1-qubit error rate of the same qubit but not
to other qubits on the machine). Principle Component
Analysis (PCA) was performed to determine the features

708 2020 USENIX Annual Technical Conference USENIX Association

Table 3: Optimal parameters tuned for KNN learners.
Operation Number of

Neighbors
Distance
Metric

Distance
Weight

1-Qubit Gate 13 Euclidean Squared Inverse
2-Qubit Gate 31 Correlation Inverse
Readout 68 Jaccard Inverse

which contribute the most to the variance of the dataset
and the features shown in Table 2 were found to account
for more than 95% of all variance in the dataset.

After thorough experimentation and hyper-parameter
tuning, we assessed that k Nearest Neighbors (k-NN)
classification learner [1] was the best learning model for
error rate prediction – it has the lowest mis-classification
error. The output of a k-NN learner is a membership to a
class (class here refers to a particular error rate). A sam-
ple is classified by a plurality vote of its neighbors given
a set of predictors. The sample gets assigned the class
most common among its k nearest neighbors.

The hyper-parameter optimization of the k-NN learn-
ers was performed using Bayesian Optimization [21]
which builds a stochastic model of the parameter space
by progressively sampling parameters which have the
highest expected improvement based on the constructed
model. The parameters optimized include number of
nearest neighbors involved in the voting process, dis-
tance metric (e.g., Euclidean, Manhattan, etc.), and
distance weight (e.g., Equal, Inverse, etc.). Table 3
shows the optimal parameters obtained after perform-
ing Bayesian-Optimization-based hyper-parameter tun-
ing for the three error rate learners. 90% of the dataset
was used for training and 10% was used for testing. Data
was randomized so as to ensure that all quantum comput-
ers, qubits, and operation characteristics were included in
the training dataset. The training was performed using
5-fold cross validation [32] to avoid machine-learning
methodology pitfalls such as over-fitting the model.

Finally, we note that UREQA is practically feasible.
The model building and training can be completed within
a few days. This process needs to be invoked or refreshed
when significant architectural/operational changes are
introduced to a particular machine. UREQA’s result qual-
ity is not highly sensitive to the number of samples (e.g.,
an incremental improvement in result quality over 10,000
samples is limited). Note that the investment of one-
time 20,000 sample based training can potentially be
amortized over multiple months in choosing better cir-
cuit mappings which reduce the error rate.

3 UREQA: Evaluation and Analysis
Quantum Algorithms and Circuits. Real quantum
benchmark algorithms were programmed using Qiskit,
IBM’s python-based language for quantum circuits [2],
and executed on different IBM computers (benchmarks
are listed in Table 4). The results from these circuits are

Table 4: Quantum benchmarks used for evaluation.
Benchmark ID Benchmark description
BV 2 2-Qubit Bernstein-Vazirani [5]
BV 3 3-Qubit Bernstein-Vazirani [5]
QPE Quantum Phase Estimation [8]
SIA Simon’s algorithm [13]
HR8

xH Circuit to stress X gate errors (expected output |0〉)
RxHR8

xH Circuit to stress X gate errors (expected output |1〉)

0 1 2 3 4 5
Deviation from Observed

1-Qubit Gate Error Rate (%)

0.0
0.2
0.4
0.6
0.8
1.0

Em
pi

ric
al

C
D

F 1.0 2.9

Ureqa
Ureqa++

0 0.5 1 1.5 2 2.5
Deviation from Observed

2-Qubit Gate Error Rate (%)

1.0 1.4

Figure 9: The prediction quality is much better when operation-
aware predictor is used in UREQA++.

used to assess the improvement in circuit mapping due to
improved prediction power. Note that the training data of
individual operation execution and the assessment data
of execution of real quantum circuits were generated at
disjoint sets of time periods to avoid biasing the results.

The benchmarks are chosen to cover a diverse set
of quantum algorithm characteristics. For example, the
Bernstein-Vazirani (BV) benchmarks heavily use H and
Rz gates and the QPE benchmark has high number of 2-
qubit gates such as the CRz gates. Finally, two home-
grown benchmarks HR8

xH (H gate followed by 8 Rx
gates followed by H gate) and RxHR8

xH are used. These
benchmarks are designed to generate and test large 1-
qubit gate errors with a long sequence of Rx gates.

Evaluation Metrics. The prediction quality of a model
is assessed using deviation of the predicted value from
the observed value of the operation error rate. The ef-
fectiveness of a method’s prediction on real quantum al-
gorithms is assessed using the overall output error rate
when a circuit map is selected for an algorithm using the
prediction provided by a model/method.

Evaluated Techniques. (1) The base method: Best cir-
cuit map is selected by maximizing the ESP using the
operation errors posted by IBM as used in current ap-
proaches [10,25,26,28]. (2) UREQA: Best circuit map is
selected by predicting operation errors using k-NN mod-
els trained without using operation-specific information.
(3) UREQA++: Best circuit map is selected by predict-
ing operation errors using k-NN models trained with all
features including operation-specific information.

Including operation-specific information in the pre-
diction improves the prediction quality significantly.
Fig. 9 shows that when operation-specific information
(type of 1-qubit or 2-qubit gate) is included as the pre-
dictor, the prediction error is much lower on average. For
1-qubit gates, the median deviation from observed error
rate is only 1% with UREQA++ compared to 2.9% with

USENIX Association 2020 USENIX Annual Technical Conference 709

Ureqa Ureqa++
Melbourne

Ureqa Ureqa++
Yorktown

Ureqa Ureqa++
Ourense

Ureqa Ureqa++
Vigo

0

2

4

6

Av
g.

D
ev

ia
tio

n
fro

m
O

bs
er

ve
d

Er
ro

r
R

at
e

(%
) 1-Qubit Gate Error 2-Qubit Gate Error Readout Error

Figure 10: The prediction quality is good across different com-
puters with UREQA++.

BV 2 BV 3 BV 4 QPE HR8
xH RxHR8

xH
0

10

20

Er
ro

r
R

at
e

of
Q

ua
nt

um
C

irc
ui

t
(%

) Base Method Ureqa Ureqa++

Figure 11: Circuit maps selected using UREQA++ perform
much better as compared to other methods.

UREQA. We note that the CDF of UREQA++ has a much
steeper rise, indicating that the prediction error is smaller
for a large majority of test samples. Similarly, for 2-qubit
gates, the median deviation from observed error rate is
only 1% with UREQA++ and it is 1.4% with UREQA. As
our results show later, even this seemingly small differ-
ence has a compounded impact when these predictions
are used to estimate the error rate of an entire circuit be-
cause multiple operations are used in real quantum algo-
rithms. Note that both UREQA and UREQA++ are hyper-
parameter optimized using the Bayesian-Optimization-
based procedure described earlier. Thus, both models
are optimal for their given set of predictor features. Yet,
UREQA++ performs better as it is trained in an operation-
aware manner.

The deviation from observed value is small across dif-
ferent quantum computers when using UREQA and
UREQA++. Fig. 10 shows that UREQA and UREQA++
have another desirable result: the deviation from the ob-
served value is low across the four computers for all the
three types of operation errors. Melbourne has slightly
higher deviation from the observed error rates than other
computers because it has older and more unstable tech-
nology which makes error rates vary considerably. This
makes prediction difficult. For the other three computers,
the average deviation is less than 2% with UREQA++.

Quantum circuit error rate drops significantly when
the circuit map is chosen using predictions provided
by UREQA++. Fig. 11 shows error rates when the best
circuit maps to execute a quantum algorithm are selected
using different methods. UREQA achieves similar or sig-
nificantly better results in some cases (e.g., more than
10% in QPE) compared to the base method. The simi-
lar results are mostly due to the fact that both methods
do not consider operation-specific information. On the
other hand, UREQA++ performs much better across dif-

|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩
State

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty
of

St
at

e Base Method Ureqa Ureqa++ Correct Output

Figure 12: Overall output is much less erroneous with
UREQA++ and UREQA than with the base method.

ferent quantum algorithms, generally resulting in over 5-
15% improvement in the error rate compared to the base
method (e.g., BV 2, QPE, HR8

xH). UREQA++ is able to
achieve this low circuit error by producing output state
probabilities close to the correct output. Fig. 12 provides
an example of this for QPE, where evidently, the circuits
produced by the base method and UREQA have more
error from the correct output (Table 5) than UREQA++.
This demonstrates that the improved prediction quality
with UREQA++ when using operation-specific informa-
tion results in the selection of better circuit maps, which
ultimately reduces the side-effect of erroneous quantum
operations on current real quantum hardware.

Table 5: State error results for the QPE output in Fig. 12.
Method Error of Each State from the Correct Output (%) Overall

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉 Error (%)

Base 5.3 1.6 2.9 2.0 1.7 0.9 24.7 10.3 ∑/2 =24.7
UREQA 2.1 1.2 4.2 1.0 3.2 1.1 13.1 0.3 ∑/2 =13.1
UREQA++ 1.3 0.5 1.8 0.7 3.0 1.3 10.7 2.0 ∑/2 =10.7

4 Related Work and Conclusion
Quantum Error Correction. Previous works have pro-
posed algorithms for error correction in qubits which rely
on heavy computational requirements which are unavail-
able in the current NISQ computers [4, 7, 11, 14, 24, 29,
30]. Thus, these methods are not applicable to NISQ
technology, while UREQA++ helps reduce the error rate
of quantum algorithms executed on NISQ hardware.

Minimization of Error Rates. Many recent works
have employed approaches to mitigate the effects of er-
ror rates in quantum circuits via both online and of-
fline methods [3, 9, 10, 12, 15, 17–19, 22, 23, 23, 26, 27,
31, 33, 34]. These include optimizing circuit maps to
minimize error rates [23], migrating circuits to less-
erroneous qubits [34], and minimizing error-prone oper-
ations [31]. UREQA’s operation-aware circuit mapping
technique achieves up to 15% reduction in error rate for
quantum programs, compared to the current approaches.
UREQA’s open-source contribution pushes the state-of-
the-art in quantum error rate prediction to minimize er-
roneous output, which can be leveraged by the quantum
computing systems community.

Acknowledgment We are thankful to anonymous reviewers
and our shepherd, Srinivasan Narayanamurthy, for improving
the quality of this paper.

710 2020 USENIX Annual Technical Conference USENIX Association

References
[1] AHA, D. W., KIBLER, D., AND ALBERT, M. K. Instance-based

Learning Algorithms. Machine learning 6, 1 (1991), 37–66.

[2] ALEKSANDROWICZ, ET AL. Qiskit: An Open-source Frame-
work for Quantum Computing.(2019).

[3] ASH-SAKI, ET AL. QURE: Qubit Re-allocation in Noisy
Intermediate-Scale Quantum Computers. DAC.

[4] BENNETT, ET AL. Mixed-State Entanglement and Quantum Er-
ror Correction. Physical Review A 54, 5 (1996).

[5] BERNSTEIN, E., AND VAZIRANI, U. Quantum Complexity The-
ory. SIAM Journal on computing 26, 5 (1997).

[6] BRAVYI, ET AL. Trading Classical and Quantum Computational
Resources. Physical Review X 6, 2 (2016).

[7] BURNETT, ET AL. Decoherence Benchmarking of Superconduct-
ing Qubits. npj Quantum Information 5, 1 (2019).

[8] CLEVE, R., EKERT, A., MACCHIAVELLO, C., AND MOSCA,
M. Quantum Algorithms Revisited. Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and Engi-
neering Sciences 454, 1969 (Jan 1998).

[9] DAS, ET AL. A Case for Multi-Prog. Quantum Comps. MICRO.

[10] GOKHALE, ET AL. Partial Compilation of Variational Algo-
rithms for Noisy Intermediate-Scale Quantum Machines. MI-
CRO.

[11] HUANG, ET AL. Performance of Quantum Error Correction with
Coherent Errors. Physical Review A 99, 2 (2019).

[12] HUANG, ET AL. Statistical Assertions for Validating Patterns and
Finding Bugs in Quantum Programs. ISCA.

[13] KOIRAN, P., NESME, V., AND PORTIER, N. A Quantum Lower
Bound for the Query Complexity of Simon’s Problem. In Interna-
tional Colloquium on Automata, Languages, and Programming
(2005), Springer.

[14] LAYDEN, ET AL. Ancilla-Free Quantum Error Correction Codes
for Quantum Metrology. Physical review letters 122, 4 (2019).

[15] LI, G., DING, Y., AND XIE, Y. Tackling the Qubit Mapping
Problem for NISQ-Era Quantum Devices. ASPLOS.

[16] MARTONOSI, ET AL. Next Steps in Quantum Computing: Com-
puter Science’s Role. arXiv preprint arXiv:1903.10541 (2019).

[17] MAVADIA, ET AL. Prediction and Real-Time Compensation of
Qubit Decoherence via Machine Learning. Nature communica-
tions 8 (2017).

[18] MURALI, ET AL. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. ASPLOS.

[19] MURPHY, ET AL. Controlling Error Orientation to Improve
Quantum Algorithm Success Rates. Physical Review A 99, 3
(2019), 032318.

[20] PRESKILL, J. Quantum Computing in the NISQ Era and Beyond.
Quantum 2 (2018).

[21] SHAHRIARI, B., SWERSKY, K., WANG, Z., ADAMS, R. P.,
AND DE FREITAS, N. Taking the Human Out of the Loop: A
Review of Bayesian Optimization. Proceedings of the IEEE 104,
1 (2015), 148–175.

[22] SHI, ET AL. Optimized Compilation of Aggregated Instructions
for Realistic Quantum Computers. ASPLOS.

[23] SMITH, K. N., AND THORNTON, M. A. A Quantum Compu-
tational Compiler and Design Tool for Technology-Specific Tar-
gets. ISCA.

[24] SUN, ET AL. Experimental Quantum Error Correction with Bi-
nomial Bosonic Codes. In APS Meeting Abstracts (2019).

[25] TANNU, ET AL. Ensemble of Diverse Mappings: Improving Re-
liability of Quantum Comps. by Orchestrating Dissimilar Mis-
takes. MICRO.

[26] TANNU, ET AL. Mitigating Measurement Errors in Quantum
Computers by Exploiting State-Dependent Bias. MICRO.

[27] TANNU, ET AL. Not All Qubits are Created Equal: A Case for
Variability-Aware Policies for NISQ-Era Quantum Computers.
ASPLOS.

[28] TANNU, S. S., MYERS, Z. A., NAIR, P. J., CARMEAN, D. M.,
AND QURESHI, M. K. Taming the instruction bandwidth of
quantum computers via hardware-managed error correction. In
2017 50th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO) (2017), IEEE, pp. 679–691.

[29] TERHAL, ET AL. Scalable Quantum Error Correction with the
Bosonic GKP Code. In APS Meeting Abstracts (2019).

[30] VUILLOT, ET AL. Quantum Error Correction with the Toric
Gottesman-Kitaev-Preskill Code. Physical Review A 99, 3
(2019).

[31] WILLE, ET AL. Mapping Quantum Circuits to IBM QX Archi-
tectures Using the Minimal Number of SWAP and H Operations.
DAC.

[32] ZHANG, P. Model Selection via Multifold Cross Validation. The
Annals of Statistics (1993), 299–313.

[33] ZULEHNER, ET AL. An Efficient Methodology for Mapping
Quantum Circuits to the IBM QX Architectures. IEEE TCAD
(2018).

[34] ZULEHNER, A., AND WILLE, R. Compiling SU (4) Quantum
Circuits to IBM QX Architectures. ASPDAC.

USENIX Association 2020 USENIX Annual Technical Conference 711

Austere Flash Caching with Deduplication and Compression
Qiuping Wang†, Jinhong Li†, Wen Xia‡, Erik Kruus∗, Biplob Debnath∗, and Patrick P. C. Lee†

†The Chinese University of Hong Kong ‡Harbin Institute of Technology, Shenzhen ∗NEC Labs

Abstract
Modern storage systems leverage flash caching to boost I/O
performance, and enhancing the space efficiency and en-
durance of flash caching remains a critical yet challenging
issue in the face of ever-growing data-intensive workloads.
Deduplication and compression are promising data reduc-
tion techniques for storage and I/O savings via the removal
of duplicate content, yet they also incur substantial memory
overhead for index management. We propose AustereCache,
a new flash caching design that aims for memory-efficient
indexing, while preserving the data reduction benefits of dedu-
plication and compression. AustereCache emphasizes austere
cache management and proposes different core techniques for
efficient data organization and cache replacement, so as to
eliminate as much indexing metadata as possible and make
lightweight in-memory index structures viable. Trace-driven
experiments show that our AustereCache prototype saves
69.9-97.0% of memory usage compared to the state-of-the-art
flash caching design that supports deduplication and compres-
sion, while maintaining comparable read hit ratios and write
reduction ratios and achieving high I/O throughput.

1 Introduction
High I/O performance is a critical requirement for modern
data-intensive computing. Many studies (e.g., [1, 6, 9, 11, 20,
21, 24, 26, 31, 34, 35, 37]) propose solid-state drives (SSDs) as
a flash caching layer atop hard-disk drives (HDDs) to boost
performance in a variety of storage architectures, such as
local file systems [1], web caches [20], data centers [9], and
virtualized storage [6]. SSDs offer several attractive features
over HDDs, including high I/O throughput (in both sequential
and random workloads), low power consumption, and high
reliability. In addition, SSDs have been known to incur much
less cost-per-GiB than main memory (DRAM) [27], and such
a significant cost difference still holds today (see Table 1).
On the other hand, SSDs pose unique challenges over HDDs,
as they not only have smaller available capacity, but also
have poor endurance due to wear-out issues. Thus, in order
to support high-performance workloads, caching as many
objects as possible, while mitigating writes to SSDs to avoid
wear-outs, is a paramount concern.

We explore both deduplication and compression as data
reduction techniques for removing duplicate content on the
I/O path, so as to mitigate both storage and I/O costs. Dedu-
plication and compression target different granularities of
data reduction and are complementary to each other: while

Type Brand Cost-Per-GiB ($)
DRAM Crucial DDR4-2400 (16 GiB) 3.75

SSD Intel SSD 545s (512 GiB) 0.24
HDD Seagate BarraCuda (2 TiB) 0.025

Table 1: Cost-per-GiB of DRAM, SSD, and HDD based on
the price quotes in January 2020.

deduplication removes chunk-level duplicates in a coarse-
grained but lightweight manner, compression removes byte-
level duplicates within chunks for further storage savings.
With the ever-increasing growth of data in the wild, dedu-
plication and/or compression have been widely adopted in
primary [18, 23, 36] and backup [40, 42] storage systems. In
particular, recent studies [24, 26, 37] augment flash caching
with deduplication and compression, with emphasis on man-
aging variable-size cached data in large replacement units [24]
or designing new cache replacement algorithms [26, 37].

Despite the data reduction benefits, existing approaches
[24,26,37] of applying deduplication and compression to flash
caching inevitably incur substantial memory overhead due to
expensive index management. Specifically, in conventional
flash caching, we mainly track the logical-to-physical address
mappings for the flash cache. With both deduplication and
compression enabled, we need dedicated index structures to
track: (i) the mappings of each logical address to the physical
address of the non-duplicate chunk in the flash cache after
deduplication and compression, (ii) the cryptographic hashes
(a.k.a. fingerprints (§2.1)) of all stored chunks in the flash
cache for duplicate checking in deduplication, and (iii) the
lengths of all compressed chunks that are of variable size. It
is desirable to keep all such indexing metadata in memory
for high performance, yet doing so aggravates the memory
overhead compared to conventional flash caching. The ad-
ditional memory overhead, which we refer to as memory
amplification, can reach at least 16× (§2.3) and unfortunately
compromise the data reduction effectiveness of deduplication
and compression in flash caching.

In this paper, we propose AustereCache, a memory-
efficient flash caching design that employs deduplication and
compression for storage and I/O savings, while substantially
mitigating the memory overhead of index structures in similar
designs. AustereCache advocates austere cache management
on the data layout and cache replacement policies to limit
the memory amplification due to deduplication and compres-
sion. It builds on three core techniques: (i) bucketization,
which achieves lightweight address mappings by determinis-

USENIX Association 2020 USENIX Annual Technical Conference 713

tically mapping chunks into fixed-size buckets; (ii) fixed-size
compressed data management, which avoids tracking chunk
lengths in memory by organizing variable-size compressed
chunks as fixed-size subchunks; and (iii) bucket-based cache
replacement, which performs memory-efficient cache replace-
ment on a per-bucket basis and leverages a compact sketch
data structure [13] to track deduplication and recency patterns
in limited memory space for cache replacement decisions.

We implement an AustereCache prototype and evaluate
it through testbed experiments using both real-world and
synthetic traces. Compared to CacheDedup [26], a state-of-
the-art flash caching system that also supports deduplication
and compression, AustereCache uses 69.9-97.0% less mem-
ory than CacheDedup, while maintaining comparable read
hit ratios and write reduction ratios (i.e., it maintains the I/O
performance gains through flash caching backed by dedupli-
cation and compression). In addition, AustereCache incurs
limited CPU overhead on the I/O path, and can further boost
I/O throughput via multi-threading.

The source code of our AustereCache prototype is available
at: http://adslab.cse.cuhk.edu.hk/software/austerecache.

2 Background
We first provide deduplication and compression background
(§2.1). We then present a general flash caching architecture
that supports deduplication and compression (§2.2), and show
how such an architecture incurs huge memory amplification
(§2.3). We finally argue that state-of-the-art designs are lim-
ited in mitigating the memory amplification issue (§2.4).

2.1 Deduplication and Compression
Deduplication and compression are data reduction techniques
that remove duplicate content at different granularities.

Deduplication. We focus on chunk-based deduplication,
which divides data into non-overlapping data units called
chunks (of size KiB). Each chunk is uniquely identified by a
fingerprint (FP) computed by some cryptographic hash (e.g.,
SHA-1) of the chunk content. If the FPs of two chunks are
identical (or distinct), we treat both chunks as duplicate (or
unique) chunks, since the probability that two distinct chunks
have the same FP is practically negligible. Deduplication
stores only one copy of duplicate chunks (in physical space),
while referring all duplicate chunks (in logical space) to the
copy via small-size pointers. Also, it keeps all mappings of
FPs to physical chunk locations in an index structure used for
duplicate checking and chunk lookups.

Chunk sizes may be fixed or variable. While content-based
variable-size chunking generally achieves high deduplication
savings due to its robustness against content shifts [42], it also
incurs high computational overhead. On the other hand, fixed-
size chunks fit better into flash units and fixed-size chunking
often achieves satisfactory deduplication savings [26]. Thus,
this work focuses on fixed-size chunking.

Compression. Unlike deduplication, which provides coarse-
grained data reduction at the chunk level, compression aims
for fine-grained data reduction at the byte level by trans-
forming data into more compact form. Compression is often
applied to the unique chunks after deduplication, and the out-
put compressed chunks are of variable-size in general. For
high performance, we apply sequential compression (e.g.,
Ziv-Lempel algorithm [43]) that operates on the bytes of each
chunk in a single pass.

2.2 Flash Caching
We focus on building an SSD-based flash cache to boost the
I/O performance of HDD-based primary storage, by storing
the frequently accessed data in the flash cache. Flash caching
has been extensively studied and adopted in different storage
architectures (§7). Existing flash caching designs, which we
collectively refer to as conventional flash caching, mostly
support both write-through and write-back policies for read-
intensive and write-intensive workloads, respectively [22];
the write-back policy is viable for flash caching due to the
persistent nature of SSDs. For write-through, each write is
persisted to both the SSD and the HDD before completion; for
write-back, each write is completed right after it is persisted to
the SSD. To support either policy, conventional flash caching
needs an SSD-HDD translation layer that maps each logical
block address (LBA) in an HDD to a chunk address (CA) in
the flash cache.

In this work, we explore how to augment conventional
flash caching with deduplication and compression to achieve
storage and I/O savings, so as to address the limited capacity
and wear-out issues in SSDs. Figure 1 shows the architecture
of a general flash caching system that deploys deduplication
and compression. We introduce two index structures: (i)
LBA-index, which tracks how each LBA is mapped to the
FP of a chunk (the mappings are many-to-one as multiple
LBAs may refer to the same FP), and (ii) FP-index, which
tracks how each FP is mapped to the CA and the length of a
compressed chunk (the mappings are one-to-one). Thus, each
cache lookup triggers two index lookups: it finds the FP of an
LBA via the LBA-index, and then uses the FP to find the CA
and the length of a compressed chunk via the FP-index. We
also maintain a dirty list to track the list of LBAs of recent
writes in write-back mode.

We now elaborate the I/O workflows of the flash caching
system in Figure 1. For each write, the system partitions the
written data into fixed-size chunks, followed by deduplication
and compression: it first checks if each chunk is a duplicate;
if not, it further compresses the chunk and writes the com-
pressed chunk to the SSD (the compressed chunks can be
packed into large-size units for better flash performance and
endurance [24]). It updates the entries in both the LBA-index
and the FP-index accordingly based on the FP of the chunk;
in write-through mode, it also stores the fixed-size chunk
in the HDD in uncompressed form. For each read, the sys-

714 2020 USENIX Annual Technical Conference USENIX Association

http://adslab.cse.cuhk.edu.hk/software/austerecache

SSD

Chunking

I/O

Deduplication
and compression

LBA à FP

FP à CA, length

FP-index

LBA-index

RAM

HDD

…

Dirty list

Variable-size
compressed chunks
(after deduplication)

Fixed-size
chunks

LBA, CA
LBA, CA

Read/write

Figure 1: Architecture of a general flash caching system with
deduplication and compression.

tem checks if the LBA is mapped to any existing CA via the
lookups to both the LBA-index and the FP-index. If so (i.e.,
cache hit), the system decompresses and returns the chunk
data; otherwise (i.e., cache miss), it fetches the chunk data
from the HDD into the SSD, while it applies deduplication
and compression to the chunk data as in a write.

2.3 Memory Amplification
While deduplication and compression intuitively reduce stor-
age and I/O costs in flash caching by eliminating redundant
content on the I/O path, both techniques inevitably incur
significant memory costs for their index management. Specif-
ically, if both index structures are entirely stored in memory
for high performance, the memory usage is significant and
much higher than that in conventional flash caching; we refer
to such an issue as memory amplification (over conventional
flash caching), which can negate the data reduction benefits
of deduplication and compression.

We argue this issue through a simple analysis on the fol-
lowing configuration. Suppose that we deploy a 512 GiB
SSD as a flash cache atop an HDD that has a working set of
4 TiB. Both the SSD and the HDD have 64-bit address space.
For deduplication, we fix the chunk size as 32 KiB and use
SHA-1 (20 bytes) for FPs. We also use 4 bytes to record the
compressed chunk length. In the worst case, the LBA-index
keeps 4 TiB / 32 KiB = 128×220 (LBA, FP) pairs, account-
ing for a total of 3.5 GiB (each pair comprises an 8-byte LBA
and a 20-byte FP). The FP-index keeps 512 GiB / 32 KiB =
16× 220 (FP, CA) pairs, accounting for a total of 512 MiB
(each pair comprises a 20-byte FP, an 8-byte CA, and a 4-byte
length). The total memory usage of both the LBA-index and
the FP-index is 4 GiB. In contrast, conventional flash caching
only needs to index 16×220 (LBA, CA) pairs and the mem-
ory usage is 256 MiB. This implies that flash caching with
deduplication and compression amplifies the memory usage
by 16×. If we use a more collision-resistant hash function,
the memory amplification is even higher; for example, it be-
comes 22.75× if each FP is formed by SHA-256 (32 bytes).

Note that our analysis does not consider other metadata for
deduplication and compression (e.g., reference counts for
deduplication), which further aggravates memory amplifica-
tion over conventional flash caching.

In addition to memory amplification, deduplication and
compression also add CPU overhead to the I/O path. Such
overhead comes from: (i) the FP computation of each chunk,
(ii) the compression of each chunk, and (iii) the lookups to
both the LBA-index and the FP-index.

2.4 State-of-the-Art Flash Caches
We review two state-of-the-art flash caching designs, Ni-
tro [24] and CacheDedup [26], both of which support dedu-
plication and compression. We argue that both designs are
still susceptible to memory amplification.
Nitro [24]. Nitro is the first flash cache that deploys dedupli-
cation and compression. To manage variable-size compressed
chunks (a.k.a. extents [24]), Nitro packs them in large data
units called Write-Evict Units (WEUs), which serve as the ba-
sic units for cache replacement. The WEU size is set to align
with the flash erasure block size for efficient garbage collec-
tion. When the cache is full, Nitro evicts a WEU based on the
least-recently-used (LRU) policy. It manages index structures
in DRAM (or NVRAM for persistence) to track all chunks
in WEUs. If the memory capacity is limited, Nitro stores a
partial FP-index in memory, at the expense that deduplication
may miss detecting and removing some duplicates.

In addition to the memory amplification issue, organizing
the chunks by WEUs may cause a WEU to include stale
chunks, which are not referenced by any LBA in the LBA-
index as their original LBAs may have been updated. Such
stale chunks cannot be recycled immediately if their hosted
WEUs also contain other valid chunks that are recently ac-
cessed due to the LRU policy, but instead occupy the cache
space and degrade the cache hit ratio.
CacheDedup [26]. CacheDedup focuses on cache replace-
ment algorithms that reduce the number of orphaned entries,
which refer to either the LBAs that are in the LBA-index but
have no corresponding FPs in the FP-index, or the FPs that
are in the FP-index but are not referenced by any LBA. It pro-
poses two deduplication-aware cache replacement policies,
namely D-LRU and D-ARC, which augment the LRU and
adaptive cache replacement (ARC) [29] policies, respectively.
It also proposes a compression-enabled variant of D-ARC,
called CD-ARC, which manages variable-size compressed
chunks in WEUs as in Nitro [24]; note that CD-ARC suffers
from the same stale-chunk issue as described above. CacheD-
edup maintains the same index structures as shown in Figure 1
(§2.2), in which the LBA-index stores LBAs to FPs, and the
FP-index stores FPs to CAs and compressed chunk lengths. If
it keeps both the LBA-index and the FP-index in memory for
performance concerns, it still suffers from the same memory
amplification issue. A follow-up work CDAC [37] improves
the cache replacement of CacheDedup by incorporating ref-

USENIX Association 2020 USENIX Annual Technical Conference 715

Bucket
LBA-index

SSD

LBA-hash prefix FP hash Flag

…

FP-index

…

RAM

…… … …

Bucket

Metadata
region

… … …
…

Data
region

FP-hash prefix Flag

FP List of LBAs

slot slot

Bucket Bucket
slotslot

… …

Chunk

Figure 2: Bucketized data layouts of AustereCache in the
LBA-index, the FP-index, as well as the metadata and data
regions in flash.

erence counts and access patterns, but incurs even higher
memory overhead for maintaining additional information.

3 AustereCache Design
AustereCache is a new flash caching design that leverages
deduplication and compression to achieve storage and I/O
savings as in prior work [24,26,37], but puts specific emphasis
on reducing the memory usage for indexing. It aims for
austere cache management via three key techniques.
• Bucketization (§3.1). To eliminate the overhead of main-

taining address mappings in both the LBA-index and the
FP-index, we leverage deterministic hashing to associate
chunks with storage locations. Specifically, we hash index
entries into equal-size partitions (called buckets), each of
which keeps the partial LBAs and FPs for memory savings.
Based on the bucket locations, we further map chunks into
the cache space.

• Fixed-size compressed data management (§3.2). To
avoid tracking chunk lengths in the FP-index, we treat
variable-size compressed chunks as fixed-size units. Specif-
ically, we divide variable-size compressed chunks into
smaller fixed-size subchunks and manage the subchunks
without recording the compressed chunk lengths.
• Bucket-based cache replacement (§3.3). To increase the

likelihood of cache hits, we propose cache replacement on
a per-bucket basis. In particular, we incorporate recency
and deduplication awareness based on reference counts
(i.e., the counts of duplicate copies referencing each unique
chunk) for effective cache replacement. However, tracking
reference counts incurs non-negligible memory overhead.
Thus, we leverage a fixed-size compact sketch data struc-
ture [13] for reference count estimation in limited memory
space with bounded errors.

3.1 Bucketization
Figure 2 shows the bucketized data layouts of AustereCache
in both index structures and the flash cache space. We now

do not consider compression, which we address in §3.2.
AustereCache partitions both the LBA-index and the FP-

index into equal-size buckets composed of a fixed number of
equal-size slots. Each slot corresponds to an LBA and an FP
in the LBA-index and the FP-index, respectively. In addition,
AustereCache divides the flash cache space into a metadata
region and a data region that store metadata information and
cached chunks, respectively; each region is again partitioned
into buckets with multiple slots. Note that both regions are
allocated the same numbers of buckets and slots as in the
FP-index, such that each slot in the FP-index is a one-to-one
mapping to the same slots in the metadata and data regions.

To reduce memory usage, each slot stores only the prefix
of a key, rather than the full key. AustereCache first computes
the hashes of both the LBA and the FP, namely LBA-hash and
FP-hash, respectively. It stores the prefix bits of the LBA-
hash and the FP-hash as the primary keys in one of the slots
of a bucket in the LBA-index and the FP-index, respectively.
Keeping only partial keys leads to hash collisions for different
LBAs and FPs. To resolve hash collisions, AustereCache
maintains the full LBA and FP information in the metadata
region in flash, and any hash collision only leads to a cache
miss without data loss. Also, by choosing proper prefix sizes,
the collision rate should be low. AustereCache currently fixes
128 slots per bucket, mainly for efficient cache replacement
(§3.3). For 16-bit prefixes as primary keys, the hash collision
rate is only 1− (1− 1

216)
128 ≈ 0.2%, which is sufficiently low.

Write path. To write a unique chunk identified by an
(LBA, FP) pair to the flash cache, AustereCache updates both
the LBA-index and the FP-index as follows. For the LBA-
index, it uses the suffix bits of the LBA-hash to identify the
bucket (e.g., for 2k buckets, we check the k-bit suffix). It scans
all slots in the corresponding bucket to see if the LBA-hash
prefix has already been stored; otherwise, it stores the entry
in an empty slot or evicts the least-recently-accessed slot if
the bucket is full (see cache replacement in §3.3). It writes
the following to the slot: the LBA-hash prefix (primary key),
the FP-hash, and a valid flag that indicates if the slot stores
valid data. Similarly, for the FP-index, it identifies the bucket
and the slot using the FP-hash, and writes the FP-hash prefix
(primary key) and the valid flag to the corresponding slot.

Based on the bucket and slot locations in the FP-index,
AustereCache identifies the corresponding buckets and slots
in the metadata and data regions of the flash cache. For
the metadata region, it stores the complete FP and the list of
LBAs; note that the same FP may be shared by multiple LBAs
due to deduplication. We now fix the slot size as 512 bytes. If
the slot is full and cannot store more LBAs, we evict the oldest
LBA using FIFO to accommodate the new one. For the data
region, AustereCache stores the chunk in the corresponding
slot, which is also the CA.
Deduplication path. To perform deduplication on a written
chunk identified by an (LBA, FP) pair, AustereCache first
identifies the bucket of the FP-index using the suffix bits of

716 2020 USENIX Annual Technical Conference USENIX Association

the FP-hash, and then searches for any slot that matches the
same FP-hash prefix. If a slot is found, AustereCache checks
the corresponding slot in the metadata region in flash and
verifies if the input FP matches the one in the slot. If so,
it means that a duplicate chunk is found, so AustereCache
appends the LBA to the LBA list if the LBA does not exist be-
fore; otherwise, it implies an FP-hash prefix collision. When
such a collision occurs, AustereCache invalidates the collided
FP in the metadata region in flash and writes the chunk as
described above (recall that the collision is unlikely from our
calculation).

Read path. To read a chunk identified by an LBA, Austere-
Cache first queries the LBA-index for the FP-hash using the
LBA-hash prefix, followed by querying the FP-index for the
slot that contains the FP-hash prefix. It then checks the cor-
responding slot of the metadata region in flash if an LBA is
found in the LBA list. If so, the read is a cache hit and Aus-
tereCache returns the chunk from the data region; otherwise,
the read is a cache miss and AustereCache accesses the chunk
in the HDD via the LBA.

Analysis. We show via a simple analysis that the bucketiza-
tion design of AustereCache has low memory usage. Suppose
that we use a 512 GiB SSD as the flash cache with a 4 TiB
working set of an HDD. We fix the chunk size as 32 KiB.
Since each bucket has 128 slots, the LBA-index needs at most
220 buckets to reference all chunks in the HDD, while the
FP-index needs at most 217 buckets to reference all chunks in
the SSD. In addition, we store the first 16 prefix bits of both
the LBA-hash and the FP-hash as the partial keys in the LBA-
index and the FP-index, respectively. Since we use suffix bits
to identify a bucket, we need 20 and 17 suffix bits to identify
a bucket in the LBA-index and the FP-index, respectively.
Thus, we configure an LBA-hash with 16+20 = 36 bits and
an FP-hash with 16+17 = 33 bits.

We now compute the memory usage of each index structure,
to which we apply bit packing for memory efficiency. For the
LBA-index, each slot consumes 50 bits (i.e., a 16-bit LBA-
hash prefix, a 33-bit FP-hash, and a 1-bit valid flag), so the
memory usage of the LBA-index is 220×128×50 (bits) =
800 MiB. For the FP-index, each slot consumes 17 bits (i.e.,
a 16-bit FP-hash prefix and a 1-bit valid flag), so the memory
usage of the FP-index is 217 × 128× 17 (bits) = 34 MiB.
The total memory usage of both index structures is 834 MiB,
which is only around 20% of the 4 GiB memory space in
the baseline (§2.3). While we do not consider compression,
we emphasize that even with compression enabled, the index
structures incur no extra overhead (§3.2).

Comparisons with other data structures. We may con-
struct the LBA-index and the FP-index using other data struc-
tures for further memory savings. As an example, we consider
the B+-tree [12], which is a balanced tree structure that orga-
nizes all leaf nodes at the same level. Suppose that we store
index mappings in the leaf nodes that reside in flash, while

the non-leaf nodes are kept in memory for referencing the
leaf nodes. We evaluate the memory usage of the LBA-index
and the FP-index as follows.

Suppose that each leaf node is mapped to a 4 KiB SSD
page. For the LBA-index, each leaf node stores at most
b 4096

8+20c= 146 (LBA, FP) pairs (for an 8-byte LBA and a 20-
byte FP). Referencing each leaf node takes 16 bytes (including
an 8-byte LBA key and an 8-byte pointer). As there are 128×
220 (LBA, FP) pairs, the memory usage of the LBA-index is
128×220

146 ×16 ≈ 14.0 MiB (note that we exclude the memory
usage for referencing non-leaf nodes). For the FP-index, each
leaf node stores at most 4096

20+8+4 = 128 (FP, CA) pairs (for a
20-byte FP, an 8-byte CA, and a 4-byte length). Referencing
each leaf node takes 28 bytes (including a 20-byte FP key
and an 8-byte pointer). As there are 16×220 (FP, CA) pairs,
the memory usage of the FP-index is 3.5 MiB. Both the LBA-
index and the FP-index incur much less memory usage than
our current bucketization design (see above).

We can further use an in-memory Bloom Filter [8] to query
for the existence of index mappings. For an error rate of
0.1%, each mapping uses 14.4 bits in a Bloom Filter. To
track both 128×220 (LBA, FP) pairs in the LBA-index and
16×220 (FP, CA) pairs in the FP-index, we need an additional
memory usage of 259.2 MiB.

We can conduct similar analyses for other data structures.
For example, for the LSM-tree [32], we can maintain an in-
memory structure to reference the on-disk LSM-tree nodes
(a.k.a. SSTables [33]) that store the index mappings for the
LBA-index and the FP-index. Then we can accordingly com-
pute the memory usage for the LBA-index and the FP-index.

Even though these data structures support memory-efficient
indexing, they incur additional flash access overhead. First,
using B+-trees or LSM-trees for both the LBA-index and the
FP-index incurs two flash accesses (one for each index struc-
ture) for indexing each chunk, while AustereCache issues
only one flash access in the metadata region. Also, both the
B+-tree and the LSM-tree have high write amplification [33]
that degrades I/O performance. For these reasons, and per-
haps more importantly, the synergies with compressed data
management and cache replacement (see the following sub-
sections), we settle on our proposed bucketized index design.

3.2 Fixed-Size Compressed Data Management
AustereCache can compress each unique chunk after dedupli-
cation for further space savings. To avoid tracking the length
of the compressed chunk (which is of variable-size) in the
index structures, AustereCache slices a compressed chunk
into fixed-size subchunks, while the last subchunk is padded
to fill a subchunk size. For example, for a subchunk size of
8 KiB, we store a compressed chunk of size 15 KiB as two
subchunks, with the last subchunk being padded.

AustereCache allocates the same number of consecutive
slots as that of subchunks in the FP-index (and hence the
metadata and data regions in flash) to organize all subchunks

USENIX Association 2020 USENIX Annual Technical Conference 717

FP-index

……

SSD
RAM

… …

FP List of LBAs Length

FP-hash prefix Flag

……

Chunk

Bucket

Metadata Region Data Region
Subchunk

Figure 3: Fixed-size compressed data management, in which
multiple consecutive slots are used for handling multiple
fixed-size subchunks of a compressed chunk.

of a compressed chunk; note that the LBA-index remains
unchanged, and each of its slots still references a chunk. Fig-
ure 3 shows an example in which a chunk is stored as two
subchunks. For the FP-index, each of the two slots stores the
corresponding FP-hash prefix, with an additional 1-bit valid
flag indicating that the slot stores valid data. For the metadata
region, it also allocates two slots, in which the first slot stores
not only the full FP and the list of LBAs (§3.1), but also the
length of the compressed chunk, while the second slot can
be left empty to avoid redundant flash writes. For the data
region, it allocates two slots for storing the two subchunks.
Note that our design incurs no memory overhead for tracking
the length of the compressed chunk in any index structure.

The read/write workflows with compression are similar to
those without compression (§3.1), except that AustereCache
now finds consecutive slots in the FP-index for the multiple
subchunks of a compressed chunk. Note that we still keep
128 slots per bucket. However, since each slot now corre-
sponds to a smaller-size subchunk, we need to allocate more
buckets in the FP-index as well as the metadata and data
regions in flash (the number of buckets in the LBA-index
remains unchanged since each slot in the LBA-index still
references a chunk). As we allocate more buckets for the
FP-index, the memory usage also increases. Nevertheless,
AustereCache still achieves memory savings for varying sub-
chunk sizes (§5.4).

3.3 Bucket-Based Cache Replacement

Implementing cache replacement often requires priority-
based data structures that decide which cached items should
be kept or evicted, yet such data structures incur additional
memory overhead. AustereCache opts to implement per-
bucket cache replacement, i.e., the cache replacement deci-
sions are based on only the entries within each bucket. It then
implements specific cache replacement policies that incur no
or limited additional memory overhead. Since each bucket is
now configured with 128 slots, making the cache replacement
decisions also incurs limited performance overhead.

Slot

…

LBA-index

Slot

…

…

2
3

Reference
Counter

Old
…

…

…

FP-index

…

Recent

Figure 4: Cache replacement in the FP-index. When a bucket
in the FP-index is full, the slot with the least reference counts
(e.g. the slot with reference count 2) will be evicted.

For the LBA-index, AustereCache implements a bucket-
based least-recently-used (LRU) policy. Specifically, each
bucket sorts all slots by the recency of their LBAs, such that
the slots at the lower offsets correspond to the more recently
accessed LBAs (and vice versa). When the slot of an existing
LBA is accessed, AustereCache shifts all slots at lower offsets
than the accessed slot by one, and moves the accessed slot to
the lowest offset. When a new LBA is inserted, AustereCache
stores the new LBA in the slot at the lowest offset and shifts
all other slots by one; if the bucket is full, the slot at the
highest offset (i.e., the least-recently-accessed slot) is evicted.
Such a design does not incur any extra memory overhead for
maintaining the recency information of all slots.

For the FP-index, as well as the metadata and data regions
in flash, we incorporate both deduplication and recency aware-
ness into cache replacement. First, to incorporate deduplica-
tion awareness, AustereCache tracks the reference count for
each FP-hash (i.e., the number of LBAs that share the same
FP-hash). For each LBA being added to (resp. deleted from)
the LBA-index, AustereCache increments (resp. decrements)
the reference count of the corresponding FP-hash. When in-
serting a new FP to a full bucket, it evicts the slot that has
the lowest reference count among all the slots in the same
bucket. It also invalidates the corresponding slots in both the
metadata and data regions in flash.

Simple reference counting does not address recency. To
also incorporate recency awareness, AustereCache divides
each LBA bucket into recent slots at lower offsets and old
slots at higher offsets (now being divided evenly by half), as
shown in Figure 4. Each LBA in the recent (resp. old) slots
contributes to a count of two (resp. one) to the reference count-
ing. Specifically, each newly inserted LBA is stored in the
recent slot at the lowest offset in the LBA-index (see above),
so AustereCache increments the reference count of the cor-
responding FP-hash by two. If an LBA is demoted from a
recent slot to an old slot or is evicted from the LBA-index,
AustereCache decrements the reference count of the corre-
sponding FP-hash by one; similarly, if an LBA is promoted
from an old slot to a recent slot, AustereCache increments the
reference count of the corresponding FP-hash by one.

718 2020 USENIX Annual Technical Conference USENIX Association

Maintaining reference counts for all FP-hashes, however,
incurs non-negligible memory overhead. AustereCache ad-
dresses this issue by maintaining a Count-Min Sketch [13]
to track the reference counts in a fixed-size compact data
structure with bounded errors. A Count-Min Sketch is a two-
dimensional counter array with r rows of w counters each
(where r and w are configurable parameters). It maps each
FP-hash (via an independent hash function) to one of the w
counters in each of the r rows, and increments or decrements
the mapped counters based on our reference counting mecha-
nism. AustereCache can estimate the reference count of an
FP-hash using the minimum value of all mapped counters of
the FP-hash. Depending on the values of r and w, the error
bounds can be theoretically proven [13].

Currently, our implementation fixes r = 4 and w equal to
the total number of slots in the LBA-index. We justify via a
simple analysis that sketch-based reference counting achieves
significant memory savings. Referring to the analysis in §3.1,
each FP-hash has 33 bits. If we track the reference counts of
all FP-hashes, we need 233 counters. On the other hand, if we
use a Count-Min sketch, we set r = 4 and w = 227 (the total
number of slots in the LBA-index), so there are r×w = 229

counters, which consume only 1/16 of the memory usage of
tracking all FP-hashes.

Our bucket-based cache replacement design works at the
slot level. By using reference counting to make cache replace-
ment decisions, AustereCache can promptly evict any stale
chunk that is not referenced by an LBA, as opposed to the
WEU design in Nitro and CD-ARC of CacheDedup (§2.4).

4 Implementation
We implement an AustereCache prototype as a user-space
block device in C++ on Linux; the user-space implementa-
tion (as in Nitro [24]) allows us to readily deploy fast algo-
rithms and multi-threading for performance speedups. Specif-
ically, our AustereCache prototype issues reads and writes
to the underlying storage devices via pread and pwrite
system calls, respectively. It uses SHA-1 from the Intel ISA-
L Crypto library [3] for chunk fingerprinting, LZ4 [4] for
lossless stream-based compression, and XXHash [5] for fast
hash computations in the index structures. We also integrate
the cache replacement algorithms in CacheDedup [26] into
our prototype for fair comparisons (§5). Our prototype now
contains around 4.5 K LoC.

We leverage multi-threading to issue multiple read/write
requests in parallel for high performance. Specifically, we im-
plement bucket-level concurrency, such that each read/write
request needs to acquire an exclusive lock to access a bucket
in both the LBA-index and the FP-index, while multiple re-
quests can access different buckets simultaneously.

5 Evaluation
We experiment AustereCache using both real-world and syn-
thetic traces. We consider two variants of AustereCache: (i)

Traces
Working
Set (GiB)

Unique
Data (GiB)

Write-to-Read
Ratio

WebVM 2.71 69.37 3.24
Homes 19.19 240.00 10.81
Mail 59.01 983.78 5.09

Table 2: Basic statistics of FIU traces in 32 KiB chunks.

AC-D, which performs deduplication only without compres-
sion, and (ii) AC-DC, which performs both deduplication
and compression. We compare AustereCache with the three
cache replacement algorithms of CacheDedup [26]: D-LRU,
D-ARC, and CD-ARC (§2.4) (recall that CD-ARC combines
D-ARC with the WEU-based compressed chunk management
in Nitro [24]). For consistent naming, we refer to them as
CD-LRU-D, CD-ARC-D, and CD-ARC-DC, respectively (i.e.,
the abbreviation of CacheDedup, the cache replacement al-
gorithm, and the deduplication/compression feature). We
summarize our evaluation findings as follows.
• Overall, AustereCache reduces memory usage by 69.9-

97.0% compared to CacheDedup (Exp#1). It achieves the
memory savings via different design techniques (Exp#2).

• AC-D achieves higher read hit ratios than CD-LRU-D and
comparable read hit ratios as CD-ARC-D, while AC-DC
achieves higher read hit ratios than CD-ARC-DC (Exp#3).

• AC-DC writes much less data to flash than CD-LRU-D
and CD-ARC-D, while writing slightly more data than
CD-ARC-DC due to padding (§3.2) (Exp#4).

• AustereCache maintains its substantial memory savings for
different chunk sizes and subchunk sizes (Exp#5). We also
study how it is affected by the sizes of both the LBA-index
and the FP-index (Exp#6).

• AustereCache achieves high I/O throughput for different
access patterns (Exp#7), while incurring small CPU over-
head (Exp#8). Its throughput further improves via multi-
threading (Exp#9).

5.1 Traces
Our evaluation is driven by two traces.
FIU [23]. The FIU traces are collected from three different
services with diverse properties, namely WebVM, Homes, and
Mail, for the web, NFS, and mail services, respectively. Each
trace describes the read/write requests on different chunks (of
size 4 KiB or 512 bytes each), each of which is represented
as an MD5 fingerprint of the chunk content.

To accommodate different chunk sizes, we take each trace
of 4 KiB chunks and perform two-phase trace conversion as
in [24]. In the first phase, we identify the initial state of the
disk by traversing the whole trace and recording the LBAs
of all chunk reads; any LBA that does not appear is assumed
to have a dummy chunk fingerprint (e.g., all zeroes). In the
second phase, we regenerate the trace of the corresponding
chunk size based on the LBAs and compute the new chunk
fingerprints. For example, we form a 32 KiB chunk by con-
catenating eight contiguous 4 KiB chunks and calculating a

USENIX Association 2020 USENIX Annual Technical Conference 719

AC-D AC-DC CD-LRU-D CD-ARC-D CD-ARC-DC

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

(a) WebVM (b) Homes (c) Mail

Figure 5: Exp#1 (Overall memory usage). Note that the y-axes are in log scale.

new SHA-1 fingerprint for the 32 KiB chunk. Table 2 shows
the basic statistics of each regenerated FIU trace on 32 KiB
chunks.

The original FIU traces have no compression details. Thus,
for each chunk fingerprint, we set its compressibility ratio
(i.e., the ratio of raw bytes to the compressed bytes) following
a normal distribution with mean 2 and variance 0.25 as in [24].

Synthetic. For throughput measurement (§5.5), we build a
synthetic trace generator to account for different access pat-
terns. Each synthetic trace is configured by two parameters:
(i) I/O deduplication ratio, which specifies the fraction of
writes that can be removed on the write path due to dedupli-
cation; and (ii) write-to-read ratio, which specifies the ratios
of writes to reads.

We generate a synthetic trace as follows. First, we ran-
domly generate a working set by choosing arbitrary LBAs
within the primary storage. Then we generate an access pat-
tern based on the given write-to-read ratio, such that the write
and read requests each follow a Zipf distribution. We derive
the chunk content of each write request based on the given
I/O deduplication ratio as well as the compressibility ratio as
in the FIU trace generation (see above). Currently, our evalua-
tion fixes the working set size as 128 MiB, the primary storage
size as 5 GiB, and the Zipf constant as 1.0; such parameters
are all configurable.

5.2 Setup
Testbed. We conduct our experiments on a machine running
Ubuntu 18.04 LTS with Linux kernel 4.15. The machine
is equipped with a 10-core 2.2 GHz Intel Xeon E5-2630v4
CPU, 32 GiB DDR4 RAM, a 1 TiB Seagate ST1000DM010-
2EP1 SATA HDD as the primary storage, and a 128 GiB Intel
SSDSC2BW12 SATA SSD as the flash cache.

Default setup. For both AustereCache and CacheDedup, we
configure the size of the FP-index based on a fraction of the
working set size (WSS) of each trace, and fix the size of
the LBA-index four times that of the FP-index. We store
both the LBA-index and the FP-index in memory for high
performance. For AustereCache, we set the default chunk
size and subchunk size as 32 KiB and 8 KiB, respectively. For
CD-ARC-DC in CacheDedup, we set the WEU size as 2 MiB
(the default in [26]).

5.3 Comparative Analysis

We compare AustereCache and CacheDedup in terms of mem-
ory usage, read hit ratios, and write reduction ratios using the
FIU traces.

Exp#1 (Overall memory usage). We compare the memory
usage of different schemes. We vary the flash cache size
from 12.5% to 100% of WSS of each FIU trace, and con-
figure the LBA-index and the FP-index based on our default
setup (§5.2). To obtain the actual memory usage (rather than
the allocated memory space for the index structures), we
call malloc trim at the end of each trace replay to return
all unallocated memory from the process heap to the oper-
ating system, and check the residual set size (RSS) from
/proc/self/stat as the memory usage.

Figure 5 shows that AustereCache significantly saves the
memory usage compared to CacheDedup. For the non-
compression schemes (i.e., AC-D, CD-LRU-D, and CD-ARC-
D), AC-D incurs 69.9-94.9% and 70.4-94.7% less memory
across all traces than CD-LRU-D and CD-ARC-D, respec-
tively. For the compression schemes (i.e., AC-DC and CD-
ARC-DC), AC-DC incurs 87.0-97.0% less memory than CD-
ARC-DC.

AustereCache achieves higher memory savings than
CacheDedup in compression mode, since CD-ARC-DC needs
to additionally maintain the lengths of all compressed chunks,
while AC-DC eliminates such information. If we compare the
memory overhead with and without compression, CD-ARC-
DC incurs 78-194% more memory usage than CD-ARC-D
across all traces, implying that compression comes with high
memory usage penalty in CacheDedup. On the other hand,
AC-DC only incurs 2-58% more memory than AC-D.

Exp#2 (Impact of design techniques on memory savings).
We study how different design techniques of AustereCache
help memory savings. We mainly focus on bucketization
(§3.1) and bucket-based cache replacement (§3.3); for fixed-
size compressed data management (§3.2), we refer readers to
Exp#1 for our analysis.

We choose CD-LRU-D of CacheDedup as our baseline and
compare it with AC-D (both are non-compressed versions),
and add individual techniques to see how they contribute to
the memory savings of AC-D. We consider four variants:

720 2020 USENIX Annual Technical Conference USENIX Association

Vanilla B+FK+L B+PK+L B+PK+S

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

1

10

100

1000

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

M
em

o
ry

 (
M

iB
)

(a) WebVM (b) Homes (c) Mail

Figure 6: Exp#2 (Impact of design techniques on memory savings).

• Vanilla. It refers to CD-LRU-D. It maintains the LRU lists
that track the LBAs and FPs being accessed in the LBA
index and the FP index, respectively.

• B+FK+L. It deploys bucketization (B), but keeps the full
keys (FK) (i.e., LBAs and FPs) in each slot. Each bucket
implements the LRU policy (L) independently and keeps
an LRU list of the slot IDs being accessed.

• B+PK+L. It deploys bucketization (B) and now keeps the
prefix keys (PK) in both the LBA-index and the FP-index.
It still implements the LRU policy as in B+FK+L.

• B+PK+S. It deploys bucketization (B) and keeps the prefix
keys (PK). It maintains reference counts in a sketch (S).
Note that it is equivalent to AC-D.
Figure 6 presents the memory usage versus the cache ca-

pacity, where the memory usage is measured as in Exp#1.
Compared to Vanilla, B+FK+L saves the memory usage by
30.6-50.6%, while B+PK+L further increases the savings to
43.9-68.0% due to keeping prefix keys in the index structures.
B+FK+S (i.e., AC-D) increases the overall memory savings
to 69.9-94.9% by keeping reference counts in a sketch as
opposed to maintaining LRU lists with full LBAs and FPs.

Exp#3 (Read hit ratio). We evaluate different schemes with
the read hit ratio, defined as the fraction of read requests that
receive cache hits over the total number of read requests.

Figure 7 shows the results. AustereCache generally
achieves higher read hit ratios than different CacheDedup
algorithms. For the non-compression schemes, AC-D in-
creases the read hit ratio of CD-LRU-D by up to 39.2%. The
reason is that CD-LRU-D is only aware of the request re-
cency and fails to clean stale chunks in time (§2.4), while
AustereCache favors to evict chunks with small reference
counts. On the other hand, AC-D achieves similar read hit
ratios to CD-ARC-D, and in particular has a higher read hit
ratio (up to 13.4%) when the cache size is small in WebVM
(12.5% WSS) by keeping highly referenced chunks in cache.
For the compression schemes, AC-DC has higher read hit
ratios than CD-ARC-DC, by 0.5-30.7% in WebVM, 0.7-9.9%
in Homes, and 0.3-6.2% in Mail. Note that CD-ARC-DC
shows a lower read hit ratio than CD-ARC-D although it intu-
itively stores more chunks with compression, mainly because
it cannot quickly evict stale chunks due to the WEU-based
organization (§2.4).

Exp#4 (Write reduction ratio). We further evaluate differ-
ent schemes in terms of the write reduction ratio, defined as
the fraction of reduction of bytes written to the cache due to
both deduplication and compression. A high write reduction
ratio implies less written data to the flash cache and hence
improved performance and endurance.

Figure 8 shows the results. For the non-compression
schemes, AC-D, CD-LRU-D, and CD-ARC-D show marginal
differences in WebVM and Homes, while in Mail, AC-D has
lower write reduction ratios than CD-LRU-D by up to 17.5%.
We find that CD-LRU-D tends to keep more stale chunks
in cache, thereby saving the writes that hit the stale chunks.
For example, when the cache size is 12.5% of WSS in Mail,
17.1% of the write reduction in CD-LRU-D comes from the
writes to the stale chunks, while in WebVM and Homes, the
corresponding numbers are only 3.6% and 1.1%, respectively.
AC-D achieves lower write reduction ratios than CD-LRU-
D, but achieves much higher read hit ratios by up to 39.2%
by favoring to evict the chunks with small reference counts
(Exp#3).

For the compression schemes, both CD-ARC-DC and AC-
DC have much higher write reduction ratios than the non-
compression schemes due to compression. However, AC-DC
shows a slightly lower write reduction ratio than CD-ARC-
DC by 7.7-14.5%. The reason is that AC-DC pads the last
subchunk of each variable-size compressed chunk, thereby
incurring extra writes. As we show later in Exp#5 (§5.4),
a smaller subchunk size can reduce the padding overhead,
although the memory usage also increases.

5.4 Sensitivity to Parameters
We evaluate AustereCache for different parameter settings
using the FIU traces.

Exp#5 (Impact of chunk sizes and subchunk sizes). We
evaluate AustereCache on different chunk sizes and subchunk
sizes. We focus on the Homes trace and vary the chunk sizes
and subchunk sizes as described in §5.1. For varying chunk
sizes, we fix the subchunk size as one-fourth of the chunk size;
for varying subchunk sizes, we fix the chunk size as 32 KiB.
We focus on comparing AC-DC and CD-ARC-DC by fixing
the cache size as 25% of WSS. Note that CD-ARC-DC is
unaffected by the subchunk size.

USENIX Association 2020 USENIX Annual Technical Conference 721

AC-D AC-DC CD-LRU-D CD-ARC-D CD-ARC-DC

 0

 25

 50

 75

 100

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

R
ea

d
H

it
 (

%
)

 0

 10

 20

 30

 40

 50

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

R
ea

d
H

it
 (

%
)

 0

 25

 50

 75

 100

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

R
ea

d
H

it
 (

%
)

(a) WebVM (b) Homes (c) Mail

Figure 7: Exp#3 (Read hit ratio).

AC-D AC-DC CD-LRU-D CD-ARC-D CD-ARC-DC

0

20

40

60

80

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

W
ri

te
 R

d.
 (

%
)

0

20

40

60

80

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

W
ri

te
 R

d.
 (

%
)

0

20

40

60

80

12.5 25 37.5 50 62.5 75 87.5 100
Cache Capacity (%)

W
ri

te
 R

d.
 (

%
)

(a) WebVM (b) Homes (c) Mail

Figure 8: Exp#4 (Write reduction ratio).

AC-DC maintains the significant memory savings com-
pared to CD-ARC-DC, by 92.8-95.3% for varying chunk
sizes (Figure 9(a)) and 93.1-95.1% for varying subchunk
sizes (Figure 9(b)). It also maintains higher read hit ratios
than CD-ARC-DC, by 5.0-12.3% for varying chunk sizes
(Figure 9(c)) and 7.9-10.4% for varying subchunk sizes (Fig-
ure 9(d)). AC-DC incurs a (slightly) less write reduction ratio
than CD-ARC-DC due to padding, by 10.0-14.8% for varying
chunk sizes (Figure 9(e)); the results are consistent with those
in Exp#4. Nevertheless, using a smaller subchunk size can
mitigate the padding overhead. As shown in Figure 9(f), the
write reduction ratio of AC-DC approaches that of CD-ARC-
DC when the subchunk size decreases. When the subchunk
size is 4 KiB, AC-DC only has a 6.2% less write reduction
ratio than CD-ARC-DC. Note that if we change the subchunk
size from 8 KiB to 4 KiB, the memory usage increases from
14.5 MiB to 17.3 MiB (by 18.8%), since the number of buck-
ets is doubled in the FP-index (while the LBA-index remains
the same).

Exp#6 (Impact of LBA-index sizes). We study the impact
of LBA-index sizes. We vary the LBA-index size from 1× to
8× of the FP-index size (recall that the default is 4×), and fix
the cache size as 12.5% of WSS.

Figure 10 depicts the memory usage and read hit ratios;
we omit the write reduction ratio as there is nearly no change
for varying LBA-index sizes. When the LBA-index size
increases, the memory usage increases by 17.6%, 111.5%,
and 160.9% in WebVM, Homes and Mail, respectively (Fig-
ure 10(a)), as we allocate more buckets in the LBA-index.
Note that the increase in memory usage in WebVM is less

AC-DC CD-ARC-DC

1

10

100

1000

8 16 32 64
Chunk size (KiB)

M
em

or
y

(M
iB

)

1

10

100

1000

4 8 16 32
Subchunk size (KiB)

M
em

or
y

(M
iB

)

(a) Memory usage vs.
chunk size

(b) Memory usage vs.
subchunk size

0

20

40

60

8 16 32 64
Chunk size (KiB)

R
ea

d
H

it
 (

%
)

0

20

40

60

4 8 16 32
Subchunk size (KiB)

R
ea

d
H

it
 (

%
)

(c) Read hit ratio vs.
chunk size

(d) Read hit ratio vs.
subchunk size

0

20

40

60

8 16 32 64
Chunk size (KiB)

W
ri

te
 R

d.
 (

%
)

0

20

40

60

4 8 16 32
Subchunk size (KiB)

W
ri

te
 R

d.
 (

%
)

(e) Write reduction ratio vs.
chunk size

(f) Write reduction ratio vs.
subchunk size

Figure 9: Exp#5 (Impact of chunk sizes and subchunk sizes).
We focus on the Homes trace and fix the cache size as 25%
of WSS in Homes.

than those in Homes and Mail, mainly because the WSS of
WebVM is small and incurs a small actual increase of the
total memory usage. Also, the read hit ratio increases with

722 2020 USENIX Annual Technical Conference USENIX Association

WebVM Homes Mail

0

10

20

30

1 2 3 4 5 6 7 8
LBA-Index Size / FP-Index Size

M
em

o
ry

 (
M

iB
)

0

20

40

60

80

1 2 3 4 5 6 7 8
LBA-Index Size / FP-Index Size

R
ea

d
H

it
 (

%
)

(a) Memory usage (b) Read hit ratio

Figure 10: Exp#6 (Impact of LBA-index sizes).

AC-D AC-DC CD-LRU-D CD-ARC-D CD-ARC-DC

0

25

50

75

100

20 40 60 80
I/O Dedup Ratio (%)

T
h
pt

 (
M

iB
/s

)

0

25

50

75

100

9:1 7:3 5:5 3:7 1:9
Write-to-Read Ratio

T
hp

t
(M

iB
/s

)

(a) Throughput vs. I/O dedup
ratio (write-to-read ratio 7:3)

(b) Throughput vs. write-to-read
ratio (I/O dedup ratio 50%)

Figure 11: Exp#7 (Throughput).

the LBA-index size, until the LBA-index reaches 4× of the
FP-index size (Figure 10(b)). In particular, for WebVM, the
read hit ratio grows from 36.7% (1×) to 70.4% (8×), while
for Homes and Mail, the read hit ratios increase by only 4.3%
and 5.3%, respectively. The reason is that when the LBA-
index size increases, WebVM shows a higher increase in the
total reference counts of the cached chunks than Homes and
Mail, implying that more reads can be served by the cached
chunks (i.e., higher read hit ratios).

5.5 Throughput and CPU Overhead
We measure the throughput and CPU overhead of Austere-
Cache. We conduct the evaluation on synthetic traces for
varying I/O deduplication ratios and write-to-read ratios. We
focus on the write-back policy (§2.2), in which AustereCache
first persists the written chunks to the flash cache and flushes
the chunks to the HDD when they are evicted from the cache.
We use direct I/O to remove the impact of page cache. We
report the averaged results over five runs, while the standard
deviations are small (less than 2.7%) and hence omitted.
Exp#7 (Throughput). We compare AustereCache and
CacheDedup in throughput using synthetic traces. We fix
the cache size as 50% of the 128 MiB WSS. Both systems
work in single-threaded mode.

Figures 11(a) and 11(b) show the results for varying I/O
deduplication ratios (with a fixed write-to-read ratio 7:3,
which represents a write-intensive workload as in FIU traces)
and varying write-to-read ratios (with a fixed I/O dedupli-
cation ratio 50%), respectively. For the non-compression
schemes, AC-D achieves 18.5-86.6% higher throughput than
CD-LRU-D for all cases except when the write-to-read ratio
is 1:9 (slightly slower by 2.3%). Compared to CD-ARC-D,

 0
 25
 50
 75

 100

L
at

en
cy

 (
us

)

 5975
 6000
 6025

Fingerprint
Compression

Lookup
Update

SSD
HDD

Figure 12: Exp#8 (CPU
overhead).

0

50

100

150

200

250

1 2 4 6 8
Number of threads

T
hp

t
(M

iB
/s

)

50% dedup
80% dedup

Figure 13: Exp#9 (Through-
put of multi-threading).

AC-D is slower by 1.1-24.5%, since both AC-D and CD-
ARC-D have similar read hit ratios and write reduction ratios
(§5.3), while AC-D issues additional reads and writes to the
metadata region (CD-ARC-D keeps all indexing information
in memory). AC-D achieves similar throughput to CD-ARC-
D when there are more duplicate chunks (i.e., under high
I/O deduplication ratios). For compression schemes, AC-DC
achieves 6.8-99.6% higher throughput than CD-ARC-DC.

Overall, AC-DC achieves the highest throughput among
all schemes for two reasons. First, AustereCache generally
achieves higher or similar read hit ratios compared to CacheD-
edup algorithms (§5.3). Second, AustereCache incorporates
deduplication awareness into cache replacement by caching
chunks with high reference counts, thereby absorbing more
writes in the SSD and reducing writes to the slow HDD.

Exp#8 (CPU overhead). We study the CPU overhead of
deduplication and compression of AustereCache along the
I/O path. We measure the latencies of four computation
steps, including fingerprint computation, compression, index
lookup, and index update. Specifically, we run the WebVM
trace with a cache size of 12.5% of WSS, and collect the
statistics of 100 non-duplicate write requests. We also com-
pare their latencies with those of 32 KiB chunk write requests
to the SSD and the HDD using the fio benchmark tool [2].

Figure 12 depicts the results. Fingerprint computation has
the highest latency (15.5 µs) among all four steps. In total,
AustereCache adds around 31.2 µs of CPU overhead. On the
other hand, the latencies of 32 KiB writes to the SSD and the
HDD are 85 µs and 5,997 µs, respectively. Note that the CPU
overhead can be suppressed via multi-threaded processing, as
shown in Exp#9.

Exp#9 (Throughput of multi-threading). We evaluate the
throughput gain of AustereCache when it enables multi-
threading and issues concurrent requests to multiple buckets
(§4). We use synthetic traces with a write-to-read ratio of 7:3,
and consider the I/O deduplication ratio of 50% and 80%.

Figure 13 shows the throughput versus the number of
threads being configured in AustereCache. When the number
of threads increases, AustereCache shows a higher throughput
gain under 80% I/O deduplication ratio (from 93.8 MiB/s to
235.5 MiB/s, or 2.51×) than under 50% I/O deduplication
ratio (from 60.0 MiB/s to 124.9 MiB/s, or 2.08×). A higher
I/O deduplication ratio implies less I/O to flash, and Austere-
Cache benefits more from multi-threading on parallelizing

USENIX Association 2020 USENIX Annual Technical Conference 723

the computation steps in the I/O path and hence sees a higher
throughput gain.

6 Discussion
We discuss the following open issues of AustereCache.

Choices of chunk/subchunk sizes. AustereCache by default
uses 32 KiB chunks and 8 KiB subchunks to align with com-
mon flash page sizes (e.g., 4 KiB or 8 KiB) in commodity
SSDs, while preserving memory savings even for various
chunk/subchunk sizes (Exp#5 in §5.4). Larger chunk/sub-
chunk sizes reduce the chunk management overhead, at the
expense of issuing more read-modify-write operations for
small requests from upper-layer applications. Efficiently man-
aging small chunks/subchunks in large-size I/O units in flash
caching [24, 25], while maintaining memory efficiency in
indexing, is future work.

Impact of indexing on flash endurance. AustereCache cur-
rently reduces its memory usage by keeping only limited
indexing information in memory and full indexing details in
flash (i.e., the metadata region). Since the indexing infor-
mation generally has a smaller size than the cached chunks,
we expect that the updates of the metadata region bring lim-
ited degradations to flash endurance, compared to the writes
of chunks to the data region. An in-depth analysis of how
AustereCache affects flash endurance is future work.

AustereCache assumes that the flash translation layer sup-
ports efficient flash erasure management (e.g., applying write
combining before writing chunks to flash). To further miti-
gate the flash erasure overhead, one possible design extension
is to adopt a log-structured data organization in flash in order
to limit random writes, which are known to degrade flash
endurance [30].

7 Related Work
Flash caching. Flash caching has been extensively studied
to improve I/O performance. For example, Bcache [1] is a
block-level cache for Linux file systems; FlashCache [20] is a
file cache for web servers; Mercury [9] is a hypervisor cache
for shared storage in data centers; CloudCache [6] estimates
the demands of virtual machines (VMs) and manages cache
space for VMs in virtualized storage.

Several studies focus on better flash caching management.
For example, FlashTier [34] exploits caching workloads in
cache block management; Kim et al. [21] exploit applica-
tion hints to cache write requests; DIDACache [35] takes
a software-hardware co-design approach to eliminate dupli-
cate garbage collection. To improve the endurance of flash
caching, Cheng et al. [11] propose erasure-aware heuristics to
admit cache insertions; S-RAC [31] selectively evicts cache
items based on temporal locality; Pannier [25] manages the
flash cache in large-size units (called containers) with erasure
awareness; Wang et al. [38] use machine learning to remove
unnecessary writes to flash.

Deduplication and compression. AustereCache exploits
deduplication and compression in flash caching. Extensive
work has shown the effectiveness of deduplication and/or com-
pression in storage and I/O savings in primary [18, 23, 36],
backup [16, 40, 42], and memory storage [19, 39]. For flash
storage, CAFTL [10] implements deduplication in the flash
translation layer to reduce flash writes; SmartDedup [41]
organizes in-memory and on-disk fingerprints for resource-
constrained devices; FlaZ [28] applies transparent and on-
line I/O compression for efficient flash caching. Prior stud-
ies [24, 26, 37] also exploit deduplication and compression in
flash caching, but incur high memory overhead in metadata
management (§2.4). On the other hand, AustereCache aims
for memory efficiency without compromising the storage and
I/O savings achieved by deduplication and compression.

Memory-efficient designs. Prior studies propose memory-
efficient data structures for flash storage. ChunkStash [15]
uses fingerprint prefixes to index fingerprints on SSDs in
backup deduplication. SkimpyStash [14] designs a hash-
table-based index that stores chained linked lists on SSDs for
deduplication systems. SILT [27] uses partial-key hashing
for efficient indexing in key-value stores. TinyLFU [17] uses
Counting Bloom Filters to estimate item frequencies in cache
admission. Our bucketization design (§3.1) is similar to the
Quotient Filter (also used in flash caching [7]) in prefix-key
matching. AustereCache specifically targets flash caching
with deduplication and compression, and incorporates several
techniques for high memory efficiency.

8 Conclusion
AustereCache makes a case of integrating deduplication and
compression into flash caching while significantly mitigating
the memory overhead due to indexing. It builds on three tech-
niques to aim for austere cache management: (i) bucketiza-
tion removes address mappings from indexing; (ii) fixed-size
compressed data management removes compressed chunk
lengths from indexing; and (iii) bucket-based cache replace-
ment tracks reference counts in a compact sketch structure to
achieve high read hit ratios. Evaluation on both real-world
and synthetic traces shows that AustereCache achieves signif-
icant memory savings, with high read hit ratios, high write
reduction ratios, and high throughput.

Acknowledgments: We thank our shepherd, William Jannen,
and the anonymous reviewers for their comments. This work
was supported in part by RGC of Hong Kong (AoE/P-404/18),
NSFC (61972441), and the Shenzhen Science and Technology
Program (JCYJ20190806143405318). The corresponding
author is Wen Xia.

References
[1] Bcache: A linux kernel block layer cache. http://

bcache.evilpiepirate.org/.

724 2020 USENIX Annual Technical Conference USENIX Association

http://bcache.evilpiepirate.org/
http://bcache.evilpiepirate.org/

[2] Fio - Flexible I/O Tester Synthetic Benchmark. http:
//git.kernel.dk/?p=fio.git.

[3] ISA-L crypto. https://github.com/intel/
isa-l_crypto.

[4] LZ4. https://en.wikipedia.org/wiki/
LZ4_(compression_algorithm).

[5] XXHash. https://github.com/Cyan4973/
xxHash.

[6] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and
M. Zhao. CloudCache: On-demand flash cache manage-
ment for cloud computing. In Proc. of USENIX FAST,
2016.

[7] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner,
B. C. Kuszmaul, D. Medjedovic, P. Montes, P. Shetty,
R. P. Spillane, and E. Zadok. Don’t thrash: How to
cache your hash on flash. Proc. of VLDB Endowment,
5(11):1627–1637, 2012.

[8] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
12(7):422–426, 1970.

[9] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict,
J. Kimmel, S. Kleiman, C. Small, and M. Storer. Mer-
cury: Host-side flash caching for the data center. In
Proc. of IEEE MSST, 2012.

[10] F. Chen, T. Luo, and X. Zhang. CAFTL: A content-
aware flash translation layer enhancing the lifespan
of flash memory based solid state drives. In Proc. of
USENIX FAST, 2011.

[11] Y. Cheng, F. Douglis, P. Shilane, G. Wallace, P. Desnoy-
ers, and K. Li. Erasing belady’s limitations: In search
of flash cache offline optimality. In Proc. of USENIX
ATC, 2016.

[12] D. Comer. Ubiquitous B-tree. ACM Computing Surveys,
11(2):121–137, 1979.

[13] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applica-
tions. Journal of Algorithms, 55(1):58–75, 2005.

[14] B. Debnath, S. Sengupta, and J. Li. SkimpyStash: RAM
space skimpy key-value store on flash-based storage. In
Proc. of ACM SIGMOD, 2011.

[15] B. K. Debnath, S. Sengupta, and J. Li. ChunkStash:
Speeding up inline storage deduplication using flash
memory. In Proc. of USENIX ATC, 2010.

[16] A. Duggal, F. Jenkins, P. Shilane, R. Chinthekindi,
R. Shah, and M. Kamat. Data Domain Cloud Tier:
Backup here, backup there, deduplicated everywhere!
In Proc. of USENIX ATC, 2019.

[17] G. Einziger, R. Friedman, and B. Manes. TinyLFU: A
highly efficient cache admission policy. ACM Trans. on
Storage, 13(4):1–31, 2017.

[18] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li,
and S. Sengupta. Primary data deduplicationlarge scale
study and system design. In Proc. of USENIX ATC,
2012.

[19] F. Guo, Y. Li, Y. Xu, S. Jiang, and J. C. S. Lui. SmartMD:
A high performance deduplication engine with mixed
pages. In Proc. of USENIX ATC, 2017.

[20] T. Kgil and T. Mudge. FlashCache: a NAND flash
memory file cache for low power web servers. In Proc.
of ACM CASES, 2006.

[21] S. Kim, H. Kim, S.-H. Kim, J. Lee, and J. Jeong.
Request-oriented durable write caching for application
performance. In Proc. of USENIX ATC, 2015.

[22] R. Koller, , L. Marmol, R. Rangaswami, S. Sundarara-
man, N. Talagala, and M. Zhao. Write policies for
host-side flash caches. In Proc. of USENIX FAST, 2013.

[23] R. Koller and R. Rangaswami. I/O deduplication: Uti-
lizing content similarity to improve I/O performance.
ACM Trans. on Storage, 6(3):13, 2010.

[24] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and
G. Wallace. Nitro: A capacity-optimized SSD cache for
primary storage. In Proc. of USENIX ATC, 2014.

[25] C. Li, P. Shilane, F. Douglis, and G. Wallace. Pannier:
Design and analysis of a container-based flash cache for
compound objects. ACM Trans. on Storage, 13(3):1–34,
2017.

[26] W. Li, G. Jean-Baptise, J. Riveros, G. Narasimhan,
T. Zhang, and M. Zhao. CacheDedup: In-line dedu-
plication for flash caching. In Proc. of USENIX FAST,
2016.

[27] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky.
SILT: A memory-efficient, high-performance key-value
store. In Proc. of ACM SOSP, 2011.

[28] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris,
and A. Bilas. Using transparent compression to improve
SSD-based I/O caches. In Proc. of ACM EuroSys, 2010.

[29] N. Megiddo and D. S. Modha. ARC: A self-tuning, low
overhead replacement cache. In Proceedings of USENIX
FAST, 2003.

[30] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS:
random write considered harmful in solid state drives.
In Proc. of USENIX FAST, 2012.

[31] Y. Ni, J. Jiang, D. Jiang, X. Ma, J. Xiong, and Y. Wang.
S-RAC: SSD friendly caching for data center workloads.
In Proc. of ACM Systor, 2016.

[32] P. O’Neil, E. Cheng, D. Gawlick, and E. ONeil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351–385, 1996.

USENIX Association 2020 USENIX Annual Technical Conference 725

http://git.kernel.dk/?p=fio.git
http://git.kernel.dk/?p=fio.git
https://github.com/intel/isa-l_crypto
https://github.com/intel/isa-l_crypto
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash

[33] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham.
PebblesDB: Building key-value stores using fragmented
log-structured merge trees. In Proc. of ACM SOSP,
2017.

[34] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: a
lightweight, consistent and durable storage cache. In
Proc. of ACM EuroSys, 2012.

[35] Z. Shen, F. Chen, Y. Jia, and Z. Shao. DIDACache:
A deep integration of device and application for flash
based key-value caching. In Proc. of USENIX FAST,
2017.

[36] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voru-
ganti. iDedup: latency-aware, inline data deduplication
for primary storage. In Proc. of USENIX FAST, 2012.

[37] Y. Tan, J. Xie, C. Xu, Z. Yan, H. Jiang, Y. Zhao, M. Fu,
X. Chen, D. Liu, and W. Xia. CDAC: Content-driven
deduplication-aware storage cache. In Proc. of MSST,
2019.

[38] H. Wang, X. Yi, P. Huang, B. Cheng, and K. Zhou.
Efficient SSD caching by avoiding unnecessary writes
using machine learning. In Proc. of ACM ICPP, 2018.

[39] N. Xia, C. Tian, Y. Luo, H. Liu, and X. Wang. UKSM:
Swift memory deduplication via hierarchical and adap-
tive memory region distilling. In Proc. of USENIX FAST,
2018.

[40] W. Xia, H. Jiang, D. Feng, and Y. Hua. Silo:
A similarity-locality based near-exact deduplication
scheme with low RAM overhead and high throughput.
In Proc. of USENIX ATC, 2011.

[41] Q. Yang, R. Jin, and M. Zhao. SmartDedup: Optimizing
deduplication for resource-constrained devices. In Proc.
of USENIX ATC, 2019.

[42] B. Zhu, K. Li, and R. H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file system.
In Proc. of USENIX FAST, 2008.

[43] J. Ziv and A. Lempel. A universal algorithm for se-
quential data compression. IEEE Trans. on Information
Theory, 23(3):337 – 343, May 1977.

726 2020 USENIX Annual Technical Conference USENIX Association

DADI Block-Level Image Service
for Agile and Elastic Application Deployment

Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu and Windsor Hsu
Alibaba Group

Abstract
Businesses increasingly need agile and elastic computing
infrastructure to respond quickly to real world situations.
By offering efficient process-based virtualization and a lay-
ered image system, containers are designed to enable agile
and elastic application deployment. However, creating or
updating large container clusters is still slow due to the im-
age downloading and unpacking process. In this paper, we
present DADI Image Service, a block-level image service
for increased agility and elasticity in deploying applications.
DADI replaces the waterfall model of starting containers
(downloading image, unpacking image, starting container)
with fine-grained on-demand transfer of remote images, re-
alizing instant start of containers. DADI optionally relies
on a peer-to-peer architecture in large clusters to balance
network traffic among all the participating hosts. DADI effi-
ciently supports various kinds of runtimes including cgroups,
QEMU, etc., further realizing “build once, run anywhere”.
DADI has been deployed at scale in the production environ-
ment of Alibaba, serving one of the world’s largest ecommerce
platforms. Performance results show that DADI can cold start
10,000 containers on 1,000 hosts within 4 seconds.

1 Introduction

As business velocity continues to rise, businesses increasingly
need to quickly deploy applications, handle unexpected surge,
fix security flaws, and respond to various real world situations.
By offering efficient process-based virtualization and a lay-
ered image system, containers are designed to enable agile
and elastic application deployment. However, creating or up-
dating large container clusters is still slow due to the image
downloading and unpacking process. For example, Verma et
al. in [37] report that the startup latency of containers is highly
variable with a typical median of about 25s, and pulling layers
(packages) accounts for about 80% of the total time.

Highly elastic container deployment has also become ex-
pected of modern cloud computing platforms. In serverless
computing [23], high cold-start latency could violate respon-
siveness SLAs. Workarounds for the slow start are cumber-
some and expensive, and include storing all images on all
possible hosts. Therefore, minimizing cold-start latency is
considered a critical system-level challenge for serverless
computing [14, 23].

There has been recent work on reducing container startup
time by accelerating the image downloading process with a
peer-to-peer (P2P) approach [20, 22, 24, 30, 37]. We relied
on a P2P download tool for several years to cope with the
scalability problem of the Container Registry. However, the
startup latency was still unsatisfactory. Another general ap-
proach to the problem is to read data on-demand from remote
images [9,16,18,19,21,33,41]. Because container images are
organized as overlaid layers of files and are presented to the
container runtime as a file system directory, all of the previous
work adhered to the file system interface, even though some
of them actually used block stores as their backends.

Implementing a POSIX-complaint file system interface and
exposing it via the OS kernel is relatively complex. Moreover,
using file-based layers has several disadvantages. First, updat-
ing big files (or their attributes) is slow because the system
has to copy whole files to the writable layer before performing
the update operations. Second, creating hard links is similarly
slow, because it also triggers the copy action as cross layer ref-
erences are not supported by the image. Third, files may have
a rich set of types, attributes, and extended attributes that are
not consistently supported on all platforms. Moreover, even
on one platform, support for capabilities such as hard links,
sparse files, etc. tends to be inconsistent across file systems.

With the rapid growth of users running containers on pub-
lic cloud and hybrid cloud, virtualized secure containers are
becoming mainstream. Although it is possible to pass a file-
based image from host to guest via 9p [1] or virtio-fs [10],
there is usually a performance cost. There are also complica-
tions in handling heterogeneous containers such as Windows
guest on Linux host, or vice versa. This means that some
users may not be able to burst efficiently to public clouds, i.e.
run their applications primarily on premise with an efficient
container runtime, and scale them out under load to public
clouds with a virtualized secure container runtime.

In this paper, we observe that the benefits of a layered im-
age are not contingent on representing the layers as sets of file
changes. More specifically, we can achieve the same effect
with block-based layers where each layer still corresponds
to a set of file changes but is physically the set of changes at
the block level underneath a given file system. Such a design
allows the image service to be file system and platform ag-
nostic. The image service is solely responsible for managing
and distributing physical images to the appropriate hosts. It is
up to the individual host or container on the host to interpret

USENIX Association 2020 USENIX Annual Technical Conference 727

F2’

F1 F2L1

L2

Image Registry

F2’

F1 F2L1

L2

OverlayFS

Building Host

file diffs 2

file diffs 1L1

L2

OverlayFS

Execution Host
C1 C2

fdiffs3 fdiffs4LC
Push Pull

FS1 FS2

Figure 1: Layered Container Image. The image layers (L1, L2)
are read-only shared by multiple containers (C1, C2) while
the container layers (LC) are privately writable.

the image with an appropriate file system. This approach also
allows dependency on the file system to be explicitly captured
at image creation time, further enhancing consistency in the
runtime environment of applications.

We have designed and implemented a complete system
called DADI Image Service (DADI in short) based on this ap-
proach. The name DADI is an acronym for Data Acceleration
for Disaggregated Infrastructure and describes several of our
initiatives in enabling a disaggregated infrastructure. At the
heart of the DADI Image Service is a new construct called
Overlay Block Device (OverlayBD) which provides a merged
view of a sequence of block-based layers. Conceptually, it
can be seen as the counterpart of union file systems that are
usually used to merge container images today. It is simpler
than union file systems and this simplicity enables optimiza-
tions including flattening of the layers to avoid performance
degradation for containers with many layers. More generally,
the simplicity of block-based layers facilitates (1) fine-grained
on-demand data transfer of remote images; (2) online decom-
pression with efficient codecs; (3) trace-based prefetching;
(4) peer-to-peer transfer to handle burst workload; (5) flexible
choice of guest file systems and host systems; (6) efficient
modification of large files (cross layer block references); (7)
easy integration with the container ecosystem.

We have applied DADI to both cgroups [3] runtime and
QEMU runtime. Support for other runtimes such as Fire-
cracker [13], gVisor [5], OSv [25], etc. should be technically
straightforward. DADI has been deployed at scale in the pro-
duction environment of Alibaba to serve one of the world’s
largest ecommerce platforms. Performance results show that
DADI can cold start 10,000 containers on 1,000 hosts within
4 seconds. We are currently working on an edition of DADI
for our public cloud service.

2 Background and Related Work

2.1 Container Image
Container images are composed of multiple incremental lay-
ers so as to enable incremental image distribution. Each layer
is essentially a tarball of differences (addition, deletion or
update of files) from a previous layer. The container system
may apply the diffs in a way defined by its storage driver.
The layers are usually much lighter than VM images that

contain full data. Common layers are downloaded only once
on a host, and are shared by multiple containers as needed.
Each container has a dedicated writable layer (also known
as container layer) that stores a private diff to the image, as
shown in Figure 1. Writing to a file in the image may trigger
a copy-on-write (CoW) operation to copy the entire file to the
writable layer.

To provide a root file system to containers, the container en-
gine usually depends on a union file system such as overlayfs,
aufs, etc. These union file systems provide a merged view of
the layers which are stored physically in different directories.
The container system can also make use of Logical Volume
Manager (LVM) thin-provisioned volumes, with each layer
mapped to a snapshot.

The container system has a standard web service for image
uploading and downloading called the Container Registry.
The Container Registry serves images with an HTTP(S)-based
protocol which, together with the incremental nature of layers,
makes it a lot easier to distribute container images widely as
compared to VM images.

2.2 Remote Image
The image distribution operation, however, consumes a lot of
network and file system resources, and may easily saturate
the service capacity allocated to the user/tenant, especially
when creating or updating large container clusters. The result
is long startup latencies for containers. After an image layer
is received, it has to be unpacked. This unpacking operation is
CPU, memory (for page cache) and I/O intensive at the same
time so that it often affects other containers on the host and
sometimes even stalls them.

To some extent, the current container image service is a
regression to a decade ago when VM images were also down-
loaded to hosts. A similar problem has been solved once
with distributed block stores [26, 28, 29, 38] where images
are stored on remote servers, and image data is fetched over
the network on-demand in a fine-grained manner rather than
downloaded as a whole. This model is referred to as “remote
image”. There are several calls for this model in the container
world (e.g. [18, 21]).

The rationale for remote image is that only part of the
image is actually needed during the typical life-cycle of a
container, and the part needed during the startup stage is even
smaller. According to [19], as little as 6.4% of the image is
used during the startup stage. Thus remote image saves a
lot of time and resources by not staging the entire image in
advance. And with the help of data prefetching (by OS) or
asynchronous data loading (by applications themselves), the
perceived time to start from a remote image can be effectively
reduced further.

Remote image, however, requires random read access to
the contents of the layers. But the standard layer tarball was
designed for sequential reading and unpacking, and does not
support random reading. Thus the format has to be changed.

728 2020 USENIX Annual Technical Conference USENIX Association

2.3 File-System-Based Remote Image
CRFS [21] is a read-only file system that can mount a con-
tainer image directly from a Container Registry. CRFS intro-
duces an improved format called Stargz that supports random
reads. Stargz is a valid tar.gz format but existing images need
to be converted to realize remote image service. Instead of
having the read-only file system read files directly from the
layer, one could also extract the files in each layer and store
them in a repository such as CernVM-FS [18] where they
can be accessed on demand. CFS [27] is a distributed file
system to serve unpacked layer files for hosts. Wharf [41],
Slacker [19], Teleport [9] serve unpacked layer files through
NFS or CIFS/SMB.

Due to the complexity of file system semantics, there are
several challenges with file-system based image service. For
example, passing a file system from host to guest across the
virtualization boundary tends to limit performance. The I/O
stack involves several complex pieces (including virtio-fs [10],
FUSE [36], overlayfs [8], remote image itself) that need to
be made robust and optimized. When compared to a block
device, the file system also presents a larger attack surface
that potentially reduces security in public clouds.

POSIX-compliant features are also a burden for non-
POSIX workloads such as serverless applications, and an
obstacle to Windows workloads running on Linux hosts (with
virtualization). In addition, unikernel [5, 25, 39] based appli-
cations are usually highly specialized, and tend to prefer a
minimalistic file system such as FAT [4] for efficiency. Some
of them may even require a read-only file system. These dif-
ferent requirements are difficult to be satisfied by a file system
that is predefined by the image service.

Furthermore, some desirable features of popular file sys-
tems such as XFS [11], Btrfs [2], ZFS [12], etc., are missing
in current file-system-based image services, and are not likely
to be supported soon. These include file-level or directory-
level snapshot, deduplication, online defragmentation, etc. It
is even difficult to efficiently (without copy) support standard
features such as hard links and modification of files or file
attributes.

2.4 Block-Snapshot-Based Remote Image
Modern block stores [26, 28, 29, 38] usually have a concept
of copy-on-write snapshot which is similar to layer in the
container world. Cider [16] and Slacker [19] are attempts to
make use of such similarity by mapping image layers to the
snapshots of Ceph and VMstore [17], respectively.

Container image layer and block store snapshot, however,
are not identical concepts. Snapshot is a point-in-time view
of a disk. Its implementation tends to be specific to the block
store. In many systems, snapshots belong to disks. When a
disk is deleted, its snapshots are deleted as well. Although
this is not absolutely necessary, many block stores behave
this way by design. Layer, on the other hand, refers to the
incremental change relative to a state which can be that of

a different image. Layer emphasizes sharing among images,
even those belonging to different users, and has a standard
format to facilitate wide distribution.

2.5 Others
File System Changesets. Exo-clones [33] implement volume
clones efficiently with file system changesets that can be
exported. DADI images are conceptually exo-clones with
block level deltas that are not tied to any specific file system.

P2P downloading. Several systems allow container hosts
to download image layers in a P2P manner, significantly re-
ducing the download time in large environments [20, 22, 24,
30,37]. VMThunder [40] adopts a tree-structured P2P overlay
network to deliver fine-grained data blocks on-demand for
large VM clusters. We reuse this general idea in DADI’s op-
tional P2P subsystem with a refined design and a production-
level implementation.

Trimmed images. In order to pull less data and start a con-
tainer in less time, DockerSlim [6] uses a combination of static
and dynamic analyses to generate smaller-sized container im-
ages in which only files needed by the core application are
included. Cntr [35] improves this by allowing dynamic ac-
cesses to trimmed files in uncommon cases via a FUSE-based
virtual files system.

Storage Configuration for Containers. The layering fea-
ture of container image introduces new complexities in config-
uring storage. [34] demonstrates the impact of Docker storage
configuration on performance.

VM images. Standard VM image formats such as qcow2,
vmdk, vhd, etc. are block-level image formats and are tech-
nically reusable for containers. The major drawback of these
image formats is that they are not layered. It is possible to em-
ulate layering by repeatedly applying QEMU’s backing-file
feature, but doing this incurs significant performance over-
head for reads. As we shall see in Section 3.1, the translation
tables for standard VM image formats are also much bigger
than those needed for DADI.

3 DADI Image Service
DADI is designed to be a general solution that can become
part of the container ecosystem. The core of DADI (Sec-
tions 3.1-3.4) is a remote image design that inherits the layer-
ing model of container image, and remains compatible with
the Registry by conforming to the OCI-Artifacts [31] standard.
DADI is independent of transfer protocols so it is possible
to insert an optional P2P transfer module to cope with large-
scale applications (Section 3.5). DADI is also independent
of the underlying storage system so users can choose an ap-
propriate storage system such as HDFS, NFS, CIFS, etc., to
form a fully networked solution (Section 4.4). DADI uses a
block-level interface which minimizes attack surface, a design
point especially relevant for virtualized secure containers.

USENIX Association 2020 USENIX Annual Technical Conference 729

L1

L2

Image Registry

L1

L2

OverlayBD

Building Host

Push

On
Demand

Fine
Grained

Pullvirtual block device

blk diff

block diff

Execution Host
C2
FS2

block diff

block diffL1

L2

blk diff blk diffLC

VBD1 VBD2

data
blocks…

C1
FS1

O
ve

rla
yB

D

Virtual
Block
Device

VM
File System

Figure 2: DADI Image. DADI image layer (L1, L2) consists
of modified data blocks. DADI uses an overlay block device
to provide each container (C1, C2) with a merged view of its
layers.

3.1 DADI Image

As shown in Figure 2, DADI models an image as a virtual
block device on which is laid a regular file system such as
ext4. Note that there is no concept of file at the block level.
The file system is a higher level of abstraction atop the DADI
image. When a guest application reads a file, the request is
first handled by the regular file system which translates the
request into one or more reads of the virtual block device. The
block read request is forwarded to a DADI module in user
space, and then translated into one or more random reads of
the layers.

DADI models an image as a virtual block device while re-
taining the layered feature. Each DADI layer is a collection of
modified data blocks under the filesystem and corresponding
to the files added, modified or deleted by the layer. DADI
provides the container engine with merged views of the layers
by an overlay block device (OverlayBD) module. We will use
layer and changeset interchangeably in the rest of the paper
for clearer statements. The block size (granularity) for read-
ing and writing is 512 bytes in DADI, similar to real block
devices. The rule for overlaying changesets is simple: for any
block, the latest change takes effect. The blocks that are not
changed (written) in any layer are treated as all-zero blocks.

The raw data written by the user, together with an index
to the raw data, constitutes the layer blob. The DADI layer
blob format further includes a header and a trailer. To reduce
memory footprint and increase deployment density, we design
an index based on variable-length segments, as illustrated in

s t r u c t Segment {
u i n t 6 4 _ t o f f s e t : 4 8 ; / / o f f s e t i n image ’ s LBA
u i n t 1 6 _ t l e n g t h ; / / l e n g t h o f t h e change
u i n t 6 4 _ t m o f f s e t : 4 8 ; / / mapped o f f s e t i n l a y e r b lob
u i n t 1 6 _ t pos : 1 2 ; / / p o s i t i o n i n t h e l a y e r s t a c k
u i n t 8 _ t f l a g s : 4 ; / / z e r o e d ? e t c .
u i n t 6 4 _ t end () { r e t u r n o f f s e t + l e n g t h ; }

} ;

Figure 3: Definition of Segment. LBA is short for logical
block address, offsets and lengths are in unit of blocks (512
bytes), size of the struct is 16 bytes.

0 2 15 87 1501 4 10 50 1030 15

preadoffset length

Segment

raw data to readraw data

raw data
to read

hole hole

raw data
to read

Figure 4: Index Lookup for Reading DADI Image. The lookup
operation is a range query on a set of ordered non-overlapping
variable-length segments, each of which points to the location
of its raw data in the layer blob(s).

Figure 3. A segment tells where a change begins and ends
in the image’s logical block address (LBA) space, and also
where the latest data is stored in the layer blob file’s offset
space. In this design, adjacent segments that are contiguous
can be merged into a single larger segment to reduce the index
size. The segment struct can record a change as small as 1
block which is the minimal write size for a block device. This
avoids Copy-on-Write operations and helps to yield consistent
write performance.

The index is an array of non-overlapping segments sorted
by their offset. According to statistics from our production
environment, the indices have fewer than 4.5K segments (see
Section 5 for details) which corresponds to only 72KB of
memory. In contrast, the qcow2 image format of QEMU has
a fixed block size of 64KB by default, and an index based on
radix-tree. QEMU allocates MBs of memory by default to
cache the hottest part of its index.

To realize reading, DADI performs a range lookup in the
index to find out where in the blob to read. The problem
can be formally stated as given a set of disjoint segments in
the LBA space, find all the segments (and “holes”) within
the range to read. This problem is depicted in Figure 4. For
efficiency, the algorithm deals with variable-length segments
directly without expanding them to fixed-sized blocks. As the
index is ordered and read-only, we simply use binary search
for efficient lookup, as shown in Algorithm 1. A B-tree could
achieve higher efficiency but as the index contains only a few
thousand entries in practice, we leave this optimization as a
possible future work.

3.2 Merged View of Layers
When there are multiple layers, if the lookup procedure
goes through the layers one by one, the time complexity is
O(n · logm) where n is the number of layers and m is the
average number of segments in a layer. In other words, the
cost increases linearly with n. We optimize this problem with
a merged index that is pre-calculated when the indices are

730 2020 USENIX Annual Technical Conference USENIX Association

Input: the range (offset, length) to look up
end← offset + length;
i← index.binary_search_first_not_less(offset);
if i < index.size() then

delta← offset - index[i].offset;
if delta > 0 then // trim & yield 1st segment

s← index[i]; s.offset← offset;
s.moffset += delta; s.length -= delta;
yield s; offset← s.end(); i++;

end
end
while i < index.size() and index[i].offset < end do

len← index[i].offset - offset;
if len > 0 then // yield a hole

yield Hole(offset, len);
offset← index[i].offset;

end
s← index[i]; // yield next segment
s.length← min(s.length, end - offset);
yield s; offset← s.end(); i++;

end
if offset < end then // yield final hole

yield Hole(offset, end - begin);
end

Algorithm 1: Index Lookup. Yields a collection of segments
within the specified range (offset, length) with i initialized
to the first element in the index that is not less than offset,
and Hole being a special type of segment representing a
range that has never been written.

loaded, thus reducing the complexity to O(logM) where M
is the number of segments in the merged index. The merging
problem is illustrated in Figure 5.

To merge the indices, we put them in an array indexed from
1 to n where n is the number of layers, and in an order such
that base layers come earlier. Algorithm 2 shows the recursive
procedure to merge indices for a specified range. To merge
them as whole, the algorithm is invoked for the entire range
of the image. We make use of the pos field in the final merged
index to indicate which layer a segment comes from. With the
merged index, random read operation (pread) can be easily
implemented as Algorithm 3, supposing that we have an array
of file objects representing the ordered layers’ blobs.

We analyzed 1,664 DADI image layers from 205 core ap-
plications in our production environment to extract the size of
the merged indices. The statistics are summarized in Figure 6.
They show that the indices have no more than 4.5K segments
so the algorithm for merging indices is efficient enough to be
run when an image is launched. Observe also that the number
of segments is not correlated with the number of layers. This
suggests that the performance of DADI OverlayBD does not
degrade as the number of layers increases. Figure 7 plots the
throughput of index queries on a single CPU core. Observe

Input: an array of indices[1..n];
subscript i of the indices array for this recursion;
the range to merge (offset, length)

for s in indices[i].lookup(offset, length) do
if s is NOT a Hole then

s.pos← i;
yield s;

else if i > 0 then // ignore a real hole
indices_merge(indices, i-1, s.offset, s.length);

end
end

Algorithm 2: Index Merge by Recursion.

Input: an array of file objects blobs[0..n];
a rage (offset, length) to pread

for s in merged_index.lookup(offset, length) do
// s.pos == 0 for Hole segments
// blobs[0] is a special virtual file object
// that yields zeroed content when pread
blobs[s.pos].pread(s.offset, s.length);

end
Algorithm 3: Read Based on Merged Index.

that at an index size of 4.5K segments, a single CPU core
can perform more than 6 million index queries per second. In
Section 5.4, we find that IOPS tops out at just under 120K for
both LVM and DADI, suggesting that DADI spends no more
than 1/50 of a CPU core performing index lookups.

3.3 Compression and Online Decompression

Standard compression file formats such as gz, bz2, xz, etc.,
do not support efficient random read operation. Files in these
formats usually need to be decompressed from the very be-
ginning until the specified part is reached. To support com-
pression of the layers’ blobs and enable remote image at the
same time, DADI introduces a new compression file format
called ZFile.

ZFile includes the source file compressed in a fixed-sized
chunk-by-chunk manner and a compressed index. To read

5 10 1005 10 10

0 21 53 5 1010 20 875

0 2 15 87 1501 4 10 50 1030 15

30 15 13 100 10 110 27 150 10

+

=>

offset length

Segment

Figure 5: Index Merge.

USENIX Association 2020 USENIX Annual Technical Conference 731

of

 S
eg

m
en

ts
 in

 M
er

ge
d

In
de

x

0K

1K

2K

3K

4K

5K

Layers Depth
0 5 10 15 20 25 30 35 40 45

Figure 6: Index Size of Production Applications.

an offset into a ZFile, one looks up the index to find the
offset and length of the corresponding compressed chunk(s),
and decompresses only these chunks. ZFile supports various
efficient compression algorithms including lz4, zstd, gzip,
etc., and can additionally store a dictionary to assist some
compression algorithms to achieve higher compression ratio
and efficiency. Figure 8 illustrates the format of ZFile.

The index stored in ZFile is an array of 32-bit integers, each
of which denotes the size of the corresponding compressed
chunk. The index is compressed with the same compression
algorithm as the data chunks. When loaded into memory, the
index is decompressed and accumulated into an array of 64-
bit integers denoting the offsets of the compressed chunks in
the ZFile blob. After the conversion, index lookup becomes a
simple array addressing at o f f set/chunk_size.

Due to the fixed-size nature of chunks and the aligned na-
ture of the underlying storage device, ZFile may read and
decompress more data than requested by a user read. The
decompression itself is an extra cost compared to the conven-
tional I/O stack. In practice, however, ZFile improves user-
perceived I/O performance even on servers with high-speed
NVMe SSD. The advantage is even larger for slower storage

Q
ue

rie
s

/ S
ec

on
d

0M

3M

6M

9M

Size of Index (# of Segments)
1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

Figure 7: Index Performance on Single CPU Core.

Header Index Trailer
Compressed

Chunks[Dict]

Header Index TrailerRaw Data

ZFile

Underlay file
(DADI layer blob)

Figure 8: ZFile Format.

(e.g. HDD or Registry). This is because, with the compres-
sion agorithm in use (lz4), the time saved reading the smaller
amount of compressed data more than offsets the time spent
decompressing the data. See Section 5.4 for detailed results.

In order to support online decompression, a fast compres-
sion algorithm can be used at some expense to the compres-
sion ratio. We typically use lz4 in our deployment. Individ-
ually compressing chunks of the original files also impacts
the compression ratio. As a result, DADI images are usually
larger than the corresponding .tgz images but not by much.

We analyzed the blob sizes of 205 core applications in our
production environment. Figure 9 shows the blob sizes in
various formats relative to their .tar format sizes. In general,
DADI uncompressed format (.dadi) produces larger blobs
than .tar, due to the overhead of the image file system (ext4 in
this case) but the overhead is usually less than 5% for layers
that are larger than 10MB. Note that the compression ratio
varies greatly among these images and some of them are not
compressible. As discussed, ZFile blobs tend to be larger than
their .tgz counterparts.

By adhering to the layered model of container image, DADI
images are able to share layers. To further save space and
network traffic, deduplication can be performed at the chunk
level of DADI images, followed by compression of the unique
chunks.

3.4 DADI Container Layer
Unlike other remote image systems (e.g. [18, 21]), DADI
realizes a writable container layer. The writable layer is not
only a convenient way to build new image layers, but also

Re
la

tiv
e

Si
ze

 o
f L

ay
er

 F
or

m
at

s

0.0
0.2
0.4

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Size of Layer in .tar (MB)
1 10 100 1,000

.zfile

.tgz

.dadi

Figure 9: Relative Layer Blob Size.

732 2020 USENIX Annual Technical Conference USENIX Association

Data (R/W)

Index (R/W)
Header Index TrailerRaw Data

Layer (RO)Header Raw Data

IndexHeader append

append

commit

Figure 10: DADI’s Writable Layer.

provides an option to eliminate the dependency on a union file
system. We base the writable layer on a log-structured [32]
design because this makes DADI viable on top of virtually all
kinds of storage systems, including those that do not support
random writes (e.g. HDFS). The log-structured writable layer
is also technically a natural extension of the read-only layers.

As shown in Figure 10, the writable layer consists of one
file for raw data and one for index. Both of these files are
open-ended, and are ready to accept appends. As overwrites
occur in the writable layer, these files will contain garbage
data and index records. When there is too much garbage,
DADI will spawn a background thread to collect the garbage
by copying the live data to a new file, and then deleting the
old file. When the writable layer is committed, DADI will
copy the live data blocks and index records to a new file in
layer format, sorting and possibly combining them according
to their LBAs.

The index for the writable layer is maintained in memory
as a red-black tree to efficiently support lookup, insertion
and deletion. On a write, DADI adds a new record to the
index of the writable layer. On a read, DADI first looks up the
index of the writable layer. For each hole (a segment with no
data written) within the range to read, DADI further looks up
the merged index of the underlying read-only layers. DADI
supports TRIM by adding to the writable layer an index record
that is flagged to indicate that the range contains all-zero
content.

3.5 P2P Data Transfer

Although remote image can greatly reduce the amount of im-
age data that has to be transferred, there are situations where
more improvement is necessary. In particular, there are several
critical applications in our production environment that are
deployed on thousands of servers, and that comprise layers as
large as several GBs. The deployment of these applications
places huge pressure on the the Registry and the network
infrastructure.

To better handle such large applications, DADI caches re-
cently used data blocks on the local disk(s) of each host. DADI
also has the option to transfer data directly among the hosts in
a peer-to-peer manner. Given that all the peers need roughly
the same set of data and in roughly the same order during
the startup time period, DADI adopts a tree-structured over-
lay topology to realize application-level multicast similar to
VMThunder [40] instead of the rarest-first policy commonly
used in P2P downloading tools [15, 20, 22].

Registry

DADI-Root

DADI-Agent DADI-Agent

DADI-Agent

DADI-Agent

DADI-Agent DADI-Agent

DADI-Root

DADI-Agent DADI-Agent

DADI-Agent

DADI-Agent DADI-Agent

DADI-Agent
DADI-Agent

DADI-Agent

HTTP(S) request DADI request

Datacenter 1 Datacenter 2

DADI-Agent

Figure 11: DADI’s Tree-Structured P2P Data Transfer.

As shown in Figure 11, each container host runs a P2P mod-
ule called DADI-Agent. In addition, there is a P2P module
called DADI-Root in every data center that plays the role of
root for topology trees. DADI-Root is responsible for fetching
data blocks from the Registry to a local persistent cache, and
also for managing the topology trees within its own datacenter.
A separate tree is created and maintained for each layer blob.

Whenever an agent wants to read some data from a blob
for the first time or when its parent node does not respond,
it sends a request RPC to the root. The root may service the
request by itself, or it may choose to rearrange the topology
and redirect the requesting agent to a selected parent. The
requesting agent is considered to join the tree as a child of
the selected parent. Every node in a tree, including the root,
serves at most a few direct children. If the requested data is
not present in the parent’s cache, the request flows upward
until a parent has the data in its cache. The data received from
the parent is added to the child’s cache as it will probably be
needed soon by other children or the node itself.

DADI-Root manages the topology. It knows how many
children every node has. When a node needs to be inserted
into the tree, the root simply walks down the tree in memory,
always choosing a child with the fewest children. The walk
stops at the first node with fewer direct children than a thresh-
old. This node becomes the selected parent for the requesting
agent. When a node finds that its parent has failed, it reverts
to the root to arrange another parent for it. As the P2P trans-
fer is designed to support the startup of containers and this
startup process usually does not last long, DADI-Root expires
topology information relatively quickly, by default after 20
minutes.

DADI-Root is actually a replicated service running on sev-
eral servers for availability, and deployed separately for differ-
ent clusters. An agent randomly chooses a root server in the
same cluster when joining a transfer topology. It switches to
another root server when it encounters a failure. The Registry
tends to be shared by many clusters and possibly across a
long distance so its performance may not always be high. In
order to ensure that data blocks are likely to exist on the root
when they are needed, we warm up the root servers’ cache in

USENIX Association 2020 USENIX Annual Technical Conference 733

app processes

file system
(ext4, etc.) virtual block device

lsmd

another file system
(ext4, etc.)

 container OverlayBD

P2P
RPC

for container layers, or
downloaded image layers

user space

kernel space

for new
image layers

P2P Agent

Persistent Cache

Figure 12: I/O Path for cgroups Runtime.

our production environment whenever a new layer is built or
converted.

To protect against potential data corruption, we create a
separate checksum file for each and every layer blob as part
of the image building or conversion process. The checksum
file contains the CRC32 value for each fixed-sized block of
the layer. As the checksum files are small, they are distributed
whole to every involved node as part of the image pulling
process. The data blocks are verified on arrival at each node.

4 Implementation and Deployment

This section discusses how DADI interfaces with applications
and container engines, as well as how DADI can be deployed
in different user scenarios.

4.1 Data Path

DADI connects with applications through a file system
mounted on a virtual block device. DADI is agnostic to the
choice of file system so users can select one that best fits their
needs. By allowing the dependency on the file system to be
explicitly captured at image creation time, DADI can help
applications exploit the advanced features of file systems such
as XFS [11], Btrfs [2], ZFS [12].

In the case of the cgroups runtime, we use an internal
module called vrbd to provide the virtual block device. vrbd
is similar to nbd but contains improvements that enable it to
perform better and handle crashes of the user-space daemon.
As shown in Figure 12, I/O requests go from applications
to a regular file system such as ext4. From there they go to
the virtual block device and then to a user-space daemon
called lsmd. Reads of data blocks belonging to layers that
have already been downloaded are directed to the local file
system where the layers are stored. Other read operations are
directed to DADI’s P2P agent which maintains a persistent
cache of recently used data blocks. Write and trim operations
are handled by lsmd which writes the data and index files of
the writable layer to the local file system.

Hypervisor (QEMU, etc.)

guest

app processes

guest file system
(ext4, etc.)

virtual block device

DADI block driver

host file system
(ext4, etc.)

P2P
RPC

for container layers, or
downloaded image layers

host user space

host kernel space

P2P Agent

Persistent Cache

for new
image layers

guest
user

space

guest
kernel
space

Figure 13: I/O Path for Virtualized Runtime (QEMU, etc).

We have also realized a QEMU driver for its block de-
vice backend to export an image to virtualized containers. As
shown in Figure 13, the data path in this case is conceptu-
ally similar to that for the cgroups runtime except that the
image file system and virtual block device are running in the
guest context, and the block driver takes the place of lsmd.
Integration with other hypervisors should be straightforward.
It is also possible to pass the virtual block device from the
host into the guest context. This approach works with vir-
tually all hypervisors but incurs a slightly higher overhead.
As the block device interface is narrower and simpler than a
file system interface, it exposes a small attack surface to the
untrusted guest container.

4.2 Container Engine Integration
DADI is integrated with Docker through a graph driver which
is a Docker plugin to compose the root file system from layers.
The layers form a graph (actually tree) topology hence the
name graph driver. DADI is also integrated with containerd
through a snapshotter which provides functions similar to
those of the graph driver. We will use the term “driver” to
refer to either of them in the rest of the paper.

We implemented the drivers to recognize existing and
DADI image formats. When they encounter .tgz image, they
invoke existing drivers. When they come across DADI image,
they perform DADI-specific actions. In this way, the con-
tainer engine can support both types of images at the same
time so that the deployment of DADI to a host does not re-
quire the eviction of existing .tgz based containers or images
from that host. This enables us to use a canary approach to
systematically roll out DADI across our complex production
environment.

DADI currently fakes the image pulling process with a
small tarball file consisting of DADI-specific metadata. The
tarball is very small so that the image pull completes quickly.
We are preparing a proposal to the container community for
extensions to the image format representation to enable lazy
image pulling and make the engine aware of remote images.

734 2020 USENIX Annual Technical Conference USENIX Association

4.3 Image Building

DADI supports image building by providing a log-structured
writable layer. The log-structured design converts all writes
into sequential writes so that the build process with DADI is
usually faster than that for regular .tgz images (see Section 5
for details). As DADI uses faster compression algorithms, the
commit operation is faster with DADI than it is for regular .tgz
images. DADI also avoids pulling entire base images and this
saves time when building images on dedicated image building
servers where the base images are usually not already local.

In order to build a new layer, DADI first prepares the base
image file system by bringing up a virtual block device and
mounting the file system on it. When the layer is committed,
DADI unmounts the file system and brings down the device.
These actions are repeated for each layer produced in a new
image, adding up to a lot of time. According to the specifi-
cation of the image building script (dockerfile), each line of
action will produce a new layer. It is not uncommon to see
tens of lines of actions in a dockerfile in our environment so
a single build job may result in an image with many new lay-
ers. This design was supposed to improve the speed of layer
downloading by increasing parallelism, but it may become
unnecessary with remote image.

We optimized the DADI image build process by bringing
the device up and down only once. The intermediate down-
and-ups are replaced with a customized operation called stack-
and-commit. As its name suggests, stack-and-commit first
stacks a new writable layer on top of existing layers, and then
commits the original writable layer in the background. This
optimization significantly increases image building speed,
especially on high-end servers with plenty of resources.

To convert an existing .tgz image into the DADI format,
DADI proceeds from the lowest layer of the image to its high-
est layer. For each layer, DADI creates a new writable layer
and unpacks the corresponding .tgz blob into the layer while
handling whiteouts, a special file name pattern that indicates
deletion of an existing file. If users want to build a DADI
image from a .tgz base image, the base image layers must first
be converted into the DADI format using this process.

Some container engines implicitly create a special init layer
named as xxxxx-init between the container layer and its im-
ages layers. This init layer contains some directories and files
that must always exist in containers (e.g. /proc, /dev, /sys).
During commit, DADI merges this init layer with the con-
tainer layer so as to keep the integrity of the image file system.

4.4 Deployment Options

The P2P data transfer capability of DADI is optional and
targeted at users with large applications. Other users may
prefer to use DADI with the layer blobs stored in a high-
performance shared storage system as a compromise between
fetching the layer blobs from the Registry and storing the layer

blobs on every host. Similar solutions have been proposed in
the community (e.g. Teleport [9], Wharf [41]). DADI further
enhances these solutions by not requiring the layers to be
unpacked and supporting alternative storage systems such as
HDFS.

For users who do not wish to set up shared storage, DADI
provides them with the option to fetch layer blobs on-demand
from the Registry and cache the data blocks on local disk(s).
This approach greatly reduces cold startup latencies by avoid-
ing the transfer of data blocks that are not needed. If there
is a startup I/O trace available when launching a new con-
tainer instance, DADI can make use of the trace to prefetch
the data blocks needed by the starting container, yielding a
near-warm startup latency. The trace can be simply collected
with blktrace, and replayed with fio. See Section 5.2 for
details.

Users may also choose to use DADI by downloading the
layer blobs to local disk(s). DADI layers do not need to be un-
packed, saving a time-consuming sequential process needed
for .tgz layers. Thus pulling DADI images is much faster. The
downloading can be optionally offloaded to P2P tools such
as [20,22,24,30,37]. We use this approach as a backup path in
case our on-demand P2P transfer encounters any unexpected
error.

5 Evaluation

In this section, we evaluate the performance and scalability
of DADI Image Service.

5.1 Methodology
We compare the container startup latency with DADI to that
with the standard tarball image, Slacker, CRFS, LVM (dm or
device mapper), and P2P image download. We also analyze
the I/O performance as observed by an application inside the
container.

Slacker uses Tintri VMstore as its underlying storage sys-
tem. We do not have access to such a system so we use LVM
together with NFS as an approximation of Slacker (denoted
as pseudo-Slacker). At the time of this writing, CRFS has
not yet achieved its goal of realizing an internal overlayfs
so we rely on the kernel implementation of overlayfs for the
comparisons.

We generally use NVMe SSDs as local storage. We also em-
ulate a low-speed disk by limiting IOPS to 2,000 and through-
put to 100 MB/s. These are the performance characteristics of
the most popular type of virtual disks on public clouds so we
refer to such a disk as “cloud disk” in the rest of the paper. We
use ZFile by default for DADI unless explicitly noted. Before
starting a test, we drop the kernel page cache in the host and
guest (if applicable) as well as the persistent cache of DADI.

The physical servers we use are all equipped with dual-way
multi-core Xeon CPUs and 10GbE or higher-speed NICs. The

USENIX Association 2020 USENIX Annual Technical Conference 735

C
ol

d
St

ar
t L

at
en

cy
 (s

)

0

5

10

15

20

.tgz +  
overlay2

CRFS pseudo  
Slacker

DADI from 
Registry

DADI from  
P2P Root

Image Pull
App Launch

Figure 14: Cold Startup Latency.

W
ar

m
 S

ta
rtu

p
La

te
nc

y
(s

)

0

0.6

1.2

1.8

2.4

overlay2 Thin LVM 
(device mapper)

DADI

NVMe SSD
Cloud Disk

Figure 15: Warm Startup Latency.

St
ar

tu
p

La
te

nc
y

(s
)

0.0

0.6

1.2

1.8

2.4

Warm 
Cache

Cold 
Cache

app launch with prefetch
app launch

Figure 16: Startup Latency with Trace-
Based Prefetch.

C
ol

d
St

ar
tu

p
La

te
nc

y
(s

)

0.0

1.0

2.0

3.0

of Hosts (and Containers)
0 10 20 30 40

pseudo-Slacker
DADI

Figure 17: Batch Cold Startup Latency.
Bars indicate 10 and 90 percentiles.

of

 H
os

ts
 F

in
is

he
d

Pu
llin

g

0

25

50

75

100

Time (s)
0 6 12 18 24 30

DADI .tgz

Figure 18: Time to Pull Image in Produc-
tion Environment.

of

 S
ta

rte
d

Ap
p

In
st

an
ce

s

0

25

50

75

100

Time (s)
0 X

DADI .tgz

Figure 19: Time to Launch Application
in Production Environment.

VMs are hosted on our public cloud. Each VM is equipped
with 4 CPU cores and 8 GBs of memory. The vNICs are capa-
ble of a burst bandwidth of 5 Gbps and sustained bandwidth
of 1.5 Gbps.

5.2 Startup Latency

To evaluate container startup latency, we use the application
image WordPress from DockerHub.com. WordPress is the
most popular content management system powering about one
third of the Web in 2019 [7]. The image consists of 21 layers
in .tgz format with a total size of 165MB. When unpacked,
the image size is 501MB. In DADI compressed format with
lz4 compression, the image occupies 274MB. The tarball of
DADI-specific metadata that is downloaded on image pull is
only 9KB in size.

Cold start of a single instance. We test startup latencies
of a single container instance running WordPress when the
layer blobs are stored in the Registry (.tgz, DADI, CRFS) and
on remote storage servers (DADI, pseudo-Slacker). All the
servers are located in the same datacenter as the container host.
The results, as summarized in Figure 14, show that container
cold startup time is markedly reduced with DADI.

Warm start of a single instance. Once the layer blobs are
stored or cached on local disk, the containers can be started
and run without a remote data source. In this case, any differ-
ence in startup time can be attributed to the relative efficiency
of the I/O paths. As indicated in Figure 15, DADI performs

15%~25% better than overlayfs and LVM on NVMe SSD,
and more than 2 times better on cloud disk.

Cold startup with trace-based prefetching. We first
make use of blktrace to record an I/O trace when start-
ing a container. On another host, we use fio to replay only
the read operations in the trace while starting a new container
instance of the same image. We set fio to replay with a rela-
tively large I/O depth of 32 so as to fetch data blocks before
they are actually read by the application. Figure 16 shows the
results. Observe that trace-based prefetching can reduce 95%
of the difference between cold and warm startup times.

Batch cold startup. In practice, many applications are
large and require multiple instances to be started at the same
time. For this batch startup scenario, we compare only pseudo-
Slacker and DADI because the .tgz image and CRFS are
bottlenecked by the Registry. The results are presented in
Figure 17. Note that the startup time with pseudo-Slacker
begins at 1.5s for one instance and increases to 2.3s for 32
instances. On the other hand, the startup time with DADI
remains largely constant at 0.7s as the number of instances
increases.

Startup in our Production Environment. We selected
typical deployment tasks for an application in our production
environment and analyzed its timing data. As shown in Fig-
ure 18, pulling the DADI metadata tarball takes no more than
0.2s for nearly half of the hosts and around 1s for the rest
of the hosts. This compares very favorably with pulling the
equivalent .tgz image which takes more than 20s for most

736 2020 USENIX Annual Technical Conference USENIX Association

of

 C
on

ta
in

er
 In

st
an

ce
s

St
ar

te
d

0K

3K

5K

8K

10K

Time (s)
0 1 2 3 4

Cold Startup 1
Cold Startup 2
Cold Startup 3
Warm Startup

Figure 20: Startup Latency using DADI
(Large-Scale Startup).

Es
tim

at
ed

 S
ta

rtu
p

La
te

nc
ie

s
(s

)

1.5

2.0

2.5

3.0

3.5

of Containers
10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

2-ary tree 3-ary tree
4-ary tree 5-ary tree

Figure 21: Projected Startup Latency us-
ing DADI (Hyper-Scale Startup).

IO
PS

 (b
s=

8K
B,

 n
on

-c
ac

he
d)

0K

30K

60K

90K

120K

I/O Queue Depth
1 2 4 8 16 32 64 128 256

Thin LVM
DADI w/o comp
DADI - ZFile

Figure 22: Uncached Random Read Per-
formance.

Ti
m

e
to

 d
u

Al
l F

ile
s

(s
)

0

0.4

0.8

1.2

1.6

overlay2 Thin LVM DADI

NVMe SSD
Cloud Disk

Figure 23: Time to du All Files.

Ti
m

e
to

 ta
r A

ll
Fi

le
s

(s
)

0

3

6

9

12

overlay2 Thin LVM DADI

NVMe SSD
Cloud Disk

Figure 24: Time to tar All Files.

Ti
m

e
to

 B
ui

ld
 a

n
Im

ag
e

(s
)

0

10

20

30

40

50

overlay2 DADI

NVMe SSD Cloud Disk HDD

Figure 25: Time to Build Image.

of the hosts. Note that in this case, the .tgz image pull only
needs to download the application layers as the much larger
dependencies and OS layers already exist on the hosts. If all
the layers have to be downloaded, the time needed will be
even higher.

As shown in Figure 19, applications start faster using DADI
remote image and P2P data transfer than with the .tgz image
stored on local SSD. This result surprised us initially but
it turned out to be a common occurrence for a couple of
reasons. First, overlayBD performs better than OverlayFS
(See Section 5.4). Second, with the tree-structured P2P data
transfer, hosts effectively read from their parents’ page cache,
and this is faster than reading from their local disks.

5.3 Scalability

For the scalability analysis, we use a lightweight applica-
tion called Agility. Agility is a Python application based
on CentOS 7.6. Its image consists of 16 layers with a total
size of 575MB in ZFile format and 894MB uncompressed.
When Agility starts, it accesses a specified HTTP server which
records the time stamps of all the accesses. We use Agility in-
stead of WordPress for our scalability test because it provides
a means to collect timings of a large number of container
instances. Agility also consumes fewer resources, allowing
us to create many more containers in our testbed.

Large-scale startup with DADI. We create 1,000 VMs on
our public cloud platform and use them as hosts for containers.
A large and increasing portion of our production environment

is VM-based so this test reflects our real world situation. We
start 10 containers running Agility on each host for a total
of 10,000 containers. As shown in Figure 20, the cold start
latency with DADI is within a second or two of that for warm
start. The experimental environment is not dedicated and some
noise is apparent in one of the runs (Cold Startup 1). Note that
other than for ramp-up and long-tail effects, the time taken to
start additional containers is relatively constant.

Hyper-scale startup with DADI. We deliberately con-
struct a special P2P topology with tens of hosts and use it to
project the behavior for a full tree with tens of thousands of
hosts. The special topology models a single root-to-leaf path
where each interior node has the maximum number of chil-
dren. Each host again runs 10 instances of Agility. As shown
in Figure 21, the startup time is largely flat as the number of
containers increases to 100,000. Notice also that a binary tree
for P2P is best when there are fewer than 20,000 participating
hosts. A 3-ary or 4-ary tree works better beyond that scale.

5.4 I/O Performance

We perform micro benchmarks with fio to compare uncached
random read performance. The results are summarized in Fig-
ure 22. At an I/O queue depth of 1, DADI offers comparable
performance to LVM despite its user-space implementation.
DADI’s performance ramps up slower as the queue depth
is increased but it catches up and tops LVM to achieve the
highest IOPS at an I/O queue depth of 128 and without com-
pression. This behavior suggests that DADI’s index is more

USENIX Association 2020 USENIX Annual Technical Conference 737

efficient than that of LVM, but there is room to optimize our
queueing and batching implementation. Observe that DADI
with compression performs 10%~20% better than without
compression when the I/O queue depth is less than 32. This is
because compression, by reducing the amount of data trans-
ferred, increases effective I/O throughput provided that the
CPU is not bottlenecked. In our experimental setup, the CPU
becomes bottlenecked for ZFile beyond a queue depth of 32.

We also test I/O performance with du and tar to scan the
entire image from inside the container. These tests respec-
tively emphasize small random read and large sequential read.
The output of these commands are ignored by redirecting
to /dev/null. As shown in Figure 23 and 24, DADI out-
performs both overlayfs and LVM in all cases especially on
the cloud disk. This is again primarily due to the effect of
compression in reducing the amount of data transferred.

5.5 Image Building Speed
Image building speed is driven primarily by write perfor-
mance and the time needed to setup an image. We evaluate
image building performance with a typical dockerfile from
our production environment. The dockerfile creates 15 new
layers comprising 7,944 files with a total size of 545MB,
and includes a few chmod operations that trigger copy-ups in
overlayfs-backed images. As shown in Figure 25, the image
is built 20%~40% faster on DADI than on overlayfs. Note
that the time to commit or compress the image is not included
in this measurement.

6 Discussion and Future Work

With overlayfs, containers that share layers are able to share
the host page cache when they access the same files in those
shared layers. Because DADI realizes each layered image
as a separate virtual block device, when multiple containers
access the same file in a shared layer, the accesses appear to
the host to be for distinct pages. In other words, the host page
cache is not shared, potentially reducing its efficiency.

One way to address this issue is to introduce a shared block
pool for all the virtual block devices corresponding to the
different containers on a host. The basic idea is to use the
device mapper to map segments from the pool to the virtual
block devices such that accesses by different containers to the
same file in a shared layer appear to be for the same segment
in the pool. The pool is backed by the page cache while
the virtual block device and file system on top will need to
support Direct Access (DAX) to avoid double caching. This
solution can be further improved by performing block-level
deduplication in the pool.

With the emergence of virtualized runtimes, container is
becoming a new type of virtual machine and vice versa. The
runtimes of container and VM may also begin to converge.
By being based on the widely supported block device, DADI

image is compatible with both containers and VMs, and is
naturally a converged image service. Such a converged infras-
tructure will bring the convenience and efficiency of layered
image to VM users on the cloud today. It will also provide
users with increased flexibility and enable applications to
evolve gradually from cloud-based to cloud-native.

A key part of realizing the potential of DADI is to stan-
dardize its image format and facilitate its adoption. We are
working to contribute core parts of DADI to the container
community.

7 Conclusions

We have designed and implemented DADI, a block-level re-
mote image service for containers. DADI is based on the ob-
servation that incremental image can be realized with block-
based layers where each layer corresponds to a set of file
changes but is physically the set of changes at the block level
underneath a given file system. Such a design allows the im-
age service to be file system and platform agnostic, enabling
applications to be elastically deployed in different environ-
ments. The relative simplicity of block-based layers further
facilitates optimizations to increase agility. These include fine-
grained on-demand data transfer of remote images, online
decompression with efficient codecs, trace-based prefetching,
peer-to-peer transfer to handle burst workload, easy integra-
tion with the container ecosystem. Our experience with DADI
in the production environment of one of the world’s largest
ecommerce platforms show that DADI is very effective at
increasing agility and elasticity in deploying applications.

Acknowledgments

This paper would not have been possible without the close
collaboration of our storage, container, serverless, kernel and
virtualization teams. We are especially grateful to Haobo
Xu, Liang Han, Qianbo Huai and Jiwei Lu for delivering the
initial version of the P2P Data Transfer capability. We are
also grateful to our shepherd, Vasily Tarasov, and anonymous
reviewers for helping us improve the paper.

References

[1] 9p virtio - KVM. https://www.linux-kvm.org/
page/9p_virtio. Accessed: 2020-01-15.

[2] Btrfs. https://btrfs.wiki.kernel.org/index.
php/Main_Page. Accessed: 2020-01-15.

[3] Everything You Need to Know about Linux Con-
tainers, Part I: Linux Control Groups and Process
Isolation. https://www.linuxjournal.com/
content/everything-you-need-know-about-

738 2020 USENIX Annual Technical Conference USENIX Association

https://www.linux-kvm.org/page/9p_virtio
https://www.linux-kvm.org/page/9p_virtio
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process

linux-containers-part-i-linux-control-
groups-and-process. Accessed: 2020-01-15.

[4] File Allocation Table. https://en.wikipedia.org/
wiki/File_Allocation_Table. Accessed: 2020-01-
15.

[5] gVisor. https://gvisor.dev/. Accessed: 2020-01-
15.

[6] Minify and Secure Your Docker Containers. Friction-
less! https://dockersl.im/. Accessed: 2020-01-15.

[7] One-third of the web! https://wordpress.org/
news/2019/03/one-third-of-the-web/. Accessed:
2020-01-15.

[8] Overlay Filesystem. https://www.kernel.org/doc/
Documentation/filesystems/overlayfs.txt. Ac-
cessed: 2020-01-15.

[9] Project Teleport. https://azure.microsoft.com/
en-gb/resources/videos/azure-friday-how-to-
expedite-container-startup-with-project-
teleport-and-azure-container-registry/.
Accessed: 2020-01-15.

[10] virtio-fs. https://virtio-fs.gitlab.io/. Ac-
cessed: 2020-06-05.

[11] XFS. http://xfs.org/. Accessed: 2020-01-15.

[12] ZFS: The Last Word in Filesystems. https:
//blogs.oracle.com/bonwick/zfs:-the-last-
word-in-filesystems/. Accessed: 2020-01-15.

[13] Amazon. Secure and fast microVMs for serverless com-
puting. https://firecracker-microvm.github.
io/. Accessed: 2020-01-15.

[14] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng,
Stephen Fink, Vatche Ishakian, Nick Mitchell, Vinod
Muthusamy, Rodric Rabbah, Aleksander Slominski,
et al. Serverless Computing: Current Trends and Open
Problems. In Research Advances in Cloud Computing,
pages 1–20. Springer, 2017.

[15] Bram Cohen. Incentives Build Robustness in BitTorrent.
In Workshop on Economics of Peer-to-Peer systems, vol-
ume 6, pages 68–72, 2003.

[16] Lian Du, Tianyu Wo, Renyu Yang, and Chunming Hu.
Cider: A Rapid Docker Container Deployment System
through Sharing Network Storage. In 2017 IEEE 19th
International Conference on High Performance Comput-
ing and Communications (HPCC’17), pages 332–339.
IEEE, 2017.

[17] Gideon Glass, Arjun Gopalan, Dattatraya Koujalagi, Ab-
hinand Palicherla, and Sumedh Sakdeo. Logical Syn-
chronous Replication in the Tintri VMstore File System.
In 16th USENIX Conference on File and Storage Tech-
nologies (FAST’18), pages 295–308, 2018.

[18] N Hardi, J Blomer, G Ganis, and R Popescu. Making
Containers Lazy with Docker and CernVM-FS. In Jour-
nal of Physics: Conference Series, volume 1085, page
032019. IOP Publishing, 2018.

[19] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Slacker:
Fast Distribution with Lazy Docker Containers. In 14th
USENIX Conference on File and Storage Technologies
(FAST’16), pages 181–195, 2016.

[20] Alibaba Inc. Dragonfly: An Open-source P2P-based
Image and File Distribution System. https://d7y.
io/en-us/. Accessed: 2020-01-15.

[21] Google Inc. CRFS: Container Registry Filesys-
tem. https://github.com/google/crfs. Accessed:
2020-01-15.

[22] Uber Inc. Introducing Kraken, an Open Source Peer-
to-Peer Docker Registry. https://eng.uber.com/
introducing-kraken/. Accessed: 2020-01-15.

[23] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwad-
kar, et al. Cloud Programming Simplified: A Berke-
ley View on Serverless Computing. arXiv preprint
arXiv:1902.03383, 2019.

[24] Wang Kangjin, Yang Yong, Li Ying, Luo Hanmei, and
Ma Lin. FID: A Faster Image Distribution System for
Docker Platform. In 2017 IEEE 2nd International Work-
shops on Foundations and Applications of Self* Systems
(FAS* W), pages 191–198. IEEE, 2017.

[25] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg,
Nadav Har’El, Don Marti, and Vlad Zolotarov. OSv–
Optimizing the Operating System for Virtual Ma-
chines. In 2014 USENIX Annual Technical Conference
(USENIX ATC’14), pages 61–72, 2014.

[26] Huiba Li, Yiming Zhang, Dongsheng Li, Zhiming
Zhang, Shengyun Liu, Peng Huang, Zheng Qin, Kai
Chen, and Yongqiang Xiong. URSA: Hybrid Block
Storage for Cloud-Scale Virtual Disks. In Proceedings
of the Fourteenth EuroSys Conference 2019, page 15.
ACM, 2019.

[27] Haifeng Liu, Wei Ding, Yuan Chen, Weilong Guo, Shuo-
ran Liu, Tianpeng Li, Mofei Zhang, Jianxing Zhao,
Hongyin Zhu, and Zhengyi Zhu. CFS: A Distributed

USENIX Association 2020 USENIX Annual Technical Conference 739

https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://gvisor.dev/
https://dockersl.im/
https://wordpress.org/news/2019/03/one-third-of-the-web/
https://wordpress.org/news/2019/03/one-third-of-the-web/
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://azure.microsoft.com/en-gb/resources/videos/azure-friday-how-to-expedite-container-startup-with-project-teleport-and-azure-container-registry/
https://azure.microsoft.com/en-gb/resources/videos/azure-friday-how-to-expedite-container-startup-with-project-teleport-and-azure-container-registry/
https://azure.microsoft.com/en-gb/resources/videos/azure-friday-how-to-expedite-container-startup-with-project-teleport-and-azure-container-registry/
https://azure.microsoft.com/en-gb/resources/videos/azure-friday-how-to-expedite-container-startup-with-project-teleport-and-azure-container-registry/
https://virtio-fs.gitlab.io/
http://xfs.org/
https://blogs.oracle.com/bonwick/zfs:-the-last-word-in-filesystems/
https://blogs.oracle.com/bonwick/zfs:-the-last-word-in-filesystems/
https://blogs.oracle.com/bonwick/zfs:-the-last-word-in-filesystems/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://d7y.io/en-us/
https://d7y.io/en-us/
https://github.com/google/crfs
https://eng.uber.com/introducing-kraken/
https://eng.uber.com/introducing-kraken/

File System for Large Scale Container Platforms. In
Proceedings of the 2019 International Conference on
Management of Data, pages 1729–1742. ACM, 2019.

[28] James Mickens, Edmund B Nightingale, Jeremy El-
son, Darren Gehring, Bin Fan, Asim Kadav, Vijay
Chidambaram, Osama Khan, and Krishna Nareddy.
Blizzard: Fast, Cloud-Scale Block Storage for Cloud-
Oblivious Applications. In 11th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI’14), pages 257–273, 2014.

[29] Kazutaka Morita. Sheepdog: Distributed Storage Sys-
tem for QEMU/KVM. LCA 2010 DS&R miniconf, 2010.

[30] Aravind Narayanan. Tupperware: Containerized De-
ployment at Facebook, 2014.

[31] OCI. OCI Artifacts. https://github.com/
opencontainers/artifacts. Accessed: 2020-01-15.

[32] Mendel Rosenblum and John K Ousterhout. The De-
sign and Implementation of a Log-Structured File Sys-
tem. ACM Transactions on Computer Systems (TOCS),
10(1):26–52, 1992.

[33] Richard P Spillane, Wenguang Wang, Luke Lu, Maxime
Austruy, Rawlinson Rivera, and Christos Karamanolis.
Exo-clones: Better Container Runtime Image Manage-
ment across the Clouds. In 8th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage’16),
2016.

[34] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Amit Warke, Dean Hildebrand, Mohamed Mohamed,
Nagapramod Mandagere, Wenji Li, Raju Rangaswami,
and Ming Zhao. In Search of the Ideal Storage Con-
figuration for Docker Containers. In 2017 IEEE 2nd
International Workshops on Foundations and Applica-
tions of Self* Systems (FAS* W), pages 199–206. IEEE,
2017.

[35] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and
Baris Kasikci. CNTR: Lightweight OS Containers. In

2018 USENIX Annual Technical Conference (USENIX
ATC’18), pages 199–212, 2018.

[36] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and
Erez Zadok. To FUSE or Not to FUSE: Performance of
User-Space File Systems. In 15th USENIX Conference
on File and Storage Technologies FAST’17), pages 59–
72, 2017.

[37] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
Scale Cluster Management at Google with Borg. In
Proceedings of the Tenth European Conference on Com-
puter Systems, page 18. ACM, 2015.

[38] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A Scalable, High-
Performance Distributed File System. In Proceedings
of the 7th symposium on Operating systems design and
implementation, pages 307–320. USENIX Association,
2006.

[39] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen
Zhang, Huiba Li, Yaozheng Wang, Kai Yu, Yongqiang
Xiong, and Guihai Chen. KylinX: A Dynamic Library
Operating System for Simplified and Efficient Cloud
Virtualization. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC’18), pages 173–186, 2018.

[40] Zhaoning Zhang, Ziyang Li, Kui Wu, Dongsheng Li,
Huiba Li, Yuxing Peng, and Xicheng Lu. VMThunder:
Fast Provisioning of Large-Scale Virtual Machine Clus-
ters. IEEE Transactions on Parallel and Distributed
Systems, 25(12):3328–3338, 2014.

[41] Chao Zheng, Lukas Rupprecht, Vasily Tarasov, Douglas
Thain, Mohamed Mohamed, Dimitrios Skourtis, Amit S
Warke, and Dean Hildebrand. Wharf: Sharing Docker
Images in a Distributed File System. In Proceedings
of the ACM Symposium on Cloud Computing, pages
174–185. ACM, 2018.

740 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/opencontainers/artifacts
https://github.com/opencontainers/artifacts

Efficient Miss Ratio Curve Computation for Heterogeneous Content Popularity

Damiano Carra
University of Verona, Italy

Giovanni Neglia
Inria, Université Côte d’Azur, France

Abstract
The Miss Ratio Curve (MRC) represents a fundamental

tool for cache performance profiling. Approximate methods
based on sampling provide a low-complexity solution for
MRC construction. Nevertheless, in this paper we show that,
in case of content with a large variance in popularity, the ap-
proximate MRC may be highly sensitive to the set of sampled
content. We study in detail the impact of content popularity
heterogeneity on the accuracy of the approximate MRC. We
observe that few, highly popular, items may cause large error
at the head of the reconstructed MRC.

From these observations, we design a new approach for
building an approximate MRC, where we combine an ex-
act portion of the MRC with an approximate one built from
samples. Results for different real-world traces show that our
algorithm computes MRC with an error up to 10 times smaller
than state-of-the-art methods based on sampling, with similar
computational and space overhead.

1 Introduction

Caches have been widely used in different contexts to improve
system performance, from CPU, to disk, to web. As the ar-
chitectures become more complex, with multi-core CPUs, or
clusters of machines, caches maintain a key role in providing
fast access to the most used content. Being a shared resource,
a cache may be misused by some aggressive processes or
application, hurting the performance of other processes.

To provide a fair sharing, one may virtually divide the cache
and assign dynamically different portions to specific appli-
cations or types of applications. For instance, Sundarrajan et
al. [33] show that, in case of Web caches, video streaming,
web browsing, and software updates have extremely differ-
ent content access patterns and cache resource requirements.
Similarly, when multiple VMs run on the same physical host,
efficient sharing of storage resources, like a SSD used as
cache, needs detailed VM profiling [21, 24, 28, 32]. Analo-
gous observations have been made in different contexts, such

as multiprocessor systems [10, 19] and distributed processing
in datacenters [27, 35].

The most important performance metric for a cache is usu-
ally the hit ratio. For cache partitioning, it is necessary to
quantify the hit ratio a given application would experience
given the amount of available cache space. This relation is
captured by the Miss Ratio Curve (MRC), which gives the
miss ratio as a function of the cache size. The use of MRCs
can be helpful also in contexts where caches can be provi-
sioned on demand [7,29] with a pay-as-you-go model, as it is
in the case for cloud caches [1–3].

MRC can be computed analytically for many caching
policies—sometimes exactly [14, 20], more often approxi-
mately [15, 16]—but only under idealized models for the
request process. Real traffic usually exhibits complex patterns
that diverge from these models.

A more common approach, dating back to Mattson’s sem-
inal work [25], is to compute the MRC directly from the
trace of the specific workload. The MRC can be built with
O(logM) computational complexity per request, and O(M)
memory [9, 13], where M is the number of distinct items that
are requested. Since content popularity (and consequently the
MRC) may vary over time, the usual approach is to select an
interval of time over which the traffic request process may
be considered stationary. Then, the requests observed during
this interval are used to build a MRC, which drives the re-
source assignment for the next interval. In case of high traffic
rate, if we need to continuously build many MRCs for differ-
ent application types, computational complexity and memory
requirements may represent a heavy burden [7, 33].

For this reason, by trading accuracy with computational
complexity and memory, recent works propose to compute
approximate MRCs with O(1) operations per request, and
O(1) memory [17,29,36,37]. Such low-complexity solutions
are based on the common idea of sampling the trace.
Limitation of the prior work. Sampling has been applied
widely in different domains. A potential pitfall of sampling is
the introduction of biases. In building the approximate MRC,
there could be two approaches: sampling the requests [4, 34],

USENIX Association 2020 USENIX Annual Technical Conference 741

or sampling the items and observing the requests for those
items [36, 37]. Request sampling introduces a bias [30, 39],
which motivated the introduction of item sampling, also called
spatial sampling. Nevertheless, if request rates vary greatly
across items, spatial sampling can be biased too, a fact that
was implicitly acknowledged by Waldspurger et al. [37]. To
the best of our knowledge, we are the first to thoroughly
address and explain such a bias in detail.

As an example, the left column of Figure 1 shows the ex-
act and approximate MRCs using the LRU eviction policy,
built from various samples, considering traces with different
traffic characteristics. In particular, item request frequencies,
usually referred to as popularities, are Zipf-distributed with
two different values of the Zipf exponent (α)—experiments’
details are provided in Section 3, but they are not essential
to understand what follows. With higher values of α, the dis-
tribution becomes more skewed, and therefore popularities
become highly heterogeneous. The approximate MRCs in the
left column are obtained using SHARDS [37] with a constant
sampling rate R = 0.01. The experiments show that SHARDS
is able to obtain an accurate MRC when item popularity is
not highly skewed. But, as heterogeneity increases, the er-
ror drastically increases. Waldspurger et al. [37] recognized
this possible bias, and proposed the variant SHARDSadj that
partially solves the problem. The curves in Figure 1, right
column, show that SHARDSadj correctly estimates the tail
of the MRC, but not its head, with large errors for high miss
ratio values (above 30% in the bottom subfigure) that may
even exceed 100% (top subfigure). Miss ratios above 70%
are the norm for many caches, including HDD [37] and SSD
ones [21, 24], and hierarchical web caches, where the higher
level resides in RAM [5,26]. Caches consist of fast, expensive
storage, and they are inherently a scarce, shared resource. An
accurate assignment requires the knowledge of the MRC for
any size, even when the miss ratio is large.

Contributions. In this work we study the impact of hetero-
geneity on the accuracy of the approximate MRC. With the
help of different sets of experiments, and a model of a repre-
sentative scenario, we observe that highly popular item play
a fundamental role, and we shed lights on the fact that the
MRC is highly sensitive to the specific content sampled. Con-
sequently, we design a new approach, where we combine
exact MRC computation for small values of the cache ca-
pacity (which is mainly influenced by popular items) with
approximate computation for larger values. We evaluate our
scheme with both synthetic and real-world traces. Our results
show that our method is able to reconstruct the MRC with
an average error up to 10 times smaller than state of the art
approaches, with the same complexity. We also consider a
scenario where items have heterogeneous sizes, and show
how our solution correctly addresses it.

Roadmap. The remaining of the paper is organized as fol-
lows. In Section 2 we provide the background information

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
is

s
ra

ti
o

Cache size (num. of items)

α = 0.8

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
is

s
ra

ti
o

Cache size (num. of items)

α = 0.8

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
is

s
ra

ti
o

Cache size (num. of items)

α = 1.2

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
is

s
ra

ti
o

Cache size (num. of items)

α = 1.2

MRC
sample1
sample2
sample3
sample4

Figure 1: Approximate MRCs built from samples compared
to the exact MRC for different values of the parameter α

of the Zipf distribution used for item popularity (R = 0.01):
SHARDS (left column) and SHARDSadj (right column).

and discuss the related work. In Section 3 we study the impact
of popular items on the accuracy of the spatial sampling ap-
proaches. Section 4 presents our solution, which is evaluated
in Section 5. Section 6 provides additional considerations on
the scheme we propose, and Section 7 concludes the paper.

2 Background and Related Work

The MRC can be computed with a single pass on the request
trace if the eviction policy satisfies the inclusion property, i.e.,
the set of items stored in the cache at a given time is a subset
of the set of items that would be stored if the cache had a
larger size [25]. Widely adopted policies such as LRU, LFU,
and MRU satisfy such property, therefore MRCs are useful in
many practical systems.

Methods with different computational and memory require-
ments have been proposed to build the MRC [6, 37]. We de-
scribe here a specific algorithm suitable when all items have
the same size. The caching policies listed above all maintain
an ordered list of the items in the cache, where, at any instant,
the last item in the list is the current candidate to be evicted.
The MRC algorithm goes through the trace, maintaining an
ordered list T of references to the items mimicking how the
corresponding caching policy would work if the cache size
were infinite. Given a request for item j, if the item is not in
the cache, we have a cold miss. If the item is in the cache,
then the algorithm determines its current position (called the
reuse distance) and updates an empirical histogram of reuse
distances. Once the trace is analyzed, the histogram is normal-
ized dividing each value by the total number of requests. By

742 2020 USENIX Annual Technical Conference USENIX Association

summing the histogram values up to a given capacity C, one
obtains the corresponding hit ratio, whose one’s complement
is the miss ratio.

Exact MRC computation requiresO(M) memory, where M
is the number of distinct items in the trace, and has a computa-
tional complexity ofO(logM) per request due to the access to
T , which can be implemented with a tree data structure [40].
The approximate solutions based on sampling may adopt two
approaches: request sampling and item sampling. The solu-
tions based on request sampling—such as sampling every n
requests [4], or sampling for small intervals of time [34]—
are known to be biased [30, 39]. To overcome these issues,
item sampling has been recently proposed for computing the
reuse distance to characterize the use of storage memory [38]
or program locality in single core [12] and multi-core archi-
tectures [30], and for building approximate MRC with low
computational complexity [17, 36, 37].

In this work we consider the solution adopted by
SHARDS [37]. SHARDS selects randomly a fraction R of
the items, computes the MRC considering only the requests
from these items, and then scales the cache capacity on the
X-axis by a factor 1/R. The item selection is done using a
hash of the item identifier, id j. Since sampling may exclude or
include very popular items, the authors of SHARDS proposed
an adjustment, called SHARDSadj, in which the estimated
miss ratios are scaled up by the ratio between the actual and
the expected number of sampled references.

How to measure the Accuracy. In evaluating the approxi-
mate MRCs, accuracy is usually measured using the Mean
Absolute Error (MAE): this is the average of the absolute
differences between the exact and the approximate MRC for
all cache sizes considered. Such a metric is easy to interpret,
but it gives the same importance to all different values of
cache size. The following simple example illustrates a poten-
tial problem. Figure 2 shows the exact and approximate MRC
obtained with SHARDS for a publicly available trace which
we name ms-ex—trace details in Section 5.3. In the figure
on the left, the two curves look similar and indeed the MAE
is only 0.025, i.e., if we pick an arbitrary value of the cache
size, on average the approximate MRC allow us to estimate
the miss rate with an error of ±2.5%. The figure on the right
contains the same information but using a log scale for the
X-axis. It appears that the average error is not representative.
In fact, the error for small cache sizes can be 5-6 times bigger.

In this paper we introduce a new metric—MAEQ, Mean
Absolute Error per Quantile—that maintains the simplicity
of MAE, but it takes into account how much the MRC varies
in the different intervals. While the MAE provides the aver-
age error for a cache size sampled uniformly at random, the
MAEQ provides the average error when a miss ratio is sam-
pled uniformly at random. In particular, the metric is based
on the concept of quantiles. We consider different uniformly
spaced quantiles for the miss ratio and identify the corre-
sponding cache size intervals. For instance, if we consider

M
is

s
ra

ti
o

Cache size (num. of items x 10
6
)

ms-ex

approximate MRC
exact MRC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

M
is

s
ra

ti
o

Cache size (num. of items)

ms-ex

approximate MRC
exact MRC

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Figure 2: Error between approximate and exact MRCs (with-
out and with log scale in the X-axis). The shaded area high-
lights the portion where the approximate and exact MRCs
differ the most.

the quantiles at 0.8, 0.6, 0.4, and 0.2 in Figure 2, right, we
identify the following intervals for cache sizes: The first in-
terval goes from 0 to 50, the second one from 50 to 105, the
third from 105 to 8 ·105, and the fourth one from 8 ·105 till
the end. Note that no portion of the MRC falls below 0.2, so
the last quantile is not considered. Once we have identified
the ranges that correspond to the quantiles, we compute the
MAE in each range, and then we average the MAE. More
formally, MAEQ = ∑

Q∗
i=1 MAEi/Q∗, where the interval i is

defined by the quantile, and Q∗ is the number of quantile in-
tervals considered. In practice, we consider quantiles with a
step increment of 0.01: for each variation of 0.01 in the miss
ratio, we compute the MAE, and then we take the average of
the MAEs. If we compute the MAEQ for the above trace, we
obtain 0.090, which provides a better idea of the accuracy of
the approximate MRC, when we look at different miss ratio
ranges.

3 Evaluation of Spatial Sampling Approaches

3.1 Evaluation Methodology and Settings

In this section we evaluate the impact of content popularity
heterogeneity on the accuracy of the approximate MRC. We
consider the SHARDS and SHARDSadj approaches [37] with
a fixed sampling rate, denoted by R, which varies from 0.1
to 0.001. In order to have highly controllable experiments,
we first consider a set of traces generated according to the In-
dependent Reference Model (IRM), in which the probability
that the next request for item i is constant over time and inde-
pendent from the previous requests. We call this probability
the popularity of content i and denote it as pi. In particular, we
use the Zipf popularity distribution (pi ∝ i−α) with different
values of the parameter α. We have tested different combi-
nations of catalogue size and trace length; in what follows
we report the representative results for the case with 50M
requests for a set of 10M items and different values of the
parameter α.

USENIX Association 2020 USENIX Annual Technical Conference 743

10
-4

10
-3

10
-2

10
-1

10
0

0.6 0.8 1.0 1.2 0.6p

A
v

er
ag

e
er

ro
r

(M
A

E
)

Parameter α of the Zipf

R = 0.1
R = 0.01
R = 0.001

10
-4

10
-3

10
-2

10
-1

10
0

0.6 0.8 1.0 1.2 0.6p

A
v

er
ag

e
er

ro
r

(M
A

E
Q

)

Parameter α of the Zipf

R = 0.1
R = 0.01
R = 0.001

Figure 3: Accuracy for different values of the parameter α of
the Zipf distribution used for item popularity, and for different
sampling rates R: MAE (left) and MAEQ (right).

3.2 Results with the IRM Traces

Figure 1 shows the exact and approximate MRCs for differ-
ent values of α (sampling rate R = 0.01). The results in left
columns have been obtained using SHARDS, while the ones
in the right column using SHARDSadj. Note that, with spatial
sampling, we are able to build the MRC at points that are
multiples of 1/R—this is why the approximated MRCs start
at 1/R = 100.

In case of SHARDS, as α increases, the error increases
significantly. The problem is partially solved by SHARDSadj,
whose effect is to decrease the error in the tail of the MRC.
This is obtained by rescaling the approximated MRC, but such
a rescaling has an impact on the whole MRC, and it leads to
significant errors for small cache values yielding miss ratios
larger than 1. This detail was not discussed in the SHARDS
work [37]. Our model in Section 3.3 explains these findings.

In Figure 3 we show SHARDSadj MAE and MAEQ val-
ues for different values of the sampling rate R and the Zipf
parameter α—the case labeled as “0.6p” will be discussed
later. Each value has been computed averaging five different
samples. The MAE indicates an error smaller than 0.006, but,
as we discussed above, such metric considers all cache sizes
equally important. The MAEQ, instead, indicates an aver-
age error over the quantiles that, for α = 1.2 and R = 0.001
may be as high as 0.35, which better describes the difference
between the exact and the approximate MRC.

On the head of the MRC. The presence of a relatively small
number of highly popular items determines the accuracy of
MRCs. If we observe the empirical item popularity distribu-
tion in real-world traces—we will show some examples in
Figure 9—we notice that there are often two groups of items:
a small group with very popular items, and a large one with
much less popular items.

Inspired by these real-world traces, we modify a Zipf dis-
tribution with α = 0.6 by adding 20 popular items, whose
popularity is randomly selected between 0.005 and 0.01. Pop-
ularities have been normalized to guarantee that their sum
equals one. Figure 4, left, compares this new popularity distri-
bution, labeled as “0.6p”, with the Zipf distribution used in
the previous section. Figure 4, center and right, shows approx-

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

re
q

u
es

t
fr

eq
.

Item ID

IRM

Zipf, 1.2
Zipf, 0.6

0.6p

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
is

s
ra

ti
o

Cache size (num. of items)

α = 0.6, with popular items

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
is

s
ra

ti
o

Cache size (num. of items)

α = 0.6, with popular items

MRC
sample1
sample2
sample3
sample4

Figure 4: Distributions used for the experiments (left) and
MRCs built from samples for the “0.6p” case (R = 0.01)
through SHARDS (center) and SHARDSadj (right).

imate MRCs for a sampling rate R = 0.01 with SHARDS and
SHARDSadj, respectively. With the addition of a few popular
items (20 out of 10M) the accuracy of the approximate MRC
is significantly affected. The MAE and the MAEQ are shown
in Figure 3, with the label “0.6p.” This experiment confirms
that, when sampling fails to capture the contribution of the
popular items, the result may be heavily biased. On the other
hand, less popular items have limited impact on the MRC and
they may be sampled randomly.

3.3 Understanding the role of popular items
We analyze a simple scenario for which we can derive an
approximate model. Consider a finite set of items where there
is a single very popular item (content c1), with popularity p,
and M items with approximately homogeneous popularity,
i.e., each item has a popularity of approximately (1− p)/M,
and p� (1− p)/M. The request sequence is generated fol-
lowing the IRM model. Let rn denote the n-th request. We
consider the reuse distance, i.e., the number of unique refer-
ences between two references to the same item [40], and the
reuse time, i.e., the total number of references between two
references to the same item [17].

For small cache sizes, the reuse distance can be approx-
imated by the reuse time, i.e., misses for content c1 occur
(almost) every time the reuse time for the content exceeds the
cache size C.1 The reuse distance is geometrically distributed
with expected value 1/p. Then, the miss probability for con-
tent c1 starts decreasing significantly as the cache reaches size
1/p, and decreases exponentially fast for bigger and bigger
cache sizes. Once the cache size is 3 to 4 times larger than
1/p, content c1 is highly likely to be in the cache and the miss
ratio is at most 1− p. For larger cache sizes, the miss rate still
decreases because of the contribution of the unpopular items.
The decrease is now linear in the cache size. This reasoning
can be made formal, e.g., using a simple model based on the
Che’s approximation [11], and we obtain that the miss ratio

1This is an approximation because requests for other items contribute to
move content c1 closer to the tail only if they are misses. But, for small cache
sizes, almost all requests for the M unpopular items generate misses.

744 2020 USENIX Annual Technical Conference USENIX Association

1

size

exact
1-p

case 1

case 2

M

1-p’

1
Rp’

1
p

1

size
exact

1-p
case 2

case 1

M1
p

SHARDS SHARDSadj

Figure 5: Simple scenario: exact MRC, along with two cases
of approximate MRCs.

when the cache has capacity C ∈ [0,M] is:

m(C)≈ pe−pC +(1− p)
(

1− C
M

)
. (1)

Figure 5 shows a sketch of what the miss ratio looks like
using a logarithmic scale for the capacity axis—curve labeled
“exact.”

Now, assume we sample the items with sampling rate R.
Either the set of sampled items contains the very popular
content (with probability R), or it does not contain it (with
probability 1−R). In the following, we consider these two
cases and show that the resulting MRCs differ significantly
from the exact MRC.

Case 1: content c1 is sampled. The sample contains requests
for content c1 and, on average, M′=RM unpopular items. The
fraction of requests for content c1 is p′ = p/(p+(1− p)R)>
p. The exact MRC of the sampled trace is determined by
(1) with M′ and p′ replacing respectively M and p. For the
approximate MRC, we replace C with RC and we obtain:

m(C)≈ p′e−p′RC +(1− p′)
(

1− C
M

)
. (2)

The curve labeled “case 1” in Figure 5, left, corresponds to (2).
We observe a fast decrease of the miss ratio for cache sizes
around 1/(p′R) from 1 to 1− p′ < 1− p. Then, the approx-
imate MRC underestimates the miss ratio at least for large
values of the cache size.

Case 2: content c1 is not sampled. In this case there are on
average M′ = RM equally popular items in the cache, then
the miss ratio is

m(C)≈ 1− C
M
, (3)

and is represented by the curve labeled “case 2” in Figure 5,
left.

Adjustment proposed in SHARDSadj. SHARDSadj
rescales the estimated MRC by a factor NS/(RN), where NS
is the number of requests observed in the sample. For Case 1,
we have NS = pN +RN(1− p), and we obtain

madj(C)≈ p
R

e−p′RC +(1− p)
(

1− C
M

)
. (4)

A B C DB
Requests

hits

size

1

sizeB

1

size

1

size

Reuse Distance Histogram

Exact From samples
hits

size

Exact MRC Approximate MRC

Full MRC

B

B

1
R

1
R
B

Figure 6: Approximate MRC building process.

We observe then how SHARDSadj removes the bias for large
capacity values but amplifies it for small ones, leading to
a miss ration greater than 1 in this example (madj(0+) ≈
p/R+(1− p)> 1). Similarly, for Case 2, we obtain

madj(C)≈ (1− p)
(

1− C
M

)
. (5)

SHARDSadj correctly predicts the tail of the MRC, as for
Case 1, but it now underestimates the head. Figure 5, right,
shows the curves that corresponds to Case 1 and Case 2 when
using SHARDSadj.

4 Proposed solution

In the previous section we observed that popular and less
popular items have different impacts on the MRC building
process. These observations motivate our solution. We design
a scheme, where we combine an exact MRC for small cache
sizes (where the miss ratio depends mostly on the highly pop-
ular items), with an approximate MRC built from sampled
items for large cache sizes. In particular, for the approxi-
mate MRC we use SHARDSadj, because it predicts the MRC
tail better. The approach is qualitatively illustrated in Fig-
ure 6. For the portion of the MRC built from samples, the
general scheme can adopt either a constant sampling rate or
an adaptive sampling rate to achieve constant computational
complexity. We discuss these two schemes below.
Constant Sampling Rate Scheme. Algorithm 1 describes
the solution we propose. We assume the use of the LRU
eviction policy, but the scheme may be adapted easily to any
policy that satisfies the inclusion property. The algorithm
requires two parameters: B, which is the number of items for

USENIX Association 2020 USENIX Annual Technical Conference 745

Algorithm 1: Approximate MRC building process
input : B, number of positions for the exact MRC
input : Rs, sampling rate for the approximate MRC
input : request sequence

1 Te← countingBTree(); Ve← reuseVector();
2 Ts← countingBTree(); Vs← reuseVector();
3 foreach request r for item with id j do
4 if (j ∈ Te) then
5 pos j← remove(j,Te);
6 update Ve at pos j;

7 add j to Te;
8 if (size(Te)> B) then
9 remove last item from Te;

10 if (hash(j) mod P < RsP) then
// sampled item

11 if j ∈ Ts then
12 pos j← remove(j,Ts);
13 update Vs at pos j;

14 add j to Ts;

15 MRC[0..B]← buildExactMRC(Ve);
16 MRC[B..∞]← buildApproxMRC(Vs);

the exact MRC, and Rs, which is the sampling rate. Given a set
of requests for an unknown catalogue of items, we maintain
two tree data structures respectively to build the exact MRC
(Te), and the approximate one (Ts). Te size equals B item
references, while Ts depends on the number of items in the
trace and the sampling rate. Splay Trees or Counting BTrees
are possible candidates for such data structures, since they
have logarithmic complexity for the insert/delete operations.
Instead, for the lookup we maintain a hash table.

Once the trace is processed, we build the exact MRC
(me(C)) and the approximate one (ms(C)). We then connect
by continuity the approximate MRC starting from B, and mod-
ulating exponentially any potential step discontinuity (equal
to me(B)−ms(B)), i.e.

m(C) =

{
me(C) if C ≤ B,

ms(C)+(me(B)−ms(B))e−
C−B

4B if C > B.

Notice that, if we set B = 0, we obtain SHARDSadj scheme
with constant sampling rate.

As for the parameters B and Rs, we provide a sensitivity
analysis in Section 5, while we discuss the general guidelines
for setting them in Section 6. Here we anticipate that in our
experiments no particular tuning was required.

As for Rs, the considerations made by Waldspurger et al.
[37] are valid also in our case. As for B, in our experiments
we notice that, even for traces with millions of items, only
few hundreds have very high popularity, and a value of B as
low as 103 item references provides very accurate results. For
the same trace, if we use Rs = 0.01, the memory necessary

to hold the references to the sampled items is of the order of
104 item references, and B = 103 adds only a small fraction
to that memory consumption.

The proposed scheme has a complexityO(logRsM), where
M is the number of distinct items in the trace, which is due
to accesses to Ts. As for Te, since its size is constant (B item
references), the cost for the data structure operations is O(1).
Constant Complexity Scheme. A fixed sampling rate has
computational complexity and memory requirements that de-
pend on the number of sampled items, which may grow as
we consider longer and longer traces. Waldspurger et al. [37]
propose an adaptive sampling method to maintain a O(1)
complexity per requests. This can be achieved by fixing a pri-
ori the number smax of items to sample, and then tracking the
smax items with smallest values of the hash function. As more
requests are processed, the sampling rate implicitly converges
to the minimum value required to maintain smax references.
Our mixed approach can be easily adapted in this direction,
by fixing the size of Ts.

5 Evaluation

5.1 Experimental Methodology
We compare our solution with the state-of-the-art approaches
based on spatial sampling [37] [36], both when the sampling
rate is fixed, and when the complexity is constant. If not
otherwise stated, we consider the SHARDSadj variant

In case of fixed sampling rate, SHARDSadj adopts a sam-
pling rate R. Given a trace with M distinct items, the scheme
keeps track of RM items. For a fair comparison with our
scheme, we adopt a sampling rate Rs that leads to keep track
of the same number of item references, i.e., B+RsM = RM.
If not otherwise stated, we set B = 1000 and Rs = R−B/M.
In most of our experiments, M is of the order of few millions,
so with R = 0.01, Rs is slightly smaller than R. In Section 5.2
we will show the impact of B on the accuracy.

In case of constant complexity, SHARDSadj fixes the
number of operations by maintaining a constant number of
item references smax. This means that the scheme requires
2 log(smax) operations per request (where the factor 2 is due
to the additional data structure to track the smax items with
smallest hash). In our case, there is an additional cost of logB
due to the exact portion of the MRC, so, to make a fair com-
parison, we set the size of Ts to a value of s′max such that
logB+2log(s′max) = 2log(smax), i.e., s′max = smax/

√
B.

In the following sections, we will report simply R or smax
used for SHARDSadj [37]. The corresponding parameters of
our scheme are computed as explained above.

5.2 IRM traces
We start testing our solution with the IRM traces described in
Section 3. We focus on the two more problematic popularity

746 2020 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
is

s
ra

ti
o

Cache size (num. of items)

α = 1.2

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
is

s
ra

ti
o

Cache size (num. of items)

α = 0.6, with popular items

MRC
sample1
sample2
sample3
sample4

10
-4

10
-3

10
-2

10
-1

10
0

0.6 0.8 1 1.2 0.6p

A
v
er

ag
e

er
ro

r
(M

A
E

)

Parameter α of the Zipf

R = 0.1
R = 0.01
R = 0.001

10
-4

10
-3

10
-2

10
-1

10
0

0.6 0.8 1 1.2 0.6p

A
v

er
ag

e
er

ro
r

(M
A

E
Q

)

Parameter α of the Zipf

R = 0.1
R = 0.01
R = 0.001

Figure 7: MRCs built from samples with our approach (top)
and accuracy (MAE bottom left, MAEQ bottom right).

10
-4

10
-3

10
-2

10
-1

10
0

 1.2 0.6p

A
v
er

ag
e

er
ro

r
(M

A
E

Q
)

Parameter α of the Zipf

B = 0 (SHARDSadj)
B = 32
B = 64
B = 125
B = 250
B = 500

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

10
0

10
1

10
2

10
3

10
4

10
5

M
is

s
ra

ti
o

Cache size (num. of items)

α = 0.6, with popular items

MRC
B = 32
B = 64
B = 125
B = 250
B = 500

Figure 8: Accuracy for different values of B (R = 0.01), and
the corresponding MRC (α = 0.6p, zoom on the head of the
MRC).

distributions: the Zipf one with α = 1.2, and the Zipf one
with α = 0.6 modified by introducing 20 very popular items,
labeled as “0.6p.” Figure 7 shows the approximate MRC,
along with the MAE and MAEQ. Our solution is able to
build approximate MRCs using the same amount of mem-
ory as SHARDSadj. The average error per quantile reaches
at most 0.008 in case of an equivalent sampling rate as low
as R = 0.001—the corresponding value of Rs is 0.0004 for
α = 1.2 and 0.0008 for the “0.6p” case. With SHARDSadj,
instead, the error with R = 0.001 was more than 40 times
larger (0.35) for α = 1.2 (Figure 3, right). For most of the
settings, our solution also slightly improves the MAE, being
equal only for α = 1.2 and R = 0.001.
Impact of B. The proposed scheme has a parameter B, which
is the maximum cache size considered for the exact MRC.
Recall that, if B= 0, we obtain SHARDSadj’s results. Figure 8,
left, shows the impact of the accuracy for different values of
B. We consider the default case with R = 0.01. Since the ratio
B/M is less than 10−3, then the equivalent Rs is approximately
0.01 too.

As we increase B, there is a significant error reduction. The

Table 1: Trace characteristics

name year # items # req reference
fiu 2008 6.1 M 14.3 M [22]
ms-ex 2007 2.6 M 8.9 M [18]
ms-dev 2007 6.3 M 18.2 M [18]
systor 2016 12.7 M 34.3 M [23]
CDN 2015 1.6 M 11.2 M [8]

reason can be seen looking at the approximate MRC, which is
shown in Figure 8, right. Since we have a sampling rate Rs ≈
R = 0.01, only one of the 100 most popular items, on average,
is sampled, so the approximate MRC is very inaccurate in the
range [1,100]. As our algorithm uses the approximate sample-
based MRC starting from B+1, as long as B is smaller than
100 (i.e., 1/Rs), the error of the approximate MRC also affects
the final MRC.

5.3 Real-world traces

We consider a set of publicly-available block I/O traces from
SNIA IOTTA repository [31], along with traces from Akamai,
a major CDN provider. Table 1 summarizes the characteristics
of the traces. From the SNIA IOTTA repository, we have
considered the most recent trace—labeled as systor [23]—
along with older traces collected at FIU [22] and at Microsoft
[18].

For experimental reproducibility, we report here the details
of the traces. For the fiu traces [22], we consider the subtrace
IODedup/Web. The ms-ex is the trace named “Microsoft En-
terprise Traces, Exchange Server Traces” [18], which have
been collected for Exchange server for a duration of 24-
hours—we consider the first 3.5 hours. The ms-dev is the
trace named “Microsoft Production Server Traces - Devel-
opment Tools Release” [18]. The systor traces [23] collect
requests for different block storage devices over 28 days: we
consider one day (March, 9th) of the device called “LUN2.”
Finally, the CDN trace [8] contains multiple days of traffic, of
which we consider portions of 6 hours—we tested different
intervals finding similar qualitative results.

Request distribution. Figure 9 shows the empirical popu-
larity distribution for two representative traces (systor and
CDN), since the others are similar. The distributions show the
presence of two distinct groups of items: a head with highly
popular items, and a power-law tail—the figure shows the
exponent α of the fitting power law distribution.

Approximate MRC with Constant Sampling Rate. Fig-
ure 10 shows the comparison between the exact MRC and the
ones obtained with SHARDSadj (left column) and with our
approach (right column) for some representative traces. In
all cases we consider R = 0.01 and B = 1000. We have also
computed the MAEQ (bottom subfigure).

USENIX Association 2020 USENIX Annual Technical Conference 747

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

α = 1.1

re
q
u
es

t
fr

eq
.

Item ID

systor

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

α = 0.7 α = 1.3

re
q
u
es

t
fr

eq
.

Item ID

CDN

Figure 9: Item popularity distribution of the traces.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
is

s
ra

ti
o

Cache size (num. of items)

ms-ex

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
is

s
ra

ti
o

Cache size (num. of items)

ms-ex

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
is

s
ra

ti
o

Cache size (num. of items)

systor

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
is

s
ra

ti
o

Cache size (num. of items)

systor

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
is

s
ra

ti
o

Cache size (num. of items)

CDN

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
is

s
ra

ti
o

Cache size (num. of items)

CDN

MRC
sample1
sample2
sample3
sample4

10
-4

10
-3

10
-2

10
-1

10
0

 fiu ms-ex
ms-dev

systor
CDN

A
v
er

ag
e

er
ro

r
(M

A
E

Q
)

Trace ID

SHARDSadj
our mixed approach

Figure 10: MRCs built from samples with SHARDSadj (left)
and our approach (right). Bottom: MAEQ.

Except for the ms-dev trace, SHARDSadj fails to build an
accurate MRC, with MAEQ in the range 0.05–0.10. With our
approach, instead, the MAEQ is always below 0.01, and the
accuracy can be appreciated visually comparing the approxi-
mate and exact MRCs. The ms-dev trace is representative of

10
-4

10
-3

10
-2

10
-1

10
0

systor
CDN

A
v

er
ag

e
er

ro
r

(M
A

E
Q

)

Trace ID

8k items
64k items
256k items

10
-4

10
-3

10
-2

10
-1

10
0

systor
CDN

A
v

er
ag

e
er

ro
r

(M
A

E
Q

)

Trace ID

8k items
64k items
256k items

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
is

s
ra

ti
o

Cache size (num. of items)

systor

MRC
8k items
64k items
256k items

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
is

s
ra

ti
o

Cache size (num. of items)

systor

MRC
8k items
64k items
256k items

Figure 11: Top: Accuracy (MAEQ) for constant complexity
with SHARDSadj (left) and our approach (right). Bottom:
MRC of a representative trace, with SHARDSadj (left) and
our approach (right).

the case in which SHARDSadj provides good accuracy: our
approach is able to provide equally accurate results.

Approximate MRC with Constant Complexity. We recall
(Section 4) that a constant complexity per request is achieved
by putting a cap on the number of sampled items s′max, and
then to the total memory used (B + s′max). Figure 11 (top)
shows the MAEQ with SHARDSadj and with our approach
for different memory sizes—if not otherwise stated B = 1000.
Figure 11 (bottom) shows the MRC. As the number of items
increases, the head of the approximate MRC with SHARDSadj
converges to the exact shape. With our approach, the MAEQ
is smaller, because the first B positions are always correct.

Overheads. The experimental campaign has been specifically
designed to compare our scheme and SHARDSadj, and the
memory used in both scenarios—constant sampling rate and
constant complexity—as described in Section 5.1. We have
evaluated the CPU usage using user and system time com-
ponents as reported by /usr/bin/time. Our experiments
confirm that SHARDSadj has a 75x speed up compared to the
exact MRC computation [37]. Our scheme performs slightly
worse with CPU usage on average 10%, and at most 20%,
higher than SHARDSadj. While the asymptotic computational
complexity of the two schemes is the same, ours requires in-
deed a few more operations per request. Under SHARDSadj,
at each request, we need to compute the hash of the item iden-
tifier. With our scheme, in addition to this, we need to insert
the item at the head of the tree data structure that keeps track
of the first B positions (in case of a hit we first need to re-
move the item, but this does not happen at every request). The
fact that CPU load only increases by 10% suggests that the
overhead due to the additional insertion/deletion operations

748 2020 USENIX Annual Technical Conference USENIX Association

appears negligible in comparison to the hash computation
cost. On a consumer laptop, our solution processed the traces
in Table 1 (which span multiple hours) in less than 30s. It
can the be used, not only offline on collected traces, but also
online, as requests arrive. In the latter case, one may select
a duration for the observation interval, e.g., one hour or less,
and the MRC is computed at the end of the interval.

6 Discussion

Parameter configuration. In Section 5 we have presented
a sensitivity analysis with respect to the parameter B, the
sampling rate Rs (in case of constant sampling rate), and the
maximum number of item references B+ s′max (in case of con-
stant complexity). The choice of these parameters determines
the amount of memory that will be used for the approximate
MRC computation. Given the memory budget and using some
simple characteristics of the trace, such as the number of items
or the number of requests (which can also be estimated in an
online setting), it is possible to estimate the maximum values
for B and Rs.

We have already shown that, due to the specific way in
which the final MRC is built, one should adopt a value B≥
1/Rs to avoid connecting the two MRCs at a point where the
sampled one is very imprecise. Additional constraints, due to
the specific context in which the MRCs are used, can drive
the exact setting. For instance, if the cache needs to be split
across different application types, their number and the total
amount of storage available further limits B.

Extension to “non-stack” algorithms. The MRC construc-
tion technique in case of eviction policies that do not satisfy
the inclusion property is different, i.e., one needs to compute
the miss ratios for different cache sizes in parallel, and then
join the results. Waldspurger et al. [36] propose a general
method where the miss ratio for cache size C is obtained sim-
ulating a cache with size RC with a request trace sampled with
rate R. In their experiments they use the same scaling factor R
for all the sizes, but our findings suggest that one wants to dif-
ferentiate the sampling rate used, adopting a high (resp. low)
sampling rate for small (resp. large) caches. The higher sam-
pling rate for the small caches would be compensated by the
smaller sampling rate used at large ones, so overall the mem-
ory requirement and the computational complexity could be
maintained similar to the case with constant sampling rate.

Heterogeneous item size. Most of the work about MRC con-
sider items with uniform sizes. In contrast, there are different
scenarios, such as Web caches, where items have heteroge-
neous sizes. In this case, the MRC should inform the miss
rate obtained for a given size of the cache in bytes, rather than
in number of items. In order to build such a MRC, we need to
modify the data structure used to keep track of the items in
the cache as explained in Carra et al. [8].

Figure 12 (left) shows the exact and approximate MRC

M
is

s
ra

ti
o

Cache size (MB)

CDN, het. sizes

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
is

s
ra

ti
o

Cache size (MB)

CDN, het. sizes

MRC
sample1
sample2
sample3
sample4

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Figure 12: MRCs built from samples with SHARDSadj (left)
and our approach (right—the shaded area corresponds to the
portion of the exact MRC).

with SHARDSadj for the CDN trace. Notice that the X-axis
now reports the cache size in MB. Figure 12 (right) shows the
results with our approach. By combining the exact MRC with
the one built from the samples, we are able to build a more
accurate MRC using the same amount of memory as used by
SHARDSadj. The results are confirmed by the MAEQ, for
which we obtain an average value of 0.007—almost one order
of magnitude smaller than SHARDSadj’s value (0.052).

7 Conclusions

Sampling has been applied to calculate approximate MRCs
with limited computational complexity. The use of such a
technique requires a careful design in order to avoid the intro-
duction of biases in the MRC construction. In this work, using
a set of experiments and a model of a representative scenario,
we studied the impact of popular items on the accuracy of the
MRC, and we proposed a new approach that uses exact MRC
calculation for small cache sizes while relying on sampling
for large ones. The results using different real-world traces
show that our solution is able to build approximate MRC with
an error per quantile one order of magnitude smaller than
state-of-the-art approaches, such as SHARDSadj. As a future
work, we plan to study how the parameters of our scheme
should be set online depending on the characteristics of the
request stream.

Acknowledgments

We would like to thank Pietro Michiardi for the initial discus-
sions on this work, and for the computational resources kindly
provided for part of the experiments. We thank the anonymous
reviewers and our shepherd, Raju Rangaswami, for their con-
structive feedback. This work was partially supported by the
Italian National Group for Scientific Computation (GNCS-
INDAM) and by “Progetto di Eccellenza” of the Computer
Science Dept., Univ. of Verona, Italy.

USENIX Association 2020 USENIX Annual Technical Conference 749

References

[1] Amazon Web Service ElastiCache. https://aws.
amazon.com/elasticache/.

[2] Google Cloud Memorystore. https://cloud.google.
com/memorystore/.

[3] Microsoft Azure Redis Cache. https://azure.
microsoft.com/en-us/services/cache/.

[4] Erik Berg and Erik Hagersten. StatCache: a probabilistic
approach to efficient and accurate data locality analysis.
In IEEE International Symposium on-ISPASS Perfor-
mance Analysis of Systems and Software, 2004, pages
20–27. IEEE, 2004.

[5] Daniel S Berger, Ramesh K Sitaraman, and Mor
Harchol-Balter. Adaptsize: Orchestrating the hot ob-
ject memory cache in a content delivery network. In
14th {USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 17), pages 483–498,
2017.

[6] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. mPart:
miss-ratio curve guided partitioning in key-value stores.
In ACM SIGPLAN Notices, volume 53, pages 84–95.
ACM, 2018.

[7] Damiano Carra, Giovanni Neglia, and Pietro Michiardi.
TTL-based Cloud Caches. In IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pages
685–693. IEEE, 2019.

[8] Damiano Carra, Giovanni Neglia, and Pietro Michiardi.
Elastic provisioning of cloud caches: A cost-aware ttl ap-
proach. IEEE/ACM Transactions on Networking, 2020.

[9] Calin Cascaval and David A Padua. Estimating cache
misses and locality using stack distances. In Proceed-
ings of the 17th annual international conference on Su-
percomputing, pages 150–159. ACM, 2003.

[10] Jichuan Chang and Gurindar S Sohi. Cooperative cache
partitioning for chip multiprocessors. In ACM Interna-
tional Conference on Supercomputing 25th Anniversary
Volume, pages 402–412. ACM, 2014.

[11] Hao Che, Ye Tung, and Zhijun Wang. Hierarchical web
caching systems: Modeling, design and experimental
results. IEEE Journal on Selected Areas in Communica-
tions, 20(7):1305–1314, 2002.

[12] Chen Ding and Yutao Zhong. Predicting whole-program
locality through reuse distance analysis. In ACM Sigplan
Notices, volume 38, pages 245–257. ACM, 2003.

[13] David Eklov and Erik Hagersten. StatStack: Efficient
modeling of LRU caches. In 2010 IEEE International
Symposium on Performance Analysis of Systems & Soft-
ware (ISPASS), pages 55–65. IEEE, 2010.

[14] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier.
Birthday paradox, coupon collectors, caching algorithms
and self-organizing search. Discrete Applied Mathemat-
ics, 39(3):207–229, 1992.

[15] Nicaise Choungmo Fofack, Philippe Nain, Giovanni
Neglia, and Don Towsley. Performance evaluation of
hierarchical TTL-based cache networks. Computer Net-
works, 65:212–231, 2014.

[16] Michele Garetto, Emilio Leonardi, and Valentina Mar-
tina. A unified approach to the performance analysis of
caching systems. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, 1(3):12,
2016.

[17] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo,
Chen Ding, and Zhenlin Wang. Kinetic modeling of data
eviction in cache. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 351–364, 2016.

[18] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang,
and Vishal Sharda. Characterization of storage workload
traces from production Windows servers. In 2008 IEEE
International Symposium on Workload Characterization,
pages 119–128. IEEE, 2008.

[19] Seongbeom Kim, Dhruba Chandra, and Yan Solihin.
Fair cache sharing and partitioning in a chip multipro-
cessor architecture. In Proceedings. 13th International
Conference on Parallel Architecture and Compilation
Techniques, 2004. PACT 2004., pages 111–122. IEEE,
2004.

[20] WC King. Analysis of paging algorithms. In Proc.
IFIP 1971 Congress, Ljubljana, pages 485–490. North-
Holland, 1972.

[21] Ricardo Koller, Ali José Mashtizadeh, and Raju Ran-
gaswami. Centaur: Host-side ssd caching for storage
performance control. In 2015 IEEE International Con-
ference on Autonomic Computing, pages 51–60. IEEE,
2015.

[22] Ricardo Koller and Raju Rangaswami. I/O deduplica-
tion: Utilizing content similarity to improve I/O perfor-
mance. ACM Transactions on Storage (TOS), 6(3):13,
2010.

[23] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hi-
roshi Endo, Naoto Fukumoto, and Mariko Sugawara.
Understanding storage traffic characteristics on enter-
prise virtual desktop infrastructure. In Proceedings of

750 2020 USENIX Annual Technical Conference USENIX Association

https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://cloud.google.com/memorystore/
https://cloud.google.com/memorystore/
https://azure.microsoft.com/en-us/services/cache/
https://azure.microsoft.com/en-us/services/cache/

the 10th ACM International Systems and Storage Con-
ference, SYSTOR ’17, pages 13:1–13:11. ACM, 2017.

[24] Tian Luo, Siyuan Ma, Rubao Lee, Xiaodong Zhang,
Deng Liu, and Li Zhou. S-cave: Effective ssd caching
to improve virtual machine storage performance. In
Proceedings of the 22nd international conference on
Parallel architectures and compilation techniques, pages
103–112. IEEE, 2013.

[25] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.
Evaluation techniques for storage hierarchies. IBM Syst.
J., 9(2):78–117, June 1970.

[26] Giovanni Neglia, Damiano Carra, Mingdong Feng,
Vaishnav Janardhan, Pietro Michiardi, and Dimitra
Tsigkari. Access-time-aware cache algorithms. ACM
Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS), 2(4):21, 2017.

[27] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and
Ion Stoica. Fairride: Near-optimal, fair cache sharing. In
13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 393–406, 2016.

[28] Sundaresan Rajasekaran, Shaohua Duan, Wei Zhang,
and Timothy Wood. Multi-cache: Dynamic, efficient
partitioning for multi-tier caches in consolidated vm
environments. In 2016 IEEE International Conference
on Cloud Engineering (IC2E), pages 182–191. IEEE,
2016.

[29] Trausti Saemundsson, Hjortur Bjornsson, Gregory
Chockler, and Ymir Vigfusson. Dynamic performance
profiling of cloud caches. In Proceedings of the ACM
Symposium on Cloud Computing, pages 1–14. ACM,
2014.

[30] Derek L Schuff, Milind Kulkarni, and Vijay S Pai. Ac-
celerating multicore reuse distance analysis with sam-
pling and parallelization. In Proceedings of the 19th
international conference on Parallel architectures and
compilation techniques, pages 53–64. ACM, 2010.

[31] SNIA. SNIA iotta repository block I/O traces. http:
//iotta.snia.org/tracetypes/3. Accessed: July
2019.

[32] Gokul Soundararajan, Jin Chen, Mohamed A Sharaf,
and Cristiana Amza. Dynamic partitioning of the cache
hierarchy in shared data centers. Proceedings of the
VLDB Endowment, 1(1):635–646, 2008.

[33] Aditya Sundarrajan, Mingdong Feng, Mangesh Kas-
bekar, and Ramesh K Sitaraman. Footprint descrip-
tors: Theory and practice of cache provisioning in a
global CDN. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and
Technologies, pages 55–67. ACM, 2017.

[34] David K Tam, Reza Azimi, Livio B Soares, and Michael
Stumm. RapidMRC: approximating L2 miss rate curves
on commodity systems for online optimizations. ACM
SIGARCH Computer Architecture News, 37(1):121–132,
2009.

[35] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert
Hundt, and Mary Lou Soffa. The impact of memory
subsystem resource sharing on datacenter applications.
In ACM SIGARCH Computer Architecture News, vol-
ume 39, pages 283–294. ACM, 2011.

[36] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and optimization
using miniature simulations. In Proceedings of USENIX
ATC, pages 487–498, 2017.

[37] Carl A Waldspurger, Nohhyun Park, Alexander T Garth-
waite, and Irfan Ahmad. Efficient MRC Construction
with SHARDS. In FAST, pages 95–110, 2015.

[38] Jake Wires, Stephen Ingram, Zachary Drudi,
Nicholas JA Harvey, Andrew Warfield, and Coho
Data. Characterizing storage workloads with counter
stacks. In OSDI, pages 335–349, 2014.

[39] Yutao Zhong and Wentao Chang. Sampling-based pro-
gram locality approximation. In Proceedings of the
7th international symposium on Memory management,
pages 91–100. ACM, 2008.

[40] Yutao Zhong, Xipeng Shen, and Chen Ding. Program
locality analysis using reuse distance. ACM Trans. Pro-
gram. Lang. Syst., 31(6):1–39, 2009.

USENIX Association 2020 USENIX Annual Technical Conference 751

http://iotta. snia.org/tracetypes/3
http://iotta. snia.org/tracetypes/3

Can Applications Recover from fsync Failures?
Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau
Computer Sciences Department, University of Wisconsin – Madison

Abstract
We analyze how file systems and modern data-intensive ap-
plications react to fsync failures. First, we characterize how
three Linux file systems (ext4, XFS, Btrfs) behave in the pres-
ence of failures. We find commonalities across file systems
(pages are always marked clean, certain block writes always
lead to unavailability), as well as differences (page content and
failure reporting is varied). Next, we study how five widely
used applications (PostgreSQL, LMDB, LevelDB, SQLite,
Redis) handle fsync failures. Our findings show that although
applications use many failure-handling strategies, none are
sufficient: fsync failures can cause catastrophic outcomes
such as data loss and corruption. Our findings have strong
implications for the design of file systems and applications
that intend to provide strong durability guarantees.

1 Introduction
Applications that care about data must care about how data

is written to stable storage. Issuing a series of write system
calls is insufficient. A write call only transfers data from
application memory into the operating system; the OS usually
writes this data to disk lazily, improving performance via
batching, scheduling, and other techniques [25, 44, 52, 53].

To update persistent data correctly in the presence of fail-
ures, the order and timing of flushes to stable storage must be
controlled by the application. Such control is usually made
available to applications in the form of calls to fsync [9, 47],
which forces unwritten (“dirty”) data to disk before returning
control to the application. Most update protocols, such as
write-ahead logging or copy-on-write, rely on forcing data to
disk in particular orders for correctness [30, 31, 35, 38, 46, 56].

Unfortunately, recent work has shown that the behavior of
fsync during failure events is ill-defined [55] and error prone.
Some systems, for example, mark the relevant pages clean
upon fsync failure, even though the dirty pages have not yet
been written properly to disk. Simple application responses,
such as retrying the failed fsync, will not work as expected,
leading to potential data corruption or loss.

In this paper, we ask and answer two questions related to
this critical problem. The first question (§3) relates to the file
system itself: why does fsync sometimes fail, and what is
the effect on file-system state after the failure event?

To answer this first question, we run carefully-crafted
micro-workloads on important and popular Linux file sys-
tems (ext4 [43], XFS [54], Btrfs [50]) and inject targeted

block failures in the I/O stream. We then use a combination
of tools to examine the results. Our findings show commonal-
ities across file systems as well as differences. For example,
all three file systems mark pages clean after fsync fails, ren-
dering techniques such as application-level retry ineffective.
However, the content in said clean pages varies depending
on the file system; ext4 and XFS contain the latest copy in
memory while Btrfs reverts to the previous consistent state.
Failure reporting is varied across file systems; for example,
ext4 data mode does not report an fsync failure immediately
in some cases, instead (oddly) failing the subsequent call.
Failed updates to some structures (e.g., journal blocks) during
fsync reliably lead to file-system unavailability. And finally,
other potentially useful behaviors are missing; for example,
none of the file systems alert the user to run a file-system
checker after the failure.

The second question we ask is (§4): how do important
data-intensive applications react to fsync failures? To answer
this question, we build CuttleFS, a FUSE file system that
can emulate different file system fsync failures. CuttleFS
maintains its own page cache in user-space memory, separate
from the kernel page cache, allowing application developers
to perform durability tests against characteristics of different
file systems, without interference from the underlying file
system and kernel.

With this test infrastructure, we examine the behavior of
five widely-used data-management applications: Redis [18],
LMDB [15], LevelDB [12], SQLite [20] (in both RollBack [1]
and WAL modes [21]), and PostgreSQL [15] (in default and
DirectIO modes). Our findings, once again, contain both
specifics per system, as well as general results true across
some or all. Some applications (Redis) are surprisingly care-
less with fsync, not even checking its return code before
returning success to the application-level update; the result
is a database with old, corrupt, or missing keys. Other ap-
plications (LMDB) exhibit false-failure reporting, returning
an error to users even though on-disk state is correct. Many
applications (Redis, LMDB, LevelDB, SQLite) exhibit data
corruptions; for example, SQLite fails to write data to its roll-
back journal and corrupts in-memory state by reading from
said journal when a transaction needs to be rolled back. While
corruptions can cause some applications to reject newly in-
serted records (Redis, LevelDB, SQLite), both new and old
data can be lost on updates (PostgreSQL). Finally, applica-
tions (LevelDB, SQLite, PostgreSQL) sometimes seemingly

USENIX Association 2020 USENIX Annual Technical Conference 753

work correctly as long as the relevant data remains in the
file-system cache; when said data is purged from the cache
(due to cache pressure or OS restart), however, the application
then returns stale data (as retrieved from disk).

We also draw high-level conclusions that take both file-
system and application behavior into account. We find that ap-
plications expect file systems on an OS platform (e.g., Linux)
to behave similarly, and yet file systems exhibit nuanced and
important differences. We also find that applications employ
numerous different techniques for handling fsync failures,
and yet none are (as of today) sufficient; even after the Post-
greSQL fsync problem was reported [55], no application yet
handles its failure perfectly. We also determine that applica-
tion recovery techniques often rely upon the file-system page
cache, which does not reflect the persistent state of the system
and can lead to data loss or corruption; applications should en-
sure recovery protocols only use existing persistent (on-disk)
state to recover. Finally, in comparing ext4 and XFS (journal-
ing file systems) with Btrfs (copy-on-write file system), we
find that the copy-on-write strategy seems to be more robust
against corruptions, reverting to older states when needed.

The rest of this paper is organized as follows. First, we
motivate why this study is necessary (§2), followed by a file-
system study (§3). Next, we study how applications react to
fsync failures (§4). We then discuss the implications of our
findings (§5), discuss related work (§6), and conclude (§7).

2 Motivation
Applications that manage data must ensure that they can

handle and recover from any fault that occurs in the storage
stack. Recently, a PostgreSQL user encountered data corrup-
tion after a storage error and PostgreSQL played a part in that
corruption [17]. Because of the importance and complexity
of this error, we describe the situation in detail.

PostgreSQL is an RDBMS that stores tables in separate
files and uses a write-ahead log (wal) to ensure data in-
tegrity [16]. On a transaction commit, the entry is written
to the log and the user is notified of the success. To ensure
that the log does not grow too large (as it increases startup
time to replay all entries in the log), PostgreSQL periodically
runs a checkpoint operation to flush all changes from the log
to the different files on disk. After an fsync is called on each
of the files, and PostgreSQL is notified that everything was
persisted successfully, the log is truncated.

Of course, operations on persistent storage do not always
complete successfully. Storage devices can exhibit many dif-
ferent types of partial and transient failures, such as latent
sector errors [27, 41, 51], corruptions [26], and misdirected
writes [42]. These device faults are propagated through the
file system to applications in a variety of ways [40, 49], often
causing system calls such as read, write, and fsync to fail
with a simple return code.

When PostgreSQL was notified that fsync failed, it retried
the failed fsync. Unfortunately, the semantics for what should

happen when a failed fsync is retried are not well defined.
While POSIX aims to standardize behavior, it only states that
outstanding IO operations are not guaranteed to have been
completed in the event of failures during fsync [14]. As we
shall see, on many Linux file systems, data pages that fail to
be written, are simply marked clean in the page cache when
fsync is called and fails. As a result, when PostgreSQL re-
tried the fsync a second time, there were no dirty pages for
the file system to write, resulting in the second fsync suc-
ceeding without actually writing data to disk. PostgreSQL as-
sumed that the second fsync persisted data and continued to
truncate the write-ahead log, thereby losing data. PostgreSQL
had been using fsync incorrectly for 20 years [55].

After identifying this intricate problem, developers changed
PostgreSQL to respond to the fsync error by crashing and
restarting without retrying the fsync. Thus, on restart, Post-
greSQL rebuilds state by reading from the wal and retrying
the entire checkpoint process. The hope and intention is that
this crash and restart approach will not lose data. Many other
applications like WiredTiger/MongoDB [24] and MySQL [3]
followed suit in fixing their fsync retry logic.

This experience leads us to ask a number of questions. As
application developers are not certain about the underlying
file-system state on fsync failure, the first part of our study
answers what happens when fsync fails. How do file systems
behave after they report that an fsync has failed? Do differ-
ent Linux file systems behave in the same way? What can
application developers assume about the state of their data
after an fsync fails? Thus, we perform an in-depth study into
the fsync operation for multiple file systems.

The second part of our study looks at how data-intensive
applications react to fsync failures. Does the PostgreSQL
solution indeed work under all circumstances and on all file
systems? How do other data-intensive applications react to
fsync failures? For example, do they retry a failed fsync,
avoid relying on the page cache, crash and restart, or employ a
different failure-handling technique? Overall, how well do ap-
plications handle fsync failures across diverse file systems?

3 File System Study
Our first study explores how file systems behave after re-

porting that an fsync call has failed. After giving a brief back-
ground of caching in file systems, we describe our methodol-
ogy and our findings for the three Linux file systems.

3.1 Background
File systems provide applications with open, read, and

write system calls to interact with the underlying storage
media. Since block devices such as hard disks and solid state
drives are much slower than main memory [57], the operating
system maintains a page cache of frequently used pages of
files in kernel space in main memory.

When an application calls read, the kernel first checks if
the data is in the page cache. If not, the file system retrieves

754 2020 USENIX Annual Technical Conference USENIX Association

the data from the underlying storage device and stores it in the
page cache. When an application calls write, the kernel only
dirties the page in memory while notifying the application that
the write succeeded; there is now a mismatch between the
data in memory and on the device and data can potentially be
lost. For durability, the file system periodically synchronizes
content between memory and disk by flushing dirty pages
and marking them clean. Applications that require stronger
durability guarantees can force the dirty pages to disk using
the fsync system call.

Applications can choose to bypass the page cache alto-
gether by opening files with O_DIRECT (DirectIO). For
caching, applications must perform their own in user space.
Calls to fsync are still required since data may be cached
within the underlying storage media; an fsync issues a
FLUSH command to the underlying device so it pushes data
all the way to stable storage.

3.2 Methodology
To understand how file systems should behave after report-

ing an fsync failure, we begin with the available documenta-
tion. The fsync man pages [9] report that fsync may fail for
many reasons: the underlying storage medium has insufficient
space (ENOSPC or EDQUOT), the file descriptor is not valid
(EBADF), or the file descriptor is bound to a file that does not
support synchronization (EINVAL). Since these errors can be
discovered by validating input and metadata before initiating
write operations, we do not investigate them further.

We focus on errors that are encountered only after the file
system starts synchronizing dirty pages to disk; in this case,
fsync signals an EIO error. EIO errors are difficult to handle
because the file system may have already begun an operation
(or changed state) that it may or may not be able to revert.

To trigger EIO errors, we consider single, transient, write
faults in line with the fail-partial failure model [48,49]. When
the file system sends a write request to the storage device, we
inject a fault for a single sector or block within the request.
Specifically, we build a kernel module device-mapper target
that intercepts block-device requests from the file system
and fails a particular write request to a particular sector or
block while letting all other requests succeed; this allows us
to observe the impact on an unmodified file system.

3.2.1 Workloads
To exercise the fsync path, we create two simple work-

loads that are representative of common write patterns seen
in data-intensive applications.

Single Block Update (wsu): open an existing file contain-
ing three pages (12KB) and modify the middle page. This
workload resembles many applications that modify the con-
tents of existing files: LMDB always modifies the first two
metadata pages of its database file; PostgreSQL stores ta-
bles as files on disk and modifies them in-place. Specif-
ically, wsu issues system calls in the following sequence:
open, lseek(4K), write(4K), fsync, fsync, sleep(40),

close. The first fsync forces the dirty page to disk. While
one fsync is sufficient in the absence of failures, we are inter-
ested in the impact of fsync retries after a failure; therefore,
wsu includes a second fsync. Finally, since ext4, XFS, and
Btrfs write out metadata and checkpoint the journal periodi-
cally, wsu includes a sleep for 40 seconds.

Multi Block Append (wma): open a file in append mode
and write a page followed by an fsync; writing and fsyncing
is repeated after sleeping. This workload resembles many ap-
plications that periodically write to a log file: Redis writes
every operation that modifies its in-memory data structures to
an append only file; LevelDB, PostgreSQL, and SQLite write
to a write-ahead-log and fsync the file after the write. wma
repeats these operations after a delay to allow checkpointing
to occur; this is realistic as clients do not always write continu-
ously and checkpointing may occur in those gaps. Specifically,
wma issues system calls in the following sequence: open (in
append mode), write(4K),fsync, sleep(40), write(4K),
fsync, sleep(40), close.
3.2.2 Experiment Overview

We run the workloads on three different file systems:
ext4, XFS, and Btrfs, with default mkfs and mount options.
We evaluate both ext4 with metadata ordered journaling
(data=ordered) and full data journaling (data=journal). We
use an Ubuntu OS with Linux kernel version 5.2.11.

For each file system and workload, we first trace the block
write access pattern. We then repeat the workload multiple
times, each time configuring the fault injector to fail the ith

write access to a given sector or block. We only fail a single
block or sector within the block in each iteration. We use a
combination of offline tools (debugfs and xfs_db) and doc-
umentation to map each block to its respective file system
data structure. We use SystemTap [22] to examine the state
of relevant buffer heads and pages associated with data or
metadata in the file system.
3.2.3 Behavior Inference

We answer the following questions for each file system:
Basics of fsync Failures:

Q1 Which block (data, metadata, journal) failures lead to
fsync failures?

Q2 Is metadata persisted if a data block fails?
Q3 Does the file system retry failed block writes?
Q4 Are failed data blocks marked clean or dirty in memory?
Q5 Does in-memory page content match what is on disk?

Failure Reporting:

Q6 Which future fsync will report a write failure?
Q7 Is a write failure logged in the syslog?

After Effects of fsync Failure:

Q8 Which block failures lead to file-system unavailability?

USENIX Association 2020 USENIX Annual Technical Conference 755

Q9 How does unavailability manifest? Does the file system
shutdown, crash, or remount in read-only mode?

Q10 Does the file suffer from holes or block overwrite fail-
ures? If so, in which parts of a file can they occur?1

Recovery:

Q11 If there is any inconsistency introduced due to fsync
failure, can fsck detect and fix it?

3.3 Findings
We now describe our findings for the three file systems we

have characterized: ext4, XFS, and Btrfs. Our answers to our
posed questions are summarized in Table 1.
3.3.1 Ext4

The ext4 file system is a commonly-used journaling file sys-
tem on Linux. The two most common options when mounting
this file system are data=ordered and data=journal which
enable ext4 ordered mode and ext4 data mode, respectively.
Ext4 ordered mode writes metadata to the journal whereas
ext4 data mode writes both data and metadata to the journal.
Ext4 ordered mode: We give an overview of ext4 ordered
mode by describing how it behaves for our two representative
workloads when no failures occur.

Single Block Update (wsu). When no fault is injected and
fsync is successful, ext4 ordered mode behaves as follows.
During the write (Step 1), ext4 updates the page in the page
cache with the new contents and marks the page dirty. On
fsync, the page is written to a data block; after the data-block
write completes successfully, the metadata (i.e., the inode with
a new modification time) is written to the journal, and fsync
returns 0 indicating success (Step 2). After the fsync, the
dirty page is marked clean and contains the newly written data.
On the second fsync, as there are no dirty pages, no block
writes occur, and as there are no errors, fsync returns 0 (Step
3). During sleep, the metadata in the journal is checkpointed
to its final in-place block location (Step 4). No writes or
changes in page state occur during the close (Step 5).

If fsync fails (i.e., returns -1 with errno set to EIO), a vari-
ety of write problems could have occurred. For example, the
data-block write could have failed; if this happens, ext4 does
not write the metadata to the journal. However, the updated
page is still marked clean and contains the newly written data
from Step 1, causing a discrepancy with the contents on disk.
Furthermore, even though the inode table was not written to
the journal at the time of the data fault, the inode table con-
taining the updated modification time is written to the journal
on the second fsync in Step 3. Steps 4 and 5 are the same as
above, and thus the inode table is checkpointed.

Thus, applications that read this data block while the page
remains in the page cache (i.e., the page has not been evicted

1In file-system terminology, a hole is a region in a file for which there is
no block allocated. If a block is allocated but not overwritten with the new
data, we consider the file to have a non-overwritten block and suffer from
block overwrite failure.

and the OS has not been rebooted) will see the new contents of
the data; however, when the page is no longer in memory and
must be read from disk, applications will see the old contents.

Alternatively, if fsync failed, it could be because a write to
one of the journal blocks failed. In this case, ext4 aborts the
journal transaction and remounts the file system in read-only
mode, causing all future writes to fail.

Multi Block Append (wma). This next workload exercises
additional cases in the fsync error path. If there are no er-
rors and all fsyncs are successful, the multi-block append
workload on ext4 behaves as follows. First, during write,
ext4 creates a new page with the new contents and marks it
dirty (Step 1). On fsync, the page is written to a newly allo-
cated on-disk data block; after the data-block write completes
successfully, the relevant metadata (i.e., both the inode table
and the block bitmap) are written to the journal, and fsync
returns success (Step 2). As in wsu, the page is marked clean
and contains the newly written data. During sleep, the meta-
data is checkpointed to disk (Step 3); specifically, the inode
contains the new modification time and a link to the newly
allocated block, and the block bitmap now indicates that the
newly allocated block is in use. The pattern is repeated for
the second write (Step 4), fsync (Step 5), and sleep (Step
6). As in wsu, there are no write requests or changes in page
state during close (Step 7).

An fsync failure could again indicate numerous problems.
First, a write to a data block could have failed in Step 2. If this
is the case, the fsync fails and the page is marked clean; as in
wsu, the page contains the newly written data, differing from
the on-disk block that contains the original block contents.
The inode table and block bitmap are written to disk in Step 3;
thus, even though the data itself has not been written, the inode
is modified to reference this block and the corresponding bit
is set in the block bitmap. When the workload writes another
4KB of data in Step 4, this write continues oblivious of the
previous fault and Steps 5, 6, and 7 proceed as usual.

Thus, with a data-block failure, the on-disk file contains
a non-overwritten block where it was supposed to contain
the data from Step 1. A similar possibility is that the write
to a data block in Step 5 fails; in this case, the file has a
non-overwritten block at the end instead of somewhere in the
middle. Again, an application that reads any of these failed
data blocks while they remain in the page cache will see
the newly appended contents; however, when any of those
pages are no longer in memory and must be read from disk,
applications will read the original block contents.

An fsync failure could also indicate that a write to a
journal-block failed. In this case, as in wsu, the fsync re-
turns an error and the following write fails since ext4 has
been remounted in read-only mode.

Because this workload contains an fsync after the meta-
data has been checkpointed in Step 3, it also illustrates the
impact of faults when checkpointing the inode table and block
bitmap. We find that despite the fact that a write has failed and

756 2020 USENIX Annual Technical Conference USENIX Association

fsync Failure Basics Error Reporting After Effects Recovery

W
hi

ch
bl

oc
k

fa
ilu

re
ca

us
es

fs
yn

c
fa

ilu
re

?

Is
m

et
ad

at
a

pe
rs

is
te

d
on

da
ta

bl
oc

k
fa

ilu
re

?

W
hi

ch
bl

oc
k

fa
ilu

re
s

ar
e

re
tr

ie
d?

Is
th

e
pa

ge
di

rt
y

or
cl

ea
n

af
te

rf
ai

lu
re

?

D
oe

s
th

e
in

-m
em

or
y

co
nt

en
tm

at
ch

di
sk

?

W
hi

ch
fs

yn
c

re
po

rt
s

th
e

fa
ilu

re
?

Is
th

e
fa

ilu
re

lo
gg

ed
to

sy
sl

og
?

W
hi

ch
bl

oc
k

fa
ilu

re
ca

us
es

un
av

ai
la

bi
lit

y?

W
ha

tt
yp

e
of

un
av

ai
la

bi
lit

y?

H
ol

es
or

bl
oc

k
ov

er
-

w
ri

te
fa

ilu
re

s?
If

ye
s

w
he

re
do

th
ey

oc
cu

r?

C
an

fs
ck

he
lp

de
te

ct
ho

le
s

or
bl

oc
k

ov
er

-
w

ri
te

fa
ilu

re
s?

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

ext4 ordered data,jrnl yes A clean B no B immediate yes jrnl remount-ro NOB, anywhere A no

data data,jrnl yes A clean B no B next C yes jrnl remount-ro NOB, anywhere A no

XFS data,jrnl yes A meta clean B no B immediate yes jrnl,meta shutdown NOB, within A no

Btrfs data,jrnl no clean yes immediate yes jrnl,meta remount-ro HOLE, within D yes

A Non-overwritten blocks (Q10) occur because metadata is per-
sisted despite data-block failure (Q2).

B Marking a dirty page clean (Q4) even though the content does not match the disk (Q5) is problematic.

C Delayed reporting (Q6) of fsync failures may confuse appli-
cation error-handling logic.

D Continuing to write to a file after an fsync failure is similar to writing to an offset greater than file
size, causing a hole in the skipped portion (Q10).

Table 1: Behavior of Various File Systems when fsync Fails. The table summarizes the behavior of the three file systems: ext4, XFS, and Btrfs
according to the questions posed in Section 3.2.3. The questions are divided into four categories mentioned at the top. For questions that
require identifying a block type, we use the following abbreviations: Data Block (data), Journal Block (jrnl), Metadata Block (meta). In Q9,
Remount-ro denotes remounting in read-only mode. In Q10, “anywhere” and “within” describe the locations of the holes or non-overwritten
blocks (NOB); “within” does not include the end of the file. Entries with a superscript denote a problem.

the file system will now be in an inconsistent state, the follow-
ing fsync does not return an error. However, the metadata
error is logged to syslog.

We note that for none of these fsync failures does ext4
ordered mode recommend running the file system checker;
furthermore, running the checker does not identify or repair
any of the preceding problems. Finally, future calls to fsync
never retry previous data writes that may have failed. These
results for ext4 ordered mode are all summarized in Table 1.

The ext4 file system also offers functionality to abort the
journal if an error occurs in a file data buffer (mount option
data_err=abort) and remount the file system in read-only
mode on an error (mount option errors=remount-ro). How-
ever, we observe that the results are identical with and without
the mount options. 2

Ext4 Data Mode: Ext4 data mode differs from ordered mode
in that data blocks are first written to the journal and then later
checkpointed to their final in-place block locations.

As shown in Table 1, the behavior of fsync in ext4 data
mode is similar to that in ext4 ordered mode for most cases:
for example, on a write error, pages may be marked clean
even if they were not written out to disk, the file system is
remounted in read-only mode on journal failures, meta-data
failures are not reported by fsync, and files can end up with
non-overwritten blocks in the middle or end.

However, the behavior of ext4 data mode differs in one im-
portant scenario. Because data blocks are first written to the
journal and later to their actual block locations during check-
pointing, the first fsync after a write may succeed even if a
data block will not be successfully written to its permanent
in-place location. As a result, a data-block fault causes the sec-

2We verified our observations by reproducing them using standard Linux
tools and have filed a bug report for the same [2].

ond fsync to fail instead of the first; in other words, the error
reporting by fsync is delayed due to a failed intention [36].

3.3.2 XFS
XFS is a journaling file system that uses B-trees. Instead

of performing physical journaling like ext4, XFS journals
logical entries for changes in metadata.

As shown in Table 1, from the perspective of error reporting
and fsync behavior, XFS is similar to that of ext4 ordered
mode. Specifically, failing to write data blocks leads to fsync
failure and the faulty data pages are marked clean even though
they contain new data that has not been propagated to disk; as
a result, applications that read this faulty data will see the new
data only until the page has been evicted from the page cache.
Similarly, failing to write a journal block will cause fsync
failure, while failing to write a metadata block will not. XFS
remains available for reads and writes after data-block faults.

XFS handles fsync failures in a few ways that are dif-
ferent than ext4 ordered mode. First, on a journal-block
fault, XFS shuts down the file system entirely instead
of merely remounting in read-only mode; thus, all sub-
sequent read and write operations fail. Second, XFS re-
tries metadata writes when it encounters a fault during
checkpointing; the retry limit is determined by a value in
/sys/fs/xfs/*/error/metadata/*/max_retries, but is
infinite by default. If the retry limit is exceeded, XFS again
shuts down the file system.

The multi-block append workload illustrates how XFS han-
dles metadata when writes to related data blocks fail. If the
write to the first data block fails, XFS writes no metadata
to the journal and fails the fsync immediately. When later
data blocks are successfully appended to this file, the meta-
data is updated which creates a non-overwritten block in the
file corresponding to the first write. If instead, a write to a

USENIX Association 2020 USENIX Annual Technical Conference 757

data block contained in the last journal transaction fails, the
on-disk metadata is not updated to reflect any of these last
writes (i.e., the size of the file is not increased if any related
blocks fail in the last transaction). 3 Thus, while in ext4 a
failed write always causes a non-overwritten block, in XFS,
non-overwritten blocks cannot exist at the end of a file. How-
ever, for either file system, if the failed blocks remain in the
page cache, applications can read those blocks regardless of
whether they are in the middle or the end of a file.

3.3.3 Btrfs
Btrfs is a copy-on-write file system that avoids writing to

the same block twice except for the superblock which contains
root-node information. At a high level, some of the actions in
Btrfs are similar to those in a journaling file system: instead
of writing to a journal, Btrfs writes to a log tree to record
changes when an fsync is performed; instead of checkpoint-
ing to fixed in-place locations, Btrfs writes to new locations
and updates the roots in its superblock. However, since Btrfs
is based on copy-on-write, it has a number of interesting dif-
ferences in how it handles fsync failures compared to ext4
and XFS, as shown in Table 1.

Like ext4 ordered mode and XFS, Btrfs fails fsync when it
encounters data-block faults. However, unlike ext4 and XFS,
Btrfs effectively reverts the contents of the data block (and
any related metadata) back to its old state (and marks the page
clean). Thus, if an application reads the data after this failure,
it will never see the failed operation as a temporary state. As
in the other file systems, Btrfs remains available after this
data-block fault.

Similar to faults to the journal in the other file systems,
in Btrfs, faults to the log-tree result in a failed fsync and a
remount in read-only mode. Unlike ext4 and XFS, faults in
the metadata blocks during checkpointing result in a remount
in read-only mode (but fsync still does not return an error).

The multi-block append workload illustrates interesting
behavior in Btrfs block allocation. If the first append fails, the
state of the file system, including the B-tree that tracks all free
blocks, is reverted. However, the next append will continue
to write at the (incorrectly) updated offset stored in the file
descriptor, creating a hole in the file. Since the state of the B-
tree was reverted, the deterministic block allocator will choose
to allocate the same block again for the next append operation.
Thus, if the fault to that particular block was transient, the
next write and fsync will succeed and there will simply be
a one block hole in the file. If the fault to that particular block
occurs multiple times, future writes will continue to fail; as a
result, Btrfs may cause more holes within a file than ext4 and
XFS. However, unlike ext4 and XFS, the file does not have
block overwrite failures.

3To be precise, the mtime and ctime of the file are updated, but not the size
of the file. Additional experiments removed for space confirm this behavior.

3.3.4 File System Summary
We now present a set of observations for the file systems

based on the questions from Section §3.2.3.
File System Behavior to fsync Failures. On all the

three file systems, only data and journal-block failures lead to
fsync failures (Q1). Metadata-block failures do not result in
fsync failures as metadata blocks are written to the journal
during an fsync. However, during a checkpoint, any metadata
failure on XFS and Btrfs lead to unavailability (Q8) while
ext4 logs the error and continues.4

On both modes of ext4 and XFS, metadata is persisted
even after the file system encounters a data-block failure
(Q2); timestamps are always updated in both the file systems.
Additionally, ext4 appends a new block to the file and updates
the file size while XFS does so only when followed by a
future successful fsync. As a result, we find non-overwritten
blocks in both the middle and end of files for ext4, but in only
the middle for XFS (Q10). Btrfs does not persist metadata
after a data-block failure. However, because the process file-
descriptor offset is incremented, future writes and fsyncs
cause a hole in the middle of the file (Q10).

Among the three, XFS is the only file system that retries
metadata-block writes. However, none of them retry data or
journal-block writes (Q3).

All the file systems mark the page clean even after fsync
fails (Q4). In both modes of ext4 and XFS, the page contains
the latest write while Btrfs reverts the in-memory state to be
consistent with what is on disk (Q5).

We note that even though all the file systems mark the
page clean, this is not due to any behavior inherited from the
VFS layer. Each file system registers its own handlers to write
pages to disk (ext4_writepages, xfs_vm_writepages, and
btrfs_writepages). However, each of these handlers call
clear_page_dirty_for_io before submitting the bio re-
quest and do not set the dirty bit in case of failure in order to
avoid memory leaks5, replicating the problem independently.

Failure Reporting. While all file systems report data-
block failures by failing fsync, ext4 ordered mode, XFS, and
Btrfs fail the immediate fsync. As ext4 data mode puts data
in the journal, the first fsync succeeds and the next fsync
fails. (Q6). All block write failures, irrespective of block type
are logged in the syslog (Q7).

After Effects. Journal block failures always lead to file-
system unavailability. On XFS and Btrfs, metadata-block fail-
ures do so as well (Q8). While ext4 and Btrfs remount in
read-only mode, XFS shuts down the file system (Q9). Holes
and non-overwritten blocks (Q10) have been covered previ-
ously as part of Q2.

Recovery. None of the file systems alert the user to run a

4Ext4’s error handling behavior for metadata has unintended side-effects
but we omit the results as the rest of the paper focuses on data-block failures.

5Ext4 focuses on the common case of users removing USB sticks while
still in use. Dirty pages that can never be written to the removed USB stick
have to be marked clean to unmount the file system and reclaim memory [23].

758 2020 USENIX Annual Technical Conference USENIX Association

file-system checker. However, the Btrfs checker is capable of
detecting holes in files (Q11).

4 Application Study
We now focus on how applications are affected by fsync

failures. In this section, we first describe our fault model
with CuttleFS, followed by a description of the workloads,
execution environment, and the errors we look for. Then,
we present our findings for five widely used applications:
Redis (v5.0.7), LMDB (v0.9.24), LevelDB (v1.22), SQLite
(v3.30.1), and PostgreSQL (v12.0).

4.1 CuttleFS
We limit our study to how applications are affected by

data-block failures as journal-block failures lead to unavail-
ability and metadata-block failures do not result in fsync
failures (§3.3). Our fault model is simple: when an applica-
tion writes data, we inject a single fault to a data block or a
sector within it.

We build CuttleFS6 - a FUSE [39] file system to emulate
the different file-system reactions to failures defined by our
fault model. Instead of using the kernel’s page cache, CuttleFS
maintains its own page cache in user-space memory. Write op-
erations modify user-space pages and mark them dirty while
read operations serve data from these pages. When an appli-
cation issues an fsync system call, CuttleFS synchronizes
data with the underlying file system.

CuttleFS has two modes of operation: trace mode and fault
mode. In trace mode, CuttleFS tracks writes and identifies
which blocks are eventually written to disk. This is different
from just tracing a write system call as an application may
write to a specific portion of a file multiple times before it is
actually flushed to disk.

In fail mode, CuttleFS can be configured to fail the ith write
to a sector or block associated with a particular file. On fsync
failure, as CuttleFS uses in-memory buffers, it can be directed
to mark a page clean or dirty, keep the latest content, or revert
the file to the previous state. Error reporting behavior can be
configured to report failures immediately or on the next fsync
call. In short, CuttleFS can react to fsync failures in any of the
ways mentioned in Table 1 (Q4,5,6). Additionally, CuttleFS
accepts commands to evict all or specific clean pages.

We configure CuttleFS to emulate the failure reactions of
the file systems studied in Section 3.3. For example, in order to
emulate ext4 ordered mode and XFS (as they both have similar
failure reactions), we configure CuttleFS to mark the page
clean, keep the latest content, and report the error immediately.
Henceforth, when presenting our findings and referring to
characteristics emulated by CuttleFS, we use CuttleFSext4o,xfs
for the above configuration. When the page is marked clean,
has the latest content, but the error is reported on the next

6Cuttlefish are sometimes referred to as the “chameleons of the sea”
because of their ability to rapidly alter their skin color within a second.
CuttleFS can change characteristics much faster.

fsync, we use CuttleFSext4d. When the page is marked clean,
the content matches what is on disk, and the error is reported
immediately, we refer to it as CuttleFSbtrfs.

4.2 Workloads and Execution Environment
We run CuttleFS in trace mode and identify which blocks

are written to by an application. For each application, we
choose a simple workload that inserts a single key-value pair,
a commonly used operation in many applications. We perform
experiments both with an existing key (update) as well as a
new key (insert). The keys can be of size 2B or 1KB.7 The
values can be of size 2B or 12KB. We run experiments for all
four combinations. The large keys allow for the possibility of
failing a single sector within the key and large values for pages
within a value. Since SQLite and PostgreSQL are relational
database management systems, we create a single table with
two columns: keys and values.

Using the trace, we generate multiple failure sequences for
each of the identified blocks and sectors within them. We then
repeat the experiment multiple times with CuttleFS in fault
mode, each time with a different failure sequence and file-
system reaction. In order to observe the effects after a fault,
we dump all key-value pairs before and after the workload.

We look for the following types of errors when performing
the experiments:

• OldValue (OV): The system returns the new value for a
while but then reverts to an old value, or the system conveys
a successful response but returns the old value later on.

• FalseFailure (FF): The system informs the user that the
operation failed but returns the new value in the future.

• KeyCorruptions (KC) and ValueCorruptions (VC):
Corrupted keys or values are obliviously returned.

• KeyNotFound (KNF): The system informs the user that it
has successfully inserted a key but it cannot be found later
on, or the system fails to update a key to a new value but
the old key-value pair disappears as well.

We also identify the factors within the execution environ-
ment that cause all these errors to be manifested. If an ap-
plication maintains its own in-memory data structures, some
errors may occur only when an application restarts and re-
builds in-memory state from the file system. Alternatively,
the manifestation of these errors may depend on state changes
external to the application, such as a single page eviction or a
full page cache flush. We encode these different scenarios as:

• App=KeepGoing: The application continues without
restarting.

• App=Restart: The application restarts either after a crash
or a graceful shutdown. This forces the application to re-
build in-memory state from disk.

7As LMDB limits key sizes to 511B, we use key sizes of 2B and 511B
for LMDB experiments.

USENIX Association 2020 USENIX Annual Technical Conference 759

A=KeepGoing A=Restart
BC=Keep
BC=Evict

ext4o,xfs =

{ clean
differs
immediate

ext4d =

{ clean
differs
next fsync

btrfs =

{ clean
matches
immediate

Applications OV FF KC VC KNF OV FF KC VC KNF OV FF KC VC KNF
Redis
LMDB
LevelDB

SQLite Rollback
WAL

PostgreSQL Default
Direct I/O

Table 2: Findings for Applications on fsync Failure. The table lists the different types of errors that manifest for applications when fsync
fails due to a data-block write fault. The errors (OV, FF, KC, VC, KNF) are described in §4.2. We group columns depending on how a
file system reacts to an fsync failure according to our findings in §3.3 for Q4, Q5, and Q6. For example, both ext4 ordered and XFS
(ext4o,xfs) mark a page clean, the page differs in in-memory and on-disk content, and the fsync failure is reported immediately. For
each application, we describe when the error manifests, in terms of combinations of the four different execution environment factors (§4.2)
whose symbols are provided at the top left corner. For example, OldValue manifests in Redis in the first group (ext4-ordered, XFS) only on
(A)App=Restart,(BC)BufferCache=Evict. However, in the last group (Btrfs), the error manifests both on App=Restart,BufferCache=Evict as
well as App=Restart,BufferCache=Keep, depicted as a combination of the two symbols.

• BufferCache=Keep: No evictions take place.
• BufferCache=Evict: One or more clean pages are evicted.

Note that BufferCache=Evict can manifest by clearing the
entire page cache, restarting the file system, or just evict-
ing clean pages due to memory pressure. A full system
restart would be the combination of App=Restart and Buffer-
Cache=Evict, which causes a loss of both clean and dirty
pages in memory while also forcing the application to restart
and rebuild state from disk.

Configuring CuttleFS to fail a certain block and react ac-
cording to one of the file-system reactions while the ap-
plication runs only addresses App=KeepGoing and Buffer-
Cache=Keep. The remaining three scenarios are addressed as
follows. To simulate App=Restart and BufferCache=Keep, we
restart the application and dump all key-value pairs, ensuring
that no page in CuttleFS is evicted. To address the remaining
two scenarios, we instruct CuttleFS to evict clean pages for
both App=KeepGoing and App=Restart.

4.3 Findings
We configured all five applications to run in the form that

offers most durability and discuss what they are in their re-
spective sections. Table 2 summarizes the per-application
results across different failure characteristics.

Note that these results are only for the simple workload
that inserts a single key-value pair. A complex workload may
exhibit more errors or mask the ones we observe.

Redis: Redis is an in-memory data-structure store, used
as a database, cache, and message broker. By default, it pe-
riodically snapshots in-memory state to disk. However, for
better durability guarantees, it provides options for writing
every operation that modifies the store to an append-only file
(aof) [19] and how often to fsync the aof. In the event of a
crash or restart, Redis rebuilds in-memory state by reading
the contents of the aof.

We configure Redis to fsync the file for every operation,

providing strong durability. Thus, whenever Redis receives a
request like an insert operation that modifies state, it writes
the request to the aof and calls fsync. However, Redis trusts
the file system to successfully persist the data and does not
check the fsync return code. Regardless of whether fsync
fails or not, Redis returns a successful response to the client.

As Redis returns a successful response to the client irre-
spective of fsync failure, FalseFailures do not occur. Since
Redis reads from disk only when rebuilding in-memory state,
errors may occur only during App=Restart.

On CuttleFSext4o,xfs and CuttleFSext4d, Redis exhibits Old-
Value, KeyCorruption, ValueCorruption, and KeyNotFound
errors. However, as seen in Table 2, these errors occur only on
BufferCache=Evict and App=Restart. On BufferCache=Keep,
the page contains the latest write which allows Redis to re-
build the latest state. However, when the page is evicted,
future reads will force a read from disk, causing Redis to read
whatever is on that block. OldValue and KeyNotFound errors
manifest when a fault corrupts the aof format. When Redis
restarts, it either ignores these entries when scanning the aof,
or recommends running the aof checker which truncates the
file to the last non-corrupted entry. A KeyCorruption and Val-
ueCorruption manifest when the fault is within the key or
value portion of the entry.

On CuttleFSbtrfs, Redis exhibits OldValue and KeyNot-
Found errors. These errors occur on App=Restart, regardless
of buffer-cache state. When Redis restarts, the entries are
missing from the aof as the file was reverted, and thus, the
insert or update operation is not applied.

LMDB: Lightning Memory-Mapped Database (LMDB) is
an embedded key-value store which uses B+Tree data struc-
tures whose nodes reside in a single file. The first two pages
of the file are metadata pages, each of which contain a trans-
action ID and the location of the root node. Readers always
use the metadata page with the latest transaction ID while
writers make changes and update the older metadata page.

760 2020 USENIX Annual Technical Conference USENIX Association

LMDB uses a copy-on-write bottom-up strategy [13] for
committing write transactions. All new nodes from leaf to
root are written to unused or new pages in the file, followed by
an fsync. An fsync failure terminates the operation without
updating the metadata page and notifies the user. If fsync
succeeds, LMDB proceeds to update the old metadata page
with the new root location and transaction ID, followed by an-
other fsync.8 If fsync fails, LMDB writes an old transaction
ID to the metadata page in memory, preventing future readers
from reading it.

On CuttleFSext4o,xfs, LMDB exhibits FalseFailures. When
LMDB writes the metadata page, it only cares about the trans-
action ID and new root location, both of which are contained
in a single sector. Thus, even though the sector is persisted to
disk, failures in the seven other sectors of the metadata page
can cause an fsync failure. As mentioned earlier, LMDB
writes an old transaction ID (say ID1) to the metadata page in
memory and reports a failure to the user. However, on Buffer-
Cache=Evict and App=Restart (such as a machine crash and
restart), ID1 is lost as it was only written to memory and not
persisted. Thus, readers read from the latest transaction ID
which is the previously failed transaction.

LMDB does not exhibit FalseFailures in CuttleFSext4d as
the immediate successful fsync results in a success to the
client. Instead, ValueCorruptions and OldValue errors occur
on BufferCache=Evict, regardless of whether the application
restarts or not. ValueCorruptions occur when a block con-
taining a part of the value experiences a fault. As LMDB
mmaps() the file and reads directly from the page cache,
BufferCache=Evict such as a page eviction leads to reading
the value of the faulted block from disk. OldVersion errors
occur when the metadata page experiences a fault. The file
system responds with a successful fsync initially (as data is
successfully stored in the ext4 journal). For a short time, the
metadata page has the latest transaction ID. However, when
the page is evicted, the metadata page reverts to the old trans-
action ID on disk, resulting in readers reading the old value.
KeyCorruptions do not occur as the maximum allowed key
size is 511B.

As CuttleFSbtrfs reports errors immediately, it does not
face the problems seen in CuttleFSext4d. FalseFailures do not
occur as the file is reverted to its previous consistent state.
We observe this same pattern in many of the applications and
omit them from the rest of the discussion unless relevant.

LevelDB: LevelDB is a widely used key-value store based
on LSM trees. It stores data internally using MemTables and
SSTables [33]. Additionally, LevelDB writes operations to a
log file before updating the MemTable. When a MemTable
reaches a certain size, it becomes immutable and is written
to a new file as an SSTable. SSTables are always created

8To be precise, LMDB does not do a write followed by an fsync for
metadata page updates. Instead, it uses a file descriptor that is opened in
O_SYNC mode. On a write, only the metadata page is flushed to disk. On
failure, it uses a normal file descriptor.

and never modified in place. On a restart, if a log file exists,
LevelDB creates an SSTable from its contents.

We configure LevelDB to fsync the log after every
write, for stronger durability guarantees. If fsync fails, the
MemTable is not updated and the user is notified about the
failure. If fsync fails during SSTable creation, the operation
is cancelled and the SSTable is left unused.

On CuttleFSext4o,xfs, as seen in Table 2, LevelDB exhibits
FalseFailures only on App=Restart with BufferCache=Keep.
When LevelDB is notified of fsync failure to the log file, the
user is notified of the failure. However, on restart, since the
log entry is in the page cache, LevelDB includes it while cre-
ating an SSTable from the log file. Read operations from this
point forward return the new value, reflecting FalseFailures.
FalseFailures do not occur on BufferCache=Evict as LevelDB
is able to detect invalid entries through CRC checksums [33].
Faults in the SSTable are detected immediately and do not
cause any errors as the newly generated SSTable is not used
by LevelDB in case of a failure.

On CuttleFSext4d, LevelDB exhibits KeyNotFound and Old-
Version errors when faults occur in the log file. When insert-
ing a key-value pair, fsync returns successfully, allowing
future read operations to return the new value. However, on
BufferCache=Evict and App=Restart, LevelDB rejects the
corrupted log entry and returns the old value for future read
operations. Depending on whether we insert a new or existing
key, we observe KeyNotFound or OldVersion errors when
the log entry is rejected. Additionally, LevelDB exhibits Key-
Corruption, ValueCorruption, and KeyNotFound errors for
faults that occur in the SSTables. Ext4 data mode may only
place the data in the journal and return a successful fsync.
Later, during checkpointing, the SSTable is corrupted due to
the fault. These errors manifest only on BufferCache=Evict,
either while the application is running or on restart, depending
on when the SSTable is read from disk.

SQLite: SQLite is an embedded RDBMS that uses BTree
data structures. A separate BTree is used for each table and in-
dex but all BTrees are stored in a single file on disk, called the
“main database file” (maindb). During a transaction, SQLite
stores additional information in a second file called the “roll-
back journal” (rj) or the “write-ahead log” (wal) depending
on which mode it is operating in. In the event of a crash or
restart, SQLite uses these files to ensure that committed or
rolled-back transactions are reflected in the maindb. Once
a transaction completes, these files are deleted. We perform
experiments for both modes.

SQLite RollBack: In rollback journal mode, before
SQLite modifies its user-space buffers, it writes the original
contents to the rj. On commit, the rj is fsyncd. If it succeeds,
SQLite writes a header to the rj and fsyncs again (2 fsyncs
on the rj). If a fault occurs at this point, only the state in the
user-space buffers need to be reverted. If not, SQLite pro-
ceeds to write to the maindb so that it reflects the state of
the user-space buffers. maindb is then fsyncd. If the fsync

USENIX Association 2020 USENIX Annual Technical Conference 761

fails, SQLite needs to rewrite the old contents to the maindb
from the rj and revert the state in its user-space buffers. After
reverting the contents, the rj is deleted.

On CuttleFSext4o,xfs, SQLite Rollback exhibits FalseFail-
ures and ValueCorruptions on BufferCache=Evict, regardless
of whether the application restarts or not. When faults occur
in the rj, SQLite chooses to revert in-memory state using
the rj itself as it contains just enough information for a roll-
back of the user-space buffers. This approach works well as
long as the latest contents are in the page cache. However,
on BufferCache=Evict, when SQLite reads the rj to rollback
in-memory state, the rj does not contain the latest write. As
a result, SQLite’s user-space buffers can still have the new
contents (FalseFailure) or a corrupted value, depending on
where the fault occurs.

SQLite Rollback exhibits FalseFailures in CuttleFSext4d for
the same reasons mentioned above as the fsync failure is
caught on the second fsync to the rj. Additionally, due to the
late error reporting in CuttleFSext4d, SQLite Rollback exhibits
ValueCorruption and KeyNotFound errors when faults occur
in the maindb. SQLite sees a successful fsync after writing
data to the maindb and proceeds to delete the rj. However, on
App=Restart and BufferCache=Evict, the above mentioned
errors manifest depending on where the fault occurs.

On CuttleFSbtrfs, SQLite Rollback exhibits FalseFailures
for the same reasons mentioned above. However, they occur
irrespective of whether buffer-cache state changes due to the
fact that the contents in the rj are reverted. As there is no data
in the rj to recover from, SQLite leaves the user-space buffers
untouched. ValueCorruptions cannot occur as no attempt is
made to revert the in-memory content.

SQLite WAL: Unlike SQLite Rollback, changes are writ-
ten to a write-ahead log (wal) on a transaction commit. SQLite
calls fsync on the wal and proceeds to change in-memory
state. If fsync fails, SQLite immediately returns a failure to
the user. If SQLite has to restart, it rebuilds state from the
maindb first and then changes state according to the entries
in the wal. To ensure that the wal does not grow too large,
SQLite periodically runs a Checkpoint Operation to modify
maindb with the contents from the wal.

On CuttleFSext4o,xfs, as seen in Table 2, SQLite WAL
exhibits FalseFailures only on App=Restart with Buffer-
Cache=Keep, for reasons similar to LevelDB. It reads valid
log entries from the page cache even though they might be
invalid due to faults on disk.

On CuttleFSext4d, SQLite WAL exhibits ValueCorruption
and KeyNotFound Errors when there are faults in the maindb
during a Checkpoint Operation for the same reasons men-
tioned in SQLite Rollback.

PostgreSQL: PostgreSQL is an object-relational database
system that maintains one file per database table. On startup,
it reads the on-disk tables and populates user-space buffers.
Similar to SQLite WAL, PostgreSQL reads entries from the
write-ahead log (wal) and modifies user-space buffers accord-

ingly. Similar to SQLite WAL, PostgreSQL runs a checkpoint
operation, ensuring that the wal does not grow too large. We
evaluate two configurations of PostgreSQL: the default con-
figuration and a DirectIO configuration.

PostgreSQL Default: In the default mode, PostgreSQL
treats the wal like any other file, using the page cache for
reads and writes. PostgreSQL notifies the user of a successful
commit operation only after an fsync on the wal succeeds.
During a checkpoint, PostgreSQL writes data from its user-
space buffers into the table and calls fsync. If the fsync fails,
PostgreSQL, aware of the problems with fsync [8], chooses
to crash. Doing so avoids truncating the wal and ensures that
checkpointing can be retried later.

On CuttleFSext4o,xfs, PostgreSQL exhibits FalseFailures for
reasons similar to LevelDB. While App=Restart is neces-
sary to read the entry from the log, BufferCache=Evict is
not. Further, the application restart cannot be avoided as Post-
greSQL intentionally crashes on an fsync failure. On Buffer-
Cache=Keep, PostgreSQL reads a valid log entry in the page
cache. On BufferCache=Evict, depending on which block
experiences the fault, PostgreSQL either accepts or rejects the
log entry. FalseFailures manifest when PostgreSQL accepts
the log entry. However, if the file system were to also crash
and restart, the page cache would match the on-disk state,
causing PostgreSQL to reject the log entry. Unfortunately,
ext4 currently does not behave as expected with mount op-
tions data_err=abort and errors=remount-ro (§3.3.1).

Due to the late error reporting in CuttleFSext4d, as seen
in Table 2, PostgreSQL exhibits OldVersion and KeyNot-
Found Errors when faults occur in the database table files. As
PostgreSQL maintains user-space buffers, these errors man-
ifest only on BufferCache=Evict with App=Restart. During
a checkpoint operation, PostgreSQL writes the user-space
buffers to the table. As the fault is not yet reported, the op-
eration succeeds and the wal is truncated. If the page corre-
sponding to the fault is evicted and PostgreSQL restarts, it
will rebuild its user-space buffers using an incorrect on-disk
table file. The errors are exhibited depending on where the
fault occurs. While KeyNotFound errors occur in other appli-
cations when a new key is inserted, PostgreSQL loses existing
keys on updates as it modifies the table file in-place.

PostgreSQL DIO: In the DirectIO mode, PostgreSQL by-
passes the page cache and writes to the wal using DirectIO.
The sequence of operations during a transaction commit and
a checkpoint are exactly the same as the default mode.

FalseFailures do not occur as the page cache is bypassed.
However, OldVersion and KeyNotFound errors still occur in
CuttleFSext4d for the same reasons mentioned above as writes
to the database table files do not use DirectIO.

5 Discussion
We now present a set of observations and lessons for han-

dling fsync failures across file systems and applications.

762 2020 USENIX Annual Technical Conference USENIX Association

#1: Existing file systems do not handle fsync failures uni-
formly. In an effort to hide cross-platform differences, POSIX
is intentionally vague on how failures are handled. Thus, dif-
ferent file systems behave differently after an fsync failure
(as seen in Table 1), leading to non-deterministic outcomes
for applications that treat all file systems equally. We believe
that the POSIX specification for fsync needs to be clarified
and the expected failure behavior described in more detail.

#2: Copy-on-Write file systems such as Btrfs handle fsync
failures better than existing journaling file systems like
ext4 and XFS. Btrfs uses new or unused blocks when writing
data to disk; the entire file system moves from one state to
another on success and no in-between states are permitted.
Such a strategy defends against corruptions when only some
blocks contain newly written data. File systems that use copy-
on-write may be more generally robust to fsync failures
than journaling file systems.

#3: Ext4 data mode provides a false sense of durability. Ap-
plication developers sometimes choose to use a data journal-
ing file system despite its lower performance because they
believe data mode is more durable [11]. Ext4 data mode
does ensure data and metadata are in a “consistent state”,
but only from the perspective of the file system. As seen in
Table 2, application-level inconsistencies are still possible.
Furthermore, applications cannot determine whether an error
received from fsync pertains to the most recent operation or
an operation sometime in the past. When failed intentions are
a possibility, applications need a stronger contract with the
file system, notifying them of relevant context such as data in
the journal and which blocks were not successfully written.

#4: Existing file-system fault-injection tests are devoid of
workloads that continue to run post failure. While all file
systems perform fault-injection tests, they are mainly to en-
sure that the file system is consistent after encountering a
failure. Such tests involve shutting down the file system soon
after a fault and checking if the file system recovers correctly
when restarted. We believe that file-system developers should
also test workloads that continue to run post failure, and see
if the effects are as intended. Such effects should then be
documented. File-system developers can also quickly test the
effect on certain characteristics by running those workloads
on CuttleFS before changing the actual file system.

#5: Application developers write OS-specific code, but are
not aware of all OS-differences. The FreeBSD VFS layer
chooses to re-dirty pages when there is a failure (except when
the device is removed) [6] while Linux hands over the failure
handling responsibility to the individual file systems below
the VFS layer (§3.3.4). We hope that the Linux file-system
maintainers will adopt a similar approach in an effort to han-
dle fsync failures uniformly across file systems. Note that
it is also important to think about when to classify whether a
device has been removed. For example, while storage devices
connected over a network aren’t really as permanent as local

hard disks, they are more permanent than removable USB
sticks. Temporary disconnects over a network need not be per-
ceived as device removal and re-attachment; pages associated
with such a device can be re-dirtied on write failure.
#6: Application developers do not target specific file sys-
tems. We observe that data-intensive applications configure
their durability and error-handling strategies according to the
OS they are running on, but treat all file systems on a specific
operating system equally. Thus, as seen in Table 2, a single
application can manifest different errors depending on the
file system. If the POSIX standard is not refined, applications
may wish to handle fsync failures on different file systems
differently. Alternatively, applications may choose to code
against failure handling characteristics as opposed to specific
file systems, but this requires file systems to expose some
interface to query characteristics such as “Post Failure Page
State/Content” and “Immediate/Delayed Error Reporting”.
#7: Applications employ a variety of strategies when fsync
fails, but none are sufficient. As seen in Section 4.3, Redis
chooses to trust the file system and does not even check fsync
return codes, LMDB, LevelDB, and SQLite revert in-memory
state and report the error to the application while PostgreSQL
chooses to crash. We have seen that none of the applications
retry fsync on failure; application developers appear to be
aware that pages are marked clean on fsync failure and an-
other fsync will not flush additional data to disk. Despite the
fact that applications take great care to handle a range of errors
from the storage stack (e.g., LevelDB writes CRC Checksums
to detect invalid log entries and SQLite updates the header
of the rollback journal only after the data is persisted to it),
data durability cannot be guaranteed as long as fsync errors
are not handled correctly. While no one strategy is always
effective, the approach currently taken by PostgreSQL to use
direct IO may best handle fsync failures. If file systems do
choose to report failure handling characteristics in a standard
format, applications may be able to employ better strategies.
For example, applications can choose to keep track of dirtied
pages and re-dirty them by reading and writing back a single
byte if they know that the page content is not reverted on
failure (ext4, XFS). On Btrfs, one would have to keep track
of the page as well as its content. For applications that access
multiple files, it is important to note that the files can exist on
different file systems.
#8: Applications run recovery logic that accesses incorrect
data in the page cache. Applications that depend on the page
cache for faster recovery are susceptible to FalseFailures. As
seen in LevelDB, SQLite, and PostgreSQL, when the wal
incurs an fsync failure, the applications fail the operation
and notify the user; In these cases, while the on-disk state
may be corrupt, the entry in the page cache is valid; thus,
an application that recovers state from the wal might read
partially valid entries from the page cache and incorrectly
update on-disk state. Applications should read the on-disk
content of files when performing recovery.

USENIX Association 2020 USENIX Annual Technical Conference 763

#9: Application recovery logic is not tested with low level
block faults. Applications test recovery logic and possibili-
ties of data loss by either mocking system call return codes
or emulating crash-restart scenarios, limiting interaction with
the underlying file system. As a result, failure handling logic
by the file system is not exercised. Applications should test
recovery logic using low-level block injectors that force under-
lying file-system error handling. Alternatively, they could use
a fault injector like CuttleFS that mimics different file-system
error-handling characteristics.

6 Related Work
In this section, we discuss how our work builds upon and

differs from past studies in key ways. We include works that
study file systems through fault injection, error handling in file
systems, and the impact of file-system faults on applications.

Our study on how file systems react to failures is related to
work done by Prabhakaran et al. with IRON file systems [49]
and a more recent study conducted by Jaffer et al. [40]. Other
works study specific file systems such as NTFS [28] and
ZFS [58]. All these studies inject failures beneath the file
system and analyze if and how file systems detect and recover
from them. These studies use system-call workloads (e.g.,
writes and reads) that make the file system interact with the
underlying device.

While prior studies do exercise some portions of the fsync
path through single system-call operations, they do not ex-
ercise the checkpoint path. More importantly, in contrast to
these past efforts, our work focuses specifically on the in-
memory state of a file system and the effects of future op-
erations on a file system that has encountered a write fault.
Specifically, in our work, we choose workloads that continue
after a fault has been introduced. Such workloads help in
understanding the after-effects of failures during fsync such
as masking of errors by future operations, fixing the fault, or
exacerbating it.

Mohan et al. [45] use bounded black-box crash testing to
exhaustively generate workloads and discover many crash-
consistency bugs by simulating power failures at different
persistence points. Our work focuses on transient failures that
may not necessarily cause a file system to crash and the effect
on applications even though a file system may be consistent.
Additionally, we inject faults in the middle of an fsync as
opposed to after a successful fsync (persistence point).

Gunawi et al. describe the problem of failed intentions [36]
in journaling file systems and suggest chained transactions to
handle such faults during checkpointing. Another work de-
velops a static-analysis technique named Error Detection and
Propagation [37] and conclude that file systems neglect many
write errors. Even though the Linux kernel has improved its
block-layer error handling [10], file systems may still neglect
write errors. Our results are purely based on injecting errors
in bio requests that the file system can detect.

Vondra describes how certain assumptions about fsync

behavior led to data loss in PostgreSQL [55]. The data loss
behavior was reproduced using a device mapper with the dm-
error target which inspired us to build our own fault injector
(dm-loki [4]) atop the device mapper, similar to dm-inject [40].
Additionally, the FSQA suite (xfstests) [7] emulates write er-
rors using the dm-flakey target [5]. While dm-flakey is useful
for fault-injection testing, faults are injected based on current
time; the device is available for x seconds and then exhibits
unreliable behavior for y seconds (x and y being configurable).
Furthermore, any change in configuration requires suspend-
ing the device. To increase determinism and avoid relying on
time, dm-loki injects faults based on access patterns (e.g., fail
the 2nd and 4th write to block 20) and is capable of accepting
configuration changes without device suspension.

Recent work has shifted the focus to study the effects of
file-system faults in distributed storage systems [34] and high-
performance parallel systems [29]. Similarly, our work fo-
cuses on understanding how file systems and applications
running on top of them behave in the presence of failures.

7 Conclusions
We show that file systems behave differently on fsync

failure. Application developers can only assume that the un-
derlying file system experienced a fault and that data may
have either been persisted partially, completely, or not at all.
We show that applications assuming more than the above
are susceptible to data loss and corruptions. The widely per-
ceived crash-restart fix in the face of fsync failures does not
always work; applications recover incorrectly due to on-disk
and in-memory mismatches.

However, we believe that applications can provide stronger
guarantees if file systems are more uniform in their failure
handling and error reporting strategies. Applications that care
about durability should include sector- or block-level fault-
injection tests to effectively test recovery code paths. Alterna-
tively, such applications can choose to use CuttleFS to inject
faults and mimic file system failure reactions.

We have open sourced CuttleFS at https://github.com/
WiscADSL/cuttlefs along with the device-mapper kernel
module and experiments to reproduce the results in this paper.

8 Acknowledgements
We thank Peter Macko (our shepherd), the anonymous re-

viewers of ATC ’20, and the members of ADSL for their in-
sightful comments and suggestions. We thank CloudLab [32]
for providing a great environment to run our experiments.
We also thank our sponsors: VMWare, NetApp, and Intel, for
their generous support. This material was also supported by
funding from NSF grants CNS-1421033, CNS-1763810 and
CNS-1838733, and DOE grant DE-SC0014935. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF, DOE, or any other institutions.

764 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/WiscADSL/cuttlefs
https://github.com/WiscADSL/cuttlefs

References
[1] Atomic Commit In SQLite. https://www.sqlite.

org/atomiccommit.html.

[2] Bug-207729 Mounting EXT4 with data_err=abort does
not abort journal on data block write failure. https://
bugzilla.kernel.org/show_bug.cgi?id=207729.

[3] Bug-27805553 HARD ERROR SHOULD BE RE-
PORTED WHEN FSYNC() RETURN EIO. https:
//github.com/mysql/mysql-server/commit/
8590c8e12a3374eeccb547359750a9d2a128fa6a.

[4] Custom Fault Injection Device Mapper Target: dm-loki.
https://github.com/WiscADSL/dm-loki.

[5] Device Mapper: dm-flakey. https://www.
kernel.org/doc/html/latest/admin-guide/
device-mapper/dm-flakey.html.

[6] FreeBSD VFS Layer re-dirties pages
after failed block write. https://
github.com/freebsd/freebsd/blob/
0209fe3398be56e5e042c422a96a4fbc654247f4/
sys/kern/vfs_bio.c#L2646.

[7] FSQA (xfstests). https://git.kernel.org/pub/
scm/fs/xfs/xfstests-dev.git/about/.

[8] Fsync Errors - PostgreSQL wiki. https://wiki.
postgresql.org/wiki/Fsync_Errors.

[9] fsync(2) - Linux Programmer’s Manual. http://man7.
org/linux/man-pages/man2/fdatasync.2.html.

[10] Improved block-layer error handling. https://lwn.
net/Articles/724307/.

[11] Is data=journal safer for Ext4 as opposed to
data=ordered? https://unix.stackexchange.
com/q/127235.

[12] LevelDB. https://github.com/google/leveldb.

[13] Lightning Memory-Mapped Database Manager
(LMDB). http://www.lmdb.tech/doc/.

[14] POSIX Specification for fsync. https:
//pubs.opengroup.org/onlinepubs/9699919799/
functions/fsync.html.

[15] PostgreSQL. https://www.postgresql.org/.

[16] PostgreSQL: Write-Ahead Logging (WAL).
https://www.postgresql.org/docs/current/
wal-intro.html.

[17] PostgreSQL’s handling of fsync() errors is un-
safe and risks data loss at least on XFS .
https://www.postgresql.org/message-id/flat/
CAMsr%2BYHh%2B5Oq4xziwwoEfhoTZgr07vdGG%
2Bhu%3D1adXx59aTeaoQ%40mail.gmail.com.

[18] Redis. https://redis.io/.

[19] Redis Persistence. https://redis.io/topics/
persistence.

[20] SQLite. https://www.sqlite.org/index.html.

[21] SQLite Write-Ahead Logging. https://www.sqlite.
org/wal.html.

[22] SystemTap. https://sourceware.org/systemtap/.

[23] Why does ext4 clear the dirty bit on I/O error?
https://www.postgresql.org/message-id/
edc2e4d5-5446-e0db-25da-66db6c020cc3%
40commandprompt.com.

[24] WT-4045 Don’t retry fsync calls af-
ter EIO failure. https://github.
com/wiredtiger/wiredtiger/commit/
ae8bccce3d8a8248afa0e4e0cf67674a43dede96.

[25] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 1.00 edition, August 2018.

[26] Lakshmi N. Bairavasundaram, Garth Goodson, Bianca
Schroeder, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. An Analysis of Data Corruption in
the Storage Stack. In Proceedings of the 6th USENIX
Symposium on File and Storage Technologies (FAST
’08), pages 223–238, San Jose, CA, February 2008.

[27] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An Analysis
of Latent Sector Errors in Disk Drives. In Proceedings
of the 2007 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS

’07), pages 289–300, San Diego, CA, June 2007.

[28] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin
Agrawal, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Michael M. Swift. Analyzing the Effects
of Disk-Pointer Corruption. In Proceedings of the Inter-
national Conference on Dependable Systems and Net-
works (DSN ’08), pages 502–511, Anchorage, Alaska,
June 2008.

[29] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong
Dai, Vidya Eswarappa, Yan Mu, and Yong Chen. PFault:
A General Framework for Analyzing the Reliability of
High-Performance Parallel File Systems. In Proceed-
ings of the 2018 International Conference on Supercom-
puting, pages 1–11, Beijing, China, June 2018.

USENIX Association 2020 USENIX Annual Technical Conference 765

https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
https://bugzilla.kernel.org/show_bug.cgi?id=207729
https://bugzilla.kernel.org/show_bug.cgi?id=207729
https://github.com/mysql/mysql-server/commit/8590c8e12a3374eeccb547359750a9d2a128fa6a
https://github.com/mysql/mysql-server/commit/8590c8e12a3374eeccb547359750a9d2a128fa6a
https://github.com/mysql/mysql-server/commit/8590c8e12a3374eeccb547359750a9d2a128fa6a
https://github.com/WiscADSL/dm-loki
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-flakey.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-flakey.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-flakey.html
https://github.com/freebsd/freebsd/blob/0209fe3398be56e5e042c422a96a4fbc654247f4/sys/kern/vfs_bio.c#L2646
https://github.com/freebsd/freebsd/blob/0209fe3398be56e5e042c422a96a4fbc654247f4/sys/kern/vfs_bio.c#L2646
https://github.com/freebsd/freebsd/blob/0209fe3398be56e5e042c422a96a4fbc654247f4/sys/kern/vfs_bio.c#L2646
https://github.com/freebsd/freebsd/blob/0209fe3398be56e5e042c422a96a4fbc654247f4/sys/kern/vfs_bio.c#L2646
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/about/
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/about/
https://wiki.postgresql.org/wiki/Fsync_Errors
https://wiki.postgresql.org/wiki/Fsync_Errors
http://man7.org/linux/man-pages/man2/fdatasync.2.html
http://man7.org/linux/man-pages/man2/fdatasync.2.html
https://lwn.net/Articles/724307/
https://lwn.net/Articles/724307/
https://unix.stackexchange.com/q/127235
https://unix.stackexchange.com/q/127235
https://github.com/google/leveldb
http://www.lmdb.tech/doc/
https://pubs.opengroup.org/onlinepubs/9699919799/functions/fsync.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/fsync.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/fsync.html
https://www.postgresql.org/
https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/message-id/flat/CAMsr%2BYHh%2B5Oq4xziwwoEfhoTZgr07vdGG%2Bhu%3D1adXx59aTeaoQ%40mail.gmail.com
https://www.postgresql.org/message-id/flat/CAMsr%2BYHh%2B5Oq4xziwwoEfhoTZgr07vdGG%2Bhu%3D1adXx59aTeaoQ%40mail.gmail.com
https://www.postgresql.org/message-id/flat/CAMsr%2BYHh%2B5Oq4xziwwoEfhoTZgr07vdGG%2Bhu%3D1adXx59aTeaoQ%40mail.gmail.com
https://redis.io/
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://www.sqlite.org/index.html
https://www.sqlite.org/wal.html
https://www.sqlite.org/wal.html
https://sourceware.org/systemtap/
https://www.postgresql.org/message-id/edc2e4d5-5446-e0db-25da-66db6c020cc3%40commandprompt.com
https://www.postgresql.org/message-id/edc2e4d5-5446-e0db-25da-66db6c020cc3%40commandprompt.com
https://www.postgresql.org/message-id/edc2e4d5-5446-e0db-25da-66db6c020cc3%40commandprompt.com
https://github.com/wiredtiger/wiredtiger/commit/ae8bccce3d8a8248afa0e4e0cf67674a43dede96
https://github.com/wiredtiger/wiredtiger/commit/ae8bccce3d8a8248afa0e4e0cf67674a43dede96
https://github.com/wiredtiger/wiredtiger/commit/ae8bccce3d8a8248afa0e4e0cf67674a43dede96

[30] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic Crash Consistency. In Proceed-
ings of the 24th ACM Symposium on Operating Systems
Principles (SOSP ’13), pages 228–243, Farmington, PA,
November 2013.

[31] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Consistency
Without Ordering. In Proceedings of the 10th USENIX
Symposium on File and Storage Technologies (FAST
’12), pages 101–116, San Jose, CA, February 2012.

[32] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design
and Operation of CloudLab. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 1–14,
Renton, WA, July 2019.

[33] Christian Forfang. Evaluation of High Performance Key-
Value Stores. Master’s thesis, Norwegian University of
Science and Technology, June 2014.

[34] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Re-
dundancy Does Not Imply Fault Tolerance: Analysis
of Distributed Storage Reactions to Single Errors and
Corruptions. In Proceedings of the 15th USENIX Con-
ference on File and Storage Technologies (FAST ’17),
pages 149–165, Santa Clara, CA, February 2017.

[35] Gregory R. Ganger and Yale N. Patt. Metadata Update
Performance in File Systems. In Proceedings of the
1st Symposium on Operating Systems Design and Im-
plementation (OSDI ’94), pages 49–60, Monterey, CA,
November 1994.

[36] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krish-
nan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Improving File System Reliability with I/O
Shepherding. In Proceedings of the 21st ACM Sym-
posium on Operating Systems Principles (SOSP ’07),
pages 293–306, Stevenson, WA, October 2007.

[37] Haryadi S. Gunawi, Cindy Rubio-González, Remzi H.
Arpaci-Dusseau Andrea C. Arpaci-Dusseau, and Ben
Liblit. EIO: Error Handling is Occasionally Correct. In
Proceedings of the 6th USENIX Symposium on File and
Storage Technologies (FAST ’08), pages 207–222, San
Jose, CA, February 2008.

[38] Robert Hagmann. Reimplementing the Cedar File Sys-
tem Using Logging and Group Commit. In Proceed-
ings of the 11th ACM Symposium on Operating Systems

Principles (SOSP ’87), pages 155–162, Austin, Texas,
November 1987.

[39] FUSE (Filesystem in Userspace). The reference imple-
mentation of the Linux FUSE (Filesystem in Userspace)
interface. https://github.com/libfuse/libfuse.

[40] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and
Bianca Schroeder. Evaluating File System Reliability on
Solid State Drives. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 783–797, Renton,
WA, July 2019.

[41] Hannu H. Kari. Latent Sector Faults and Reliability of
Disk Arrays. PhD thesis, Helsinki University of Tech-
nology, September 1997.

[42] Andrew Krioukov, Lakshmi N. Bairavasundaram,
Garth R. Goodson, Kiran Srinivasan, Randy Thelen, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Parity Lost and Parity Regained. In Proceedings of the
6th USENIX Symposium on File and Storage Technolo-
gies (FAST ’08), pages 127–141, San Jose, CA, February
2008.

[43] Avantika Mathur, Mingming Cao, and Andreas Dilger.
Ext4: The Next Generation of the Ext3 File System.
Usenix Association, 32(3):25–30, June 2007.

[44] Jeffrey C. Mogul. A Better Update Policy. In Pro-
ceedings of the USENIX Summer Technical Conference
(USENIX Summer ’94), pages 99–111, Boston, MA,
June 1994.

[45] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Find-
ing Crash-Consistency Bugs with Bounded Black-Box
Crash Testing. In Proceedings of the 13th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI ’18), pages 33–50, Carlsbad, CA, October
2018.

[46] Thanumalayan Sankaranarayana Pillai, Ramnatthan Ala-
gappan, Lanyue Lu, Vijay Chidambaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Appli-
cation Crash Consistency and Performance with CCFS.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST ’17), pages 181–196,
Santa Clara, CA, February 2017.

[47] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All File Systems Are Not Created Equal:
On the Complexity of Crafting Crash-Consistent Ap-
plications. In Proceedings of the 11th Symposium on
Operating Systems Design and Implementation (OSDI
’14), pages 433–448, Broomfield, CO, October 2014.

766 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/libfuse/libfuse

[48] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Model-Based Failure Anal-
ysis of Journaling File Systems. In Proceedings of the
International Conference on Dependable Systems and
Networks (DSN ’05), pages 802–811, Yokohama, Japan,
June 2005.

[49] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,
Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. IRON File
Systems. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP ’05), pages 206–
220, Brighton, UK, October 2005.

[50] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The Linux B-Tree Filesystem. ACM Transactions on
Storage (TOS), 9(3):1–32, August 2013.

[51] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.
Understanding Latent Sector Errors and How to Protect
Against Them. In Proceedings of the 8th USENIX Sym-
posium on File and Storage Technologies (FAST ’10),
pages 71–84, San Jose, CA, February 2010.

[52] Margo Seltzer, Peter Chen, and John Ousterhout. Disk
Scheduling Revisited. In Proceedings of the Winter
1990 USENIX Conference, pages 313–323, Washington,
D.C., January 1990.

[53] Chuck Silvers. UBC: An Efficient Unified I/O and Mem-
ory Caching Subsystem for NetBSD. In Proceedings
of FREENIX Track: 2000 USENIX Annual Technical
Conference, pages 285–290, San Diego, CA, June 2000.

[54] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Ander-
son, Mike Nishimoto, and Geoff Peck. Scalability in the
XFS File System. In Proceedings of the USENIX 1996
Annual Technical Conference, San Diego, CA, January
1996.

[55] Tomas Vondra. PostgreSQL vs. fsync. How is it
possible that PostgreSQL used fsync incorrectly for
20 years, and what we’ll do about it. Brussels, Bel-
gium, February 2019. https://archive.fosdem.
org/2019/schedule/event/postgresql_fsync/.

[56] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-Enabled IO Stack for Flash Storage. In
Proceedings of the 16th USENIX Conference on File
and Storage Technologies (FAST’18), pages 211–226,
Oakland, CA, February 2018.

[57] Yiying Zhang and Steven Swanson. A Study of Appli-
cation Performance with Non-Volatile Main Memory.
In Proceedings of the 31st IEEE Conference on Massive
Data Storage (MSST ’15), pages 1–10, Santa Clara, CA,
May 2015.

[58] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. End-to-end
Data Integrity for File Systems: A ZFS Case Study. In
Proceedings of the 8th USENIX Symposium on File and
Storage Technologies (FAST ’10), pages 29–42, San Jose,
CA, February 2010.

USENIX Association 2020 USENIX Annual Technical Conference 767

https://archive.fosdem.org/2019/schedule/event/postgresql_fsync/
https://archive.fosdem.org/2019/schedule/event/postgresql_fsync/

DupHunter: Flexible High-Performance Deduplication for Docker Registries

Nannan Zhao1, Hadeel Albahar1, Subil Abraham1, Keren Chen1, Vasily Tarasov2,
Dimitrios Skourtis2, Lukas Rupprecht2, Ali Anwar2, and Ali R. Butt1

1Virginia Tech 2IBM Research—Almaden

Abstract
The rise of containers has led to a broad prolifera-

tion of container images. The associated storage perfor-
mance and capacity requirements place high pressure
on the infrastructure of container registries that store
and serve images. Exploiting the high file redundancy in
real-world container images is a promising approach to
drastically reduce the demanding storage requirements
of the growing registries. However, existing deduplica-
tion techniques significantly degrade the performance of
registries because of the high layer restore overhead.

We propose DupHunter, a new Docker registry archi-
tecture, which not only natively deduplicates layers for
space savings but also reduces layer restore overhead.
DupHunter supports several configurable deduplication
modes, which provide different levels of storage effi-
ciency, durability, and performance, to support a range
of uses. To mitigate the negative impact of deduplication
on the image download times, DupHunter introduces a
two-tier storage hierarchy with a novel layer prefetch/pre-
construct cache algorithm based on user access patterns.
Under real workloads, in the highest data reduction mode,
DupHunter reduces storage space by up to 6.9× com-
pared to the current implementations. In the highest per-
formance mode, DupHunter can reduce the GET layer
latency up to 2.8× compared to the state of the art.

1 Introduction
Containerization frameworks such as Docker [2] have
seen a remarkable adoption in modern cloud environ-
ments. This is due to their lower overhead compared to
virtual machines [7,38], a rich ecosystem that eases appli-
cation development, deployment, and management [17],
and the growing popularity of microservices [69]. By
now, all major cloud platforms endorse containers as a
core deployment technology [10,28,31,47]. For example,
Datadog reports that in 2018, about 21% of its customers’
monitored hosts ran Docker and that this trend continues
to grow by about 5% annually [19].

Container images are at the core of containerized appli-
cations. An application’s container image includes the ex-

ecutable of the application along with a complete set of its
dependencies—other executables, libraries, and configu-
ration and data files required by the application. Images
are structured in layers. When building an image with
Docker, each executed command, such as apt install,
creates a new layer on top of the previous one [4], which
contains the files that the command has modified or
added. Docker leverages union file systems [64] to effi-
ciently merge layers into a single file system tree when
starting a container. Containers can share identical layers
across different images.

To store and distribute container images, Docker re-
lies on image registries (e.g., Docker Hub [3]). Docker
clients can push images to or pull them from the registries
as needed. On the registry side, each layer is stored as
a compressed tarball and identified by a content-based
address. The Docker registry supports various storage
backends for saving and retrieving layers. For example,
a typical large-scale setup stores each layer as an object
in an object store [32, 51].

As the container market continues to expand, Docker
registries have to manage a growing number of images
and layers. Some conservative estimates show that in
spring 2019, Docker Hub alone stored at least 2 million
public images totaling roughly 1 PB in size [59, 72]. We
believe that this is just the tip of the iceberg and the
number of private images is significantly higher. Other
popular public registries [9, 27, 35, 46], as well as on-
premises registry deployments in large organizations,
experience a similar surge in the number of images. As a
result, organizations spend an increasing amount of their
storage and networking infrastructure on operating image
registries.

The storage demand for container images is wors-
ened by the large amount of duplicate data in images.
As Docker images must be self-contained by definition,
different images frequently include the same, common
dependencies (e.g., libraries). As a result, different im-
ages are prone to contain a high number of duplicate files
as shared components exist in more than one image.

To reduce this redundancy, Docker employs layer shar-

USENIX Association 2020 USENIX Annual Technical Conference 769

ing. However, this is insufficient as layers are coarse and
rarely identical because they are built by developers in-
dependently and without coordination. Indeed, a recent
analysis of the Docker Hub image dataset showed that
about 97% of files across layers are duplicates [72]. Reg-
istry storage backends exacerbate the redundancy further
due to the replication they perform to improve image
durability and availability [12].

Deduplication is an effective method to reduce ca-
pacity demands of intrinsically redundant datasets [52].
However, applying deduplication to a Docker registry
is challenging due to two main reasons: 1) layers are
stored in the registry as compressed tarballs that do not
deduplicate well [44]; and 2) decompressing layers first
and storing individual files incurs high reconstruction
overhead and slows down image pulls. The slowdowns
during image pulls are especially harmful because they
contribute directly to the startup times of containers. Our
experiments show that, on average, naive deduplication
increases layer pull latencies by up to 98× compared to
a registry without deduplication.

In this paper, we propose DupHunter, the first Docker
registry that natively supports deduplication. DupHunter
is designed to increase storage efficiency via layer dedu-
plication while reducing the corresponding layer restor-
ing overhead. It utilizes domain-specific knowledge
about the stored data and the storage system to reduce
the impact of layer deduplication on performance. For
this purpose, DupHunter offers five key contributions:

1. DupHunter exploits existing replication to improve
performance. It keeps a specified number of layer repli-
cas as-is, without decompressing and deduplicating
them. Accesses to these replicas do not experience
layer restoring overhead. Any additional layer repli-
cas needed to guarantee the desired availability are
decompressed and deduplicated.

2. DupHunter deduplicates rarely accessed layers more
aggressively than popular ones to speed up accesses
to popular layers and achieve higher storage savings.

3. DupHunter monitors user access patterns and proac-
tively restores layers before layer download requests
arrive. This allows it to avoid reconstruction latency
during pulls.

4. DupHunter groups files from a single layer in slices
and evenly distributes the slices across the cluster, to
parallelize and speed up layer reconstruction.

5. We use DupHunter to provide the first comprehensive
analysis of the impact of different deduplication levels
(file and block) and redundancy policies (replication
and erasure coding) on registry performance and space
savings.
We evaluate DupHunter on a 6-node cluster using

real-world workloads and layers. In the highest perfor-
mance mode, DupHunter outperforms the state-of-the-art

Docker registry, Bolt [41], by reducing layer pull laten-
cies by up to 2.8×. In the highest deduplication mode,
DupHunter reduces storage consumption by up to 6.9×.
DupHunter also supports other deduplication modes that
support various trade-offs in performance and space sav-
ings.

2 Background and Related Work
We first provide the background on the Docker registry
and then discuss existing deduplication works.

2.1 Docker Registry
The main purpose of a Docker registry is to store and
distribute container images to Docker clients. A reg-
istry provides a REST API for Docker clients to push
images to and pull images from the registry [20, 21].
Docker registries group images into repositories, each
containing versions (tags) of the same image, identified
as <repo-name:tag>. For each tagged image in a repos-
itory, the Docker registry stores a manifest, i.e., a JSON
file that contains the runtime configuration for a con-
tainer image (e.g., environment variables) and the list
of layers that make up the image. A layer is stored as
a compressed archival file and identified using a digest
(SHA-256) computed over the uncompressed contents of
the layer. When pulling an image, a Docker client first
downloads the manifest and then the referenced layers
(that are not already present on the client). When pushing
an image, a Docker client first uploads the layers (if not
already present in the registry) and then the manifest.

The current Docker registry software is a single-node
application with a RESTful API. The registry delegates
storage to a backend storage system through correspond-
ing storage drivers. The backend storage can range from
local file systems to distributed object storage systems
such as Swift [51] or others [1, 5, 32, 51]. To scale
the registry, organizations typically deploy a load bal-
ancer or proxy in front of several independent registry
instances [11]. In this case, client requests are forwarded
to the destination registries through a proxy, then served
by the registries’ backend storage system. To reduce the
communication overhead between the proxy, registry,
and backend storage system, Bolt [41] proposes to use a
consistent hashing function instead of a proxy, distribute
requests to registries, and utilize the local file system
on each registry node to store data instead of using a
remote distributed object storage system. Multiple layer
replicas are stored on Bolt registries for high availability
and reliability. DupHunter is implemented based on the
architecture of Bolt registry for high scalability.

Registry performance is critical to Docker clients. In
particular, the layer pulling performance (i.e., GET layer
performance) impacts container startup times signifi-
cantly [30]. A number of works have studied various

770 2020 USENIX Annual Technical Conference USENIX Association

dimensions of registry performance for a Docker image
dataset [11, 14, 30, 60, 64, 71, 72]. However, such works
do not provide deduplication for the registry. A com-
munity proposal exists to add file-level deduplication
to container images [8], but as of now lacks even a de-
tailed design, let alone performance analysis. Skourtis
et al. [59] propose restructuring layers to optimize for
various dimensions, including registry storage utilization.
Their approach does not remove all duplicates, whereas
DupHunter leaves images unchanged and can eliminate
all duplicates in the registry. Finally, a lot of works aim to
reduce the size of a single container image [22,29,54,65],
and are complementary to DupHunter.

2.2 Deduplication
Data deduplication has received considerable attention,
particularly for virtual machine images [33, 36, 61, 73].
Many deduplication studies focus on primary and backup
data deduplication [23–25,39,40,42,48,58,63,68,74] and
show the effectiveness of file- and block-level deduplica-
tion [45, 62]. To further reduce storage space, integrating
block-level deduplication with compression has been pro-
posed [66]. In addition to local deduplication schemes,
a global deduplication method [49] has also been pro-
posed to improve the deduplication ratio and provide
high scalability for distributed storage systems.

Data restoring latency is an important factor for stor-
age systems with deduplication support. Efficient chunk
caching algorithms and forward assembly are proposed to
accelerate data restore performance [15]. At first glance,
one could apply existing deduplication techniques to
solve the issue of high data redundancy among container
images. However, as we demonstrate in detail in §3.2,
such a naive approach leads to slow reconstruction of
layers on image pulls, which severely degrades container
startup times. DupHunter is specifically designed for
Docker registries, which allows it to leverage image and
workload information to reduce deduplication and layer
restore overhead.

3 Motivating Observations
The need and feasibility of DupHunter is based on three
key observations: 1) container images have a lot of redun-
dancy; 2) existing scalable deduplication technologies
significantly increase image pull latencies; and 3) image
access patterns can be predicted reliably.

3.1 Redundancy in Container Images
Container image layers exhibit a large degree of redun-
dancy in terms of duplicate files. Although Docker sup-
ports the sharing of layers among different images to
remove some redundant data in the Docker registry, this
is not sufficient to effectively eliminate duplicates. Ac-
cording to the deduplication analysis of the Docker Hub

Table 1: Dedup. ratio vs. increase in GET layer latency.

Technology
Dedup ratio,
compressed

layers

Dedup ratio,
uncompressed

layers
GET latency increase

wrt. uncompressed
layers

Jdupes 1 2.1 36 ×
VDO 1 4 60 ×
Btrfs 1 2.3 51 ×
ZFS 1 2.3 50 ×
Ceph 1 3.1 98 ×

dataset [72], 97% of files have more than one file dupli-
cate, resulting in a deduplication ratio of 2× in terms of
capacity. We believe that the deduplication ratio is much
higher when private repositories are taken into account.

The duplicate files are executables, object code, li-
braries, and source code, and are likely imported by differ-
ent image developers using package installers or version
control systems such as apt, pip, or git to install simi-
lar dependencies. However, as layers often share many
but not all files, this redundancy cannot be eliminated by
Docker’s current layer sharing approach.

R-way replication for reliability further fuels the high
storage demands of Docker registries. Hence, satisfying
demand by adding more disks and scaling out storage
systems quickly becomes expensive.

3.2 Drawbacks of Existing Technologies
A naive approach to eliminating duplicates in container
images could be to apply an existing deduplication tech-
nique. To experimentally demonstrate that such a strat-
egy has significant shortcomings, we try four popular
local deduplication technologies, VDO [67], Btrfs [13],
ZFS [70], Jdupes [34], in a single-node setup and on one
distributed solution, Ceph [16], on a 3-node cluster. The
deduplication block sizes are set to 4KB for both VDO
and Ceph, and 128KB for both Btrfs [13] and ZFS [70]
by default. Table 1 presents the deduplication ratio and
pull latency overhead for each technology in two cases:
1) when layers are stored compressed (as-is); and 2) when
layers are uncompressed and unpacked into their individ-
ual files. Note that the deduplication ratios are calculated
against the case when all layers are compressed (the de-
tails of the dataset and testbed are presented in §6).
Deduplication ratios. Putting the original compressed
layer tarballs in any of the deduplication systems re-
sults, unsuprisingly, in a deduplication ratio of 1. This
is because even a single byte change in any file in a
tarball scrambles the content of the compressed tarball
entirely [18, 44]. Hence, to expose the redundancy to the
deduplication systems, we decompress every layer before
storing it.

After decompression, all deduplication schemes yield
significant deduplication ratios. Jdupes, Btrfs, and ZFS
reduce the dataset to about half and achieve deduplication
ratios of 2.1, 2.3, and 2.3, respectively. Ceph has a higher

USENIX Association 2020 USENIX Annual Technical Conference 771

1 10 100 1,000 10,00050,000
GET Layer count

0.6

0.7

0.8

0.9

1
La

ye
rs

 ra
tio

Dal
Dev
Fra
Lon
Pre
Sta
Syd

Figure 1: CDF of GET layer request
count.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Repulling probability

0

0.2

0.4

0.6

0.8

1

C
lie

nt
s r

at
io

Dal
Dev
Fra
Pre
Sta
Syd
Lon

Figure 2: CDF of client repulling
probability.

Figure 3: CDF of GET mani-
fest/layer inter-arrival time.

deduplication ratio since it uses a smaller deduplication
block size, while VDO shows the highest deduplication
ratio as it also compresses deduplicated data.

It is important to note that for an enterprise-scale reg-
istry, a large number of storage servers need to be de-
ployed and single-node deduplication systems (Jdupes,
Btrfs, ZFS, and VDO) can only deduplicate data within
a single node. Therefore, in a multi-node setup, such so-
lutions can never achieve optimal global deduplication,
i.e., duplication across nodes.
Pull latencies. To analyze layer pull latencies, we im-
plement a layer restoring process for each technology.
Restoring includes fetching files, creating a layer tarball,
and compressing it. We measure the average GET layer
latency and calculate the restore overhead compared to
GET requests without layer deduplication.

As shown in Table 1, the restoration overhead is high.
The file-level deduplication scheme Jdupes increases the
GET layer latency by 36×. This is caused by the expensive
restoring process. Btrfs, ZFS, and VDO show an increase
of more than 50×, as they are block-level deduplication
systems, and hence they also add file restoring overhead.
The overhead for Ceph is the highest because restoration
is distributed and incurs network communication.

In summary, our analysis shows that while existing
technologies can provide storage space savings for con-
tainer images (after decompression), they incur high cost
during image pulls due to slow layer reconstruction. At
the same time, pull latency constitutes the major portion
of container startup times even without deduplication.
According to [30], pulling images accounts for 76% of
container startup times. This means that, for example, for
Btrfs the increase of layer GET latency by 51× would
prolong container startup times by 38×. Hence, dedupli-
cation has a major negative impact on the startup times
of containerized applications.

3.3 Predictable User Access Patterns
A promising approach to mitigate layer restoring over-
head is predicting which layers will be accessed and
preconstruct them. In DupHunter, we can exploit the fact
that when a Docker client pulls an image from the reg-

istry, it first retrieves the image manifest, which includes
references to the image layers.
User pulling patterns. Typically, if a layer is already
stored locally, then the client will not fetch this layer
again. However, higher-level container orchestrators al-
low users to configure different policies for starting new
containers. For example, Kubernetes allows policies such
as IfNotPresent, i.e., only get the layer if it has not
been pulled already, or AlwaysGet, i.e., always retrieve
the layer, even if it is already present locally. These dif-
ferent behaviors need to be considered when predicting
whether a layer will be pulled by a user or not.

We use the IBM Cloud registry workload [11] to ana-
lyze the likelihood for a user to repull an already present
layer. The traces span ∼80 days for 7 registry clus-
ters: Dallas, Frankfurt, London, Sydney, Development,
Prestaging, and Staging. Figure 1 shows the CDF of layer
GET counts by the same clients. The analysis shows that
the majority of layers are only fetched once by the same
clients. For example, 97% of layers from Syd are only
fetched once by the same clients. However, there are
clients that pull the same layers repeatedly. E.g., a client
from London fetched the same layer 19,300 times.

Figure 2 shows the corresponding client repull proba-
bility, calculated as the number of repulled layers divided
by the number of total GET layer requests issued by the
same client. We see that 50% of the clients have a repull
probability of less than 0.2 across all registries. We also
observe that the slope of the CDFs is steep at both lower
and higher probabilities, but becomes flat in the middle.
This suggests that, by observing access patterns, we are
able to classify clients into two categories, always-pull
clients and pull-once clients, and predict, whether they
will pull a layer or not by keeping track of user access
history.
Layer preconstruction. We analyze the inter-arrival
time between a GET manifest request and the subsequent
GET layer request. As shown in Figure 3, the majority of
intervals are greater than 1 second. For example, 80% of
intervals from London are greater than 1 second, and 60%
of the intervals from Sydney are greater than 5 seconds.

There are several reasons for this long gap. First, when

772 2020 USENIX Annual Technical Conference USENIX Association

Prefetch cache

Layer recipe
Id: L
…

D-server C

P-server A

D-server D local storage
system

Preconstruct cache

File store
Clients

storage cluster

P-server B

ILmap
ULmap
Id: U
… …

Slice recipe
Id: L1::A::P
… …

Distributed
metadata
database

Layer store

File index
..

Id host

Layer stage area

Tier 1 Primary cluster

Tier 2 Deduplication cluster

Layer index

..Id

Registry REST API

Registry REST API

Figure 4: DupHunter architecture.

fetching an image from a registry, the Docker client
fetches a fixed number of layers in parallel (three by
default) starting from the lowest layer. In the case where
an image contains more than three layers, the upper lay-
ers have to wait until the lower layers are downloaded,
which delays the GET layer request for these layers. Sec-
ond, network delay between clients and registry often
accounts for a large portion of the GET latency in cloud
environments.

As we show in §6, layer preconstruction can signifi-
cantly reduce layer restoring overhead. In the case of a
shorter duration between a GET manifest request and its
subsequent GET layer requests, layer preconstruction can
still be beneficial because the layer construction starts
prior to the arrival of the GET request.

4 DupHunter Design
In this section, we first provide an overview of Du-
pHunter (§4.1). We then describe in detail how it dedu-
plicates (§4.2) and restores (§4.3) layers, and how it fur-
ther improves performance via predictive cache manage-
ment (§4.4). Finally, we discuss the integration of sub-file
deduplication and erasure coding with DupHunter (§4.5).

4.1 Overview
Figure 4 shows the architecture of DupHunter. Du-
pHunter consists of two main components: 1) a cluster
of storage servers, each exposing the registry REST API;
and 2) a distributed metadata database. When uploading
or downloading layers, Docker clients communicate with
any DupHunter server using the registry API. Each server
in the cluster contains an API service and a backend stor-
age system. The backend storage systems store layers and
perform deduplication, keeping the deduplication meta-
data in the database. DupHunter uses three techniques to
reduce deduplication and restoring overhead: 1) replica
deduplication modes; 2) parallel layer reconstruction;
and 3) proactive layer prefetching/preconstruction.
Replica deduplication modes. For higher fault toler-
ance and availability, existing registry setups replicate
layers. DupHunter also performs layer replication, but

additionally deduplicates files inside the replicas.
A basic deduplication mode n (B-mode n) defines that

DupHunter should only keep n layer replicas intact and
deduplicate the remaining R−n layer replicas, where R
is the layer replication level. At one extreme, B-mode R
means that no replicas should be deduplicated, and hence
provides the best performance but no data reduction. At
the other end, B-mode 0 deduplicates all layer replicas,
i.e., it provides the highest deduplication ratio but adds
restoration overhead for GET requests. The remaining in-
between B-modes allow to trade off performance for data
reduction.

For heavily skewed workloads, DupHunter also pro-
vides a selective deduplication mode (S-mode). The S-
mode utilizes the skewness in layer popularity, observed
in [11], to decide how many replicas should be dedupli-
cated for each layer. As there are hot layers that are pulled
frequently, S-mode sets the number of intact replicas pro-
portional to their popularity. This means that hot layers
have more intact replicas, and hence can be served faster,
while cold layers are deduplicated more aggressively.

Deduplication in DupHunter, for the example of B-
mode 1, works as follows: DupHunter first creates 3 layer
replicas across 3 servers. It keeps a single layer replica
as the primary layer replica on one server. Deduplication
is then carried out in one of the other servers storing a
replica, i.e., the layer replica is decompressed and any du-
plicate files are discarded while unique files are kept. The
unique files are replicated and saved on different servers
for fault tolerance. Once deduplication is complete, the
remaining two layer replicas are removed. Any subse-
quent GET layer requests are sent to the primary replica
server first since it stores the complete layer replica. If
that server crashes, one of the other servers is used to
rebuild the layer and serve the GET request.

To support different deduplication modes, DupHunter
stores a mix of both layer tarballs and individual files.
This makes data placement decision more complex with
respect to fault tolerance because individual files and
their corresponding layer tarballs need to be placed on
different servers. As more tarballs and files are stored in
the cluster, the placement problem gets more challenging.

To avoid accidentally co-locating layer tarballs and
unique files, which are present in the tarball, and sim-
plify the placement problem, DupHunter divides storage
servers into two groups (Figure 4): a primary cluster con-
sisting of P-servers and a deduplication cluster consist-
ing of D-servers. P-servers are responsible for storing full
layer tarball replicas and replicas of the manifest, while
D-servers deduplicate, store, and replicate the unique
files from the layer tarballs. The split allows DupHunter
to treat layers and individual files separately and prevent
co-location during placement.

P- and D-servers form a 2-tier storage hierarchy. In

USENIX Association 2020 USENIX Annual Technical Conference 773

the default case, the primary cluster serves all incoming
GET requests. If a request cannot be served from the pri-
mary cluster (e.g., due to a node failure, or DupHunter
operating in B-mode 0 or S-mode), it will be forwarded
to the deduplication cluster and the requested layer will
be reconstructed.
Parallel layer reconstruction. DupHunter speeds up
layer reconstruction through parallelism. As shown in
Figure 4, each D-server’s local storage is divided into
three parts: the layer stage area, preconstruction cache,
and file store. The layer stage area temporarily stores
newly added layer replicas. After deduplicating a replica,
the resulting unique files are stored in a content address-
able file store and replicated to the peer servers to provide
redundancy. Once all file replicas have been stored, the
layer replica is deleted from the layer stage area.

DupHunter distributes the layer’s unique files onto
several servers (see §4.2). All files on a single server
belonging to the same layer are called a slice. A slice has
a corresponding slice recipe, which defines the files that
are part of this slice, and a layer recipe defines the slices
needed to reconstruct the layer. This information is stored
in DupHunter’s metadata database. This allows D-servers
to rebuild layer slices in parallel and thereby improve
reconstruction performance. DupHunter maintains layer
and file fingerprint indices in the metadata database.
Predictive cache prefetch and preconstruction. To im-
prove the layer access latency, DupHunter employs a
cache layer in both the primary and the deduplication
clusters, respectively. Each P-server has an in-memory
user-behavior based prefetch cache to reduce disk I/Os.
When a GET manifest request is received from a user,
DupHunter predicts which layers in the image will ac-
tually need to be pulled and prefetches them in the
cache. Additionally, to reduce layer restoring overhead,
each D-server maintains an on-disk user-behavior based
preconstruct cache. As with the prefetch cache, when
a GET manifest request is received, DupHunter predicts
which layers in the image will be pulled, preconstructs
the layers, and loads them in the preconstruct cache. To
accurately predict which layers to prefetch, DupHunter
maintains two maps: ILmap and ULmap. ILmap stores
the mapping between images and layers while ULmap
keeps track of a user’s access history, i.e., which layers
the user has pulled and how many times (see §4.4).

4.2 Deduplicating Layers
As in the traditional Docker registry, DupHunter main-
tains a layer index. After receiving a PUT layer request,
DupHunter first checks the layer fingerprint in the layer
index to ensure an identical layer is not already stored.
If not, DupHunter, replicates the layer r times across the
P-servers and submits the remaining R− r layer replicas
to the D-servers. Those replicas are temporarily stored in

the layer stage areas of the D-servers. Once the replicas
have been stored successfully, DupHunter notifies the
client of the request completion.

File-level deduplication. Once in the staging area, one
of the D-servers decompresses the layer and starts the
deduplication process. First, it extracts file entries from
the tar archive. Each file entry is represented as a file
header and the associated file content [26]. The file
header contains metadata such as file name, path, size,
mode, and owner information. DupHunter records every
file header in slice recipes (described below) to be able
to correctly restore the complete layer archive later.

To deduplicate a file, DupHunter computes a file Id by
hashing the file content and checks if the Id is already
present in the file index. If present, the file content is
discarded. Otherwise, the file content is assigned to a D-
server and stored in its file store, and the file Id is recorded
in the file index. The file index maps different file Ids to
their physical replicas stored on different D-servers.

Layer partitioning. DupHunter picks D-servers for files
to improve reconstruction times. For that, it is important
that different layer slices are similarly sized and evenly
distributed across D-servers. To achieve this, DupHunter
employs a greedy packing algorithm. Consider first the
simpler case in which each file only has a single replica.
DupHunter first computes the total size of the layer’s
existing shared files on each D-server (this might be 0 if
a D-server does not store any shared files for the layer).
Next, it assigns the largest new unique file to the smallest
partition until all the unique files are assigned. Note that
during layer partitioning, DupHunter does not migrate
existing shared files to reduce I/O overhead.

In the case where a file has more than one replica,
DupHunter performs the above-described partitioning
per replica. That means that it first assigns the primary
replicas of the new unique files to D-servers according to
the location of the primary replicas of the existing shared
files. It then does the same for the secondary replicas and
so on. DupHunter also ensures that two replicas of the
same file are never placed on the same node.

Unique file replication. Next, DupHunter replicates and
distributes the unique file replicas across D-servers based
on the layer partitioning. The headers and content point-
ers of all files in the deduplicated layer that are assigned
to a specific D-server are included in that D-server’s slice
recipe for that layer. After file replication, DupHunter
adds the new slice recipes to the metadata database.

DupHunter also creates a layer recipe for the uploaded
layer and stores it in the metadata database. The layer
recipe records all the D-servers that store slices for that
layer and which can act as restoring workers. When a
layer needs to be reconstructed, one worker is selected as
the restoring master, responsible for gathering all slices

774 2020 USENIX Annual Technical Conference USENIX Association

Stored
file

replicas

Layer recipe
Id: L1
Master: A
Workers: [A, B, C]

D-server BD-server A

f4’

f3’ f2’f1’

f1 f2 f3

f5 f6

f6’ f5’

Newly
added file
replicas

f4

Duplicate /
Shared files

Content
fingerprintHeader

f1
f2
f3
f4
f5
f6

Layer
tar

archive
 L1

Unique
files

File entries

Slice recipe
Id: L1::A::P

Header

h2
h5

f2
f5

Content
pointer

D-server C

h1
h2
h3
h4
h5
h6

File index
Id
f1

f2

r2r1
A:/../..
B:/../..

B:/../..
C:/../..

Figure 5: Layer dedup., replication, and partitioning.

concatenate

File I/O stream Tar stream
Slice
stream

Layer

archive compressA

A

Slice constructor Layer constructor

archive compressB

archive compressC

Figure 6: Parallel streaming layer construction.

and rebuilding the layer (see §4.3).
Figure 5 shows an example deduplication process. The

example assumes B-mode 1 with 3-way replication, i.e.,
each unique file has two replicas distributed on two differ-
ent D-servers. The files f 1, f 2, and f 3 are already stored
in DupHunter, and f 1′, f 2′, and f 3′ are their correspond-
ing replicas. Layer L1 is being pushed and contains files
f 1– f 6. f 1, f 2, and f 3 are shared files between L1 and
other layers, and hence are discarded during file-level
deduplication. The unique files f 4, f 5 and f 6 are added
to the system and replicated to D-servers A, B, and C.

After replication, server B contains f 2, f 5, f 1′, and
f 4′. Together f 2 and f 5 form the primary slice of L1,
denoted as L1 :: B :: P. This slice Id contains the layer Id
the slices belongs to (L1), the node, which stores the slice
(B) and the backup level (P for primary). The two backup
file replicas f 1′ and f 4′ on B form the backup slice L1 ::
B :: B. During layer restoring, L1 can be restored by using
any combination of primary and backup slices to achieve
maximum parallelism.

4.3 Restoring Layers
The restoring process works in two phases: slice recon-
struction and layer reconstruction. Considering the exam-
ple in Figure 5, restoring works as follows:

According to L1’s layer recipe, the restoring workers
are D-servers A, B, and C. The node with the largest
slice is picked as the restoring master, also called layer
constructor (A in the example). Since A is the restoring
master it sends GET slice requests for the primary slices
to B and C. If a primary slice is missing, the master

locates its corresponding backup slice and sends a GET
slice request to the corresponding D-server.

After a GET slice request has been received, B’s and
C’s slice constructors start rebuilding their primary slices
and send them to A as shown in Figure 6. Meanwhile, A
instructs its local slice constructor to restore its primary
slice for L1. To construct a layer slice, a slice constructor
first gets the associated slice recipe from the metadata
database. The recipe is keyed by a combination of layer
Id, host address and requested backup level, e.g., L1 ::
A :: P. Based on the recipe, the slice constructor creates
a slice tar file by concatenating each file header and the
corresponding file contents; it then compresses the slice
and passes it to the master. The master concatenates all
the compressed slices into a single compressed layer
tarball and sends it back to the client.

The layer restoration performance is critical to keep
pull latencies low. Hence, DupHunter parallelizes slice
reconstruction on a single node and avoids generating
intermediate files on disk to reduce disk I/O.

4.4 Caching and Preconstructing Layers
DupHunter maintains a cache layer in both the primary
and deduplication clusters to speedup pull requests. The
primary cluster cache (in-memory prefetch cache) is to
avoid disk I/O during layer retrievals while the dedupli-
cation cluster on-disk cache stores preconstructed layers,
which are likely to be accessed in the future. Both caches
are filled based on the user access patterns seen in §3.

Request prediction. To accurately predict layers that
will be accessed in the future, DupHunter keeps track
of image metadata and user access patterns in two data
structures: ILmap and ULmap. ILmap maps an image
to its containing layer set. ULmap stores for each user
the layers the user has accessed and the corresponding
pull count. A user is uniquely identified by extracting
the sender IP address from the request. If DupHunter has
not seen an IP address before, it assumes that the request
comes from a new host, which does not store any layers
yet.

When a GET manifest request r is received, Du-
pHunter first calculates a set of image layers that have
not been pulled by the user r.addr by calculating the dif-
ference S∆ between the image’s layer set and the user’s
accessed layer set:

S∆ = ILmap[r.img]−ULmap[r.addr].

The layers in S∆ are expected to be accessed soon.
Recall from §3.3 that some users always pull layers, no

matter if the layers have been previously pulled. To detect
such users, DupHunter maintains a repull probability γ

for each user. For a GET manifest request r by a user

USENIX Association 2020 USENIX Annual Technical Conference 775

Tier 1
Primary
cluster

L1 Prefetch cache

Tier 2
Deduplication

cluster

Cache
Layer store

Cache
Layer store

P-server A P-server B

Cache
File store

Cache
File store

D-server C D-server D

Stage area Stage area

L2 Layer store

L3 Layer stage area
L4 Preconstruct cache
L5 File store

Figure 7: Tiered storage architecture.

r.addr, γ is computed as

γ[r.addr] = ∑
l∈RL

l.pullCount/∑
l∈L

l.pullCount

where RL is the set of layers that the user has repulled
before (i.e., with a pull count > 1) and L is the set of all
layers the user has ever pulled. DupHunter updates the
pull counts every time it receives a GET layer request.

DupHunter compares the clients’ repull probability
to a predefined threshold ε. If γ[r.addr] > ε, then Du-
pHunter classifies the user as a repull user and computes
the subset, S∩, of layers from the requested image that
have already been pulled by the user:

S∩ = ILmap[r.img]∩ULmap[r.addr].

It then fetches the layers in S∩ into the cache.
Cache handling in tiered storage. The introduction of
the two caches results in a 5-level 2-tier storage architec-
ture of DupHunter as shown in Figure 7. Requests are
passed through the tiers from top to bottom. Upon a GET
layer request, DupHunter first determines the P-server(s)
which is (are) responsible for the layer and searches the
prefetch cache(s). If the layer is present, the request will
be served from the cache. Otherwise, the request will be
served from the layer store.

If a GET layer request cannot be served from the
primary cluster due to a failure of the corresponding P-
server(s), the request will be forwarded to the deduplica-
tion cluster. In that case, DupHunter will first lookup the
layer recipe. If the recipe is not found, it means that the
layer has not been fully deduplicated yet and DupHunter
will serve the layer from one of the layer stage areas of
the responsible D-servers. If the layer recipe is present,
DupHunter will contact the restoring master to check,
whether the layer is in its preconstruct cache. Otherwise,
it will instruct the restoring master to rebuild the layer.

Both the prefetch and the preconstruct caches are write-
through caches. When a layer is evicted, it is simply
discarded since the layers are read-only. We use an Adap-
tive Replacement Cache (ARC) replacement policy [43],
which keeps track of both the frequently and recently
used layers and adapts to changing access patterns.

4.5 Discussion
The goal of DupHunter is to provide flexible dedupli-
cation modes to meet different space-saving and perfor-
mance requirements and mitigate layer restore overhead.
The above design of DupHunter mainly focuses on file-
level deduplication and assumes layer replication.

To achieve a higher deduplication ratio, DupHunter
can integrate with block-level deduplication. After re-
moving redundant files, D-servers can further perform
block-level deduplication only on unique files by using
systems such as VDO [67] and Ceph [49]. However, higher
deduplication ratios come with higher layer restoring
overhead as the restoring latency for block-level dedupli-
cation is higher than that of file level as we show in §6.
This is because to restore a layer, its associated files
need to be first restored, which incurs extra overhead.
Furthermore, when integrating with a global block-level
deduplication scheme, the layer restoring overhead will
be higher due to network communication. In this case,
it is beneficial to maintain a number of layer replicas on
P-servers to maintain a good performance.

While DupHunter exploits existing replication
schemes, it is not limited to those. If the registry is
using erasure coding for reliability, DupHunter can
integrate with the erasure coding algorithm to improve
space efficiency. Specifically, after removing redundant
files from layers, DupHunter can store unique files as
erasure-coded chunks. While DupHunter can not make
use of existing replicas to improve pull performance in
this case, its preconstruct cache remains beneficial to
mitigate high restoring overheads as shown in §6.

A known side effect when performing deduplication
is that the loss of a chunk has a bigger impact on fault
tolerance as the chunk is referenced by several objects
[57]. To provide adequate fault tolerance, DupHunter
maintains at least three copies of a layer (either as full
layer replicas or unique files that can rebuild the layer)
in the cluster.

5 Implementation
We implemented DupHunter1 in Go by adding ∼2,000
lines of code to Bolt [41]. Note that Bolt is based on the
reference Docker registry [20] for high availability and
scalability (see Bolt details in §2.1.)

DupHunter can use any POSIX file system to store its
data and uses Redis [6] for metadata, i.e., slice and layer
recipes, file and layer indices, and ULmap and ILmap. We
chose Redis because it provides high lookup and update
performance and it is widely used in production systems.
Another benefit of Redis is that it comes with a Go client
library, which makes it easy to integrate with the Docker

1DupHunter’s code is available at https://github.com/
nnzhaocs/DupHunter.

776 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/nnzhaocs/DupHunter
https://github.com/nnzhaocs/DupHunter

Table 2: Workload parameters.

Trace #GET
Layer

#GET
Man-
ifest

#PUT
Layer

#PUT
Man-
ifest

#Uniq.
Layer

#Accessed
Uniq. Dataset
Size (GB)

Dal 6963 7561 453 23 1870 18
Fra 4117 10350 508 25 1012 9
Lon 2570 11808 582 40 1979 13
Syd 3382 11150 453 15 558 5

Registry. We enable append-only file in Redis to log all
changes for durability purposes. Moreover, we configure
Redis to save snapshots every few minutes for additional
reliability. To improve availability and scalability, we
use 3-way replication. In our setup, Redis is deployed
on all nodes of the cluster (P-servers and D-servers) so
that a dedicated metadata database cluster is not needed.
However, it is also possible to setup DupHunter with a
dedicated metadata database cluster.

To ensure that the metadata is in a consistent state, Du-
pHunter uses Redis’ atomicity so that no file duplicates
are stored in the cluster. For the file and layer indices and
the slice and layer recipes, each key can be set to hold its
value only if the key does not yet exist in Redis (i.e, us-
ing SETNX [55]). When a key already holds a value, a file
duplicate or layer duplicate is identified and is removed
from the registry cluster.

Additionally, DupHunter maintains a synchronization
map to ensure that multiple layer restoring processes do
not attempt to restore the same layer simultaneously. If
a layer is currently being restored, subsequent GET layer
requests to this layer wait until the layer is restored. Other
layers, however, can be constructed in parallel.

Both the metadata database and layer store used by
DupHunter are scalable and can handle large image
datasets. DupHunter’s metadata overhead is about 0.6%
in practice, e.g., for a real-world layer dataset of 18 GB,
DupHunter stores less than 100 MB of metadata in Redis.

6 Evaluation
We answer two questions in the evaluation: how do dedu-
plication modes impact the performance–redundancy
trade-off, and how effective are DupHunter’s caches.

6.1 Evaluation Setup
Testbed. Our testbed consists of a 16-node cluster, where
each node is equipped with 8 cores, 16 GB RAM, a
500 GB SSD, and a 10 Gbps NIC.
Dataset. We downloaded 0.93 TB of popular Docker im-
ages (i.e., images with a pull count greater than 100) with
36,000 compressed layers, totalling 2 TB after decom-
pression. Such dataset size allowed us to quickly evaluate
DupHunter’s different modes without losing the gener-
ality of results. The file-level deduplication ratio of the
decompressed dataset is 2.1.

Workload generation. To evaluate how DupHunter per-
forms with production registry workloads, we use the
IBM Cloud Registry traces [11] that come from four pro-
duction registry clusters (Dal, Fra, Lon, and Syd) and
span approximately 80 days. We use Docker registry
trace player [11] to replay the first 15,000 requests from
each workload as shown in Table 2. We modify the player
to match requested layers in the IBM trace with real lay-
ers downloaded from Docker Hub based on the layer
size2. Consequently, each layer request pulls or pushes
a real layer. For manifest requests, we generate random
well-formed, manifest files.

In addition, our workload generator uses a proxy em-
ulator to decide the server for each request. The proxy
emulator uses consistent hashing [37] to distribute lay-
ers and manifests. It maintains a ring of registry servers
and calculates a destination registry server for each push
layer or manifest request by hashing its digest. For pull
manifest requests, the proxy emulator maintains two con-
sistent hashing rings, one for the P-servers, and another
for the D-servers. By default, the proxy first queries the
P-servers but if the requested P-server is not available, it
pulls from the D-servers.
Schemes. We evaluate DupHunter’s deduplication ratio
and performance using different deduplication and re-
dundancy schemes. The base case considers 3-way layer
replication and file-level deduplication. In that case, Du-
pHunter provides five deduplication modes: B-mode 0,
1, 2, 3, and S-mode. Note that B-mode 0 deduplicates
all layer replicas (denoted as global file-level deduplica-
tion with replication or GF-R) while B-mode 3 does not
deduplicate any layer replicas.

To evaluate how DupHunter works with block-level
deduplication, we integrate B-mode 0 with VDO. For each
D-server, all unique files are stored on a local VDO de-
vice. Hence, in that mode DupHunter provides global
file-level deduplication and local block-level deduplica-
tion (GF+LB-R).

We also evaluate DupHunter with an erasure coding
policy instead of replication. We combine B-mode 0
with Ceph such that each D-server stores unique files
on a Ceph erasure coding pool with global block-level
deduplication enabled. We denote this scheme as GB-
EC. We compare each scheme to Bolt [41] with 3-way
replication as our baseline (No-dedup).

6.2 Deduplication Ratio vs. Performance
We first evaluate DupHunter’s performance/deduplica-
tion ratio trade-off for all of the above described dedu-
plication schemes. For the replication scenarios, we use
3-way replication and for GB-EC, we use a (6,2) Reed
Solomon code [53, 56]. Both replication and erasure cod-

2The original player generates random or zeroed data for layers.

USENIX Association 2020 USENIX Annual Technical Conference 777

Table 3: Dedup. ratio vs. GET layer latency.

Mode Dedup. ratio Performance improvement (P-servers)
B-mode 1 1.5 1.6×
S-mode 1.3 2×
B-mode 2 1.2 2.6×
B-mode 3 1 2.8×

B-mode 0

Dedup ratio Performance degradation (D-servers)
GF-R (Global file-level [3 replicas])

2.1 -1.03 ×
GF+LB-R (Global file- and local block-level [3 replicas])

3.0 -2.87×
GB-EC (Global block-level [Erasure coding])

6.9 -6.37×

ing policies can sustain the loss of two nodes. We use 300
clients spread across 10 nodes and measure the average
GET layer latency across the four production workloads.
Table 3 shows the results normalized to the baseline.

We see that all four performance modes of DupHunter
(B-mode 1, 2, and 3, and S-mode) have better GET layer
performance compared to No-dedup. B-mode 1 and 3
reduce the GET layer latency by 1.6× and 2.8×, respec-
tively. This is because the prefetch cache hit ratio on
P-servers is 0.98 and a high cache hit ratio significantly
reduces disk accesses. B-mode 3 has the highest GET
layer performance but does not provide any space sav-
ings since each layer in B-mode 3 has three full replicas.
B-mode 1 and 2 maintain only one and two layer replicas
for each layer, respectively. Hence, B-mode 1 has a lower
performance improvement (i.e., 1.6×) than B-mode 2
(i.e., 2.6×), but has a higher deduplication ratio of 1.5×.
S-mode lies between B-mode 1 and 2 in terms of the
deduplication ratio and performance. This is because, in
S-mode, popular layers have three layer replicas while
cold layers only have a single replica.

Compared to the above four modes, B-mode 0 has the
highest deduplication ratio because all layer replicas are
deduplicated. Consequently, B-mode 0 adds overhead to
GET layer requests compared to the baseline performance.
As shown in Table 3, if file-level deduplication and 3-way
replication are used, the deduplication ratio of B-mode 0
is 2.1 while the GET layer performance is 1.03× slower.

If block-level deduplication and block-level compres-
sion are used (GF+LB-R), the deduplication ratio in-
creases to 3.0 while the GET layer performance decreases
to 2.87×. This is because of the additional overhead
added by restoring the layer’s files prior to restoring the
actual layer. Compared to replication, erasure coding
naturally reduces storage space. The deduplication ratio
with erasure coding and block-level deduplication is the
highest (i.e., 6.9). However, the GET layer performance
decreases by 6.37× because to restore a layer, its con-
taining files, which are split into data chunks and spread
across different nodes, must first be restored.

Overall, DupHunter, even in B-mode 0, significantly
decreases the layer restoring overhead compared to the

naive approaches shown in Table 1 in §3.2. For example,
DupHunter B-mode 0 with VDO (the GF+LB-R scheme)
has a GET layer latency only 2.87× slower than the base-
line compared to a the VDO-only scheme which is 60×
slower compared to the baseline.

6.3 Cache Effectiveness
Next, we analyze DupHunter’s caching behavior. We first
study the prefetch cache and then the preconstruct cache.

6.3.1 Prefetch cache

To understand how the prefetch cache improves the P-
servers’ performance, we first show its hit ratio com-
pared to two popular cache algorithms: LRU [50] and
ARC [43]. Moreover, we compare DupHunter’s prefetch
cache with another prefetch algorithm, which makes pre-
dictions based on PUT requests [11] (denotes as ARC+P-
PUT). Both of these algorithms are implemented on ARC
since ARC outperforms LRU. DupHunter’s prefetch al-
gorithm, based on user behavior (UB), is denoted as
ARC+P-UB. We vary the cache sizes from 5% to 15%
of each workload’s unique dataset size. Figure 8 shows
the results for the four production workloads (Dal, Syd,
Lon, and Fra).

For a cache size of 5%, the hit ratios of LRU are only
0.59, 0.58, 0.27, and 0.10, respectively. ARC hit ratios are
higher compared to LRU (e.g., 1.6× Lon) because after a
user pulls a layer, the user is not likely to repull this layer
in the future as it is locally available. Compared to LRU,
ARC maintains two lists, an LRU list and an LFU list, and
adaptively balances them to increase the hit ratio.

ARC+P-PUT improves the ARC hit ratio by 1.9× for
Lon. However, ARC+P-PUT only slightly improves the
hit ratio for the other workloads. This is because ARC+P-
PUT acts like a write cache which temporally holds re-
cently uploaded layers and waits for the clients that have
not yet pulled these layers to issue GET requests. This is
not practical because the layer reuse time (i.e., interval
between a PUT layer request and its subsequent GET layer
request) is long. For example, the reuse time is 0.5 hr
for Dal on average based on our observation. Moreover,
ARC+P-PUT ignores the fact that some clients always re-
pull layers. DupHunter’s ARC+P-UB achieves the high-
est hit ratio. For example, ARC+P-UB’s hit ratio for Dal
is 0.89, resulting in a 4.2× improvement compared to
ARC+P-PUT.

As shown in Figure 8, the hit ratio increases as the
cache size increases. For example, when cache size in-
creases from 5% to 15%, the hit ratio for ARC under
workload Lon increases from 0.44 to 0.6. ARC+P-UB
achieves the highest hit ratio of 0.96 for a cache size of
15% under workload Lon. Overall, this shows that by
exploiting user behavior ARC+P-UB can achieve high
hit ratios, even for smaller cache sizes.

778 2020 USENIX Annual Technical Conference USENIX Association

0
0.2
0.4
0.6
0.8

1

Dal Fra Lon Syd Dal Fra Lon Syd Dal Fra Lon Syd

5% 10% 15%

H
it

ra
tio

LRU ARC ARC+P-PUT ARC+P-UB

Figure 8: Cache hit ratio on P-servers with different cache
algorithms.

0
0.1
0.2
0.3
0.4
0.5

Dal Fra Lon Syd Dal Fra Lon Syd Dal Fra Lon Syd

5% 10% 15%

99
th

 p
er

ce
nt

ile
 la

te
nc

y
(s

) LRU ARC ARC+P-PUT ARC+P-UB

Figure 9: 99th percentile GET layer latency of P-servers.

0.0001 0.001 0.01 0.1 1 10

GF-R

GF+LB-R

GB-EC

No-Dedup

Latency (s)

Layer recipe lookup Slice recipe lookup Slice transfer
Slice compression Layer transfer Slice concatenation
Slice packing Layer loading

Figure 10: Layer restoring latency break-
down (X-axis is log-scale).

0
0.2
0.4
0.6
0.8

1

G
F-

R

G
F+

LB
-R

G
B-

EC

G
F-

R

G
F+

LB
-R

G
B-

EC

G
F-

R

G
F+

LB
-R

G
B-

EC

G
F-

R

G
F+

LB
-R

G
B-

EC

Dal Fra Lon Syd

%
 o

f G
ET

 la
ye

r r
eq

ue
st

s Hit Wait Miss

Figure 11: Preconstruct cache hit ratio.

0
0.2
0.4
0.6
0.8

1
1.2

Dal Fra Lon Syd

L
at

en
cy

 (s
)

GF-R GF+LB-R GB-EC No-Dedup

Figure 12: Performance of
D-servers.

Figure 9 shows the 99th percentile of GET request la-
tencies for P-servers with different cache algorithms. The
GET layer latency decreases with higher hit ratios. For
example, when the cache size increases from 5% to 15%,
the 99th percentile latencies decrease from 0.19 s to 0.15 s
for DupHunter’s ARC+P-UB under workload Dal and
the cache hit ratio increases from 0.8 to 0.92. Moreover,
when the cache size is only 5%, ARC+P-UB significantly
outperforms the other 3 caching algorithms. For example,
ARC+P-UB reduces latency by 1.4 × compared to LRU
for workload Fra. Overall, ARC+P-UB can largely im-
prove GET layer performance for P-servers with a small
cache size.

6.3.2 Preconstruct cache

For the preconstruct cache to be effective, layer restoring
must be fast enough to complete within the time window
between the GET manifest and GET layer request.
Layer restoring performance. To understand the layer
restoring overhead, we disable the preconstruct cache
and measure the average GET layer latency when a layer
needs to be restored on D-servers. We evaluate GB-EC,
GB+LB-R, and GF-R and compare it to No-dedup.

We break down the average reconstruction latency
into its individual steps. The steps in layer reconstruction
include looking up the layer recipe, fetching and con-
catenating slices, and transferring the layer. Fetching and
concatenating slices in itself involves slice recipe lookup,
slice packing, slice compression, and slice transfer. No-
dedup contains three steps: layer metadata lookup, layer
loading from disk to memory, and layer transfer.

As shown in Figure 10, GF-R has the lowest layer

restoring overhead compared to GF+LB-R and GB-EC.
It takes 0.44 s to rebuild a layer tarball for GF-R. Com-
pared to the No-Dedup scheme, the GET layer latency of
GF-R increases by 3.1×. Half of the GET layer latency is
spent on slice concatenation. This is because slice con-
catenation involves writing each slice into a compressed
tar archive, which is done sequentially. Slice packing
and compression are faster, 0.07 s and 0.05 s, respec-
tively, because slices are smaller and evenly distributed
on different D-servers.

For the GF+LB-R scheme, it takes 0.55 s to rebuild
a layer. Compared to GF-R, adding local block-level
deduplication increases the overall overhead by up to
1.4× due to more expensive slice packing. It takes 0.18 s
to pack a slice into an archive, 2.7× higher than GF-R’s
slice packing latency as reading files from the local VDO
device requires an additional file restoring process.

The GB-EC scheme has the highest layer restoring
overhead. The bottleneck is again slice packing which
takes 5 s. This is because each file is split into four data
chunks, distributed on different D-servers, and dedupli-
cated. To pack a slice, each involved file needs to be
reconstructed from different D-servers and then written
to a slice archive, which incurs considerable overhead.
Preconstruct cache impact. To understand how the pre-
construct cache improves D-servers’ GET layer perfor-
mance, we first show its hit ratio on D-servers with three
deduplication schemes (GF-R, GF+LB-R, and GF-EC).
The cache size is set to 10% of the unique dataset.

Figure 11 shows the preconstruct cache hit ratio break-
down. Hit means the requested layer is present in the
cache while Wait means the requested layer is in the

USENIX Association 2020 USENIX Annual Technical Conference 779

0%
10%
20%
30%
40%

D
al

Fr
a

L
on Sy
d

D
al

Fr
a

L
on Sy
d

D
al

Fr
a

L
on Sy
d

D
al

Fr
a

L
on Sy
d

D
al

Fr
a

L
on Sy
d

50 150 200 250 300

%
 o

f r
eq

ue
st

s GF-R GF+LB-R GB-EC

Figure 13: Request wait ratio with different number of
clients.

0.001
0.01

0.1
1

10

D
al

Fr
a

L
on Sy
d

D
al

Fr
a

L
on Sy
d

D
al

Fr
a

L
on Sy
d

D
al

Fr
a

L
on Sy
d

D
al

Fr
a

L
on Sy
d

50 150 200 250 300

Av
er

ag
e w

ai
t t

im
e

(s
) GF-R GF+LB-R GB-EC

Figure 14: Average wait time with different number of
clients (Y-axis is log-scale).

process of preconstruction and the request needs to wait
until the construction process finishes. Miss means the
requested layer is neither present in the cache nor in the
process of preconstruction. As shown in the figure, GF-R
has the highest hit ratio, e.g., 0.98 for the Dal workload.
Correspondingly, GF-R also has the lowest wait and miss
ratios because it has the lowest restoring latency and a
majority of the layers can be preconstructed on time.

Note that the miss ratio of the preconstruct cache is
slightly lower than that of the perfetch cache across all
traces. This is because we use an in-memory buffer to
hold the layer archives that are in the process of construc-
tion to avoid disk I/O. After preconstruction is done, the
layers are flushed to the on-disk preconstruct cache. In
this case, many requests can be served directly from the
buffer and consequently, layer preconstruction does not
immediately trigger cache eviction like layer prefetching.
The preconstruct cache eviction is delayed til the layer
preconstruction finishes.

GF+LB-R shows a slightly higher wait ratio than GF-R.
Eg., the wait ratios for GF-R and GF+LB-R are 0.04 and
0.06, respectively under workload Syd. This is because
the layer restoring latency of GF+LB-R is slightly higher
than GF-R. GB-EC’s wait ratio is the highest. Under
workload Syd, 39% of GET layer requests are waiting for
GB-EC as layers cannot be preconstructed on time.

Figure 12 shows the corresponding average GET layer
latencies of D-servers compared to No-dedup. GF-R and
GF+LB-R increase the latency by 1.04× and 3.1×, re-
spectively, while GB-EC adds a 5× increase. This is due
to GB-EC’s high wait ratios.
Scalability. To analyze the scalability of the preconstruct
cache under higher load, we increase the number of con-
current clients sending GET layer requests, and measure
the request wait ratio (Figure 13) and the average wait
time (Figure 14).

Under workload Fra and Syd, the wait ratio for GB-
EC increases dramatically with the number of concurrent
clients. For example, the wait ratio increases from 15%
to 28% as the number of concurrent clients increases
from 50 to 300. This is because the layer restore latency
for GB-EC is higher and with more concurrent client
requests, more requested layers cannot be preconstructed
on time. Under workload Lon and Dal, the wait ratio for

GB-EC remains stable. This is because the client requests
are highly skewed. A small number of clients issue the
majority of GET layer requests. Correspondingly, GB-EC
also has the highest wait time. Under workload Fra and
Syd, the average wait time increases from 0.6 s to 1.1 s
and 0.4 s to 1.4 s respectively as the number of clients
increases from 50 to 300 for GB-EC.

Although some layers cannot be preconstructed before
the GET layer requests arrive, the preconstruct cache can
still reduce the overhead because layer construction starts
prior to the arrival of the GET requests. This is shown
by the fact that the wait times are significantly lower
than the layer construction times. For GF-R and GF+LB-
R, the average wait times are only 0.001 s and 0.003
s, respectively under workload Dal. When the number
of concurrent clients increases, the average wait time
of GF-R and GF+LB-R remains low. This means that
the majority of layers can be preconstructed on time for
both GF-R and GF+LB-R, and the layers that cannot be
preconstructed on time do not incur high overhead.

7 Conclusion
We presented DupHunter, a new Docker registry archi-
tecture that provides flexible and high performance dedu-
plication for container images and reduces storage uti-
lization. DupHunter supports multiple configurable dedu-
plication modes to meet different space saving and per-
formance requirements. Additionally, it parallelizes layer
reconstruction locally and across the cluster to further
mitigate overheads. Moreover, by exploiting knowledge
of the application domain, DupHunter introduces a two-
tier storage hierarchy with a novel layer prefetch/pre-
construct cache algorithm based on user access patterns.
DupHunter’s prefetch cache can improve GET latencies
by up to 2.8× while the preconstruct cache can reduce
the restore overhead by up to 20.9× compared to the
state of the art.

Acknowledgments
We are thankful to the anonymous reviewers and our
shepherd Abhinav Duggal for their valuable feedback.
This work is sponsored in part by the National Science
Foundation under grants CCF-1919113, CNS-1405697,
CNS-1615411, and OAC-2004751.

780 2020 USENIX Annual Technical Conference USENIX Association

References
[1] Aliyun Open Storage Service (Aliyun OSS).

https://cn.aliyun.com/product/oss?spm=
5176.683009.2.4.Wma3SL.

[2] Docker. https://www.docker.com/.

[3] Docker Hub. https://hub.docker.com/.

[4] Dockerfile. https://docs.docker.com/
engine/reference/builder/.

[5] Microsoft azure storage. https://azure.
microsoft.com/en-us/services/storage/.

[6] Redis. https://redis.io/.

[7] K. Adams and O. Agesen. A Comparison of Soft-
ware and Hardware Techniques for x86 Virtualiza-
tion. ACM SIGOPS Operating Systems Review,
40(5):2–13, 2006.

[8] Alfred Krohmer. Proposal: Dedupli-
cated storage and transfer of container im-
ages. https://gist.github.com/devkid/
5249ea4c88aab4c7bff1b34c955c1980.

[9] Amazon. Amazon elastic container registry. https:
//aws.amazon.com/ecr/.

[10] Amazon. Containers on aws. https://aws.
amazon.com/containers/services/.

[11] A. Anwar, M. Mohamed, V. Tarasov, M. Littley,
L. Rupprecht, Y. Cheng, N. Zhao, D. Skourtis, A. S.
Warke, H. Ludwig, D. Hildebrand, and A. R. Butt.
Improving Docker Registry Design Based on Pro-
duction Workload Analysis. In 16th USENIX Con-
ference on File and Storage Technologies (FAST),
2018.

[12] N. Bonvin, T. G. Papaioannou, and K. Aberer. A
Self-organized, Fault-tolerant and Scalable Repli-
cation Scheme for Cloud Storage. In 1st ACM Sym-
posium on Cloud Computing (SoCC), 2010.

[13] Btrfs. https://btrfs.wiki.kernel.org/
index.php/Deduplication.

[14] R. S. Canon and D. Jacobsen. Shifter: Containers
for HPC. In Cray User Group, 2016.

[15] Z. Cao, H. Wen, F. Wu, and D. H. Du. {ALACC}:
Accelerating restore performance of data dedupli-
cation systems using adaptive look-ahead window
assisted chunk caching. In 16th {USENIX} Con-
ference on File and Storage Technologies ({FAST}
18), pages 309–324, 2018.

[16] Ceph. https://docs.ceph.com/docs/master/
dev/deduplication/.

[17] Cloud Native Computing Foundation Projects.
https://www.cncf.io/projects/.

[18] B. Compression and Deduplication. https://
tinyurl.com/vgvb7wu.

[19] Datadog. 8 Surprising Facts about Real
Docker Adoption. https://www.datadoghq.
com/docker-adoption/.

[20] Docker. Docker Registry. https://github.com/
docker/distribution.

[21] Docker. Docker Registry HTTP API V2.
https://github.com/docker/distribution/
blob/master/docs/spec/api.md.

[22] DockerSlim. https://dockersl.im.

[23] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,
F. Huang, and Q. Liu. Accelerating Restore
and Garbage Collection in Deduplication-based
Backup Systems via Exploiting Historical Infor-
mation. In USENIX Annual Technical Conference
(ATC), 2014.

[24] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,
Y. Zhang, and Y. Tan. Design Tradeoffs for Data
Deduplication Performance in Backup Workloads.
In 13th USENIX Conference on File and Storage
Technologies (FAST), 2015.

[25] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu. AA-
Dedupe: An Application-aware Source Dedupli-
cation Approach for Cloud Backup Services in the
Personal Computing Environment. In IEEE Interna-
tional Conference on Cluster Computing (Cluster),
2011.

[26] GNU Tar. Basic Tar Format. https:
//www.gnu.org/software/tar/manual/html_
node/Standard.html.

[27] Google. Google container registry. https://
cloud.google.com/container-registry/.

[28] Google compute engine. Google Compute Engine.
https://cloud.google.com/compute/.

[29] K. Gschwind, C. Adam, S. Duri, S. Nadgowda, and
M. Vukovic. Optimizing Service Delivery with
Minimal Runtimes. In International Conference on
Service-Oriented Computing (ICSOC), 2017.

USENIX Association 2020 USENIX Annual Technical Conference 781

https://cn.aliyun.com/product/oss?spm=5176.683009.2.4.Wma3SL
https://cn.aliyun.com/product/oss?spm=5176.683009.2.4.Wma3SL
https://www.docker.com/
https://hub.docker.com/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://redis.io/
https://gist.github.com/devkid/5249ea4c88aab4c7bff1b34c955c1980
https://gist.github.com/devkid/5249ea4c88aab4c7bff1b34c955c1980
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/containers/services/
https://aws.amazon.com/containers/services/
https://btrfs.wiki.kernel.org/index.php/Deduplication
https://btrfs.wiki.kernel.org/index.php/Deduplication
https://docs.ceph.com/docs/master/dev/deduplication/
https://docs.ceph.com/docs/master/dev/deduplication/
https://www.cncf.io/projects/
https://tinyurl.com/vgvb7wu
https://tinyurl.com/vgvb7wu
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://github.com/docker/distribution
https://github.com/docker/distribution
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://dockersl.im
https://www.gnu.org/software/tar/manual/html_node/Standard.html
https://www.gnu.org/software/tar/manual/html_node/Standard.html
https://www.gnu.org/software/tar/manual/html_node/Standard.html
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/compute/

[30] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Slacker: Fast Dis-
tribution with Lazy Docker Containers. In 14th
USENIX Conference on File and Storage Technolo-
gies (FAST), 2016.

[31] IBM Cloud Kubernetes Service. Ibm cloud ku-
bernetes service. https://www.ibm.com/cloud/
container-service.

[32] IBM Cloud Kubernetes Service. S3 storage
driver. https://docs.docker.com/registry/
storage-drivers/s3/.

[33] K. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen,
and H. Lei. An Empirical Analysis of Similarity in
Virtual Machine Images. In Middleware Industry
Track Workshop, 2011.

[34] jdupes. https://github.com/jbruchon/
jdupes.

[35] JFrog Artifcatory. https://jfrog.com/
artifactory/.

[36] K. Jin and E. L. Miller. The Effectiveness of Dedu-
plication on Virtual Machine Disk Images. In In-
ternational Systems and Storage Conference (SYS-
TOR), 2009.

[37] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent Hashing and
Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web. In
29th Annual ACM Symposium on Theory of Com-
puting (STOC), 1997.

[38] K. Kumar and M. Kurhekar. Economically Efficient
Virtualization over Cloud Using Docker Contain-
ers. In IEEE International Conference on Cloud
Computing in Emerging Markets (CCEM), 2016.

[39] M. Lillibridge, K. Eshghi, and D. Bhagwat. Im-
proving Restore Speed for Backup Systems that
use Inline Chunk-based Deduplication. In 11th
USENIX Conference on File and Storage Technolo-
gies (FAST), 2013.

[40] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-
likar, G. Trezise, and P. Camble. Sparse Indexing:
Large Scale, Inline Deduplication Using Sampling
and Locality. In 7th USENIX Conference on File
and Storage Technologies (FAST), 2009.

[41] M. Littley, A. Anwar, H. Fayyaz, Z. Fayyaz,
V. Tarasov, L. Rupprecht, D. Skourtis, M. Mohamed,
H. Ludwig, Y. Cheng, and A. R. Butt. Bolt: Towards
a Scalable Docker Registry via Hyperconvergence.

In IEEE International Conference on Cloud Com-
puting (CLOUD), 2019.

[42] M. Lu, D. Chambliss, J. Glider, and C. Constan-
tinescu. Insights for Data Reduction in Primary
Storage: A Practical Analysis. In International
Systems and Storage Conference (SYSTOR), 2012.

[43] N. Megiddo and D. S. Modha. ARC: A Self-
Tuning, Low Overhead Replacement Cache. In
2nd USENIX Conference on File and Storage Tech-
nologies (FAST), 2003.

[44] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes,
M. Kuhn, and J. Kunkel. A Study on Data Dedupli-
cation in HPC Storage Systems. In International
Conference on High Performance Computing, Net-
working, Storage and Analysis (SC), 2012.

[45] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes,
M. Kuhn, and J. Kunkel. A Study on Data Dedupli-
cation in HPC Storage Systems. In International
Conference on High Performance Computing, Net-
working, Storage and Analysis (SC), 2012.

[46] Microsoft. Azure container registry.
https://azure.microsoft.com/en-us/
services/container-registry/.

[47] Microsoft Azure. https://azure.microsoft.
com/en-us/.

[48] A. Muthitacharoen, B. Chen, and D. Mazieres. A
Low-bandwidth Network File System. In ACM
SIGOPS Operating Systems Review, volume 35,
2001.

[49] M. Oh, S. Park, J. Yoon, S. Kim, K. Lee, S. Weil,
H. Y. Yeom, and M. Jung. Design of global data
deduplication for a scale-out distributed storage sys-
tem. In 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS), pages
1063–1073, 2018.

[50] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The
LRU-K page replacement algorithm for database
disk buffering. Acm Sigmod Record, 22(2):297–306,
1993.

[51] OpenStack Swift storage driver. Openstack
swift storage driver. https://docs.docker.com/
registry/storage-drivers/swift/.

[52] J. Paulo and J. Pereira. A survey and classification
of storage deduplication systems. ACM Computing
Surveys (CSUR), 47(1):11, 2014.

782 2020 USENIX Annual Technical Conference USENIX Association

https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://docs.docker.com/registry/storage-drivers/s3/
https://docs.docker.com/registry/storage-drivers/s3/
https://github.com/jbruchon/jdupes
https://github.com/jbruchon/jdupes
https://jfrog.com/artifactory/
https://jfrog.com/artifactory/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://docs.docker.com/registry/storage-drivers/swift/
https://docs.docker.com/registry/storage-drivers/swift/

[53] J. S. Plank, M. Blaum, and J. L. Hafner. Sd codes:
erasure codes designed for how storage systems
really fail. In FAST, pages 95–104, 2013.

[54] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and
P. McDaniel. Cimplifier: Automatically Debloating
Containers. In 11th Joint Meeting on Foundations
of Software Engineering (FSE), 2017.

[55] Redis. SETNX. https://redis.io/commands/
setnx.

[56] I. S. Reed and G. Solomon. Polynomial codes
over certain finite fields. Journal of the society for
industrial and applied mathematics, 8(2):300–304,
1960.

[57] P. Shilane, R. Chitloor, and U. K. Jonnala. 99 dedu-
plication problems. In 8th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage
16), Denver, CO, June 2016. USENIX Association.

[58] H. Shim, P. Shilane, and W. Hsu. Characterization
of Incremental Data Changes for Efficient Data Pro-
tection. In USENIX Annual Technical Conference
(ATC), 2013.

[59] D. Skourtis, L. Rupprecht, V. Tarasov, and
N. Megiddo. Carving Perfect Layers out of Docker
Images. In 11th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud), 2019.

[60] R. P. Spillane, W. Wang, L. Lu, M. Austruy,
R. Rivera, and C. Karamanolis. Exo-clones: Better
Container Runtime Image Management Across the
Clouds. In 8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2016.

[61] K. Srinivasan, T. Bisson, G. R. Goodson, and
K. Voruganti. iDedup: latency-aware, inline data
deduplication for primary storage. In 10th USENIX
Conference on File and Storage Technologies
(FAST), 2012.

[62] Z. Sun, G. Kuenning, S. Mandal, P. Shilane,
V. Tarasov, N. Xiao, and E. Zadok. A Long-Term
User-Centric Analysis of Deduplication Patterns. In
32nd International Conference on Massive Storage
Systems and Technology (MSST), 2016.

[63] V. Tarasov, D. Jain, G. Kuenning, S. Mandal,
K. Palanisami, P. Shilane, S. Trehan, and E. Zadok.

Dmdedup: Device Mapper Target for Data Dedupli-
cation. In Ottawa Linux Symposium, 2014.

[64] V. Tarasov, L. Rupprecht, D. Skourtis, A. Warke,
D. Hildebrand, M. Mohamed, N. Mandagere, W. Li,
R. Rangaswami, and M. Zhao. In Search of the
Ideal Storage Configuration for Docker Containers.
In 2nd IEEE International Workshops on Founda-
tions and Applications of Self* Systems (FAS*W),
2017.

[65] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci.
Cntr: Lightweight OS Containers. In USENIX An-
nual Technical Conference (ATC), 2018.

[66] A. Upadhyay, P. R. Balihalli, S. Ivaturi, and S. Rao.
Deduplication and compression techniques in cloud
design. In 2012 IEEE International Systems Con-
ference SysCon 2012, pages 1–6. IEEE, 2012.

[67] Vdo. https://github.com/dm-vdo/vdo.

[68] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smal-
done, M. Chamness, and W. Hsu. Characteristics
of Backup Workloads in Production Systems. In
10th USENIX Conference on File and Storage Tech-
nologies (FAST), 2012.

[69] E. Wolff. Microservices: Flexible Software Archi-
tecture. Addison-Wesley Professional, 2016.

[70] ZFS. https://en.wikipedia.org/wiki/ZFS.

[71] F. Zhao, K. Xu, and R. Shain. Improving Copy-on-
Write Performance in Container Storage Drivers.
In Storage Developer Conference (SDC), 2016.

[72] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rup-
precht, D. Skourtis, A. S. Warke, M. Mohamed, and
A. R. Butt. Large-scale analysis of the docker hub
dataset. In IEEE International Conference on Clus-
ter Computing (Cluster), 2019.

[73] R. Zhou, M. Liu, and T. Li. Characterizing the
efficiency of data deduplication for big data storage
management. In IEEE International Symposium on
Workload Characterization (IISWC), 2013.

[74] B. Zhu, K. Li, and R. H. Patterson. Avoiding the
Disk Bottleneck in the Data Domain Deduplication
File System. In 6th USENIX Conference on File
and Storage Technologies (FAST), 2008.

USENIX Association 2020 USENIX Annual Technical Conference 783

https://redis.io/commands/setnx
https://redis.io/commands/setnx
https://github.com/dm-vdo/vdo
https://en.wikipedia.org/wiki/ZFS

OSCA: An Online-Model Based Cache Allocation Scheme in Cloud Block Storage
Systems

Yu Zhang†, Ping Huang†§, Ke Zhou†*, Hua Wang†, Jianying Hu‡, Yongguang Ji‡, Bin Cheng‡

†Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology,
Intelligent Cloud Storage Joint Research center of HUST and Tencent

§Temple University,‡Tencent Technology (Shenzhen) Co., Ltd.
*Corresponding author: zhke@hust.edu.cn

◦ Yu Zhang and Ping Huang are the co-first authors

Abstract
We propose an Online-Model based Scheme for Cache
Allocation for shared cache servers among cloud block stor-
age devices. OSCA can find a near-optimal configuration
scheme at very low complexity improving the overall effi-
ciency of the cache server. OSCA employs three techniques.
First, it deploys a novel cache model to obtain a miss ratio
curve (MRC) for each storage node in the cloud infrastructure
block storage system. Our model uses a low overhead method
to obtain data reuse distances from the ratio of re-access traf-
fic to the total traffic within a time window. It then translates
the obtained reuse distance distribution into miss ratio curves.
Second, knowing the cache requirements of storage nodes,
it defines the total hit traffic metric as the optimization tar-
get. Third, it searches for a near optimal configuration using
a dynamic programming method and performs cache reas-
signment based on the solution. Experimental results with
real-world workloads show that our model achieves a Mean
Absolute Error (MAE) comparable to existing state-of-the-art
techniques, but we can do without the overheads of trace col-
lection and processing. Due to the improvement of hit ratio,
OSCA reduces IO traffic to the back-end storage server by
13.2% relative to an equal-allocation-to-all-instances policy
with the same amount of cache memory.

1 Introduction

With widespread deployment of the cloud computing
paradigm, the number of cloud tenants have significantly in-
creased during the past years. To satisfy the rigorous perfor-
mance and availability requirements of different tenants, cloud
block storage (CBS) systems have been widely deployed by
cloud providers (e.g., AWS, Google Cloud, Dropbox, Ten-
cent, etc.). As revealed in previous studies [4, 13, 18, 40],
cloud infrastructures typically employ cache servers, consist-
ing of multiple cache instances competing for the same pool
of resources. Judiciously designed cache policies play an im-
portant role in ensuring the stated service level objectives
(SLO).

The currently used even-allocation policy called EAP or
equal cache partitioning [41] determines the cache require-
ments in advance according to the respective subscribed
SLOs and then provisions cache resources for each cache
instance. However, this static configuration method is often
suboptimal for the cloud environment and induces resource
wastage, because the cloud I/O workloads are commonly
highly-skewed [3, 16, 20].

In this paper, we aim to address the management of cache
resources shared by multiple instances of a cloud block stor-
age system. We propose an Online-Model Scheme for dy-
namic Cache Allocation (OSCA) with miss ration curves
(MRC). OSCA does not require to separately obtain traces to
construct MRCs. OSCA searches for a near-optimal configu-
ration scheme at a very low complexity and thus improves the
overall effectiveness of cache service. Specifically, the core
idea of OSCA is three-fold. First, OSCA develops an online
cache model based on re-access ratio (Section 3.2) to obtain
the cache requirements of different storage nodes with low
complexity. Second, OSCA uses the total hit traffic as the met-
ric to gauge cache efficiency as the optimization target. Third,
OSCA searches for an optimal configuration using dynamic
programming method. Our approach is complementary to the
most recent on-line scheme SHARDS [34]. It can achieve a
suitable trade-off between computation complexity and space
overhead (Section 2.3).

As the key contribution, we propose a Re-Access Ratio
based Cache Model (RAR-CM) to construct the MRC and
calculate the space requirements of each cache instance. Com-
pared with previous models, RAR-CM does not need to collect
and process traces, which can be expensive in many scenarios.
Instead, we shift the cost of processing I/O traces to that of
tracking the unique data blocks in a workload (i.e., the work-
ing set), and this proves advantageous when the number of
unique blocks can be efficiently processed in memory. We
experimentally demonstrate the efficacy of OSCA using an
in-house CBS simulator with I/O traces collected from a CBS
production system. We are in the process of releasing those
traces to the SNIA IOTTA repository [27].

USENIX Association 2020 USENIX Annual Technical Conference 785

Client

Generic block layer

Network

Storage Master

Node

Information

Routing

Information

Replication

Information

Storage Cluster

Virtual File System

File System

 Cache Server
Instance 1 Instance 2 Data

Forwarding

Proxy

Access

Storage Server

Node 1 Node 2

Cache Server

Cache

Pool

Cache

Controller

IO

Analyzer

Miss Ratio

Curve Builder

Conf

Optimizer

and

Setter

 Cache Server
Instance 1 Instance 2

Storage Server

Node 1 Node 2

Figure 1: The architectural view of a cloud block storage system (CBS), which includes a client cloud disk layer, Data Forwarding
layer, and Storage Cluster containing multiple storage servers each of which is paired with a cache server. The cache server is
divided into multiple cache instances respectively responsible for the nodes (i.e., disks) in the corresponding storage server.

The rest of this paper is structured as follows. In Section 2,
we introduce the background and motivation of this study
and take a detailed look at existing cache modeling methods.
In Section 3, we elaborate on the details of our OSCA cache
management policy. In Section 4, we present our experimental
method and the results. In Section 5, we discuss the related
work and conclude in Section 6.

2 Background and Motivation

2.1 Cloud Block Storage
To provide tenants with a general, reliable, elastic and scalable
block-level storage service, cloud block storage (CBS) has
been developed and deployed extensively by the majority of
cloud providers. CBS is made up of client layer, data forward-
ing layer, and storage server layer. The client layer presents
tenants with the view of elastic and isolated logic cloud disks
allocated according to the tenants’ configuration and mounted
to the client virtual machines. The data forwarding layer maps
and forwards I/O requests from the client-end to the storage
server-end. The storage server layer is responsible for pro-
viding physical data storage space and it typically employs
replication to ensure data reliability and availability. More
specifically, a CBS contains multiple components, the client,
the storage master, the proxy and access server, and the storage
server (as shown in Fig. 1). These components are intercon-
nected through fast fiber-optic networks. The client provides
the function of cloud disk virtualization and presents the view
of cloud disks to tenants. The storage master (also called the
metadata server) assumes the management of node informa-
tion, replication information, and data routing information.
The proxy server is responsible for external and internal stor-

age protocol conversion. In our work, the I/O trace collection
tasks are conducted on the proxy server. The access server
is responsible for I/O routing that determines which storage
node should an access be assigned to based on the MD5 digest
calculated from the information of the record. It uses consis-
tent hashing to map each MD5 digest to a positive integer
denoting storage node. The storage server consists of mul-
tiple failure domains to reduce the probability of correlated
failures. Storage servers allocate physical space from conven-
tional hard disk drives, whose performance alone often cannot
meet the requirements of cloud applications dominated by
random accesses. Therefore, a CBS system typically employs
a cache server (comprised of SSDs [18], NVMs [11], or other
emerging storage technologies [20]) to improve performance.

As indicated in Fig. 1, the cache server includes a cache
controller and a cache pool. To ensure scalability, there are of-
ten multiple cache instances, each associated with one storage
node, at the cache server. The user-perceived cloud disk is a
collection of logical blocks commonly spread across several
physical node disks. A single physical disk is thus shared by
multiple virtual disks. As a result, the accesses to a physical
disk are mixed patterns. A cache instance is deployed to per-
form caching for each physical disk and our task is to partition
the cache resource among all the cache instances.

2.2 Cache Allocation Scheme
The cache allocation scheme, which is responsible for cache
resource assignment, largely influences the efficiency of the
cache server. Even-allocation policy (EAP), where each block
storage instance receives the same pre-determined amount
of cache, is typically used in real production systems for its
simplicity. The EAP first analyzes the total cache space re-

786 2020 USENIX Annual Technical Conference USENIX Association

quirements in advance according to the defined service-level
objectives, and then uniformly allocates cache resources for
each cache instance. In essence, it is a static allocation policy
and suffers from cache underutilization if over-provisioned
and performance degradation if under-provisioned, especially
in the cloud environment featuring highly-skewed workloads
with unpredictable and irregular dynamics [3, 16, 20]. As
shown in Fig. 2 (a), we randomly selected 20 storage nodes
and present their IO traffic lasting a period of 24 hours. The
figure confirms that the traffic is unevenly distributed to the
storage nodes in the realistic CBS production system. Pre-
sented from a different perspective, Fig. 2 (b) shows the dis-
tribution of cache requirements of those 20 storage nodes
during the first 12 hours in order to reach for a level of 95%
hit ratio. Again, it shows each storage node has different cache
requirements at different times.

Time (Hour)

0

4

8

12

16

20

St
or

ag
e

N
od

e
N

um
be

r

 0 3 6 9 12 15 18 21 24
Low

High

Mid

(a)

1 2 3 4 5 6 7 8 9 10 11 12

100

200

300

400

C
ac

he
 R

eq
ui

re
m

en
t (

G
B

)

Time (Hour)

(b)

Figure 2: Fig. (a) presents the frequency of accesses over
storage nodes in a typical 24 hour period observed in our
traces. The color indicates the intensity of accesses, measured
by requests per seconds arriving at each storage node in one-
hour time window. The darker the red color in the figure, the
more intensive the I/O traffic is. Fig. (b) shows the distribution
of cache requirements of those 20 storage nodes during the
first 12 hours in order to reach for a level of 95% hit ratio.
The orange horizontal line in each box denotes the median
cache requirement of the 20 storage nodes, while the bottom
and top side of the box represent the quartiles and the lines
that extend out of the box (whiskers) represent data outside
the upper and lower quartiles.

To improve this policy via ensuring more appropriate cache
allocations, there have been proposed two broad categories of
solutions. The first category is intuition-based policies such as
TCM [19], REF [42], which are qualitative methods based
on intuition or experience. These policies often provide a
feasible solution to the combined optimization problem at
an acceptable computation and space cost. For example, ac-
cording to memory access characteristics, TCM categorizes
threads as either latency-sensitive or bandwidth-sensitive and
correspondingly prioritizes the latency-sensitive threads over
the bandwidth-sensitive threads as far as cache allocation con-
cerns. Such coarse grained qualitative methods are heavily

dependent on prior reliable experiences or workload regu-
larities. Therefore, their efficacy is not guaranteed for cloud
workloads which are diverse and constantly changing.

The other category is model-based policies, which are
quantitative methods enabled by cache models typically
described by Miss Rate Curves (MRCs), which plot the ratio
of cache misses to total references, as a function of cache
size [14, 29, 33, 34]. Compared with intuition-based policies,
model-based policies are based on cache models contain-
ing information about dynamic space requirements of each
cache instance and thus are to result in a near-optimal solu-
tion. The biggest challenge with quantitative methods lies
in constructing accurate miss rate curves at practically ac-
ceptable computational and space complexity in an online
manner. Most cache models rely on offline analysis due to
the enormous computation complexity and space overhead,
limiting their practical applicability. A host of research ef-
forts have been conducted to cost-effectively construct miss
rate curves with the goal to enable realistic online MRC
profiling [4, 29, 31, 33, 34]. Especially, the most recent pro-
posed Spatially Hashed Approximate Reuse Distance Sam-
pling (SHARDS) [34] is an on-line cache model which takes
constant space overhead and significantly reduced computa-
tional complexity, yet still generating highly accurate MRCs.
(Section 2.3 presents more details about SHARDS).

2.3 Existing Cache Modeling Methods

The biggest obstacle to apply an optimal policy to a real
system is the huge computational complexity and storage
overhead involved to construct accurate cache models which
are used to obtain the space requirement of each cache in-
stance. Existing commonly-used cache modeling methods
can be divided into two categories, the cache modeling based
on locality quantization method and simulation method.

Locality quantization method analyzes the locality char-
acteristics (e.g., Footprint [39], Reuse Distance [34], Average
Eviction Time [14], etc.) of workloads and then translates
these characteristics into miss ratio curves [7]. The miss ra-
tio curve indicates the miss ratio corresponding to different
cache sizes, which can be leveraged to quantitatively deter-
mine the cache requirements of different storage nodes. The
most commonly used locality characteristic is the Reuse Dis-
tance Distribution (as shown in Fig. 3). The reuse distance
is the amount of unique data blocks between two consecu-
tive accesses to the same data block. For example, suppose
a reference sequence is A-B-C-D-B-D-A, the reuse distance
of data block A is 3 because the unique data set between two
successive accesses to A is {B, C, D}. The reuse distance is
workload-specific and its distribution might change over time.

The distribution of reuse distance has a great influence
on the cache hit ratio. More specifically, a data block hits
the cache only when its reuse distance is smaller than its
eviction distance which is defined as the amount of unique

USENIX Association 2020 USENIX Annual Technical Conference 787

Figure 3: Reuse distance distribution of a one-day long trace
from a CBS storage node.

blocks accessed from the time it enters the cache to the time
it is evicted from the cache. For a given sequence of block
reference, the eviction distance of each block is dependent
on the adopted cache algorithm. Different cache algorithms
could lead to different eviction distances even for the same
block in the reference sequence. The LRU algorithm uses
one list and always puts the most recently used data block
at the head of the list and only evicts the least recently used
block at the tail of the list. As a result, the eviction distance
of the most recently used block is equal to the cache size.
2Q [26], ARC [23], and LIRS [17] use two-level LRU lists
and a data block can enter the second level lists only when
it has been hit in the first level list before. Therefore, these
algorithms can result in larger eviction distance for the blocks
which have been accessed twice. Similarly, MQ [45] uses
multiple-level LRU lists and it causes data blocks with more
access frequencies to have larger eviction distances.

In this paper, we focus on modeling LRU algorithm for two
reasons. First, LRU is widely deployed in many real cloud
caching systems [15, 21]. Second, based on our analysis re-
sults of realistic cloud cache, when the cache size becomes
larger than a certain size, the advanced algorithms would
degenerate to LRU. Fig. 4 presents the reuse distance dis-
tribution of blocks with different access frequencies using
a one-day long trace from a CBS storage node. The trace
is collected from Tencent CBS [30] and we are in the pro-
cess of making it publicly available via the SNIA IOTTA
repository [27]. The bottom and top of each box represent
the minimum and maximum reuse distance. The reuse dis-
tances of blocks whose access frequencies are larger than 2
are smaller than 0.75×107. Therefore, when the cache size
becomes larger than 229 GB (0.75×107 blocks, each size be-
ing 32 KB), the data blocks whose frequencies are larger than
2 can all be hit in the LRU cache because their reuse distances
are smaller than the cache size. Other advanced algorithms
(e.g., 2Q , ARC, and LIRS) which cause blocks whose occur-
rences are larger than 2 to have larger eviction distance would

Figure 4: The reuse distance distribution of blocks of a one-
day long trace from a CBS storage node, grouped by the
access frequencies.

degenerate to LRU [44]. Therefore, in our caching system
where cache size for each storage node is close to 229 GB
(assuming EAP is deployed), the performance differences
between LRU and other algorithms are negligible.

Existing cache modeling methods (ours included) calculate
the hit ratio of the LRU algorithm as the discrete integral sum
of the reuse distance distribution (from zero to the cache size)
curve (as shown in Eq. 1).

hr(C) =
C

∑
x=0

rdd(x) (1)

In the above equation, hr(C) is the hit ratio at cache size
C and rdd(x) denotes the distribution function of reuse dis-
tance. However, obtaining the reuse distance distribution has
an O(N ∗M) complexity, where N is the total number of
references in the access sequence and M is number of the
unique data blocks of references [22]. Recent studies have
proposed various ways to decrease the computation complex-
ity to O(N ∗ log(n)) using Search Tree [24], Scale Tree [43],
Interval Tree [1]. These methods use a balanced tree struc-
ture to get a logarithmic search time upon each reference to
calculate block reuse distances.

SHARDS [34], further decreases the computation complex-
ity with fixed amount of space. To build MRCs, SHARDS first
selects a representative subset of the traces through hashing
block addresses. It then inputs the selected traces to a conven-
tional cache model to produce MRCs. Since SHARDS only
needs to process a subset of the traces, it significantly reduces
the computation overheads and memory space to host the
traces. Therefore, SHARDS has the potential to be applied in
an on-line manner. All sampled traces can be stored in a given
amount of memory by dynamically adjusting the sample ratio.
It should be noted that it requires to rescale up the results to
obtain the eventual reuse distance for the original traces.

In this paper, we propose an on-line cache model called

788 2020 USENIX Annual Technical Conference USENIX Association

RAR-CM to build MRC which is based on a metric called
re-access ratio. Our approach does not rely on collecting
traces beforehand. Both our approach and SHARDS can be
practically applied on-line. Our approach is different from
SHARDS in the following aspects. First, SHARDS uses a
sampled subset of traces to construct MRCs, while our ap-
proach processes I/O requests inline and does not store or
process a separate I/O trace. Second, on average it takes
O(lg(M ∗R)) asymptotic complexity for SHARDS to update
the information in the balanced tree for every sampled block
access, where M is the total number of unique blocks in the
trace. Our approach only requires to update two counters and
thus is O(1).

Table 1 summarizes the comparison between SHARDS
and RAR-CM in four primary aspects. M, n, and R denotes
the total number of unique blocks, the maximum number of
records that can be contained in the fixed memory(SHARDS),
and the sampling ratio (SHARDS). From the table, we can
see that both SHARDS and RAR-CM can potentially be ap-
plied to construct MRCs in an on-line manner. We can choose
to use either of them based on specific scenarios. A general
guidance is if we are more concerned about saving computa-
tional resources and the available memory can hold support
all unique blocks, then our RAR-CM is the choice. If we are
more constrained by memory and computing resources is
not an issue (e.g., we have GPU available), then SHARDS is
the choice. In fact, SHARDS and RAR-CM are two similar
and complementary approaches that can achieve an optimal
trade-off point between computation complexity and space
overhead. As can be seen from Table 1, one major disadvan-
tage with our approach is that it requires O(M) space to store
the information about each unique block. Therefore, in cases
where memory is constrained and the working set is relatively
large, SHARDS is a better choice.

Table 1: The comparison of RAR-CM and SHARDS. M is
the number of unique data blocks in the access stream. R
denotes the sampling ratio in SHARDS, and n is the number
of the sampled unique blocks in the fixed memory. Reuse
distribution generation complexity is O(1) for both methods.

SHARDS RAR-CM
Use full trace No Yes
Space
Complexity

O(M ∗R) fixed sample
O(M)

O(1) fixed memory
Block Access
Overhead

O(log(M ∗R)) fixed sample
O(1)

O(log(n)) fixed memory

Simulation-based cache modeling and recently proposed
miniature simulation based on the idea of SHARDS [33]
need to concurrently run multiple simulation instances to de-
termine the cache hit ratio in different cache sizes. While
SHARDS can be applied on-line to process currently sampled
traces to obtain the miss ratio curve, the miniature simula-

tion constructs the miss ratio curves based on collected trace
beforehand, which could incur no-trivial overhead. We have
conducted an experiment with the miniature simulation [33].
Specifically, we run 20 simulation routines (each routine starts
20 threads) simultaneously on a 12-core CPU (i.e., Intel Xeon
CPU E5-2670 v3), and this method takes around 69 minutes
to analyze a one-day-long IO trace file and most of the time is
consumed in trace reading (1.067 µs / record) and IO mapping
(2.406 µs / record).

3 Design and Implementation

3.1 Design Overview

OSCA performs three steps, online cache modeling, optimiza-
tion target defining, and the optimal configuration searching.
Fig. 5 illustrates the overall architecture of OSCA. Upon re-
ceiving a read request from the client, CBS first partitions and
routes the request to the storage node and finds the data in
the index map of the corresponding cache instance. If it is
found in the map on the cache server, the data will be returned
to the client directly, and the request will not need to go to
the storage server node. Otherwise, the data located in the
corresponding physical disk is fetched and returned. A write
request is always first written to the cache, and then flushed to
the back-end HDD storage asynchronously. All I/O requests
are monitored and analyzed by the cache controller for cache
modeling. Then the cache controller will find the optimal
configuration scheme according to the cache model and the
optimization target and finally reassign the cache resource for
each cache instance periodically.

Instance 1

Client Read

Cache
Pool

Client Write

Storage
Server

IO Partition and Routing

Cache Controller

Configuration Searching

ASYN

Instance 2

Periodically
Reconfiguring

Instance 1
Instance 2Cache

Modeling

Target Defining

IO Statistic

Figure 5: The overall architecture of OSCA. Each cache in-
stance is paired with a physical disk which provides storage
space for cloud disks. The cache controller monitors the ac-
cess traffic to physical disks and construct cache models to
guide the reassignment of cache resources among cache in-
stances.

USENIX Association 2020 USENIX Annual Technical Conference 789

3.2 Re-access Ratio Based Cache Model

The main purpose of cache modeling is to obtain the miss ratio
curve, which describes the relationship between miss ratio
and cache size. The resultant curve can be used in practical
applications to instruct cache configurations. We propose a
novel online re-access ratio cache model (RAR-CM), which
can be constructed without the computational overhead of
trace collection and processing, when compared with existing
cache models. Fig. 6 shows the main components of RAR-CM.
For a request to block B, we first check its history information
in a hash map and obtain its last access timestamp (lt) and last
access counter (lc, a 64-bit number denoting the total number
of requests which have been seen so far at the time of last
access timestamp, or equivalently the block sequence number
of the last reference to block B). We then use lt, lc and RAR
curve to calculate the reuse distance of block B. Then the
resultant reuse distance is used to calculate the miss ratio
curve.

B

Hash map for block

history information

1. Time interval = CT – lt(B) = τ
2. Traffic = CC - lc(B) = T(τ)

3. rd(B) = (1 - RAR(lt(B),τ)) × T(t ,τ) = x

Reuse distance

distribution

HistoryInformation{

 uint64_t lt;

 uint64_t lc;

}

Stream of request
CTlt(B)

lt(B) : last access timestamp of block B CT: current timestamp

B : the block-level request CC : current request count

lc(B) : last access counter at block B rd(B) : reuse distance of block B

hr(c) : the hit ratio of cache size c mr: miss ratio

rdd(x) : the ratio of data with the reuse distance x

Miss ratio curve

B

m
r

c

c

hr(c)=∑rdd(x)
x=0

Figure 6: The overview of re-access ratio based cache model-
ing. It calculates the reuse distance using re-access ratio and
then constructs the miss rate curve based on reuse distance.

RAR, which is defined as the ratio of the re-access traffic

to the total traffic during a time interval τ after time t, is ex-
pressed as RAR(t,τ). It essentially represents a metric reflect-
ing how blocks in the following time interval are re-accessed.
Fig. 7 shows the re-access ratio during a time interval τ with
block access sequence {A, B, C, D, B, D, E, F, B, A}. The
number of reaccessed blocks (which includes reaccess to the
same block, e.g., B) is 4 (the blue letters marked in Fig. 7),
and the total traffic is 10. Therefore, we obtain RAR(t,τ) = 4
/ 10 = 40%.

Timeline

t

ABCDBDEFBA···X X···

RAR is defined as a ratio of the re-

access traffic to the total traffic, so

RAR(t,τ) = 4/10 = 40%.

τ

tB1 tB2

Figure 7: The definition of re-access ratio of an access se-
quence during a time period [t, t + τ].

We use the obtained RAR for cache modeling because it
has a number of favorable properties:

• It can be easily translated to the locality characteristics.

• It can be obtained with low overhead given it’s complex-
ity of O(1).

• It can be stored with low overhead of memory footprint.

Locality characteristics. RAR can be translated to the
commonly used footprint and reuse distance characteristics.
As mentioned, the reuse distance is the unique accesses be-
tween two consecutive references to the same data block.
Assuming that the time interval between two consecutive
references of block B is τ, then the reuse distance of block
B, rd(B), can be represented by Eq. 2, where RAR(t,τ) and
T (t,τ) means the re-access ratio and total block accesses be-
tween the two consecutive references to block B, respectively.
t indicates the last access timestamp of block B. For instance,
to calculate the reuse distance of the second B at time tB2,
we use tB2− tB1 as the τ value for RAR function and 3 as the
value of T (t,τ) in Eq. 2.

rd(B) = (1−RAR(t,τ))×T (t,τ) (2)

Complexity of O(1). Fig. 8 describes the process of ob-
taining the re-access ratio curve. RAR(t0,t1-t0) is calculated
by dividing the re-access-request count (RC) by the total re-
quest count (TC) during [t0,t1]. To update RC and TC, we first
lookup the block request in a hash map to determine whether
it is a re-access-request. If found, it is a re-access-request and
both TC and RC should be increased by 1. Otherwise, only
TC is increased by 1.

790 2020 USENIX Annual Technical Conference USENIX Association

Stream of request

B

Hash map for the block
fast lookup

t1

Found in
the hash

map

Not Found
1. TC TC + 1
2. Insert B into the
hash mapTC TC + 1

RC RC + 1

t0

RAR(t0 , t1-t0) = RC / TC
t0 : the start timestamp t1 : current timestamp
B : the block-level request TC : total request count
RC : the re-access-request count

Figure 8: The process of obtaining re-access ratio curve. For
each incoming block access, it only needs to update two coun-
ters, i.e., RC and TC.

Memory footprint. Fig. 9 shows the RAR curves cal-
culated at the end of each of the six trace days. As can
be seen, those curves have similar shapes and can be ap-
proximated by logarithmic curves which have the form of
RAR(τ) = a∗ log(τ)+b, where τ is the time variable. There-
fore, we only store the two parameters to represent the curve,
which has negligible overhead. Note that the presented loga-
rithmic curves are obtained from our traces. Others ways of
compactly representing the distribution are possible (e.g., a
Weibull distribution [36]). Moreover, for different workloads
the shapes of the RAR curves may vary and correspondingly
we could approach that with other distributions.

In summary, we calculate the RAR curve using a hash map
to decide whether a block reference is a re-access or not and
then based on the RAR curve we obtain the reuse distance
distribution according to Eq. 2. Finally, the reuse distance
distribution is translated to the miss ratio curve leveraging
Eq. 1. With the miss ratio curve in place, we then perform
cache reconfiguration. Ideally, we want to obtain all the RAR
curve at each timestamp which is cost-ineffective. Fortunately,
we observe that RAR(t,τ) is relatively insensitive to time t by
analyzing a week-long cloud block storage trace (a mixed-
trace consisting of tens of thousands of cloud disks’ requests).
Specifically, although cloud workloads are highly dynamic,
we observe that the RAR curves are stable over a couple of
days, which means changes of RAR curve are negligible over

0.7

0.8

0.9

1

0 4 8 12 16 20 24

Re
-a

cc
es

s R
at

io
 R

A
R

(t,
τ)

Time Interval τ (hour)

day1 day2 day3
day4 day5 day6

Figure 9: The RAR curves of the six days are similar and can
be fitting-curved using as logarithmic functions. These RAR
curves are calculated based on the traces collected from one
storage node of Tencent CBS.

days. Therefore, in our experiment we only calculate the RAR
curve once a day to represent the RAR curve for the next
coming day. Specifically, assume the starting time of next day
is t0 and a block is accessed at time t1. Then we use t1− t0 as
input to the RAR curve function to calculate it’s reuse distance
using Eq. 2. Note that if the block is accessed the first time,
then it’s reuse distance is to set to infinitely large, meaning it
is a miss.

3.3 Optimization Target

After obtaining cache modeling, we should define a cache ef-
ficiency function as the optimization target. Previous studies
have suggested a number of different optimization target (e.g.
RECU [41], REF [42], et al.). For instance, RECU considers
the elastic miss ratio baseline (EMB) and the elastic space
baseline (ECB) to balance tenant-level fairness and the overall
performance. Considering our case being cloud server-end
caches, in this work we use the function E in Eq. 3 as our
optimization target. HitRationode represents the hit rate of the
node and Trafficnode denotes the I/O traffic to this node. There-
fore, this expression represents the overall hit traffic among
all nodes. The bigger the value of E is, the less traffic is sent
to the backend HDD storage. Admittedly, other optimization
targets are also possible and can be decided taking into ser-
vice level objective account. Based on this target function,
our aim is to find a cache assignment method which leads to
the largest hit traffic and the smallest traffic to the back-end
storage server.

E =
N

∑
node=1

HitRationode×Tra f f icnode (3)

USENIX Association 2020 USENIX Annual Technical Conference 791

3.4 Searching for Optimal Configuration

Based on the cache modeling and defined target mentioned
above, our OSCA searches for the optimal configuration
scheme. More specifically, the configuration searching pro-
cess tries to find the optimal combination of cache sizes of
each cache instance to get the highest efficiency E.

To speed up the search process, we use dynamic program-
ming (DP), since a large part of calculations are repetitive.
A DP method can avoid repeated calculations using a table
to store intermediate results and thus reduce the exponential
computational complexity to a linear level.

3.5 Implementation Details

Algorithm 1 presents the pseudocode of the process of our
RAR-CM. The content of block history information is shown
in Fig. 6. The re-access ratio curve and the reuse distance dis-
tribution are arrays. The subroutine update_reuse_distance
(Algorithm 2) is used to update the reuse distance distribution
RD according to the re-access ratio curve RAR. And the sub-
routine get_miss_ratio_curve (Algorithm 3) is used to obtain
the miss ratio curve according to the reuse distance distribu-
tion RD. Specifically, RD is formed by an array containing
1024 elements, each denoting 1 GB wide (32768 cache blocks
of size 32 KB), representing the reuse distances up to 1 TB.
The get_miss_ratio_curve calculates the cumulative distribu-
tion function for RD.

From the pseudocode, we can know that the reuse dis-
tance calculation of each block is very lightweight which
only involves several simple operations and takes hundreds of
nanoseconds. This means RAR-CM has a negligible influence
on the storage server. And the history information of each ref-
erenced block contains two 64-bit numbers, occupying very
little memory space. More details for the discussion of CPU,
memory, network usage can be referenced to Section 4.5.

4 Evaluation

4.1 Experimental Setup

Trace Collection. To evaluate OSCA, we have collected six-
day long I/O traces from a production cloud block storage
system using a proxy server which is responsible for I/O for-
warding between client and storage server. The cloud block
storage system has served tens of thousands of cloud disks.
The trace files record every I/O request issued by the tenants
and each item of the trace file contains the request times-
tamp, cloud disk id, request offset, I/O size, and so on. To not
influence tenants’ I/O performance, we have optimized the
collection tasks by merging and reporting I/O traces to the
trace storage server periodically. We trigger the collection
tasks to scan the local I/O logs on the proxy server and report
the merged I/O traces every hour, which is an appropriate

Algorithm 1: The pseudocode of the RAR-CM process
Data: Initialize the global variable: hash map for block

history information H, current timestamp CT ,
current block sequence number CC, and the
re-reference count RC. The re-access ratio curve
RAR. The reuse distance distribution RD

Input: a sequence of block accesses
Output: output the miss ratio curve

1 while has unprocessed block access do
2 B← next block
3 CC←CC+1
4 CT ← current timestamp
5 if B in H then
6 RC← RC+1
7 RAR(H(B).lt,CT −H(B).lt) = RC/CC
8 H(B).lc←CC
9 H(B).lt←CT

10 end
11 else
12 Initialize H(B)
13 H(B).lc←CC
14 H(B).lt←CT
15 Insert H(B) into H
16 end
17 update_reuse_distance(B)
18 end
19 return get_miss_ratio_curve(RD)

Algorithm 2: Subroutine update_reuse_distance
Input: currently accessed block B

1 if B in H then
2 time_interval =CT −H(B).lt
3 tra f f ic =CC−H(B).lc
4 rd(B) = (1−RAR(H(B).lt, time_interval))∗traffic
5 RD(rd(B))← RD(rd(B))+1
6 end

Algorithm 3: Subroutine get_miss_ratio_curve
Input: the reuse distance distribution RD

1 total = sum(RD)
2 tmp = 0
3 for element in RD do
4 tmp← tmp+ element
5 MRC.append(1− tmp/total)
6 end
7 return MRC

time interval that can balance the number of tasks with the
size of the merged trace files.

Simulator Design. We have implemented a trace-driven

792 2020 USENIX Annual Technical Conference USENIX Association

simulator in C++ language for the rapid verification of the
optimization strategy. The architecture of the simulator con-
sists of an I/O generator, an I/O router, cache instances and
storage nodes, etc. The I/O generator is for trace reading and
transforming the trace records to the specific I/O structure of
the simulator. The I/O router is responsible for request rout-
ing and forwarding, which is used to simulate the forwarding
layer (shown in Fig. 1) to map each request to a specific stor-
age node. The storage nodes simulate the nodes at the storage
server layer (shown in Fig. 1). Each node is responsible for
one magnetic storage drives and maintains the data mapping
relationships inside that node. The cache instances is between
the I/O router and the storage nodes and is part of the cache
layer of the storage system. Each instance belongs to only one
storage node and consists of the index map, metadata list, con-
figuration structure, statistic housekeeping data structure, etc.
The index map is implemented by using the unordered_map
in C++ STL and the metadata list is organized according to
the cache algorithm. Considering our cloud simulator is de-
signed to be cloud storage system oriented, we choose only to
use our own CBS trace in our evaluations. In our future work,
we plan to evaluate our approach using other available traces,
especially for comparing the efficacy of constructing MRCs.

4.2 Basic Comparisons

In this section we compare the cache model based on re-access
ratio (hereafter called RAR-CM) with other three methods, in-
cluding existing even-allocation method (Original), miniature
simulation with the sampling idea from SHARDS [33] (Mini-
Simulation), and an ideal case (Ideal) where exact miss ratio
curves are used in placement of constructed cache models. We
uses the jhash [35] function in implementing Mini-Simulation
for the uniform randomized spatial sampling. This method
leverages jhash to map each I/O record (using attributes like
volume ID and data offset) to a location address. The accesses
to the same physical block will be hashed to the same value.
The I/O record will be selected only when (V mod P) < T ,
where P and T means the modulus and threshold, respectively.
As in SHARDS, SR = T/P represents the sampling ratio. In
our experiments, we adopt a fixed sampling ratio of 0.01. We
use the RAR curves in the prior 12 hours when calculating
reuse distance. As illustrated in Fig. 9, the RAR curves ex-
hibit good stability, i.e., they show minimum variations in the
following days.

Table 2 shows the overall experimental results. In our con-
figuration, we set the average cache size for each storage node
as 200 GB (currently-practical configuration). All cache mod-
els perform comparably in terms of hit ratio. However, we
have observed important back-end traffic savings despite of
the seemingly negligible hit ratio improvements. RAR-CM
compared to Original assignment policy with same amount
of cache space reduces I/O traffic to back-end storage server
by 13.2%. To achieve the same improvement, the Original

method would require 50% additional cache space on each
storage node (i.e., increase from 200 GB / Node to 300 GB /
Node) based on the traces we collected from the production
CBS system.

Table 2: The overall experimental results
Hit Back-end Average Extra

Ratio Traffic Error Traffic
Original 94.45% 1 - No

Mini- 94.85% 0.929 0.017 Yes
Simulation
RAR-CM 95.14% 0.868 0.005 No

Ideal 95.49% 0.806 0 No

Note: The back-end traffic are normalized to that of Orig-
inal method.

The hit ratio of Mini-Simulation is also quite high: 0.29%
and 0.64% less than our cache model and the ideal model,
respectively. This is consistent with the results in the earlier
studies [33].

4.3 Miss Ratio Curves
We next take a closer look at the miss ratio curves of the three
cache models. Fig. 10 shows the miss ratio curves of RAR-CM
(the blue solid line with the cross), Mini-Simulation based on
SHARDS (the green dotted line), and the exact simulation
(the orange solid line). This figure shows the results of 20
randomly selected, but representative storage nodes. Other
storage nodes have similar results. The cache space require-
ments vary among storage nodes and the curves of RAR-CM
are closer to the curves of the exact simulation than that of
Mini-Simulation in most cases. The advantage might be at-
tributed to RAR-CM constructing the cache model based on
the full set of trace and Mini-Simulation using spatial sam-
pling causing some fidelity loss.

To evaluate the deviations of curves against the exact miss
ratio curves, we report the metric of Mean Absolute Error
(MAE) commonly used in evaluating cache models [33, 34].
In our experiments, we compute miss ratio curves at cache
sizes 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,
140, 150, 200, 300, 400 and 500 GB. Fig. 11 presents the
MAE error distributions of RAR-CM and Mini-Simulation
for the selected 20 storage nodes. The MAE averaged across
all 20 storage nodes (labeled "Total") for RAR-CM is smaller
than for Mini-Simulation: 0.005 vs 0.017, in addition to being
smaller for each of the 17 out of the 20 nodes.

4.4 Overall Efficacy of OSCA
In this section, we compare the overall efficacy of OSCA in
terms of hit ratio and backend traffic using the above men-
tioned three cache models, respectively. We present the results

USENIX Association 2020 USENIX Annual Technical Conference 793

Figure 10: The miss ratio curve of 20 storage nodes. The cache space requirements vary among storage nodes and the curves of
RAR-CM are closer to the curves of the exact simulation than that of Mini-Simulation in most cases.

Figure 11: The MAE error distribution of our method RAR-CM and Mini-Simulation among storage nodes. The last two boxes
are total MAE results. The middle lines in boxes indicate the middle values. The bottom and top side of the box represent the
quartiles and the lines that extend out of the box (whiskers) represent data outside the upper and lower quartiles.

from the last three days of the trace, using the first 3 days
as warm up periods. As shown in Fig. 12-a, OSCA based on
RAR-CM can outperform the original assignment policy in
the cache hit ratio without requiring additional cache space.
Fig. 12-b shows the back-end traffic with different cache man-
agement policies. The back-end traffic is normalized to that
of Original method. From the figure, we can know that on
average, OSCA based on RAR-CM can reduce I/O traffic to

back-end storage server by 13.2%. As shown in Fig. 12, RAR-
CM results in slightly better hit ratios that Mini-Simulation
except for hours 48−60.

Fig. 12-c show the cache size configuration for each node
at different times determined by our OSCA algorithm with
RAR-CM. It can be seen that the demand for cache space
varies considerably between nodes and our approach did re-
spond correspondingly to meet the needs at different times.

794 2020 USENIX Annual Technical Conference USENIX Association

(a) (b) (c)

Figure 12: Fig. (a) and Fig. (b) represents the hit ratio results for the last three days and the normalized back-end traffic using the
three cache models, respectively. Fig.(c) shows OCSA adjusts the cache space for 20 storage nodes dynamically in response to
their respective cache requirements decided by our cache modeling. The middle line in Fig. (c) represents the average cache size
for each node. The results are obtained from traces mentioned in Section 4.1.

Based on the optimal cache size configuration scheme, OSCA
periodically reassigns the corresponding cache size to each
cache node every 12 hours.

4.5 Discussion
When trace collection and processing present a significant
cost, RAR-CM offers an attractive alternative to other state-
ot-the-art techniques. In this section, we make a comparison
between RAR-CM and Mini-Simulation in terms of CPU,
memory, network usage.

As mentioned in Section 3.2, upon each block request,
RAR-CM first checks its history information in a hash map
and calculates the block reuse distance. The history informa-
tion of each referenced block contains two 64-bit numbers
denoting the last access timestamp and the block sequence
number of the last reference to each block, respectively. In
our experiment, there are approximately 55.8 million unique
blocks referenced each day in a storage node, occupying only
0.87 GB memory space via using RAR-CM. Besides the low
memory resource usage, RAR-CM does not induce extra net-
work traffic as all the computation is completed on the storage
server nodes, enabling the miss ratio curves to be constructed
and readily available in an online fashion. As for the CPU
resource usage, as shown in Section 3.2, the reuse distance cal-
culation of each block is very lightweight which only involves
several simple operations and takes hundreds of nanoseconds.

Mini-Simulation needs to concurrently run multiple simu-
lation instances to construct the cache miss ratio in different
cache sizes. However, for very long traces, this method can
consume a large number of computation resources (in our
implementation, we start a thread in the main routine for each
cache algorithm in a specific cache size). More importantly,
I/O traces (there are about 4.46 billion I/O records per day in
a typical CBS system) ought to be transmitted to and analyzed
by a dedicated analysis system to avoid influencing service
times. According to our experimental results, the transmission

of the I/O records from these 20 nodes consumes approxi-
mately 72 GB of network bandwidth each day.

To quantify the runtime overhead, we have experimented
with the Mini-Simulation algorithm. Specifically, we run 20
simulation routines (each routine starts 20 threads) simulta-
neously on a 12-core CPU (i.e., Intel Xeon CPU E5-2670
v3). The traces are stored in a storage server and each thread
accesses the traces via the network file system. This method
takes around 69 minutes to analyze a one-day-long I/O trace
file and most of the time is consumed in trace reading (1.067
µs / record) and I/O mapping (2.406 µs / record). The I/O
mapping determines which storage node should a record be
assigned to based on the MD5 digest from the information
of the record. We maintain the total time for the trace read-
ing and I/O mapping and divide them by the total number of
records processed to obtain the overhead per record.

5 Related Work

Our work is mostly related to the management of shared cache
resource, which widely exists in various contexts, including
multi-core processors, web applications, cloud computing and
storage. A variety of methods have been proposed and they
can be generally classified into heuristic methods, model-
based quantitative methods.

Heuristic Methods: To achieve fairness in cache partition-
ing, the max-min fairness (MMF) and weighted max-min
fairness methods are popularly used [12]. These two meth-
ods fairly satisfy the minimum requirements of each user and
then evenly allocate unused resources to users having addi-
tional requirements. Different from MMF, Parihar et al. [25]
propose the method of cache rationing, which ensures that
the program cache space is not less than a set value and free
cache space is allocated to a specific program. Kim, et al. [19]
propose TCM which divides threads into delay-sensitive and
bandwidth-sensitive groups and apply different cache policies

USENIX Association 2020 USENIX Annual Technical Conference 795

to them. Similar to the TCM method, Zhuravlev et al. [46]
proposed a scheduling algorithm called Distributed Intensity
(DI), which adjusts the scheduling algorithm by analyzing the
classification schemes of each thread through a novel method-
ology. Other methods, like [32], [12], and [42], have been
proposed based on the game theory principles.

Model-based Quantitative Methods: Besides heuristic
methods mentioned above, there have also been proposed
many quantitative methods. These methods use locality met-
rics (e.g., Working Set Size, Average Footprint, Reuse Dis-
tance, and so on) to quantify the locality of the access patterns
so as to predict the hit (or miss) ratio [7]. Reasonably, a shared-
cache partition can be efficient using quantitative methods.
Working Set Size. Inspired by the principle of locality, there
are many studies [2, 9, 10] modeling the locality characteris-
tics using working set size (WSS). For instance, based on the
WSS theory, Arteaga et al. [2] propose an on-demand cloud
cache management method. Specifically, they used Reused
Working Set Size (RWSS) model, which only captures data
with strong temporal locality, to denote the actual demand
of each virtual machine (VM). Using the RWSS model, they
can satisfy VM cache demand and slow down the wear-out
of flash cache as well. Footprint. Footprint, which is defined
as the number of unique data blocks referenced in a time in-
terval, has been widely applied to cache resources allocation.
Various methods have been proposed to estimate the footprint
of workloads [6, 8, 28, 37] and they make trade-off between
the complexity and accuracy of the measurement. Xiang et
al. [38] propose the HOTL theory, which calculates the aver-
age footprint in a linear time complexity and apply the HOTL
theory to transfer the average data footprint to reuse distance
and predict the miss ratio in their following work [39]. By
using this method, they can predict the interference of cache
sharing without the need of parallel testing with multiple of
cache sizes, and thus the miss ratio can be evaluated with low
overhead. Reuse Distance. Reuse distance, defined as the
unique accesses between two consecutive references to the
same data, can be translated to hit ratio and a host of research
efforts have been put to efficiently obtain reuse distance. Matt-
son et al. [22] give the definition of reuse distance and propose
a specific method to measure reuse distance. Later researches
use tree-based structure to optimize the computation complex-
ity of reuse distance calculation [1, 5, 24, 43]. Waldspurger et
al. [34] propose a spatially hashed approximate reuse distance
sampling (SHARDS) algorithm to efficiently obtain reuse dis-
tance distribution and construct approximate miss rate curve.
Hu et al. [14] propose the concept of average eviction time
(AET) and relate the miss ratio at cache size c with AET using
the formula mr(c) = P(AET(c)), which indicates that the miss
ratio is the proportion of data whose reuse distance is greater
than AET. In this study, AET is obtained through the Reuse
Time Histogram (RTH) with a certain sampling method.

6 Conclusion

Cloud block storage (CBS) systems employ cache servers to
improve the performance for cloud applications. Most existing
cache management policies fall short of being applied to CBSs
due to their high complexity and overhead, especially in the
cloud context with large amount of I/O activity. In this paper,
we propose a cache allocation scheme named OSCA based
on a novel cache model leveraging re-access ratio. OSCA can
search for a near optimal configuration scheme at a very low
complexity. We have experimentally verify the efficacy of
OSCA using trace-driven simulation with I/O traces collected
from a production CBS system. Evaluation results show that
OSCA offers lower MAE and computational and representa-
tional complexity compared with miniature simulation based
on the main idea of SHARDS. The improvement in hit ra-
tio leads to a reduction of I/O traffic to the back-end storage
server by up to 13.2%. We are working on releasing our traces
via the SNIA IOTTA repository [27] and integrating our pro-
posed technique into the real CBS product system.

Acknowledgments

We would like to thank the anonymous reviewers for the
valuable feedbacks and comments. We are especially grateful
to our shepherds Jiri Shindler and Michael Mesnier for their
tremendous help in improving the presentation and paper
quality. We would also like to thank Tencent Technology
(Shenzhen) Co., Ltd. for experimental environment, I/O trace
support and releasing the trace to the community. This work
is supported by the Innovation Group Project of the National
Natural Science Foundation of China No.61821003.

References

[1] George Almási, Cǎlin Caşcaval, and David A Padua.
Calculating stack distances efficiently. In Proceedings
of the 2002 workshop on Memory system performance,
pages 37–43, 2002.

[2] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan
Sundararaman, and Ming Zhao. CloudCache: On-
demand flash cache management for cloud computing.
In Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST ’16), pages 355–369,
2016.

[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international con-
ference on Measurement and Modeling of Computer
Systems, pages 53–64, 2012.

796 2020 USENIX Annual Technical Conference USENIX Association

[4] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving cache hit rate by maximizing hit
density. In Proceedings of the 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI ’18), pages 389–403, 2018.

[5] Bryan T Bennett and Vincent J. Kruskal. LRU stack
processing. IBM Journal of Research and Development,
19(4):353–357, 1975.

[6] Erik Berg and Erik Hagersten. Fast data-locality profil-
ing of native execution. In Proceedings of the 2005 ACM
International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS ’05), pages
169–180, 2005.

[7] Daniel Byrne. A survey of miss-ratio curve construction
techniques. arXiv preprint arXiv:1804.01972, 2018.

[8] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan
Solihin. Predicting inter-thread cache contention on a
chip multi-processor architecture. In Proceedings of the
11th International Symposium on High-Performance
Computer Architecture (HPCA ’05), pages 340–351.
IEEE, 2005.

[9] Peter J Denning. The working set model for program
behavior. Communications of the ACM, 11(5):323–333,
1968.

[10] Peter J Denning and Donald R Slutz. Generalized work-
ing sets for segment reference strings. Communications
of the ACM, 21(9):750–759, 1978.

[11] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing DRAM
footprint with NVM in Facebook. In Proceedings of the
Thirteenth European Conference on Computer Systems
(EuroSys ’18), pages 1–13, 2018.

[12] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
Resource Fairness: Fair Allocation of Multiple Re-
source Types. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI ’11), volume 11, pages 24–24, 2011.

[13] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Ying-
wei Luo, Chen Ding, Song Jiang, and Zhenlin Wang.
LAMA: Optimized Locality-aware Memory Allocation
for Key-value Cache. In Proceedings of the USENIX
Annual Technical Conference (ATC ’15), pages 57–69,
2015.

[14] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo,
Chen Ding, and Zhenlin Wang. Kinetic modeling of
data eviction in cache. In Proceedings of the USENIX

Annual Technical Conference (ATC ’16), pages 351–364,
2016.

[15] Qi Huang, Ken Birman, Robbert Van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An analysis of
Facebook photo caching. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples (SOSP ’13), pages 167–181, 2013.

[16] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson,
Daniel A Freedman, Ken Birman, and Robbert van Re-
nesse. Characterizing load imbalance in real-world net-
worked caches. In Proceedings of the 13th ACM Work-
shop on Hot Topics in Networks (HotNets ’14), pages
1–7, 2014.

[17] Song Jiang and Xiaodong Zhang. LIRS: an efficient
low inter-reference recency set replacement policy to
improve buffer cache performance. ACM SIGMETRICS
Performance Evaluation Review, 30(1):31–42, 2002.

[18] Ke Zhou, Yu Zhang, et al. LEA: A lazy eviction algo-
rithm for SSD cache in cloud block storage. In Pro-
ceedings of the IEEE 36th International Conference on
Computer Design (ICCD ’18), pages 569–572, 2018.

[19] Yoongu Kim, Michael Papamichael, Onur Mutlu, and
Mor Harchol-Balter. Thread cluster memory schedul-
ing: Exploiting differences in memory access behavior.
In Proceedings of the 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO ’10),
pages 65–76, 2010.

[20] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. Distcache: Provable load balancing for large-
scale storage systems with distributed caching. In Pro-
ceedings of the 17th USENIX Conference on File and
Storage Technologies (FAST ’19), pages 143–157, 2019.

[21] Bruce M Maggs and Ramesh K Sitaraman. Algorithmic
nuggets in content delivery. ACM SIGCOMM Computer
Communication Review, 45(3):52–66, 2015.

[22] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and
Irving L. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems journal, 9(2):78–117, 1970.

[23] Nimrod Megiddo and Dharmendra S Modha. ARC: A
self-tuning, low overhead replacement cache. In Pro-
ceedings of the 2nd USENIX Conference on File and
Storage Technologies (FAST ’03), volume 3, pages 115–
130, 2003.

[24] Frank Olken. Efficient methods for calculating the suc-
cess function of fixed space replacement policies. 1981.

USENIX Association 2020 USENIX Annual Technical Conference 797

[25] Raj Parihar, Jacob Brock, Chen Ding, and Michael C
Huang. Protection and utilization in shared cache
through rationing. In Proceedings of the 23rd Inter-
national Conference on Parallel Architecture and Com-
pilation Techniques (PACT ’14), pages 487–488, 2014.

[26] D Shasha and T Johnson. 2Q: A low overhead high per-
formance buffer management replacement algoritm. In
Proceedings of the Twentieth International Conference
on Very Large Databases (VLDB ’94), pages 439–450,
1994.

[27] SNIA. IOTTA. http://iotta.snia.org/.

[28] G Edward Suh, Srinivas Devadas, and Larry Rudolph.
Analytical cache models with applications to cache par-
titioning. In Proceedings of the ACM International Con-
ference on Supercomputing 25th Anniversary Volume,
pages 323–334, 2001.

[29] David K Tam, Reza Azimi, Livio B Soares, and Michael
Stumm. RapidMRC: approximating l2 miss rate curves
on commodity systems for online optimizations. ACM
Sigplan Notices, 44(3):121–132, 2009.

[30] Tencent. CBS. https://intl.cloud.tencent.com/
product/cbs.

[31] Elvira Teran, Zhe Wang, and Daniel A Jiménez. Per-
ceptron learning for reuse prediction. In Proceedings of
the 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’16), pages 1–12. IEEE,
2016.

[32] Michail-Antisthenis I Tsompanas, Christoforos Kachris,
and Georgios Ch Sirakoulis. Modeling cache memory
utilization on multicore using common pool resource
game on cellular automata. ACM Transactions on Mod-
eling and Computer Simulation (TOMACS), 26(3):1–22,
2016.

[33] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and optimiza-
tion using miniature simulations. In Proceedings of
the USENIX Annual Technical Conference (ATC ’17),
pages 487–498, 2017.

[34] Carl A Waldspurger, Nohhyun Park, Alexander Garth-
waite, and Irfan Ahmad. Efficient MRC construction
with SHARDS. In Proceedings of the 13th USENIX Con-
ference on File and Storage Technologies (FAST ’15),
pages 95–110, 2015.

[35] Wikipedia. Jhash. https://en.wikipedia.org/
wiki/Jenkins_hash_function.

[36] Wolfram Mathworld. Weibull Distribution. https:
//mathworld.wolfram.com/.

[37] Xiaoya Xiang, Bin Bao, Tongxin Bai, Chen Ding, and
Trishul Chilimbi. All-window profiling and compos-
able models of cache sharing. ACM SIGPLAN Notices,
46(8):91–102, 2011.

[38] Xiaoya Xiang, Bin Bao, Chen Ding, and Yaoqing Gao.
Linear-time modeling of program working set in shared
cache. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques
(PACT ’11), pages 350–360. IEEE, 2011.

[39] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. Hotl:
a higher order theory of locality. In Proceedings of the
Eighteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS ’13), pages 343–356, 2013.

[40] Juncheng Yang, Reza Karimi, Trausti Sæmundsson,
Avani Wildani, and Ymir Vigfusson. Mithril: mining
sporadic associations for cache prefetching. In Proceed-
ings of the Symposium on Cloud Computing (SOCC ’17),
pages 66–79, 2017.

[41] Chencheng Ye, Jacob Brock, Chen Ding, and Hai Jin.
Rochester elastic cache utility (recu): Unequal cache
sharing is good economics. International Journal of
Parallel Programming, 45(1):30–44, 2017.

[42] Seyed Majid Zahedi and Benjamin C Lee. REF: Re-
source elasticity fairness with sharing incentives for mul-
tiprocessors. ACM SIGPLAN Notices, 49(4):145–160,
2014.

[43] Yutao Zhong, Xipeng Shen, and Chen Ding. Program lo-
cality analysis using reuse distance. ACM Transactions
on Programming Languages and Systems (TOPLAS),
31(6):1–39, 2009.

[44] Ke Zhou, Si Sun, Hua Wang, Ping Huang, Xubin He,
Rui Lan, Wenyan Li, Wenjie Liu, and Tianming Yang.
Demystifying cache policies for photo stores at scale: A
Tencent case study. In Proceedings of the International
Conference on Supercomputing (ICS ’18), pages 284–
294, 2018.

[45] Yuanyuan Zhou, James Philbin, and Kai Li. The Multi-
Queue Replacement Algorithm for Second Level Buffer
Caches. In Proceedings of the USENIX Annual Techni-
cal Conference, General Track, pages 91–104, 2001.

[46] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra
Fedorova. Addressing shared resource contention in
multicore processors via scheduling. ACM Sigplan No-
tices, 45(3):129–142, 2010.

798 2020 USENIX Annual Technical Conference USENIX Association

http://iotta.snia.org/
https://intl.cloud.tencent.com/product/cbs
https://intl.cloud.tencent.com/product/cbs
https://en.wikipedia.org/wiki/Jenkins_hash_function
https://en.wikipedia.org/wiki/Jenkins_hash_function
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/

Lock-free Concurrent Level Hashing for Persistent Memory

Zhangyu Chen, Yu Hua, Bo Ding, Pengfei Zuo
Wuhan National Laboratory for Optoelectronics, School of Computer

Huazhong University of Science and Technology
Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract
With high memory density, non-volatility, and DRAM-

scale latency, persistent memory (PM) is promising to im-
prove the storage system performance. Hashing-based index
structures have been widely used in storage systems to provide
fast query services. Recent research proposes crash-consistent
and write-efficient hashing indexes for PM. However, existing
PM hashing schemes suffer from limited scalability due
to expensive lock-based concurrency control, thus making
multi-core parallel programing inefficient in PM. The coarse-
grained locks used in hash table resizing and queries (i.e.,
search/insertion/update/deletion) exacerbate the contention.
Moreover, the cache line flushes and memory fences for crash
consistency in the critical path increase the latency. In order to
address the lock contention for concurrent hashing indexes in
PM, we propose clevel hashing, a lock-free concurrent level
hashing, to deliver high performance with crash consistency.
In the clevel hashing, we design a multi-level structure for
concurrent resizing and queries. Resizing operations are
performed by background threads without blocking concur-
rent queries. For concurrency control, atomic primitives are
leveraged to enable lock-free search/insertion/update/deletion.
We further propose context-aware schemes to guarantee the
correctness of interleaved queries. Using real Intel Optane DC
PMM, experimental results with real-world YCSB workloads
show that clevel hashing obtains up to 4.2× speedup than the
state-of-the-art PM hashing index.

1 Introduction

Non-volatile memory (NVM) deployed as persistent memory
(PM) offers the salient features of large capacity, low latency,
and real time crash recovery for storage systems [12, 30,
38]. Recently, Intel Optane DC persistent memory module
(PMM) [2], the first commercial product of PM, is available on
the market. Compared with DRAM, PM has 3× read latency
and similar write latency [23,24,36]. In the meantime, the read
and write bandwidths of PM achieve 1/3 and 1/6 of those

of DRAM [23, 24, 27, 36]. PM delivers higher performance
than SSD and the maximal 512 GB capacity for a single PM
module is attractive for in-memory applications [23].

Building high-performance index structures for PM is
important for large-scale storage systems to provide fast query
services. Recent schemes propose some crash-consistent tree-
based indexes, including NV-Tree [37], wB+-Tree [14], FP-
Tree [32], WORT [26], FAST&FAIR [22] and BzTree [9].
However, traversing through pointers in hierarchical trees
hinders fast queries. Unlike tree-based schemes, hashing-
based index structures leverage hash functions to locate
data in flat space, thus enabling constant-scale point query
performance. As a result, hash tables are widely used in many
in-memory applications, e.g., redis [7] and memcached [4].

Existing hashing-based indexes for PM put many efforts
in crash consistency and write optimizations but with little
consideration for non-blocking resizing (also called rehash-
ing) [27, 30, 40]. A hash function maps different keys into
the same location, called hash collisions. In general, when
the hash collisions can’t be addressed or the load factor (the
number of inserted items divided by the capacity) of a hash
table approaches the predefined thresholds, the table needs
to be expanded to increase the capacity. Traditional resizing
operations acquire global locks and move all items from the
old hash table to the new one. Level hashing [40] is a two-
level write-optimized PM hashing index with cost-efficient
resizing. The expansion of level hashing only rehashes items
in the smaller level to a new level, which only migrates items
in 1/3 buckets. However, the resizing operation in the level
hashing is single-threaded and still requires a global lock to
ensure correct concurrent executions. P-CLHT [27] is a crash
consistent variant of Cache-Line Hash Table (CLHT) [17]
converted by RECIPE [27]. The search operation in P-
CLHT is lock-free, while the writes into stale buckets (all
stored items have been rehashed) would be blocked until
the full-table resizing completes. Hence, both schemes suffer
from limited resizing performance, since the global lock for
resizing blocks queries in other threads. Cacheline-Conscious
Extendible Hashing (CCEH) [30], a persistent extendible

USENIX Association 2020 USENIX Annual Technical Conference 799

hashing scheme, supports concurrent lock-based dynamic
resizing, however coarse-grained locks for shared resources
significantly increase the latency. Specifically, CCEH splits
a segment, an array of 1024 slots by default, to increase
the capacity, which requires the writer lock for the whole
segment. Moreover, when the directory needs to be doubled,
the global writer lock for directory is needed before doubling
the directory. The Copy-on-Write (CoW) version of CCEH
avoids the segment locks with the cost of extra writes due
to the migration of inserted items. Hence, the insertion
performance of CCEH with CoW is poorer than the default
version with lazy deletion [30]. The concurrent_hash_map
(cmap) in pmemkv [6] leverages lazy rehashing by amortizing
data migration over future queries. However, the deferred
rehashing may aggregate to a recursive execution in the
critical path of queries, thus leading to non-deterministic
query performance. Hence, current PM hashing indexes suffer
from poor concurrency and scalability during resizing.

A scalable PM hashing index with concurrent queries is
important to exploit the hardware resources and provide high
throughput with low latency. Nowadays, a server node is
able to provide tens of or even hundreds of threads, which
enables the wide use of concurrent index structures. Existing
hashing-based schemes for PM [27, 30, 40] leverage locks
for inter-thread synchronization. However, coarse-grained
exclusive locks in a critical path increase the query latency
and decrease the concurrent throughput. Moreover, in terms
of PM, the persist operations (e.g., logging, cache line flushes,
and memory fences), when holding locks, further increase the
waiting time of other threads. Fine-grained locks decrease the
critical path but may generate frequent locking and unlocking
for multiple shared resources. Moreover, the correctness
guarantee is harder than coarse-grained locks.

In summary, in addition to crash consistency, we need to
address the following challenges to build a high performance
concurrent hashing index for PM.

1) Performance Degradation during Resizing. For con-
current hash tables, resizing operations need to be concur-
rently executed without blocking other threads. However,
the resizing operation accesses and modifies the shared
hash tables and metadata. Coarse-grained locks for global
data ensure thread safety, but lead to high contention and
significant performance degradation when the hash table starts
resizing.

2) Poor Scalability for Lock-based Concurrency Control.
Locking techniques have been widely used to control con-
current accesses to shared resources. The coarse-grained
locks protect the hash table, but they also prevent concurrent
accesses and limit the scalability. Moreover, the updates of
shared data are often followed by flushing data into PM,
which exacerbates lock contention. An efficient concurrent
hashing scheme for PM needs to have low contention for high
scalability while guarantee the concurrency correctness.

In order to address the above challenges, we propose

clevel hashing, a crash-consistent and lock-free concurrent
hash table for PM. Motivated by our level hashing [40], we
further explore write-efficient open-addressing techniques
to enable write-friendly and memory-efficient properties for
PM in the context of concurrency. Different from the level
hashing, our proposed clevel hashing aims to provide scalable
performance and guarantee the correctness for concurrent
executions. Unlike existing schemes [27, 30] that convert
concurrent DRAM indexes to persistent ones, we propose
a new and efficient way to enable persistent indexes to
be concurrent with small overheads and high performance.
Hence, the clevel hashing bridges the gap between scalability
and PM efficiency.

To alleviate the performance degradation for resizing,
we propose a dynamic multi-level index structure with
asynchronous rehashing. Levels are dynamically added for
resizing and removed when all stored items are migrated
to a new level. The rehashing of items is offloaded into
background threads, thus never blocking foreground queries.
Background threads migrate the items from the last level to the
first level via rehashing until there are two remaining levels.
The two levels ensure a maximal load factor over 80% and
the limited accesses to buckets for queries. Therefore, when
rehashing is not running (the usual case for most workloads),
the time complexity for search/insertion/update/deletion is
constant-scale.

To provide high scalability with low latency, we design
write-optimal insertion and lock-free concurrency control for
search/insertion/update/deletion. The new items are inserted
into empty slots without any data movements, hence ensuring
write efficiency. For concurrent modifications to the hash
table, clevel hashing exploits the atomicity of pointers and
uses Compare-And-Swap (CAS) primitives for lock-free in-
sertion, update, and deletion. Guaranteeing the correctness for
lock-free queries with simultaneous resizing is challenging,
since interleaved operations can be executed in any order and
lead to failures and duplicate items. In the clevel hashing, we
propose context-aware algorithms by detecting the metadata
information changes to avoid inconsistencies for insertion,
update, and deletion. The duplicate items are detected and
properly fixed before modifying the hash table. In summary,
we have made the following contributions in the clevel
hashing.

• Concurrent Resizing. In order to address the bottleneck
of resizing, we propose a dynamic multi-level structure
and concurrent resizing without blocking other threads.

• Lock-free Concurrency Control. We design lock-
free algorithms for all queries in the clevel hashing.
The correctness for lock-free concurrency control is
guaranteed with low overheads.

• System Implementation. We have implemented the
clevel hashing using PMDK [5] and compared our
proposed clevel hashing with state-of-the-art schemes on

800 2020 USENIX Annual Technical Conference USENIX Association

real Intel Optane PM hardware. The evaluation results
using YCSB workloads show the efficacy and efficiency
of the clevel hashing. We have released the open-source
code for public use.1

2 Background

2.1 Crash Consistency in Persistent Memory

Persistent memory (PM) provides the non-volatility for data
stored in main memory, thus requiring crash consistency
for data in PM. For store instructions, the typical maximal
atomic CPU write size is 8 bytes. Therefore, when data size
is larger than 8 bytes, system failures during sequential writes
of data may lead to partial updates and inconsistency. In
the meantime, the persist order of data in write-back caches
is different from the issue order of store instructions, thus
demanding memory barriers to enforce the consistency. To
guarantee consistency, recent CPUs provide instructions for
cache line flushes (e.g., clflush, clflushopt, and clwb) and
memory barriers (e.g., sfence, lfence, and mfence) [1]. With
these instructions, users can use logging or CoW to guarantee
crash consistency for data larger than 8 bytes [27, 38].
However, logging and CoW generate extra writes causing the
overheads for PM applications [30,40]. In our implementation,
we use the interface provided by PMDK [5], which issues
clwb and sfence instructions in our machine, to persist the
data into PM.

2.2 Lock-free Concurrency Control

Compare-And-Swap (CAS) primitives and CoW have been
widely used in existing lock-free algorithms for atomicity. The
CAS primitive compares the stored contents with the expected
contents. If the contents match, the stored contents are
swapped with new values. Otherwise, the expected contents
are updated with the stored contents (or just do nothing).
The execution of CAS primitives is guaranteed to be atomic,
thus avoiding the use of locks. CAS primitives are used in
concurrent index structures to provide high scalability [21,34].
However, CAS primitives don’t support data sizes larger
than the CPU write unit size (e.g., 8 bytes). CoW is used
to atomically update data larger than 8 bytes [30]. CoW first
copies the data to be modified and performs in-place update in
the copied data. Then the pointer is atomically updated with
the pointer to new data using a CAS primitive. The drawback
of CoW is the extra writes for the copy of unchanged contents.
In PM, frequent use of CoW causes severe performance
degradation [30, 40]. In our clevel hashing, we design the
lock-free algorithms using CAS primitives for most writes
and lightweight CoW for infrequent metadata updates, thus
achieving high scalability with limited extra PM writes.

1https://github.com/chenzhangyu/Clevel-Hashing

2.3 Basic Hash Tables

Unlike tree-based index structures, hashing-based indexes
store the inserted items in flat structures, e.g., an array, thus
obtaining O(1) point query performance. Some hashing
schemes, e.g., CLHT [17], store key-value items in the hash
table, which mitigates the cache line accesses. However, such
design doesn’t support the storage of variable-length key-
value items. Reserving large space in hash tables causes heavy
space overheads, since most key-value pairs in real-world
scenarios are smaller than a few hundreds of bytes [10, 18].
In order to efficiently support variable-length key-value
items, many open-source key-value stores (e.g., redis [7],
memcached [4], libcuckoo [28], and the cmap engine in
pmemkv [6]) store pointers in hash tables and actual key-
value items out of the table. In our clevel hashing, we store
pointers in hash tables to support variable-length key-value
items.

A typical hash table leverages hash functions to calculate
the index of a key-value item. Different key-value items can
be indexed to the same storage position, called hash collisions.
Existing hashing schemes leverage some techniques to
address hash collisions, e.g., linear probing [30], multi-slot
buckets [18, 28, 30, 40], linked list [6, 16, 27, 29], and data
relocation [18, 28, 34, 40]. If hash collisions cannot be
addressed, the hash table needs to be resized to increase the
capacity. Typical resizing operations consist of three steps:
(1) Allocate a new hash table with 2× as many buckets as
the old table. (2) Rehash items from the old table to the new
table. (3) When all items in the old table have been rehashed,
switch to the new table. The resizing in conventional hashing
schemes involves intensive data movements [40] and blocks
concurrent queries [30].

2.4 Hashing-based Index Structures for PM

Recently, researchers have proposed several hashing-based
indexes for PM [6,16,30,40]. Different from DRAM indexes,
PM indexes need to remain consistent after system failures.
However, the write bandwidth of PM is one sixth as much as
DRAM [23, 24, 36], which indicates the significance of write
efficiency for concurrent PM hashing indexes.

2.4.1 The Level Hashing Scheme

Our clevel hashing is based on the level hashing index
structure [40]. Level hashing has three goals: low-overhead
crash consistency, write efficiency, and resizing efficiency.
Below, we briefly introduce the relevant components in level
hashing.

Level hashing has two levels and the top level has twice
the buckets of the bottom level. Each level is an array of
4-slot buckets. Besides the 4 slots, a bucket has 4 tokens
and each token is one bit corresponding to one slot for crash

USENIX Association 2020 USENIX Annual Technical Conference 801

Table 1: The Comparisons of Our Clevel Hashing with State-of-the-art Concurrent Resizable Hashing Indexes for PM. (For
abbreviation, “LEVEL” is the level hashing, “CCEH” is the default CCEH version using the MSB segment index and lazy
deletion. “CMAP” is the concurrent_hash_map in pmemkv, and “CLEVEL” is our clevel hashing. For the memory efficiency
and crash consistency, “3” and “-” indicate good and moderate performance, respectively.)

Concurrency Control Correctness Guarantee Memory
Efficiency

Crash
ConsistencySearch Insertion/Update/Deletion Resizing Duplication Missing

LEVEL Slot lock Slot lock Global metadata lock No No 3 3

CCEH Segment reader lock Segment writer lock Global directory lock No Yes - 3

CMAP Bucket reader lock Bucket writer lock Bucket writer lock + lazy rehashing Yes Yes 3 3

P-CLHT Lock-free Bucket lock Global metadata lock Yes Yes 3 3

CLEVEL Lock-free Lock-free Asynchronous Yes Yes 3 3

...

...Top level

Bottom level

0 1 2N-2 2N-1

0 N-1

key
H1(key) H2(key)

One-step movement

KV1 KV2 KV3 KV4

SlotsTokens

A bucket

Figure 1: The level hashing index structure

consistency. The overview of level hashing index structure is
shown in Figure 1.

By using two independent hash functions, each item has
two candidate buckets in one level for storage (16 slots in
total for two levels). When the two buckets are full, level
hashing tries to perform one-step movement to obtain an
empty slot for the item to be inserted. For example, the key in
Figure 1 has two candidate buckets in the top level: the first
bucket and the second to last bucket. If the two buckets are
full and one stored item in the first bucket has empty slots in
its alternative candidate bucket (e.g., the second bucket), the
stored item is moved to the second bucket so that the key can
be inserted to the first bucket. The one-step movement in level
hashing improves the maximal load factor before resizing by
10% [40].

For resizing, level hashing creates a new level with 2× (e.g.,
4N in Figure 1) as many buckets as the top level and migrates
stored items in the bottom level to the new level. The items in
the top level are reused without rehashing.

Level hashing uses slot-grained locks for concurrent
queries. A fine-grained slot lock is acquired before accessing
the corresponding slot and released after completing the
access. For resizing, level hashing rehashes items using one
thread and blocks concurrent queries of other threads. The
concurrency control in level hashing has two correctness
problems:

1) Duplicate items. An insertion thread with a single slot
lock for an item cannot prevent other threads from inserting
items with the same key into other candidate positions, since
one item has 16 slots (2 candidate buckets for each level)
for storage. Duplicate items in the hash table violate the
correctness for updates and deletions: one thread updates
or deletes one item while future queries may access the
duplicate items that are unmodified.
2) Missing items. Items in level hashing are movable due to
one-step movement and rehashing, while a slot lock cannot
stop the movements. As a result, one query with a slot lock
may miss inserted items due to concurrent moving of other
threads.

2.4.2 Concurrent Hashing Indexes for PM

Recent schemes design some crash-consistent PM hashing
indexes with lock-based concurrency control. CCEH [30]
organizes 1024 slots as a segment for dynamic hashing. For
concurrent execution, the segment splitting during insertion
requires an exclusive writer lock for the segment. Moreover,
when the number of segments reaches a predefined threshold,
a global directory of segments needs to be doubled with a glob-
al directory lock. In pmemkv [6], there is a concurrent linked-
list based hashing engine for PM, called cmap, which uses
bucket-grained reader-writer locks for concurrency control.
The cmap leverages lazy rehashing to amortize data migration
in future queries. However, the aggregation of rehashing in
the critical path of queries leads to uncertainty and increases
the tail latency. P-CLHT [27] is a crash-consistent version
of CLHT [17], a cache-efficient hash table with lock-free
search. However, when P-CLHT starts resizing, concurrent
insertions to the stale buckets (i.e., buckets whose items have
been rehashed) have to wait until the resizing completes.

As shown in Table 1, we summarize state-of-the-art con-
current hashing-based index structures with resizing support
for PM and compare our clevel hashing with them. All
comparable schemes are the open-source versions with default
parameter settings. For concurrent queries, CCEH uses coarse
segment reader-writer locks, while level hashing and cmap
adopt fine-grained locks. P-CLHT leverages bucket-grained

802 2020 USENIX Annual Technical Conference USENIX Association

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

keyH1(key) H2(key)
Le

ve
l l

ist

KV_PTR1

Slots (each 8 bytes)

A bucket
KV_PTR8...

last_level
first_level
is_resizing

Context

Global context ptr.

2

3

4

5

(a) The index structure shared by all threads.
Rehashing threads

...
Worker threads

...Thread-local
context ptr.

A thread

1

(b) The local context for each thread.

Figure 2: The clevel hashing index overview.

locks for insertion/update/deletion and provides lock-free
search. In terms of resizing, level hashing, CCEH, and P-
CLHT suffer from the global locks. Though cmap avoids
expensive global locks for resizing, the lazy rehashing is in
the critical path of queries and affects the scalability. For
concurrency correctness, as discussed in §2.4.1, level hashing
suffers from duplicate items and missing inserted items. Since
CCEH doesn’t check if a key to be inserted is present in the
hash table, CCEH also has the problem of duplicate items. For
memory efficiency, CCEH sets a short linear probing distance
(16 slots) by default to trade storage utilization for query
performance. Unlike existing schemes, our clevel hashing
achieves lock-free queries with asynchronous background
resizing while guarantees the concurrency correctness and
memory efficiency.

3 The Clevel Hashing Design

Our proposed clevel hashing leverages flexible data structures
and lock-free concurrency control mechanism to mitigate
the competition for the shared resources and improve the
scalability. The design of clevel hashing aims to address
the three problems in hashing index structures for PM:
(1) How to support concurrent resizing operations without
blocking the queries in other threads? (2) How to avoid lock
contention in concurrent execution? (3) How to guarantee
crash consistency with low overheads? In this Section,
we first illustrate the dynamic multi-level structure (§3.1),
which provides high memory efficiency and supports the
low-cost resizing operation. We further present the lock-free
concurrency control and correctness guarantee in the clevel
hashing (§3.2), i.e., lock-free search/insertion/update/deletion.
We finally discuss crash recovery (§3.3).

1 2 3 4 5 6 7 8
50%

60%

70%

80%

90%

100%

Lo
ad

 fa
ct

or

The resizings during insertions

 LEVEL-4-slot LEVEL-8-slot
 CLEVEL-4-slot CLEVEL-8-slot

Figure 3: The load factors of level hashing and clevel hashing
with different slots per bucket when the resizing occurs.

3.1 The Clevel Hashing Index Structure

3.1.1 Dynamic Multi-level Structure

The global index structure of clevel hashing shared by all
threads is shown in Figure 2(a). The hash table in the clevel
hashing consists of several levels and each level is an array of
buckets. All these levels are organized by a linked list, called
level list. For two adjacent levels, the upper level has 2× as
many buckets as the lower one. The first level is interpreted
as the level with the most buckets while the last level is
interpreted as the level with the least buckets. Each key-value
item is mapped to two candidate buckets in each level via two
hash functions. To guarantee high storage utilization, clevel
hashing maintains at least two levels [40]. Unlike the 4-slot
bucket in the level hashing [40], each bucket in clevel hashing
has 8 slots. Each slot consists of 8 bytes and stores a pointer to
a key-value item. The actual key-value item is stored outside
of the table via dynamic memory allocation. Hence, the 8-
slot bucket is 64 bytes and fits the cache line size. By only
storing the pointers to key-value items in slots, clevel hashing
supports variable-length key-value items. Hence, the content
in each slot can be modified using atomic primitives. The
atomic visibility of pointers is one of the building blocks for
lock-free concurrency control (§3.2) in our clevel hashing.

Different from the level hashing, our clevel hashing index
structure is write-optimal for insertion while maintaining
high storage utilization. The level hashing tries to perform
one movement (one-step movement) for inserted items by
copying them into their second candidate bucket in the
same level, which causes one extra write for PM. For clevel
hashing, the one-step movement is skipped, which decreases
the storage utilization. Figure 3 shows the load factors of level
hashing and clevel hashing with different slot numbers when
successive resizings occur during insertion. Compared with
level hashing having the same number of slots per bucket,
the load factor of clevel hashing becomes lower due to the
lack of one-step movement. However, 8-slot buckets in clevel
hashing increase the number of candidate slots for a key in
one level, thus achieving a comparable load factor (80%) than
the level hashing with 4-slot buckets (default configuration).
The number of slots per bucket also affects the throughput,
which is discussed in §4.2.

USENIX Association 2020 USENIX Annual Technical Conference 803

3.1.2 The Support for Concurrent Resizing

Clevel hashing leverages the dynamic multi-level design and
context to support concurrent resizing operations. The number
of levels in clevel hashing is dynamic: levels are added for
resizing and removed when rehashing completes. The context
in clevel hashing is interpreted as an object containing two
level list nodes and the is_resizing flag. The two nodes
point to the first and last levels while the flag denotes if the
table is being resized. There is a global pointer to the context
(Figure 2(a)) and each thread maintains a thread-local copy of
the context pointer (Figure 2(b)). Hence, the context can be
atomically updated using CoW + CAS. Since the context size
is 17 bytes (i.e., two pointers and one Boolean flag) and the
context changes only when we add/remove a level, the CoW
overheads of context are negligible for PM.

The resizing operation in clevel hashing updates the level
list and the context. Specifically, when hash collisions can’t
be addressed, the resizing is performed in the following steps:
(Step 1) Make a local copy of the global pointer to context.
(Step 2) Dereference the local copy of context pointer, and
append a new level with twice the buckets of the original
first level to the level list using CAS. If the CAS fails, update
the local copy of the context pointer and continue with the
next step, since other threads have successfully added a new
level. (Step 3) Use CoW + CAS to update the global context
by changing the first level to the new level (e.g., Lnew) and
setting is_resizing to true. When the CAS fails, check if
the new first level’s capacity is no smaller than Lnew and the
is_resizing is true: if so, update the local context pointer
and continue; otherwise, retry the CoW + CAS with the
is_resizing (true) and optional new level Lnew (if the first
level’s capacity is smaller than Lnew). (Step 4) Rehash each
item in the last level. The rehashing includes two steps: copy
the item’s pointer to a candidate bucket in the first level via
CAS, and delete the pointer in the last level (without CAS,
and the correctness for possible duplicate items is guaranteed
in insertion §3.2.2 and update §3.2.3). If the CAS fails, find
another empty slot. If no empty slot is found, go to step 2
to expand the table. (Step 5) When rehashing completes,
update the last level and optional is_resizing (if only two
levels remain after resizing) in the global context atomically
using CoW + CAS. If the CAS fails, try again if the last level
in current context is unmodified. The resizing workflow is
shown in Figure 2. Note that the reasons for three possible
CAS failures in resizing are different: the CAS failures in
step 2 come from the concurrent expansion of other threads,
i.e., the step 2 in other threads; the failures in steps 3 and 5
are due to the concurrent execution of these two steps (steps
3 and 5) in different threads. As a result, the strategies for
corresponding CAS failures are different as presented above.

To mitigate the insertion performance degradation due to re-
sizing, clevel hashing leverages background threads to enable
asynchronous rehashing. Specifically, we divide the resizing

into two stages, including expansion (steps 1 , 2 , and 3)
and rehashing (steps 4 and 5) stages. The time-consuming
rehashing stage is offloaded into background threads, called
rehashing threads. Rehashing threads continuously rehash
items until there are two levels left. Therefore, when the table
is not being resized, the queries in clevel hashing guarantee
constant-scale time complexity. The threads serving query
requests are called worker threads. When the hash collisions
can not be addressed by worker threads, they perform the
three steps in the expansion stage and then continue the
queries. Since the main operations for table expansion are
simple memory allocation and lightweight CoW for context
(17 bytes), the expansion overheads are low. Moreover, there
is no contention for locks during expansion. As a result, the
resizing operation no longer blocks queries.

Rehashing performance can be improved by using multiple
rehashing threads. To avoid contention for rehashing, a simple
modular function is used to partition buckets into independent
batches for rehashing threads. For example, if there are two
rehashing threads, one thread rehashes odd-number buckets
while the other rehashes even-number buckets. After both
rehashing threads finish, they update the global context
following step 5 .

3.2 Lock-free Concurrency Control

In order to mitigate the contention for shared resources,
we propose lock-free algorithms for all queries, i.e., search,
insertion, update, and deletion.

3.2.1 Search

The search operation needs to iteratively check possible
buckets to find the first key-value item that matches the key.
There are two main problems for lock-free search in the clevel
hashing: (1) High read latency for the pointer dereference
costs. Since clevel hashing only stores the pointers in hash
tables to support variable-length items, dereferencing is
needed to fetch the corresponding key, which results in high
cache miss ratios and extra PM reads. (2) Missing inserted
items due to the data movement. The concurrent resizing
moves the items in the last level, and therefore, searching
without any locks may miss inserted items.

For the pointer dereference overheads, our proposed clevel
hashing leverages a summary tag to avoid the unnecessary
reads for full keys. A tag is the summary for a full key, e.g.,
the leading two bytes of the key’s hash value. The hash
value is obtained when calculating the candidate buckets via
hash functions (e.g., the std::hash from C++ [8]). The tag
technique is inspired from MemC3 [18] and we add atomicity
for the pair of tag and pointer. For each inserted item, its tag
is stored in the table. For a search request, only when the tag
of a request matches the stored tag of an item, we fetch the
stored full key by pointer dereferencing and compare the two
keys. A false positive case for tags appears when different

804 2020 USENIX Annual Technical Conference USENIX Association

keys have the same tag. For 16-bit tags, the false positive rate
is 1/216. Since we check full-size keys when two tags match,
the false positives can be identified and will not cause any
problem of correctness. Instead of allocating additional space
for tags in MemC3, clevel hashing leverages the unused 16
highest bits in pointers to store the tags. Current pointers only
consume 48 bits on x86_64, thus leaving 16 bits unused in
64-bit pointers [31,35]. The reuse of reserved bits enables the
atomic updates of pointers and tags.

To address the problem of missing inserted items, we
propose to search from the last level to the first level, called
bottom-to-top (b2t) search strategy. The intuition behind b2t
searching is to follow the direction of bottom-to-top data
movement in hash table expansion, which moves items from
the last level to the first level. However, a rare case for missing
is: after a search operation starts, other threads add a new level
through expansion and rehashing threads move the item that
matches the key of the search to the new level. To fix this
missing, clevel hashing leverages the atomicity of context.
Specifically, when no matched item is found after b2t search,
clevel hashing checks the global context pointer with the
previous local copy. If the two pointers are different, redo
the search. The overheads for the re-execution of search are
low, since changes of the context pointer are rare, occurring
only when a level is added to or removed from the level
list. Therefore, the correctness for the lock-free search is
guaranteed with low costs.

3.2.2 Insertion

For insertion, a key-value item is inserted if the key does not
exist in the table. The insertion first executes lock-free b2t
search (§3.2.1) to determine if an item with the same key
exists. If none exists, the pointer (with its summary tag) to
the key-value item is atomically inserted into a less-loaded
candidate bucket. When there is no empty slot, we resize
the table by adding a new level with background rehashing
(§3.1.2) and redo the insertion. However, lock-free insertion
leads to two correctness problems: (1) Duplicate items from
concurrent insertions. Without locks, concurrent threads may
insert items with the same key into different slots, which
results in failures for update and deletion. (2) Loss of new
items inserted to the last level. When new items are inserted
into the buckets in the last level that have been processed
by rehashing threads, these inserted items are lost after we
reclaim the last level.

For concurrent insertions to different slots, it is challenging
to avoid the duplication in a lock-free manner, since atomic
primitives only guarantee the atomicity of 8 bytes. However,
each one of the duplicate items is correct. Hence, we fix the
duplication in future updates(§3.2.3) and deletions(§3.2.4).

In order to fix the loss of new items, we design a context-
aware insertion scheme to guarantee the correctness of
insertion. The context-aware scheme includes two strategies:
(1) Before the insertion, we check the global context and

T1

T2

t4: delete

t1: find

t2: copy

t3: update

First level

Last level

Content in slotsTimeline

p

t1

p

t4

p

p'

t3

Figure 4: The update failure. (“T1”: an update thread, “T2”:
a rehashing thread, “t1-t4”: timestamps, “p”: pointer to the
old item, “p′”: pointer to the updated item.)

do not insert items into the last level when the hash table is
resizing, i.e., when the is_resizing is true. (2) After the
insertion, if the table starts resizing and the item has been
already inserted into the last level, we redo the insertion using
the same pointer without checking duplicate items. The re-
execution of insertion leads to possible duplicate pointers
in the hash table. However, duplicate pointers don’t affect
the correctness of search, because they refer to the same key-
value items. Future updates and deletions are able to detect
and address the duplication.

3.2.3 Update

The update operation in the clevel hashing atomically updates
the pointers to the matched key-value items. Different from
the insertion, the update needs to fix duplicate items. Other-
wise, duplicate items may lead to inconsistency after being
updated. Moreover, the concurrent executions of resizing and
update may cause update failures due to the data movement
for rehashing. This section focuses on our solutions for the
two correctness problems.

1) Content-conscious Find to Fix Duplicate Items. There
are three cases for duplicate items in our clevel hashing:
concurrent insertion with the same key, the retry of the context-
aware insertion, and data movement for rehashing. Note that
re-insertion after system crash would not generate duplication
due to checking of the key before insertion. We observe
that duplication from two concurrent insertions leads to two
pointers to different items and keeping any one of the two is
acceptable. Re-insertion or rehashing generates two pointers
to the same item. In this case, we keep the pointer which is
closer to the first level, since rehashing threads may delete the
pointer in the last level. If two pointers are in the same level,
keeping either pointer is identical. With this knowledge, we
design a content-conscious Find process to handle duplication
in two steps. First, we apply b2t search to find two slots storing
the pointer to the matched key. Second, if two pointers refer
to different locations, we delete the item and the pointer that
first occurs in the b2t search. If two pointers point to the same
location, we simply delete the pointer that first occurs. By
removing duplicate items, the Find process returns at most
one item for the atomic update.

2) Rehashing-aware Scheme to Avoid Update Failures.
As the example shown in Figure 4, even with the Find process,
the interleaved execution of update and rehashing is possible

USENIX Association 2020 USENIX Annual Technical Conference 805

to lose the updated values. The updated item referred by p′ is
deleted by the rehashing thread. A straightforward solution
is to issue another Find process after the update. However,
frequent two-round Find increases the update latency. To
decrease the frequency, we design a rehashing-aware scheme
by checking the rehashing progress. Specifically, before the
first Find process, we record the bucket index (e.g., RBidx)
being rehashed by one rehashing thread. After the atomic
update, we read the rehashing progress again (e.g., RB′idx).
If the global context doesn’t change, an additional Find is
triggered only when meeting the following constraints: (1)
the table is during resizing; (2) the updated bucket is in the
last level; (3) the updated bucket index Bidx satisfies RBidx ≤
Bidx ≤ RB′idx for all rehashing threads. Since it’s a rare
case that three constraints are simultaneously satisfied, our
rehashing-aware update scheme guarantees the correctness
with low overheads.

3.2.4 Deletion

For deletion, clevel hashing atomically deletes the pointers
and matched items. Like the update, the deletion also needs
to remove duplicate items. Compared with the update, we
optimize the scheme to handle duplication in deletion. Briefly
speaking, clevel hashing deletes all the matched items through
the b2t search. The lock-free deletion also has failures like
the lock-free update. Hence, we use the rehashing-aware
scheme presented in lock-free update(§3.2.3) to guarantee
the correctness.

3.3 Recovery
The fast recovery requires the guarantee for crash consistency,
which is nontrivial for PM. Recent studies [16, 35] show
that a crash-consistent lock-free PM index needs to persist
after stores and not modify PM until all dependent contents
are persisted. The crash consistency guarantee in clevel
hashing follows this methodology. Specifically, clevel hashing
adds cache line flushes and memory fences after each store
and persists dependent metadata, e.g., the global context
pointer, after the load in insertion/update/deletion. The persist
overheads for crash consistency can be further optimized by
persisting in batches [16].

For the crash consistency in rehashing, clevel hashing
records the index of bucket (e.g., RBidx) in PM after suc-
cessfully rehashing the items in the bucket. To recover
from failures, rehashing threads read the context and bucket
index and continue the rehashing with the next bucket (e.g.,
RBidx + n, n is the number of rehashing threads). A crash
during the data movement of rehashing may lead to duplicate
items, which are fixed in future update (§3.2.3) and deletion
(§3.2.4).

To avoid permanent memory leakage [16], we leverage
existing PM atomic allocators from PMDK [5] and design
lock-free persistent buffers for secure and efficient memory

management. The PM atomic allocators atomically allocate
and reclaim memory to avoid expensive transactional memory
management [5]. A persistent buffer is a global array of
persistent pointers (used by the PM allocators for atomic and
durable memory management) attached to the root object (an
anchor) of the persistent memory pool. The array size is equal
to the thread number. Each thread uses the persistent pointer
corresponding to its thread ID. Hence, there is no contention
for the persistent buffers. When recovering from failures, we
scan the persistent buffers and release the unused memory.

4 Performance Evaluation

4.1 Experimental Setup

Our experiments run on a server equipped with six Intel
Optane DC PMM (1.5 TB in total), 128 GB DRAM, and
24.75 MB L3 cache. The Optane DC PMMs are configured
in the App Direct mode and mounted with ext4-DAX file
system. There are 2 CPU sockets (i.e., NUMA nodes) in the
server and each socket has 36 threads. For a processor in one
NUMA node, the latency of accessing local memory (attached
to the NUMA node) is lower than non-local memory [13,
25, 33]. Conducting experiments across multiple NUMA
nodes introduces the disturbance of non-uniform memory
latencies. To avoid the impact of NUMA architectures, we
perform all the experiments on one CPU socket by pinning
threads to an NUMA node for all schemes, like RECIPE [27].
Existing NUMA optimizations, e.g., Node-Replication [13]
to maintain per-node replicas of hash tables and synchronize
these replicas through a shared log, are possible to improve
the scalability with more NUMA nodes.

In our evaluation, we compare the following concurrent
hashing-based index structures for PM:

• LEVEL: This is the original concurrent level hashing [40]
with consistency support. The level hashing uses slot-
grained reader-writer lock for queries and a global resizing
lock for resizing.

• CCEH: CCEH [30] organizes an array of slots as a segment
(e.g., 1024 slots) and uses a directory as an address table.
Linear probing (e.g., 16 slots) is used to improve the load
factor. CCEH supports dynamic resizing through segment
splitting and possible directory doubling. We adopt the
default lazy deletion version since it has higher insertion
throughput than the CoW version. CCEH uses reader-writer
locks for segments and the directory.

• CMAP: The concurrent_hash_map storage engine in
pmemkv [6] is a linked list based concurrent hashing
scheme for PM. It uses reader-writer locks for concurrent
accesses to buckets and supports lazy rehashing (rehash the
buckets in a linked list when accessing).

806 2020 USENIX Annual Technical Conference USENIX Association

Table 2: Workloads from YCSB for macro-benchmarks.

Workload Read ratio (%) Write ratio (%)
Load A 0 100

A 50 50
B 95 5
C 100 0

• P-CLHT: P-CLHT [27] is a linked list based cache-
efficient hash table. Each bucket has 3 slots. P-CLHT
supports lock-free search while the bucket-grained lock is
needed for insertion and deletion. The resizing in P-CLHT
requires a global lock. When one thread starts rehashing,
another helper thread (one helper at most) is allowed to
perform concurrent rehashing, which is called helping
resizing. The helping resizing mechanism is enabled by
default.

• CLEVEL: This is our proposed scheme, clevel hashing,
which provides asynchronous resizing and lock-free concur-
rency control for all queries with high memory efficiency.

Since open-source cmap is implemented using PMDK with
C++ bindings [5], we implement our clevel hashing with
PMDK (version 1.6) and port level hashing, CCEH, and P-
CLHT to the same platform for fair comparisons. Like cmap
and clevel hashing, we optimize level hashing, CCEH, and
P-CLHT to support variable-length items by storing pointers
in the hash table. For level hashing and CCEH, we use the
same type of reader/writer locks from cmap to avoid the
disturbance of lock implementations. During the porting,
in addition to the reported bugs of the inconsistencies in
directory metadata [27], we observe a concurrent bug for
the directory in original CCEH: a thread performing search
can access a directory deleted by other threads that are
doubling the directory. As a result, failures may occur in
search when accessing the reclaimed directory via pointer
dereferencing. To ensure the correctness and avoid such
failures in experiments, we add the missing reader lock for
the directory. The hash functions for all schemes are the same:
the std::hash from the C++ Standard Template Library
(STL) [8]. In addition to conventional locks, we also evaluate
the performance of level hashing, CCEH, and cmap with
the spinlocks from Intel TBB library [3]. For abbreviation,
LEVEL-TBB, CCEH-TBB, and CMAP-TBB are TBB-enabled.

We use YCSB [15] to generate micro-benchmarks in zipfi-
an distribution with default 0.99 skewness [40] to evaluate the
throughput of different slot numbers and latencies of different
queries. The results using uniformly distributed workloads
are similar due to the randomness of hash functions [30].
Different queries are executed in the micro-benchmarks:
insertion (unique keys), positive search (queried keys exist),
negative search (queried keys not exist), update, and deletion.
The items to be updated or deleted are present in the table.
To evaluate the concurrent throughput, we leverage the
real-world workloads from YCSB as macro-benchmarks,

Insertion Search (P) Search (N) Update Delete
0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 ra

tio
 w

rt
8-

sl
ot 4-slot 8-slot 16-slot

Figure 5: The normalized concurrent throughput of clevel
hashing with different slots per bucket. (“Search (P)” is
positive search and “Search (N)” is negative search.)

following RECIPE [27]. The workload patterns are described
in Table 2. We initialize all indexes with similar capacity
(64 thousand for micro-benchmarks and 256 thousand for
macro-benchmarks) and use 15-byte keys and 15-byte values
for all experiments. The experiment with YCSB workloads
consists of two phases: load and run phases. In the load phase,
indexes are populated with 16 million and 64 million items
for micro- and macro-benchmarks, respectively. In the run
phase, there are 16 million queries for micro-benchmarks and
64 million for macro-benchmarks. For concurrent execution,
each scheme has the same number of threads in total.
During our evaluation of clevel hashing, we observe that one
rehashing thread for 35 insertion threads can guarantee the
number of levels is under 4. Hence, we set one thread as
the rehashing thread by default. The reported latency and
throughput are the average values of 5 runs.

4.2 Different Slot Numbers and Load Factor

In clevel hashing, the slots per bucket affects not only memory
efficiency but also concurrent performance. We run the micro-
benchmarks with different slot numbers in clevel hashing
and measure the concurrent throughput with 36 threads. The
throughput is normalized to that of an 8-slot bucket, as shown
in Figure 5. With the increase of slots, the insertion throughput
increases. The reason is that more slots per bucket indicate
more candidate positions for a key so that it’s easier to find
an empty slot without resizing. Decreasing the slots per
bucket reduces the number of slots to be checked and cache
line accesses (a 16-slot bucket requires two cache lines),
thus improving the search, update, and deletion throughputs.
According to the results shown in Figure 5, 8-slot bucket is a
trade-off between 4-slot and 16-slot buckets. Therefore, we
set the slot number to 8.

In order to evaluate the memory efficiency of different
schemes, we use an insert-only workload to record the load
factor (the number of inserted items divided by the number
of slots in the table) after every 10K insertions. Since the
slot in cmap is allocated on demand for insertions, the load
factor is always 100%. The load factors of the other schemes

USENIX Association 2020 USENIX Annual Technical Conference 807

0 200 400 600 800 1000
0

20

40

60

80

100
Lo

ad
 fa

ct
or

 (%
)

Inserted items (k)

 P-CLHT CCEH
 LEVEL CLEVEL

Figure 6: The load factor per 10K insertions. (The even
symbols are skipped for clearness.)

Positive Negative
0

5

10

15

20

25

Av
er

ag
e

la
te

nc
y

(u
s)

 P-CLHT LEVEL
 CCEH CMAP
 LEVEL-TBB CCEH-TBB
 CMAP-TBB CLEVEL

Figure 7: The average latency for concurrent search.

are shown in Figure 6. The maximal load factor of CCEH is
no more than 45%, because CCEH probes only 16 slots to
address the hash collisions. Though CCEH is able to increase
the linear probing distance for higher memory efficiency,
long probing distance leads to more memory accesses and
pointer dereferencing, thus decreasing the throughputs for
all queries. P-CLHT resizes when the number of inserted
items approaches the initial capacity of current hash table. By
using the three-slot bucket with linked list, the load factor of
P-CLHT is up to 84%. Compared with level hashing, clevel
hashing doesn’t move items in the same level. However, clevel
hashing increases the number of slots per bucket to 8. As a
result, the maximal load factor of clevel hashing is comparable
with original level hashing, i.e., 86%.

4.3 Micro-benchmarks

We use the micro-benchmarks to evaluate the average query
latencies in different PM hashing indexes. The latency of a
query is interpreted as the time for executing the query, not
including the time waiting for execution. All experiments run
with 36 threads. Note that the latencies of micro-benchmarks
for search, update, and deletion demonstrate the performance
of corresponding queries without the impact on resizing, since
there is no insertion in these workloads. For the insert-only
workload, the expansion of hash table occurs in the run phase.

For the concurrent search, we measure the average latencies
when all keys exist (positive search) or not (negative search) in
the table. As shown in Figure 7, the level hashing suffers from
frequent locking and unlocking of candidate slots, especially

85794.02261

Insertion Update Deletion
0

10

20

30

40 4610186 57

Av
er

ag
e

la
te

nc
y

(u
s) P-CLHT LEVEL

 CCEH CMAP
 LEVEL-TBB CCEH-TBB
 CMAP-TBB CLEVEL

106

Figure 8: The average latencies for concurrent insertion,
update, and deletion.

P-C
LH

T

LE
VEL

CCEH
CMAP

LE
VEL-T

BB

CCEH-TBB

CMAP-TBB

CLE
VEL

0

10

20

30

40

La
te

nc
y

(u
s)

 Median 90th

Figure 9: The median and 90th percentile latencies for
concurrent insertion.

for the negative search, i.e., 16 slot locks in total for 4
candidate 4-slot buckets. The coarse-grained segment lock
(1024 slots) in CCEH leads to high search latency. The search
in cmap only requires one bucket lock and ensures low latency.
Due to the lock-free search, P-CLHT achieves lower latency
than lock-based indexes. For clevel hashing, there are only two
levels when the table is not resizing, thus ensuring the number
of candidate buckets to be checked is at most 4. Moreover, the
lock-free search avoids the contention for buckets. Tags filter
unnecessary retrievals for keys. As a result, clevel hashing
achieves 1.2×−5.0× speedup for positive search latency and
1.4×−9.0× speedup for negative search latency, compared
with other PM hashing indexes.

The average latencies for insertion/update/deletion are
shown in Figure 8. Some bars are missing because the
corresponding schemes haven’t implemented update (i.e., P-
CLHT, cmap, and CCEH) or deletion (i.e., CCEH) in their
open-source code.
Insertion: During insertion, all schemes have to expand to
accommodate 16 million items. The resizing may block
several requests (the number depends on the resizing times
and thread numbers) and significantly increase their execution
time, thus increasing the average latencies. P-CLHT, level
hashing, and CCEH suffer from the global lock for resizing.
By amortizing the rehashing over future queries, cmap
achieves low average latency for insertions. The average
latency of clevel hashing is slightly higher than the cmap
with TBB because the expansion needs to durably allocate
a large new level via the persistent allocator from PMDK,
which is achieved by expensive undo logging [38].

Figure 9 shows the median and 90th percentile insertion

808 2020 USENIX Annual Technical Conference USENIX Association

Load A A B C
0

1

2

3

4

5

1.
32

 M
 o

p/
s

1.
81

 M
 o

p/
s

0.
45

 M
 o

p/
s

Th
ro

ug
hp

ut
 ra

tio
 w

rt
P-

C
LH

T P-CLHT LEVEL
 CCEH CMAP
 LEVEL-TBB CCEH-TBB
 CMAP-TBB CLEVEL

0.
91

 M
 o

p/
s

Figure 10: The concurrent throughput of YCSB normalized
to P-CLHT.

latencies. Unlike the average latency, median and 90th

percentile latencies demonstrate the insertion performance
without the impact of resizing. The reason is that the ratio of
insertions which encounter resizing during their executions
is less than 10%. In the meantime, the queuing time for
execution is not included in the latency. CCEH suffers from
high percentile latencies due to the coarse-grained segment
lock. Though cmap leverages fine-grained bucket locks, the
amortized rehashing in queries increases the insertion time.
Due to the context-aware insertion for correctness guarantee,
the median and 90th percentile latencies of clevel hashing are
slightly higher than level hashing and P-CLHT but lower than
CCEH and cmap.
Update: Compared with original level hashing, clevel hashing
obtains slightly lower update latency. The reason is that the
benefits of lock-free update compensate for the overheads of
correctness guarantee in the clevel hashing, e.g., additional
Find operation for duplicate items and checking for update
failures.
Deletion: The deletion latency in cmap is higher than other
schemes due to rehashing the bucket if necessary before
accessing. Level hashing has higher deletion latency than
P-CLHT and clevel hashing due to the frequent locking and
unlocking when accessing candidate slots. To fix duplication
during deletion, clevel hashing checks all candidate slots, thus
resulting in a slightly higher latency than P-CLHT.

4.4 Macro-benchmarks
Figure 10 shows the concurrent throughput normalized to
P-CLHT of different PM hashing schemes with real-world
workloads from YCSB. We run the experiment with 36
threads for all schemes. Since workload Load A is used to
populate indexes with 64 million items in the load phase, all
indexes resize multiple times (e.g., more than 10 times in
clevel hashing) from small sizes. Resizing also occurs in the
workload A.

The locks used for concurrency control hinder the index
performance. Specifically, the global resizing lock in the level
hashing blocks all queries until the single-threaded rehashing
completes, which leads to low throughput in workload Load
A and A. The global directory lock in CCEH is only used

9 18 27 36
0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (M

 o
p/

s)

 P-CLHT LEVEL CCEH CMAP
 LEVEL-TBB CCEH-TBB CMAP-TBB CLEVEL

Number of threads

Figure 11: The insertion scalability.

for directory doubling. Therefore, the insertion throughput
is much higher than level hashing. Due to the helping
mechanism in P-CLHT, there are two threads concurrently
rehashing items, which mitigates the overheads of the global
resizing lock in the load phase of YCSB (Load A). However,
when the table size increases, the two threads are not enough
to rehash all items in a short time, which accounts for
the low throughput for P-CLHT in workload A. Due to
the multiple resizing, the aggregated rehashing hinders the
throughput of cmap. Unlike these lock-based indexes, the
lock-free concurrency control in clevel hashing avoids the
lock contention during insertions. Hence, clevel hashing
obtains 1.4× speedup than cmap for insertion throughput.
In summary, our clevel hashing achieves up to 4.2× speedup
than the state-of-the-art PM hashing index (i.e., P-CLHT).

To evaluate the scalability of clevel hashing, we measure
the insertion throughput with different number of threads
using the Load A. As shown in Figure 11, with the increase
of threads, the throughput of clevel hashing increases and is
consistently higher than other schemes. This trend in search
throughput is similar.

4.5 Discussion

The reduction of hash table size. The current design of
clevel hashing doesn’t support the reduction of the hash table
size. When most stored items in the hash table are deleted, the
table may reduce the table size to improve space utilization.
Clevel hashing needs to be adapted to support the reduction.
Specifically, to reduce the table size in clevel hashing, we
need to create a new level with half of the buckets in the
last level and rehash the items from the first level to the
last level. When all the items of the first level are rehashed,
the first level is reclaimed. The migration of items for the
reduction generates data movement from the top level to the
bottom one (i.e., top-to-bottom movement), which is opposite
to expansion (i.e., bottom-to-top movement). Therefore, to
support concurrent reduction, we carry out top-down search
strategy instead of down-top search (§3.2.1) to avoid missing
inserted items. Note that all threads need to leverage the same
search strategy: either top-down searching for reduction or
down-top searching for expansion. The clevel hashing with

USENIX Association 2020 USENIX Annual Technical Conference 809

non-blocking concurrent reduction is our future work.
The isolation level. For the isolation in transactions, clevel
hashing has dirty reads, since there is no lock to isolate
data. Hence, the isolation level is read uncommitted [11].
To support higher isolation levels in a transaction, additional
locks or version control schemes are required [11, 22].
Space overhead. The metadata overhead in clevel hashing
mainly comes from the persistent buffers (§3.3), which are
the arrays of persistent pointers to the allocated memory, for
efficient management without contention. Persistent buffers
have separate entries for each thread. Therefore, the metadata
overhead is proportional to the number of threads. Clevel
hashing achieves a maximal load factor over 80% before
resizing. During resizing, hashing collisions that cannot be
addressed increase the number of levels to more than 3.
Due to the randomness of hash functions, the possibility
of continuous hash collisions for one position is very low.
Moreover, rehashing threads migrate items in the last level
until only two levels remain. Hence, the number of total levels
is usually small, which enables high storage utilization.

5 Related Work

5.1 Hashing-based Index Structures for PM
In order to optimize the hashing performance on PM, recent
work have designed some hashing-based index structures for
PM. Path hashing [39] and level hashing [40] leverage sharing-
based index structures and write-efficient open-addressing
techniques for high memory efficiency with limited extra
writes. Level hashing introduces a cost-efficient resizing
scheme by only rehashing the items in the old bottom level
to the new top level, which only account for 1/3 of total
inserted items. LF-HT [16] uses lock-free linked list for
each bucket to address hash collisions. However, these three
schemes all suffer from poor resizing performance, since
the resizing operations require exclusive global lock for
metadata. CCEH [30] is based on extendible hashing, which
dynamically expands the hash table by segment splitting
and optional directory doubling. Although the resizing in
CCEH is concurrent with other queries, the use of coarse-
grained locks for segments or even directory during resizing
causes performance degradation. The cmap storage engine
in pmemkv [6] supports concurrent lazy rehashing. The
rehashing of items in a bucket is trigger when accessing
the bucket. As a result, cmap distributes the rehashing of
items to future search/insertion/update/deletion. However,
cmap is possible to encounter recursive rehashing due to the
lazy rehashing. The rehashing in the critical path of queries
decreases the throughputs, especially for search operations.
Unlike existing schemes, clevel hashing has dynamical multi-
level structure for concurrent asynchronous resizing and
designs lock-free algorithms to improve the scalability with
low latency.

5.2 Lock-free Concurrent Hashing Indexes

Lock-free algorithms mitigate the lock contention for shared
resources and are hard to design because of the challenging
concurrency control. The lock-free linked list proposed by
Harris [21] is widely used in lock-free concurrent hashing
indexes [16, 29]. This class of schemes add a lock-free
linked list to each bucket. Though the lock-free linked list
enables lock-free insertion in these hash tables, it causes
high search overheads due to the sequential iteration over
linked lists. The lock-free cuckoo hashing [31] uses marking
techniques with helping mechanism to support lock-free
cuckoo displacements. However, the recursive data move-
ments bring lots of extra PM writes [40]. Recent work [20]
uses PSim [19] to build a wait-free resizable hash table.
The wait-free technique relies on copying the shared object
and helping mechanism, which still leads to extra writes on
PM and introduces overheads due to helping. Moreover, the
extendible hashing structures are memory inefficient as shown
in our evaluation. Different from existing lock-free hashing
schemes built on DRAM, clevel hashing designs PM friendly
and memory efficient multi-level structures with simple but
effective context-aware mechanism to guarantee correctness
and crash consistency.

6 Conclusion

Persistent memory offers opportunities to improve the per-
formance of storage systems, but suffers from the lack
of efficient and concurrent index structures. Existing PM-
friendly hashing indexes only focus on the consistency and
write reduction, which overlook the concurrency and resizing
of hash tables. In this paper, we propose clevel hashing, a
lock-free concurrent hashing scheme for PM. Clevel hashing
leverages the dynamic memory-efficient multi-level design
and asynchronous resizing to address the blocking issue due
to resizing. The lock-free concurrency control avoids the lock
contention for all queries while guarantees the correctness.
Our results using Intel Optane DC PMM demonstrate that
clevel hashing achieves higher concurrent throughput with
lower latency than state-of-the-art hashing indexes for PM.

Acknowledgments

This work was supported in part by National Key Research
and Development Program of China under Grant 2016YF-
B1000202, National Natural Science Foundation of China
(NSFC) under Grant No. 61772212 and No. 61821003, and
Key Laboratory of Information Storage System, Ministry of
Education of China. We are grateful to our shepherd, Andrea
C. Arpaci-Dusseau, and the anonymous reviewers for their
constructive comments and suggestions. We have released the
source code for public use in GitHub.

810 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Intel R© Architecture Instruction Set Extensions Pro-
gramming Reference. https://software.intel.
com/en-us/isaextensions, 2019.

[2] Intel R© OptaneTM DC persistent memory. https:
//www.intel.com/content/www/us/en/products/
memory-storage/optane-dc-persistent-memory.
html, 2019.

[3] Intel R© Threading Building Blocks. https://github.
com/intel/tbb, 2019.

[4] Memcached. https://memcached.org/, 2019.

[5] Persistent Memory Development Kit. http://pmem.
io/, 2019.

[6] pmemkv. http://pmem.io/pmemkv/index.html,
2019.

[7] Redis. https://redis.io/, 2019.

[8] The C++ Standard Template Library. http://www.
cplusplus.com/reference/functional/hash/,
2020.

[9] Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas,
and Per-Åke Larson. BzTree: A High-Performance
Latch-free Range Index for Non-Volatile Memory.
Proceedings of the VLDB Endowment (PVLDB),
11(5):553–565, 2018.

[10] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of
a Large-Scale Key-Value Store. In ACM SIGMET-
RICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems
(SIGMETRICS ’12), London, United Kingdom, June
2012.

[11] Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and
Riccardo Torlone. Database Systems - Concepts,
Languages and Architectures. McGraw-Hill Book
Company, 1999.

[12] Daniel Bittman, Darrell D. E. Long, Peter Alvaro,
and Ethan L. Miller. Optimizing Systems for Byte-
Addressable NVM by Reducing Bit Flipping. In 17th
USENIX Conference on File and Storage Technologies
(FAST ’19), Boston, MA, February 2019.

[13] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan,
and Marcos K. Aguilera. Black-box Concurrent Data
Structures for NUMA Architectures. In Proceedings
of the Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’17), Xi’an, China, April
2017.

[14] Shimin Chen and Qin Jin. Persistent B+-Trees in Non-
Volatile Main Memory. Proceedings of the VLDB
Endowment (PVLDB), 8(7):786–797, 2015.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing (SoCC ’10),
Indianapolis, Indiana, USA, June 2010.

[16] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui,
and Igor Zablotchi. Log-Free Concurrent Data
Structures. In 2018 USENIX Annual Technical
Conference (ATC ’18), Boston, MA, USA, July 2018.

[17] Tudor David, Rachid Guerraoui, and Vasileios Trig-
onakis. Asynchronized Concurrency: The Secret
to Scaling Concurrent Search Data Structures. In
Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’15), Istanbul, Turkey,
March 2015.

[18] Bin Fan, David G. Andersen, and Michael Kaminsky.
MemC3: Compact and Concurrent MemCache with
Dumber Caching and Smarter Hashing. In Proceedings
of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’13), Lombard, IL,
USA, April 2013.

[19] Panagiota Fatourou and Nikolaos D. Kallimanis. Highly-
Efficient Wait-Free Synchronization. Theory Comput.
Syst., 55(3):475–520, 2014.

[20] Panagiota Fatourou, Nikolaos D. Kallimanis, and
Thomas Ropars. An Efficient Wait-free Resizable Hash
Table. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures (SPAA ’18),
Vienna, Austria, July 2018.

[21] Timothy L. Harris. A Pragmatic Implementation of Non-
blocking Linked-Lists. In 15th International Symposium
on Distributed Computing (DISC ’01), Lisbon, Portugal,
October 2001.

[22] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency in
Byte-Addressable Persistent B+-Tree. In 16th USENIX
Conference on File and Storage Technologies (FAST
’18), Oakland, CA, USA, February 2018.

[23] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic Performance Measurements of
the Intel Optane DC Persistent Memory Module. CoRR,
abs/1903.05714, 2019.

USENIX Association 2020 USENIX Annual Technical Conference 811

https://software.intel.com/en-us/isaextensions
https://software.intel.com/en-us/isaextensions
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://github.com/intel/tbb
https://github.com/intel/tbb
https://memcached.org/
http://pmem.io/
http://pmem.io/
http://pmem.io/pmemkv/index.html
https://redis.io/
http://www.cplusplus.com/reference/functional/hash/
http://www.cplusplus.com/reference/functional/hash/

[24] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP
’19), Huntsville, ON, Canada, October 2019.

[25] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Chang-
woo Min, and Taesoo Kim. Scalable and Practical
Locking with Shuffling. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP
’19), Huntsville, ON, Canada, October 2019.

[26] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H. Noh. WORT: Write Optimal Radix
Tree for Persistent Memory Storage Systems. In 15th
USENIX Conference on File and Storage Technologies
(FAST ’17), Santa Clara, CA, USA, February 2017.

[27] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. RECIPE :
Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP
’19), Huntsville, ON, Canada, October 2019.

[28] Xiaozhou Li, David G. Andersen, Michael Kaminsky,
and Michael J. Freedman. Algorithmic Improvements
for Fast Concurrent Cuckoo Hashing. In Ninth
Eurosys Conference 2014 (EuroSys ’14), Amsterdam,
The Netherlands, April 2014.

[29] Maged M. Michael. High Performance Dynamic Lock-
Free Hash Tables and List-Based Sets. In Proceedings
of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’02), Winnipeg,
Manitoba, Canada, August 2002.

[30] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H.
Noh, and Beomseok Nam. Write-Optimized Dynamic
Hashing for Persistent Memory. In 17th USENIX
Conference on File and Storage Technologies (FAST
’19), Boston, MA, February 2019.

[31] Nhan Nguyen and Philippas Tsigas. Lock-Free Cuckoo
Hashing. In IEEE 34th International Conference on
Distributed Computing Systems (ICDCS ’14), Madrid,
Spain, June 2014.

[32] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A Hybrid

SCM-DRAM Persistent and Concurrent B-Tree for
Storage Class Memory. In Proceedings of the 2016
International Conference on Management of Data
(SIGMOD ’16), San Francisco, CA, USA, June 2016.

[33] Zoran Radovic and Erik Hagersten. Hierarchical Backof-
f Locks for Nonuniform Communication Architectures.
In Proceedings of the Ninth International Symposium
on High-Performance Computer Architecture (HPCA

’03), Anaheim, California, USA, February 2003.

[34] Yuanyuan Sun, Yu Hua, Zhangyu Chen, and Yuncheng
Guo. Mitigating Asymmetric Read and Write Costs in
Cuckoo Hashing for Storage Systems. In 2019 USENIX
Annual Technical Conference (ATC ’19), Renton, WA,
USA, July 2019.

[35] Tianzheng Wang, Justin J. Levandoski, and Per-Åke
Larson. Easy Lock-Free Indexing in Non-Volatile
Memory. In 34th IEEE International Conference on
Data Engineering (ICDE ’18), Paris, France, April 2018.

[36] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An Empirical
Guide to the Behavior and Use of Scalable Persistent
Memory. In 18th USENIX Conference on File and
Storage Technologies (FAST ’20), Santa Clara, CA, USA,
February 2020.

[37] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. NV-Tree:
Reducing Consistency Cost for NVM-based Single
Level Systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST
’15), Santa Clara, CA, USA, February 2015.

[38] Lu Zhang and Steven Swanson. Pangolin: A Fault-
Tolerant Persistent Memory Programming Library. In
2019 USENIX Annual Technical Conference (ATC ’19),
Renton, WA, USA, July 2019.

[39] Pengfei Zuo and Yu Hua. A Write-Friendly and Cache-
Optimized Hashing Scheme for Non-Volatile Memory
Systems. IEEE Trans. Parallel Distrib. Syst., 29(5):985–
998, 2018.

[40] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized
and High-Performance Hashing Index Scheme for
Persistent Memory. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’18), Carlsbad, CA, USA, October 2018.

812 2020 USENIX Annual Technical Conference USENIX Association

Optimizing Memory-mapped I/O for Fast Storage Devices

Anastasios Papagiannis1, Giorgos Xanthakis1, Giorgos Saloustros,
Manolis Marazakis, and Angelos Bilas1

Foundation for Research and Technology – Hellas (FORTH), Institute of Computer Science (ICS)
{apapag, gxanth, gesalous, maraz, bilas}@ics.forth.gr

Abstract
Memory-mapped I/O provides several potential advantages

over explicit read/write I/O, especially for low latency de-
vices: (1) It does not require a system call, (2) it incurs almost
zero overhead for data in memory (I/O cache hits), and (3)
it removes copies between kernel and user space. However,
the Linux memory-mapped I/O path suffers from several scal-
ability limitations. We show that the performance of Linux
memory-mapped I/O does not scale beyond 8 threads on a
32-core server. To overcome these limitations, we propose
FastMap, an alternative design for the memory-mapped I/O
path in Linux that provides scalable access to fast storage
devices in multi-core servers, by reducing synchronization
overhead in the common path. FastMap also increases de-
vice queue depth, an important factor to achieve peak device
throughput. Our experimental analysis shows that FastMap
scales up to 80 cores and provides up to 11.8× more IOPS
compared to mmap using null_blk. Additionally, it provides
up to 5.27× higher throughput using an Optane SSD. We
also show that FastMap is able to saturate state-of-the-art fast
storage devices when used by a large number of cores, where
Linux mmap fails to scale.

1 Introduction

The emergence of fast storage devices, with latencies in the
order of a few µs and IOPS rates in the order of millions per
device is changing the I/O landscape. The ability of devices
to cope well with random accesses leads to new designs for
data storage and management that favor generating small and
random I/Os to improve other system aspects [2, 35, 42, 43].
Although small and random I/Os create little additional pres-
sure to the storage devices, they result in significantly higher
CPU overhead in the kernel I/O path. As a result, the overhead
of performing I/O operations to move data between memory
and devices is becoming more pronounced, to the point where

1Also with the Department of Computer Science, University of Crete,
Greece.

a large fraction of server CPU cycles are consumed only to
serve storage devices [11, 46].

In this landscape, memory-mapped I/O, i.e. Linux mmap,
is gaining more attention [8, 13, 24, 42, 43] for data inten-
sive applications because of its potentially lower overhead
compared to read/write system calls. An off-the-shelf NVMe
block device [28] has access latency close to 10 µs and is
capable of more than 500 KIOPS for reads and writes. Byte-
addressable, persistent memory devices exhibit even better
performance [29]. The traditional read/write system calls in
the I/O path incur overheads of several µs [11, 46] in the best
case and typically even higher, when asynchronous operations
are involved.

In contrast, when using memory-mapped I/O a file is
mapped to the process virtual address space where the user
can access data with processor load/store instructions. The
kernel is still responsible for moving data between devices
and memory; mmap removes the need for an explicit system
call per I/O request and incurs the overhead of an implicit
page fault only when data does not reside in memory. In the
case when data reside in memory, there is no additional over-
head due to I/O cache lookups and system calls. Therefore,
the overhead for hits is reduced dramatically as compared to
both the kernel buffer cache but also to user-space I/O caches
used in many applications. In several cases memory-mapped
I/O removes the need to serialize and deserialize user data,
by allowing applications to have the same format for both
in-memory and persistent data, and also the need for memory
copies between kernel and user space.

A major reason for the limited use of memory-mapped
I/O, despite its advantages, has been that mmap may generate
small and random I/Os. With modern storage devices, such
as NVMe and persistent memory, this is becoming less of a
concern. However, Figure 1 shows that the default memory-
mapped I/O path (mmap backed by a device) for random
page faults does not scale well with the number of cores.
In this experiment (details in Section 4), we use null_blk, a
Linux driver that emulates a block device but does not issue
I/Os to a real device (we use 4TB dataset and 192GB of

USENIX Association 2020 USENIX Annual Technical Conference 813

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 8 16 32

m
ill

io
n

 p
a
g
e

-f
a

u
lt
s
/s

e
c
 (

IO
P

S
)

#threads

FastMap-read
FastMap-write
Linux-5.4-read
Linux-5.4-write

Linux-4.14-read
Linux-4.14-write

Figure 1: Scalability of random page faults using two ver-
sions of Linux memory-mapped I/O path (v4.14 & v5.4) and
FastMap, over the null_blk device.

DRAM cache). Using null_blk allows us to stress the Linux
kernel software stack while emulating a low-latency, next-
generation storage device. Linux mmap scales up to only 8
cores, achieving 7.6 GB/s (2M random IOPS), which is about
5× less compared to a state-of-the-art device [29]; servers
with multiple storage devices need to cope with significantly
higher rates. We observe that from Linux kernel 4.14 to 5.4
the performance and the scalability of the memory-mapped
I/O path has not improved significantly. Limited scalability
also results in low device queue depth. Using the same micro-
benchmark for random read page faults with 32 threads on an
Intel Optane SSD DC P4800X, we see that the average device
queue depth is 27.6. A large queue depth is essential for fast
storage devices to provide their peak device throughput.

In this paper, we propose FastMap, a novel design for the
memory-mapped I/O path that overcomes these two limita-
tions of mmap for data intensive applications on multi-core
servers with fast storage devices. FastMap (a) separates clean
and dirty-trees to avoid all centralized contention points, (b)
uses full reverse mappings instead of Linux object-based re-
verse mappings to reduce CPU processing, and (c) introduces
a scalable DRAM cache with per-core data structures to re-
duce latency variability. FastMap achieves both higher scala-
bility and higher I/O concurrency by (1) avoiding all central-
ized contention points that limit scalability, (2) reducing the
amount of CPU processing in the common path, and (3) us-
ing dedicated data-structures to minimize interference among
processes, thus improving tail latency. As a further extension
to mmap, we introduce a user-defined read-ahead parameter
to proactively map pages in application address space and
reduce the overhead of page faults for large sequential I/Os.

We evaluate FastMap using both micro-benchmarks and
real workloads. We show that FastMap scales up to 80
cores and provides up to 11.8× more random IOPS com-
pared to Linux mmap using null_blk. FastMap achieves

2× higher throughput on average for all YCSB workloads
over Kreon [43], a persistent key-value store designed to use
memory-mapped I/O. Moreover, we use FastMap to extend
the virtual address space of memory intensive applications be-
yond the physical memory size over a fast storage device.
We achieve up to 75× lower average latency for TPC-C
over Silo [54] and 5.27× better performance with the Ligra
graph processing framework [50]. Finally, we achieve 6.06%
higher throughput on average for all TPC-H queries over
MonetDB [8] that mostly issue sequential I/Os.

In summary, our work optimizes the memory-mapped I/O
path in the Linux kernel with three main contributions:

1. We identify severe performance bottlenecks of Linux
memory-mapped I/O in multi-core servers with fast stor-
age devices.

2. We propose FastMap, a new design for the memory-
mapped I/O path.

3. We provide an experimental evaluation and analysis of
FastMap compared to Linux memory-mapped I/O using
both micro-benchmarks and real workloads.

The rest of the paper is organized as follows. §2 provides
the motivation behind FastMap. §3 presents the design of
FastMap along with our design decisions. §4 and §5 present
our experimental methodology and results, respectively. Fi-
nally, §6 reviews related work and §7 concludes the paper.

2 Motivation

With storage devices that exhibit low performance for random
I/Os, such as hard disk drives (HDDs), mmap results in small
(4KB) random I/Os because of the small page size used in
most systems today. In addition, mmap does not provide a way
for users to manage page writebacks in the case of high mem-
ory pressure, which leads to unpredictable tail latencies [43].
Therefore, historically the main use of mmap has been to load
binaries and shared libraries into the process address space;
this use-case does not require frequent I/O, uses read-mostly
mappings, and exhibits a large number of shared mappings
across processes, e.g. libc is shared by almost all processes
of the system. Reverse mappings provide all page table trans-
lations for a specific page and they are required in order to
unmap a page during evictions. Therefore, Linux mmap uses
object-based reverse mappings [37] to reduce memory con-
sumption and enable fast fork system calls, as they do not
require copying full reverse mappings.

With the introduction of fast storage devices, where the
throughput gap between random and sequential I/O is small,
memory-mapped I/O has the potential to reduce I/O path over-
head in the kernel, which is becoming the main bottleneck
for data-intensive applications. However, data intensive appli-
cations, such as databases or key-value stores, have different
requirements compared to loading binaries: they can be write-
intensive, do not require large amount of sharing, and do not
use fork system calls frequently. These properties make the

814 2020 USENIX Annual Technical Conference USENIX Association

address_space

tree_lock
(spinlock)

i_mmap_rwsem
(read_write_semaphore)

page_tree
(radix_tree)

i_mmap
(rb_tree)

vma vma

mm_struct

pgd

page

file

page mm_struct

vma vmaprocess

pgd

(a) Linux

file

vma

PFDper-core per-core

per-core

PPR

PPR

PPR

PPR

PPR

. . .

per-core

PPR

PPR

PPR

PPR . . .

PVE

VMA

Virtual

Address

per-core

PPR

PPR

PPR

PPR

PPR

. . .

PVE PVE

p
a

g
e

_
tr

e
e

(r
a

d
ix

_
tr

e
e

)

d
ir

ty
_

tr
e

e
(r

b
_

tr
e

e
)

p
a

g
e

_
tr

e
e

(r
a

d
ix

_
tr

e
e

)

d
ir

ty
_

tr
e

e
(r

b
_

tr
e

e
)

.

page page page.

vma vma

process

(b) FastMap

Figure 2: Linux (left) and FastMap (right) high-level architecture for memory-mapped files (acronyms: PFD=Per-File-Data,
PVE=Per-Vma-Entry, PPR=Per-Pve-Rmap).

use of full reverse mappings a preferred approach. In addition,
data intensive applications use datasets that do not fit in main
memory and thus, the path of reading and writing a page from
the device becomes the common case. Most of these applica-
tions are also heavily multithreaded and modern servers have
a large number of cores.

3 Design of FastMap

The Linux kernel provides the mmap and munmap system
calls to create and destroy memory mappings. Linux distin-
guishes memory mappings in shared vs. private. Mappings
can also be anonymous, i.e. not backed by a file or device.
Anonymous mappings are used for memory allocation. In this
paper we examine I/O over persistent storage, an inherently
shared resource. Therefore, we consider only shared memory
mappings backed by a file or block device, as also required
by Linux memory-mapped I/O.

Figure 2(a) shows the high-level architecture of shared
memory mappings in the Linux kernel. Each virtual memory
region is represented by a struct vm_area_struct (VMA). Each
VMA points to a struct file (file) that represents the backing
file or device and the starting offset of the memory mapping
to it. Each file points to (a shared between processes) struct
address_space (address_space) which contains information
about mapped pages and the backing file or device.

Figure 2(b) illustrates the high-level design of FastMap.
The most important components in our design are
per_file_data (PFD) and per_vma_entry (PVE). Combined,
these two components provide equivalent functionality as the
Linux kernel address_space structure. Each file points to a
PFD and each VMA points to a PVE. The role of a PFD is to

keep metadata about device blocks that are in the FastMap
cache and metadata about dirty pages. PVE provides full
reverse mappings.

3.1 Separate Clean and Dirty Trees in PFD

In Linux, one of the most important parts of address_space
is page_tree, a radix tree that keeps track of all pages of a
cacheable and mappable file or device, both clean and dirty.
This data structure provides an effective way to check if a
device block is already in memory when a page fault occurs.
Lookups are lock-free (RCU) but inserts and deletes require
a spinlock (named tree_lock). Linux kernel radix trees also
provide user-defined tags per entry. A tag is an integer, where
multiple values can be stored using bitwise operations. In
this case tags are used to mark pages as dirty. Marking a
previously read-only page as writable requires holding the
tree_lock to update the tag.

Using the experiments of Figure 1 and lockstat we see
that tree_lock is by far the most contended lock: Using the
same multithreaded benchmark as in Figure 1, over a single
memory mapped region, tree_lock has 126× more contended
lock acquisitions, which involve cross-cpu data, and 155×
more time waiting to acquire the lock, compared to the second
most contended lock. The second more contended lock is a
spinlock that protects concurrent modifications in PTEs (4th
level entries in the page table). This design has remained
essentially unchanged from Linux kernel 2.6 up to 5.4 (latest
stable version at the time of this writing).

To remove the bottleneck in tree_lock, FastMap uses a
new structure for per-file data, PFD. The most important
aspects of PFD are: (i) a per-core radix tree (page_tree) that

USENIX Association 2020 USENIX Annual Technical Conference 815

keeps all (clean and dirty) pages and (ii) a per-core red-black
tree (dirty_tree) that keeps only dirty pages. Each of these
data structures is protected by a separate (per core) spinlock,
different for the radix and red-black trees. We assign pages to
cores in a round-robin manner and we use the page offset to
identify the per-core structure that holds each page.

We use page_tree to provide lock-free lookups (RCU),
similar to the Linux kernel. We use per-core data structures
to reduce contention in case we need to add or remove a
page. On the other hand, we do not use tags to mark pages
as dirty but we use the dirty_tree for this purpose. In the
case where we have to mark a previously read-only page as
read-write, we only acquire the appropriate lock of dirty_tree
without performing any additional operations to the page_tree.
Furthermore, having all dirty pages in a sorted data structure
(red-black tree) enables efficient I/O merging for the cases of
writebacks and the msync system call.

3.2 Full Reverse Mappings in PVE

Reverse (inverted) mappings are also an important part of
mmap. They are used in the case of evictions and writebacks
and they provide a mechanism to find all existing virtual
memory mappings of a physical page. File-backed memory
mappings in Linux use object-based reverse mappings [37].
The main data structure for this purpose is a red-black tree,
i_mmap. It contains all VMAs that map at least one page of
this address_space. A read-write semaphore, i_mmap_rwsem,
protects concurrent accesses to the i_mmap red-black tree.
The main function that removes memory mappings for a spe-
cific page is try_to_unmap. Each page has two fields for this
purpose: (i) a pointer to the address_space that it belongs to
and (ii) an atomic counter (_mapcount) that keeps the number
of active page mappings. Using the pointer to address_space,
try_to_unmap gets access to i_mmap and then iterates over
all VMAs that belong to this mapping. Through each VMA, it
has access to mm_struct which contains the root of the pro-
cess page table (pgd). It calculates the virtual address of the
mapping based on the VMA and the page, which is required
for traversing the page table. Then it has to check all active
VMAs of i_mmap if the specific page is mapped, which results
in many useless page table traversals. This is the purpose of
_mapcount, which limits the number of traversals. This strat-
egy is insufficient in some cases but it requires a very small
amount of memory for the reverse mappings. More specifi-
cally, in the case where _mapcount is greater than zero, we
may traverse the page table for a VMA where the requested
page is not mapped. This can happen in the case where a page
is mapped in several different VMAs in the same process, i.e.
with multiple mmap calls, or mapped in the address space
of multiple different processes. In such a case, we have un-
necessary page table traversals that introduce overheads and
consume CPU cycles. Furthermore, during this procedure,
i_mmap_rwsem is held as a read lock and as a write lock only

during mmap and munmap system calls. Previous research
shows that even a read lock can limit scalability in multicore
servers [15].

The current object-based reverse mappings in Linux have
two disadvantages: (1) with high likelihood they result in
unnecessary page table traversals, originating from i_mmap,
and (2) they require a coarse grain read lock to iterate i_mmap.
Other works have shown that in multi-core servers locks can
be expensive, even for read-write locks when acquired as read
locks [15]. These overheads are more pronounced in servers
with a NUMA memory organization [10].

To overcome these issues FastMap provides finer grained
locking, as follows: FastMap uses a structure with an entry
for each VMA, PVE. Each PVE keeps a per-core list of all
pages that belong to this VMA. A separate (per core) spin-
lock protects each of these lists. The lists are append-only
as unmapping a page from a different page table does not
require any ordering. We choose the appropriate list based on
the core that runs the append operation (smp_processor_id()).
These lists contain per_pve_rmap (PPR) entries. Each PPR
contains a tuple (V MA,virtual_address). These metadata are
sufficient to allow iterating over all mapped pages of a spe-
cific memory mapping in the case of an munmap operation.
Furthermore, each page contains an append-only list of active
PPRs, which are shared both for PVEs and pages. This list is
used when we need to evict a page that is already mapped in
one or more address spaces, in the event of memory pressure.

3.3 Dedicated DRAM Cache

An mmap address_space contains information about the back-
ing file or device and the required functions to interact with
the device in case of page reads and writes. To write back a
set of pages of a memory mapping, Linux iterates page_tree
in a lock-free manner with RCU and writes only the pages
that have the dirty tag enabled. Linux also keeps a per-core
LRU to find out which pages to evict. In the case of evictions,
Linux tries to remove clean pages in order not to wait for dirty
pages to do the writeback [37].

The Linux page-cache is tightly coupled with the swap-
per. For the memory-mapped I/O path, this dependency re-
sults in unpredictable evictions and bursty I/O to the stor-
age devices [43]. Therefore, FastMap implements its own
DRAM cache, managing evictions via an approximation
of LRU. FastMap has two types of LRU lists: one con-
taining only clean pages (clean_queue) and one containing
only dirty pages (dirty_queue). FastMap maintains per-core
clean_queues to reduce lock contention. We identify the ap-
propriate clean_queue as clean_queue_id = page_offset %
num_cores.

When there are no free pages during a page fault, FastMap
evicts only clean pages, similar to the Linux kernel [37], from
the corresponding clean_queue. We evict a batch (with a
configurable size, currently set to 512) of clean pages to amor-

816 2020 USENIX Annual Technical Conference USENIX Association

tize the cost of page table manipulation and TLB invalida-
tions. Each page eviction requires a TLB invalidation with the
flush_tlb function, if the page mapping is cached. flush_tlb
sends an IPI (Inter-Processor-Interrupt) to all cores, incurring
significant overheads and limiting scalability [3,4]. We imple-
ment a mechanism to reduce the number of calls to flush_tlb
function, using batching, as follows.

A TLB invalidation requires a pointer to the page table and
the page_offset. FastMap keeps a pointer to the page table
and a range of page_offsets. Then, we invoke flush_tlb for the
whole range. This approach may invalidate more pages, but
reduces the number of flush_tlb calls by a factor of the batch-
size of page evictions (currently 512). As the file mappings
are usually contiguous in the address space in data intensive
applications, in the common case false TLB invalidations
are infrequent. Thus, FastMap manages to maintain a high
number of concurrent I/Os to devices and increase device
throughput. LATR [33] proposes the use of an asynchronous
TLB invalidation mechanism based on message passing. In
our case, we cannot delay TLB invalidations as the pages
should be used immediately for page fault handling.

FastMap uses multiple threads to write dirty pages to the
underlying storage device (writeback). Each of these manages
its own dirty_queue. This design removes the need of syn-
chronization when we remove dirty pages from a dirty_queue.
During writebacks, FastMap merges consecutive I/O requests
to generate large I/O operations to the underlying device. To
achieve this, we use dirty_trees that keep dirty pages sorted
based on the device offset. As we have multiple dirty_trees,
we initialize an iterator for each tree and we combine the
iterator results using a min-max heap. When a writeback oc-
curs, we also move the page to the appropriate clean_queue
to make it available for eviction. As page writeback also re-
quires a TLB invalidation, we use the same mechanism as in
the eviction path to reduce the number of calls to the kernel
flush_tlb function. Each writeback thread checks the ratio of
dirty to clean pages and starts the writeback when the percent-
age is higher than 75% of the total cache pages. The cache
in FastMap currently uses a static memory buffer, allocated
upon module initialization and does not create any further
memory pressure to the Linux page cache. We also provide
a way to grow and shrink this cache at runtime, but we have
not yet evaluated alternative sizing policies.

To keep track of free pages FastMap uses a per-core free
list with a dedicated spinlock. During a major page fault i.e.,
when the page does not reside in the cache, the faulting thread
first tries to get a page from its local free list. If this fails, it
tries to steal a page from another core’s free list (randomly
selected). After num_cores unsuccessful tries, FastMap forces
page evictions to cleanup some pages. To maintain all free
lists balanced, each evicted page is added to the free list from
which we originally obtained the page.

Overall, FastMap with per-core data structures requires
more memory compared to the native Linux mmap. FastMap

K
e

rn
e

l S
p

a
ce

page-fault path

VFS

File Systems

(XFS, EXT4,

NOVA, PMFS etc.)

Block Devices

FastMap

V
a

n
ill

a
 L

in
u

x

Fa
st

M
a

p

WrapFS

+

page-fault path
VFS

File Systems

(XFS, EXT4,

NOVA, PMFS

etc.)

Block Devices

mmap

Figure 3: FastMap I/O path.

requires a single PFD, which is 1120 bytes, per file for all
memory mappings. A single PVE is about 512 bytes and a
single PPR is 24 bytes. We require a single PVE for each
mmap call, i.e. 1 : 1 with the Linux VMA struct. FastMap
requires a single PPR entry per PVE for each mapped page,
independently of how many threads access the same page.
In the setups we target, there is little sharing of files across
processes and we can therefore, assume that we only need one
PPR entry for each page in our DRAM cache. For instance,
assume that a single application maps 1000 files and uses
8GB of DRAM cache. This results in 1.64MB of additional
memory, independently of the size of files and the number of
threads. FastMap targets storage servers with large memory
spaces and can be applied selectively for the specific mount
points that hold the files of data-intensive applications. While
it is, in principle, possible to allow more fine-grain uses of
FastMap in Linux, we leave this possibility for future work.

Finally, the Linux kernel also provides private, file-backed
memory mappings. These are Copy-On-Write mappings and
writes to them do not reach the underlying file/device. Such
mappings are outside the scope of this paper, but they share
the same path in the Linux kernel to a large extent. Our pro-
posed techniques also apply to private file-backed mappings.
However, these mappings are commonly used in Linux kernel
to load binaries and shared libraries, resulting in a large degree
of sharing. We believe that it is not beneficial to use the in-
creased amount of memory required by FastMap to optimize
this relatively uncommon path.

3.4 Implementation
Figure 3 shows the I/O path in the Linux kernel and indicates
where FastMap is placed. FastMap is above VFS and thus is
independent of the underlying file system. This means that
common file systems such as XFS, EXT4, and BTRFS 1 can
benefit from our work.

FastMap provides a user interface for accessing both a
block device but also a file system through a user-defined
mount point. For the block device case, we implement a vir-
tual block device that uses our custom mmap function. All
other block device requests (e.g. read/write) are forwarded to

1FastMap has been successfully tested with all of these file systems.

USENIX Association 2020 USENIX Annual Technical Conference 817

the underlying device. Requests for fetching or evicting pages
from FastMap are issued directly to the underlying device.

For the file system implementation we use WrapFS [59], a
stackable file system that intercepts all mmap calls to a spe-
cific mount point so that FastMap is used instead of the native
Linux mmap implementation. For fetching or evicting pages
from within FastMap we use direct I/O to the underlying file
system, bypassing the Linux page cache. All other file system
calls are forwarded to the underlying file system.

4 Experimental Methodology

In this section, we present the experimental methodology we
use to answer the following questions:

1. How does FastMap perform compared to Linux mmap?
2. How much does FastMap improve storage I/O?
3. How sensitive is FastMap to (a) file system choice and

(b) false TLB invalidations?
Our main testbed consists of a dual-socket server that is

equipped with two Intel(R) Xeon(R) CPU E5-2630 v3 CPUs
running at 2.4 GHz, each with 8 physical cores and 16 hyper-
threads for a total of 32 hyper-threads. The primary storage
device is a PCIe-attached Intel Optane SSD DC P4800X se-
ries [28] with 375 GB capacity. For the purposes of evaluating
scalability, we use an additional four-socket server. This four-
socket server is equipped with four Intel(R) Xeon(R) CPU
E5-4610 v3 CPUs running at 1.7 GHz, each with 10 physical
cores and 20 hyper-threads for a total of 80 hyper-threads.
Both servers are equipped with 256 GB of DDR4 DRAM at
2400 MHz and run CentOS v7.3, with kernel 4.14.72.

During our evaluation we limit the available capacity of
DRAM (using a kernel boot parameter) as required by differ-
ent experiments. In our evaluation we use datasets that both
fit and do not fit in main memory. This allows us to provide a
more targeted evaluation and separate the costs of the page-
fault path and the eviction path. To reduce variability in our
experiments, we disable swap and Transparent Huge Pages
(THP), and we set the CPU scaling governor to "performance".
In experiments where we want to stress the software path of
the Linux kernel we also use the null_blk [40] and pmem [47]
block devices. null_blk emulates a block device but ignores
the I/O requests issued to it. For null_blk we use the bio-
based configuration. pmem emulates a fast block device that
is backed by DRAM.

In our evaluation we first use a custom multithreaded mi-
crobenchmark. It uses a configurable number of threads that
issue load/store instructions at randomly generated offsets
within the memory mapped region. We ensure that each
load/store results in a page fault.

Second, we use a persistent key-value store. We choose
Kreon [43], a state-of-the-art persistent key-value store that
is designed to work with memory-mapped I/O. The design of
Kreon is similar to the LSM-tree, but it maintains a separate
B-Tree index per-level to reduce I/O amplification. Kreon

Workload
A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads, 50% read-modify-write

Table 1: Standard YCSB Workloads.

uses a log to keep user data. It uses memory-mapped I/O
to perform all I/O between memory and (raw) devices. Fur-
thermore, it uses Copy-On-Write (COW) for persistence, in-
stead of Write-Ahead-Logging. Kreon follows a single-writer,
multiple-reader concurrency model. Readers operate concur-
rently with writers using Lamport counters [34] per node for
synchronization to ensure correctness. For inserts and updates,
it uses a single lock per database; however, by using multiple
databases Kreon can support concurrent updates.

To improve single-database scalability in Kreon and make
it more suitable for evaluating FastMap, we implement the
second protocol that Bayer et al. propose [7]. This protocol
requires a read-write lock per node. It acquires the lock as
a read lock in every traversal from the root node to a leaf.
In the case of inserts or rebalance operations it acquires the
corresponding lock as a write lock. As every operation has to
acquire the root node read lock, this limits scalability [15]. To
overcome this limitation, we replace the read/write lock of the
root node with a Lamport counter and a lock. Every operation
that modifies the root node acquires the lock, changes the
Lamport counter, performs a COW operation, and then writes
the update in the COW node.

For Kreon we use the YCSB [18] workloads and more
specifically a C++ implementation [48] to remove overheads
caused by the JNI framework, as Kreon is highly efficient
and is designed to take advantage of fast storage devices. Ta-
ble 1 summarizes the YCSB workloads we use. These are the
proposed workloads, and we execute them in the author’s pro-
posed sequence [18], as follows: LoadA, RunA, RunB, RunC,
RunF, RunD, clear the database, and then LoadE, RunE.

Furthermore, we use Silo [54], an in-memory database
that also provides scalable transactions for modern multicore
machines. In this case, we use TPC-C [52], a transactional
benchmark, which models a retail operation and is a com-
mon benchmark for OLTP workloads. We also use Ligra [50],
a lightweight graph processing framework for shared mem-
ory with OpenMP-based parallelization. Specifically, we use
the Breadth First Search (BFS) algorithm. We use Silo and
Ligra to evaluate FastMap’s effectiveness in extending the
virtual address space of an application beyond physical mem-
ory over fast storage devices. For this reason we convert all
malloc/free calls of Ligra and Silo to allocate space over a
memory-mapped file on a fast storage device. We use the lib-
vmmalloc library from the Persistent Memory Development
Kit (PMDK) [45]. libvmmalloc transparently converts all dy-

818 2020 USENIX Annual Technical Conference USENIX Association

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 10 20 40 80

m
ill

io
n

 p
a
g
e

-f
a

u
lt
s
/s

e
c
 (

IO
P

S
)

#threads

FastMap-Rd-SPF
FastMap-Wr-SPF

FastMap-Rd
FastMap-Wr

mmap-Rd
mmap-Wr

Figure 4: Scalability of random page faults for Linux and
FastMap, with up to 80 threads, using the null_blk device.

namic memory allocations to persistent memory allocations.
This allows the use of persistent memory as volatile mem-
ory without modifying the target application. The memory
allocator of libvmmalloc is based on jemalloc [30].

Finally, we evaluate FastMap using MonetDB-11.31.7 [8,
39], a column-oriented DBMS that is designed to use mmap
to access files instead of using the read/write API. We use the
TPC-H [53] benchmark, a warehouse read-mostly workload.

We run all experiments three times and we report the aver-
ages. In all cases the variation observed across runs is small.

5 Experimental Results

5.1 How does FastMap perform compared to
Linux mmap?

Microbenchmarks: Figure 1 shows that Linux mmap fails
to scale beyond eight threads on our 32-core server. FastMap
provides 3.7× and 6.6× more random read and write IOPS,
respectively, with 32 threads compared to Linux mmap. Fur-
thermore, both versions 4.14 and 5.4 of the Linux kernel
achieve similar performance. To further stress FastMap, we
use our 80-core server and the null_blk device. Figure 4 shows
that with 80 threads, FastMap provides 4.7× and 7× higher
random read and write IOPS respectively, compared to Linux
mmap. Furthermore, in both cases FastMap performs up to
38% better even in the case where there is little or no concur-
rency, when using a single thread.

Figure 4 shows that not only FastMap scales better com-
pared to Linux mmap, but also that FastMap sustains more
page faults per second. On the other hand FastMap does not
achieve perfect scalability. For this reason, we profile FastMap
using the random read page faults microbenchmark. We find
that the bottleneck is the read-write lock (mmap_sem) that
protects the red-black tree of active VMAs. This is the problem
that Bonsai [15] tackles. Specifically, with 10 cores the cost
of read_lock and read_unlock is 7.6% of the total execution

 0

 100

 200

 300

 400

 500

m
m

ap
-rd

m
m

ap
-w

r

Fa
st
M

ap
-rd

Fa
st
M

ap
-w

r

#
s
a

m
p

le
s
 (

x
1

0
0

0
)

finish_fault
mark_pg_dirty
mkwrite_function
address_space
LRU
I/O
page_alloc
fault_function
handle_mm_fault
VMA-lock
page_fault
run_random
main

Figure 5: FastMap and Linux mmap breakdown for read and
write page faults, with null_blk and 32 cores.

time, with 20 cores it becomes 25.4%, with 40 cores 32%,
and with 80 cores 37.4%. To confirm this intuition, we apply
Speculative Page Faults (SPF) [20], and attempt to use SRCU
(Sleepable RCU) instead of the read-write lock to protect the
red-black tree of active VMAs, an approach similar to Bonsai.
We use the Linux kernel patches from [19] as, at the time
of writing, they have not been merged in the Linux mainline.
As SPF works only for anonymous mappings, we modify it
to use FastMap for block-device backed memory-mappings.
Figure 4 shows that FastMap with SPF provides even better
scalability: 2.51× and 11.89× higher read IOPS compared to
FastMap without SPF and to Linux kernel, respectively. We
do not provide an evaluation of SPF without FastMap as it
(1) works only for anonymous mappings and (2) it could use
the same Linux kernel path that has scalability bottlenecks,
as we show in Section 3.1.

Figure 5 shows the breakdown of the execution time for
both random reads and writes. We profile these runs using perf
at 999Hz and plot the number of samples (y axis) that perf re-
ports. First, we see that for random reads Linux mmap spends
almost 80% of the time in manipulating the address_space
structure, specifically in the contented tree_lock that protects
the radix_tree which keeps all the pages of the mapping (see
Section 3). In FastMap we do not observe a single high source
of overhead. In the case of writes the overhead of this lock
is even more pronounced in Linux mmap. For each page that
is converted from read-only to read-write, Linux has to ac-
quire this lock again to set the tag. FastMap removes this
contention point as we keep metadata about dirty pages only
in the per-core red-black trees (Section 3.3). Therefore, we do
not modify the radix_tree upon the conversion of a read-only
page to a read-write page.

Figure 6 shows how each optimization in FastMap affects
I/O performance. Vanilla is the Linux mmap and basic is
FastMap with all the optimizations disabled, except the per-
core red-black tree. The per-core radix-tree optimization is
important, because with increasing core counts on modern

USENIX Association 2020 USENIX Annual Technical Conference 819

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

va
ni
lla

ba
si
c

pe
r-c

or
e_

ra
di
x-
tre

e

pe
r-c

or
e_

cl
ea

nQ

pe
r-c

or
e_

fre
el
is
ts

pe
r-c

or
e_

di
rty

Qm
ill

io
n

 p
a
g
e

-f
a

u
lt
s
/s

e
c
 (

IO
P

S
)

read
write

Figure 6: Performance gains from different optimizations in
FastMap, as compared to "vanilla" Linux using null_blk and
32 cores.

servers (Section 3.1) the single radix tree lock is by far the
most contended lock. per-core cleanQ enables the per-core
LRU list for clean pages. The per-core freelists optimization
allows for scalable page allocation, resulting in significant
performance gains. Finally, the main purpose of per-core
dirtyQ is to enable higher concurrency when we convert a
page from read-only to read-write and allow for multiple evic-
tion threads with minimal synchronization. This optimization
mainly improves the write path, as is shown in Figure 6.

In-memory Graph Processing: We evaluate FastMap as
a mechanism to extend the virtual address space of an ap-
plication beyond the physical memory and over fast storage
devices. Using mmap (and FastMap) a user can easily map a
file over fast storage and provide an extended address space,
limited only by device capacity. We use Ligra [50], a graph
processing framework, a demanding workload in terms of
memory accesses and commonly operating on large datasets.
Ligra assumes that the dataset (and metadata) fit in main
memory. For our evaluation we generate a R-Mat [12] graph
of 100M vertices, with the number of directed edges is set
to 10× the number of vertices. We run BFS on the result-
ing 18GB graph, thus generating a read-mostly random I/O
pattern. Ligra requires about 64GB of DRAM throughout
execution. To evaluate FastMap and Linux mmap, we limit
the main memory of our 32-core server to 8 GB and we use
the Optane SSD device.

Figure 7 shows that BFS completes in 6.42s with FastMap
compared to 21.3s with default mmap and achieves a 3.31×
improvement. FastMap requires less than half the system time
(10.3% for FastMap vs. 27.38% for Linux) and stresses more
the underlying storage device as seen in iowait time (19.31%
for FastMap vs. 9.5% for Linux). This leaves 2.11× more
user-time available for the Ligra workload execution. Using a
pmem device the benefits of FastMap are even higher. Linux
mmap requires 21.9s for BFS, while FastMap requires only

 0

 5

 10

 15

 20

 25

FastMap-Optane

mmap-Optane

FastMap-pmem

mmap-pmem

ti
m

e
 (

s
e

c
)

Figure 7: Execution time for Ligra running BFS with 32
threads and using an Optane SSD and a pmem device.

4.15s, i.e. a 5.27× improvement. Overall, Ligra induces a
highly concurrent I/O pattern that stresses the default mmap,
resulting in lock contention as described in Section 3.1 and as
evidenced by the increased system time. The default mmap
results in a substantial slowdown, even with a pmem device
that has throughput comparable to DRAM.

5.2 How much does FastMap improve storage
I/O?

Kreon Persistent Key-value Store: In this section we eval-
uate FastMap using Kreon, a persistent key-value store that
uses memory-mapped I/O and a dataset of 80M records. The
keys are 30 bytes long, with 1000 byte values. This results
in a total footprint of about 76GB. We issue 80M operations
for each of the YCSB workloads. For the in-memory experi-
ment, we use the entire DRAM space (256GB) of the testbed,
whereas for the out-of-memory experiment we limit available
memory to 16GB. In all cases we use the Optane SSD device.

Figure 8(a) illustrates the scalability of Kreon, using
FastMap, Linux mmap, and mmap-filter, with a dataset that fits
in main memory. The mmap-filter configuration is the default
Linux mmap implementation augmented with a custom kernel
module we have created to remove the unnecessary read I/O
from the block device for newly allocated pages. Using 32
threads (on the 32-core server), FastMap achieves 1.55× and
2.77× higher throughput compared to mmap-filter and mmap
respectively, using the LoadA (insert only) workload. Using
the RunC (read only) workload, FastMap achieves 9% and
28% higher throughput compared to mmap-filter and mmap
respectively. As we see mmap-filter performs always better,
therefore, for the rest of the Kreon evaluation we use this
configuration as our baseline.

Figure 8(b) shows the scalability of Kreon with FastMap
and mmap-filter (denoted as mmap) using a dataset that does
not fit in main memory. Using 32 threads (on the 32-core

820 2020 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

e
c
)

#threads

Load A

1 2 4 8 16 32
 0

 1

 2

 3

 4

 5

 6

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

e
c
)

#threads

Run C

FastMap
mmap-filter

mmap

(a) In-memory

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 4 8 16 32

#threads

Load A

1 2 4 8 16 32
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

e
c
)

#threads

Run C

FastMap
mmap

(b) Out-of-memory

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32

q
u

e
u

e
 s

iz
e

#threads

Avg. Queue Size

1 2 4 8 16 32
 0

 50

 100

 150

 200

 250

s
e

c
to

rs

#threads

Avg. Request Size

FastMap-LoadA
FastMap-RunC

mmap-LoadA
mmap-RunC

(c) Average queue & request size

Figure 8: Kreon scalability with increasing the number of threads ((a) and (b)). Average queue size and average request size for
an out-of-memory experiment (c). In all cases we use the Optane SSD.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 4 8 16 32 1 2 4 8 16 32

ti
m

e
 (

s
e
c
)

#cores

FastMap mmap

idle
iowait

kworker
pgfault

pthread
others

ycsb
kreon

Figure 9: Kreon breakdown using FastMap and Linux mmap
for an out-of-memory experiment for LoadA YCSB workload,
with an increasing number of cores, an equal number of YCSB
threads, and the Optane SSD.

server) FastMap achieves 3.08× higher throughput compared
to mmap using LoadA (insert only) workload. Using the
RunC (read only) workload, FastMap achieves 1.65× higher
throughput compared to mmap. We see that even for the lower
core counts, FastMap outperforms mmap significantly. Next,
we provide an analysis on what affects scalability in mmap
and how FastMap behaves with an increasing number of cores.

Figure 9 shows the execution time breakdown for the out-
of-memory experiment with an increasing number of threads
for LoadA. kworker denotes the time spent in the eviction
threads both for Linux mmap and FastMap. pthread refers
to pthread locks, both mutexes and read-write locks as de-
scribed in Section 4. First, we observe here that in the case of
Linux mmap both iowait and idle time increases. For iowait
time, the small queue depth that mmap generates (discussed
in detail later) leads to sub-optimal utilization of the storage
device. Furthermore, the idle time comes from sleeping in

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 4 8 16 32 1 2 4 8 16 32

ti
m

e
 (

s
e
c
)

#cores

FastMap mmap

idle
iowait

kworker
pgfault
others

ycsb
kreon

Figure 10: Kreon breakdown using FastMap and Linux mmap
for an out-of-memory experiment with the RunC YCSB work-
load, with increasing number of cores (and equal number of
YCSB threads) and the Optane SSD.

mutexes in the Linux kernel. We also observe that the pgfault
time is lower in FastMap and this is more pronounced with
32 threads. In summary, the optimized page-fault path results
in 2.64× lower pgfault time and 12.3× lower iowait time
due to higher concurrency and larger average request size. In
addition, the optimized page-fault path results in 3.39× lower
idle time due to spinning instead of sleeping in the common
path. This is made possible as we apply per-core locks to
protect our data structures, which are less contended in the
common case. Similar to the previous figure, Figure 10 shows
the same metrics for RunC. In this case the breakdown is
similar both for FastMap and Linux mmap. With 32 threads
the notable differences are in pgfault and iowait. Linux mmap
spends 2.88× and 1.41× more time for pgfault and iowait, re-
spectively. The difference in pgfault comes from our scalable
design for the memory-mapped I/O path. As in this case both
systems always issue 4KB requests (page size), the difference
in iowait comes from the higher queue depth achieved on

USENIX Association 2020 USENIX Annual Technical Conference 821

average by FastMap.
Figure 8(c) shows the average queue depth and average

request size for both FastMap and Linux mmap. Using 32
threads, FastMap produces higher queue depths for both
LoadA and RunC, which is an essential aspect for high
throughput with fast storage devices. With 32 threads in
LoadA FastMap results in an average queue size of 39.2,
while Linux mmap results in an average queue size of 17.5.
Furthermore, FastMap also achieves a larger request size of
100.2 sectors (51.2KB) compared to 51.8 sectors (26.5KB)
for Linux mmap. For RunC, the average request size is 8
sectors (4KB) for both FastMap and Linux mmap. However,
FastMap achieves (with 32 threads) an average queue size of
13 compared to 3 for Linux mmap.

For all YCSB workloads, Kreon with FastMap outperforms
Linux mmap by 2.48× on average (between 1.25−3.65×).

MonetDB: In this section we use TPC-H over MonetDB,
a column oriented DBMS that uses memory-mapped I/O in-
stead of read/write system calls. We focus on out-of-memory
workloads, using a TPC-H dataset with a scale factor SF = 50
(around 50GB in size). We limit available server memory to
16GB and we use the Optane SSD device. In all 22 queries
of TPC-H, system-time is below 10%. The use of FastMap
further decreases the system time (between 5.4% and 48.6%)
leaving more CPU cycles for user-space processing. In all
queries, the improvement on average is 6.06% (between
−7.2% and 45.7%). There are 4 queries where we have a
small decrease in performance. Using profiling we see that
this comes from the map_pages function that is responsi-
ble for the fault-around page mappings, and which is not as
optimized in the current prototype. In some cases we see
greater performance improvements compared to the reduc-
tion in system time. This comes from higher concurrency
to the devices (I/O depth) which also results in higher read
throughput. Overall, our experiments with MonetDB show
that a complex real-life memory-based DBMS can benefit
from FastMap. The queries produce a sequential access pat-
tern to the underlying files which shows the effectiveness of
FastMap also for this case.

5.3 How sensitive is FastMap to (a) file system
choice and (b) false TLB invalidations?

In this section we show how underlying file system affects
FastMap performance. Furthermore, we also evaluate the im-
pact of batched TLB invalidations. For these purposes we
use Silo [54], an in-memory key-value store that provides
scalable transactions for multicores. We modify Silo to use a
memory-mapped heap over both mmap and FastMap.

File system choice: Table 2 shows the throughput and av-
erage latency of TPC-C over Silo. We use both EXT4 and

Table 2: Throughput and average latency for TPC-C.
xput (kops/sec) latency (ms)

mmap-EXT4-Optane SSD 4.3 7.43
mmap-EXT4-pmem 4.2 7.62

FastMap-EXT4-Optane SSD 226 0.141
FastMap-EXT4-pmem 319 0.101
FastMap-NOVA-pmem 344 0.009

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

mmap EXT4

FastMap NOVA

FastMap EXT4

p
e

rc
e

n
ta

g
e

 (
%

)

idle
iowait
filesystem
page-table
buffer-mgmt
user

Figure 11: Execution time breakdown for Silo running TPC-C
using different file systems and the pmem device.

NOVA. We also use XFS and BTRFS but we do not include
these as they exhibit lower performance. We see that FastMap
with EXT4 provides 52.5× and 75.9× higher throughput us-
ing an NVMe and a pmem device respectively, compared
to mmap. We also see similar improvement in the average
latency of TPC-C queries. With NOVA and a pmem de-
vice, FastMap achieves 1.07× higher throughput compared to
EXT4. In all cases we do not use DAX mmap, as we have to
provide DRAM caching over the persistent device. Therefore,
FastMap improves performance of memory-mapped files over
all file systems, although the choice of a specific file system
does affect performance. In this case we see even larger per-
formance improvements compared to Ligra and Kreon. Silo
requires more page faults and it accesses a smaller portion of
each page. Therefore, Silo is closer to a scenario with a single
large file/device and a large number of threads generating
page faults at random offsets. Consequently, it exhibits more
of the issues we identify with Linux mmap compared to the
other benchmarks: Kreon performs mostly sequential I/O for
writes and a large part of a page is indeed needed when we
do reads. From our evaluation we see that Ligra has better
spatial locality compared to Silo and this explains the larger
improvements we observe in Silo.

Figure 11 shows the breakdown of execution time for the
previous experiments. In the case of Linux mmap with EXT4,
most of the system time goes to buffer management: alloca-
tion of pages, LRUs, evictions, etc. In FastMap, this percent-
age is reduced from 74.2% to 10.3%, for both NOVA and
EXT4. This results in more user-time available to TPC-C and
increased performance. Finally, NOVA reduces system time

822 2020 USENIX Annual Technical Conference USENIX Association

compared to EXT4 and results in the best performance for
TPC-C over Silo.

False TLB invalidations: FastMap uses batched TLB in-
validations to provide better scalability and thus increased
performance. Our approach reduces the number of calls to
flush_tlb_mm_range(). This function uses Interprocessor In-
terrupts (IPI) to invalidate TLB entries in all cores and can
result in scalability bottlenecks [3, 4, 16]. Batching of TLB
invalidations can potentially result in increased TLB misses.
In TPC-C over Silo, batching for TLB invalidations results in
25.5% more TLB misses (22.6% more load and 50.5% more
store TLB misses). On the other hand, we have 24% higher
throughput (ops/s) and 23.8% lower latency (ms). Using pro-
filing, we see that without batching of TLB invalidations the
system time spent in flush_tlb_mm_range() increases from
0.1% to 20.3%. We choose to increase the number of TLB
misses in order to provide better scalability and performance.
Other works [3,4,16] present alternative techniques to provide
scalable TLB shootdown without increasing the number of
TLB invalidations and can be potentially applied in FastMap
for further performance improvements.

6 Related Work

We categorize related work in three areas: (a) replacing
read/write system calls with mmap for persistence, (b) provid-
ing scalable address spaces, and (c) extending virtual address
spaces beyond physical memory limits.

Using memory-mapped I/O in data-intensive applications:
Both MonetDB [8] and MongoDB [13] (with MMAP_v1 stor-
age engine) are popular databases that use mmap to access
data. When data fits in memory, mmap performs very well.
It allows the application to access data at memory speed and
removes the need for user-space cache lookups. Facebook’s
RocksDB [24], a persistent key-value store, provides both
read/write and mmap APIs to access files. The developers
of RocksDB state [26] that using mmap for an in-memory
database with a read-intensive workload increases perfor-
mance. However, they also state [25] that mmap sometimes
causes problems when data does not fit in memory and is
managed by a file system over a block device.

Tucana [42] and Kreon [43] are write-optimized persistent
key-value stores that are designed to use memory-mapped
I/O for persistence. The authors in [42] show that for a write-
intensive workload the memory-mapped I/O results in exces-
sive and unpredictable traffic to the devices, which results
in freezes and increases tail-latency. Kreon [43] provides a
custom memory-mapped I/O path inside the Linux kernel that
improves write-intensive workloads and reduces the latency
variability of Linux mmap. In this work, we address scalabil-
ity issues and also present results for memory-mapped I/O

with workloads beyond key-value stores.
DI-MMAP [22, 23], removes the swapper from the crit-

ical path and implements a custom (FIFO based) eviction
policy using a fixed-size memory buffer for all mmap calls.
This approach provides significant improvement compared to
the default Linux mmap for HPC applications. We evaluate
FastMap using more data-intensive applications, representa-
tive of data analytics and data serving workloads. In particular,
our work assumes higher levels of I/O concurrency, and ad-
dresses scalability concerns with higher core counts.

FlashMap [27] combines memory (page tables), storage
(file system), and device-level (FTL) indirections and checks
in a single layer. FastMap provides specific optimizations only
for the memory level and results in significant improvements
in a file system and device agnostic manner.

2B-SSD [6] leverages SSD internal DRAM and the byte
addressability of the PCIe interconnect to provide a dual,
byte and block-addressable SSD device. It provides opti-
mized write-ahead logging (WAL) over 2B-SSD for popu-
lar databases and results in significant improvements. Flat-
Flash [1] moves this approach further and provides a unified
memory-storage hierarchy that results in even larger perfor-
mance improvements. Both of these works move a large part
of their design inside the device. FastMap works in a device-
agnostic manner and provides specific optimizations in the
operating system layer.

UMap [44] is a user-space memory-mapped I/O framework
which adapts different policies to application characteristics
and storage features. Handling page faults in user-space (us-
ing userfaultfd [31]) introduces additional overheads that are
not acceptable in the case of fast storage devices. On the
other hand, techniques proposed by FastMap can also be used
in user-space memory-mapped I/O frameworks and provide
better scalability in the page-fault path.

Similar to [14], FastMap introduces a read-ahead mech-
anism to amortize the cost of pre-faulting and improve se-
quential I/O accesses. However, our main focus is to reduce
synchronization overheads in the common memory-mapped
I/O path and enhance scalability on multicore servers. A scal-
able I/O path enables us to maintain high device queue depth,
an essential property for efficient use of fast storage devices.

Byte-addressable persistent memory DIMMs, attached in
memory slots, can be accessed similarly to DRAM with the
processor load/store instructions. Linux provides Direct Ac-
cess (DAX), a mechanism that supports direct mapping of
persistent memory to user address space. File systems that
provide a DAX mmap [17, 21, 56–58] bypass I/O caching in
DRAM. On the other hand, other works [29] have shown that
DRAM caching benefits applications when the working set
fits in DRAM and can hide higher persistent memory latency
compared to DRAM (by up to ∼ 3×). Accordingly, FastMap
uses DRAM caching and supports both block-based flash
storage and byte-addressable persistent memory. FastMap
will benefit all DAX mmap file systems that need to provide

USENIX Association 2020 USENIX Annual Technical Conference 823

DRAM caching for memory-mapped I/O, as FastMap is file
system agnostic.

Providing a scalable virtual address space: Bonsai [15]
shows that anonymous memory mappings, i.e. not backed by
a file or device, suffer from scalability issues. This type of
memory mapping is mainly used for user memory allocations,
e.g. malloc. The scalability bottleneck in this case is due to a
contended read-write lock, named mmap_sem, that protects
access to a red-black tree that keeps VMAs (valid virtual
address spaces ranges). In the case of page faults, this lock is
acquired as read lock. In the case of mmap/munmap this lock
is acquired as write lock. Even in the read lock case, NUMA
traffic in multicores limits scalability. Bonsai proposes the use
of RCU-based binary tree for lock-free lookups, resulting in a
system scaling up to 80 cores. Bonsai removes the bottleneck
from concurrent page faults, but still serializes mmap/munmap
operations even in non-overlapping address ranges.

In Linux, shared mappings backed by a file or device have
a different path in the kernel, thus requiring a different design
to achieve scalability. There are other locks (see Section 3.1)
that cause scalability issues and mmap_sem does not result in
any performance degradation. As we see from our evaluation
of FastMap, using 80 cores the time spent in mmap_sem is
37.4% of the total execution time; therefore, Bonsai is com-
plementary to our work and will also benefit our approach.
Furthermore, authors in [32] propose an alternative approach
to provide scalable address space operations, by introduc-
ing scalable range locks to accelerate non-conflicting virtual
address space operations in Linux.

RadixVM [16] addresses the problem of serialization of
mmap/munmap in non-overlapping address space ranges. This
work is done in the SV6 kernel and can also benefit from
FastMap in a similar way to Bonsai.

The authors in [9] propose techniques to scale Linux for
a set of kernel-intensive applications, but do not tackle the
scalability limitations of memory-mapped I/O. In pedsort
authors modify the application to use one process per core for
concurrency and avoid the contention over the shared address
space. In this paper we solve this issue at the kernel level, thus
providing benefits to all user applications.

Extending the virtual address space over storage: The
authors in [51] claim that by using mmap a user can effectively
extend the main memory with fast storage devices. They pro-
pose a page reclamation procedure with a new page recycling
method to reduce context switches. This makes it possible
to use extended vector I/O – a parallel page I/O method. In
our work, we implement a custom per-core mechanism for
managing free pages. We also preallocate a memory pool to
remove the performance bottlenecks identified in [51]. Addi-
tionally, we address scalability issues with memory-mapped
I/O, whereas the work in [51] examines setups with up to 8
cores, where Linux kernel scales well.

FlashVM [49] uses a dedicated flash device for swapping
virtual memory pages and provides flash-specific optimiza-
tions for this purpose. SSDAlloc [5] implements a hybrid
DRAM/flash memory manager and a runtime library that al-
lows applications to use flash for memory allocations in a
transparent manner. SSDAlloc proposes the use of 16−32×
more flash than DRAM compared to FlashVM and to handle
this increase they introduce a log-structured object store. In-
stead, FastMap targets the storage I/O path and reduces the
overhead of memory-mapped I/O. FastMap is not a replace-
ment for swap nor does it provide specific optimizations to
extend the process address space over SSDs.

NVMalloc [55] enables client applications in supercom-
puters to allocate and manipulate memory regions from a
distributed block-addressable SSD store (over FUSE [36]).
It exploits the memory-mapped I/O interface to access local
or remote NVM resources in a seamless fashion for volatile
memory allocations. NVMalloc uses Linux mmap. Conse-
quently, it can also benefit from FastMap at large thread
counts combined with fast storage devices.

SSD-Assisted Hybrid Memory [41] augments DRAM with
SSD storage as an efficient cache in object granularity for
Memcached [38]. Authors claim that managing a cache at a
page granularity incurs significant overhead. In our work, we
provide an application agnostic approach at page granularity
and we optimize scalability in the common path.

7 Conclusions

In this paper we propose FastMap, an optimized memory-
mapped I/O path in the Linux kernel that provides a low-
overhead and scalable way to access fast storage devices in
multi-core servers. Our design enables high device concur-
rency, which is essential for achieving high throughput in
modern servers. We show that FastMap scales up to 80 cores
and provides up to 11.8× more random IOPS compared to
mmap. Overall, FastMap addresses important limitations of
Linux mmap and makes it appropriate for data-intensive ap-
plications in multi-core servers over fast storage devices.

Acknowledgements

We thankfully acknowledge the support of the European
Commission under the Horizon 2020 Framework Programme
for Research and Innovation through the projects EVOLVE
(Grant Agreement ID: 825061) and ExaNeSt (Grant Agree-
ment ID: 671553). Anastasios Papagiannis is also supported
by the Facebook Graduate Fellowship. Finally, we thank the
anonymous reviewers for their insightful comments and our
shepherd Sudarsun Kannan for his help with preparing the
final version of the paper.

824 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Ahmed Abulila, Vikram Sharma Mailthody, Zaid
Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong,
and Wen-mei Hwu. Flatflash: Exploiting the byte-
accessibility of ssds within a unified memory-storage
hierarchy. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’19,
page 971–985, New York, NY, USA, 2019. Association
for Computing Machinery.

[2] Jung-Sang Ahn, Mohiuddin Abdul Qader, Woon-Hak
Kang, Hieu Nguyen, Guogen Zhang, and Sami Ben-
Romdhane. Jungle: Towards dynamically adjustable
key-value store by combining lsm-tree and copy-on-
write b+-tree. In 11th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 19), Renton,
WA, July 2019. USENIX Association.

[3] Nadav Amit. Optimizing the TLB shootdown algorithm
with page access tracking. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 27–39,
Santa Clara, CA, July 2017. USENIX Association.

[4] Nadav Amit, Amy Tai, and Michael Wei. Don’t shoot
down tlb shootdowns! In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys
’20, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[5] Anirudh Badam and Vivek S. Pai. Ssdalloc: Hybrid
ssd/ram memory management made easy. In Pro-
ceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, page
211–224, USA, 2011. USENIX Association.

[6] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young
Hwang, Sangyeun Cho, Dong-Gi Lee, and Jaeheon
Jeong. 2b-ssd: The case for dual, byte- and block-
addressable solid-state drives. In Proceedings of the
45th Annual International Symposium on Computer Ar-
chitecture, ISCA ’18, page 425–438. IEEE Press, 2018.

[7] R. Bayer and M. Schkolnick. Readings in database
systems. chapter Concurrency of Operations on B-trees,
pages 129–139. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1988.

[8] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold.
Breaking the memory wall in monetdb. Commun. ACM,
51(12):77–85, December 2008.

[9] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-
ris, and Nickolai Zeldovich. An analysis of linux scala-
bility to many cores. In Proceedings of the 9th USENIX

Conference on Operating Systems Design and Imple-
mentation, OSDI’10, page 1–16, USA, 2010. USENIX
Association.

[10] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco,
Virendra J. Marathe, and Nir Shavit. Numa-aware
reader-writer locks. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, PPoPP ’13, pages 157–166, New
York, NY, USA, 2013. ACM.

[11] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I.
Mollow, Rajesh K. Gupta, and Steven Swanson. Mon-
eta: A high-performance storage array architecture for
next-generation, non-volatile memories. In Proceed-
ings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’43, pages
385–395, Washington, DC, USA, 2010. IEEE Computer
Society.

[12] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A re-
cursive model for graph mining. In SIAM International
Conference on Data Mining, 2004.

[13] Kristina Chodorow and Michael Dirolf. MongoDB:
The Definitive Guide. O’Reilly Media, Inc., 1st edition,
2010.

[14] Jungsik Choi, Jiwon Kim, and Hwansoo Han. Efficient
memory mapped file i/o for in-memory file systems. In
9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), Santa Clara, CA, 2017.
USENIX Association.

[15] Austin T. Clements, M. Frans Kaashoek, and Nicko-
lai Zeldovich. Scalable address spaces using rcu bal-
anced trees. In Proceedings of the Seventeenth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
XVII, pages 199–210, New York, NY, USA, 2012. ACM.

[16] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. Radixvm: Scalable address spaces for multi-
threaded applications. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys
’13, pages 211–224, New York, NY, USA, 2013. ACM.

[17] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better i/o through byte-addressable, persis-
tent memory. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09,
page 133–146, New York, NY, USA, 2009. Association
for Computing Machinery.

[18] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud

USENIX Association 2020 USENIX Annual Technical Conference 825

serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, pages
143–154, New York, NY, USA, 2010. ACM.

[19] Laurent Dufour. Speculative page faults (Linux 4.14
patch). https://lkml.org/lkml/2017/10/9/180,
2017.

[20] Laurent Dufour. Speculative page faults. https://lwn.
net/Articles/786105/, 2019.

[21] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 15:1–15:15,
New York, NY, USA, 2014. ACM.

[22] B. V. Essen, H. Hsieh, S. Ames, and M. Gokhale. Di-
mmap: A high performance memory-map runtime for
data-intensive applications. In 2012 SC Companion:
High Performance Computing, Networking Storage and
Analysis, pages 731–735, Nov 2012.

[23] Brian Essen, Henry Hsieh, Sasha Ames, Roger Pearce,
and Maya Gokhale. Di-mmap–a scalable memory-
map runtime for out-of-core data-intensive applications.
Cluster Computing, 18(1):15–28, March 2015.

[24] Facebook. RocksDB. https://rocksdb.org/. Ac-
cessed: June 4, 2020.

[25] Facebook. RocksDB IO. https://github.com/
facebook/rocksdb/wiki/IO. Accessed: June 4,
2020.

[26] Facebook. RocksDB Tuning Guide. https:
//github.com/facebook/rocksdb/wiki/
RocksDB-Tuning-Guide. Accessed: June 4, 2020.

[27] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi,
and Karsten Schwan. Unified address translation for
memory-mapped ssds with flashmap. In Proceedings of
the 42nd Annual International Symposium on Computer
Architecture, ISCA ’15, page 580–591, New York, NY,
USA, 2015. Association for Computing Machinery.

[28] INTEL. OPTANE SSD DC P4800X SE-
RIES. https://www.intel.com/content/
www/us/en/products/memory-storage/
solid-state-drives/data-center-ssds/
optane-dc-p4800x-series.html. Accessed:
June 4, 2020.

[29] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic performance measurements of

the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019.

[30] jemalloc. http://jemalloc.net/. Accessed: June 4,
2020.

[31] Linux kernel. Userfaultfd. https://www.kernel.
org/doc/Documentation/vm/userfaultfd.txt.
Accessed: June 4, 2020.

[32] Alex Kogan, Dave Dice, and Shady Issa. Scalable range
locks for scalable address spaces and beyond. In Pro-
ceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[33] Mohan Kumar Kumar, Steffen Maass, Sanidhya
Kashyap, Ján Veselý, Zi Yan, Taesoo Kim, Abhishek
Bhattacharjee, and Tushar Krishna. Latr: Lazy trans-
lation coherence. In Proceedings of the Twenty-Third
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’18, page 651–664, New York, NY, USA, 2018.
Association for Computing Machinery.

[34] Leslie Lamport. Concurrent reading and writing. Com-
mun. ACM, 20(11):806–811, November 1977.

[35] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: The design and implementation of
a fast persistent key-value store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 447–461, New York, NY, USA, 2019.
Association for Computing Machinery.

[36] Linux FUSE (Filesystem in Userspace). https://
github.com/libfuse/libfuse. Accessed: June 4,
2020.

[37] W. Mauerer. Professional Linux Kernel Architecture.
Wrox professional guides. Wiley, 2008.

[38] Memcached. https://memcached.org/. Accessed:
June 4, 2020.

[39] MonetDB. https://www.monetdb.org/Home. Ac-
cessed: June 4, 2020.

[40] Null block device driver. https://www.kernel.org/
doc/Documentation/block/null_blk.txt. Ac-
cessed: June 4, 2020.

[41] X. Ouyang, N. S. Islam, R. Rajachandrasekar, J. Jose,
M. Luo, H. Wang, and D. K. Panda. Ssd-assisted hy-
brid memory to accelerate memcached over high perfor-
mance networks. In 2012 41st International Conference
on Parallel Processing, pages 470–479, Sep. 2012.

826 2020 USENIX Annual Technical Conference USENIX Association

https://lkml.org/lkml/2017/10/9/180
https://lwn.net/Articles/786105/
https://lwn.net/Articles/786105/
https://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/IO
https://github.com/facebook/rocksdb/wiki/IO
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
http://jemalloc.net/
https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt
https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://memcached.org/
https://www.monetdb.org/Home
https://www.kernel.org/doc/Documentation/block/null_blk.txt
https://www.kernel.org/doc/Documentation/block/null_blk.txt

[42] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tucana: Design and
implementation of a fast and efficient scale-up key-value
store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 537–550, Denver, CO, 2016.
USENIX Association.

[43] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. An efficient
memory-mapped key-value store for flash storage. In
Proceedings of the ACM Symposium on Cloud Comput-
ing, SoCC ’18, pages 490–502, New York, NY, USA,
2018. ACM.

[44] I. Peng, M. McFadden, E. Green, K. Iwabuchi, K. Wu,
D. Li, R. Pearce, and M. Gokhale. Umap: Enabling
application-driven optimizations for page management.
In 2019 IEEE/ACM Workshop on Memory Centric High
Performance Computing (MCHPC), pages 71–78, Nov
2019.

[45] Persistent Memory Development Kit (PMDK). https:
//pmem.io/pmdk/. Accessed: June 4, 2020.

[46] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. In 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 14),
pages 1–16, Broomfield, CO, October 2014. USENIX
Association.

[47] pmem.io: Persistent Memory Programming. http://
pmem.io/. Accessed: June 4, 2020.

[48] Jinglei Ren. YCSB-C. https://github.com/
basicthinker/YCSB-C, 2016.

[49] Mohit Saxena and Michael M. Swift. Flashvm: Virtual
memory management on flash. In Proceedings of the
2010 USENIX Conference on USENIX Annual Techni-
cal Conference, USENIXATC’10, page 14, USA, 2010.
USENIX Association.

[50] Julian Shun and Guy E. Blelloch. Ligra: A lightweight
graph processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’13, pages 135–146, New York, NY, USA, 2013.
ACM.

[51] Nae Young Song, Yongseok Son, Hyuck Han, and
Heon Young Yeom. Efficient memory-mapped i/o on
fast storage device. ACM Trans. Storage, 12(4):19:1–
19:27, May 2016.

[52] TPC-C. http://www.tpc.org/tpcc/. Accessed:
June 4, 2020.

[53] TPC-H. http://www.tpc.org/tpch/. Accessed:
June 4, 2020.

[54] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, page 18–32, New York, NY, USA,
2013. Association for Computing Machinery.

[55] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim,
and C. Engelmann. Nvmalloc: Exposing an aggre-
gate ssd store as a memory partition in extreme-scale
machines. In 2012 IEEE 26th International Parallel
and Distributed Processing Symposium, pages 957–968,
May 2012.

[56] Xiaojian Wu, Sheng Qiu, and A. L. Narasimha Reddy.
Scmfs: A file system for storage class memory and its
extensions. ACM Trans. Storage, 9(3), August 2013.

[57] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, Santa Clara,
CA, February 2016. USENIX Association.

[58] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. Nova-fortis: A
fault-tolerant non-volatile main memory file system. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, page 478–496, New York,
NY, USA, 2017. Association for Computing Machinery.

[59] Erez Zadok, Ion Badulescu, and Alex Shender. Ex-
tending file systems using stackable templates. In Pro-
ceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’99, pages 5–5, Berkeley,
CA, USA, 1999. USENIX Association.

USENIX Association 2020 USENIX Annual Technical Conference 827

https://pmem.io/pmdk/
https://pmem.io/pmdk/
http://pmem.io/
http://pmem.io/
https://github.com/basicthinker/YCSB-C
https://github.com/basicthinker/YCSB-C
http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/

A Comprehensive Analysis of Superpage Management Mechanisms and Policies

Weixi Zhu, Alan L. Cox and Scott Rixner
Rice University

{wxzhu, alc, rixner}@rice.edu

Abstract
Superpages (2MB pages) can reduce the address translation

overhead for large-memory workloads in modern computer
systems. This paper clearly outlines the sequence of events
in the life of a superpage and explores the design space of
when and how to trigger and respond to those events. This
provides a framework that enables better understanding of su-
perpage management and the trade-offs involved in different
design decisions. Under this framework, this paper discusses
why state-of-the-art designs exhibit different performance
characteristics in terms of runtime, latency and memory con-
sumption. This paper illuminates the root causes of latency
spikes and memory bloat and introduces Quicksilver, a novel
superpage management design that addresses these issues
while maintaining address translation performance.

1 Introduction
The physical memory size of modern computers continues to
grow at a rapid pace. Furthermore, there is an ever expanding
class of “large-memory” data-oriented applications — includ-
ing databases, data analysis tools, and scientific computations
— that can productively utilize all of this memory. While some
of these applications expect the entirety of their data to reside
within physical memory, others process data at a scale that
far exceeds its size. These others either use out-of-core com-
putation frameworks or implement schemes for caching data
from secondary storage that avoid swapping by the virtual
memory system. In either case, these applications have large
memory footprints, so the cost of virtual-to-physical address
translation significantly impacts their performance.

The use of superpages, or “huge pages”, can reduce the cost
of virtual-to-physical address translation. For example, the
x86-64 architecture supports 2MB superpages. Using these
superpages (1) eliminates one level from the hierarchical page
table, thereby reducing the expected number of memory ac-
cesses to resolve a TLB miss, and (2) enables more efficient
use of the TLB’s limited number of entries. Intel’s recent
processors can store up to 1536 4KB or 2MB page mappings

in their TLBs. Superpages can therefore increase these TLBs’
coverage from around 6MB (0.009% of the physical memory
in a computer with 64GB of DRAM) to 3GB. While this is
still a small fraction of the computer’s physical memory, it is
far more likely to capture an application’s short-term work-
ing set. The benefits of this increased coverage are obvious.
The challenge, however, is for the operating system (OS) to
transparently manage superpages in an effective manner.

This paper first defines the five distinct events in the life
cycle of a transparently managed superpage, and then it an-
alyzes the various state-of-the-art approaches to handling
each event. Briefly, the events are as follows. First, a physical
superpage must be allocated. Throughout this paper, unless
stated otherwise, “superpage” refers to a 2MB page, so this
is the act of acquiring a contiguous, aligned 2MB region
from the physical memory allocator. Second, the physical
superpage must be prepared. For anonymous memory, the
entire 2MB region must be zeroed. For file-backed memory,
the entire 2MB region must be read from secondary stor-
age. Third, a superpage mapping from a 2MB aligned virtual
memory region to the physical superpage must be created.
Fourth, the mapping must be destroyed. Finally, the physical
memory must be deallocated. FreeBSD, Linux’s Transpar-
ent Huge Pages (THP), and two recently proposed systems
(Ingens [20] and HawkEye [24]) differ in when these events
are triggered (for instance, these events can be independent,
grouped, synchronous, asynchronous, etc.) and the granularity
of the operations (for instance, some operations can be per-
formed incrementally or all at once). This classification of the
events enables a more principled comparison of the policies,
behaviors, and performance of these different systems.

This paper also presents several new observations about
transparent superpage management. First, coupling physical
allocation, preparation, and mapping of superpages, as is done
in Linux’s THP, leads to memory bloat and fewer superpage
mappings. Second, while alleviating tail latency problems
in server workloads, state-of-the-art asynchronous, “out-of-
place” promotion delays physical superpage allocation and
reduces address translation benefits. Third, speculatively al-

USENIX Association 2020 USENIX Annual Technical Conference 829

locating physical superpages enables “in-place” promotion
and obviates the need for asynchronous, out-of-place promo-
tion. Fourth, in combination, reserving physical superpages
and delaying partial deallocation of those superpages as long
as possible fights fragmentation, leading to more superpage
usage and address translation benefits. Finally, bulk zeroing is
more efficient on modern processors than repeated 4KB zero-
ing. These observations are supported by evidence presented
throughout the paper.

Finally, this paper introduces Quicksilver1, an innovative
transparent superpage management system that is based
on FreeBSD’s reservation-based physical memory allocator.
Quicksilver achieves the benefits of aggressive superpage al-
location, but mitigates the memory bloat and fragmentation
issues that arise from underutilized superpages. Quicksilver is
able to match or beat the performance of existing systems in
scenarios with either lightly or heavily fragmented memory.
For example, when using synchronous preparation, on a heav-
ily fragmented system it achieves a 2x speedup over Linux for
GraphChi performing PageRank on a dataset that exceeds the
physical memory size. Furthermore, on Redis, Quicksilver
is able to maintain the same throughput and tail latency as
fragmentation increases, whereas the throughput of other sys-
tems degrades and tail latency increases. Finally, Quicksilver
is able to limit memory bloat as well as Ingens [20], which is
a recent research prototype specifically designed to combat
memory bloat.

2 Transparent Superpage Management
Managing superpages transparently to the application in-
volves five distinct events: physical superpage allocation,
physical superpage preparation, superpage mapping creation,
superpage mapping destruction, and physical superpage deal-
location. Figure 1 illustrates the life cycle of a superpage in
terms of these events. This section discusses the trade-offs
between the possible choices, including those made by pro-
duction and prototype systems [5, 16, 20, 23, 24], for when to
trigger and how to handle these events.

2.1 Physical Superpage Allocation
The OS can choose to allocate a physical superpage to back
any 2MB-aligned virtual memory region. A physical super-
page could be allocated synchronously upon a page fault,
or asynchronously via a background task. If there are free
physical superpages, synchronous allocation is a relatively
inexpensive operation given the widespread use of buddy
allocators for physical memory management.

However, in order to allocate a physical superpage, the
physical memory allocator must have an available, aligned,
2MB region. Under severe memory fragmentation, such re-
gions may not be available. A memory manager could attempt

1https://github.com/rice-systems/quicksilver

to keep as many such regions available as possible (or create
them when needed) using smart allocation policies or memory
migration. If no such region is available or can be created,
then the system must fall back to allocating 4KB pages.

Even after 4KB pages have been allocated for a virtual
memory region, it is still possible to allocate a physical super-
page for that region asynchronously. In the background, the
OS can use migration to create free physical superpages or
wait for them to be freed by applications. Once a free physical
superpage exists, it could be allocated to a previously accessed
virtual memory region. At that point, all previously allocated
4KB pages would need to be migrated into the newly acquired
physical superpage.

2.2 Physical Superpage Preparation
Once a physical superpage has been allocated, it must be pre-
pared with its initial data before it can be mapped. A physical
superpage can be prepared in one of three ways. First, if the
virtual memory region is anonymous, i.e., not backed by a file,
then the page simply needs to be zeroed. Second, if the virtual
memory region is a memory-mapped file, then the data must
be read from the file. Finally, if the virtual memory region is
currently mapped to 4KB pages, then the contents of those
existing pages must be copied into the physical superpage.
Note that any constituent pages that were not already mapped
would need to be prepared appropriately, either via zeroing or
reading from the backing file.

Physical superpages can be prepared all at once or incre-
mentally. Furthermore, as they are prepared, they can have
some, or all, of their constituent pages mapped as 4KB pages
(each constituent page that is mapped must have already been
prepared). At a minimum, on a page fault, the 4KB page that
triggered the fault must be prepared immediately in order to
allow the application to resume. However, upon a page fault,
the OS can choose to prepare the entire physical superpage,
only prepare the required 4KB page, or prepare the required
4KB page, allow the application to resume, and prepare the
remaining 4KB pages later (either asynchronously or when
they are accessed).

The three types of preparation — zeroing, copying, and
file reading — have different costs, and so may impact the
choice of when and how much of a physical superpage to
prepare. Incremental preparation decreases page fault latency
and minimizes unnecessary preparation for 4KB pages that
may ultimately never get accessed. However, as the page is
incrementally prepared, the constituent pages will be using
4KB mappings. In contrast, all at once preparation eliminates
future page faults to the virtual memory region and allows for
the immediate creation of a superpage mapping.

2.3 Superpage Mapping Creation
Once a physical superpage has been fully prepared, it must
then be mapped as such in order to achieve address transla-

830 2020 USENIX Annual Technical Conference USENIX Association

A fUee ph\Vical

SP

Ph\Vical AllocaWion Ph\Vical PUeSaUaWion MaSSing CUeaWion MaSSing DeVWUXcWion Ph\Vical DeallocaWion

Page FaXlW

AV\nc

*Allocation ma\ fail because of

memor\ fragmentation

Page ZeUo

DiVk-Uead

MigUaWion
...

FXll\ pUepaUed

*An incrementall\ prepared SP can

be mapped as 4KB pages

ViUWXal

SXpeUpage

*TLB coverage increases when

caching created SP mappings

TLB

...

4. 4....

TLB

ca
ch

e

in
Yl

Wlb
¬

Aligned 4KB mappingV

A: expect a virtual SP in the future
B: use individuall\ for other purposes¬

?

...

OS ma\ WUack ph\Vical SPV

4. 4....4.

ConWigXoXV 4KB mappingV A Vingle 2MB mapping

*4KB mappings can be created for

some or all constituent 4KB pages

...

4. 4....A

Aligned 4KB mappingV

B

Unaligned

F
UH
H

FXll\ pUepaUed FXll\ pUepaUed PaUWiall\ pUepaUed

headWail

Figure 1: The five events in the life cycle of a superpage (SP).

tion benefits. Before the superpage is mapped, the physical
memory can still be accessed via 4KB mappings; afterwards,
the OS loses the ability to track accesses and modifications at
a 4KB granularity. Therefore, an OS may delay the creation
of a superpage mapping if only some of the constituent pages
are dirty in order to avoid unnecessary future I/O.

A superpage mapping is typically created upon a page fault,
on either the initial fault to the memory region or a subsequent
fault after the entire superpage has been prepared. However, if
the physical superpage preparation is asynchronous, then its
superpage mapping may also be created asynchronously. Note
that on some architectures, e.g., ARM, any 4KB mappings
that were previously created must first be destroyed.

2.4 Superpage Mapping Destruction
Superpage mappings can be destroyed at any time, but must
be destroyed whenever any part of the virtual superpage is
freed or has its protection changed. After the superpage map-
ping is destroyed, 4KB mappings must be recreated for any
constituent pages that have not been freed.

With superpage mappings, the OS cannot track whether
constituent pages are accessed or modified. Therefore, in
some scenarios, the OS may choose to preemptively destroy
a superpage mapping and substitute 512 4KB mappings for it
to enable finer-grained memory management. For example,
when a clean superpage is first modified, the OS could choose
to destroy the superpage mapping in order to only mark the
single modified 4KB page as dirty, potentially reducing fu-
ture I/O operations. This would require the OS to make a
read-only superpage mapping and use the page fault caused
by the write access to destroy the mapping and replace it with
4KB mappings. Similarly, the OS could choose to destroy a
superpage mapping when under memory pressure to enable
swapping pages at a finer granularity.

2.5 Physical Superpage Deallocation
Generally, a physical superpage is deallocated when an ap-
plication frees some or all of the virtual superpage, when an
application terminates, or when the OS needs to reclaim mem-
ory. If a superpage mapping exists, it must be destroyed before
the physical superpage can be deallocated. Then, either the

entire 2MB can be returned to the physical memory allocator
or the physical superpage can be “broken” into 4KB pages.
If the physical superpage is broken into its constituent 4KB
pages, the OS can return a subset of those pages to the physi-
cal memory allocator. However, returning only a subset of the
constituent pages increases memory fragmentation, decreas-
ing the likelihood of future physical superpage allocations.

Before part or all of a physical superpage is returned to the
physical memory allocator, any constituent pages that have
been prepared but not freed must be preserved. Preservation
typically happens in one of three ways. In-use pages can be
kept rather than returned to the allocator, and 4KB mappings
can be created to those pages. Alternatively, the in-use pages
can be copied to other physical pages, allowing the entire
physical superpage to be returned. The last option is to write
the in-use pages to secondary storage before returning them.

3 State-of-the-art Designs
This section compares the state-of-the-art designs for trans-
parent superpage management in FreeBSD, Linux, and recent
research prototypes (Ingens [20] and HawkEye [24]), with a
particular focus on how they manage the events described in
the previous section.

3.1 FreeBSD
FreeBSD supports transparent superpages for all kinds of
memory, including memory-mapped files and executables. It
decouples physical superpage allocation from preparation by
using a reservation-based memory allocator [23,29]. FreeBSD
tries to allocate (“reserves”) a physical superpage upon the
first page fault to any aligned 2MB region. If physical su-
perpages are available, they are allocated for any memory-
mapped file exceeding 2MB in size. Anonymous memory
always uses superpages if available, regardless of size, as
anonymous memory is expected to grow.

Once a physical superpage is allocated for anonymous
memory, only the 4KB page that caused the page fault is
prepared, and a reservation entry is created to track all of the
constituent pages. Any subsequent page fault to that 2MB re-
gion skips page allocation and simply prepares one additional
4KB page of the physical superpage. The physical superpage

USENIX Association 2020 USENIX Annual Technical Conference 831

preparation finishes once all of its constituents have been
prepared. For file-backed memory, the process is the same,
except memory is prepared in 64KB batches to minimize I/O
overhead.

FreeBSD creates superpage mappings synchronously dur-
ing page faults. FreeBSD only creates a superpage mapping if
the characteristics (e.g., protection and modified state) of all
the constituent 4KB mappings are the same. Identical protec-
tions are required for correctness; identical dirty states ensure
that FreeBSD will not do unnecessary I/O to preserve the
contents of the page when it is later deallocated.

Superpage mappings are destroyed on partial memory pro-
tection changes and partial unmappings. FreeBSD also pre-
emptively destroys clean superpage mappings before modifi-
cation. As a result, only one 4KB mapping is marked as dirty,
instead of the entire superpage. Once the last clean 4KB page
is modified, a dirty superpage mapping gets created.

FreeBSD defers physical superpage deallocation as long
as possible in order to minimize memory fragmentation and
preserve the availability of free physical superpages. How-
ever, under memory pressure, FreeBSD looks for a partially
prepared physical superpage and breaks the corresponding
reservation to allow the unused memory within that 2MB
physical memory region to be reclaimed for other uses.

3.2 Linux
Linux’s THP only uses superpages for anonymous memory
and tries to allocate a physical superpage on the first page
fault to a 2MB-aligned virtual memory region. If allocation
fails and defragmentation is enabled (the default), it immedi-
ately does memory compaction via page migration to create
a free physical superpage. This blocks the faulting process,
increasing page fault latency. Under severe fragmentation,
migration may still fail to create a free physical superpage.

Linux does all-at-once physical superpage preparation: the
entire physical superpage is always zeroed right after being
allocated. This increases the initial page fault latency, but
may reduce the average latency [24]. After this preparation,
a superpage mapping is immediately created. The superpage
mapping will be destroyed if some or all of the superpage is
unmapped or has its protection settings changed. Once some
or all of the superpage has been freed, the physical superpage
is deallocated and free memory is immediately reclaimed.

This “first-touch” superpage policy only allocates physical
superpages at the time of the first page fault. However, Linux
also includes a kernel daemon called “khugepaged”, which
asynchronously scans the system page tables. When it finds an
aligned 2MB anonymous virtual memory region that contains
at least one dirty 4KB mapping, khugepaged tries to allocate
a physical superpage. If a free physical superpage exists, it
acquires it; otherwise, it calls Linux’s memory compaction to
reclaim one by migrating pages.

Before preparing this physical superpage, khugepaged
blocks accesses to the virtual 2MB region by blocking page

faults within the region and destroying the existing 4KB map-
pings. It then prepares all of the physical superpage’s con-
stituent 4KB pages, one at a time. For a previously mapped
page, the contents are copied. Previously unmapped pages are
zeroed. Finally, it installs a superpage mapping.

Khugepaged’s preparation is more costly than the first-
touch preparation that occurs in a page fault. It blocks ac-
cesses to the 2MB region, causes TLB shootdowns, and pol-
lutes CPU caches. As a result, it is allowed by default to
allocate at most 8 superpages every 10 seconds (1.6 MB/s).

When an application partially frees memory within a
superpage without unmapping the virtual memory (e.g.,
MADV_DONTNEED), it triggers the destruction of the superpage
mapping and the deallocation of the physical superpage. The
remaining in-use memory then gets mapped as 4KB pages.
However, when khugepaged scans this 2MB region, it will
unnecessarily migrate the mapped memory into another allo-
cated superpage and effectively reallocate the freed memory.
It is precisely this behavior of khugepaged which has led to
the severe memory bloating reported in recent work [20, 24].

3.3 Ingens and HawkEye
Recent state-of-the-art prototypes (Ingens [20] and Hawk-
Eye [24]) attempt to mitigate the page fault latency spikes
incurred by Linux’s first-touch superpage policy as well as the
memory bloat incurred by khugepaged — behaviors which
have led many to suggest that Linux’s transparent superpage
support be disabled for best performance.

Both systems disable Linux’s first-touch policy, instead
allocating, preparing, and mapping only a single 4KB page
on a page fault. They then effectively modify khugepaged to
more aggressively manage superpages.

Khugepaged’s behavior differs in default Linux, Ingens,
and HawkEye in terms of order, threshold, and rate for su-
perpage creation. To prevent excessive memory bloat, Ingens
increases the threshold to trigger creation of a superpage from
one in-use 4KB page to 90% in-use, meaning there must be
at least 460 4KB mappings in a 2MB region in order to create
a superpage for that region.

Ingens maintains a list of candidate 2MB-aligned regions
on page faults. As long as the list is not empty, Ingens keeps
creating superpage mappings. However, asynchronous super-
page creation introduces a fairness problem that the scanning
order of page tables can lead to long delays for some pro-
cesses. To alleviate this, Ingens prioritizes processes with
fewer superpages. In addition, Ingens actively compacts non-
referenced memory at an aggressive rate.

HawkEye uses the same threshold as default khugepaged:
one 4KB page. Under memory pressure, it scans mapped
superpages and makes their zero-filled 4KB pages copy-on-
write to a single zero-filled page to reclaim memory.

HawkEye also maintains a list of candidate 2MB-aligned
regions, but further weights them by their memory utilization,
the process’s resident size, sampled access frequency and

832 2020 USENIX Annual Technical Conference USENIX Association

TLB overheads. HawkEye then creates a superpage mapping
for the one with the most weight that is believed to bring the
highest TLB overhead, called fine-grained superpage man-
agement in the paper [24]. It attempts to obtain considerable
address translation benefits with fewer superpages.

HawkEye’s fine-grained superpage management further
consumes CPU resources besides the migration-based su-
perpage mapping creations. To avoid interference with run-
ning processes, it uses the same promotion rate (1.6MB/s) as
Linux’s default khugepaged.

4 Analysis of Existing Designs
This section analyzes the designs for transparent superpage
management described in the previous section and presents
several novel observations about them. These observations
motivate the design of Quicksilver.

Platforms. All designs were evaluated on an Intel E3-1245
v6-based server with maximum turbo performance and hyper-
threading enabled. This server has 4 physical cores, 32GB
DDR4 2400 ECC RAM, and a 256GB NVMe SSD. Linux
version 4.3 was used, as both Ingens and HawkEye are based
on that version. FreeBSD version 11.2 was used, upon which
Quicksilver is built. Swapping is disabled under every OS.

Benchmarks. A large variety of benchmarks are evaluated.
GUPS performs 232 serial random memory accesses to 230 64-
bit integers (8GB) [13]. Graphchi-PR, BlockSVM and ANN
use out-of-core implementations to solve big-data tasks [21,
32]. Graphchi-PR computes 3 iterations of PageRank on the
preprocessed Twitter-2010 dataset [19]. BlockSVM trains a
classification model on the kdd2010-bridge dataset [28]. ANN
randomly queries nearest neighbors on 2GB preprocessed
hash tables. XSBench is a parallel computation kernel of
the Monte Carlo neutron transport algorithm [30]. Canneal
and freqmine are PARSEC benchmarks with large memory
footprints [10]. Gcc, mcf, DSjeng and XZ are SPEC CPU2017
benchmarks with large memory footprints [11]. Buildkernel
compiles the FreeBSD 11.2 kernel.

Graphchi-PR, XSBench, canneal and Buildkernel are multi-
threaded to fully utilize CPU resources. Cold and Warm are
Redis workloads benchmarking throughput and tail latency
from a separate client machine with 8 threads and 16 re-
quest pipelines. The Cold workload populates an empty Redis
instance with 16GB of 4KB objects. The Warm workload
queries the fully populated 16GB Redis instance with a set/get
ratio of 5:5 using 4KB objects. Del-70, Del-50, Range-S and
Range-XL are Redis workloads benchmarking memory con-
sumption. Del-70 and Del-50 insert 2 million 8KB objects and
randomly delete 70% and 50% of them, respectively. Range-S
and Range-XL insert randomly sized objects from small and
large size ranges, respectively. Detailed benchmark settings
and scripts can be found in the Quicksilver repository.

Observation 1: Coupling physical allocation, prepara-

Workload Linux-4KB Linux-noKhugepaged Linux
Del-70 11.6 GB 11.7 GB 19.8 GB

Range-XL 14.4 GB 25.7 GB 30.7 GB

Table 1: Redis memory consumption. Linux-noKhugepaged
disables khugepaged.

Figure 2: Linux’s first touch policy fails to create superpages.

tion, and mapping of superpages leads to memory bloat
and fewer superpage mappings. It also is not compatible
with transparent use of multiple superpage sizes.

Linux’s first-touch policy couples physical superpage alloca-
tion, preparation and superpage mapping creation together.
As a result, it enjoys two obvious benefits. First, it provides
immediate address translation benefits, including shorter page
walk time and increased TLB efficiency. Second, it eliminates
a large number of page faults for a heavily utilized superpage.
Therefore, it is usually the best mapping policy when there is
abundant contiguous free memory.

However, this coupled policy has several drawbacks. First,
it can easily bloat memory and waste time preparing underuti-
lized superpages. In a microbenchmark that sparsely touches
30GB of anonymous memory, Linux’s first-touch policy takes
1.4s to run and consumes 30GB compared to 0.06s and 0.2GB
when disabling transparent huge pages. While such a corner
case is rare when applications use malloc to dynamically
allocate memory, it may still happen in a long-running server,
e.g., Redis. Table 1 shows that Linux’s first touch policy bloats
memory by 78% compared to Linux-4KB on the workload
Range-XL, which inserts objects of random sizes ranging
from 256B to 1MB.

Second, it misses chances to create superpage mappings
when virtual memory grows. During a page fault, Linux can-
not create a superpage mapping beyond the heap’s end, so it in-
stalls a 4KB page which later prevents creation of a superpage
mapping when the heap grows. Figure 2 shows such behavior
for gcc [11], which includes three compilations. Linux’s first-
touch policy creates a few superpage mappings early in each
compilation, but fails to create more as the heap grows. In-
stead, promotion-based policies can create more superpages,

USENIX Association 2020 USENIX Annual Technical Conference 833

Page Size Anonymous NVMe Disk Spinning Disk
2MB 91 us 1.7 ms 11 ms
1GB 46 ms 0.9 s 7.7 s

Table 2: Page fault latency. Bold numbers are estimations.

e.g., FreeBSD and Linux’s khugepaged.
Third, it cannot be extended to larger anonymous or file-

backed superpages. Table 2 estimates the page fault latency on
both 1GB anonymous superpages and 2MB/1GB file-backed
superpages. Faulting a 2MB file-backed superpage on the
NVMe disk costs 1.7ms and faulting a 1GB anonymous su-
perpage takes 46ms. These numbers may cause latency spikes
in server applications. Furthermore, it cannot easily determine
which page size to use on first touch. This is arguably more
of an immediate problem on ARM processors, which support
both 64KB and 2MB superpages.

Observation 2: Asynchronous, out-of-place promotion
alleviates latency spikes but delays physical superpage al-
locations.

Promotion-based policies can use 4KB mappings and later
replace them with a superpage mapping. This allows for po-
tentially better informed decisions about superpage mapping
creation and can easily be extended to support multiple sizes
of superpages. Specifically, there are two kinds of promotion
policies, named out-of-place promotion and in-place promo-
tion. They differ in whether previously prepared 4KB pages
require migration when preparing a physical superpage.

Under out-of-place promotion a physical superpage is not
allocated in advance, on a page fault a 4KB physical page is
allocated that may neither be contiguous nor aligned with its
neighbors. When the OS decides to create a superpage map-
ping, it must allocate a physical superpage, migrate mapped
4KB physical pages and zero the remaining ones. At this time,
previously created 4KB mappings are no longer valid.

Linux and recent prototypes [20,24] perform asynchronous,
out-of-place promotion to hide the cost of page migration. As
discussed in Section 3.2, Linux includes khugepaged as a
supplement to create superpage mappings for growing heaps.
The steady, slow increase of Linux’s superpages in Figure 2
is from khugepaged’s out-of-place promotions. However,
khugepaged can easily bloat memory. Table 1 shows a mem-
ory bloat from 11.6GB to 19.8GB on workload Del-70, which
randomly deletes 70% of the objects. On workload Range-XL,
it bloats memory from 25.7GB to 30.7GB.

Ingens and HawkEye [20, 24] disable Linux’s first-touch
policy and instead improve the behavior and functionality of
khugepaged, motivated by avoiding latency spikes in server
workloads. Under memory fragmentation, Linux tries to com-
pact memory when it fails to allocate superpages, which
blocks the ongoing page fault and leads to latency spikes.
Ingens and HawkEye enhanced khugepaged and offloaded
superpage allocations from the critical path, alleviating such

Workloads Ingens Ingens* HawkEye HawkEye* FreeBSD
GUPS 0.87 0.84 0.28 0.88 0.96
Graphchi-PR 0.58 0.58 0.53 0.60 0.77
BlockSVM 0.81 0.79 0.73 0.81 0.96

Table 3: Speedup over Linux with unfragmented memory. All
systems have worse performance than Linux.

latency spikes. So khugepaged works as their primary super-
page management mechanism.

However, out-of-place promotion delays physical super-
page allocations and ultimately superpage mapping creation,
because the OS must scan page tables to find candidate
2MB regions and schedule the background tasks to pro-
mote them. Table 3 compares in-place promotion (FreeBSD)
with out-of-place promotion (Ingens and HawkEye) on ap-
plications where superpage creation speed is critical. While
GUPS only involves random accesses, both Graphchi-PR
and BlockSVM [21, 32] represent important real-life appli-
cations – using fast algorithms to process big data that can-
not fit in memory. To better illustrate the problem, Ingens*
and HawkEye* were tuned to be more aggressive, so that all
2MB regions containing at least one dirty 4KB mapping are
candidates for promotion. Specifically, Ingens* uses a 0%
utilization threshold instead of 90%; HawkEye* uses a 100%
maximum CPU budget to promote superpages. However, Ta-
ble 3 shows that FreeBSD consistently and significantly out-
performs both of them. In other words, the most conservative
in-place promotion policy creates superpage mappings faster
than the most aggressive out-of-place promotion policy.

Observation 3: Reservation-based policies enable specu-
lative physical page allocation, which enables the use of
multiple page sizes, in-place promotion, and obviates the
need for asynchronous, out-of-place promotion.

In-place promotion does not require page migration. It creates
a physical superpage on the first touch, then incrementally
prepares and maps its constituent 4KB pages without page
allocation. Therefore, the allocation of a physical superpage
is immediate, but its superpage mapping creation is delayed.
To bypass 4KB page allocations, it requires a bookkeeping
system to track allocated physical superpages, e.g., FreeBSD’s
reservation system. On x86-64, after it substitutes a superpage
mapping for the 4KB mappings, it need not flush the previous
4KB mappings from the TLB.

FreeBSD implements an in-place promotion policy based
on its reservation system as described in Section 3.1. It con-
servatively creates superpage mappings to avoid making per-
formance worse. Navarro, et al. reported negligible overheads
from the reservation system [23].

FreeBSD immediately allocates physical superpages but
delays superpage mapping creation, sacrificing some address
translation benefits. Table 3 shows that Linux consistently out-
performs FreeBSD when memory is unfragmented, though

834 2020 USENIX Annual Technical Conference USENIX Association

Linux-4KB Linux
Frag-0 1.04 GB/s (5.6 ms) 1.34 GB/s (4.1 ms)
Frag-50 1.04 GB/s (5.7 ms) 0.92 GB/s (10.2 ms)

Table 4: Mean throughput and 95th latency of Redis Cold
workload.

they created similar numbers of anonymous superpage map-
pings.

However, FreeBSD aggressively allocates physical super-
pages for anonymous memory. Upon a page fault of anony-
mous memory, it always speculatively allocates a physical
superpage, expecting the heap to grow. This eliminates one
of the primary needs for khugepaged in Linux. In Figure 2,
FreeBSD has most of the memory quickly mapped as super-
pages, because most speculatively allocated physical super-
pages end up as fully-prepared pages.

Observation 4: Reservations and delaying partial deallo-
cation of physical superpages fight fragmentation.

Superpages are easily fragmented on a long-running server.
A few 4KB pages can consume a physical superpage, which
benefits little if mapped as a superpage. Existing systems deal
with memory fragmentation in three ways.

Linux compacts memory immediately when it fails to al-
locate a superpage. It tries to greedily use superpages, but
risks blocking a page fault. Table 4 evaluated the performance
of Redis. Under fragmentation, Linux obtains slightly higher
throughput but much higher tail latency than Linux-4KB.

FreeBSD delays the partial deallocation of a physical super-
page to increase the likelihood of reclaiming a free physical
superpage. When individual 4KB pages get freed sooner, they
land in a lower-ordered buddy queue and are more likely to
be quickly reallocated for other purposes. Therefore, perform-
ing partial deallocations only when necessary due to memory
pressure decreases fragmentation.

Ingens actively defragments memory in the background
to avoid blocking page faults. It preferably migrates non-
referenced memory, so that it minimizes the interference with
running applications. As a result, Ingens generates fewer la-
tency spikes compared with Linux [20]. These migrations,
however, do consume processor and memory resources.

Observation 5: Bulk zeroing is more efficient on modern
processors than repeated 4KB zeroing.

Modern OSes have abandoned asynchronous page zeroing
because it usually degrades performance in a multiprocess
situation. Furthermore, the introduction of ERMS (Enhanced
REP MOVSB/STOSB) has accelerated page zeroing. How-
ever, existing OSes fail to fully exploit the benefits of ERMS
support, because they still zero pages 4KB at a time. Modern
CPUs can zero a 2MB page much faster with bulk zeroing,
which calls the assembly language page zeroing code at a size
larger than 4KB. Table 5 compares 2MB zeroing speed on

CPU (GHz) DRAM
(MHz)

temporal non-temporal
Bulk Size: 4KB 32KB 2MB 4KB 32KB 2MB

E3-1231v3 (3.40) 1600 92 88 87 114 99 97
E3-1245v6 (3.70) 2400 84 67 65 92 74 71
E5-2640v3 (2.60) 1866 355 287 280 154 112 106
E5-2640v4 (2.40) 2133 409 334 325 163 113 106
R7-2700X (4.30) 2666 185 183 159 99 60 53

Table 5: 2MB page zeroing time (us) drops consistently using
a larger bulk size.

five modern machines. Existing OSes take 84–409us to zero
a 2MB superpage. After using a larger bulk size, the range
is improved to 67–334us. Furthermore, these machines have
a consistently short non-temporal (moventi or clzero) bulk
zeroing latency (53–106us). The AMD Ryzen 7 2700X CPU
achieves 53us with the highest CPU and DRAM frequency
and its specific clzero implementation.

5 Design and Implementation
This section describes Quicksilver, an improved transparent
superpage management system based upon the observations
from the previous section. To benefit from in-place promo-
tions, Quicksilver is built upon FreeBSD’s reservation-based
superpage management strategy.

5.1 Design
Aggressive Physical Superpage Allocation. Section 4
shows that aggressive allocation on first touch (as done by
Linux and FreeBSD) is effective. Moreover, Observation 3
shows that FreeBSD’s reservation system allows speculative
physical allocation for anonymous memory and creates even
more superpages than Linux, as shown in Figure 2. Since it
also supports multiple superpage sizes and avoids memory
bloating, Quicksilver retains FreeBSD’s reservation system:
allocating physical superpages when virtual memory regions
that may use superpages are first accessed. Allocation is per-
formed synchronously to avoid page migrations.

The drawbacks of FreeBSD’s use of reservations are
twofold. First, FreeBSD delays preparation and mapping of
superpages, resulting in lower performance than Linux in
some scenarios, as shown in Table 3. However, this is not
inherent in the use of reservations for allocation, but rather
should be addressed via preparation and mapping policies.
Second, holding underutilized physical superpages in reserva-
tions can prevent future superpage allocations. However, this
is better resolved via deallocation policies that recognize and
recover from such situations.

Hybrid Physical Superpage Preparation. Quicksilver
strikes a balance between incremental and all-at-once prepa-
ration. Reservations are initially prepared incrementally. This
minimizes the initial page fault latency, but loses prompt ad-
dress translation benefits. Therefore, Quicksilver has an addi-

USENIX Association 2020 USENIX Annual Technical Conference 835

tional threshold, t. Once t 4KB pages get prepared, it prepares
the remainder of the superpage all-at-once.

This reduces bloat, as discussed in Observation 1, because
it does not immediately prepare and map the superpage. How-
ever, it enables address translation benefits sooner than wait-
ing for the entire superpage to be accessed. The use of a
threshold is further based on previous work showing that the
utilization of physical superpages is largely bimodal [34].
Once more than about 64 4KB pages have been accessed, it
is very likely that the physical superpage will eventually be
fully populated (or very nearly so). Therefore, at that point,
it is very likely to be beneficial to prepare the remainder of
the page and create a superpage mapping for it. Motivated by
Observation 5, bulk zeroing is used to accelerate page zeroing
when zero-filling the remainder of the superpage.

Relaxed Superpage Mapping Creation. Once an entire
physical superpage has been prepared, there is little downside
to immediately creating a superpage mapping for anonymous
memory, which is rarely, if ever, swapped in modern systems.
Therefore, Quicksilver relaxes FreeBSD’s current design —
which does not create a superpage mapping if the accessed or
modified states of the constituent pages differ — to always
create a mapping once the physical superpage has been fully
prepared, as do Linux, Ingens, and HawkEye.

For file-backed superpages, Quicksilver retains FreeBSD’s
write-protection mechanism to avoid extra disk I/O, but no
longer examines if all constituent pages are accessed. Because
memory-mapped files are usually prefetched 64KB at a time,
file-backed superpages may not be fully accessed when they
get fully prepared. By allowing different access bits, more
file-backed superpage mappings can be created. Note that
Linux and its variants do not use superpages at all for files.

On-demand Superpage Mapping Destruction. There is
no reason to destroy a superpage mapping unless some or
all of the memory within the superpage is freed, its protection
is changed, or the physical superpage must be deallocated to
reclaim memory. Therefore, Quicksilver maintains FreeBSD’s
policy of only destroying mappings in the aforementioned
situations.

Preemptive Physical Superpage Deallocation. As dis-
cussed in Observation 4, delaying partial deallocation of phys-
ical superpages effectively limits fragmentation. However, to
maximize the effectiveness of synchronous physical super-
page allocation, there must be available superpages to allocate.
Superpage availability can have a considerable impact on per-
formance as was shown in Table 4. Therefore, Quicksilver
maintains a target number of free physical superpages.

Underutilized reservations that are inactive for a long pe-
riod are preemptively deallocated. These partially prepared
physical superpages are not yet mapped as superpages, so
the deallocation reduces memory bloat and recovers memory
contiguity. Such preemptive deallocation copes well with hy-
brid preparation under a population threshold t. As a result,

preemptive deallocation usually evacuates underutilized and
less frequently accessed superpages.

This approach has three advantages. First, fewer pages are
migrated. Second, the preemptive migration happens in the
background, so it does not happen on the critical path of any
OS function executed by the application. Finally, it is likely to
have minimal impact on running processes, as it is operating
on pages that come from less frequently accessed superpages.

5.2 Implementation
Quicksilver was implemented within FreeBSD 11.2. Quick-
silver focuses on anonymous memory, with FreeBSD’s su-
perpage support for file-backed memory slightly improved
(access bit equivalence is no longer required for promotion).
This section further describes the page zeroing mechanism
and the migration/deallocation daemon.

Hybrid Preparation. A physical superpage is incrementally
prepared until it reaches a population threshold, t. Then the
remainder of the physical superpage is prepared by zero-
filling it. The system can do this either synchronously or asyn-
chronously, named Sync-t and Async-t. Specifically, Async-t
periodically scans the linked list of partially populated phys-
ical reservations and starts zero-filling from the most active
ones reaching the population threshold t. Therefore, it incurs
no fairness issue because the order is determined by physical
allocation activity, not process IDs.

In both cases, zero-filling uses non-temporal stores. When
using Sync-t, pages are zeroed using the largest bulk size
possible, as motivated by Observation 5. Since zeroing is
done by the page fault handler, the page fault handler can
create a superpage mapping immediately after zeroing is com-
plete. When using Async-t, 4KB pages are zeroed individu-
ally. While this yields lower zeroing performance, it reduces
lock contention when operating on pages. Since zeroing is
done asynchronously and independently of any process’s vir-
tual address space, a superpage mapping is not created until
the first soft page fault after all pages have been zeroed.

Relaxed Mapping Creation. For anonymous memory, the
superpage mapping creation condition is relaxed to ignore
checking for dirty and access bits. This allows a superpage
mapping to be created immediately after Sync-t completes the
zero-filling (these pages are clean). For file-backed memory,
superpage mappings are created on a soft page fault of a file-
backed physical superpage. Default FreeBSD skips mapping
creation because the access bits are inferred not to all be set
when prefaulting the prefetched disk data. After relaxing the
access bit checking, Quicksilver tries to create a superpage
mapping at that point.

Preemptive Deallocation. Physical superpages are often un-
derutilized [20, 34]. Given Observation 4, the system delays

836 2020 USENIX Annual Technical Conference USENIX Association

Threads Linux FreeBSD
default aggressive default emulate Linux ELF

1 1.05 1.19 1.15 1.16
8 1.07 0.91 1.11 1.18

Table 6: Canneal performance speedup. Only bold numbers
are comparable.

Linux FreeBSD
default aggressive default patched [1] match Linux

1.01 1.24 1.02 1.07 1.19
0.4 K 8.2 K 0.0 K 1.2 K 8.2 K

Table 7: Throughput speedup and number of created super-
page mappings of a Redis server populated by Del-70. Only
bold numbers are comparable.

partial deallocation of physical superpages. However, to en-
sure that there are sufficient free physical superpages for fu-
ture allocations, Quicksilver uses an evacuation daemon to
reclaim free physical superpages by preemptively deallocat-
ing underutilized physical superpages.

The daemon maintains a target number of free physical
superpages. It periodically scans the list of partially populated
reservations and examines their inactive time, during which
they are neither populated nor deallocated. If they are inactive
for a long time, e.g., 5 seconds, the daemon then reclaims a
free physical superpage by migrating out its constituent 4KB
pages. To avoid contention with running applications, the
daemon is restricted to use a maximum memory bandwidth
of 1GB/s. This is less than 5% of the evaluated machine.

6 Methodology
Fragmentation. Three fragmentation levels are modeled
to mimic long-running servers, named Frag-0, Frag-50 and
Frag-100. They represent situations from non-fragmented to
severely-fragmented. Specifically, Frag-50 leaves 50% of the
application’s maximum resident memory as free superpages.

The three fragmentation levels are crafted by a user-space
tool which works under a first-touch physical superpage al-
location policy (available in both Linux and FreeBSD). It
first fragments superpages until there is memory pressure,
then starts over and fragments a target number of superpages.
Unlike a previous memory fragmentation method [24] that
only performs the latter step, Linux’s memory compaction
usually fails either in page faults or khugepaged. To fragment
a superpage, the tool touches part of a 2MB-aligned virtual
region and unmaps the untouched part. This will trigger a
physical superpage allocation and force a partial deallocation,
fragmenting that physical superpage.

Library Differences. FreeBSD dynamically links exe-
cutable files with its natively shipped libc, while Linux uses
GNU libc. This makes any performance comparison between
FreeBSD and Linux unfair, because a different implemen-

tation of a standard function may change performance sig-
nificantly. For example, the libc string library in FreeBSD
11.2 does not use ERMS optimizations, so memory copy-
intense applications have worse performance. To remove this
difference, applications were compiled and statically linked
on Linux and then run on FreeBSD using FreeBSD’s Linux
system call emulation. Table 6 shows that natively compiled
canneal on FreeBSD runs slower than emulated canneal, be-
cause of slower memory copying in dynamic array resizing.
Although a libc library with ERMS optimizations could be
ported from FreeBSD 12.0, this methodology ensures that the
exact same binaries are run on all systems, eliminating any
possible library differences.

There are three exceptions. GraphChi-PR uses dlopen to
dynamically link the openmp library, so it cannot be statically
compiled. Redis calls gettimeofday() very frequently, causing
huge emulation overhead. Therefore, they are compiled na-
tively on FreeBSD-based systems after porting the libc library
from FreeBSD 12.0. They therefore may have minor library-
induced performance differences between the Linux-based
and FreeBSD-based systems. Lastly, FreeBSD’s Linux emu-
lation caused significant performance degradation on GUPS,
because of cache misses resulting from an unaligned dynami-
cally allocated data structure. To fix this, GUPS was modified
to use malloc_aligned.

System Tuning. When there are idle CPUs, tuning Linux’s
khugepaged to be more aggressive can obtain better perfor-
mance. Table 6 shows this in a single-threaded case. This tun-
ing also yields higher throughput for single-threaded Redis, as
shown in Table 7. However, performance degrades when the
application uses all CPUs and competes with khugepaged, so
Linux remains unchanged for the remainder of the evaluation.

FreeBSD 11.2 has suboptimal Redis performance due to
three reasons. First, it uses a network socket buffer size suit-
able for 1Gbps NICs. Second, its libc has no ERMS opti-
mizations, while memory copying dominates Redis’s per-
formance. Third, it is unlikely to repromote superpages af-
ter MADV_FREE (Redis uses MADV_FREE on FreeBSD to save
page faults). Therefore, FreeBSD was tuned to use the cor-
rect buffer size for a 40Gbps NIC, and the libc library was
ported from FreeBSD 12.0. Additionally, a recent patch [1]
to FreeBSD was applied to increase the likelihood of super-
page repromotion, creating 1.2K more superpage mappings
in Table 7. The dirty bit requirement for anonymous mem-
ory was relaxed to match Linux’s performance, creating 8.2K
superpage mappings.

Ingens and HawkEye are evaluated with their default set-
tings. Ingens promotes superpages with a 90%-utilization
threshold. HawkEye promotes superpages at the speed of
1.6MB/s guided by performance counters. Ingens* and Hawk-
Eye* are aggressively tuned variants. Specifically, Ingens*
uses a utilization threshold of 0% instead of 90% and en-
ables 1GB/s proactive memory compaction. HawkEye* uses

USENIX Association 2020 USENIX Annual Technical Conference 837

a 100% CPU maximum with a promotion threshold of 1.

7 Evaluation
Four variants of Quicksilver are considered, named Sync-
1, Sync-64, Async-64 and Async-256. They all handle the
five superpage events similarly except for superpage prepara-
tion. Therefore, for clarity they are named after their prepara-
tion policies. These four variants represent reasonable design
points in the Sync-t and Async-t space, and use the same
1GB/s active defragmentation daemon. They share the same
library and system tunings with FreeBSD. All performance
numbers are the mean of three runs.

7.1 Non-fragmented (Frag-0) Performance
Sync-1 vs. Linux. Sync-1 uses the same superpage prepara-
tion and mapping policy for anonymous memory as Linux.
With no fragmentation, Tables 8 and 9 show that they perform
similarly. However, there are two notable differences. First,
Sync-1 speculatively allocates superpages for growing heaps,
which allows it to outperform Linux on canneal and gcc. Their
similar speedups on reservation-based systems validate Ob-
servation 3. Second, Sync-1 creates file-backed superpages
and outperforms Linux on ANN and Graphchi-PR.

Promotion Speed. Under Frag-0, FreeBSD often outper-
forms Ingens, HawkEye and their aggressively tuned variants,
as shown in Table 8. This validates Observation 2, as the
issue is that out-of-place promotion has a slower promotion
speed. Furthermore, as shown in Table 9, on the Redis Cold
workload, Ingens, HawkEye and their aggressively tuned vari-
ants even show a slight degradation compared to Linux-4KB.
These systems introduce some noticeable interference with
running applications when they manage superpages in the
background.

Sync-64 mostly outperforms Async-64, because Async-64
zeros pages in the background which can cause interference.
The comparable performance of Sync-64 and Sync-1 shows
that less aggressive preparation and mapping policies can
achieve comparable results to immediately mapping super-
pages on first touch.

7.2 Performance Under Fragmentation
Table 9 shows that Linux obtains a much higher tail latency
on the Redis Cold workload under Frag-50/100 than Linux-
4KB, because its on-allocation defragmentation significantly
increases page fault latency. In contrast, FreeBSD does not
actively defragment memory, so it generates no latency spikes.

Ingens and HawkEye offload superpage allocation from
page faults and compact memory in the background, so they
reduce interference and generate few latency spikes on the
Redis Cold workload. Furthermore, as shown in Table 8,
their speedup over Linux increases as fragmentation increases.
However, HawkEye does not achieve the same speedups on

XSBench that were reported in the original paper [24], be-
cause in these application runs, most of its memory com-
paction fails and its important data was not allocated at the
high end of the address space.

The four variants of Quicksilver all consistently perform
well on both non-server and server workloads, because their
background defragmentation not only avoids increasing page
fault latency, but also succeeds in recovering unfragmented
performance. Specifically, on the Redis Cold workload, Sync-
1 maintained the highest throughput (1.31 GB/s) while pro-
viding low (4.5 ms) tail latency under Frag-100. However, the
per-second background scanning of the evacuation daemon
may fail to improve performance when applications quickly
touch all of their memory in the beginning (e.g. GUPS and
ANN). As a result, there is high performance variation on
GUPS and ANN performance is not improved over other
systems, as shown in Table 8.

Graphchi-PR. On all applications in Table 8, the Sync-t
and Async-t systems all match or outperform Linux. Since
Graphchi-PR is an important and real-world task, it is selected
to elaborate how the design choices described in Section 5
contribute to the 2.18 speedup of Sync-1 under Frag-100.

Under Frag-100, Async-64 obtains a speedup of 1.68,
which is higher than the 1.15 speedup obtained by Ingens* on
Graphchi-PR. When Graphchi-PR terminated, Ingens* has
a total of 1,926 (mean of 3 runs) free physical superpages,
but Async-64 has 11,955 free physical superpages. Although
they have the same memory bandwidth budget (1GB/s) for
active defragmentation, Quicksilver’s evacuation daemon de-
fragments memory more efficiently by identifying inactive
fragmented superpages. The in-place promotions further con-
tribute to the higher speedup of Async-64. When memory is
not fragmented, Async-64 obtains a speedup of 0.83, higher
than all other non-Quicksilver systems.

Sync-64 obtains an even higher speedup of 2.11. The shared
evacuation daemon allows both Async-64 and Sync-64 to al-
locate a similar number of superpages, but the synchronous
all-at-once preparation implemented by bulk zeroing in Sync-
64 efficiently removes the delay of creating superpages. With
the same number of superpages, Sync-64 is able to reduce
page walk pending cycles by 76%. The highest speedup is
obtained by Sync-1 with a more aggressive promotion thresh-
old.

7.3 Memory Bloat
All systems suffer less than 1% memory bloat compared to
Linux-4KB on the applications shown in Table 8. However,
long-running servers may still suffer from memory bloat.
When applications frequently allocate and deallocate memory,
an aggressive superpage preparation policy may preemptively
prepare a superpage and sacrifice free memory for minor ad-
dress translation benefits, ultimately creating false memory
pressure.

838 2020 USENIX Annual Technical Conference USENIX Association

Frag-0 GUPS Graphchi-PR BlockSVM XSBench ANN canneal freqmine gcc mcf DSjeng XZ
Ingens 0.87 0.58 0.81 0.98 1.00 0.95 0.99 1.00 0.99 0.99 0.96
Ingens* 0.84 0.58 0.79 0.97 0.97 0.92 0.99 1.01 0.96 0.99 0.92
HawkEye 0.28 0.53 0.73 0.88 1.00 0.95 0.99 0.99 0.94 0.86 0.90
HawkEye* 0.88 0.60 0.81 0.98 1.00 0.97 1.00 0.99 0.97 0.99 0.94
FreeBSD 0.96 0.77 0.96 0.99 0.98 1.14 1.00 1.05 0.99 1.00 0.99
Sync-1 0.99 1.07 1.00 1.00 1.07 1.14 0.99 1.05 1.00 1.00 1.00
Sync-64 0.98 1.05 1.00 1.00 1.08 1.14 0.99 1.05 1.00 1.00 1.00
Async-64 0.96 0.83 0.97 0.99 1.08 1.14 1.00 1.05 1.00 1.00 0.99
Async-256 0.96 0.82 0.97 0.99 1.08 1.14 0.99 1.05 0.99 1.00 0.99
Frag-50 GUPS Graphchi-PR BlockSVM XSBench ANN canneal freqmine gcc mcf DSjeng XZ
Ingens 0.98 0.71 0.82 1.01 1.00 0.99 1.00 1.00 1.00 1.00 0.99
Ingens* 1.24 0.73 0.86 1.00 0.98 1.00 0.99 1.02 0.99 1.04 0.97
HawkEye 0.62 0.68 0.77 0.91 1.00 0.96 1.00 0.99 0.97 0.92 0.94
HawkEye* 0.89 0.68 0.80 1.00 0.99 0.99 1.00 0.99 0.99 0.98 0.99
FreeBSD 0.98 0.94 0.89 1.02 0.97 1.01 1.00 1.05 1.01 1.02 1.01
Sync-1 2.04(0.08) 1.37 1.04 1.03 1.04 1.17 1.00 1.05 1.03 1.05 1.05
Sync-64 2.01 1.32 1.06 1.03 1.04 1.18 1.00 1.05 1.03 1.06 1.05
Async-64 2.11 1.06 1.02 1.03 1.03 1.17 1.00 1.05 1.03 1.06 1.04
Async-256 2.11 1.05 1.02 1.03 1.03 1.17 1.00 1.05 1.03 1.06 1.04
Frag-100 GUPS Graphchi-PR BlockSVM XSBench ANN canneal freqmine gcc mcf DSjeng XZ
Ingens 1.02 1.13 0.86 1.04 1.00 1.00 1.00 1.00 1.01 1.01 1.02
Ingens* 1.30 1.15 0.88 1.13 0.99 1.06 1.00 1.02 1.03 1.08 1.06
HawkEye 0.97 1.11 0.85 1.03 1.00 1.01 1.00 1.00 0.99 0.97 1.02
HawkEye* 0.96 1.11 0.84 1.03 1.00 1.01 1.00 0.99 0.99 0.97 1.01
FreeBSD 0.96 1.10 0.85 1.04 0.98 1.05 1.00 1.00 1.00 1.04 1.02
Sync-1 2.35(0.30) 2.18 1.12 1.07 1.04 1.12 1.00 1.05 1.02 1.10 1.14
Sync-64 2.29(0.14) 2.11 1.13 1.07 1.01 1.12 1.00 1.05 1.05 1.11 1.14
Async-64 1.91(0.21) 1.68 1.11 1.06 0.98 1.12 1.00 1.05 1.05 1.11 1.13
Async-256 2.10(0.22) 1.65 1.10 1.08 0.98 1.16 1.00 1.06 1.05 1.08 1.13

Table 8: Performance speedup over Linux under three fragmentation levels. Red boxes indicate that the system performs worse
than Linux on that application. The normalized standard deviation of runtime is no greater than 5% unless specified in parentheses.

Table 10 compares the memory consumption of four Redis
workloads. Among these workloads, Linux bloats memory the
most, consistent with previous findings [20]. However, Sync-
1 exhibits lower memory consumption than Linux despite
similar policies. In fact, it is khugepaged that bloats memory.
When a partially deallocated superpage is scanned, it allocates
the memory back to recreate a superpage, undermining the
application’s efforts to free and defragment memory.

All systems other than Linux limit memory consumption
for the first three workloads; they only really differ on Range-
XL. HawkEye, FreeBSD, and Async-256 exhibit the lowest
memory consumption on Range-XL, whereas the other sys-
tems bloat memory by 40–60%. HawkEye stops allocating
superpages when the TLB overhead is minor, FreeBSD only
promotes fully utilized superpages, and Async-256 has a con-
servative promotion threshold.

Sync-1 vs. Sync-64 Besides bloating memory, aggressive
preparation policies may cause excessive creation of super-
pages. This is common when many small processes get forked.
For example, Table 11 shows what happens in a 9-threaded
compilation of the FreeBSD kernel. Sync-1 creates more than

200k superpages, while the less aggressive Sync-64 only cre-
ates around 100k. Over half of the superpages created by
Sync-1 had less than 13% utilization. Consequently, Sync-
1 spends 13.9% more system time preparing them, which
outweighs their benefits. In a long running server, using an
aggressive policy like Sync-1 could waste both power and
memory contiguity by creating underutilized superpages. In
contrast, Sync-64 avoids such cases and suffers from less per-
formance degradation than Sync-1 in both Table 8 and Table 9.
Therefore, it is more preferable for long-running servers.

8 Related Work
Direct segments have been proposed as a supplement to exist-
ing page-based address translation for large-memory applica-
tions [9, 14, 18]. While they are effective at reducing the cost
of address translation, they are limited to systems that allocate
nearly all of the system memory to a single application with
the same access rights. While these ideas can be generalized
to some degree, they ultimately limit the flexibility of the OS
to allocate and use physical memory.

Automatic TLB entry coalescing to increase the effective

USENIX Association 2020 USENIX Annual Technical Conference 839

Cold Linux-4KB Linux Ingens Ingens* HawkEye HawkEye* FreeBSD Sync-1 Sync-64 Async-64 Async-256
Frag-0 1.04(5.6) 1.34(4.1) 1.00(5.9) 0.98(6.3) 1.00(5.9) 1.00(5.8) 1.11(6.1) 1.26(4.5) 1.20(4.8) 1.10(6.0) 1.11(6.0)
Frag-50 1.04(5.7) 0.92(10.2) 0.95(5.9) 0.97(5.9) 1.02(5.9) 1.03(5.8) 1.04(6.2) 1.25(4.5) 1.27(4.7) 1.09(6.0) 1.09(6.0)
Frag-100 1.07(5.6) 0.81(9.9) 0.94(6.1) 0.97(6.1) 1.00(5.8) 1.02(5.8) 0.98(6.5) 1.31(4.5) 1.26(4.6) 1.14(5.9) 1.08(5.9)
Warm Linux-4KB Linux Ingens Ingens* HawkEye HawkEye* FreeBSD Sync-1 Sync-64 Async-64 Async-256
Frag-0 1.06(6.5) 1.32(5.2) 1.23(5.7) 1.21(5.8) 1.03(6.7) 1.06(6.5) 1.30(5.6) 1.32(5.5) 1.31(5.5) 1.31(5.5) 1.30(5.6)
Frag-50 1.07(6.5) 1.17(5.9) 1.09(6.4) 1.19(5.8) 1.03(6.7) 1.05(6.7) 1.18(6.1) 1.32(5.5) 1.32(5.5) 1.31(5.5) 1.31(5.5)
Frag-100 1.07(6.5) 1.16(5.9) 1.01(6.9) 1.09(6.4) 1.05(6.6) 1.07(6.5) 1.10(6.6) 1.33(5.4) 1.34(5.5) 1.33(5.4) 1.31(5.5)

Table 9: Redis throughput (GB/s) and 95th latency (ms) of workloads Cold and Warm. Numbers in parentheses are 95th latencies.
The maximum standard deviation is 0.04GB/s for throughput and 0.57ms for 95th latency.

Workload Linux-4KB Linux Ingens Ingens* HawkEye HawkEye* FreeBSD Sync-1 Sync-64 Async-64 Async-256
Del-70 11.6 19.8 11.6 11.7 11.6 11.6 11.6 11.6 11.6 11.6 11.6
Del-50 16.7 19.8 16.8 16.8 16.7 16.9 16.7 16.8 16.8 16.8 16.8

Range-S 14.3 15.6 16.0 15.6 14.9 14.5 14.3 15.6 15.6 15.3 15.1
Range-XL 14.4 30.7 22.7 23.3 15.7 20.6 14.9 23.1 20.9 19.5 15.9

Table 10: Redis memory consumption (GB) of four workloads. Khugepaged further bloats memory in Linux.

Buildkernel real user sys # SP # PF
Sync-1 197.7 1409.4 89.4 200.5 K 5.3 M
Sync-64 196.9 1408.8 78.5 99.6 K 10.3 M
FreeBSD 203.7 1436.7 98.0 36.9 K 30.2 M

Table 11: Runtime (seconds) and numbers of superpages and
page faults of compiling the FreeBSD 11.2 kernel.

reach of the TLB has been proposed and implemented [26,27].
Essentially, a page walk will load multiple 4KB mappings
found in the same cache line. If these mappings refer to con-
tiguous pages and have identical access privileges, then they
are merged into a single TLB entry. Although TLB entry
coalescing occurs automatically in hardware, it nonetheless
requires the OS to allocate physically contiguous memory.
AMD Ryzen processors do such coalescing [12].

A large body of work has shown that using superpages can
reduce the cost of address translation. Originally, OS support
for superpages required the administrator to manually control
the use of superpages. For example, Linux has long supported
persistent huge pages [4]. A huge page pool with a static
number of huge pages must be allocated by the administrator
before running applications. The persistent huge pages are
pinned in memory and can only be used via specific flags to
mmap system calls. Superpage support in Windows and OS X
are similar to Linux persistent huge pages [3, 6].

To eliminate the need for manual control, FreeBSD, Linux,
and many research prototypes have explored transparent su-
perpage support, as described in Section 3. This support has
been extensively described and studied [16, 17, 20, 23, 24, 29].
As this transparent support for superpages has become widely
available in production OSes, many people have argued that
effectively handling all of the issues that can arise still re-
quires further improvements to OS memory management sup-
port [15–17,20,22,24,25]. For example, some of these people
have worked to improve Linux’s superpage management by

decreasing memory fragmentation and more carefully allo-
cating physical superpages using Linux’s idle page tracking
mechanisms [20, 22, 24, 25, 31]. Others have shown that it is
beneficial to decrease memory fragmentation and increase
the contiguity of physical memory. To achieve this, several ef-
forts have focused on minimizing migration and reducing its
performance impact, while still attempting to reduce fragmen-
tation and increase contiguity [7,8,22,25,31]. The deprecated
lumpy reclaim from Linux was also developed to increase
contiguity [2]. It reclaims a 2MB superpage by finding an
inactive 4KB page and swaps out all dirty 4KB pages inside
the 2MB block. Because these dirty 4KB pages may also con-
tain active ones, swapping them out may hurt performance
instead. Besides efforts on anonymous superpages, Zhou, et
al. augmented FreeBSD to synchronously page-in code and
pad code sections to create more code superpages [33].

9 Conclusions
This paper has performed a comprehensive analysis of su-
perpage management mechanisms and policies. The explicit
enumeration of the five events involved in the life of a su-
perpage provides a framework around which to compare and
contrast superpage management policies. This framework
and analysis yielded five key observations about superpage
management that motivated Quicksilver’s innovative design.
Quicksilver achieves the benefits of aggressive superpage
allocation, while mitigating the memory bloat and fragmen-
tation issues that arise from underutilized superpages. Both
the Sync-1 and Sync-64 variants of Quicksilver are able to
match or beat the performance of existing systems in both
lightly and heavily fragmented scenarios, in terms of applica-
tion performance, tail latency, and memory bloat. However,
Sync-64 is preferable for long-running servers, as it does not
aggressively create underutilized superpages.

840 2020 USENIX Annual Technical Conference USENIX Association

References
[1] FreeBSD MADV_FREE heuristics. https:

//svnweb.freebsd.org/base?view=
revision&revision=350463. Viewed 2020-05-
31.

[2] Linux’s lumpy reclaim. https://lkml.org/lkml/
2012/3/28/323. Viewed 2020-05-31.

[3] OS X superpage support. https://www.unix.com/
man-page/osx/2/mmap/. Viewed 2020-05-31.

[4] Persistent huge pages in Linux. https:

//www.kernel.org/doc/Documentation/vm/
hugetlbpage.txt. Viewed 2020-05-31.

[5] Transparent huge pages in Linux. https:

//www.kernel.org/doc/Documentation/vm/
transhuge.txt. Viewed 2020-05-31.

[6] Windows large page support. https:

//docs.microsoft.com/en-us/windows/desktop/
memory/large-page-support. Viewed 2020-05-31.

[7] Neha Agarwal and Thomas F Wenisch. Thermo-
stat: Application-transparent page management for two-
tiered main memory. In ACM SIGARCH Computer
Architecture News, volume 45, pages 631–644. ACM,
2017.

[8] Rachata Ausavarungnirun, Joshua Landgraf, Vance
Miller, Saugata Ghose, Jayneel Gandhi, Christopher J
Rossbach, and Onur Mutlu. Mosaic: Enabling
application-transparent support for multiple page sizes
in throughput processors. ACM SIGOPS Operating
Systems Review, 51(1):27–44, 2018.

[9] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,
Mark D. Hill, and Michael M. Swift. Efficient vir-
tual memory for big memory servers. In The 40th An-
nual International Symposium on Computer Architec-
ture, ISCA’13, Tel-Aviv, Israel, June 23-27, 2013, pages
237–248, 2013.

[10] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The PARSEC benchmark suite: characteri-
zation and architectural implications. In Proceedings of
the 17th international conference on Parallel architec-
tures and compilation techniques, pages 72–81. ACM,
2008.

[11] James Bucek, Klaus-Dieter Lange, et al. SPEC
CPU2017: next-generation compute benchmark. In
Companion of the 2018 ACM/SPEC International Con-
ference on Performance Engineering, pages 41–42.
ACM, 2018.

[12] Mike Clark. A new x86 core architecture for the next
generation of computing. In Hot Chips 28 Symposium
(HCS), 2016 IEEE, pages 1–19. IEEE, 2016.

[13] II Earl Joseph. Gups (giga-updates per second) bench-
mark. URL http://www. dgate. org/˜ brg/files/dis/gups,
2000.

[14] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and
Michael M. Swift. Efficient memory virtualization: Re-
ducing dimensionality of nested page walks. In 47th An-
nual IEEE/ACM International Symposium on Microar-
chitecture, MICRO 2014, Cambridge, United Kingdom,
December 13-17, 2014, pages 178–189, 2014.

[15] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant,
Justin Funston, Alexandra Fedorova, and Vivien Quéma.
Large pages may be harmful on NUMA systems. In
2014 USENIX Annual Technical Conference (USENIX
ATC 14), pages 231–242, 2014.

[16] Mel Gorman and Patrick Healy. Supporting superpage
allocation without additional hardware support. In Pro-
ceedings of the 7th international symposium on Memory
management, pages 41–50. ACM, 2008.

[17] Mel Gorman and Patrick Healy. Performance charac-
teristics of explicit superpage support. In International
Symposium on Computer Architecture, pages 293–310.
Springer, 2010.

[18] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar,
Adrián Cristal, Mark D. Hill, Kathryn S. McKinley,
Mario Nemirovsky, Michael M. Swift, and Osman S.
Unsal. Redundant memory mappings for fast access to
large memories. In Proceedings of the 42nd Annual In-
ternational Symposium on Computer Architecture, Port-
land, OR, USA, June 13-17, 2015, pages 66–78, 2015.

[19] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue
Moon. What is twitter, a social network or a news me-
dia? In Proceedings of the 19th international conference
on World wide web, pages 591–600. AcM, 2010.

[20] Youngjin Kwon, Hangchen Yu, Simon Peter, Christo-
pher J. Rossbach, and Emmett Witchel. Coordinated
and efficient huge page management with ingens. In
12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016., pages 705–721, 2016.

[21] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a PC.
In 10th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2012, Hollywood, CA,
USA, October 8-10, 2012, pages 31–46, 2012.

USENIX Association 2020 USENIX Annual Technical Conference 841

[22] Theodore Michailidis, Alex Delis, and Mema Rous-
sopoulos. Mega: overcoming traditional problems with
os huge page management. In Proceedings of the 12th
ACM International Conference on Systems and Storage,
pages 121–131. ACM, 2019.

[23] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan L.
Cox. Practical, transparent operating system support
for superpages. In 5th Symposium on Operating Sys-
tem Design and Implementation (OSDI 2002), Boston,
Massachusetts, USA, December 9-11, 2002, 2002.

[24] Ashish Panwar, Sorav Bansal, and K Gopinath. Hawk-
eye: Efficient fine-grained OS support for huge pages.
In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 347–360. ACM,
2019.

[25] Ashish Panwar, Aravinda Prasad, and K Gopinath. Mak-
ing huge pages actually useful. In ACM SIGPLAN No-
tices, volume 53, pages 679–692. ACM, 2018.

[26] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and
Gabriel H. Loh. Increasing TLB reach by exploiting
clustering in page translations. In 20th IEEE Inter-
national Symposium on High Performance Computer
Architecture, HPCA 2014, Orlando, FL, USA, February
15-19, 2014, pages 558–567, 2014.

[27] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel,
and Abhishek Bhattacharjee. Colt: Coalesced large-
reach tlbs. In 45th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2012, Van-
couver, BC, Canada, December 1-5, 2012, pages 258–
269, 2012.

[28] J Stamper, A Niculescu-Mizil, S Ritter, GJ Gordon, and
KR Koedinger. Bridge to algebra 2008–2009. Challenge
data set from KDD Cup, 2010.

[29] Madhusudhan Talluri and Mark D. Hill. Surpassing
the TLB performance of superpages with less operating
system support. In ASPLOS-VI Proceedings - Sixth
International Conference on Architectural Support for
Programming Languages and Operating Systems, San
Jose, California, USA, October 4-7, 1994., pages 171–
182, 1994.

[30] John R Tramm, Andrew R Siegel, Tanzima Islam, and
Martin Schulz. Xsbench-the development and verifica-
tion of a performance abstraction for monte carlo reactor
analysis.

[31] Zi Yan, Daniel Lustig, David Nellans, and Abhishek
Bhattacharjee. Translation ranger: operating system
support for contiguity-aware tlbs. In Proceedings of the
46th International Symposium on Computer Architec-
ture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019,
pages 698–710, 2019.

[32] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-
Jen Lin. Large linear classification when data cannot
fit in memory. In Twenty-Second International Joint
Conference on Artificial Intelligence, 2011.

[33] Yufeng Zhou, Xiaowan Dong, Alan L Cox, and Sandhya
Dwarkadas. On the impact of instruction address trans-
lation overhead. In 2019 IEEE International Symposium
on Performance Analysis of Systems and Software (IS-
PASS), pages 106–116. IEEE, 2019.

[34] Weixi Zhu. Exploring superpage promotion policies
for efficient address translation. Master’s thesis, Rice
University, 6100 Main St, Houston, TX 77005, 2019.

842 2020 USENIX Annual Technical Conference USENIX Association

Effectively Prefetching Remote Memory with Leap

Hasan Al Maruf
University of Michigan

Mosharaf Chowdhury
University of Michigan

Abstract
Memory disaggregation over RDMA can improve the perfor-
mance of memory-constrained applications by replacing disk
swapping with remote memory accesses. However, state-of-
the-art memory disaggregation solutions still use data path
components designed for slow disks. As a result, applications
experience remote memory access latency significantly higher
than that of the underlying low-latency network, which itself
can be too high for many applications.

In this paper, we propose Leap, a prefetching solution for
remote memory accesses due to memory disaggregation. At
its core, Leap employs an online, majority-based prefetching
algorithm, which increases the page cache hit rate. We com-
plement it with a lightweight and efficient data path in the
kernel that isolates each application’s data path to the disag-
gregated memory and mitigates latency bottlenecks arising
from legacy throughput-optimizing operations. Integration of
Leap in the Linux kernel improves the median and tail remote
page access latencies of memory-bound applications by up to
104.04× and 22.62×, respectively, over the default data path.
This leads to up to 10.16× performance improvements for
applications using disaggregated memory in comparison to
the state-of-the-art solutions.

1 Introduction
Modern data-intensive applications [5, 29, 30, 70] experience
significant performance loss when their complete working
sets do not fit into the main memory. At the same time, despite
significant and disproportionate memory underutilization in
large clusters [62, 78], memory cannot be accessed beyond
machine boundaries. Such unused, stranded memory can be
leveraged by forming a cluster-wide logical memory pool via
memory disaggregation, improving application-level perfor-
mance and overall cluster resource utilization [11, 45, 48].

Two broad avenues have emerged in recent years to expose
remote memory to memory-intensive applications. The first
requires redesigning applications from the ground up using
RDMA primitives [15, 22, 36, 49, 59, 63, 77]. Despite its effi-
ciency, rewriting applications can be cumbersome and may
not even be possible for many applications [10]. Alternatives
rely on well-known abstractions to expose remote memory;
e.g., distributed virtual file system (VFS) for remote file ac-
cess [10] and distributed virtual memory management (VMM)
for remote memory paging [28, 32, 45, 46, 65].

Because disaggregated remote memory is slower, keeping

hot pages in the faster local memory ensures better perfor-
mance. Colder pages are moved to the far/remote memory as
needed [9, 32, 45]. Subsequent accesses to those cold pages
go through a slow data path inside the kernel – for instance,
our measurements show that an average 4KB remote page
access takes close to 40 µs in state-of-the-art memory disag-
gregation systems like Infiniswap. Such high access latency
significantly affects performance because memory-intensive
applications can tolerate at most single µs latency [28, 45].
Note that the latency of existing systems is many times more
than the 4.3 µs average latency of a 4KB RDMA operation,
which itself can be too high for some applications.

In this paper, we take the following position: an ideal solu-
tion should minimize remote memory accesses in its critical
path as much as possible. In this case, a local page cache can
reduce the total number of remote memory accesses – a cache
hit results in a sub-µs latency, comparable to that of a local
page access. An effective prefetcher can proactively bring in
correct pages into the cache and increase the cache hit rate.

Unfortunately, existing prefetching algorithms fall short
for several reasons. First, they are designed to reduce disk
access latency by prefetching sequential disk pages in large
batches. Second, they cannot distinguish accesses from differ-
ent applications. Finally, they cannot quickly adapt to tempo-
ral changes in page access patterns within the same process.
As a result, being optimistic, they pollute the cache with un-
necessary pages. At the same time, due to their rigid pattern
detection technique, they often fail to prefetch the required
pages into the cache before they are accessed.

In this paper, we propose Leap, an online prefetching so-
lution that minimizes the total number of remote memory
accesses in the critical path. Unlike existing prefetching al-
gorithms that rely on strict pattern detection, Leap relies on
approximation. Specifically, it builds on the Boyer-Moore
majority vote algorithm [17] to efficiently identify remote
memory access patterns for each individual process. Rely-
ing on an approximate mechanism instead of looking for
trends in strictly consecutive accesses makes Leap resilient to
short-term irregularities in access patterns (e.g., due to multi-
threading). It also allows Leap to perform well by detecting
trends only from remote page accesses instead of tracing
the full virtual memory footprint of an application, which
demands continuous scanning and logging of the hardware
access bits of the whole virtual address space and results in
high CPU and memory overhead. In addition to identifying

USENIX Association 2020 USENIX Annual Technical Conference 843

User
Space

Kernel
SpaceVirtual File System

(VFS)

Device Mapping Layer

Block Device Driver

Block Devices
(HDD, SSD, etc.)

Generic Block Layer
I/O Scheduler Request

QueueRequest queue processing:
Insertion, Merging,
Sorting, Staging and Dispatch

bio

Remote Memory

Storage

Dispatch
Queue

Memory Management
Unit (MMU)

Process 1 Process 2 Process N…

File Read/Write Page Fault

HDD: 91.48 us
SSD: 20 us
RDMA: 4.3 us

0.27 us

10.04 us

21.88 us

2.1 us

Cache
Miss

Cache
Hit

MMU
Page Cache

VFS
Page Cache

Figure 1: High-level life cycle of page requests in Linux data path
along with the average time spent in each stage.

the majority access pattern, Leap determines how many pages
to prefetch following that pattern to minimize cache pollution.

While reducing cache pollution and increasing the cache
hit rate, Leap also ensures that the host machine faces mini-
mal memory pressure due to the prefetched pages. To move
pages from local to remote memory, the kernel needs to scan
through the entire memory address-space to find eviction can-
didates – the more pages it has, the more time it takes to scan.
This increases the memory allocation time for new pages.
Therefore, alongside a background LRU-based asynchronous
page eviction policy, Leap eagerly frees up a prefetched cache
just after it gets hit and reduces page allocation wait time.

We complement our algorithm with an efficient data path
design for remote memory accesses that is used in case of a
cache miss. It isolates per-application remote traffic and cuts
inessentials in the end-host software stack (e.g., the block
layer) to reduce host-side latency and handle a cache miss
with latency close to that of the underlying RDMA operations.

Overall, we make the following contributions in this paper:

• We analyze the data path latency overheads for disaggre-
gated memory systems and find that existing data path
components can not consistently support single µs 4KB
page access latency (§2).

• We propose Leap, a novel online prefetching algorithm
(§3) and an eager prefetch cache eviction policy along
with a leaner data path, to improve remote I/O latency.
• We implement Leap on Linux Kernel 4.4.125 as a separate

data path for remote memory access (§4). Applications
can choose either Linux’s default data path for traditional
usage or Leap for going beyond the machine’s boundary
using unmodified Linux ABIs.

• We evaluate Leap’s effectiveness for different memory
disaggregation frameworks. Leap’s faster data path and
effective cache management improve the median and tail
4KB page access latency by up to 104.04× and 22.62×
for micro-benchmarks (§5.1) and by 1.27–10.16× for

real-world memory-intensive applications with produc-
tion workloads (§5.3).

• We evaluate Leap’s prefetcher against practical real-time
prefetching techniques (Next-K Line, Stride, Linux Read-
ahead) and show that simply replacing the default Linux
prefetcher with Leap’s prefetcher can provide application-
level performance benefit (1.1–3.36× better) even when
they are paging to slower storage (e.g., HDD, SSD) (§5.2).

2 Background and Motivation

2.1 Remote Memory
Memory disaggregation systems logically expose unused clus-
ter memory as a global memory pool that is used as the slower
memory for machines with extreme memory demand. This
improves the performance of memory-intensive applications
that have to frequently access slower memory in memory-
constrained settings. At the same time, the overall cluster
memory usage gets balanced across the machines, decreasing
the need for memory over-provisioning per machine.

Access to remote memory over RDMA without significant
application rewrites typically relies on two primary mecha-
nisms: disaggregated VFS [10], that exposes remote memory
as files and disaggregated VMM for remote memory pag-
ing [32, 45, 65]. In both cases, data is communicated in small
chunks or pages. In case of remote memory as files, pages
go through the file system before they are written to/read
from the remote memory. For remote memory paging and
distributed OS, page faults cause the virtual memory manager
to write pages to and read them from the remote memory.

2.2 Remote Memory Data Path
State-of-the-art memory disaggregation frameworks depend
on the existing kernel data path that is optimized for slow
disks. Figure 1 depicts the major stages in the life cycle of
a page request. Due to slow disk access times – average
latencies for HDDs and SSDs range between 4–5 ms and 80–
160 µs, respectively – frequent disk accesses have a severe
impact on application throughput and latency. Although the
recent rise of memory disaggregation is fueled by the hope
that RDMA can consistently provide single µs 4KB page
access latency [11, 28, 32], this is often a wishful thinking in
practice [79]. Blocking on a page access – be it from HDD,
SSD, or remote memory – is often unacceptable.

To avoid blocking on I/O, race conditions, and synchroniza-
tion issues (e.g., accessing a page while the page out process
is still in progress), the kernel uses a page cache. To access a
page from slower memory, it is first looked up in the appro-
priate cache location; a hit results in almost memory-speed
page access latency. However, when the page is not found in
the cache (i.e., a miss), it is accessed through a costly block
device I/O operation that includes several queuing and batch-
ing stages to optimize disk throughput by merging multiple
contiguous smaller disk I/O requests into a single large re-

844 2020 USENIX Annual Technical Conference USENIX Association

0

0.2

0.4

0.6

0.8

1

0.01 1 100 10000

C
D

F

Latency (us)

Disk

Disaggregated
VMM
Disaggregated
VFS

(a) Sequential

0

0.2

0.4

0.6

0.8

1

0.01 1 100 10000

C
D

F

Latency (us)

(b) Stride-10

Figure 2: Data path latencies for two access patterns. Memory dis-
aggregation systems have some constant implementation overheads
that cap their minimum latency to around 1 µs.

quest. On average, these batching and queuing operations
cost around 34 µs and over a few milliseconds at the tail. As
a result, a cache miss leads to more than 100× slower la-
tency than a hit; it also introduces high latency variations. For
microsecond-latency RDMA environments, this unnecessary
wait-time has a severe impact on application performance.

2.3 Prefetching in Linux
Linux tries to store files on the disk in adjacent sectors to in-
crease sequential disk accesses. The same happens for paging.
Naturally, existing prefetching mechanisms are designed as-
suming a sequential data layout. The default Linux prefetcher
relies on the last two page faults: if they are for consecu-
tive pages, it brings in several sequential pages into the page
cache; otherwise, it assumes that there are no patterns and re-
duces or stops prefetching. This has several drawbacks. First,
whenever it observes two consecutive paging requests for con-
secutive pages, it over-optimistically brings in pages that may
not even be useful. As a result, it wastes I/O bandwidth and
causes cache pollution by occupying valuable cache space.
Second, simply assuming the absence of any pattern based
on the last two requests is over-pessimistic. Furthermore, all
the applications share the same swap space in Linux; hence,
pages from two different processes can share consecutive
places in the swap area. An application can also have multi-
ple, inter-leaved stride patterns – for example, due to multiple
concurrent threads. Overall, considering only the last two
requests to prefetch a batch of pages falter on both respects.

To illustrate this, we measure the page access latency for
two memory access patterns: (a) Sequential accesses memory
pages sequentially, and (b) Stride-10 accesses memory in
strides of 10 pages. In both cases, we use a simple application
with its working set size set to 2GB. For disaggregated VMM,
it is provided 1GB memory to ensure that 50% of its access
cause paging. For disaggregated VFS, it performs 1GB remote
write and then another 1GB remote read operations.

Figure 2 shows the latency distributions for 4KB page ac-
cesses from disk and disaggregated remote memory for both
of the access patterns. For a prefetch size of 8 pages, both
perform well for the Sequential pattern; this is because 80%
of the requests hit the cache. In contrast, we observe signif-

0
0.2
0.4
0.6
0.8

1

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Window-2 Window-4 Window-8 Window-8
Strict Pattern Majority-based

Pattern

%
 o

f P
at

te
rn

s

Sequential Stride Other

Figure 3: Fractions of sequential, stride, and other access patterns
in page fault sequences of length X (Window-X).

icantly higher latency in the Stride-10 case because all the
requests miss the page cache due to the lack of consecutive-
ness in successive page accesses. By analyzing the latency
breakdown inside the data path for Stride-10 (as shown in Fig-
ure 1), we make two key observations. First, although RDMA
can provide significantly lower latency than disk (4.3µs vs.
91.5µs), RDMA-based solutions do not benefit as much from
that (38.3µs vs. 125.5µs). This is because of the significant
data path overhead (on average 34µs) to prepare and batch
a request before dispatching it. Significant variations in the
preparation and batching stages of the data path cause the
average to stray far from the median. Second, the existing
sequential data layout-based prefetching mechanism fails to
serve the purpose in the presence of diverse remote page ac-
cess patterns. Solutions based on fixed stride sizes also fall
short because stride sizes can vary over time within the same
application. Besides, there can be more complicated patterns
beyond stride or no repetitions at all.

Shortcoming of Strict Pattern Finding for Prefetching
Figure 3 presents the remote page access patterns of four
memory-intensive applications during page faults when they
are run with 50% of their working sets in memory (more
details in Section 5.3). Here, we consider all page fault se-
quences within a window of size X ∈ {2,4,8} in these ap-
plications. Therefore, we divide the page fault scenarios into
three categories: sequential when all pages within the window
of X are sequential pages, stride when the pages within the
window of X have the same stride from the first page, and
other when it is neither sequential nor stride.

The default prefetcher in Linux finds strict sequential pat-
terns in window size X = 2 and tunes up its aggressiveness
accordingly. For example, page faults in PowerGraph and
VoltDB follow 67% and 27% sequential pattern within win-
dow size X = 2, respectively. Consequently, for these two
applications, Linux optimistically prefetches many pages into
the cache. However, if we look at the X = 8 case, the percent-
age of sequential pages within consecutive page faults goes
down to 53% and 7% for PowerGraph and VoltDB, respec-
tively. Meaning, for these two applications, 14–20% of the
prefetched pages are not consumed immediately. This creates

USENIX Association 2020 USENIX Annual Technical Conference 845

0
0.2
0.4
0.6
0.8

1

0 20 40 60 80 100

C
D

F

Time (s)

Cache Eviction
Latency

Figure 4: Due to Linux’s lazy cache eviction policy, page caches
waste the cache area for significant amount of time.

unnecessary memory pressure and might even lead to cache
pollution. At the same time, all non-sequential patterns in
the X = 2 case fall under the stride category. Considering
the low cache hit rate, Linux pessimistically decreases/stops
prefetching in those cases, which leads to a stale page cache.

Note that strictly expecting all X accesses to follow the
same pattern results in not having any patterns at all (e.g.,
when X = 8), because this cannot capture the transient inter-
ruptions in sequence. In that case, following the major sequen-
tial and/or stride trend within a limited page access history
window is more resilient to short-term irregularities. Consec-
utively, when X = 8, a majority-based pattern detection can
detect 11.3%–29.7% more sequential accesses. Therefore, it
can successfully prefetch more accurate pages into the page
cache. Besides sequential and stride access patterns, it is also
transparent to irregular access patterns; e.g., for Memcached,
it can detect 96.4% of the irregularity.

Prefetch Cache Eviction Linux kernel maintains an asyn-
chronous background thread (kswapd) to monitor the ma-
chine’s memory consumption. If the overall memory con-
sumption goes beyond a critical memory pressure or a pro-
cess’s memory usage hits its limit, it determines the eviction
candidates by scanning over the in-memory pages to find out
the least-recently-used (LRU) ones. Then, it frees up the se-
lected pages from the main memory to allocate new pages.
A prefetched cache waits into the LRU list for its turn to get
selected for eviction even though it has already been used by
a process (Figure 4). Unnecessary pages waiting for eviction
in-memory leads to extra scanning time. This extra wait-time
due to lazy cache eviction policy adds to the overall latency,
especially in a high memory pressure scenario.

3 Remote Memory Prefetching
In this section, we first highlight the characteristics of an ideal
prefetcher. Next, we present our proposed online prefetcher
along with its different components and the design princi-
ples behind them. Finally, we discuss the complexity and
correctness of our algorithm.

3.1 Properties of an Ideal Prefetcher
A prefetcher’s effectiveness is measured along three axes:
• Accuracy refers to the ratio of total cache hits and the total

pages added to the cache via prefetching.

• Coverage measures the ratio of the total cache hit from the
prefetched pages and the total number of requests (e.g.,
page faults in case of remote memory paging solutions).

• Timeliness of an accurately prefetched page is the time
gap from when it was prefetched to when it was first hit.

Trade-off An aggressive prefetcher can hide the slower
memory access latency by bringing pages well ahead of the
access requests. This might increase the accuracy, but as
prefetched pages wait longer to get consumed, this wastes
the effective cache and I/O bandwidth. On the other hand, a
conservative prefetcher has lower prefetch consumption time
and reduces cache and bandwidth contention. However, it
has lower coverage and cannot hide memory access latency
completely. An effective prefetcher must balance all three.

An effective prefetcher must be adaptive to temporal
changes in memory access patterns as well. When there is a
predictable access pattern, it should bring pages aggressively.
In contrast, during irregular accesses, the prefetch rate should
be throttled down to avoid cache pollution.

Prefetching algorithms use prior page access information
to predict future access patterns. As such, their effectiveness
largely depends on how well they can detect patterns and
predict. A real-time prefetcher has to face a trade-off between
pattern identification accuracy vs. computational complex-
ity and resource overhead. High CPU usage and memory
consumption will negatively impact application performance
even though they may help in increasing accuracy.

Common Prefetching Techniques The most common and
simple form of prefetching is spatial pattern detection [51].
Some specific access patterns (i.e., stride, stream, etc.) can
be detected with the help of special hardware (HW) fea-
tures [33, 35, 66, 80]. However, they are typically applied
to identify patterns in instruction access that are more regular;
in contrast, data access patterns are more irregular. Special
prefetch instructions can also be injected into an application’s
source code, based on compiler or post-execution based analy-
sis [27,40,41,60,61]. However, compiler-injected prefetching
needs a static analysis of the cache miss behavior before the
application runs. Hence, they are not adaptive to dynamic
cache behavior. Finally, HW- or software (SW)-dependent
prefetching techniques are limited to the availability of the
special HW/SW features and/or application modification.

Summary An ideal prefetcher should have low computa-
tional and memory overhead. It should have high accuracy,
coverage, and timeliness to reduce cache pollution; an adap-
tive prefetch window is imperative to fulfill this requirement.
It should also be flexible to both spatial and temporal local-
ity in memory accesses. Finally, HW/SW independence and
application transparency make it more generic and robust.

Table 1 compares different prefetching methods.

3.2 Majority Trend-Based Prefetching
Leap has two main components: detecting trends and deter-

846 2020 USENIX Annual Technical Conference USENIX Association

Low Computational
Complexity

Low Memory
Overhead

Unmodified
Application

HW/SW
Independent

Temporal
Locality

Spatial
Locality

High Prefetch
Utilization

Next-N-Line [52] X X X X X X X
Stride [14] X X X X X X X
GHB PC [54] X X X X X X X
Instruction Prefetch [27, 41] X X X X X X X
Linux Read-Ahead [72] X X X X X X X
Leap Prefetcher X X X X X X X

Table 1: Comparison of prefetching techniques based on different objectives.

Algorithm 1 Trend Detection

1: procedure FINDTREND(Nsplit)
2: Hsize← SIZE(AccessHistory)
3: w← Hsize/Nsplit . Start with small detection window
4: ∆ma j← /0

5: while true do
6: ∆ma j ← Boyer-Moore on {Hhead , . . . ,Hhead−w−1}
7: w← w∗2
8: if ∆ma j 6= major trend then
9: ∆ma j← /0

10: if ∆ma j 6= /0 or w >Hsize then
11: return ∆ma j

12: return ∆ma j

mining what to prefetch. The first component looks for any
approximate trend in earlier accesses. Based on the trend
availability and prefetch utilization information, the latter
component decides how many and which pages to prefetch.

3.2.1 Trend Detection

Existing prefetch solutions rely on strict pattern identifica-
tion mechanisms (e.g., sequential or stride of fixed size) and
fail to ignore temporary irregularities. Instead, we consider
a relaxed approach that is robust to short-term irregularities.
Specifically, we identify the majority ∆ values in a fixed-size
(Hsize) window of remote page accesses (ACCESSHISTORY)
and ignore the rest. For a window of size w, a ∆ value is said to
be the major only if it appears at least bw/2c+1 times within
that window. To find the majority ∆, we use the Boyer-Moore
majority vote algorithm [17] (Algorithm 1), a linear-time and
constant-memory algorithm, over ACCESSHISTORY elements.
Given a majority ∆, due to the temporal nature of remote page
access events, it can be hypothesized that subsequent ∆ values
are more likely to be the same as the majority ∆.

Note that if two pages are accessed together, they will be
aged and evicted together in the slower memory space at
contiguous or nearby addresses. Consequently, the temporal
locality in virtual memory accesses will also be observed in
the slower page accesses and an approximate stride should be
enough to detect that.

Window Management If a memory access sequence
follows a regular trend, then the majority ∆ is likely to be

t0 t1 t2 t3

0x48 0x45 0x42 0x3F
-3-3-3+72

(a) at time t3

t4 t5 t6 t7

0x3C 0x02 0x04 0x06

t0 t1 t2 t3

0x48 0x45 0x42 0x3F
-3-3-3+72 +2+2-58-3

(b) at time t7

t8 t1 t2 t3

0x08 0x45 0x42 0x3F
-3-3-3+2 +2+2-58-3

t4 t5 t6 t7

0x3C 0x02 0x04 0x06

(c) at time t8

t8 t9 t10 t11

0x08 0x0A 0x0C 0x10
+4+2+2+2 +2+2-39-41

t12 t13 t14 t15

0x39 0x12 0x14 0x16

(d) at time t15

Figure 5: Content of ACCESSHISTORY at different time. Solid col-
ored boxes indicate the head position at time ti. Dashed boxes indi-
cate detection windows. Here, time rolls over at t8.

found in almost any part of that sequence. In that case, a
smaller window can be more effective as it reduces the total
number of operations. So instead of considering the entire
ACCESSHISTORY, we start with a smaller window that starts
from the head position (Hhead) of ACCESSHISTORY. For
a window of size w, we find the major ∆ appearing in the
Hhead ,Hhead−1, ...,Hhead−w−1 elements.

However, in the presence of short-term irregularities, small
windows may not detect a majority. To address this, the
prefetcher starts with a small detection window and doubles
the window size up to ACCESSHISTORY size until it finds a
majority; otherwise, it determines the absence of a majority.
The smallest window size can be controlled by Nsplit .

Example Let us consider a ACCESSHISTORY with Hsize =
8 and Nsplit = 2. Say pages with the following addresses:
0x48, 0x45, 0x42, 0x3F, 0x3C, 0x02, 0x04, 0x06, 0x08,
0x0A, 0x0C, 0x10, 0x39, 0x12, 0x14, 0x16, were requested in
that order. Figure 5 shows the corresponding ∆ values stored
in ACCESSHISTORY, with t0 being the earliest and t15 being
the latest request. At ti, Hhead stays at the ti-th slot.

FINDTREND in Algorithm 1 will initially try to detect a

USENIX Association 2020 USENIX Annual Technical Conference 847

Algorithm 2 Prefetch Candidate Generation

1: procedure GETPREFETCHWINDOWSIZE(page Pt)
2: PWsizet . Current prefetch window size
3: PWsizet−1 . Last prefetch window size
4: Chit . Prefetched cache hits after last prefetch
5: if Chit = 0 then
6: if Pt follows the current trend then
7: PWsizet ← 1 . Prefetch a page along trend
8: else
9: PWsizet ← 0 . Suspend prefetching

10: else . Earlier prefetches had hits
11: PWsizet ← Round up Chit +1 to closest power of 2
12: PWsizet ←min(PWsizet ,PWsizemax)
13: if PWsizet <PWsizet−1/2 then . Low cache hit
14: PWsizet ← PWsizet−1/2 . Shrink window smoothly

15: Chits← 0
16: PWsizet−1 ← PWsizet

17: return PWsizet

18: procedure DOPREFETCH(page Pt)
19: PWsizet ← GETPREFETCHWINDOWSIZE(Pt)
20: if PWsizet 6= 0 then
21: ∆ma j← FINDTREND(N_split)
22: if ∆ma j 6= /0 then
23: Read PWsizet pages with ∆ma j stride from Pt
24: else
25: Read PWsizet pages around Pt with latest ∆ma j

26: else
27: Read only page Pt

trend using a window size of 4. Upon failure, it will look for
a trend first within a window size of 8.

At time t3, FINDTREND successfully finds a trend of -3
within the t0–t3 window (Figure 5a).

At time t7, the trend starts to shift from -3 to +2. At that
time, t4–t7 window does not have a majority ∆, which doubles
the window to consider t0–t7. This window does not have any
majority ∆ either (Figure 5b). However, at t8, a majority ∆ of
+2 within t5–t8 will be adopted as the new trend (Figure 5c).

Similarly, at t15, we have a majority of +2 in the t8–t15,
which will continue to the +2 trend found at t8 while ignoring
the short-term variations at t12 and t13 (Figure 5d).

3.2.2 Prefetch Candidate Generation

So far we have focused on identifying the presence of a trend.
Algorithm 2 determines whether and how to use that trend for
prefetching for a request for page Pt .

We determine the prefetch window size (PWsizet) based on
the accuracy of prefetches between two consecutive prefetch
requests (see GETPREFETCHWINDOWSIZE). Any cache hit
of the prefetched data between two consecutive prefetch re-
quests indicates the overall effectiveness of the prefetch. In
case of high effectiveness (i.e., a high cache hit), PWsizet is

expanded until it reaches maximum size (PWsizemax). On the
other hand, low cache hit indicates low effectiveness; in that
case, the prefetch window size gets reduced. However, in
the presence of drastic drops, prefetching is not suspended
immediately. The prefetch window is shrunk smoothly to
make the algorithm flexible to short-term irregularities. When
prefetching is suspended, no extra pages are prefetched until a
new trend is detected. This is to avoid cache pollution during
irregular/unpredictable accesses.

Given a non-zero PWsize, the prefetcher brings in PWsize
pages following the current trend, if any (DOPREFETCH). If
no majority trend exists, instead of giving up right away, it
speculatively brings PWsize pages around Pt ’s offset following
the previous trend. This is to ensure that short-term irregulari-
ties cannot completely suspend prefetching.

Prefetching in the Presence of Irregularity FINDTREND
can detect a trend within a window of size w in the presence of
at most bw/2c−1 irregularities within it. If the window size
is too small or the window has multiple perfectly interleaved
threads with different strides, FINDTREND will consider it
a random pattern. In that case, if the PWsize has a non-zero
value then it performs a speculative prefetch (line 25) with
the previous ∆ma j. If that ∆ma j is one of the interleaved strides,
then this speculation will cause cache hit and continue. Oth-
erwise, PWsize will eventually be zero and the prefetcher will
stop bringing unnecessary pages. In that case, the prefetcher
cannot be worse than the existing prefetch algorithms.

Prefetching During Constrained Bandwidth In Leap,
faulted page read and prefetch are done asynchronously. Here,
prefetching has a lower priority. In extreme bandwidth con-
straints, prefetched pages will take a long time to arrive and
result in fewer cache hits. This will eventually shrink down
PWsize. Thus, dynamic prefetch window sizing will help in
bandwidth-constrained scenarios.

Effect of Huge Page Linux kernel splits a huge page into
4KB pages before swapping. When transparent huge page is
enabled, Leap will be applied on these splitted 4KB pages.

Note that, using huge pages will result in high amplification
for dirty data [18]. Besides, average RDMA latencies for 4KB
vs 2MB page are 3µs vs 330µs. If huge pages were never split,
to maintain single µs latency for 2MB pages, we will need
a significantly larger prefetch window size (PWsize ≥ 128),
demanding more bandwidth and cache space, and making
mispredictions more expensive.

3.3 Analysis
Time Complexity The FINDTREND function in Algo-
rithm 1 initially tries to detect trend aggressively within a
smaller window using the Boyer-Moor Majority Voting al-
gorithm. If it fails, then it expands the window size. The
Boyer-Moor Majority Voting algorithm (line 6) detects a ma-
jority element (if any) in O(w) time, where w is the size of
the window. In the worst case, it will invoke the Boyer-Moor

848 2020 USENIX Annual Technical Conference USENIX Association

User
Space

Kernel
Space

Virtual File System
(VFS)

Remote Memory Storage

Memory Management
Unit (MMU)

Process 1 Process 2 Process N…

File Read/Write Page Fault

Trend
Detection

Prefetch
Candidate
Generation

Process Specific
Page Access Tracker

Prefetcher

Leap

Cache
Miss

Cache
Hit 0.27us

4.3us

2.1us

Eager Cache Eviction

VFS
Page Cache

MMU
Page Cache

Figure 6: Leap has a faster data path for a cache miss.

Majority Voting algorithm for O(logHsize) times. However, as
the windows are continuous, searching in a new window does
not need to start from the beginning and the algorithm never
access the same item twice. Hence, the worst-case time com-
plexity of the FINDTREND function is O(Hsize), where Hsize
is the size of the ACCESSHISTORY queue. For smaller Hsize
the computational complexity is constant. Even for Hsize = 32,
the prefetcher provides significant performance gain (§5) that
greatly outweighs the slight extra computational cost.

Memory Complexity The Boyer-Moor Majority Voting al-
gorithm operates on constant memory space. FINDTREND
just invokes the Boyer-Moor Majority Voting algorithm and
does not require any additional memory to execute. So, the
Trend Detection algorithm needs O(1) space to operate.

Correctness of Trend Detection The correctness of FIND-
TREND depends on that of the Boyer-Moor Majority Voting
algorithm, which always provides the majority element, if one
exists, in linear time (see [17] for the formal proof).

4 System Design
We have implemented our prefetching algorithm as a data
path replacement for memory disaggregation frameworks (we
refer to this design as Leap data path) alongside the traditional
data path in Linux kernel v4.4.125. Leap has three primary
components: a page access tracker to isolate processes, a
majority-based prefetching algorithm, and an eager cache
eviction mechanism. All of them work together in the kernel
space to provide a faster data path. Figure 6 shows the basic
architecture of Leap’s remote memory access mechanism. It
takes only around 400 lines of code to implement the page
access tracker, prefetcher, and the eager eviction mechanism.

4.1 Page Access Tracker
Leap isolates each process’s page access data paths. The page
access tracker monitors page accesses inside the kernel that
enables the prefetcher to detect application-specific page ac-
cess trends. Leap does not monitor in-memory pages (hot
pages) because continuously scanning and recording the hard-
ware access bits of a large number of pages causes significant
computational overhead and memory consumption. Instead,

it monitors only the cache look-ups and records the access
sequence of the pages after I/O requests or page faults, trading
off a small loss in access pattern detection accuracy for low
resource overhead. As temporal locality in the virtual memory
space results in a spatial locality in the remote address space,
just monitoring the remote page accesses is often enough.

The page access tracker is added as a separate control
unit inside the kernel. Upon a page fault, during the page-in
operation (do_swap_page() under mm/memory.c), we no-
tify (log_access_history()) Leap’s page access tracker
about the page fault and the process involved. Leap maintains
process-specific fixed-size (Hsize) FIFO ACCESSHISTORY
circular queues to record the page access history. Instead of
recording exact page addresses, however, we only store the
difference between two consecutive requests (∆). For exam-
ple, if page faults happen for addresses 0x2, 0x5, 0x4, 0x6,
0x1, 0x9, then ACCESSHISTORY will store the corresponding
∆ values: 0, +3, -1, +2, -5, +8. This reduces the storage space
and computation overhead during trend detection (§3.2.1).

4.2 The Prefetcher
To increase the probability of cache hit, Leap incorporates the
majority trend-based prefetching algorithm (§3.2). Here, the
prefetcher considers each process’s earlier remote page ac-
cess histories available in the respective ACCESSHISTORY to
efficiently identify the access behavior of different processes.
Because threads of the same process share memory with each
other, we choose process-level detection over thread-based.
Thread-based pattern detection may result in requesting the
same page for prefetch multiple times for different threads.

Two consecutive page access requests are temporally cor-
related in the sense that they may happen together in the
future. The ∆ values stored in the ACCESSHISTORY records
the spatial locality in the temporally correlated page accesses.
Therefore, the prefetcher utilizes both temporal and spatial
localities of page accesses to predict future page demand.

The prefetcher is added as a separate control unit
inside the kernel. While paging-in, instead of going
through the default swapin_readahead(), we re-
route it through the prefetcher’s do_prefetch() func-
tion. Whenever the prefetcher generates the prefetch
candidates, Leap bypasses the expensive request
scheduling and batching operations of the block layer
(swap_readpage()/swap_writepage() for paging and
generic_file_read()/generic_file_write() for the
file systems) and invokes leap_remote_io_request() to
re-direct the request through Leap’s asynchronous remote I/O
interface over RDMA (§4.4).

4.3 Eager Cache Eviction
Leap maintains a circular linked list of prefetched caches
(PREFETCHFIFOLRULIST). Whenever a page is fetched from
remote memory, besides the kernel’s global LRU lists, Leap
adds it at the tail of the linked list. After the prefetch cache

USENIX Association 2020 USENIX Annual Technical Conference 849

gets hit and the page table is updated, Leap marks the page
as an eviction candidate. A separate background process con-
tinuously removes eviction candidates from PREFETCHFI-
FOLRULIST and frees up those pages to the buddy list. As
an accurate prefetcher is timely in using the prefetched data,
in Leap, prefetched caches do not wait long to be freed up.
For workloads where repeated access to paged-in data is not
so common, this eager eviction of prefetched pages reduces
the wait time to find and allocate new pages - on average,
page allocation time is reduced by 750ns (36% less than the
usual). Thus, new pages can be brought to the memory more
quickly leading to a reduction in the overall data path latency.
For workloads where paged-in data is repeatedly used, Leap
considers the frequency of access for prefetched pages and
exempt them from eager eviction.

However, if the prefetched pages need to be evicted even
before they get consumed (e.g., at severe global memory
pressure or extreme constrained prefetch cache size scenario),
due to the lack of any access history, prefetched pages will
follow a FIFO eviction order among themselves from the
PREFETCHFIFOLRULIST. Reclamation of other memory
(file-backed or anonymous page) follows the existing LRU-
based eviction technique by kswapd in the kernel. We modify
the kernel’s Memory Management Unit (mm/swap_state.c)
to add the prefetch eviction related functions.

4.4 Remote I/O Interface
Similar to existing works [10, 32], Leap uses an agent in
each host machine to expose a remote I/O interface to the
VFS/VMM over RDMA. The host machine’s agent commu-
nicates to another remote agent with its resource demand
and performs remote memory mapping. The whole remote
memory space is logically divided into fixed-size memory
slabs. A host agent can map slabs across one or more remote
machine(s) according to its resource demand, load balancing,
and fault tolerance policies.

The host agent maintains a per CPU core RDMA connec-
tion to the remote agent. We use the multi-queue IO queuing
mechanism where each CPU core is configured with an indi-
vidual RDMA dispatch queue for staging remote read/write
requests. Upon receiving a remote I/O request, the host gen-
erates/retrieves a slot identifier, extracts the remote memory
address for the page within that slab, and forwards the request
to the RDMA dispatch queue to perform read/write over the
RDMA NIC. During the whole process, Leap completely
bypasses the expensive block layer operations.

Resilience, Scalability, & Load Balancing One can use
existing memory disaggregation frameworks [10, 32, 65] with
respective scalability and fault tolerance characteristics and
still have the performance benefits of Leap. We do not claim
any innovation here. In our implementation, the host agent
leverages the power of two choices [53] to minimize mem-
ory imbalance across remote machines. Remote in-memory
replication is the default fault tolerance mechanism in Leap.

5 Evaluation
We evaluate Leap on a 56 Gbps InfiniBand cluster on Cloud-
Lab [3]. Our key results are as follows:
• Leap provides a faster data path to remote memory. La-

tency for 4KB remote page accesses improves by up to
104.04× (24.96×) at the median and 22.06× (17.32×)
at the tail in case of Disaggregated VMM (VFS) (§5.1).

• While paging to disk, our prefetcher outperforms its coun-
terparts (Next-K, Stride, and Read-Ahead) by up to 1.62×
for cache pollution and up to 10.47× for cache miss. It
improves prefetch coverage by up to 37.51% (§5.2).

• Leap improves the end-to-end application completion
times of PowerGraph, NumPy, VoltDB, and Memcached
by up to 9.84× and their throughput by up to 10.16× over
existing memory disaggregation solutions (§5.3).

Methodology We integrate Leap inside the Linux kernel,
both in its VMM and VFS data paths. As a result, we evaluate
its impact on three primary mediums.
• Local disks: Here, Linux swaps to a local HDD and SSD.
• Disaggregated VMM (D-VMM): To evaluate Leap’s ben-

efit for disaggregated VMM system, we integrate Leap
with the latest commit of Infiniswap on GitHub [4].
• Disaggregated VFS (D-VFS): To evaluate Leap’s bene-

fit for a disaggregated VFS system, we add Leap to our
implementation of Remote Regions [10], which is not
open-source.

For both of the memory disaggregation systems, we use re-
spective load balancing and fault tolerance mechanisms. Un-
less otherwise specified, we use ACCESSHISTORY buffer size
Hsize = 32, and maximum prefetch window size PWsizemax = 8.

Each machine in our evaluation has 64 GB of DRAM and
2× Intel Xeon E5-2650v2 with 16 cores (32 hyperthreads).

5.1 Microbenchmark
We start by analyzing Leap’s latency characteristics with the
two simple access patterns described in Section 2.

During sequential access, due to prefetching, 80% of the
total page requests hit the cache in the default mechanism.
On the other hand, during stride access, all prefetched pages
brought in by the Linux prefetcher are unused and every page
access request experiences a cache miss.

Due to Leap’s faster data path, for Sequential, it improves
the median by 4.07× and 99th percentile by 5.48× for disag-
gregated VMM (Figure 7a). For Stride-10, as the prefetcher
can detect strides efficiently, Leap performs almost as good as
it does during the sequential accesses. As a result, in terms of
4KB page access latency, Leap improves disaggregated VMM
by 104.04× at the median and 22.06× at the tail (Figure 7b).

Leap provides similar performance benefits during memory
disaggregation through the file abstraction as well. During
sequential access, Leap improves 4KB page access latency by
1.99× at the median and 3.42× at the 99th percentile. During

850 2020 USENIX Annual Technical Conference USENIX Association

0

0.2

0.4

0.6

0.8

1

0.01 1 100 10000

C
D

F

Latency (us)

D-VMM

D-VMM+Leap

D-VFS

D-VFS+Leap

(a) Sequential

0

0.2

0.4

0.6

0.8

1

0.01 1 100 10000

C
D

F

Latency (us)

(b) Stride-10

Figure 7: Leap provides lower 4KB page access latency for both
sequential and stride access patterns.

stride access, the median and 99th percentile latency improves
by 24.96× and 17.32×, respectively.

Performance Benefit Breakdown For disaggregated
VMM (VFS), the prefetcher improves the 99th percentile
latency by 25.4% (23.1%) over the optimized data path where
Leap’s eager cache eviction contributes another 9.7% (8.5%)
improvement.

As the idea of using far/remote memory for storing cold
data is getting more popular these days [9,32,45], throughout
the rest of the evaluation, we focus only on remote paging
through a disaggregated VMM system.

5.2 Performance Benefit of the Prefetcher
Here, we focus on the effectiveness of the prefetcher itself.
We use four real-world memory-intensive applications and
workload combinations (Figure 3) used in prior works [10,32].
• TunkRank [8] on PowerGraph [29] to measure the influ-

ence of a Twitter user from the follower graph [44]. This
workload has a significant amount of stride, sequential,
and random access patterns.

• Matrix multiplication on NumPy [57] over matrices of
floating points. This has mostly sequential patterns.

• TPC-C benchmark [7] on VoltDB [70] to simulate an
order-entry environment. We set 256 warehouses and 8
sites and run 2 million transactions. This has mostly ran-
dom with a few amount of sequential patterns.

• Facebook’s ETC workload [13] on Memcached [5]. We
use 10 million SET operations to populate the Memcached
server. Then we perform another 10 million queries
(5%SETs, 95%GETs). This has mostly random patterns.

The peak memory usage of these applications varies from 9–
38.2 GB. To prompt remote paging, we limit an application’s
memory usage through cgroups [2]. To separate the benefit
of the prefetcher, we run all of the applications on disk (with
existing block layer-based data path) with 50% memory limit.

5.2.1 Prefetch Utilization

We observe the benefit of Leap’s prefetcher over following
practical and realtime prefetching techniques:
• Next-N-Line Prefetcher [52] aggressively brings N pages

1

10

100

0 10 20 30 40

C
C

D
F

(%
)

4KB Page Access Latency (μs)

Data path optimizations

 Data path optimizations +
Prefetcher
 Data path optimizations +
Prefetcher + Eviction

(a) Benefit Breakdown

263.90
424.47

647.53204.56

297.42

412.32

0 200 400 600 800

HDD+Leap Prefetcher

HDD+Read-Ahead

HDD w/o Prefetching

SSD+Leap Prefetcher

SSD+Read-Ahead

SSD w/o Prefetching

Completion Time (s)

(b) Prefetcher with Slow Storage

Figure 8: The prefetcher is effective for different storage systems.

sequentially mapped to the page with the cache miss if
they are not in the cache.

• Stride Prefetcher [14] brings pages following a stride
pattern relative to the current page upon a cache miss. The
aggressiveness of this prefetcher depends on the accuracy
of the past prefetch.

• Linux Read-Ahead prefetches an aligned block of pages
containing the faulted page [72]. Linux uses prefetch hit
count and an access history of size 2 to control the aggres-
siveness of the prefetcher.

Impact on the Cache As the volume of data fetched into
the cache increases, the prefetch hit rate increases as well.
However, thrashing begins as soon as the working set exceeds
the cache capacity. As a result, useful demand-fetched pages
are evicted. Table 2 shows that Leap’s prefetcher uses fewer
page caches (4.37–62.13%) than the other prefetchers for
every workload.

A successful prefetcher reduces the number of cache misses
by bringing the most accurate pages into the cache. Leap’s
prefetcher experiences fewer cache miss events (1.1–10.47×)
and enhances the effective usage of the cache space.

Application Performance Due to the improvement in
cache pollution and reduction of cache miss, using Leap’s
prefetcher, all of the applications experience the lowest com-
pletion time. Based on the access pattern, Leap’s prefetcher
improves the application completion time by 7.4–75.3% over
Linux’s default Read-Ahead prefetching technique (Table 2).

Effectiveness If a prefetcher brings every possible page in
the page cache, then it will be 100% accurate. However, in re-
ality, one cannot have an infinite cache space due to large data
volumes and/or multiple applications running on the same
machine. Besides, optimistically bringing pages may create
cache contention, which reduces the overall performance.

Leap’s prefetcher trades off cache pollution with compara-
tively lower accuracy. In comparison to other prefetchers,
it shows 0.3–10.8% lower accuracy (Table 2). This accu-
racy loss is linear to the number of cache adds done by the
prefetchers. Because the rest of the prefetchers bring in too
many pages, their chances of getting lucky hits increase too.
Although Leap has the lowest accuracy, its high coverage
(0.7–37.5%) allows it to serve with accurate prefetches with
a lower cache pollution cost. At the same time, it has an im-

USENIX Association 2020 USENIX Annual Technical Conference 851

PowerGraph NumPy VoltDB Memcached
Next-N-Line Stride Read-Ahead Leap Next-N-Line Stride Read-Ahead Leap Next-N-Line Stride Read-Ahead Leap Next-N-Line Stride Read-Ahead Leap

Cache Add (millions) 4.88 3.88 3.85 3.01 10.75 10.52 10.61 10.08 6.50 6.23 5.91 5.20 4.65 4.14 4.06 3.25
Cache Miss (millions) 1.11 1.61 0.26 0.15 0.13 0.16 0.14 0.12 1.53 2.24 0.96 0.90 1.44 1.39 1.36 0.96
Completion Time (s) 683.92 885.86 462.54 263.90 1410.30 1380.10 1332.40 1240.60 2017.47 2454.72 2064.60 1799.84 382.54 374.60 366.91 302.43
Accuracy (%) 55.30 45.60 45.10 44.60 89.60 89.40 89.20 88.90 40.20 39.50 39.90 37.60 41.80 42.10 41.90 39.40
Coverage (%) 70.90 52.30 86.80 89.80 95.80 96.30 96.80 98.60 61.20 47.40 68.50 71.00 51.70 52.40 56.90 57.60
Timeliness (ms) - 95th Percentile 19.10 0.03 0.39 0.07 10.34 0.02 0.24 0.06 22125.14 34.32 64314.96 776.68 32417.89 466.64 46679.77 886.67

Table 2: Leap’s prefetcher reduces cache pollution and cache miss events. With higher coverage, better timeliness and almost similar accuracy,
the prefetcher outperforms its counterparts in terms of application level performance. Here, shaded numbers indicate the best performances.

11
6.

2

11
8.

3

11
7.

4

42
4.

5

21
4.

6

14
2.

2

71
0.

6

29
8.

5

0
200
400
600
800

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

100% 50% 25%

C
om

pl
et

io
n

T
im

e
(s

)

N
ev

er
 fi

ni
sh

es

(a) PowerGraph Completion Time

55
1.

9

55
1.

9

55
1.

9 13
32

.4

83
5.

2

66
0.

2 15
12

.6

10
57

.9

75
7.

0

0
400
800

1200
1600

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

100% 50% 25%

C
om

pl
et

io
n

T
im

e
(s

)

(b) NumPy Completion Time

38.6 37.0 37.0

1.0
12.9

35.6

1.5

15.6

0
10
20
30
40

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

100% 50% 25%

T
PS

 (T
ho

us
an

ds
)

N
ev

er
 fi

ni
sh

es

(c) VoltDB Throughput

11
9

11
9

11
9

11

10
7

11
9

97

11
7

0

40

80

120

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

100% 50% 25%

O
PS

 (T
ho

us
an

ds
)

N
ev

er
 fi

ni
sh

es

(d) Memcached Throughput

Figure 9: Leap provides lower completion times and higher throughput over Infiniswap’s default data path for different memory limits. Note
that lower is better for completion time, while higher is better for throughput. Disk refers to HDD in this figure.

proved timeliness over Read-Ahead (4–52.6×) at the 95th

percentile. Due to the higher coverage, better timeliness, and
almost similar accuracy, Leap’s prefetcher thus outperforms
others in terms of application-level performance. Note that de-
spite having the best timeliness, Stride has the worst coverage
and completion time that impedes its overall performance.

5.2.2 Performance Benefit Breakdown

Figure 8a shows the performance benefit breakdown for each
of the components of Leap’s data path. For PowerGraph at
50% memory limit, due to data path optimizations, Leap pro-
vides with single µs latency for 4KB page accesses up to
the 95th percentile. Inclusion of the prefetcher ensures sub-
µs 4KB page access latency up to the 85th percentile and
improves the 99th percentile latency by 11.4% over Leap’s
optimized data path. The eager eviction policy reduces the
page cache allocation time and improves the tail latency by
another 22.2%.

5.2.3 Performance Benefit for HDD and SSD

To observe the usefulness of the prefetcher for different slow
storage systems, we incorporate it into Linux’s default data
path while paging to SSD. For PowerGraph, Leap’s prefetcher
improves the overall application run time by 1.45× (1.61×)
for SSD (HDD) over Linux’s default prefetcher (Figure 8b).

5.3 Leap’s Overall Impact on Applications
Finally, we evaluate the overall benefit of Leap (including
all of its components) for the applications mentioned in Sec-
tion 5.2. We limit an application’s memory usage to fit 100%,
50%, 25% of its peak memory usage. Here, we considered
the extreme memory constrain (e.g., 25%) to validate the
applicability of Leap to recent resource (memory) disaggre-

gation frameworks that operate on a minimal amount of local
memory [65].

PowerGraph PowerGraph suffers significantly for cache
misses in Infiniswap (Figure 9a). In contrast, Leap increases
the cache hit rate by detecting 19.03% more remote page ac-
cess patterns over Read-Ahead. The faster the prefetch cache
hit happens, the faster the eager cache eviction mechanism
frees up page caches and eventually helps in faster page al-
locations for a new prefetch. Besides, due to more accurate
prefetching, Leap reduces the wastage in both cache space
and RDMA bandwidth. This improves 4KB remote page ac-
cess time by 8.17× and 2.19× at the 99th percentile for 50%
and 25% cases, respectively. Overall, the integration of Leap
to Infiniswap improves the completion time by 1.56× and
2.38× at 50% and 25% cases, respectively.

NumPy Leap can detect most of the remote page access
patterns (10.4% better than Linux’s default prefetcher). As a
result, similar to PowerGraph, for NumPy, Leap improves the
completion time by 1.27× and 1.4× for Infiniswap at 50%
and 25% memory limit, respectively (Figure 9b). The 4KB
page access time improves by 5.28× and 2.88× at the 99th

percentile at 50% and 25% cases, respectively.

VoltDB Latency-sensitive applications like VoltDB suffer
significantly due to paging. During paging, due to Linux’s
slower data path, Infiniswap suffers 65.12% and 95.72%
lower throughput than local memory behavior at 50% and
25% cases, respectively. In contrast, Leap’s better prefetching
(11.6% better than Read-Ahead) and instant cache eviction
improves the 4KB page access time – 2.51× and 2.7× better
99th percentile at 50% and 25% cases, respectively. However,
while executing short random transactions, VoltDB has ir-
regular page access patterns (69% of the total remote page

852 2020 USENIX Annual Technical Conference USENIX Association

143.2 155.3 158.5 160.2

660.2 726.1 734.3 739.6

0
200
400
600
800

No Limit 320 32 3.2

C
om

pl
et

io
n

Ti
m

e (
s)

Prefetch Cache Size (MB)

PowerGraph NumPy

(a) Completion Time

35.6 33.7 31.6 31.0

119.0 119.0 118.0 118.0

0
30
60
90

120
150

No Limit 320 32 3.2TP
S

(T
ho

us
an

ds
)

Prefetch Cache Size (MB)

VoltDB Memcached

(b) Throughput

Figure 10: Leap has minimal performance drop for Infiniswap even
in the presence of O(1) MB cache size.

accesses). At that time, our prefetcher’s adaptive throttling
helps the most by not congesting the RDMA. Overall, Leap
faces smaller throughput loss (3.78% and 57.97% lower than
local memory behavior at 50% and 25% cases, respectively).
Leap improves Infiniswap’s throughput by 2.76× and 10.16×
at 50% and 25% cases, respectively (Figure 9c).

Memcached This workload has a mostly random remote
page access pattern. Leap’s prefetcher can detect most of
them and avoids prefetching in the presence of randomness.
This results in fewer remote requests and less cache pollution.
As a result, Leap provides Memcached with almost the local
memory level behavior at 50% memory limit while the default
data path of Infiniswap faces 10.1% throughput loss (Figure
9d). At 25% memory limit, Leap deviates from the local
memory throughput behavior by only 1.7%. Here, the default
data path of Infiniswap faces 18.49% throughput loss. In this
phase, Leap improves Infiniswap’s throughput by 1.11× and
1.21× at 50% and 25% memory limits, respectively. Here,
Leap provides with 5.94× and 1.08× better 99th percentile
4KB page access time at 50% and 25% cases, respectively.

Performance Under Constrained Cache Size To observe
Leap’s performance benefit in the presence of limited cache
size, we run the four applications in 50% memory limit con-
figuration at different cache limits (Figure 10).

For Memcached, as most of the accesses are of random pat-
terns, most of the performance benefit comes from Leap’s
faster slow path. For the rest of the applications, as the
prefetcher has better timeliness, most of the prefetched caches
get used and evicted before the cache size hits the limit. Hence,
during O(1) MB cache size, all of these applications face min-
imal performance drop (11.87–13.05%) compared to the un-
limited cache space scenario. Note that, for NumPy, 3.2 MB
cache size is only 0.02% of its total remote memory usage.

Multiple Applications Running Together We run all four
applications on a single host machine simultaneously with
their 50% memory limit and observe the performance benefit
of Leap for Infiniswap when multiple throughput- (Power-
Graph, NumPy) and latency-sensitive applications (VoltDB,
Memcached) concurrently request for remote memory access
(Figure 11). As Leap isolates each application’s page access
path, its prefetcher can consider individual access patterns
while making prefetch decisions. Therefore, it brings more

515.1
214.8

1429.6

836.7

191.7 92.1 88.4 82.6
0

400
800

1200
1600

D
-V

M
M

D
-V

M
M

 +
Le

ap

D
-V

M
M

D
-V

M
M

 +
Le

ap

D
-V

M
M

D
-V

M
M

 +
Le

ap

D
-V

M
M

D
-V

M
M

 +
Le

ap

PowerGraph NumPy VoltDB Memcached

C
om

pl
et

io
n

Ti
m

e (
s)

Figure 11: Leap improves application-level performance when all
four applications access remote memory concurrently.

accurate remote pages for each of the applications and re-
duces the contention over the network. As a result, overall
application-level performance improves by 1.1–2.4× over In-
finiswap. To enable aggregate performance comparison, here,
we present the end-to-end completion time of application-
workload combinations defined earlier; application-specific
metrics improve as well.

6 Discussion and Future Work
Thread-specific Prefetching Linux kernels today manage
memory address space at the process level. Thread-specific
page access tracking requires a significant change in the whole
virtual memory subsystem. However, this would help effi-
ciently identify multiple concurrent streams from different
threads. Low-overhead, thread-specific page access tracking
and prefetching can be an interesting research direction.

Concurrent Disk and Remote I/O Leap’s prefetcher can
be used for both disaggregated and existing Linux Kernels.
Currently, Leap runs as a single memory management module
on the host server where paging is allowed through either
existing block layers or Leap’s remote memory data path. The
current implementation does not allow the concurrent use of
both block layer and remote memory. Exploring this direction
can lead to further benefits for systems using Leap.

Optimized Remote I/O Interface In this work, we focused
on augmenting existing memory disaggregation frameworks
with a leaner and efficient data path. This allowed us to keep
Leap transparent to the remote I/O interface. We believe that
exploring the effects of load balancing, fault-tolerance, data
locality, and application-specific isolation in remote memory
as well as an optimized remote I/O interface are all potential
future research directions.

7 Related Work
Remote Memory Solutions A large number of software
systems have been proposed over the years to access remote
machine’s memory for paging [1, 21, 23, 26, 32, 45, 46, 50,
55, 64, 65], global virtual machine abstraction [6, 25, 43], and
distributed data stores and file systems [10, 22, 42, 47, 58].
Hardware-based remote access using PCIe interconnects [48]
or extended NUMA memory fabric [56] are also proposed to
disaggregate memory. Leap is complementary to these works.

USENIX Association 2020 USENIX Annual Technical Conference 853

Kernel Data Path Optimizations With the emergence of
faster storage devices, several optimization techniques, and
design principles have been proposed to fully utilize faster
hardware. Considering the overhead of the block layer, dif-
ferent service level optimizations and system re-designs have
been proposed – examples include parallelism in batching
and queuing mechanism [16,75], avoiding interrupts and con-
text switching during I/O scheduling [12, 20, 74, 76], better
buffer cache management [34], etc. During remote memory
access, optimization in data path has been proposed through
request batching [37, 38, 71], eliminating page migration bot-
tleneck [73], reducing remote I/O bandwidth through com-
pression [45], and network-level block devices [46]. Leap’s
data path optimizations are inspired by many of them.

Prefetching Algorithms Many prefetching techniques ex-
ist to utilize hardware features [33, 35, 66, 80], compiler-
injected instructions [27, 40, 41, 60, 61], and memory-side
access pattern [24,54,67–69] for cache line prefetching. They
are often limited to specific access patterns, application behav-
ior, or require specified hardware design. More importantly,
they are designed for a lower level memory stack.

A large number of entirely kernel-based prefetching tech-
niques have also been proposed to hide the latency overhead
of file accesses and page faults [19, 24, 31, 39, 72]. Among
them, Linux Read-Ahead [72] is the most widely used. How-
ever, it does not consider the access history to make prefetch
decisions. It was also designed for hiding disk seek time.
Therefore, its optimistic looking around approach often re-
sults in lower cache utilization for remote memory access.

To the best of our knowledge, Leap is the first to consider
a fully software-based, kernel-level prefetching technique for
DRAM with remote memory as a backing storage over fast
RDMA-capable networks.

8 Conclusion

The paper presents Leap, a remote page prefetching algorithm
that relies on majority-based pattern detection instead of strict
detection. As a result, Leap is resilient to short-term irregu-
larities in page access patterns of multi-threaded applications.
We implement Leap in a leaner and faster data path in the
Linux kernel for remote memory access over RDMA without
any application or hardware modifications.

Our integrations of Leap with two major memory disag-
gregation systems (namely, Infiniswap and Remote Regions)
show that the median and tail remote page access latencies
improves by up to 104.04× and 22.62×, respectively, over
the state-of-the-art. This, in turn, leads to application-level
performance improvements of 1.27–10.16×. Finally, Leap’s
benefits extend beyond disaggregated memory – applying it
to HDD and SSD leads to considerable performance benefits
as well.

Leap is available at https://github.com/SymbioticLab/leap.

Acknowledgments
We want to thank the anonymous reviewers, our shepherd,
Vincent Liu, and SymbioticLab members for their insightful
comments and feedback that helped improve the paper. This
work was supported in part by National Science Foundation
grants CNS-1845853, CCF-1629397, and CNS-1617773.

References
[1] Accelio based network block device. https://github.

com/accelio/NBDX.

[2] cgroups. https://wiki.archlinux.org/index.
php/cgroups.

[3] CloudLab. https://www.cloudlab.us.

[4] Infiniswap github repository. https://github.com/
SymbioticLab/infiniswap.

[5] Memcached - A distributed memory object caching sys-
tem. http://memcached.org.

[6] The versatile SMP (vSMP) architecture.
http://www.scalemp.com/technology/
versatile-smp-vsmp-architecture/.

[7] TPC Benchmark C (TPC-C). http://www.tpc.org/
tpcc.

[8] A twitter analog to PageRank. http:
//thenoisychannel.com/2009/01/13/
a-twitter-analog-to-pagerank.

[9] N. Agarwal and T. F. Wenisch. Thermostat: Application-
transparent page management for two-tiered main mem-
ory. In ASPLOS, 2017.

[10] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, S. Novaković, A. Ramanathan, P. Subrah-
manyam, L. Suresh, K. Tati, R. Venkatasubramanian,
and M. Wei. Remote regions: a simple abstraction for
remote memory. In ATC, 2018.

[11] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, P. Subrahmanyam, L. Suresh, K. Tati,
R. Venkatasubramanian, and M. Wei. Remote mem-
ory in the age of fast networks. In SoCC, 2017.

[12] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and
S. Swanson. Onyx: A protoype phase change memory
storage array. In HotStorage, 2011.

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. SIGMETRICS Perform. Eval. Rev., 2012.

[14] J.-L. Baer and T.-F. Chen. An effective on-chip preload-
ing scheme to reduce data access penalty. In ACM/IEEE
Conference on Supercomputing, 1991.

854 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/SymbioticLab/leap
https://github.com/accelio/NBDX
https://github.com/accelio/NBDX
https://wiki.archlinux.org/index.php/cgroups
https://wiki.archlinux.org/index.php/cgroups
https://www.cloudlab.us
https://github.com/SymbioticLab/infiniswap
https://github.com/SymbioticLab/infiniswap
http://memcached.org
http://www.scalemp.com/technology/versatile-smp-vsmp-architecture/
http://www.scalemp.com/technology/versatile-smp-vsmp-architecture/
http://www.tpc.org/tpcc
http://www.tpc.org/tpcc
http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank
http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank
http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank

[15] C. Barthels, S. Loesing, G. Alonso, and D. Kossmann.
Rack-scale in-memory join processing using RDMA. In
SIGMOD, 2015.

[16] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet. Linux
block io: Introducing multi-queue ssd access on multi-
core systems. In SYSTOR, 2013.

[17] R. S. Boyer and J. S. Moore. MJRTY: A fast majority
vote algorithm. In Automated Reasoning. 1991.

[18] I. Calciu, I. Puddu, A. Kolli, A. Nowatzyk, J. Gandhi,
O. Mutlu, and P. Subrahmanyam. Project pberry: FPGA
acceleration for remote memory. In HotOS, 2019.

[19] P. Cao, E. W. Felten, and K. Li. Implementation and
performance of application-controlled file caching. In
OSDI, 1994.

[20] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation, non-
volatile memories. In MICRO, 2010.

[21] H. Chen, Y. Luo, X. Wang, B. Zhang, Y. Sun, and
Z. Wang. A transparent remote paging model for virtual
machines. In International Workshop on Virtualization
Technology, 2008.

[22] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast Remote Memory. In NSDI, 2014.

[23] S. Dwarkadas, N. Hardavellas, L. Kontothanassis,
R. Nikhil, and R. Stets. Cashmere-VLM: Remote mem-
ory paging for software distributed shared memory. In
IPPS/SPDP, 1999.

[24] V. Fedorov, J. Kim, M. Qin, P. V. Gratz, and A. L. N.
Reddy. Speculative paging for future NVM storage. In
MEMSYS, 2017.

[25] M. J. Feeley, W. E. Morgan, E. Pighin, A. R. Karlin,
H. M. Levy, and C. A. Thekkath. Implementing global
memory management in a workstation cluster. In SOSP,
1995.

[26] E. W. Felten and J. Zahorjan. Issues in the implemen-
tation of a remote memory paging system. Technical
report, University of Washington, 1991.

[27] M. Ferdman, C. Kaynak, and B. Falsafi. Proactive in-
struction fetch. In MICRO, 2011.

[28] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker. Network
requirements for resource disaggregation. In OSDI,
2016.

[29] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In OSDI, 2012.

[30] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph processing in a
distributed dataflow framework. In OSDI, 2014.

[31] J. Griffioen and R. Appleton. Reducing file system
latency using a predictive approach. In USTC, 1994.

[32] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with Infiniswap. In
NSDI, 2017.

[33] A. Jain and C. Lin. Linearizing irregular memory ac-
cesses for improved correlated prefetching. In MICRO,
2013.

[34] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. Dulo:
An effective buffer cache management scheme to exploit
both temporal and spatial localities. In FAST, 2005.

[35] D. Joseph and D. Grunwald. Prefetching using markov
predictors. In ISCA, 1997.

[36] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA efficiently for key-value services. In SIGCOMM,
2014.

[37] A. Kalia, M. Kaminsky, and D. G. Andersen. Design
guidelines for high performance RDMA systems. In
ATC, 2016.

[38] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST:
Fast, scalable and simple distributed transactions with
two-sided (RDMA) datagram RPCs. In OSDI, 2016.

[39] S. F. Kaplan, L. A. McGeoch, and M. F. Cole. Adaptive
caching for demand prepaging. SIGPLAN Not., 2002.

[40] M. Khan, A. Sandberg, and E. Hagersten. A case for
resource efficient prefetching in multicores. In ICPP,
2014.

[41] A. Kolli, A. Saidi, and T. F. Wenisch. RDIP: Return-
address-stack directed instruction prefetching. In MI-
CRO, 2013.

[42] C. Kulkarni, A. Kesavan, T. Zhang, R. Ricci, and
R. Stutsman. Rocksteady: Fast migration for low-
latency in-memory storage. In SOSP, 2017.

[43] Y. Kuperman, J. Nider, A. Gordon, and D. Tsafrir. Par-
avirtual Remote I/O. In ASPLOS, 2016.

[44] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter,
a social network or a news media? In WWW, 2010.

USENIX Association 2020 USENIX Annual Technical Conference 855

[45] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal,
R. Burny, S. Butt, J. Chang, A. Chaugule, N. Deng,
J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and
P. Ranganathan. Software-defined far memory in
warehouse-scale computers. In ASPLOS, 2019.

[46] S. Liang, R. Noronha, and D. K. Panda. Swapping to
remote memory over Infiniband: An approach using a
high performance network block device. In Cluster
Computing, 2005.

[47] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A holistic approach to fast in-memory key-value
storage. In NSDI, 2014.

[48] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Rein-
hardt, and T. F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. In ISCA, 2009.

[49] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose, H. Sub-
ramoni, H. Wang, and D. K. Panda. High-performance
design of hadoop RPC with RDMA over InfiniBand. In
ICPP, 2013.

[50] E. P. Markatos and G. Dramitinos. Implementation of a
reliable remote memory pager. In ATC, 1996.

[51] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A fast file system for UNIX. ACM Trans. Comput. Syst.,
1984.

[52] S. Mittal. A survey of recent prefetching techniques for
processor caches. ACM Comput. Surv., 2016.

[53] M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The
power of two random choices: A survey of techniques
and results. Handbook of Randomized Computing, 2001.

[54] K. Nesbit and J. Smith. Data cache prefetching using a
global history buffer. IEEE Micro, 2005.

[55] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel.
Nswap: A network swapping module for Linux clus-
ters. In Euro-Par, 2003.

[56] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and
B. Grot. Scale-out NUMA. In ASPLOS, 2014.

[57] T. Oliphant. NumPy: A guide to NumPy. USA: Trelgol
Publishing, 2006.

[58] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout,
and M. Rosenblum. Fast Crash Recovery in RAMCloud.
In SOSP, 2011.

[59] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble, E. Strat-
mann, and R. Stutsman. The case for RAMClouds:

Scalable high performance storage entirely in DRAM.
SIGOPS Oper. Syst. Rev., 2010.

[60] L. Peled, S. Mannor, U. Weiser, and Y. Etsion. Semantic
locality and context-based prefetching using reinforce-
ment learning. In ISCA, 2015.

[61] R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong,
and W.-F. Wong. Compiler orchestrated prefetching via
speculation and predication. In ASPLOS, 2004.

[62] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch. Heterogeneity and dynamicity of clouds
at scale: Google trace analysis. In SoCC, 2012.

[63] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann.
High-speed query processing over high-speed networks.
In PVLDB, 2015.

[64] A. Samih, R. Wang, C. Maciocco, T.-Y. C. Tai, R. Duan,
J. Duan, and Y. Solihin. Evaluating dynamics and bot-
tlenecks of memory collaboration in cluster systems. In
CCGrid, 2012.

[65] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In OSDI, 2018.

[66] T. Sherwood, S. Sair, and B. Calder. Predictor-directed
stream buffers. In MICRO, 2000.

[67] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilk-
erson, S. H. Pugsley, and Z. Chishti. Efficiently prefetch-
ing complex address patterns. In MICRO, 2015.

[68] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi.
Spatio-temporal memory streaming. In ISCA, 2009.

[69] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback
directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchers. In HPCA,
2007.

[70] M. Stonebraker and A. Weisberg. The VoltDB main
memory DBMS. IEEE Data Engineering Bulletin, 2013.

[71] S.-Y. Tsai and Y. Zhang. Lite kernel rdma support for
datacenter applications. In SOSP, 2017.

[72] Y. Wiseman, S. Jiang, Y. Wiseman, and S. Jiang. Ad-
vanced Operating Systems and Kernel Applications:
Techniques and Technologies. Information Science Ref-
erence - Imprint of: IGI Publishing, 2009.

[73] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee.
Nimble page management for tiered memory systems.
In ASPLOS, 2019.

[74] J. Yang, D. B. Minturn, and F. Hady. When poll is better
than interrupt. In FAST, 2012.

856 2020 USENIX Annual Technical Conference USENIX Association

[75] S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Krish-
namurthy, S. Al-Kiswany, R. T. Kaushik, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Split-level i/o
scheduling. In SOSP, 2015.

[76] Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, J. W. Choi,
H. S. Kim, H. Eom, and H. Y. Yeom. Optimizing the
block i/o subsystem for fast storage devices. ACM Trans.
Comput. Syst., 2014.

[77] E. Zamanian, C. Binnig, T. Harris, and T. Kraska. The
end of a myth: Distributed transactions can scale. In
PVLDB, 2017.

[78] Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu, R. Boutaba,
and J. L. Hellerstein. Dynamic energy-aware capacity
provisioning for cloud computing environments. In
ICAC, 2012.

[79] Y. Zhang, J. Gu, Y. Lee, M. Chowdhury, and K. G. Shin.
Performance Isolation Anomalies in RDMA. In KBNets,
2017.

[80] H. Zhu, Y. Chen, and X.-H. Sun. Timing local streams:
Improving timeliness in data prefetching. In ICS, 2010.

USENIX Association 2020 USENIX Annual Technical Conference 857

go-pmem: Native Support for Programming Persistent Memory in Go

Jerrin Shaji George∗

VMware
Mohit Verma∗

VMware
Rajesh Venkatasubramanian

VMware
Pratap Subrahmanyam

VMware

Abstract
Persistent memory offers persistence and byte-level ad-

dressability at DRAM-like speed. Operating system support
and some user-level library support for persistent memory pro-
gramming has emerged. But we think lack of native program-
ming language support is an impediment to a programmer’s
productivity.

This paper contributes go-pmem, an open-source exten-
sion to the Go language compiler and runtime that natively
supports programming persistent memory. go-pmem extends
Go to introduce a runtime garbage collected persistent heap.
Often persistent data needs to be updated in a transactional
(i.e., crash consistent) manner. To express transaction bound-
aries, go-pmem introduces a new txn block which can include
most Go statements and function calls. go-pmem compiler
uses static type analysis to log persistent updates and avoid
logging volatile variable updates whenever possible.

To guide our design and validate our work, we developed
a feature-poor Redis server go-redis-pmem using go-pmem.
We show that go-redis-pmem offers more than 5x through-
put than unmodified Redis using a high-end NVMe SSD
on memtier benchmark and can restart up to 20x faster than
unmodified Redis after a crash. In addition, using compiler
microbenchmarks, we show go-pmem’s persistent memory
allocator performs up to 40x better and transactions up to
4x faster than commercial libraries like PMDK and previous
work like Mnemosyne.

1 Introduction
At present, there is a large gap between the access latency for
memory and storage hierarchy. The fastest tier of storage, e.g.,
SSDs, which provide persistence, can be 100x-1000x slower
than DRAM, which are volatile and lose all their data on a
power cycle. Applications carefully place their working set
data in DRAM where the access latency is between 50-100ns,
and every so often, perhaps under the guidance of the user via
policies, save the data from DRAM to the storage tier. Over

∗Co-first authors ordered alphabetically

the past three decades, applications and operating systems
have evolved to orchestrate this data movement in a highly
efficient way.

Persistent memory (pmem) is a new type of random-access
memory that offers persistence and byte-level addressabil-
ity at DRAM-like access speed [19]. Intel c© OptaneTM DC
Persistent Memory [12] is an example of a readily available
persistent memory product. Persistent memory is now becom-
ing increasingly available in servers [1]. Operating systems
such as Linux have had support to use pmem as faster storage
disks for some time now [6].

The obvious way to consume pmem is as a faster storage
device (block mode access) by running an unchanged appli-
cation on top of a file system. We demonstrate a significant
improvement in the throughput of Redis when it is run on
top of Linux ext4 filesystem using persistent memory as the
block storage device. But, we were also able to show even fur-
ther performance improvements with a Redis that was hand
modified to use byte-addressable persistent memory for its
in-memory database. Unsurprisingly, we were also able to
show that a good bit of the application’s I/O processing code
that store the data from volatile DRAM to storage, can now
be retired as data is being immediately persisted all over the
application. So, using the byte-addressable mode of pmem
delivers more performance than using it in block mode, and
also lowers the overall complexity in the application code.
We delve deeper into this in §2.

We argue that databases like Redis are fast and popular be-
cause they highly optimize the data structures used in volatile
memory. However, applications must write these data struc-
tures into serial buffers for persistence and these optimizations
are lost. With byte-addressable persistent memory, applica-
tions can directly persist and retrieve their data structures
without serialization. And so, the main focus of this work
is that we strive to make manipulating persistent memory
similar to manipulating volatile memory.

Towards this, we contribute go-pmem, an open source ex-
tension to the popular Go programming language. go-pmem
provides a familiar Go-esque programming model to the appli-

USENIX Association 2020 USENIX Annual Technical Conference 859

cation developers to use persistent memory at byte-level gran-
ularity. We arrived at our current model by implementing a
feature-poor implementation of Redis (go-redis-pmem) (§5.3)
that directly uses byte-addressable pmem. With go-pmem, we
contribute a programming model with the following design
goals:

1. Single type system. No separate persistent types as in
[18, 32].

2. Pointers remain unchanged, i.e., no fat pointers. A con-
sequence of this is we implement pointer swizzling
(§4.3.2).

3. Support two heaps, volatile and persistent: go-pmem
extends Go runtime to manage pmem and uses pointers
to identify objects in pmem.

4. Allow pointers both across and within the persistent and
volatile heap, but make system safe across crash and
recovery. To do this, go-pmem extends Go’s garbage
collector (GC) to work across both the heaps.

5. After restart, allow applications to retrieve back data
stored in pmem by associating it with a string name.
These are called named-objects (§4.4.1).

6. Allow transactional code blocks by requiring the user to
demarcate these with a new Go txn keyword.

7. Reuse functions to operate on data in volatile or persis-
tent memory.

8. Allow allocation and update of pmem resident data
structures outside a transaction as long as they are not
reachable from a named object. In case of a crash-and-
recovery, go-pmem’s GC will garbage collect such ob-
jects thus avoiding any persistent memory leaks.

In a set of microbenchmarks, we see that go-pmem per-
forms up to 40x better than other pmem libraries languages.
go-redis-pmem offers 5x more throughput than unmodified
Redis on an SSD against memtier benchmark and restarts up
to 20x faster than unmodified Redis. We explain our evalua-
tion methodologies more in §6. To the best of our knowledge,
ours is the first expansive effort to change Go to support
persistent memory. In §5, we explain how Go’s existing de-
sign features helped and challenged us towards our idea of
supporting pmem.

go-pmem is developed from the Go 1.11 code base, and
is fully open-sourced. Links to the respective repositories
can be found at https://vmware.github.io/persistent-memory-
projects/.

2 Background
To give more context into our work, we begin by asking why
should anyone care about persistent memory?

2.1 Experiments with Redis
Over the years, a lot of work has gone into optimizing data
intensive applications. To reduce the latency of data access,
these applications keep frequently used data in DRAM, and
flush the dirty data from DRAM to disks/SSD at certain well-

defined points. For example, Redis [24] allows users to persist
their data to disks/SSD in an append-only-file (AOF). But if
no persistence mode is used, a crash at any point would cause
all the in-memory data to be lost. If the user cannot afford any
data loss at all, he has to write to the AOF file after each write
request and as such sees significantly reduced throughput.

In all the experiments in this section, we run Redis in the
zero data loss mode, as that is the fair way to compare with
byte addressable persistent memory which provides zero data
loss. To see the benefits of persistent memory, we now conduct
the following experiment:

1. Use the memtier benchmark as the load generating input
workload [25], configured to issue read-write requests
in a 70:30 ratio.

2. Run unmodified Redis-3.2, in the following two modes:

(a) saving the AOF on an SSD and
(b) saving the AOF on a persistent memory device.

3. Run Redis-3.2 hand modified for byte-addressability
taken from [11].

Figure 1 shows that just by running unchanged Redis on
a pmem device as block storage, the throughput increases
by up to 4x. This configuration gives a higher throughput
owing to the inherent faster access time of persistent memory.
Figure 1’s Pmem Block IO curve confirms this. The third curve
(PMDK-Redis) [11] shows the performance of a Redis server
modified to write data to persistent memory used in byte-
addressable mode. In fact, PMDK-Redis even outperforms
Redis running on pmem as block-storage.

To understand this, we perform another experiment. We
run unmodified Redis-3.2 once with AOF disabled and once
with always-fsync-AOF option on nullfsvfs virtual file system
[2]. This file system treats all read and write system calls to
the storage media as no-ops. So the difference in performance
is entirely due to serializing data in the application and the
overheads in making system calls. This is the reason why in
Fig. 2 Redis with AOF enabled on nullfsvfs is slower than
Redis with AOF disabled. Because pmem is faster than SSD,
the time spent accessing the device is significantly reduced
and the overhead of the software stack become a significant
portion of the overall application latency.

These two experiments convince us that using persistent
memory can give significant throughput improvements in
data intensive applications and that the most efficient way for
applications to access persistent memory is through direct
CPU load/store instructions bypassing any file-system/PCIe
overheads. A more extensive study on persistent memory can
be found in [37]. Since memory is accessed in 64-byte cache
lines, the CPU reads only what it needs to read, instead of
rounding every access up to a block size, like storage. Linux
also allows persistent memory to be used in a direct-access
(DAX) mode [6, 20, 21]. This mode allows users to mmap
files in persistent memory into their virtual address space and
access it through loads/stores, bypassing the OS page cache

860 2020 USENIX Annual Technical Conference USENIX Association

https://vmware.github.io/persistent-memory-projects/
https://vmware.github.io/persistent-memory-projects/

100 101 102 103

0

50

100

Data size (Bytes)

T
hr

ou
gh

pu
t(

M
B

/s
)

SSD PMEM Block IO PMDK-Redis

Figure 1: Redis throughput comparison against memtier

2 64 2048

9

10

11

Data size (Bytes)

Ti
m

e
to

co
m

pl
et

io
n

(s
)

With AOF No AOF

Figure 2: Redis-server runtime on nullfsvfs

and file systems. In the rest of this work, we use pmem in
byte-addressable mode, unless we specifically mention block
storage mode.

2.2 Why Change a Programming Language?
Hand porting applications to use byte-addressable pmem can
introduce fragility in the code. Just think of a situation, where
the developer misses to guard a single store to persistent
memory within a transaction - the bug will be very difficult to
discover. So, the next question is: how can the porting process
be made easier? Ideally, any acceptable solution should have
the following features:

1. Be similar to existing programming models.
2. Work transparently for systems not supporting persistent

memory. I.e., we want to be able to write functions that
can operate on data in persistent memory or volatile
memory.

3. Fast execution time.
One approach is via ad hoc libraries. As we will discuss

in §3 and §4, these libraries expose a programming model
different than existing programming models for volatile mem-
ory. In particular, memory management becomes tricky and
these solutions either don’t provide a simple and complete
programming model, or go through complicated steps to keep
it simple. We argue that programming languages already man-
age volatile memory. So, persistent memory which is a special
type of memory and is also byte-addressable, should also be
managed by programming languages.

Such a language should at least provide:
1. Persistent memory allocations on heap
2. Garbage collection of persistent heap objects
3. Support modifying persistent memory in a crash-

consistent way
4. Support recovery from crashes, i.e., include support for

reverting inconsistent updates.
5. Not require offline processing of persistent data regions
6. Similar to existing programming models, for easier adop-

tion.

2.3 Why Go?
We chose Go because it is a high-level managed language
with an easily extendable runtime. Moreover, we use some
of Go’s design to our advantage. For example, we reuse Go’s
mark-and-sweep garbage collector to garbage collect pmem.
Go uses static escape analysis to determine the scope of ob-
jects at compile time and intelligently places objects on the
stack or the heap. We extend this to track accesses to volatile
and persistent heap and prevent unnecessary pmem accesses.
Additionally, the potential benefits of high-level languages are
well understood. Automatic memory management in HLLs
like Go reduce programmer effort and use-after-free bugs.
These kinds of bugs are more dangerous with the use of
pmem because any memory leak will survive crashes/restarts.
Go’s type-safety helped us to avoid special data types and
invalid memory accesses. Go also has an active developer
community with increasing adoption in systems community
(e.g. popular software such as Kubernetes, Docker etc. are
written in Go) and this fits well with our plan to open-source
our changes.

3 Related Work
Most of the previous efforts to program persistent memory
fall into two categories:

1. Ad hoc library to support pmem. This library usually
allows special objects to be created/updated/destroyed in
a crash-consistent way through special APIs [17, 18, 30].

2. Programming language enhancements to manage pmem
and instrument user code with transactions [26, 27, 32,
45, 46].

In section 6, we compare go-pmem’s performance with
works in both categories, PMDK [18] (a library) and
Mnemosyne [45], Makalu [26] (language changes).

Previous efforts often provide a new allocator for pmem and
require the user to free memory allocated in pmem [7, 18, 26].
Either they don’t handle leaks in persistent memory [45] or
use special objects and data types to maintain reference counts
[26, 30, 32] for garbage collection. Often they provide offline

USENIX Association 2020 USENIX Annual Technical Conference 861

Library
(language) Model References

Transactions Heap

Semantics Implementation Fn calls Growth Reloc.

go-pmem (Go) Compiler support,
Library

Direct pointers Explicit - user tagged Undo logs Yes Yes Yes

PMDK [18]
(C,C++)

Library Fat pointers Explicit - user tagged Undo logs Yes No Yes

Mnemosyne
[45] (C)

Compiler support,
Library

Direct pointers Explicit - user tagged Redo logs No No No

Makalu [26]
(C)

Library Direct pointers N/A N/A N/A No No

Atlas [27] (C) Compiler support,
Library

Direct pointers Implicit - using locks Undo logs No No No

Autopersist
[43] (Java)

Compiler, JVM
support

Direct refer-
ences

Explicit - user tagged
Implicit - durable
roots

Undo logs Yes No No

Espresso [46]
(Java)

Compiler, JVM
support

Direct refer-
ences

Explicit - user tagged Persistent
objects

Yes No No

iDO [38]
(C,C++)

Compiler support Direct pointers Implicit - using locks Atomicity via
resumption

No No No

JUSTDO [36]
(C,C++)

Library Direct pointers Implicit - using locks Atomicity via
resumption

No No No

Table 1: Table comparing features of various pmem libraries

tools to check pmem file for garbage [18, 26]. Some require
that users must do pmem memory allocations within transac-
tions [18]. To access data in pmem they usually provide fat
pointers [18, 30] or allow direct pointers and ignore pointer
swizzling [26, 46]. We did not find any previous work that
handled growing persistent heap at runtime. In section 6.4.2
we discuss why this is important.

[31, 45] also provide concurrency through transactions. Of
course, transactions for programming languages has been a
well-researched topic [34]. However, we don’t pursue transac-
tions as a way of solving concurrency, but more from a point
of view of crash-consistent/atomic updates while minimally
getting in the way of Go’s existing concurrency paradigms.
In this regard, we are similar to [32, 43] but are more flexible
(see section 4.5).

Similar to [27, 32] we use a modular SSA pass to inject
undo transaction logging statements to user code. But unlike
[32] we do not ask the user to provide special pragmas for
faster execution. We believe these optimizations complicate
the programming model. We also allow function calls within
transactions unlike [45] and want the functions to be reused
for persistent and volatile data.

Another design point is how to demarcate the transactional
code block. For example, Atlas [27] uses existing locks and
constructs a happens-before graph to determine order of logs
and updates. Autopersist [43] on the other hand, is quite differ-

ent. Like go-pmem, they allow users to explicitly demarcate
transactional code blocks. But, they also allow users to write
normal Java code and when they point to a volatile data from
a pmem root, Java runtime moves the transitive closure of
the volatile data to pmem transactionally. go-pmem allows
updates to pmem-resident objects outside transactions as long
as they are not pointed to by a named object.

So far, most of these efforts have been confined to C, C++
with some work in Java [17,43,46] and OpenJDK [15]. There
have been calls for these programming languages to support
persistent memory [4] but we don’t know of any concrete
changes yet. Table 1 presents a concise summary compar-
ing the features of various pmem libraries. Fn calls captures
whether the transaction semantics allows function calls inside
a transaction. Heap Growth indicates whether the library sup-
ports a growable heap design and Heap Reloc. states if the
library supports relocating the pmem heap on an application
restart.

4 Design
The design of go-pmem is driven mainly by two considera-
tions:

1. The changes should be accepted to the Go language. This
translated to reusing existing Go compiler techniques
and keeping our changes to a minimum.

2. Provide a familiar programming model to developers

862 2020 USENIX Annual Technical Conference USENIX Association

that has a minimal interface and is congruent with the
existing Go infrastructure. This would help in easier
acceptance and adoption by the Go community.

4.1 Programming Model
Listing 1 shows how to add a new node to a linkedlist resident
in pmem using go-pmem. We have highlighted how this is
different than normal Go code adding a node to a linkedlist in
volatile memory. Memory in pmem is allocated using pnew,
similar to Go’s new and all updates are made transactional us-
ing codeblock txn("undo"). We argue that this is very similar
to how Go code is written today. How we managed to get a
programming model like Listing 1 is discussed in the rest of
this section.

1 package main
2 i m p o r t "pmem" / / <−
3 i m p o r t " t r a n s a c t i o n " / / <−
4
5 / / add new node t o t a i l ; r e t u r n new t a i l
6 f unc addNode (t a i l ∗node) ∗node {
7 n := pnew (node) / / <−
8 t x n (" undo ") { / / <−
9 mutex . Lock ()

10 n . p r ev = t a i l
11 u p d a t e T a i l (t a i l , n)
12 mutex . Unlock ()
13 } / / <−
14 r e t u r n n
15 }
16
17 f unc u p d a t e T a i l (t a i l , n ∗node) {
18 t x n (" undo ") { / / <−
19 t a i l . n e x t = n
20 } / / <−
21 }

Listing 1: Add node to a linkedlist in pmem

4.2 Language Constructs
We have added two new APIs to Go semantics to support
persistent memory allocations:

func pnew(Type) *Type
func pmake(t Type, size ...IntType) Type

Just like new [8], pnew creates a zero-value object of the Type
argument in pmem and returns a pointer to this object. The
pmake API is used to create a slice in pmem. The semantics
of pmake is the same as the make API in Go.

4.3 Runtime Design
Go runtime uses datastructures such as mcache, mspan, mcen-
tral, mheap, etc. to store the metadata related to the heap.
A span is a contiguous region in memory (one or more
pages) from which the allocator allocates similar-sized ob-
jects. mspan stores metadata about a span. mcache is used to
cache spans at a thread level. If an allocation request can be
satisfied using the cached span, then it can be done so without
acquiring any locks, making such allocations very fast. If not,

a new span is obtained from the mcentral or mheap. mcentral
is a central store of small spans (object size <= 32K) and
mheap is a central store of freed spans and large spans.

The heap is managed in arenas of size 64MB. Each arena
data-structure stores the following metadata:

1. Span table - Span table is an array that holds a reference
to the mspan object corresponding to that virtual page
index.

2. Heap type bitmap - The heap type bits are used by the
GC to identify what regions in memory have pointers in
them. The GC uses these bits while walking the heap.
The heap type bits corresponding to an object is set by
the allocator when it allocates that object.

Linux exposes pmem to applications as a file. Byte-level
load/store access to pmem is available once a pmem file
has been mmap’d to an application’s address space [33]. We
do all this in Go runtime and abstract these out through a
Go package called pmem. We have incorporated a simple
approach to enabling pmem support in Go - one with minimal
changes to the design of the existing memory allocator and
garbage collector (GC). Rather than make all the runtime
data-structures crash-consistent, we log additional metadata to
keep track of allocated regions. This saves us from extensive
code changes that would have been necessary in the runtime
and aids in the implementation of a robust design. A novelty
of our approach is the minimal amount of additional metadata
that we log.
4.3.1 Growable Heap Design

Figure 3: (a) pmem file header (b) arena header layout. Stor-
age space in bytes adjacent to each field.

The runtime maps the pmem file into memory in arenas of
sizes that are a multiple of 64MB. Figure 3(a) shows the lay-
out of the global header stored in the beginning of the pmem
file. magic constant is an 8-byte random number which helps
to distinguish between first and subsequent initialization of
persistent memory. mapped size is the size of the file cur-
rently mapped. root pointer is used to store the pointer to the
application named objects (§4.4.1). swizzle state is used for

USENIX Association 2020 USENIX Annual Technical Conference 863

implementing pointer swizzling (§4.3.2). type map is used
to cache a fixed number of data types which are the most
frequently allocated, helping pmem allocations of such types
to be completed significantly faster (§5.1.5).

Each arena is divided into two sections - the arena header
section and the region managed by the allocator. Figure 3(b)
shows the layout of the header section in each arena. arena
size is the size of the arena and mapped address stores the
address at which the arena is currently mapped. swizzle delta
and bytes swizzled help to implement the pointer swizzling
algorithm. The log section helps to implement a minimal
undo log in runtime which is used only during swizzling.
The metadata section stores the runtime metadata for this
arena as mentioned in §5.1.3. Whenever runtime runs out
of persistent memory space, the persistent memory file is
grown to accommodate a new arena. The metadata in the
global header is updated in a consistent manner to reflect the
addition of this new arena.

4.3.2 Pointer Swizzling

Pointer swizzling is a powerful feature that allows direct point-
ers to be stored in persistent memory and dereferenced, even
after multiple invocations of the application. Since persistent
memory is exposed through files mapped into memory, the
virtual address of the mapping can change during each invoca-
tion. In the common scenario, go-pmem is able to map arenas
at the same address, avoiding the need to swizzle pointers. If
the mapping address changes, then all pointers stored in the
pmem heap becomes garbage. Pointer swizzling is the process
of ’fixing’ these pointers by re-writing them with their new
mapped address. Some libraries such as PMDK work around
this problem by using a base, offset pair object as a reference
to an object in persistent memory. Dereferencing such an ob-
ject involves a hashmap lookup and offset computation which
can get expensive.

Swizzling is done during pmem initialization in a per-arena
manner. The algorithm uses the swizzle delta field in arena
header to store the offset by which pointers that point into
this arena should be changed. bytes swizzled help track how
many pointers have already been swizzled. The log section in
the arena help update pointers transactionally. The swizzling
algorithm is resilient to crashes during swizzling. If a crash
occurs, any partially executed swizzling is completed on the
next run, before swizzling all pointers to the new mapped
address. go-pmem uses a parallelized algorithm to swizzle
pmem arenas. As an added advantage, the swizzle algorithm
also implements pointer safety. On application restart, any
pointer stored in the pmem heap that point outside the pmem
heap are garbage. The swizzle algorithm zeroes out any such
pointers to ensure applications do not access such rogue point-
ers. This gives users the freedom to store both pmem and
volatile pointers in the pmem heap.

4.4 Restarting After a Crash/Exit
Our design currently handles graceful exits and non-
corrupting failures. Listing 2 shows code starting/recover-
ing from a crash. We provide a pmem package that handles
initializing pmem and restarts.

1 package main
2 i m p o r t "pmem"
3 f unc i n i t () {
4 f i r s t I n i t := pmem . I n i t (" d a t a b a s e ")
5 v a r head ∗node
6 i f f i r s t I n i t {
7 / / Cr ea t e a named o b j e c t c a l l e d r o o t
8 head = (∗ node) (pmem . New(" r o o t " , head))
9 } e l s e {

10 / / R e t r i e v e t h e named o b j e c t " r o o t " .
11 / / One− l i n e r e s t a r t !
12 head = (∗ node) (pmem . Get (" r o o t ") , head)
13 }
14 }

Listing 2: Code for start/restart of application

4.4.1 Roots/Named Objects: pmem Package
Any data in volatile memory is lost on restart, so volatile
pointers pointing to data in pmem will be lost too. This means
only pointers residing in pmem pointing to data in pmem
can be used to access pmem-resident data after a restart. We
allow the applications to retrieve these pointers through string
names. These can then be used to navigate other objects stored
in pmem. We call these objects "named objects” and they can
be pointers to native types, structs, or Go slices. Any updates
to these named objects must be made through pmem package
APIs as shown in Listing 2.

4.5 Transactions as a Part of Go: txn Block
To make sure no data is left in an inconsistent state, we use
transactions. We change Go compiler to natively support
undo transactions. We pursue transactions in Go with the
intention of providing crash consistency and durability for
updates to data in pmem. We introduce a new keyword to
Go called txn that automatically intercepts stores to pmem
and logs them in an undo log. We add a new SSA (Static
Single Assignment) pass to Go compiler’s backend that injects
statements to Go’s intermediate representation of the user
code. Our design is derived from a similar technique used
in Go compiler to add write barriers for garbage collection
to stores in volatile heap [14]. Our new LogStore SSA pass
comes after most of the existing Go SSA passes, so we don’t
lose on the existing optimizations. For example, successive
stores to a pmem resident location can be eliminated by Go’s
deadstore elimination SSA pass even after our changes.

To demarcate transactions, we require users to contain their
code within a txn("undo") code block. The "undo" indicates
we currently support automatic code generation only for undo
logging. We briefly discuss how we provide typical transac-
tion properties below.

864 2020 USENIX Annual Technical Conference USENIX Association

1. Atomicity: The pmem.Init() call (see Listing 2) initializes
pmem and reverts any incomplete updates stored in the
transaction logs of an application in case of a restart.

2. Consistency: We rely on the user to explicitly demarcate
updates to pmem-resident data by using a txn block
around the code.

3. Isolation: Simultaneous transactions accessing common
data must not see any updates till a transaction is com-
mitted. We do not support isolation through software
transactional memory but rely on programmers to use
Go’s mutex locks for critical sections. Our concurrency
model is simple:

(a) All the locks acquired within a transaction must be
released within the transaction.

(b) All the locks acquired outside a transaction must
be released outside the transaction.

Our design then makes sure that all the updates to shared
data structures are visible only at the end of a transac-
tion. This is achieved by delaying unlocking any locks
acquired within a transaction until the end of the trans-
action. This is similar to the 2PL locking strategy used
in database transactions [40].

4. Durability: All the changes made to data in pmem are
made durable at the end of a transaction by flushing
relevant data stored in the processor caches or buffers.

1 / / t x n b l o c k o f addNode ()
2 t x . Begin () / / <−
3 mutex . Lock ()
4 t x . Log(&n . p rev) / / <−
5 n . p r ev = t a i l
6 u p d a t e T a i l (t a i l , n)
7 t x . End () / / <−
8 mutex . Unlock () / / <− g e n e r a t e d a f t e r End ()
9

10 / / t x n b l o c k o f u p d a t e T a i l ()
11 t x . Begin () / / <−
12 i f inPmem(& t a i l . n e x t) { / / <− e x t r a check
13 t x . Log(& t a i l . n e x t) / / <−
14 } / / <−
15 t a i l . n e x t = n
16 t x . End () / / <−

Listing 3: Compiler generated code for listing 1.

We point out a couple of limitations that our locking model
introduces -

1. Multiple lock() and unlock() operations on the same lock
do not work inside a txn block.

2. Holding all locks taken inside a transaction until the end
of the transaction can make lock-based critical sections
in go-pmem slower than other models such as Atlas [27]
that allow dependent transactions to run concurrently (as
soon as required locks get unlocked). In order to provide
isolation, they capture transaction dependency between
multiple threads in their logs.

Listing 3 shows the compiler generated code of the txn{}
code block in listing 1. Additional code added by the compiler
to ensure transactional semantics is highlighted. Line 8 of
listing 3 shows how a mutex unlock is delayed until the end
of the transaction. go-pmem also allows function calls within
a transaction, as explained further in §5.2.2.

4.6 No Persistent Data Types

go-pmem intentionally does not introduce new data types.
Previous works have often introduced data types like pint,
p<int> or persistent int. They usually do this because they
offer a library implementation and overload the assignment
operator [18] or they want type-safety, reference counting
etc. for pmem resident data [32]. We believe this complicates
the programming model and instead rely on Go’s in-built
typesafety and garbage collection.

5 Implementation

go-pmem adds about 4000 lines of code and removes 300
lines of code from Go runtime, excluding code documenta-
tion. This does not include the code in the CPUID package
from Intel [10] that is used by runtime to identify CPU fea-
tures for flushing CPU caches. The two Go packages (pmem
and transaction) took close to 2300 lines of Go code. These
changes were made on top of Go 1.11 release and don’t in-
clude the code for testing these changes. Our implementation
currently works only for 64-bit Linux 4.15 and above.

5.1 Runtime Details

5.1.1 Data Structure Support

To support persistent memory allocations, runtime datastruc-
tures such as the mspan, mcache, mheap, mcentral were ex-
tended to store persistent memory metadata. The mspan
structure was augmented to identify if this is a pmem span
or volatile memory span. Similarly, mcache, mcentral, and
mheap were doubled in size to store pmem spans separately. It
should be noted that no Go runtime data-structures are stored
in pmem. Instead, minimal additional metadata is logged in
pmem arena header to capture pmem state.

5.1.2 Memory Allocation

A persistent memory allocation request results in the follow-
ing workflow - if a cached pmem span is available in the
mcache with a free slot, it is used to satisfy the allocation
request. Otherwise, a new pmem span is requested from the
mcentral/mheap. If no pmem span is available, a new pmem
arena is mapped to memory. The required span is then carved
out from the pmem arena to satisfy the allocation request. Any
required metadata is also logged (§5.1.3). An advantage of
the go-pmem allocator is that these steps can be done without
invoking transactions. This is because any pmem leaks are
plugged by the GC during heap recovery (§5.1.4).

USENIX Association 2020 USENIX Annual Technical Conference 865

5.1.3 Metadata Logging

The metadata that is logged is the minimum amount of in-
formation that the runtime needs to reconstruct the memory
allocator and garbage collector state on the subsequent execu-
tion of the application. The benefits of keeping the metadata
to a minimum are twofold: we do not need to introduce com-
plex transactions in the runtime to maintain consistency and
the allocator performance is only slightly affected due to the
additional logging.

Two kinds of runtime metadata are logged. The first is the
GC heap type bits. Whenever the allocator sets heap type
bits for a pmem object, it is also logged in the pmem arena
header section. Like its volatile memory representation, heap
type bits occupy 2 bits for every 8 bytes of heap data. In
§5.1.5 we talk about an optimization that helps avoid heap
type bitmap logging for frequently allocated data-types. The
second is the span table. The span table captures information
such as which spans are in use and the size class of the span.
Span table logging happens when a new span is created by
the allocator or freed up by the GC. Span table reserves 32
bits for every pmem page in the arena (Go uses a page size
of 8KB). For a 64MB pmem arena, the arena header section
occupies 2024KB, and 63512KB is available for the allocator.
The arena section includes 80 bytes for the header, 31756
bytes for the span table and 1984.75KB for the heap bitmap,
making the pmem arena memory overhead as 3.09%.

5.1.4 Reconstruction

All runtime data structures related to memory allocator and
garbage collector are stored in volatile memory. So, if an
application crashes, all state information is lost. Reconstruc-
tion is the term used in our project to denote the process of
bringing back the state of the memory allocator and garbage
collector related to persistent memory as it was before the
crash. The additional metadata stored in pmem aids in this
reconstruction process. No persistent memory data is modi-
fied during reconstruction. Hence the reconstruction process
is resilient to any crashes that happen while it is ongoing.
Briefly, reconstruction works as following:

1. GC is disabled until reconstruction finishes so that it
does not interfere with the reconstruction process.

2. Spans are recreated using the logged span metadata table.
3. The logged heap type bitmap is copied as-is to the arena

metadata in volatile memory.
4. Pointers are swizzled, if necessary
5. GC is re-enabled

GC walks the reconstructed pmem heap starting from the
named root objects. It marks all reachable objects as being
in-use, and makes any leaked pmem objects available for
reuse. This GC walk runs in the background, making the
reconstruction process execute quickly.

5.1.5 Using Go’s Typesystem to Optimize Pmem Alloca-
tions

An allocation of an object that has pointers in it results in the
allocator setting the heap type bits for it. If this is a pmem
object, these type bits are also logged in the pmem arena
header. If a datatype is heuristically found to be a frequently
allocated type, then that type is promoted to be cached spe-
cially in mcache to speed up allocations of such objects. The
heuristic used is the following - the number of allocations of
such an object has exceeded the number of slots available in
a span corresponding to this object sizeclass and its alloca-
tion frequency is greater than 100 objects per second. A span
specially so cached is used only to allocate objects of one
type. This makes it possible that the heap type bits be logged
only for the first object allocated, making further allocations
from this span very fast. We employ the typemap (§4.3.1)
in the global header to store what types have been specially
promoted. Our design supports promoting up to 50 types to be
specially cached. In our experience, the maximum number of
types frequently allocated by various pmem applications were
far fewer. Each type is represented in the typemap section in
the pmem header using an 8-byte identifier, making typemap
occupy a total of 400 bytes.
5.1.6 Undo Log Implementation

Figure 4: Undo log design

Undo logs are stored within a linked list of Go’s byte arrays.
Each undo log entry has the layout as shown in figure 4. gen.#
stores current undo log generation number. On a successful
abort/commit, the generation number is bumped up to mark
all entries as no longer valid. size stores the size of the data
logged. pointer is the address at which this data originally
resided. data contains the logged copy of the data. Since we
do not anticipate a transaction abort in the common case, log
entries are populated using movnt instructions so that data is
directly moved to the pmem device bypassing the processor
cache.

We also employ a number of optimizations to make logging
fast in go-pmem:

1. Empty transactions do not incur any runtime overhead
as no cache flushes or memory fences are issued.

2. Logging the same object multiple times incur minimal
overhead. We maintain a map to track what objects have
already been logged.

3. As byte arrays are very common in Go, we specially
optimize logging 1-byte data. We try to pack consecutive
1-byte data objects in a single log entry rather than create
separate entries for each.

866 2020 USENIX Annual Technical Conference USENIX Association

5.1.7 Working Around Go’s GC to Optimize Undo Log-
ging

Go uses a mark-and-sweep GC. It scans the heap in a breadth-
first fashion, traversing the heap through the live pointers it
finds. The scan starts from the pointers found in goroutine
stacks and global variables. We want objects pointed at from
the logged data to be kept alive until the transaction com-
pletes. But since data is logged in a byte-array, runtime no
longer has the type information of each data item logged. Our
initial logging library used Go’s reflect package which gave a
poor performance, so we decided to use Go’s byte arrays. To
identify pointers in the byte array, whenever a data is logged,
all pointers within this data item is stored separately in an
array of pointers residing in volatile memory. This ensures
that GC finds these pointers while traversing the heap.

5.1.8 Cache Flushing
Data written to persistent memory can be guaranteed to be
persistent only after they are flushed from the processor cache
to the persistent memory media. The runtime provides the
PersistRange API to flush the processor cache over the address
range passed to it.

func PersistRange(addr unsafe.Pointer, len int)

If the persistent memory device supports direct-access, this
function takes care of executing the most optimized cache
flush instruction supported on the processor (such as clwb,
clflushopt, or clflush) and any necessary memory barriers
[42]. If the device does not support direct-access, then Per-
sistRange invokes the msync system call to flush data at a
page size granularity. Transactions in go-pmem automatically
call into the runtime to flush data from the caches, freeing the
programmer from having to do it manually.

5.2 LogStore SSA Pass
The LogStore SSA pass can automatically interpose stores
to persistent memory and redirect this to an undo transaction.
The user can wrap any codeblock with a txn("undo") keyword
and engage this new SSA pass. In the absence of any txn block,
this SSA pass does not do anything. Because we wanted to
keep the changes to a minimum, this SSA pass can be plugged
into/out of the Go compiler’s usual workflow.

5.2.1 Handling Volatile Memory Access Inside Transac-
tions

Go uses escape analysis [28] to figure out life time of vari-
ables, and thereby avoids unnecessary memory allocations
to volatile heap. We extend this to avoid unnecessary allo-
cations to persistent heap and track pointers in volatile heap.
With this static analysis, we know the probable location of
an update within the transaction. If this update can be proven
to be a location in volatile memory, we do not do anything.
Otherwise we store the current value of the data in a persistent
log which will be replayed in case of a crash.

5.2.2 Handling Function Calls Inside Transactions
Go compiles each function independently and cannot know
if this method will be called from a transaction, or a non-
transactional code at compile time. Instead of cloning the func-
tion for transactional access, we maintain a per Go-routine
handle and ask the user to wrap any potentially transactional
code within a txn code block. Based on whether a transac-
tion is already ongoing or not, we intelligently start a new
transaction or continue the same transaction at runtime. In
case this function is called from a non-transactional code, the
function simply operates on volatile data without any side
effects. Using the techniques mentioned in §5.2.1 we try to
keep the performance overhead to minimum in this case.

5.3 Implementing Go-redis-pmem
We implement a multithreaded feature-poor redis server called
go-redis-pmem written using go-pmem. go-redis-pmem cur-
rently supports storing/retrieving string KV pairs in pmem
and can run traffic generated from memtier benchmark. It cur-
rently has 6800 lines of code across 11 files and 360 functions.
As we were implementing go-redis-pmem, we realized that as
the applications become complicated it becomes increasingly
difficult to keep track of exactly which variables and pointers
are in persistent memory. Our desire to support function calls
and ability to reuse functions for data in volatile and persistent
memory was driven by the implementation of go-redis-pmem
and the ease this offered to the programmer.

5.4 Limitations
go-pmem is a work in progress and will continue to evolve as
we gain more experience in programming applications for per-
sistent memory. Below, we enumerate the current limitations
of go-pmem:

1. No support for shrinking persistent heap file after they
have grown. We believe an offline application working
like a compacting garbage collector can fix this.

2. No support for allocating/transactionally using Go’s
maps or channels in pmem. go-pmem currently supports
basic Go types, structs, and Go slices.

3. No support for working with multiple persistent heaps
4. No support for operating systems other than 64-bit

Linux.
5. No support for redo/custom implementation of transac-

tions with the txn code block.
6. We do not handle the case when there are traditional

I/O operations (like network, display, etc.) inside a trans-
action and then there is a crash. Previous works have
handled this by throwing an exception [34] and by pro-
viding safe IO [44]. We can do something similar.

6 Evaluation
We use the benchmarks from Computer Language Bench-
marks Game (CLBG) [5] as the microbenchmarks to compare
the performance of our memory allocator and transactions.

USENIX Association 2020 USENIX Annual Technical Conference 867

5 10 15 20

10−2

10−1

100

101

102

Depth of largest tree

R
un

ni
ng

tim
e

(s
)

PMDK go-pmem
Makalu Mnemosyne

Figure 5: Runtime as depth of largest
tree changes

4 6 8 10

10−2

10−1

100

101

102

Size of array

R
un

ni
ng

tim
e

(s
)

PMDK go-pmem
Mnemosyne

Figure 6: Runtime as num. of permuta-
tions in fannkuch-redux changes

103 104 105 106 107

10−3

10−2

10−1

100

101

102

Num. array elements (also num. swaps)

R
un

ni
ng

tim
e

(s
)

PMDK go-pmem
Mnemosyne

Figure 7: SPS Benchmark: Overhead
of transactions

CLBG has gained wide attention for comparing the perfor-
mance of different programming languages [39]. Go has also
used some of these benchmarks to optimize their implementa-
tion in the past [23]. We extend some of these benchmarks to
test how they perform when run on pmem, and don’t focus on
others as they test other language features such as arithmetic
precision, hashtable performance etc. which is not our focus
here. To test multicore scalability of go-pmem, we use the
microbenchmarks from the Phoenix suite [41]. The phoenix
suite was originally written to evaluate the MapReduce model
for multi-core systems. We use the pthread version of these
benchmarks to port to various pmem libraries. We also com-
pare the performance of go-redis-pmem with other Redis im-
plementations. In these evaluations, we ensure there is no
remote persistent memory traffic by keeping only one CPU
socket on. We compare our work against PMDK stable ver-
sion (1.7 release commit bc5e30948) and we write code in
C++ using C++ bindings from PMDK (stable version 1.8
commit ab4ff69b7) [22]. The Mnemosyne examples build on
implementation code from [7] and Makalu examples run on
implementation code from [16].

6.1 Experimental Setup
Our system is a 24-core Intel Cascade Lake machine with
hyperthreading disabled and only one socket to avoid remote
pmem traffic. It has 4 Intel c© OptaneTM DC Persistent Mem-
ory Module, each of 128GB, and 64GB of DRAM. In all the
runs, the deviation observed across runs was <2%. We report
the average runtime across 3 runs.

6.2 Change in Compile Time
The compilation time of Go source code increased by 3.4%
(from 42.71s to 44.16s) because of all our changes to Go
compiler. In the compilation of go-redis-pmem (which has
6800 lines of code and 11 files), we did not see any noticeable
difference in the compile time with and without the new ssa
pass. The difference was <1% (0.71s vs 0.713s). These num-
bers were obtained for a fresh compilation with go’s build

cache cleaned. With the build cache enabled, the observed
difference was even smaller (less than 1ms).

6.3 Memory Allocator Performance
The Binary Tree allocator microbenchmark from CLBG
stresses the pmem allocator by creating several perfect bi-
nary trees. One of these stresses memory to see maximum
memory available. One is a long-lived binary tree and there
are several short-lived trees which are created and then deal-
located. Figure 5 compares the performance of go-pmem’s
pmem allocator to PMDK, Mnemosyne and Makalu. We note
that because go-pmem can garbage collect pmem we did not
have to free any tree nodes. Makalu and go-pmem do not
write to pmem for each new allocation and so are at least
an order of magnitude faster than PMDK and Mnemosyne.
PMDK must do all allocations and deallocations within a
transaction and performs the worst.

6.4 Performance of Transactions
6.4.1 Long Running Transactions
We use fannkuch from CLBG and sps to model programs with
a long-running transaction. Fannkuch takes a byte array of
size n and shuffles around elements for all n! permutations of
this array. We model all this to happen inside a single transac-
tion. This lends it the behavior of a long running transaction.
We also noticed that both PMDK and go-pmem use undo
logs and maintain minimal state in pmem (only the oldest
value of the array) whereas Mnemosyne uses redo log and
quickly starts to use a lot of pmem. The sps microbenchmark
has been used previously [30, 31] to report throughput of
transactions. sps randomly performs swaps between entries
of an integer array. The number of these swaps is equal to the
number of elements. We change the number of elements in
this array from 1k to 10 million and do all the swaps within
one single transaction. So unlike Fannkuch, the size of data
being operated on also increases as the transaction becomes
longer. Figures 6 and 7 compare the running time of Fannkuch

868 2020 USENIX Annual Technical Conference USENIX Association

103 104 105 106 107
10−2

10−1

100

101

102

Num. steps

R
un

ni
ng

tim
e

(s
)

PMDK go-pmem Mnemosyne

Figure 8: n-body: Runtime as num. of
steps a planet moves varies

103 104 105 106 107 108
10−2

10−1

100

101

Num. array elements (also num. swaps)

R
un

ni
ng

tim
e

(s
)

PMDK go-pmem

Figure 9: Tx recovery time after abort
at the last swap

256MB 1GB 4GB
0

2

4

Heap Size (GB)

R
ec

ov
er

y
Ti

m
e

(s
)

Makalu go-pmem

Figure 10: Restart time comparison us-
ing fill-heap

and sps for PMDK, Mnemosyne and go-pmem. We note that
Mnemosyne curves stop early as the public implementation
does not support large amounts of data within a transaction.
Similar results for Mnemosyne were reported in [31]. The
PMDK curves stop early as the default PMDK implementa-
tion does not allow creating a pmem file of 2GB or larger. For
both these cases, we consistently outperform PMDK by 3-4x
as the transactions become larger.

6.4.2 How Much Data do Applications Store to pmem?
We also want to highlight that the existing programming
models are inept for long-running applications like the ones
we model above. PMDK asks the user to specify the pmem
file size at the beginning. It crashes if this size is exceeded.
Mnemosyne always creates a pmem file of fixed size. We
think it is very difficult to predetermine the pmem capacity
that commercial applications will use. With the ability to
grow pmem heaps (§4.3.1), our programming model is more
flexible.

6.4.3 Several Short Transactions
We use n-body microbenchmark from CLBG to model a pro-
gram with several short transactions. For short transactions,
the overhead in setting up the transactions is not amortized,
and we try to capture this overhead here. n-body models the
orbits of planets using an algorithm. The input is the number
of steps that the planets move from a starting point and the out-
put is the new coordinates of the planets. We change one step
movement of the planets to be one transaction. Figure 8 shows
the running time as we vary the number of small transactions.
go-pmem consistently performs 2-3x faster than PMDK and
Mnemosyne even as the number of small transactions in the
application increase to 10 million.

6.5 Multicore Scalability
We run all 7 benchmarks from the Phoenix 2.0 suite [41] to
evaluate how go-pmem scales on multithreaded benchmarks.
We modified these benchmarks to keep the data manipulated
by each thread in pmem. Figure 13 captures the relative run-

ning time of PMDK compared to go-pmem. All benchmarks
use 24 threads and run on the largest input configuration pro-
vided by Phoenix. Unlike PMDK and go-pmem, Mnemosyne
stores more data in its redo logs and we were not able to
get it running on any of these benchmarks. go-pmem scales
much better than PMDK on all benchmarks other than linear
regression. Linear regression stores very little data on pmem
and incurs minimal transactional overheads. The benchmark
kmeans uses 2D arrays in pmem and is significantly slower
for PMDK. PMDK uses fat pointers and accessing 2D arrays
requires multiple indirections. Although figure 13 shows
results with 24 threads, we ran the benchmarks varying the
number of threads from 2 to 24. The results with different
thread counts are similar to the results shown in figure 13.

6.6 Restart Time Comparison
6.6.1 Undo Transaction Recovery Time After a Crash

We reuse sps benchmark from §6.4.1 to measure time spent
by undo transactions in PMDK and go-pmem to revert back
to consistent application state. We change the number of
integers swapped in sps and crash at the last integer swap. Fig-
ure 9 shows go-pmem performs at par with PMDK when the
amount of data to recover is less but gets slower by 20% as the
amount of data to recover increases. We have not optimized
the recovery path too much as this is not the common path.
One obvious optimization is to store application data in cache-
line aligned chunks. This will reduce the number of writes to
pmem when we write back the consistent data during restart.
Optimizing this path without affecting the performance of
common cases remains on our future agenda.

6.6.2 Restart Time of Persistent Heaps

We use fill-heap benchmark from Makalu [26] to compare
the restart time as the size of the persistent heap changes. fill-
heap creates 64-byte objects to fill up a specified heap size.
It makes half of these objects reachable from the pmem root
objects. On restarting the fill-heap application, we measure
the time taken by go-pmem, PMDK, and Makalu to recover

USENIX Association 2020 USENIX Annual Technical Conference 869

1 2 3
0

1

2

·104

Database Size (GB)

R
es

ta
rt

Ti
m

e
(m

s)

Go Redis Go Redis (swizzle)
C Redis SSD C Redis Pmem (Block)
PMDK Redis

Figure 11: Comparing restart time of various Redis ver-
sions

20 24 28 212

0

20

40

60

Data size (Bytes)

T
hr

ou
gh

pu
t(

M
B

/s
)

SSD Pmem as block IO
PMDK-Redis go-redis-pmem

Figure 12: Redis throughput comparison against memtier
benchmark

17.44

histogram kmeans linear
regression

matrix
multiply

pca string
match

word
count

1

2

3

4

R
el

at
iv

e
ru

nn
in

g
tim

e

go-pmem PMDK

Figure 13: Relative comparison on Phoenix benchmarks

the pmem heap. As seen in figure 10, go-pmem recovers
the pmem heap much faster than Makalu as Makalu has to
go through an expensive offline GC phase. PMDK recovers
almost instantaneously, because their allocator is inherently
transactional, and hence incurs minimal startup cost.

6.6.3 Restart Time of Redis Variations
To measure how go-pmem heap’s recovery fares on a pmem
application, we compared the restart time of go-redis-pmem
against various other Redis configurations as shown in figure
11. Go Redis swizzle measures the cost of swizzling pointers
by force mapping all arenas at a different address than where
it was originally mapped. C Redis SSD persists its data as an
AOF file on SSD, whereas C Redis Pmem block persists the
AOF file on pmem used in block IO mode.

6.7 Go Benchmarks
We run a set of 4 macro-benchmarks used by Go commu-
nity to monitor Go performance regressions as new features
are added to the compiler [9]. These benchmarks stress the
memory allocator, GC, compiler, etc. Table 2 compares perfor-

Benchmark go-1.11 go-pmem delta
Build-24 23.9s 23.9s 0%

Garbage-64 23.4ms 23.6ms 0.87%
JSON-24 84.0ms 84.3ms 0.44%
HTTP-24 73.9µs 75.5µs 2.15%

Table 2: Go benchmark comparison

mance of go-pmem versus Go-1.11 upon which our changes
are based on. Our changes add little to no performance differ-
ence in these benchmarks.

6.8 Go-redis-pmem
Figure 12 shows the throughput of go-redis-pmem on the
same memtier benchmark used in figure 1. Even though go-
redis-pmem is multithreaded this configuration uses one client
thread for a fair comparison. We can see that go-redis-pmem
matches the performance of pmdk-redis reconfirming our
observation that if applications use persistent memory in byte
addressable mode, they will perform the best. In data not
shown here, we did see that go-redis-pmem performed better
than pmdk-redis and redis-3.2 when there are multiple client
threads because it is multithreaded.

7 Conclusion
In this work, we presented go-pmem, an opensource exten-
sion to the Go language that allows programmers to develop
pmem applications in Go. go-pmem is a natural extension
of Go for pmem support, following the normal idioms of the
Go language. We present a simple programming model and
demonstrate its effectiveness by developing a feature-poor
Redis equivalent key-value store in Go.

Acknowledgements
We thank the anonymous reviewers and our shepherd
Changhee Jung for their invaluable feedback.

870 2020 USENIX Annual Technical Conference USENIX Association

References
[1] Available first on google cloud: Intel op-

tane dc persistent memory, google cloud blog.
https://cloud.google.com/blog/topics/
partners/available-first-on-google-cloud-
intel-optane-dc-persistent-memory.

[2] A black hole file system that behaves like /dev/null.
https://github.com/abbbi/nullfsvfs.

[3] A brief retrospective on transactional memory.
http://joeduffyblog.com/2010/01/03/a-brief-
retrospective-on-transactional-memory/.

[4] A call for a data persistence study group.
http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2018/p1026r0.pdf.

[5] The computer language benchmarks game.
https://benchmarksgame-team.pages.debian.
net/benchmarksgame/.

[6] Direct access for files, kernel.org. https:
//www.kernel.org/doc/Documentation/
filesystems/dax.txt.

[7] Gcc port of mnemosyne. https://
github.com/snalli/mnemosyne-gcc/tree/
cfed43142cdcb5175f1b7c75cd6a922ce561060e.

[8] The go prgramming language, google. https://
golang.org.

[9] Golang benchmarks. https://github.com/golang/
benchmarks/.

[10] Intel corporation. cpuid library for go prgramming lan-
guage. https://github.com/intel-go/cpuid.

[11] Intel corporation. pmem-redis. https://github.com/
pmem/redis.

[12] Intel optaneTM technology, intel. https://www.intel.
com/optane.

[13] Intel vtune profiler, intel. https://software.intel.
com/en-us/vtune.

[14] Introduction to the go compiler’s ssa backend.
https://github.com/golang/go/tree/master/
src/cmd/compile/internal/ssa.

[15] Jep 352: Non-volatile mapped byte buffers, openjdk.
https://openjdk.java.net/jeps/352.

[16] Makalu : Nvram memory allocator. https:
//github.com/HewlettPackard/Atlas/tree/
makalu/makalu_alloc.

[17] Persistent collections for java. https://github.com/
pmem/pcj.

[18] Persistent memory development kit. https://pmem.
io/pmdk/.

[19] Persistent memory documentation. https:
//docs.pmem.io/persistent-memory/getting-
started-guide/what-is-pmdk.

[20] Persistent memory in linux, snia. https://www.snia.
org/sites/default/files/PM-Summit/2017/
presentations/Coughlan_Tom_PM_in_Linux.pdf.

[21] Persistent memory wiki. https://nvdimm.wiki.
kernel.org/.

[22] Pmdk c++ bindings. https://github.com/pmem/
libpmemobj-cpp.

[23] Programs from "the computer language benchmarks
game", used to be in the main go distribution in
test/bench/shootout. https://github.com/golang/
exp/tree/master/shootout.

[24] Redis labs. https://redis.io.

[25] Redis labs. redis and memcached traffic generation
and benchmarking tool. https://github.com/
RedisLabs/memtier_benchmark.

[26] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J
Boehm. Makalu: Fast recoverable allocation of non-
volatile memory. In ACM SIGPLAN Notices, volume 51,
pages 677–694. ACM, 2016.

[27] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud
Bhandari. Atlas: Leveraging locks for non-volatile mem-
ory consistency. In ACM SIGPLAN Notices, volume 49,
pages 433–452. ACM, 2014.

[28] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vu-
granam C Sreedhar, and Sam Midkiff. Escape analysis
for java. Acm Sigplan Notices, 34(10):1–19, 1999.

[29] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh
Gupta, and Steven Swanson. From aries to mars: Trans-
action support for next-generation, solid-state drives.
In Proceedings of the twenty-fourth ACM symposium
on operating systems principles, pages 197–212. ACM,
2013.

[30] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M
Grupp, Rajesh K Gupta, Ranjit Jhala, and Steven Swan-
son. Nv-heaps: making persistent objects fast and safe
with next-generation, non-volatile memories. ACM Sig-
plan Notices, 47(4):105–118, 2012.

USENIX Association 2020 USENIX Annual Technical Conference 871

https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://github.com/abbbi/nullfsvfs
http://joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory/
http://joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1026r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1026r0.pdf
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://github.com/snalli/mnemosyne-gcc/tree/cfed43142cdcb5175f1b7c75cd6a922ce561060e
https://github.com/snalli/mnemosyne-gcc/tree/cfed43142cdcb5175f1b7c75cd6a922ce561060e
https://github.com/snalli/mnemosyne-gcc/tree/cfed43142cdcb5175f1b7c75cd6a922ce561060e
https://golang.org
https://golang.org
https://github.com/golang/benchmarks/
https://github.com/golang/benchmarks/
https://github.com/intel-go/cpuid
https://github.com/pmem/redis
https://github.com/pmem/redis
https://www.intel.com/optane
https://www.intel.com/optane
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune
https://github.com/golang/go/tree/master/src/cmd/compile/internal/ssa
https://github.com/golang/go/tree/master/src/cmd/compile/internal/ssa
https://openjdk.java.net/jeps/352
https://github.com/HewlettPackard/Atlas/tree/makalu/makalu_alloc
https://github.com/HewlettPackard/Atlas/tree/makalu/makalu_alloc
https://github.com/HewlettPackard/Atlas/tree/makalu/makalu_alloc
https://github.com/pmem/pcj
https://github.com/pmem/pcj
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://docs.pmem.io/persistent-memory/getting-started-guide/what-is-pmdk
https://docs.pmem.io/persistent-memory/getting-started-guide/what-is-pmdk
https://docs.pmem.io/persistent-memory/getting-started-guide/what-is-pmdk
https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Coughlan_Tom_PM_in_Linux.pdf
https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Coughlan_Tom_PM_in_Linux.pdf
https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Coughlan_Tom_PM_in_Linux.pdf
https://nvdimm.wiki.kernel.org/
https://nvdimm.wiki.kernel.org/
https://github.com/pmem/libpmemobj-cpp
https://github.com/pmem/libpmemobj-cpp
https://github.com/golang/exp/tree/master/shootout
https://github.com/golang/exp/tree/master/shootout
https://redis.io
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark

[31] Andreia Correia, Pascal Felber, and Pedro Ramalhete.
Romulus: Efficient algorithms for persistent transac-
tional memory. In Proceedings of the 30th on Sym-
posium on Parallelism in Algorithms and Architectures,
pages 271–282. ACM, 2018.

[32] Joel E Denny, Seyong Lee, and Jeffrey S Vetter. Nvl-c:
Static analysis techniques for efficient, correct program-
ming of non-volatile main memory systems. In Pro-
ceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing,
pages 125–136. ACM, 2016.

[33] SNIA NVM Programming Technical Working Group
et al. Nvm programming model (version 1.2), 2017.

[34] Tim Harris and Keir Fraser. Language support for
lightweight transactions. In ACM Sigplan Notices, vol-
ume 38, pages 388–402. ACM, 2003.

[35] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy,
Kimberly Keeton, and Patrick Eugster. Nvthreads: Prac-
tical persistence for multi-threaded applications. In Pro-
ceedings of the Twelfth European Conference on Com-
puter Systems, pages 468–482, 2017.

[36] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli.
Failure-atomic persistent memory updates via justdo
logging. ACM SIGARCH Computer Architecture News,
44(2):427–442, 2016.

[37] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R Dulloor, et al. Basic per-
formance measurements of the intel optane dc persis-
tent memory module. arXiv preprint arXiv:1903.05714,
2019.

[38] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee,
Michael L Scott, Sam H Noh, and Changhee Jung.
ido: Compiler-directed failure atomicity for nonvolatile
memory. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 258–
270. IEEE, 2018.

[39] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck.
Cross-language compiler benchmarking: are we fast yet?
In ACM SIGPLAN Notices, volume 52, pages 120–131.
ACM, 2016.

[40] Raghu Ramakrishnan and Johannes Gehrke. Database
management systems. McGraw Hill, 2000.

[41] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa,
Gary Bradski, and Christos Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor systems.
In 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, pages 13–24. Ieee,
2007.

[42] Andy Rudoff. Persistent memory programming. Login:
The Usenix Magazine, 42:34–40, 2017.

[43] Thomas Shull, Jian Huang, and Josep Torrellas. Au-
topersist: an easy-to-use java nvm framework based on
reachability. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, pages 316–332. ACM, 2019.

[44] Haris Volos, Andres Jaan Tack, Neelam Goyal,
Michael M Swift, and Adam Welc. xcalls: safe i/o
in memory transactions. In Proceedings of the 4th ACM
European conference on Computer systems, pages 247–
260. ACM, 2009.

[45] Haris Volos, Andres Jaan Tack, and Michael M Swift.
Mnemosyne: Lightweight persistent memory. In ACM
SIGARCH Computer Architecture News, volume 39,
pages 91–104. ACM, 2011.

[46] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo
Chen, Binyu Zang, and Haibing Guan. Espresso: Brew-
ing java for more non-volatility with non-volatile mem-
ory. In ACM SIGPLAN Notices, volume 53, pages 70–83.

ACM, 2018.

872 2020 USENIX Annual Technical Conference USENIX Association

End the Senseless Killing: Improving Memory Management

for Mobile Operating Systems

Niel Lebeck
University of Washington

Arvind Krishnamurthy
University of Washington

Henry M. Levy
University of Washington

Irene Zhang
Microsoft Research

Abstract
To ensure low-latency memory allocation, mobile operating
systems kill applications instead of swapping memory to disk.
This design choice shifts the burden of managing over-utilized
memory to application programmers, requiring them to con-
stantly checkpoint their application state to disk. This paper
presents Marvin, a new memory manager for mobile plat-
forms that efficiently supports swapping while meeting the
strict performance requirements of mobile apps. Marvin’s
swap-enabled language runtime is co-designed with OS-level
memory management to avoid common pitfalls of traditional
swap mechanisms. Its key features are: (1) a new swap mech-
anism, called ahead-of-time (AOT) swap, which pre-writes
memory to disk, then harvests it quickly when needed, (2) a
modified bookmarking garbage collector that avoids swapping
in unused memory, and (3) an object-granularity working set
estimator. Our experiments show that Marvin can run more
than 2x as many concurrent apps as Android, and that Mar-
vin can reclaim memory over 60x faster than Android with a
Linux swap file can allocate memory under memory pressure.

1 Introduction

Over the past decade, mobile apps have become bigger and
more complex [28], far outpacing increases in mobile de-
vice memory [4]. This trend has increased memory pressure
on mobile operating systems as apps compete for limited
space. Going forward, mobile OSes must more efficiently
share memory across demanding apps, or user experience
will suffer.

Unfortunately, while mobile apps have become more so-
phisticated, mobile memory management remains in its in-
fancy. Today’s popular mobile OSes set a fixed upper bound
on memory for each running application (e.g., 1.4GB for iOS
running on an iPhone X [36] and 512MB for Android running
on a Google Pixel XL). They never overcommit memory;
instead, they kill running applications and restart them later.

This simplistic approach worked well when mobile apps
were small and largely stateless. However, it is unsustainable

as mobile OSes replace desktop ones (e.g., Android is now
the most used OS in the world) and mobile apps replace
desktop counterparts (e.g., Google Docs and Word Online
replacing Microsoft Word). Today’s apps already do not fit
into their memory allocation, so they manually swap objects
between memory and local storage or use libraries to meet
their needs [11]. Because apps are increasingly likely to be
killed due to memory pressure, they must also continuously
save execution state to disk and strive to minimize their start-
up times to cope with frequent restarts. Despite significant
engineering effort [21, 27, 32], it still takes several seconds to
kill and restart popular apps.

Improving mobile memory management is difficult. Mo-
bile apps run in high-level language runtimes (e.g., Swift,
ART), which limit OS insight (e.g., working set estimation is
impossible) and are notoriously difficult for OS-level memory
managers to work with [20]. Further, mobile apps often allo-
cate large amounts of memory quickly (e.g., when starting,
or for cloud downloads); unless the OS keeps a large pool
of free memory, this is easier to accommodate by killing en-
tire applications. Finally, touch-based interfaces impose strict
latency requirements, which swapping to disk cannot meet.

In this paper, we improve mobile memory management
with a key observation: unlike other operating systems, mo-
bile OSes run all of their apps in a common language runtime.
For example, all apps running on Android must run in the
Android Runtime (ART). This difference lets us co-design the
language runtime to assist the mobile OS in optimizing mem-
ory management instead of hindering it. Due to its knowledge
of memory usage, the language runtime becomes an ideal
place for mechanisms that can better manage memory.

This paper demonstrates the value of leveraging the runtime
for OS tasks. We present Marvin, a new memory manager
for Android that efficiently supports memory overcommit.
Marvin implements most memory management in the lan-
guage runtime, which has more insight into an application’s
memory usage. Marvin relies on the operating system only
for cross-application resource allocation.

By integrating with the language runtime, Marvin can offer

USENIX Association 2020 USENIX Annual Technical Conference 873

● ●
● ● ● ● ● ● ● ● ● ●

● ●
●

●

●

●

● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

1e+02 1e+04 1e+06
Object size (bytes, log scale)

C
u

m
u

la
ti
ve

 h
e

a
p

 f
ra

c
ti
o

n

App

● amazon
candycrush
googlemaps
instagram
pinterest
spotify
twitter
washingtonpost

Figure 1: CDF of object size and heap percentage occupied
by objects that size or smaller.

three new features that enhance memory management:

• A new swap mechanism, which performs ahead-of-time

swapping to disk to avoid synchronous disk writes when
reclaiming memory, and which leaves checkpointed ob-
jects in memory (unlike Linux’s kswapd [18]).

• A new object-level working set estimator, which sep-
arates garbage collector (GC) and app accesses, and
avoids false sharing with object-level access tracking.

• A new bookmarking garbage collector [20], which tracks
exact liveness data without accessing swapped-out ob-
jects.

We implement a prototype of Marvin by modifying the inter-
preter and compiler of the Android Runtime (ART). Experi-
ments show that our Marvin prototype is able to run more than
2x as many concurrent apps as Android, and that Marvin can
reclaim memory over 60x faster than Android with a Linux
swap file can allocate memory under memory pressure.

2 Limitations of Modern Mobile

OS Memory Resource Management

Although mobile OSes may be based on traditional OSes (e.g.,
Android and Linux), they diverge in two important ways:
(1) for each app, they bound memory usage to a fraction
of physical memory (e.g., 512MB on a 4GB device), rather
than letting apps allocate as much memory as they need, and
(2) they kill applications when physical memory runs out
rather than overcommitting memory through paging or other
mechanisms. To motivate our work, we ran experiments with
popular apps that show the reasoning and cost for these design
decisions. We ran all experiments on a Pixel XL phone with
4GB RAM and a quad-core Qualcomm Snapdragon 821 CPU.

2.1 Fixed Memory Allocation

Mobile OSes have poor insight into app memory usage. The
runtime garbage collector regularly touches all objects and

0

30

60

90

120

am
az

on

ca
nd

yc
ru

sh

go
og

le
m

ap
s

in
st
ag

ra
m

pi
nt

er
es

t

sp
ot

ify

tw
itt
er

w
as

hi
ng

to
np

os
t

M
e

m
o

ry
 (

M
B

)

Min. read WS

Heap size

Figure 2: The cost of fixed allocation. Each bar shows the
total Java heap size of a popular app alongside its minimum
Java working set during active use.

moves objects for heap compaction, and the OS cannot dis-
tinguish this activity from app accesses. Mobile apps also
access language-level objects, which vary in size, while the
OS can only track memory accesses at page granularity. To
understand the impact of object-level accesses on page-sized
access tracking, we measured the size of objects in popular
apps. Figure 1 shows a CDF of the size distribution. Most ob-
jects are not page-sized (e.g., up to 40% of objects are smaller
than 4KB), so the OS cannot accurately track their usage.

Without good insight into app memory usage, today’s mo-
bile OSes allocate all apps a fixed memory budget. On An-
droid, this memory limit is the same whether an app is in the
foreground or background. Android attempts to minimize the
memory footprint of apps using techniques such as forking
all apps from a single “zygote” process with copy-on-write
pages. These techniques reduce duplication of framework
data structures and shared libraries but do not impact appli-
cation objects in the Java heap. Using Marvin’s object-level
working set estimator, we measured the working set of popu-
lar apps. Figure 2 shows that although the heap footprint of
these apps is large, their working sets actually account for a
small fraction of their total heap size. This rarely accessed
memory would be better utilized keeping other apps alive,
rather than wasting space not being used.

Popular apps often have large memory footprints but small
working set sizes because they cache as much as possible
from the cloud. This caching improves performance, but it
leads to poor memory utilization, and choosing the correct
cache parameters is difficult [30]. Worse, modern applications
frequently exceed their memory budgets. Coping with this
problem requires apps to implement manual swap-to-storage,
which adds significant programming complexity [10, 11].
While caching libraries like Glide [5] and Fresco [34] are
helpful, they do not apply to all memory objects. Therefore,
today’s apps use a complex combination of libraries and man-
ually shuffling data between memory and disk.

874 2020 USENIX Annual Technical Conference USENIX Association

0

100

200

300

400

500

0 2000 4000 6000 8000
Time (ms)

M
e

m
o

ry
 a

llo
c
a

te
d

 (
M

B
)

Memory pressure
No pressure

Figure 3: Progress over time of a memory allocation on An-
droid with a swap file and memory pressure vs. no memory
pressure.

2.2 No Memory Overcommit

Today’s mobile OSes kill applications rather than swapping
to disk when physical memory runs out. They take this ap-
proach because mobile apps must respond to user input within
hundreds of milliseconds, so traditional swap mechanisms,
which place synchronous disk writes on the critical path, im-
pose too much latency. To measure the effect of swapping
on memory allocation, we enabled a Linux swap file on our
Android test device [35], and we measured the amount of time
required to allocate 512MB when the Android OS had free
memory and when it had a swap file and memory pressure.
Figure 3 shows the progress of the memory allocation over
time. With memory available, the OS allocated all 512MB
in 450ms; however, with a swap file and memory pressure, it
took almost 8 seconds for the OS to allocate the same amount.
Such high allocation latency would be unacceptable if an app
were allocating memory in response to user input.

Unfortunately, killing and restarting apps comes at a cost.
As shown in Figure 2, modern apps have large memory foot-
prints, and a restarted app must fetch all of its cached data
from the network or disk. We measured the amount of time
needed to restart popular apps and compared it to that needed
to fetch their entire checkpointed memory image from disk.
As shown in Figure 4, restarting apps takes 4-27x longer than
fetching the all of the app’s memory from disk.

The ability to kill and restart apps at any time also imposes
a programming burden on app developers. Modern OSes give
apps a limited time budget to perform cleanup before being
killed. This limit leads apps to constantly write state to stor-
age; in fact, Android encourages it [9]. Such constant check-
pointing in response to app lifecycle events adds program-
ming complexity, a challenge described in prior work [14].
Not only do app developers have to manage the checkpointing
process, they have to correctly use a variety of mechanisms to
do so with good performance [12]. The programming effort
required to prepare for unexpected app deaths is an additional
cost that app developers must pay.

0

4

8

12

Am
az

on
 A

pp
 S

to
re

C
an

dy
 C

ru
sh

 S
ag

a

G
oo

gl
e

M
ap

s

In
st
ag

ra
m

Pin
te

re
st

Spo
tif
y

Tw
itt
er

W
as

hi
ng

to
n

Pos
t

A
p

p
 s

w
it
c
h

 t
im

e
 (

s
)

App startup time
Disk read time

Figure 4: The cost of re-starting apps compared to reading
their memory image from disk.

3 Our Approach

The primary barrier to improving memory resource manage-
ment in mobile operating systems is the OS’s lack of insight
into the language runtime. To overcome this barrier, we co-

designed the language runtime and the mobile OS. Mobile
operating systems are uniquely suited to such co-design be-
cause, unlike their desktop counterparts (e.g., Linux), they
force all applications to use the same language runtime.

Marvin’s design focuses on Android (and the Android
Runtime (ART)), which is now the most popular OS in the
world [25]. Using the language runtime, Marvin manages
memory entirely at object granularity, tracking, reclaiming
and faulting in entire objects. This section describes in more
detail the barriers to better memory resource management in
a mobile OS and how Marvin addresses those challenges.

3.1 Object-Level Working Set Estimation

The first step to better memory resource management is a
better understanding of each application’s working set. Thus,
Marvin implements language-aware working set estimation
in the language runtime, which tracks app reads and writes
at object granularity. Marvin uses this mechanism to identify
candidates for ahead-of-time swap (Section 3.2) and separate
garbage collector accesses from app accesses (Section 3.3).
Lacking hardware access bits to help with this tracking, Mar-
vin implements software access tracking in both the ART in-
terpreter and compiler, as modern mobile language runtimes
run both interpreted and compiled code.

3.2 Ahead-of-time Swap

As noted, swapping to disk when the OS needs memory is not
feasible for mobile OSes and their touch-based apps. Marvin
takes a different approach. While traditional swapping mech-
anisms write to disk when memory is needed, Marvin uses
a new ahead-of-time swap technique. This technique saves
memory to disk before it is needed and then reclaims those

USENIX Association 2020 USENIX Annual Technical Conference 875

pages under memory pressure. Ahead-of-time swap separates
swapping to disk from reclaiming memory; thus, we distin-
guish between saved objects, which have been copied to disk
but still reside in memory, and reclaimed objects, which no
longer reside in memory but are only on disk.

Swapping objects before they are needed leaves a large
pool of clean memory that the OS can quickly reclaim and
reallocate. While this technique lets apps continue using mem-
ory until the OS reclaims it, whenever the app dirties a page,
the swap mechanism must update the on-disk copy before the
OS can reclaim it. Due to this trade-off, Marvin prioritizes
swapping objects that are infrequently or never written.

3.3 Bookmarking Garbage Collector

Like traditional swapping, ahead-of-time swapping is affected
by friction with the language-level garbage collector. As noted
by Hertz et al. [20], the garbage collector can inadvertently
page in memory when walking the object heap to look for
unused objects. With ahead-of-time swapping, the garbage
collector can also inadvertently dirty pages when updating
references, causing unnecessary writes to disk. Marvin solves
this problem by integrating a modified bookmarking garbage
collector [20] into the Android Runtime.

Marvin’s swap mechanism leaves stubs – analogous to
bookmarks – for each reclaimed object that detail the objects’
references to other objects. Using these stubs, its garbage
collector can process a reclaimed object during a mark-and-
sweep run without faulting in the entire swapped object. Mar-
vin’s swap mechanism can further optimize swapping from
disk by dropping dead objects without faulting them in.

4 Marvin Overview

Marvin is a new mobile memory manager that supports flexi-
ble memory allocation between apps and memory overcom-
mit through swapping. Marvin includes components in the
language runtime and OS, which are co-designed to provide
better memory management. This section overviews both.

4.1 Design Goals

Marvin’s design meets the following goals:

1. Fast memory allocation. Marvin must allocate mem-
ory quickly on-demand, avoiding disk accesses on the
critical path for memory allocation.

2. High memory utilization. Marvin must provide the il-
lusion of unlimited memory, provided working sets do
not exceed the size of physical memory.

3. Minimal overhead. Marvin must impose low runtime
overhead and require no app code changes.

While the last two goals are common to all memory man-
agement systems, existing mobile platforms sacrifice high
memory utilization for fast memory allocation. Marvin aims
to achieve all of these goals.

4.2 Marvin System Model

Marvin assumes a systems environment that meets three re-
quirements: (1) all apps are written in a single managed
language (e.g., Java), (2) all apps run in a single managed
language runtime (e.g., ART), and (3) the runtime performs
garbage collection or some form of automatic memory man-
agement. Marvin’s design targets Android, which meets all
of these requirements. Android also runs some libraries us-
ing native code; however, Marvin is not needed to manage
their memory because they do not have the same issues with
OS-level memory management as managed languages.

Marvin’s optimizations could apply to other operating sys-
tems as well (e.g., iOS). For example, Swift uses automatic
reference counting as an alternative to garbage collection, so
it would require a bookmarking reference counter that can
track references without faulting in the entire object.

Marvin runs unmodified Android apps on ARM64-based
devices. Android distributes apps in a bytecode format called
DEX. ART runs DEX bytecode directly in an interpreter
and also compiles DEX to native ARM64 instructions both
at install time (ahead-of-time, or AOT, compilation) and at
runtime (just-in-time, or JIT, compilation). Marvin modifies
both the interpreter and compiler.

4.3 Marvin Architecture

Marvin has two key components: (1) the Marvin Kernel (MK),
a modified Android/Linux kernel, and (2) the Marvin Runtime

(MRT), a modified ART. Most memory management occurs
in MRT; it performs working set estimation, ahead-of-time
swapping, and bookmarking garbage collection. MK’s sole
responsibility is to balance memory allocation among apps
by deciding when and from which app to reclaim memory.

Marvin performs working set estimation and swapping
at object granularity; however, there is no CPU support for
object-level access bits and memory faults. As a result, Mar-
vin implements software object access tracking and faulting
in the MRT interpreter and compiler. The interpreter marks
access bits and checks for swapped-out objects as it runs DEX
bytecode; the compiler inserts that functionality as additional
ARM64 instructions. Marvin reserves four bytes in each ob-
ject header and uses them to store swapping metadata and
access bits. Implementing these features in software imposes
overhead, which we quantify in Section 8. Hardware improve-
ments in future mobile devices could reduce this overhead.

876 2020 USENIX Annual Technical Conference USENIX Association

Swap out

Save objects Create stubs Reclaim Swap in

Swap in

Need memory Access page

Move to
foregroundNeed memory

Traditional

swapping

Marvin

swapping

Move to
background

Swap in

Access object

Scan WSE bits
(during GC)

Set WSE bits

Access object

Scan WSE bitsSet WSE bits

Access page

Object state In Memory Reclaimable Reclaimed Reclaimable

Figure 5: A timeline of actions performed by Marvin’s swap mechanism as compared to traditional (e.g., Linux) swap mechanisms.
Events are listed above the timeline while Marvin’s actions in response are listed below.

4.4 Marvin Memory Management Timeline

Objects managed by Marvin move through several states over
time, driven by app behavior and app lifecycle events. Figure 5
illustrates these events and states and compares Marvin’s
swapping to a traditional swap mechanism. When an app
first starts, MRT begins tracking its working set. It identifies
objects that are suited for swapping by examining whether
they are cold (have not been read or written recently by the
app). MRT begins saving checkpoints of those objects to
disk in the background. We refer to an object with a saved
checkpoint as a saved object.

When the app moves from foreground to background, MRT
pauses app threads and creates stubs, small proxy objects that
add a layer of indirection over swap candidate objects. Stubs
ensure that Marvin can intercept accesses to objects and fault
them back in, if necessary. Once MRT creates a stub for
an object, that object becomes reclaimable; the object is still
memory-resident, but MK can reclaim its memory at any time.
When MK reclaims an object, it enters the reclaimed state;
only the object’s stub remains in memory, and the object’s
checkpoint will need to be faulted back into memory before
the object can be accessed again. The garbage collector uses
only the stub and need not fault the object back into memory.

5 Marvin Core Mechanisms

As noted in Section 3, Marvin’s key features are ahead-of-time
swap, language-aware working set estimation, and bookmark-
ing garbage collection. Designing these features required
addressing three challenges: adding a layer of indirection for
object references, coordinating between the OS and runtime,
and interposing on object accesses. This section describes
Marvin’s mechanisms for addressing these challenges.

5.1 Stubs for Object Reference Indirection

According to the Java language specification, object refer-
ences are opaque. However, in practice, object references in

the Android Runtime are direct pointers to the heap memory
holding the referenced object. This design requires Marvin
to inject a layer of indirection to implement features like soft-
ware object faulting and the bookmarking garbage collector.
Marvin creates this layer of indirection using special objects,
called stubs. Each stub contains a pointer to its underlying
object along with a copy of each reference held by the object.
All references to an object point instead to its stub, and only
the stub holds a pointer to its underlying object. Accessing an
object through a stub adds overhead, so Marvin creates stubs
only for objects that are cold and at least 2KB in size.

When creating a stub for an object, Marvin moves the
object to a separate page-aligned region of memory and then
redirects all references to the object to point to its stub instead.
These tasks require that all app threads be paused. Therefore,
they can be performed more efficiently if Marvin can create
stubs for many objects at once, using a single scan of the
heap to redirect all affected references. As a result, Marvin
periodically executes a heap task that pauses all app threads
and creates stubs, and it executes this heap task only when the
app is in the background and its threads can be safely paused.
Stubs are only created once for each object, so the cost is low,
especially because Marvin does not restart apps frequently.

5.2 Reclamation Table for OS-Runtime Coor-

dination

Modern mobile platforms have multicore processors that let
system services run concurrently with apps. In this environ-
ment, the OS should be able to reclaim memory quickly from
a running app without scheduling the app’s threads for execu-
tion. However, the OS cannot simply seize memory from an
app whose threads are not scheduled—a pointer to the mem-
ory in question may be present in an app thread’s stack or
registers, waiting to be used as soon as the thread is scheduled
once again. As a result, the OS and runtime need a way to
coordinate concurrent accesses to objects so the OS does not
try to reclaim one that the runtime is accessing.

Marvin uses a shared-memory reclamation table to provide

USENIX Association 2020 USENIX Annual Technical Conference 877

this coordination. MRT populates the table with reclaimable
objects, and MK uses it to identify memory to reclaim. Each
reclamation table entry is a small, fixed-size data structure that
holds the address of an object, its size, a set of flags indicating
whether the object is memory-resident and the entry is valid,
and a set of bits used for locking by the runtime and OS. To
reclaim an object, MK first acquires an exclusive lock on the
object’s reclamation table entry. Similarly, whenever an app
thread prepares to access an object, MRT acquires a shared
lock on the reclamation table entry.

The reclamation table is necessary because it provides an
agreed-upon location that MK can quickly scan to identify
reclaimable objects. If the metadata in the reclamation table
were instead stored inside the stubs themselves, then MK
would need to scan MRT’s entire Java heap to identify re-
claimable objects, and stub headers would need to contain a
magic number or provide some other way for the kernel to
recognize them.

5.3 Object Access Interposition

All of Marvin’s features require the runtime to interpose and
perform specific tasks whenever an app accesses an object.
On every object access, MRT must set read and write bits
for working set estimation; check for the presence of a stub
and redirect the object access through the stub if necessary;
and fault in the object if it has been reclaimed. It must also
set a dirty bit whenever an object is modified so the ahead-
of-time swap mechanism knows which objects need to be
saved, and it must update stubs whenever reference member
variables in their corresponding objects change to support the
bookmarking garbage collector.

Android apps execute both as DEX bytecode running in an
interpreter and as compiled native code running directly on the
hardware, and Marvin must interpose on all object accesses
in both kinds of code. As a result, Marvin features a set of
paired interpreter and compiler modifications that add the
required object access interposition. For each additional task
performed by the interpreter when it accesses an object, there
is a corresponding change to the compiler, adding assembly
instructions performing the same task to compiled code.

6 Marvin Memory Management

This section describes how we use Marvin’s mechanisms
(stubs, the reclamation table, and object access interposition)
to design the features that make up Marvin’s memory man-
agement system.

6.1 Working Set Estimation

MRT performs object-granularity working set estimation by
maintaining two access bits in each object header, a read bit
and a write bit, and scanning those access bits.

Setting access bits. MRT uses object access interposition
to set an object’s read and write bits whenever that object is
read or written from either interpreted or compiled code. It
avoids including garbage collector reads in its working set
estimation by setting a flag in the object header when the
garbage collector is visiting an object and leaving the read bit
untouched if that flag is set.

Access tracking in MRT is performed on a best-effort basis
to minimize its overhead: MRT uses non-atomic operations
with relaxed memory ordering semantics when setting read
and write bits. As a result, concurrent reads and writes to the
same object could result in a lost update to one of the access
bits. An update to the read bit could also be lost if an app
thread reads an object that the garbage collector is processing.
These optimizations may decrease swapping performance if
the estimated and actual working sets differ significantly, but
they do not affect correctness.

Scanning access bits. MRT periodically walks the heap
and uses the Clock algorithm [8] to track each object’s long-
term usage. Each object header holds two four-bit shift regis-

ters, one for reads and the other for writes. The time between
heap walks constitutes an access-tracking “round,” and each
shift register tracks whether the object was read or written in
the last four rounds. During a heap walk, MRT updates an
object’s shift registers and then clears the object’s access bits.

MRT piggybacks off of garbage collection to scan access
bits, since GC requires walking the heap anyways. Some of
ART’s GCs only walk subsets of the heap, so MRT limits its
access bit scanning to full-heap collections. It also periodi-
cally invokes GC to ensure up-to-date working set estimates
in the absence of app activity.

Producing the working set. As MRT walks the heap and
scans access bits, it tabulates the app’s working set. Our cur-
rent MRT implementation considers an object part of the
working set if it has been written within the last four access-
tracking rounds. The precise policy is an implementation
detail that can be easily changed.

6.2 Ahead-of-Time Swapping

In Marvin’s ahead-of-time swap mechanism, MK reclaims ob-
jects and decides which apps to target for reclamation. MRT
performs all other functions, including saving object check-
points to disk, restoring reclaimed objects, and preventing the
operating system from reclaiming objects in use by app code.

Saving objects to disk. MRT identifies suitable objects for
swapping (i.e., cold objects) using its working set estimation
feature, and it proactively saves checkpoints of them to a swap
file on disk so they can be reclaimed quickly under memory
pressure. MRT saves objects to disk in a periodic heap task
that runs on a background thread concurrently with app code.

878 2020 USENIX Annual Technical Conference USENIX Association

After app code modifies an object, MRT must save an up-
dated copy of that object to disk. It does not need to save the
updated copy immediately as long as it prevents the kernel
from reclaiming the object while it is “dirty.” To do so, MRT
maintains a dirty bit in the object header. It uses object access
interposition to set this dirty bit whenever app code writes to
an object, and its object-saving heap task clears this dirty bit
when saving the object to disk. MK checks dirty bits when
looking for objects to reclaim and avoids reclaiming dirty
objects. MRT and MK use strong memory-ordering seman-
tics when reading and writing the dirty bit to ensure that no
modifications to objects are lost.

MRT begins saving swap candidate objects to disk even be-
fore those objects have had stubs created for them. Once MRT
creates a batch of stubs, those objects become immediately
reclaimable without requiring further disk I/O.

Reclaiming objects. MK selects apps to target for recla-
mation and reclaims objects from the MRT instances corre-
sponding to those apps. It never targets the foreground app, in
order to avoid any swapping delays on the foreground app’s
user interface (UI) thread. After selecting an MRT instance to
target, MK scans the MRT instance’s reclamation table until
it finds an entry for an object that is neither dirty nor locked
by the runtime. MK then locks that entry and reclaims the ob-
ject’s pages. It continues scanning the reclamation table and
reclaiming objects until it has harvested the desired amount
of memory from the MRT instance.

Each MRT instance ensures that MK does not reclaim
an object currently being accessed by its app code. To do
so, it uses object access interposition to detect whenever a
reclaimable object is being read or written, and it locks the
object’s reclamation table entry before the access and unlocks
its entry after the access.

Restoring objects. MRT restores reclaimed objects either
eagerly or on-demand. Either way, whenever MRT restores an
object, it locks the object’s reclamation table entry, copies the
saved checkpoint data of the object into memory, and copies
any modified references from the object’s stub into the object
itself. This last step is necessary because references in the
stub may have been modified by the garbage collector while
the object was not memory-resident.

Marvin’s eager object restoration uses app lifecycle infor-
mation to restore objects before app code needs them. We
implemented a simple eager restoration policy, where an MRT
instance restores all reclaimed objects when it transitions to
the foreground. This policy increases the transition delay in
exchange for a guarantee that no swapping delays will block
the foreground app’s UI thread. Our design is flexible and
could support more advanced policies; for instance, the run-
time could predict which objects are likely to be touched
immediately after a foreground transition and restore those

objects first, trading off a shorter pause time in exchange for
the risk of user-perceptible stuttering.

If an object has not been eagerly restored, MRT restores
it on-demand when app code accesses it, a process that we
call software object faulting. Whenever app code accesses a
reclaimable object, MRT uses object access interposition to
check if the object is memory-resident by inspecting a bit in
its reclamation table entry. If not, MRT executes an object
fault handler that calls into its C++ object restoration function.

6.3 Bookmarking Garbage Collector

A tracing garbage collector touches every object in the heap
(or a subset of the heap), causing live objects to be swapped
back into memory even if app code is not using them. Mar-
vin’s garbage collector avoids touching reclaimed objects by
storing an object’s references inside its stub and using the
stub during the mark phase of garbage collection. Stubs play
a similar role as bookmarks in the bookmarking collector [20].

During the mark phase, the garbage collector maintains a
mark stack and repeatedly pops an object from the mark stack,
marks all its references, and pushes those references onto the
mark stack. Marvin’s garbage collector checks whether an
object is a stub when it pops the object from the mark stack;
if so, it reads the references off the stub instead of accessing
the underlying object.

For the garbage collector to use stubs in place of their ob-
jects, MRT must ensure that the stub of a memory-resident
object has up-to-date copies of the object’s references. It uses
object access interposition to update the stub of a reclaimable
object whenever Java code modifies one of the object’s refer-
ence member variables.

MRT must also properly clean up after any saved objects
that are freed by the garbage collector. MRT records when
saved objects have been freed by the garbage collector, and
when the fraction of the swap file consisting of freed objects
passes a set threshold (25% in our implementation), it com-
pacts the swap file in a heap task. MRT also cleans up after
reclaimable and reclaimed objects by checking whether an ob-
ject being freed is a stub; if so, it deletes the reclamation table
entry corresponding to the stub. If an object is reclaimable,
MRT deletes the memory-resident copy of the underlying
object; if the object is reclaimed, MRT simply marks its copy
in the swap file for deletion without needing to fault it in.

6.4 Design Tradeoffs and Alternatives

By tracking working sets and faulting in objects in software
at the runtime level, Marvin achieves a clean design, albeit
with some drawbacks. First, Marvin cannot reclaim objects
accessed by native libraries: native libraries have no way to
detect stubs and no recourse for faulting in reclaimed objects.
Second, software working set estimation and object faulting

USENIX Association 2020 USENIX Annual Technical Conference 879

add overhead, particularly to compiled code. We evaluate this
overhead in Section 8.

Marvin moves almost all memory management into the
runtime because we believe that the runtime’s better access
to information about app behavior makes it better suited for
managing memory. The functionality remaining in the kernel
is the minimum required by existing Linux kernel design; if
Marvin was built on top of an exokernel [13, 23], it could
move even more functionality into the runtime. A variety of
other designs are possible that split functionality between the
runtime and kernel in different ways.

Kernel-level working set estimation would reduce the over-
head of accessing objects, but it would suffer from false shar-
ing if an app’s working set is mixed with unused objects across
4KB pages. Faulting in memory at the kernel level would sim-
ilarly reduce object access overhead but would require more
extensive re-design of the runtime garbage collector to avoid
unnecessary swapping activity. By tying the granularity of
memory management to the size of pages, kernel-level mem-
ory management will also become inflexible as large pages
become more common and the disparity between object sizes
and page sizes widens. In any case, kernel-level memory
management would require some sort of ahead-of-time swap
mechanism to satisfy the latency requirements of modern
mobile platforms (Figure 3), and even adding ahead-of-time
swap to the Linux kernel would require significant effort.

Marvin’s garbage collector is different from the original
bookmarking collector [20] in that it maintains exact reacha-
bility information with stubs rather than conservatively stor-
ing approximate reachability information. The latter approach
requires the garbage collector to perform less work when
evicting pages and scanning the heap, but it can result in the
heap being needlessly occupied with dead objects.

7 Marvin Prototype

We implemented a prototype of MRT by modifying ART on
Android 7.1.1 (which includes Linux 3.18.31). Our implemen-
tation includes a modified version of ART’s ARM64 compiler,
allowing our prototype to support Android devices with 64-bit
ARM processors. Our changes to the ART codebase resulted
in 3475 additional lines of code [38].

In addition to modifying ART, we made a small modifica-
tion to the version of OpenJDK included with Android 7.1.1,
namely, we added fields to the Object class definition to mirror
the bytes added to the object header in ART. We also changed
a source file in the Android framework (ProcessList.java)
to increase a hard-coded limit on the number of concurrently
running apps since Marvin is able to run more.

Our experiments require us to manually trigger reclamation,
so we did not implement automated reclamation in the MK.
However, our MRT implementation includes the reclamation
table and performs all operations required to support kernel
memory reclamation.

7.1 Object Access Interposition

We implemented MRT’s object access interposition by adding
specialized functionality to the ART interpreter and compiler.
This lets MRT interpose on object accesses from both DEX
bytecode running in the interpreter and compiled OAT code
running natively. The following section describes in detail
how we modified each component.

MRT interpreter. The ART interpreter internally repre-
sents each Java object as a C++ mirror object, which it manip-
ulates when executing DEX bytecode instructions that read or
write an object. The mirror object’s type definition includes
methods to read or write the data at a given offset within the
object’s memory footprint, and the interpreter code calls these
methods when executing DEX instructions. To add object
access interposition to the interpreter, we modified the mirror
object methods to implement Marvin’s features.

For example, to redirect object accesses through stubs and
perform on-demand object faulting, we added a preamble
macro to each mirror object method. The preamble first
checks if the object is actually a stub. If so, it casts the this
pointer to a stub, calls a method that locks the stub’s reclama-
tion table entry (RTE), checks the RTE’s resident bit, and if
the resident bit is cleared, calls a method to fault in the object
from disk. The preamble then gets the address of the underly-
ing object from the RTE and invokes the mirror object method
on the underlying object. Finally, the preamble unlocks the
RTE and returns the result of the mirror object method, if any.

ART contains multiple interpreter implementations, and
the default is the “mterp interpreter,” an interpreter written
in assembly. When the mterp interpreter executes DEX in-
structions that read or write an array, it directly accesses the
array’s memory, bypassing the mirror object methods. To al-
low Marvin to interpose on array accesses, we instead use the
“switch interpreter,” an interpreter written in C++ that calls
the mirror object methods when executing array accesses.

MRT compiler. Java code in Android framework libraries
and portions of app Java code execute as native code, which
is compiled by the ART compiler either statically after instal-
lation or dynamically with just-in-time (JIT) compilation. We
added object access interposition to this compiled code by
modifying the compiler’s assembler to generate additional
assembly instructions that implement Marvin’s features when
it performs code generation for object accesses. We used
ARM64 devices for testing and evaluation, so we added sup-
port for object access interposition to the ARM64 assembler.

Each operation described above for the interpreter’s imple-
mentation of stub redirection and object faulting has a corre-
sponding block of ARM64 instructions in compiled code. The
main difference is that when a stub is detected, the compiled
code must explicitly overwrite the register holding the stub’s
address with the address of the underlying “real object;” it

880 2020 USENIX Annual Technical Conference USENIX Association

then loads the stub’s address back into that register when it
is done with the object. In the common case, when an object
is not a stub (or when it is, but its underlying “real object” is
memory-resident), execution branches past many of the added
object-faulting instructions.

7.2 Limitations and Potential Optimizations

Our MRT implementation is a research prototype and has
some limitations as a result. One is instability when reclaim-
ing objects from black-box commercial apps. When running
apps that we create in Android Studio, MRT reliably and
consistently reclaims and restores objects, but when running
commercial apps with stub creation and reclamation enabled,
it tends to crash. MRT’s object access interposition works
correctly with commercial apps, so by disabling stub creation
and reclamation, we can test its overhead and collect working
set data. Our MRT prototype also does not support reclaiming
objects with live JNI global references or directly accessing a
reclaimable array’s memory through JNI.

Our implementation of object access interposition in the
MRT compiler is unoptimized, and the per-object-access over-
head of compiled code could be reduced with deeper compiler
integration. We modified the ARM64 assembler, which trans-
lates intermediate representation (IR) instructions to ARM64
binary code. Our implementation generates ARM64 instruc-
tions performing object access interposition for every IR in-
struction that reads or writes an object, even though many
of those instructions only need to execute when the object’s
register allocation begins or ends. An optimized version of the
compiler, with modifications at the IR level, could decrease
both the execution and size overhead of compiled code.

The MRT compiler has other areas for optimization. For
instance, we noticed situations where ARM64 parameter reg-
isters (x0–x7 and d0–d7) appear to be live but are not re-
ported as such by the ART compiler’s LocationSummary
class; therefore, we conservatively save all parameter regis-
ters to the stack when performing a procedure call. Saving
only live parameter registers would further reduce code size
overhead. In addition, the ARM64 assembler makes a max-
imum of two scratch registers available at any time, which
required us to save backpointers and add more instructions to
juggle required state among the limited available registers.

8 Evaluation

Our evaluation demonstrated that Marvin successfully met
its design goals. It could: (1) quickly reclaim memory on-
demand; (2) maintain high memory utilization by sharing
memory among apps rather than killing them; and (3) achieve
the previous two goals with low overhead and no app changes.

0

100

200

300

400

500

−200 0 200 400
Time (ms)

R
S

S
 (

M
B

 a
b

o
ve

 b
a

s
e

lin
e

)

Working set

0MB
100MB
250MB

Figure 6: Memory usage as Marvin reclaims memory from a
benchmark app with different working set sizes.

8.1 Evaluation Setup

We ran our experiments on a Google Pixel XL smartphone
with 4GB RAM and a quad-core Qualcomm Snapdragon 821
CPU. The smartphone ran either the open-source release of
Android 7.1.1 (AOSP tag android-7.1.1_r57) or our Marvin
implementation based on that release. Both our Marvin imple-
mentation and our baseline Android build included a change
to the Android framework to increase a hard-coded cap on
the number of concurrently running apps.

Our experiments used a mix of synthetic apps for bench-
marking and real-world apps. We built several synthetic work-
loads that simulate various memory footprints and working set
sizes to measure their effect on Marvin compared to Android.
We also used PCMark for Android, a commercial benchmark
app based on real-world apps, to measure Marvin’s overhead
on real apps [3]. We chose two benchmarks from the test suite
(Writing 2.0 and Data Manipulation) since the remaining
three test the performance of native libraries.

8.2 Memory Reclamation

Marvin must be able to quickly reclaim memory from run-
ning apps when a new or existing app needs to allocate large
amounts of memory. Its ahead-of-time swap mechanism en-
sures that each MRT instance has a pool of clean memory that
can be quickly reclaimed without swapping to disk. In this
section, we measure the latency of reclaiming memory for
apps with different working set sizes. Reclamation latency de-
pends on the app’s working set size since Marvin can reclaim
more memory from apps with smaller working set sizes.

For our prototype, we use madvise to return memory from
MRT to the kernel. This design lets us trigger reclamation
rather than waiting for memory pressure. Our MRT prototype
reclaims memory when an app transitions to the background
and then periodically while it is in the background.

Figure 6 shows memory usage over time for apps with a
500MB heap and differing working set sizes. RSS values
shown are relative to the RSS reported for a minimal Android
app with a single empty Activity (approx. 80MB). At time
0ms, MRT begins to return memory from the app to the OS.

USENIX Association 2020 USENIX Annual Technical Conference 881

0

10

20

30

0 10000 20000 30000
Time (s)

N
u

m
 a

c
ti
v
e

 a
p

p
s

Android
Android+swap (4KB)
Android+swap (mix)
Marvin (4KB)
Marvin (mix)

1

2

3

4

5
1

2

5

4

3

Figure 7: Count of active benchmark app instances over time.
Marvin runs more than twice as many apps as regular Android
before needing to kill any apps; on Android with a swap file,
most apps are alive but inactive due to constant swapping
activity.

Marvin returned 250MB of memory in 52ms and 500MB
of memory in 108ms. In comparison, as shown in Figure 3,
Android with a Linux swap file took nearly 8 seconds to
free and allocate 500MB of memory under memory pressure.
Using ahead-of-time swap let Marvin reclaim memory over
60x faster than Android with Linux swap could allocate the
same amount of memory, allowing Marvin to meet the strict
latency requirements of mobile apps.

8.3 Memory Utilization

To demonstrate Marvin’s more efficient memory manager, we
ran multiple instances of an app with a large memory footprint
and a limited working set, and we counted the number of
active apps that were alive and making progress on their
workloads. Each app had a 220MB heap filled with arrays,
and it deleted and reallocated 20MB of those arrays every
5 seconds. We used two different heap compositions: one
where the apps had heaps filled with 4KB arrays, and one
where they had an even mix of 4KB and 1MB arrays (similar
to the bimodal distribution of real apps in Figure 1). We
consider an app “inactive” if it fails to perform a round of its
workload for 20 seconds after the previous round; we consider
it “active” once again if it succeeds in performing a round
of its workload within 7 seconds of the previous round. We
started a new app instance every 10 minutes to give Marvin
time to perform background work. For unmodified Android,
only the data for the apps with 4KB arrays is shown, because
its behavior was nearly identical for the 4KB/1MB mix.

As shown in Figure 7, Marvin ran over 2x as many active
apps concurrently as unmodified Android and over 1.5x-2x as
Android with a Linux swap file enabled, where swapping left
almost all apps unusable as the experiment went on. While
baseline Android begins killing apps when physical memory
runs out, Android with swap keeps more apps alive. However,
without a bookmarking garbage collector, the system experi-
enced constant swapping activity, which prevented most apps
from making progress on their workloads. Our experimental

0

1000

2000

3000

4000

Data Manipulation Writing 2.0

Benchmark

S
c
o
re

Android
Marvin

Figure 8: PCMark for Android benchmark results.

runs of Android with a swap file consistently ended early due
to the device crashing.

Marvin made better use of device memory because it re-
claimed unused memory from apps and used its bookmark-
ing garbage collector to avoid touching that unused memory
when running garbage collection. While Android only ran 10
apps concurrently, and Android with a swap file only briefly
reached a maximum of 13 concurrent apps (4KB arrays) or
20 apps (4KB/1MB mix), Marvin ran 27 apps (4KB arrays)
or 30 apps (4KB/1MB mix) concurrently. Marvin’s memory
reclamation and bookmarking garbage collector let it execute
1.5-2x as many apps concurrently while neither killing apps
nor suffering performance degradation.

8.4 Runtime Overhead

While Marvin provides better memory management, it comes
with a set of trade-offs. This section quantifies Marvin’s four
sources of overhead: (1) execution time overhead caused by
Marvin’s object access interposition in compiled OAT code;
(2) increased compiled code size due to object access interpo-
sition; (3) CPU utilization overhead caused by Marvin’s heap
walks for working set estimation; and (4) faulting overhead

when an app accesses a reclaimed object.

Execution time overhead of object access interposition.

Native code produced by the MRT compiler has additional
ARM64 instructions to support object access interposition.
Some instructions (stub checks, dirty bit updates, and access-
tracking bit updates) execute on every object access. Other
instructions (indirecting object accesses through stubs and
locking RTEs) execute only on accesses to reclaimable ob-
jects. We measured the overhead of the added instructions that
apply to all object accesses using PCMark for Android, and
we used a synthetic benchmark to illustrate the dependence
of that overhead on the makeup of application code.

Figure 8 compares the performance of Marvin and unmodi-
fied Android on the PCMark benchmarks in our test set. Each
bar shows the mean and standard deviation of five runs. We
turned off stub creation and swapping when running PCMark,
using the benchmarks to measure the overhead of the instruc-
tions added to every object access for stub checks and working

882 2020 USENIX Annual Technical Conference USENIX Association

●

●

●

●

●

●

●0

1

2

3

4

0.0 0.1 0.2 0.3 0.4
Fraction of DEX instructions with OAI

M
a

rv
in

 o
ve

rh
e

a
d

Figure 9: Overhead of Marvin for a synthetic workload with
different proportions of object access interposition (OAI). The
point (0,0) represents the theoretical scenario of running with-
out any OAI, while other points show experimental results.

set estimation. Marvin’s score on the Writing 2.0 benchmark
was nearly identical to Android’s, and its score on the Data
Manipulation benchmark was only 15% lower. These scores
show that Marvin’s overhead for accessing regular (i.e., non-
reclaimable) objects is low for real-world apps.

Figure 9 explores the dependence of Marvin’s overhead
on the DEX instruction mix of application code. The graph
shows Marvin’s overhead executing a synthetic workload that
performed a tunable proportion of object accesses (array reads
and writes) and integer operations (addition and multiplica-
tion). Each point represents the mean and standard deviation
of Marvin’s execution time overhead relative to Android for
40 iterations of the workload. For large proportions of object
accesses, Marvin had relatively high overhead (e.g., 350%
overhead for 40% object accesses), while for low proportions
of object accesses, Marvin’s overhead was minimal (e.g., 10%
overhead for 1% object accesses). PCMark’s 15% overhead
indicates that the real app workloads represented by PCMark
have low proportions of object accesses.

Although these overheads are already reasonable, they
could be improved with optimizations. As noted in Section 7,
deeper compiler integration would let Marvin reduce overhead
by performing object access interposition less frequently.

Code size overhead of object access interposition. The
ARM64 instructions added by Marvin’s object access in-
terposition also increase the size of compiled native code.
To measure the increase in code size, we compared the
compiled Android framework libraries generated by Mar-
vin to the framework libraries on unmodified Android.
Marvin increased the total size of the ARM64 frame-
work libraries (in the /system/framework/arm64 and
/system/framework/oat/arm64 directories on the Android
filesystem) from 117 MB to 292 MB. This code size over-
head, while relatively high, could be reduced significantly
with deeper compiler integration (Section 7).

CPU utilization overhead of heap walks. Our Marvin pro-
totype performs the heap walks required for working set es-

0

50,000

100,000

150,000

200,000

1% faults 10% faults 20% faults

S
p

e
e

d
 (

o
b

je
c
ts

 t
o

u
c
h

e
d

/s
e

c
)

Figure 10: Speed of a benchmark app as it touches objects in
its heap with different fractions of reclaimed objects.

timation by invoking the concurrent garbage collector and
piggybacking off its heap walk. Our prototype performs a
heap walk every 5 seconds when an app is in the foreground
and every 30 seconds for an app in the background. In theory,
this periodic invocation of the garbage collector across mul-
tiple MRT instances could add CPU utilization overhead. In
practice, when running multiple apps in the background, we
found that the difference between Marvin’s and unmodified
Android’s CPU utilization was negligible, likely because GC
invocations were so infrequent for background apps.

Overhead of faulting in objects. When an app first ac-
cesses a reclaimed object, Marvin must fault it in from disk,
adding significant latency to that initial access. Marvin’s de-
fault policy eagerly restores all objects when an app moves to
the foreground, trading off a longer transition delay for a guar-
antee that object-faulting latencies will never block the app’s
UI thread once it is in the foreground. The added transition
delay is proportional to the amount of reclaimed memory and
the restoration rate. Anecdotally, our prototype restored mem-
ory at about 100 MB/s, but we believe that rate could improve
to around 260 MB/s with optimization. (The slower rate is the
disk read speed of the C++ standard library implementation
used by ART, while the faster rate is the speed of the stan-
dard library implementation linked by the Android standalone
toolchain.) Object faults may occur for background apps, but
the Java working sets of apps in the background are generally
quite small (less than 4MB for all commercial apps in our test
set), so we expect object faulting to happen infrequently in
practice.

We nonetheless studied the effect of object faulting on
performance, to understand how Marvin would perform in
situations where different policies or workloads result in more
object faulting. Figure 10 shows the effect of object faulting
on a heap-walking benchmark app as it touches different
fractions of reclaimed objects. The app looped over a set of
4KB arrays, reading five member variables of each array, and
measured the speed of traversing the objects. Each bar shows
the mean and standard deviation of five measurements, and the
device’s disk cache was cleared before each run. As expected,

USENIX Association 2020 USENIX Annual Technical Conference 883

there was an inverse relationship between heap-walking speed
and fraction of faults; for instance, speed dropped by 49% as
the fraction of faults increased from 10% to 20%.

9 Related Work

Several recent systems provide swapping for mobile platforms
but focus on page-granularity rather than object-granularity
swapping. SmartSwap [43] predicts which apps are unlikely
to be used and swaps out pages from those apps ahead-of-time.
A2S [22] takes the opposite approach; it avoids swapping
out pages from unused apps, since their pages will be freed
anyways when they are terminated. MARS [19] optimizes
Linux swapping to improve performance on flash storage
devices. It disables garbage collection in background apps
and reclaims memory from those apps. DR. Swap [42] uses
NVRAM rather than flash storage to store swapped-out pages
and satisfies reads by reading directly from NVRAM. Choi et
al. [6] improve the performance of an in-memory file system
by co-designing the swap mechanism to minimize I/O.

The Linux kernel includes a daemon, kswapd, which frees
unused pages in the background to maintain a reserve pool of
unallocated memory [18]. Like Marvin, kswapd proactively
checkpoints unused memory, but unlike Marvin, kswapd re-
claims pages when it checkpoints them. As a result, kswapd
is limited in how much memory it can checkpoint ahead-of-
time—keeping a large proportion of memory checkpointed
and reclaimed would make that memory unusable and shrink
the device’s effective memory footprint.

Liang et al. [24] present FAST, an Android memory man-
agement system that modifies kswapd to improve its suitabil-
ity for Android. FAST changes kswapd to prioritize reclaim-
ing pages from apps in the background. It also identifies a
mismatch between the large reclamation sizes of kswapd and
the small sizes of typical Android allocations, and it includes a
predictor to determine the reclamation size based on workload
patterns. Like FAST, Marvin avoids reclaiming memory from
the foreground app, but Marvin differs in its runtime-level
memory management and its decoupling of checkpointing
and reclamation.

A significant body of work examines the issue of providing
persistent memory for object-oriented languages [1, 7, 26, 31,
33, 40]. These systems checkpoint objects to disk or non-
volatile memory, but they do so to ensure safety in the face of
failures rather than swapping out unused memory. As a result,
they focus on supporting transactional programming models
that provide strong guarantees under failure [7, 31] and on
implementing crash-safe garbage collection [7,40] rather than
on maximizing the number of apps that can run concurrently.

SSDAlloc [2] is a persistent memory system that, like
Marvin, is motivated by the goal of helping apps with large
memory footprints avoid memory pressure. Unlike Marvin’s
runtime-level object faulting and working set estimation, SS-
DAlloc allocates objects in separate virtual pages and uses

the existing virtual memory system to estimate the working
set and trigger its object fault handler.

Like Marvin, the bookmarking collector [20] aims to im-
prove the performance of Java apps in memory-constrained
environments. It assumes that the OS uses a traditional page-
level swapping mechanism and focuses on letting the garbage
collector run without unnecessary swapping. It conservatively
stores approximate reachability information (bookmarks) that
is used during garbage collection, whereas Marvin stores
exact reachability information (stubs). The BMX garbage col-
lector [15] also uses stubs to avoid expensive object accesses,
but in the context of a distributed persistent object store.

Other recent work on garbage collection focuses on co-
designing the GC and runtime to manage software caches
more efficiently [30], co-designing the GC and virtual mem-
ory manager to improve performance [41], measuring the
effect of GC on scalability [16], and designing GCs or mem-
ory managers for domains such as big data systems [17, 29].

With multiple runtimes managing their own memory on
top of a single operating system, Android’s architecture re-
sembles that of a virtual machine manager, where multiple
guest operating systems run on top of a hypervisor. Marvin’s
runtime–OS cooperation is analogous to that between guest
OS and hypervisor in the VMware ESX server [37], which
uses a balloon driver to induce guest OSes to reclaim memory.

Wright et al. [39] present a system in which the architec-
ture and Java runtime are co-designed for improved memory
access performance. It features hardware modifications that
allow an object-addressed CPU cache and an in-cache GC.

10 Conclusion

Users of mobile devices expect to use apps and switch be-
tween apps with low latency. As mobile apps have become
more memory-hungry, device RAM capacities have not kept
pace, and traditional swapping mechanisms cannot meet user
latency expectations. Marvin overcomes this challenge with a
novel runtime-level swapping mechanism that accurately esti-
mates working sets, moves disk I/O off the allocation critical
path, and avoids unnecessary swapping during garbage collec-
tion. As our experiments demonstrate, Marvin lets more apps
run simultaneously and reclaims memory faster than unmodi-
fied Android while adding reasonable overhead. The source
code for our Marvin prototype and experiments is available
at https://github.com/UWSysLab.

Acknowledgments

We thank our anonymous reviewers and our shepherd, Malte
Schwarzkopf, for their insightful feedback. We also thank
Sandy Kaplan for editing and writing advice and Ali Razeen
for help with Android troubleshooting. This work was funded
in part by Futurewei.

884 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Malcolm Atkinson and Ronald Morrison. Orthogonally
persistent object systems. The VLDB Journal, 4(3):319–
402, July 1995.

[2] Anirudh Badam and Vivek S. Pai. Ssdalloc: Hybrid
ssd/ram memory management made easy. In Proceed-

ings of the 8th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI ’11), 2011.

[3] UL Benchmarks. Pcmark for android. https://

benchmarks.ul.com/pcmark-android. Accessed:
2019-1-9.

[4] Kofi Amankwah Boamah. iphone on-board RAM,
July 2017. https://www.researchgate.net/

figure/Phone-on-board-RAM-From-figure-8-

it-is-clear-that-Apple-either-maintains-

the-iPhone_fig1_319307164.

[5] Bumptech. Glide v4: Fast and efficient image loading
for android. https://bumptech.github.io/glide/.
Accessed: 2018-11-28.

[6] J. Choi, J. Ahn, J. Kim, S. Ryu, and H. Han. In-memory
file system with efficient swap support for mobile smart
devices. IEEE Transactions on Consumer Electronics,
62(3):275–282, August 2016.

[7] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. Nv-heaps: Making persistent objects
fast and safe with next-generation, non-volatile memo-
ries. In Proceedings of the Sixteenth International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XVI, pages
105–118, New York, NY, USA, 2011. ACM.

[8] Peter J Denning and Stuart C Schwartz. Properties of
the working-set model. Communications of the ACM,
15(3):191–198, 1972.

[9] Android Documentation. Activity. https:

//developer.android.com/reference/android/

app/Activity, 2018. Accessed: 2018-11-28.

[10] Android Documentation. Caching bitmaps.
https://developer.android.com/topic/

performance/graphics/cache-bitmap, 2018.
Accessed: 2018-11-30.

[11] Android Documentation. Manage your app’s mem-
ory. https://developer.android.com/topic/

performance/memory, 2018. Accessed: 2018-11-28.

[12] Android Documentation. Saving ui states.
https://developer.android.com/topic/

libraries/architecture/saving-states, 2018.
Accessed: 2018-11-28.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exok-
ernel: An operating system architecture for application-
level resource management. In Proceedings of the Fif-

teenth ACM Symposium on Operating Systems Princi-

ples, SOSP ’95, pages 251–266, 1995.

[14] Umar Farooq and Zhijia Zhao. Runtimedroid:
Restarting-free runtime change handling for android
apps. In Proceedings of the 16th Annual International

Conference on Mobile Systems, Applications, and Ser-

vices, MobiSys ’18, pages 110–122, 2018.

[15] Paulo Ferreira and Marc Shapiro. Garbage Collec-
tion and DSM Consistency. In Proceedings of the 1st

USENIX Conference on Operating Systems Design and

Implementation (OSDI ‘94), pages 229–241, Monterey
CA, USA, United States, 1994.

[16] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc
Shapiro. Assessing the scalability of garbage collectors
on many cores. In Proceedings of the 6th Workshop on

Programming Languages and Operating Systems (PLOS

’11), 2011.

[17] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil
Vaswani, Dimitrios Vytiniotis, Ganesan Ramalingam,
Manuel Costa, Derek G. Murray, Steven Hand, and
Michael Isard. Broom: Sweeping out garbage collection
from big data systems. In 15th Workshop on Hot Topics

in Operating Systems (HotOS XV), Kartause Ittingen,
Switzerland, 2015.

[18] Mel Gorman. An investigation into the theoretical foun-
dations and implementation of the linux virtual memory
manager, 2003.

[19] Weichao Guo, Kang Chen, Huan Feng, Yongwei Wu,
Rui Zhang, and Weimin Zheng. Mars: Mobile appli-
cation relaunching speed-up through flash-aware page
swapping. IEEE Transactions on Computers, 65(3):916
– 928, March 2016.

[20] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage
collection without paging. In Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’05, pages 143–153,
2005.

[21] Tyler Kieft. Building a better instagram app for android.
https://instagram-engineering.com/building-

a-better-instagram-app-for-android-

c08f973662b, 2014. Accessed: 2018-11-9.

USENIX Association 2020 USENIX Annual Technical Conference 885

[22] Sang-Hoon Kim, Jinkyu Jeong, and Jin-Soo Kim.
Application-aware swapping for mobile systems. ACM

Trans. Embed. Comput. Syst., 16(5s):182:1–182:19,
September 2017.

[23] Ian M. Leslie, Derek McAuley, Richard Black, Timothy
Roscoe, Paul Barham, David Evers, Robin Fairbairns,
and Eoin Hyden. The design and implementation of
an operating system to support distributed multimedia
applications. IEEE Journal on Selected Areas in Com-

munications, 14(7):1280–1297, September 1996.

[24] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Ri-
wei Pan, Liang Shi, Tei-Wei Kuo, and Chun Jason Xue.
Acclaim: Adaptive memory reclaim to improve user ex-
perience in android systems. In Proceedings of the 2020

USENIX Annual Technical Conference, 2020.

[25] Michelle Meyers. Android inches ahead of
windows as most popular os. CNET, April
2017. https://www.cnet.com/news/android-

most-popular-os-beats-windows-statcounter/.

[26] J. Eliot B. Moss. Design of the mneme persistent object
store. ACM Trans. Inf. Syst., 8(2):103–139, April 1990.

[27] Mike Nakhimovich. Improving startup time in the
nytimes android app. https://open.blogs.nytimes.
com/2016/02/11/improving-startup-time-in-

the-nytimes-android-app/, 2016. Accessed:
2018-11-9.

[28] Randy Nelson. The size of iphone’s top apps has in-
creased by 1,000% in four years. Sensor Tower, Jun
2017. https://sensortower.com/blog/ios-app-

size-growth.

[29] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky,
Shan Lu, Sanazsadat Alamian, and Onur Mutlu. Yak:
A high-performance big-data-friendly garbage collec-
tor. In Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

’16), 2016.

[30] Diogenes Nunez, Samuel Z. Guyer, and Emery D.
Berger. Prioritized garbage collection: Explicit gc sup-
port for software caches. In Proceedings of the 2016

ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Appli-

cations, OOPSLA 2016, pages 695–710, New York, NY,
USA, 2016. ACM.

[31] James O’Toole, Scott Nettles, and David Gifford. Con-
current compacting garbage collection of a persistent
heap. In Proceedings of the Fourteenth ACM Sympo-

sium on Operating Systems Principles, SOSP ’93, pages
161–174, New York, NY, USA, 1993. ACM.

[32] Anshu Rustagi. How we improved our android
app “cold start” time by 28%. https://redfin.

engineering/how-we-improved-our-android-

app-cold-start-time-by-28-a722e231314a,
2018. Accessed: 2018-11-9.

[33] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson.
Texas: An efficient, portable persistent store. In Antonio
Albano and Ron Morrison, editors, Persistent Object

Systems, pages 11–33, London, 1993. Springer London.

[34] Facebook Open Source. Fresco. https://frescolib.
org/. Accessed: 2018-11-28.

[35] StackExchange. Creating and enabling an internal stor-
age swap partition on rooted android kitkat. https://
android.stackexchange.com/a/89030. Accessed:
2019-4-4.

[36] StackOverflow. ios app maximum memory bud-
get. https://stackoverflow.com/a/15200855. Ac-
cessed: 2019-1-9.

[37] Carl A. Waldspurger. Memory resource management
in vmware esx server. In Proceedings of the 5th Sympo-

sium on Operating Systems Design and Implementation

(OSDI ’02), 2002.

[38] David A. Wheeler. SLOCCount, 2013. http://www.
dwheeler.com/sloccount/.

[39] Greg Wright, Matthew L. Seidl, and Mario Wolczko.
An object-aware memory architecture. Technical re-
port, Sun Microsystems, Inc., Mountain View, CA, USA,
2005.

[40] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo
Chen, Binyu Zang, and Haibing Guan. Espresso: Brew-
ing java for more non-volatility with non-volatile mem-
ory. In Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’18, pages
70–83, New York, NY, USA, 2018. ACM.

[41] Ting Yang, Emery D. Berger, Scott F. Kaplan, and
J. Eliot B. Moss. Cramm: virtual memory support for
garbage-collected applications. In Proceedings of the

7th Symposium on Operating Systems Design and Im-

plementation (OSDI ’06), 2006.

[42] K. Zhong, X. Zhu, T. Wang, D. Zhang, X. Luo, D. Liu,
W. Liu, and E. H.-M. Sha. Dr. swap: Energy-efficient
paging for smartphones. In 2014 IEEE/ACM Interna-

tional Symposium on Low Power Electronics and Design

(ISLPED), pages 81–86, Aug 2014.

[43] Xiao Zhu, Duo Liu, Kan Zhong, Jinting Ren, and Tao
Li. Smartswap: High-performance and user experience

886 2020 USENIX Annual Technical Conference USENIX Association

friendly swapping in mobile systems. In Proceedings of

the 54th Annual Design Automation Conference 2017,
DAC ’17, pages 22:1–22:6, New York, NY, USA, 2017.
ACM.

USENIX Association 2020 USENIX Annual Technical Conference 887

Retwork: Exploring Reader Network with a COTS RFID System

Jia Liu1 Xingyu Chen1 Shigang Chen2 Wei Wang1 Dong Jiang1 Lijun Chen1

1State Key Laboratory for Novel Software Technology, Nanjing University, China
2Department of Computer & Information Science & Engineering, University of Florida, USA

Abstract
Radio frequency identification has been gaining popularity
in a variety of applications from shipping and transportation
to retail industry and logistics management. With a limited
reader-tag communication range, multiple readers (or reader
antennas) must be used to provide full coverage to any de-
ployment area beyond a few meters across. However, reader
contention can seriously degrade the performance of the sys-
tem or even block out some tags from being read. Most prior
work on this problem requires hardware and protocol sup-
port that is incompatible with the EPC Gen2 standard. More-
over, they assume the knowledge of a reader network that pre-
cisely describes the contention relationship among all read-
ers, but the efficient acquisition of the reader network in a
practical system with commercial-off-the-shelf (COTS) tags
is an open problem. This study fills the gap by proposing a
novel protocol Retwork, which works under the limitations
imposed by commercial Gen2-compatible tags and identifies
all possible reader contentions efficiently through careful pro-
tocol design that exploits the flag-setting capability of these
tags. We have implemented a prototype with 8,000 commer-
cial tags. Extensive experiments demonstrate that Retwork
can reduce communication overhead by an order of magni-
tude, in comparison to an alternative solution.

1 Introduction

Radio frequency identification (RFID) has been gaining pop-
ularity in a variety of pervasive applications, including li-
brary inventory [7,13,16,25,26], warehouse control [6,17,21,
22, 24, 38–41], supply chain management [12, 15, 19, 20, 23],
and object tracking [9,18,29,31–34,36]. Given that tags use
backscattering to communicate with readers, the communi-
cation distance between a reader and a tag is limited to a few
meters. In a deployment (e.g., a retail store or a warehouse)
that goes beyond the communication range of a single reader
antenna, multiple reader antennas (referred to simply as read-
ers for convenience) must be used to cover the whole area. If

the readers take turn to communicate with the tags in their
respective interrogation zones, then this condition will not
be time efficient for inventory operations. On the contrary,
if they operate simultaneously, a complex situation of colli-
sions, where tags in overlapped areas will be left unread, may
be created. To solve this dilemma, research has been trying to
find solutions to properly schedule readers so that only those
that do not collide will be active at any time.

This reader scheduling is built upon the knowledge of
reader network, which is a graph that depicts the contention
relationship among the readers and underlies many multi-
reader protocols [5, 8, 10, 14, 27, 28, 30, 35, 37, 42]. However,
in practice, a reader can hardly know the size of its own inter-
rogation zone, which takes an irregular shape that is difficult
to determine due to directivity of reader antenna and environ-
ment reflection. More difficulty is to determine whether any
two readers contend, which happens when their interrogation
zones overlap and at least one tag in the overlapped area ex-
ists. To make reader scheduling practical, in this paper, we
work under the limitations of commercial Gen2-compatible
RFID systems and propose a solution to determine their
reader network, without any modification to tags or reader-
tag communication protocols, and without any assumption of
pre-knowledge about the shape and size of any reader’s inter-
rogation zone. One naive solution is to activate the readers in
sequence, one at a time, to collect tag IDs in its zone, and then
compare the tag sets of any two readers to see if the intersec-
tion is empty. If it is, then no contention exists between the
two readers; if not, there is a contention link between them in
the network. However, this serialized approach is inefficient
and already collects all tag IDs, which makes deriving the
reader network unnecessary.

This paper proposes a new protocol called Retwork that
efficiently determines the reader network of a large RFID
system, with two key advantages. First, it avoids the need to
perform inventory over the entire tag set by the native solu-
tion that activates one reader at a time (which reads its tags,
one at a time). Second, it is completely compatible with the
worldwide standard of EPC Gen2 [4], allowing the new pro-

USENIX Association 2020 USENIX Annual Technical Conference 889

tocol to be deployed in commercial systems. The idea behind
Retwork is not to read all tags and compare the readers’ tag
sets, but to make each reader broadcast certain information
to tags in its zone. The Gen2 standard does not allow us to
write a reader’s ID to all tags in its zone at once. Had this
been supported, after all readers did that, tags would know
whether they are in the overlapped areas of multiple readers
and would then report that to their readers. Fortunately, ac-
cording to the Gen2 standard, a reader’s transmission can flip
certain flags in the memory of all tags that receive the trans-
mission. With a careful design, we show that these flags can
be exploited to fully support identification of all contention
relationship among the readers. Our protocol only requires
each reader to transmit a few Gen2 commands that trick its
tags to flip their flags in a certain way. Thus, after all read-
ers transmit, tags in overlapped areas will have their flags set
differently from other tags. Tags will signal the readers for
contention relationship without having to deliver their IDs to
the readers. The execution time of Retwork is a function of
the number of readers, instead of the number of tags, which
is much larger in practical systems. The major contributions
of this study are listed below.
• We propose an efficient solution Retwork to the prac-

tically important problem of identifying the contention re-
lationship among multiple readers in a large RFID system,
which underlies a majority of multi-reader protocols.

• Our protocol exploits the flag-setting capability in Gen2.
With a carefully-designed series of flag-flipping operations,
our protocol can classify tags into groups: those under reader
contention and those free of contention.
• We implement a prototype of Retwork with 8,000 com-

modity RFID tags. Extensive experiments show that it boosts
the read throughput of the system and thus cuts the inventory
time by an order of magnitude.

2 Problem Formulation

An RFID system generally consists of a large number of tags
and multiple readers. Each tag is attached to an object to
exclusively indicate the associated object. The tag set is de-
noted by Γ = {t1, t2, ..., tn}. A reader is surrounded by a fi-
nite space within which it can communicate with tags. This
space is referred to as the interrogation zone (or read zone)
of that reader. In a multi-reader RFID system, the layout of
readers constitutes a reader network, which is represented
by a graph G = (V,E), where V = {v1,v2, ...,vm} is the set
of vertices (readers) and E is the set of edges (contention
links). An edge (vi,v j) ∈ E exists between the reader vi and
the reader v j if and only if at least one tag tk ∈ Γ is located
at the overlapped interrogation zone covered by both read-
ers. At this point, these two readers are called neighbors or
adjacent nodes, which may incur collision if they communi-
cate concurrently. The tags within the overlapped zone are
referred to as contentious tags. Notably, forming an edge re-

quires two necessary conditions: overlapped read zone and
contentious tags. Two readers with the same read zone are
still treated as collision-free if no tags reside in such a zone.
This is reasonable because no contention will happen even
if the two readers run in parallel. Note that, various factors,
such as the reader planning, multi-path effects, and material
of tagged objects, greatly affect a reader’s signals and thus
make the shape of its interrogation zone irregular. Our proto-
col design is robust to any kinds of RFID systems, regardless
of the shape of the interrogation zone.

3 Tag Inventory

Exploring the reader network is essentially to check whether
a contention link exists between any pair of readers. An in-
tuitive solution is to conduct tag inventory reader by reader
over the whole tag set. In particular, each reader individually
queries the tag subpopulation in the field of view. Upon re-
ceiving a query request, all tags report their tag IDs to the
reader by running the Gen2 protocol. To avoid reader col-
lision, all readers need to execute the tag inventory sequen-
tially rather than concurrently. That is because these readers
do not have any prior knowledge on the reader network; a col-
lision is very likely to take place when concurrent inventory
is conducted. This blocks out some tags in the overlapped
zone from being read. After one-round inventory by all read-
ers, each reader can learn its neighbors by comparing its own
tag list with others’. If two readers share a common tag sub-
set, an edge must exist between them; otherwise, they are
conflict-free. By checking all pairs of readers, the reader net-
work G= (V,E) is formed finally. This solution is foolproof
but suffers from high latency. The reason is that all tags have
to transmit their long tag IDs to readers, resulting in at least
n× tid time overhead, where n is the number of tags and tid
is the time delay for transmitting a tag ID. This process is ex-
tremely time consuming, especially in a large RFID system.

4 Retwork

4.1 Basic Idea
The basic idea of Retwork is piggybacking some payload
in a reader’s instruction via one-to-many broadcasting over
the air and taking a few tag replies instead of all as the in-
dicator to obtain the link information between readers. By
this means, most tag inventories are avoided and the iden-
tification time of reader network is determined by only the
small number m of readers rather than the number n of tags
(m ≪ n), greatly improving the protocol efficiency. Follow-
ing this idea, we propose Retwork in embryo, which gives
us a clue to the protocol design and reveals the key hurdle
that limits the implementation of Retwork on Gen2. It con-
sists of two phases: over-the-air writing and selective read-
ing. The former is to tell each tag in which readers’ interro-

890 2020 USENIX Annual Technical Conference USENIX Association

gation zones the tag resides via one-to-many broadcast. The
latter chooses a specific tag subset to reply. By checking the
tag responses, the reader is able to learn whether two readers
conflict.

Over-the-air Writing. This phase is composed of m time
slots, where m is the number of readers. Each reader is as-
signed an exclusive slot and scheduled to transmit its reader
index in that slot. Without loss of generality, we suppose
that the reader vi is assigned to the i-th slot. The reader vi
broadcasts its index i to all tags in its vicinity during the i-th
slot. Clearly, only the tags within the reader’s interrogation
zone can hear this broadcast. By recording reader indices, a
tag knows at which readers’ interrogation zones it is located.
More specifically, each tag holds an m-bit indicator vector in
its memory, which is denoted by I and initializes to zeros at
first. Once a tag receives an index of value i, it sets the i-th
bit of the vector to ‘1’, that is, I[i] = 1, which indicates that
this tag is under vi’s coverage. A contention link between vi
and v j is formed if two bits I[i] and I[j] meet I[i] = 1 and
I[j] = 1, where 1 ≤ i < j ≤ m. By checking all indicator vec-
tors and converging these pieces of information together, we
can obtain the reader network G(V,E). However, although
tags know all of this, the readers do not. We next introduce
the second phase that aims to extract the contention informa-
tion from tags and shed light on the reader network.

Selective Reading. Directly collecting each tag’s indicator
vector can obtain the reader network but suffers from long
time delay as tag inventory. To improve time efficiency, the
reader chooses only a few tags to reply each time and re-
moves most of dispensable memory accesses. In particular,
each reader in turn checks whether it conflicts with others.
Consider any one reader vi, 1 ≤ i ≤ m. To obtain the link sta-
tus between vi and v j (j > i), the reader vi first selects a spe-
cific subset of tags with indicator vectors that satisfy I[j] = 1.
If the reader vi detects any tags in the field of view, then vi
and v j are neighbors for sure. Otherwise, no response from
tags means no tags hold I[j] = 1, which further indicates that
vi and v j are conflict-free.

Given the use of over-the-air writing and selective reading,
the execution time relates to only the number m of readers, re-
gardless of the number n of tags. Since m is much smaller
than n in practice, the proposed solution greatly improves
the time efficiency compared with tag inventory (in §3) that
needs more than n tag collections.

4.2 Challenge in Implementation
Consider the above two phases. The selective reading can
be well supported by the Select command specified in Gen2
(see §4.3). Over-the-air writing, however, needs the reader
to write a group of tags in its vicinity via one instruction.
We refer to this one-to-many write operation as BlastWrite,

which is however out of the scope of Gen2 that specifies the
reader has to perform memory access on one tag at a time.
This condition makes building indicator vectors roll back to
one-to-one transmission again.

4.3 EPCglobal Gen2 Protocol
The EPCglobal Gen2 protocol [4] defines the physical in-
teractions and logical operating procedures between readers
and tags. We highlight two functions that we will use on Ret-
work shortly later.

Select Command. Select is a mandatory command that
can assert or deassert a tag’s selected (SL) flag, or set a tag’s
inventoried flag to either A or B. These flags are used to de-
termine whether a tag may respond to a reader, which is the
key to identify the reader network (details are given in §4.4).
Select comprises six mandatory fields.

• Target. It indicates the object that Select will operate,
which is either a tag’s SL flag or an inventoried flag in any
one of four sessions. Sessions are specified by Gen2 to fit the
case of exclusive reading amongst multiple readers.
• Action. This field elicits the action to be taken by a

tag. Eight actions are available, where matching and not-
matching tags assert or dessert their SL flags, or set their in-
ventoried flags to A or B. By combining Target and Action,
the reader is able to modify a specific flag. For example, a
matching tag’s inventoried flag in session 2 will be set to A
when Target= 0102 and Action= 0002.

• MemBank, Pointer, Length, Mask. The four fields jointly
determine which tags are matched for Action. MemBank
specifies the memory bank. Pointer indicates the starting po-
sition. Length determines the length of Mask, which is a
customized bit string according to upper application require-
ments. If Mask is the same as the string that begins at Pointer
and ends length bits later in the memory of MemBank, then
the corresponding tag is matched.

Query Command. After Select, Query initiates and speci-
fies a new inventory round over the tag subpopulation chosen
by Select. In the inventory round, the reader will play out a
frame that consists of a group of time slots. Each selected
tag randomly picks one of these time slots and transmits its
tag ID to the reader in that slot. A tag inventory may need to
execute several inventory rounds and is finished after all se-
lected tags successfully reply to the reader. Query command
includes three fields that we concern.
• Sel. This field consists of two bits that determine which

tags respond to Query: 002 and 012 indicate all matching
tags in the previous Select command; 102 indicates tags with
deasserted SL flag; 112 indicates tags with asserted SL flag.
• Session. It selects a session for the subsequent inventory

round. Gen2 requires readers and tags to provide four ses-
sions (denoted as S0, S1, S2, and S3). Tags in one of these
sessions shall neither use nor modify an inventoried flag for
a different session. This way allows two or more readers to

USENIX Association 2020 USENIX Annual Technical Conference 891

use different sessions to independently inventory a common
tag population (in different time slots).
• Target. This field chooses whether tags with inventoried

flag of A or B participate in the upcoming inventory round,
where 0 indicates A and 1 indicates B. Tags may invert their
inventoried flags from A to B (or vice versa) after being suc-
cessfully queried.

4.4 Design of Retwork
Although BlastWrite is not supported by Gen2, a reader’s
command (e.g., Select and Query) can be transmitted to all
tags simultaneously through one-to-many broadcast. If we
can piggyback some useful information in a reader’s com-
mand such that all tags’ memories are updated in the mean-
while, then an equivalent mimic of BlastWrite might be im-
plemented on Gen2. An indicator flag (inventoried flag or
SL flag) can make this condition possible because all tags’
indicator flags can be set by a single reader command. Be-
low, we detail the use of reader commands together with the
Gen2-compatible indicator flag to obtain the reader network.
For ease of presentation, we choose the inventoried flag in
session 2 (S2) as the vehicle to show how Retwork works;
other indicator flags can also be adopted similarly.

4.4.1 Detection of Contention Link

Consider any two readers vi and v j, 1 ≤ i < j ≤ m. The con-
tention link between vi and v j can be determined by the fol-
lowing three steps: (i) the reader vi broadcasts a Select com-
mand to set all inventoried flags of the tag set in its vicinity to
A; (ii) the reader v j performs the similar operation that sets
the inventoried flags to B; (iii) the reader vi issues a Query
command and executes the tag inventory on the subset of
tags with inventoried flags of B. If vi and v j are neighbors,
the tags in the overlapped zone must be set to B and vi can
get replies from these tags. Otherwise, none of tags in the
field of view of vi is set to B and nothing will be received.
Accordingly, by checking tag replies, vi can learn whether it
conflicts with v j. Next, we elaborate the way to achieve the
above function with Gen2-compatible Select and Query. A
Select command is denoted by:

S(t︸︷︷︸
Target

,

Action︷︸︸︷
a , b︸︷︷︸

MemBank

,

Pointer︷︸︸︷
p , l︸︷︷︸

Length

,

Mask︷︸︸︷
k), (1)

with the fields of Target (t), Action (a), MemBank (b),
Pointer (p), Length (l), and Mask (k). To set all tags’ inven-
toried flags (in S2) to A, the reader needs to broadcast:

Flag = A : S(2,0,1,0,0,0),

where t = 2 (0102) means the operating object is set to the
inventoried flag in session 2 (S2), a = 0 indicates that the in-
ventoried flags of matching tags will be set to A while those

of not-matching will be set to B, and (b, p, l,k) = (1,0,0,0)
means all tags within the coverage are selected (matching).
Similarly, to set the inventoried flag to B, the reader only
needs to carry out the same Select except that the value of
Action field is altered to 1002 (a = 4). Thus, we have:

Flag = B : S(2,4,1,0,0,0).

After Select, a Query is needed for inventory:

Q(e︸︷︷︸
Sel

,

Session︷︸︸︷
s , g︸︷︷︸

Target

). (2)

To inventory all tags with inventoried flags in S2 of B, the
query command shall be Q(0,2,1), where Sel (e), Session
(s), and Target (g) are 002, 102, and 1, respectively. By com-
bining the Select and Query together, we obtain the instruc-
tions for detecting the contention link between vi and v j.

1⃝ vi : S(2,0,1,0,0,0)
2⃝ v j : S(2,4,1,0,0,0)
3⃝ vi : Q(0,2,1).

(3)

With these commands, the contentious tags (if appropriate)
in the overlapped zone between vi and v j are isolated from
others; the reader vi can check the existence or absence of
these tags by executing a short inventory round. Compared
with the basic tag inventory over the entire tag set, this way
avoids a great number of tag memory accesses, regardless of
the number of tags.

4.4.2 Identification of Reader Network

The findings above indicate that an intuitive solution to iden-
tifying the reader network is to detect each pair of readers
with the instructions of (3) and later draw the reader graph
with the identified contention relationships. This method is
far superior to the inventory-based solution as most tag in-
ventories can be avoided. However, this one-pair-at-a-time
scheme suffers from repetitive transmissions for setting
inventoried flags, increasing the communication overhead.
Take the reader v1 for example. To get the contention rela-
tionships between v1 and other readers, the reader v1 needs
to execute the operation of setting A (1⃝ in (3)) m− 1 times.
If this repetition can be avoided, then a great deal of commu-
nication overhead will be saved, which improves the proto-
col performance. To this end, we propose a scheduling pol-
icy that tries to reduce the number of broadcasts of instruc-
tions and improve the global time efficiency for obtaining
the reader network.

The basic idea is that, instead of solely checking each pair
of readers, we identify a group of contention relationships
by simultaneously taking multiple readers into account. To
identify the entire reader network, m−1 identification rounds

892 2020 USENIX Annual Technical Conference USENIX Association

are needed (m is the number of readers). In each round, we
select a reader and identify the contention relationships be-
tween this reader and others. More specifically, all readers ex-
cept for v1 initially set the inventoried flags to A. Thereafter,
the identification starts, round by round. In the i-th round
(1 ≤ i < m), we select the reader vi and check whether it con-
flicts with other readers v j (j > i) via three steps. (i) The
reader vi solely updates the flag to B. (ii) Each reader v j in
turn queries the tags with the flag equal to B. If any v j con-
flicts with vi, then the tags in the overlapped zone must be set
to B in the first step and v j can obtain the reply from these
tags. Otherwise, no tags in the field of view of v j reply. By
this means, all the contention relationships between vi and v j
are identified. Compared with the one-pair-at-a-time scheme,
the reader vi executes the flag setting only once rather than
m−1 times, greatly saving the communication overhead. (iii)
In the last step, we reset all flags under v j’s coverage to A
again, which would be the input of the next round. For this
purpose, one broadcast of Flag = A by vi is sufficient; no
need for all readers v j to do so. That is because the flags that
transform from A to B are due to the flag setting by vi, that
is, the tags with flag B must be under vi’s coverage. After
the three steps, the current round terminates and we move to
the next one. This process repeats round by round until the
global reader network is identified.

4.5 Time Efficiency & Improvement
Now, we discuss the execution time of Retwork. As afore-
mentioned, m−1 identification rounds need to be run to ob-
tain the reader network. Consider the i-th round, 1 ≤ i < m.
It consists of two Select commands (sent by vi) and m− i
Query commands (issued by each reader v j, j > i). Therefore,
the execution time of the i-th round is 2ts +(m− i)(tq + tv),
where ts, tq, and tv are the time intervals of a Select com-
mand, a Query command, and an inventory round that checks
whether requested tags exist, respectively. By considering
m−1 rounds together with initial m−1 flag settings, we have
the execution time T of Retwork :

T =
m(m−1)

2
(tq + tv)+3(m−1)ts. (4)

This execution time is determined by only the number of
readers once the transmission rate of reader-tag communica-
tion is fixed, regardless of the large number n of tags. This
way is a great performance boost compared with tag inven-
tory given that m is much smaller than n. For example, in a
practical scenario (e.g., warehouse or library), a reader usu-
ally covers more than 1000 passive tags, i.e., m≤ 0.001n. Be-
low, we propose two schemes that further improve the time
efficiency of Retwork. First, Gen2 allows a tag to send a trun-
cated reply (i.e., a portion of EPC) by enabling Truncate field
of the Select command. This way will help a tag reduce the
transmission of the 96-bit EPC to only a single bit, which re-
duces the communication delay of tag replies. Second, if the

Figure 1: Experimental setup.

range limit of RFID readers is considered, we do not need to
check two readers beyond the communication range, which
sharply reduces the number of contention detection.

5 Evaluation

We evaluate Retwork using COTS RFID readers and tags.
Six models of UHF RFID readers from three experienced
suppliers of RFID products are used in our experiments:
ALR-F800 and 9900+ from Alien Inc. [1], R220 and R420
from Impinj [2], Mercury6 and M6e from ThingMagic [3].
Each reader is connected to a directional antenna Larid
S9028PCR [11] that is with 8.5 dBic gain and operates at
around 900 MHz. To better mimic a real RFID system and ex-
tensively study the performance of Retwork in practice, we
use a total of 8,000 commodity tags in our experiments. As
shown in Fig. 1, these tags are densely attached to 40 cartons,
each of which contains approximately 200 tags. The read-
ers are deployed with three kinds of densities, namely, sparse
(four readers), moderate (six readers), dense (eight readers),
to cover a desired area of 12m×8m. The sparse fits for the
scenarios of dock door or conveyor belt; the moderate is used
for the case of laboratories or office; the dense is suitable for
the case of libraries or shopping malls.

5.1 Identification Accuracy
Retwork examines each contention link between two read-
ers by broadcasting Select and Query commands. Due to the
manner of one-to-many transmission, Retwork might incur
some false positives or false negatives. A false positive is a
result that indicates a contention link exists, when it does not
indeed. On the contrary, a false negative indicates that two
readers do not conflict, while in fact they do. We next study
the identification accuracy of Retwork, which is measured by
false positive ratio (FPR) and false negative ratio (FNR). The
ground truth is obtained by executing the inventory-based so-
lution: each reader conducts the tag inventory in sequence
and later compares its own tag list with others’; if two readers
share a common tag subset, then they conflict. Fig. 2 shows
FPR and FNR in three scenarios of different reader densities.

USENIX Association 2020 USENIX Annual Technical Conference 893

4 6 8

Number of readers

0

0.01

0.02

0.03

0.04

E
rr

o
r

FPR

FNR

Figure 2: Accuracy.

1000 1500 2000 2500 3000 3500 4000

Number of tags

0

10

20

30

40

E
x
ec

u
ti

o
n
 t

im
e

(s
) Inventory

Retwork

(a) Sparse.

1000 2000 3000 4000 5000 6000

Number of tags

0

20

40

60

80

100

E
x
ec

u
ti

o
n
 t

im
e

(s
) Inventory

Retwork

(b) Moderate.

1000 2000 3000 4000 5000 6000 7000

Number of tags

0

20

40

60

80

100

E
x
ec

u
ti

o
n
 t

im
e

(s
) Inventory

Retwork

(c) Dense.

Figure 3: Time comparison between Retwork and tag inventory.

As observed, FPR and FNR are bounded within a low level of
errors. Although FPR is relatively larger than FNR, false pos-
itives slightly negatively affect the functions of multi-reader
protocols. Instead, false negatives might incur some errors:
two neighbor readers work concurrently. However, the FNR
is 0.3%, which is very small for most applications. We can
further decrease FNR by running Retwork multiple times if
desired.

5.2 Time Efficiency
The usage of inventoried flags and reader commands avoids
most tag inventories and thus lowers the identification la-
tency of the reader network. This is where Retwork shines.
Now, we study the time efficiency of Retwork over the three
reader scenarios, where tag inventory in §3 is taken as the
baseline for comparison. Fig. 3 plots the execution time of
Retwork and tag inventory with respect to the number of
unique tags that have been read. As observed, Retwork is far
superior to tag inventory under difference cases. For example,
in the moderate case (six readers) with 5,000 tags (Fig. 3(b)),
Retwork reduces the execution time from 55.9s to only 3.9s,
producing a 14.7× performance gain. Given a reader deploy-
ment, the execution time nearly remains stable, regardless of
the number of tags. This result is consistent with our previ-
ous belief in the protocol design. With the increase in the
number of readers, the number of detection units required by
Retwork increases, as well as the execution time. Notably,
the execution time here is the worst case of Retwork. If the
truncated reply and range limit are taken into account (see
§4.5), then the performance of Retwork will be further im-
proved. The execution time of tag inventory does not see a
linear rise over the number of tags because the number of
tags in the overlapped read zones increases correspondingly.

6 Related Work

In a multi-reader RFID system, reader collisions occur fre-
quently and inevitably, which impairs the read throughout
and leads to misreads. Research has been trying to find so-
lutions to properly schedule readers to ensure that only those
that do not collide will be active at any time. Colorwave [30]
is one of the first work to address reader collision. It ran-
domly colors readers such that each pair of interfering read-

ers have different colors. In AcoRAS [8], readers are as-
signed colors by a central server following the build of a
minimum independent set. Season [37] proposes a scheme of
reader collaboration to improve the time efficiency of tag in-
ventory by using two steps: shelving the collisions and identi-
fying the tags that do not involve reader collisions; perform-
ing a joint identification, in which adjacent readers collab-
oratively identify the contentious tags. Liu et. al [14] pro-
pose a maximum-weight-independent-set-based approxima-
tion algorithm to address the problem of reader-coverage col-
lision avoidance: activating readers and adjusting their inter-
rogation ranges to cover maximum tags without collisions
subject to the limited number of tags read by a reader. In
spite of the advancement, the reader scheduling largely de-
pends on the knowledge of reader network, which is a graph
that depicts the contention relationship among the readers
and underlies many prior multi-reader protocols. Obtaining
the reader network, however, is no picnic in practice.

7 Conclusion

In this work, we investigate the fundamental problem of ex-
ploring reader network, which is vital to reader scheduling
and underlies many anti-collision protocols in a multi-reader
RFID system. A Gen2-compatible protocol Retwork is pro-
posed to identify reader network on COTS devices. By ex-
ploiting flag-setting capability of commercial tags, Retwork
avoids most tag inventories and improves time efficiency. Ex-
tensive experiments show that Retwork can reduce the exe-
cution time by an order of magnitude.

Acknowledgments

We would like to thank our shepherd, Prof. Lin Zhong, and
the anonymous reviewers for their valuable feedback. This
work is supported by National Natural Science Foundation
of China (Nos. 61702257 and 61771236), Natural Science
Foundation of Jiangsu Province (BK20170648), Jiangsu Key
R&D Plan (Industry Foresight and Common Key Technol-
ogy, BE2017154), US National Science Foundation CNS-
1718708, Fundamental Research Funds for the Central Uni-
versities (14380066), and Collaborative Innovation Center
of Novel Software Technology and Industrialization. Jia Liu
and Lijun Chen are the corresponding authors.

894 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Alien Technology. http:// www. alientechnology.
com .

[2] Impinj Inc. http:// www. impinj. com .

[3] Thingmagic. http:// www. thingmagic. com .

[4] GS1 EPCglobal. EPC radio-frequency identity proto-
cols generation-2 UHF RFID version 2.0.1, 2015.

[5] Maurizio A. Bonuccelli and Francesca Martelli. A very
fast tags polling protocol for single and multiple readers
RFID systems, and its applications. Ad Hoc Networks,
71:14–30, 2018.

[6] Binbin Chen, Ziling Zhou, and Haifeng Yu. Under-
standing RFID counting protocols. In Proc. of ACM
MobiCom, pages 291–302, 2013.

[7] Isaac Ehrenberg, Christian Floerkemeier, and Sanjay
Sarma. Inventory management with an RFID-equipped
mobile robot. In Proc. of IEEE CASE, pages 1020–
1026, 2007.

[8] Essia Hamouda, Nathalie Mitton, and David Simplot-
Ryl. Reader anti-collision in dense RFID networks
with mobile tags. In Proc. of IEEE RFID-TA, pages
327–334, 2011.

[9] Jinsong Han, Chen Qian, Xing Wang, Dan Ma, Jizhong
Zhao, Pengfeng Zhang, Wei Xi, and Zhiping Jiang.
Twins: Device-free object tracking using passive tags.
In Proc. of IEEE INFOCOM, pages 469–476, 2014.

[10] Nikolaos Konstantinou. Expowave: An RFID anti-
collision algorithm for dense and lively environments.
IEEE Transactions on Communications, 60(2):352–
356, 2011.

[11] Larid. S9028PCL. https:// www. lairdtech. com/
products/ s9028pcl .

[12] Chun-Hee Lee and Chin-Wan Chung. RFID data pro-
cessing in supply chain management using a path en-
coding scheme. IEEE Transactions on Knowledge and
Data Engineering, 23(5):742–758, 2011.

[13] Renjun Li, Zhiyong Huang, Ernest Kurniawan, and
Chin Keong Ho. AuRoSS: an autonomous robotic shelf
scanning system. In Proc. of IEEE/RSJ IROS, pages
6100–6105, 2015.

[14] Bing-Hong Liu, Ngoc-Tu Nguyen, Van-Trung Pham,
and Yu-Huan Yeh. A maximum-weight-independent-
set-based algorithm for reader-coverage collision avoid-
ance arrangement in RFID networks. IEEE Sensors
Journal, 16(5):1342–1350, 2016.

[15] Jia Liu, Bin Xiao, Kai Bu, and Lijun Chen. Efficient dis-
tributed query processing in large RFID-enabled supply
chains. In Proc. of IEEE INFOCOM, pages 163–171,
2014.

[16] Jia Liu, Feng Zhu, Yanyan Wang, Xia Wang, Qingfeng
Pan, and Lijun Chen. RF-Scanner: Shelf scanning with
robot-assisted RFID systems. In Proc. of IEEE INFO-
COM, pages 1–9, 2017.

[17] Xuan Liu, Bin Xiao, Feng Zhu, and Shigeng Zhang.
Let’s work together: Fast tag identification by interfer-
ence elimination for multiple RFID readers. In Proc. of
IEEE ICNP, pages 1–10, 2016.

[18] Jiaqing Luo and Kang G Shin. Detecting misplaced
RFID tags on static shelved items. In Proc. of ACM
MobiSys, pages 378–390, 2019.

[19] Saiyu Qi, Yuanqing Zheng, Xiaofeng Chen, Jianfeng
Ma, and Yong Qi. Double-edged sword: Incentivized
verifiable product path query for RFID-enabled supply
chain. In Proc. of IEEE ICDCS, pages 414–424, 2017.

[20] Saiyu Qi, Yuanqing Zheng, Mo Li, Yunhao Liu, and
Jinli Qiu. Scalable data access control in RFID-enabled
supply chain. In Proc. of IEEE ICNP, pages 71–82,
2014.

[21] Chen Qian, Yunhuai Liu, R.H. Ngan, and L.M. Ni.
ASAP: Scalable collision arbitration for large RFID
systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 24(7):1277–1288, 2013.

[22] Chen Qian, Hoilun Ngan, Yunhao Liu, and L.M. Ni.
Cardinality estimation for large-scale RFID systems.
IEEE Transactions on Parallel and Distributed Systems,
22(9):1441–1454, 2011.

[23] Aysegul Sarac, Nabil Absi, and Stephane Dauzere-
Peres. A literature review on the impact of RFID tech-
nologies on supply chain management. International
Journal of Production Economics, 128(1):77–95, 2010.

[24] Muhammad Shahzad and Alex X. Liu. Every bit counts:
Fast and scalable RFID estimation. In Proc. of ACM
MobiCom, pages 365–376, 2012.

[25] Longfei Shangguan and Kyle Jamieson. The design
and implementation of a mobile RFID tag sorting robot.
In Proc. of ACM MobiSys, pages 31–42, 2016.

[26] Longfei Shangguan, Zheng Yang, Alex X. Liu, Zimu
Zhou, and Yunhao Liu. Relative localization of RFID
tags using spatial-temporal phase profiling. In Proc. of
USENIX NSDI, pages 251–263, 2015.

USENIX Association 2020 USENIX Annual Technical Conference 895

[27] Shaojie Tang, Cheng Wang, Xiangyang Li, and
Changjun Jiang. Reader activation scheduling in
multi-reader RFID systems: A study of general case.
In Proc. of IEEE IPDPS, pages 1147–1155, 2011.

[28] ShaoJie Tang, Jing Yuan, Xiang-Yang Li, Guihai Chen,
Yunhao Liu, and JiZhong Zhao. RASPberry: A stable
reader activation scheduling protocol in multi-reader
RFID systems. In Proc. of IEEE ICNP, pages 304–313,
2009.

[29] Deepak Vasisht, Guo Zhang, Omid Abari, Hsiao-Ming
Lu, Jacob Flanz, and Dina Katabi. In-body backscat-
ter communication and localization. In Proc. of ACM
SIGCOMM, pages 132–146, 2018.

[30] James Waldrop, Daniel W. Engels, and Sanjay E.
Sarma. Colorwave: a MAC for RFID reader networks.
In Proc. of IEEE WCNC, volume 3, pages 1701–1704,
2003.

[31] Chuyu Wang, Jian Liu, Yingying Chen, Lei Xie,
Hong Bo Liu, and Sanclu Lu. RF-Kinect: A wear-
able RFID-based approach towards 3D body movement
tracking. Proc. of ACM UbiComp, 2(1), 2018.

[32] Ju Wang, Jie Xiong, Hongbo Jiang, Xiaojiang Chen,
and Dingyi Fang. D-watch: Embracing bad multipaths
for device-free localization with COTS RFID devices.
In Proc. of ACM CoNEXT, pages 253–266, 2016.

[33] Lei Xie, Jianqiang Sun, Qingliang Cai, Chuyu Wang,
Jie Wu, and Sanglu Lu. Tell me what I see: Recognize
RFID tagged objects in augmented reality systems. In
Proc. of ACM UbiComp, pages 916–927, 2016.

[34] Huatao Xu, Dong Wang, Run Zhao, and Qian Zhang.
AdaRF: Adaptive RFID-based indoor localization us-
ing deep learning enhanced holography. Proc. of ACM
UbiComp, 3(3):1–22, 2019.

[35] Peizhi Yan, Salimur Choudhury, and Ruizhong Wei. A
distributed graph-based dense RFID readers arrange-
ment algorithm. In Proc. of IEEE ICC, pages 1–6,
2019.

[36] Lei Yang, Yekui Chen, Xiang-Yang Li, Chaowei Xiao,
Mo Li, and Yunhao Liu. Tagoram: Real-time track-
ing of mobile RFID tags to high precision using COTS
devices. In Proc. of ACM MobiCom, pages 237–248,
2014.

[37] Lei Yang, Yong Qi, Jinsong Han, Cheng Wang, and
Yunhao Liu. Shelving interference and joint identifica-
tion in large-scale RFID systems. IEEE Transactions
on Parallel and Distributed Systems, 26(11):3149–
3159, 2015.

[38] Jihong Yu, Wei Gong, Jiangchuan Liu, and Lin Chen.
Fast and reliable tag search in large-scale RFID sys-
tems: A probabilistic tree-based approach. In Proc. of
IEEE INFOCOM, pages 1133–1141, 2018.

[39] Jihong Yu, Wei Gong, Jiangchuan Liu, Lin Chen,
Fangxin Wang, and Haitian Pang. Practical key tag
monitoring in RFID systems. In Proc. of IEEE/ACM
IWQoS, pages 1–10, 2018.

[40] Shigeng Zhang, Xuan Liu, Jianxin Wang, and Jiannong
Cao. Tag size profiling in multiple reader RFID sys-
tems. In Proc. of IEEE INFOCOM, pages 1–9, 2017.

[41] Yuanqing Zheng and Mo Li. ZOE: Fast cardinality esti-
mation for large-scale RFID systems. In Proc. of IEEE
INFOCOM, pages 908–916, 2013.

[42] Zongheng Zhou, Himanshu Gupta, Samir R. Das, and
Xianjin Zhu. Slotted scheduled tag access in multi-
reader rfid systems. In Proc. of IEEE ICNP, pages 61–
70, 2007.

896 2020 USENIX Annual Technical Conference USENIX Association

Acclaim: Adaptive Memory Reclaim to Improve User Experience
in Android Systems

Yu Liang1, Jinheng Li1, Rachata Ausavarungnirun2, Riwei Pan1, Liang Shi3, Tei-Wei Kuo14, Chun Jason Xue1

1 Department of Computer Science, City University of Hong Kong
2 TGGS, King Mongkut’s University of Technology North Bangkok

3 School of Computer Science and Technology, East China Normal University
4 Department of Computer Science and Information Engineering, National Taiwan University

Abstract
While the Linux memory reclaim scheme is designed to

deliver high throughput in server workloads, the scheme be-
comes inefficient on mobile device workloads. Through care-
fully designed experiments, this paper shows that the current
memory reclaim scheme cannot deliver its desired perfor-
mance due to two key reasons: page re-fault, which occurs
when an evicted page is demanded again soon after, and di-
rect reclaim, which occurs when the system needs to free up
pages upon request time. Unlike the server workload where
the direct reclaim happens infrequently, multiple direct re-
claims can happen in many common Android use cases. We
provide further analysis that identifies the major sources of
the high number of page re-faults and direct reclaims and pro-
pose Acclaim, a foreground aware and size-sensitive reclaim
scheme. Acclaim consists of two parts: foreground aware evic-
tion (FAE) and lightweight prediction-based reclaim scheme
(LWP). FAE is used to relocate free pages from background
applications to foreground applications. While LWP dynami-
cally tunes the size and the amount of background reclaims
according to the predicted allocation workloads. Experimen-
tal results show Acclaim can significantly reduce the number
of page re-faults and direct reclaims with low overheads and
delivers better user experiences for mobile devices.

1 Introduction

With many optimizations to Linux’s memory reclaim scheme,
the existing Linux memory reclaim scheme can efficiently
manage pages inside the main memory in desktops and
servers [6, 11, 14, 17]. Android mobile devices, which have
seen remarkable growth, inherit the same Linux kernel de-
signed for desktops and servers. As a result, these mobile
devices utilize the same memory reclaim scheme inherited
from Linux desktop and server distributions.

In this work, we show that the nature of mobile devices
workloads is fundamentally different from those of desktop
and server workloads. Hence, policies designed to improve
the efficiency of the memory reclaim scheme in desktops and

servers fail to deliver similar efficiency on mobile devices.
Specifically, we observe that a slow page reclaim procedure
and severe page thrashing can severely degrade the perfor-
mance of Android applications. One of the key reason behind
this performance degradation is page re-fault, which is a page
fault that happens on a previously evicted page. This page
re-fault can become a bottleneck and lower workloads’ read
performance because the system now needs to read the page
from the storage instead of the much faster main memory,
leading to 100x or more increase in page read latency. An-
other key reason behind performance degradation is direct
reclaim. Direct reclaim can negatively impact performance
because any page allocations must wait for the direct reclaim
process to finish. During a direct reclaim operation, many
dirty pages may need to be flushed and thus greatly prolong
the allocation procedure. To avoid costly direct reclaim op-
eration, an alternative reclaim scheme using the lightweight
background reclaim (kswapd), is used by the Linux system.
Kswapd is a kernel thread that is wakened up periodically
or by page allocation to reclaim free pages. However, in the
current Android kernel, we observe that kswapd takes too
long to free up the necessary number of pages and thus direct
reclaim has to be triggered.

Through experiments using popular mobile applications,
we show that the current Android memory reclaim scheme
does not adapt to the characteristics of Android applications.
Experiments show that even when launching one small-size
application, page re-faults could happen regularly. Under a
set of common use cases, 31% of all the evicted pages are
page re-faults. This high ratio of page re-faults to normal page
evictions means that page thrashing is very severe in modern
Android mobile devices. Aside from the high rate of page re-
faults, our experiments also show that the percentage of direct
reclaims in all reclaims is 0.8% on average under common use
cases. Once direct reclaim happens, up to 1024 dirty pages
will be flushed to flash storage, which dramatically extends
the latency of the page allocation. Thus, direct reclaim should
be avoided.

Prior researches focused on reducing the number of page

USENIX Association 2020 USENIX Annual Technical Conference 897

faults by optimizing page eviction algorithms on mobile de-
vices [32, 40]. These previously-proposed eviction algorithms
treat the pages of background and foreground applications
with the same priority and choose victim pages according to
their access time and the frequency of accesses. The optimized
LRU is known as a good eviction algorithm and is applied in
Android [2]. To avoid direct reclaim, the Android operating
system reserves some free pages by setting watermarks for
free memory. This additional free pages can prevent direct
reclaim from being triggered if there is a sudden and urgent
heavy allocation. However, our experimental results show that
the number of direct reclaims is still surprisingly high (could
be triggered 96 times in five minutes in one common use
case) on Android mobile devices. To reduce the long latency
of memory allocation caused by poor insight of mobile OSes,
Marvin [28] implements most memory managements in the
language runtime, which has more insight into an app’s mem-
ory usage. However, Marvin misses the opportunities at the
OS level, e.g. taking into account the foreground/background
states of applications to predict applications’ allocation.

In this paper, we observe that under certain user behaviors,
page re-fault depends on the amount of available memory,
while the direct reclaim depends on both the amount of avail-
able memory and the latency of background reclaims. Based
on these observations, we uncover two main causes that lead
to a high rate of page re-faults and direct reclaims on mobile
devices. First, background applications are not truly inactive
but their reduced activities and unevicted pages still create
high memory pressure, penalizing the foreground application
in an unfair way. Furthermore, low memory killer (LMK) [1]
does not help much. Second, we found that the large-size
reclaim, which is suitable for desktop and servers as the large-
size reclaim amortizes the long latency of each direct reclaim
process, is overly aggressive and coarse-grained for Android
because 1) it prolongs the latency of the background reclaim
and negatively impacts the user experience and 2) Android
workloads typically issue page allocation requests that are
much smaller compared to desktop and server requests.

Based on these two main causes, we propose Acclaim, a
foreground aware and size-sensitive reclaim scheme. Acclaim
consists of two major runtime components: foreground aware
eviction (FAE) and a lightweight, prediction-based reclaim
scheme (LWP). FAE relocates free pages from background
applications to foreground applications; it does so by lowering
the priorities of the pages belonging to background applica-
tions during page eviction. LWP tunes the sizes and amounts
of background reclaims based on its prediction of allocation
workloads. Evaluation results show that Acclaim benefits I/O-
intensive phases in application execution, notably application
launch and application installation, which are known crucial
to mobile user experience [8].

The contribution of this paper is listed as follows.

• This work reveals that the current memory reclaim
scheme fails to deliver a good page re-fault ratio (of

up to 31%) and frequency of direct reclaims (of up to 96
times when using only one foreground application for
five minutes) on Android mobile devices.

• We analyze the root causes of the inefficient memory
reclaim scheme on mobile devices and propose Acclaim,
a foreground aware and size-sensitive reclaim scheme,
to improve the performance.

• We conduct a survey to collect the usage information
of applications through deploying our monitoring ap-
plication on fifty-two real mobile devices. We evaluate
Acclaim according to our survey. The experimental re-
sults on a real mobile device show that the performance
improves in most use cases.

2 Background

To analyze the latency bottleneck of Android mobile devices,
we first look at how Android read a page of data.

2.1 Android I/O Latency
Android is a Linux-based lightweight operating system de-
signed for mobile devices. Figure 1 shows the architecture
of Android I/O stack that including the userspace, the Linux
kernel, and the I/O devices.

File Systems

Generic Block Layer

I/O Scheduler Layer

Flash Storage

Applications

Kern
el

D
evice

U
ser

Page Cache

VFS Layer

Figure 1: An overview of the Android I/O stack.

We use a read operation as an example to show the la-
tency bottleneck. When an application reads a page in the
I/O stack, the application sends a read request to the kernel.
The kernel then searches the page cache to see whether the
requested page is in the page cache or not. If the requested
page is in the page cache, the page cache returns the page
to the application. Because the page cache resides in the
main memory, the access latency of accessing the page cache
takes about one hundred nanoseconds to complete [39]. If
the requested page is not in the page cache, a page fault is
generated. In this case, the page allocation operation will be
triggered to allocate a new page. When the memory is full,
the Linux’s reclaim scheme is triggered to free pages within
the main memory. There are mainly two reclaim schemes:
asynchronous background reclaim and synchronous direct
reclaim. Background reclaim frees unmapped pages while
direct reclaim frees mapped pages or dirty pages, and thus
direct reclaim has a heavy cost, especially when writing back

898 2020 USENIX Annual Technical Conference USENIX Association

dirty pages. After page allocation, the request is delivered to
the file system layer, which finds the logical address of the
requested page. Then, a read request goes through generic
block and I/O scheduler to access the requested page from
flash storage through I/O operations. Going through each of
these layers contributes to additional microsecond scale laten-
cies to this read request, which can include addressing latency
of the file system, queuing latency of the I/O operation, and
reading latency of the flash storage. After these operations,
the fetched page is finally stored in the main memory and
future accesses can be fetched directly from the page cache.
Due to these reasons, a page fault can take microseconds to
finish, leading to much longer read latency especially when a
direct reclaim is triggered.

To quantitatively show the influence of page fault on An-
droid mobile devices, Yu et al. [21] measure the latency of
launching Twitter and Facebook applications in three differ-
ent situations. Figure 2 shows the three scenarios across two
setups based on F2FS [19] and EXT4 [23] file systems, which
are commonly used in Android. “Cached” refers to the case
where most requested pages can be found in the page cache.
This case is implemented by re-launching the application
right after it is closed, and thus its data is still in memory.
“Read” is a case when there are some page faults but there
are enough free pages, 1 and thus the reclaim procedure will
not be triggered. This case is implemented by launching the
application after cleaning the page cache. “Reclaim-first” is
the case where there are some page faults and there are not
enough free pages, triggering the reclaim procedure. This case
is implemented by launching the applications after sequen-
tially launching twenty other applications (to ensure that the
page cache is full prior to the launch of Twitter or Facebook.)

0

500

1000

1500

2000

2500

3000

Twitter Facebook Twitter Facebook

F2FS Ext4

A
p

p
s

La
u

n
ch

in
g

la
te

n
cy

 (m
s)

Cached (no page fault)
Read (page fault)
Reclaim_first (page fault)

Figure 2: Influence of page fault and reclaim on application
launch latency on Android mobile devices.

The results in Figure 2 show that the latency of launching an
application is the shortest in the “Cached” case. Compared to
the “Cached” case, the “Read” and the “Reclaim_first” cases
take longer to launch for both applications. The extended
latency is caused by page faults. The launch latency is the
longest in “Reclaim_first” case because the reclaim procedure
is triggered. Especially, when direct reclaim is triggered, the
latency increases significantly.

1Cache status is checked by the command dumpsys meminfo.

2.2 Key Factors that Affect Performance
Page Re-fault. Page fault can happen in three scenarios. First,
a page fault occurs because physical memory has not yet been
allocated for the requested page. This occurs, for example,
when the page is read for the first time. Second, a page fault oc-
curs because the application wants to read an already evicted
page. We define this case as a page re-fault. Third, a page
fault occurs because a process wants to illegally access invalid
memory. In this case, the operating system will kill the pro-
cess. Out of these three cases, the system can be designed to
minimize page re-fault because the requested page had been
in memory but was evicted by system’s page reclaim scheme.
Page re-fault can be used to measure the page thrashing and
thus evaluate the efficiency of the memory reclaim scheme.
Direct Reclaim. Direct reclaim is a heavy-weight syn-
chronous reclaim scheme that is triggered during the page
allocation procedure when there is not enough free space for
the system’s demands. Once direct reclaim is triggered, An-
droid system needs to pause the allocation process, resulting
in additional performance degradation. An alternative solution
is to use background reclaim. When the number of free pages
is lower than a threshold (watermarklow), background reclaim
threads are woken up to reclaim and free unmapped pages
asynchronously. During the background reclaim, the Android
system does not pause the allocation process. Hence, back-
ground reclaim is lightweight. However, if the background
reclaim is unable to reclaim enough free pages in time and
there are not enough free pages for the current page allocation,
direct reclaim is triggered to reclaim the mapped pages or
dirty pages. When the memory is extremely scarce, direct
reclaim cannot help and some background applications will
be killed by the Android low memory killer (LMK) [1] to
reclaim memory. Because the overhead of LMK is larger
than direct reclaim [28], LMK cannot be used to replace di-
rect reclaim. Thus, LMK complements direct claim and only
handles extreme cases.

3 Analysis of Android Memory Reclaim

In this section, we measure the Android memory reclaim
scheme by counting page re-faults and direct reclaims while
running popular applications.

3.1 Survey of Application Usage Patterns
We survey the distribution of the numbers of background
applications from real phones, then using that numbers to
conduct controlled experiments and study launch latencies.
We develop a monitoring application 2 and deploy it on the
phones of sixty Android users. Out of the 60 users, we veri-
fied the data invalidation and selected 52 users (90% 18-35
years old and 10% 35-50 years old) for our analysis. Our

2https://github.com/MIoTLab/Accliam.

USENIX Association 2020 USENIX Annual Technical Conference 899

monitoring application collected data on more than twenty
mobile device models over a two-month period. During this
time, the monitoring application generates an hourly report on
other applications’ activity, RAM usage, and device informa-
tion. Our monitoring application runs without root permission.
Hence, the application only checks the applications’ activity
conducted by users but not by systems. With this data, we can
estimate the distribution of background applications’ usage
information as shown in Table 1.

Table 1: Collected data from 52 real phones.
of phones # of background applications Workloads

0 N < 2 light
8 2 ≤ N < 5 light

39 5 ≤ N < 10 moderate
5 N ≥ 10 heavy

Based on the survey, we reproduce different realistic us-
age scenarios by running several popular Android applica-
tions. These applications include Facebook, Twitter, Insta-
gram, WhatsApp, Pinterest, Wish, Chrome, Firefox, Google
Earth, Google Map, Uber, Angrybird, CnadyCrush, News-
Break Youtube, and Spotity. We evaluate both launching and
execution of applications with a different number of back-
ground applications as shown in Table 2.

Table 2: Application combinations used in experiments. A
represents a foreground application and B represents a back-
ground application. 3B+A means launching a foreground
application when there are three background applications.

Applications Operations Memory Workloads

A Launch and use Avail. Light
an application for 5 minutes

3B+A 3 background applications Avail. Moderate
8B+A 8 background applications Full Moderate

15B+A 15 background applications Full Heavy

All our following experiments are performed on a Huawei
P9 smartphone with an ARM’s Cortex-A72 CPU, 32GB inter-
nal memory and 3GB RAM, running Android 7.0 on Linux
kernel version 4.1.18. We also conduct experiments on 2.5GB
RAM by using memtester [34] to occupy memory. There is
no external SD card in order to force all the I/O requests to
the internal eMMC flash storage (/data partition) of Android.
We instrument the Android kernel source code and use the
adb (Android Debug Bridge) tool [37] to obtain information
on memory allocations and the reclaim process of our eval-
uated smartphone. Our instrumentation framework includes
information on the number of re-fault pages, the number of
evicted pages, the size of each allocation, the size of each
reclaim, the number of direct reclaims, and the number of
all reclaim operations. To reproduce the real usage scenarios,
after system start, background applications will be launched
and wait for a while. And then we start to collect the infor-
mation while we launch and use the foreground application
for five minutes. To avoid bias, each experiment is conducted

ten times with the same subset of background applications
and the average is shown. In Sections 3.2 and 3.3, we show
that page re-fault and direct reclaim happen on Android mo-
bile devices unexpectedly frequently even when a small-size
foreground application running.

3.2 Page Re-fault on Mobile Devices
The ratio and the number of page re-faults when launching
and running popular applications are shown in Figure 3. We
define the page re-fault ratio as the proportion of re-faulted
pages on all evicted pages. It can be used to evaluate page
thrashing. The results show that the page re-fault ratio could
be up to 31% when running popular applications. This means
the Android memory reclaim scheme often reclaims pages
that will be used soon. Although the ratio of page re-fault
depends on users’ behaviors, when using only one application
in a system with 3GB of memory, page re-faults should not
occur because the working set of one application does not
exceed 3GB 3. The existence of page re-faults in Figure 3
indicates that the pre-loaded data and processes’ data occupy
the memory space causing many page re-faults.

0

5

10

15

20

25

30

35

40

45

50

0

10000

20000

30000

40000

50000

60000

70000

80000

A 3B+A 8B+A 15B+A A 3B+A 8B+A 15B+A

3G memory 2.5G memory

R
e

fa
u

lt
 r

at
io

 (%
)

P
ag

e
 r

e
fa

u
lt

 n
u

m
b

e
r

(p
ag

e
s) others

foreground
refault ratio

Figure 3: Ratio and number of page re-faults when using one
foreground application for five minutes. For each case, there
are different number of background applications. “Others”
includes background applications and system services.

Moreover, we find that the increase in the number of back-
ground applications has a great impact on the number of page
re-faults. The ratio of page re-faults is up to 31% when there
are eight background applications with 3GB memory. This
means almost one-third of the evicted pages will be reused.
We further find that a major fraction (37% on average) of page
re-faults happens on the foreground app. Because foreground
applications directly interact with users, it is important to min-
imize the number of page re-faults of foreground applications.

3.3 Direct Reclaim on Mobile Devices
Compared to page re-fault, direct reclaim can cause more
severe performance degradation and fluctuations because it
could flush many dirty pages during a page allocation routine.
We show the ratio and number of direct reclaims when running

3It is checked by the command dumpsys meminfo.

900 2020 USENIX Annual Technical Conference USENIX Association

popular applications in Figure 4. We define the direct reclaim
ratio as the proportion of the number of direct reclaims on
total of reclaims. Even if the direct reclaim ratio is small (up to
2%), it could induce a large latency because page allocations
need to wait for the direct reclaim to finish. The latency taken
by the direct reclaim can be thousands of times the latency of
the background reclaim. Thus, the direct reclaim is supposed
to be triggered in memory of emergency cases.

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

120

A 3B+A 8B+A 15B+A A 3B+A 8B+A 15B+A

3G memory 2.5G memory

D
ir

e
ct

 r
ac

la
im

 r
at

io
 (%

)

D
ir

e
ct

 r
e

cl
ai

m
 c

o
u

n
t

number

ratio

Figure 4: Ratio and number of direct reclaims when using one
foreground application for five minutes. For each case, there
is different number of background applications.

We find that the increase in the number of background ap-
plications and the reduction of physical memory have major
effect on the number of direct reclaims. However, the direct re-
claim ratio trend is different between on 3GB (default) and on
2.5GB (using memtester to occupy memory). When memory
is relatively large (3GB), direct reclaim triggers only when
there are some background applications and increases as the
number of background applications increases. However, when
memory is extremely scarce and direct reclaim become in-
effective, OS will kill some applications to reclaim memory
space. Thus, direct reclaim ratio is decreasing with a larger
number of background applications on 2.5 GB of memory.
The number of direct reclaims could be up to 96 in five min-
utes when there are fifteen background applications with the
default 3 GB memory. An efficient memory reclaim scheme
should minimize the number of direct reclaims.

4 The Cause of Page Re-fault and Direct Re-
claim on Mobile Devices

Substantial re-fault rates were also seen on servers, e.g. as
high as 14% reported by Google engineers [9]. Compared to
servers, mobile devices have vastly different characteristics:
much smaller page allocation request size, limited memory,
and highly-interactive foreground applications [10, 13]. Ac-
cording to these characteristics, we conduct another set of
experiments to analyze the Android memory reclaim scheme
to find the main causes of a high number of page re-faults and
direct reclaims.

Observation 1: Page re-fault depends on the available
memory. Figure 5 shows that the number of page re-fault
and evict pages under different available memory. To further
eliminate the impact of user behavior, in this experiment,

we used different usage scenarios from that in Figure 3. “A”
means to launch one foreground app. “A4A” means to launch
one foreground application and then launch four background
applications, and finally re-launch the foreground application.
Relaunching a foreground application is a typical scenario to
produce page re-faults.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

1.
1

G
_f

re
e

20
0M

_f
re

e

90
M

_
fr

e
e

1.
1

G
_f

re
e

50
0M

_f
re

e

20
0M

_f
re

e

1.
1

G
_f

re
e

50
0M

_f
re

e

A A4A A8A

n
u

m
b

er
 (p

ag
es

)

evict refault

Figure 5: Number of page re-faults and evicted pages under
different available memory.

The results show that the number of background applica-
tions has a major impact on the number of re-fault and evict
pages. Moreover, reducing physical memory can increase
number of both re-fault and evict pages. In a word, the num-
ber of page re-faults depends on the available memory.

Observation 2: Direct reclaim depends on both avail-
able memory and the latency of the background reclaim.
The factors which affect the frequency of the direct reclaim
can be found in its flow chart which is shown in Figure 6.

Page allocation

Lower than
threshold?

Get free
pages

Weakup background reclaim

Enough free
pages?

Get free
pages

Direct reclaim

Reclaim free pages in background

N

Y

N

Y

Figure 6: The flow chart of reclaim scheme.
During page allocation, if the number of free pages is

lower than a threshold, the background reclaim starts asyn-
chronously. If there are not enough free pages for this al-
location or the launched background reclaim does not re-
claim enough pages in time, direct reclaim will kick in syn-
chronously. The flow chart shows that direct reclaim depends
not only on available memory but also on the latency of the
background reclaim. Notably, a larger reclaim size also sig-
nificantly increases the latency of the background reclaim.

Based on the above two observations and the specific char-
acteristics of mobile devices, we found that there are two
additional factors that can increase the number of page re-
faults and direct reclaims.

USENIX Association 2020 USENIX Annual Technical Conference 901

Observation 3: Background applications keep consum-
ing free pages even though they do not have the same
impact on user experience compared to the foreground
applications. For mobile devices or other highly-interactive
systems, foreground applications have significant impact on
user experience. However, we found that background applica-
tions keep consuming free space under the current memory
reclaim scheme due to two main reasons.

First, we find that anonymous pages from background ap-
plications thrash pages from the foreground application. In
the android system, all the pages are in one of five LRU
lists: Active_anonymous, inactive_anonymous, active_file, in-
active_file, and unevictable. The pages in the unevictable
list will not be evicted. Since anonymous pages contain the
heap information associated with a process, these anonymous
pages are considered to be more important than file pages to
the process. In most cases, the pages in active_anonymous
list will not be evicted, even if they belong to a background
app. Thus, many anonymous pages of background applica-
tions stay in memory, while the file pages from the foreground
application are evicted. These evicted file pages from fore-
ground applications may be accessed again soon, leading to
a high number of page re-faults. Moreover, the anonymous
pages of background applications occupy free space and thus
affect the frequency of the direct reclaim.

Second, we found that background applications are still
active even after they are in the background for thirty minutes.
The details are shown in Table 3. The results are collected
when there are seven user background applications and one
foreground application. Notice that system services are treated
as applications here.

Table 3: Applications are still active in the background.

Time Evict apps Refault apps Foreground Background System

5 mins 53 31 6.2% 34.4% 59.4%
30 mins 52 19 18.3% 33.3% 48.4%

“Evict apps” represents the number of applications that
have pages being evicted while “Refault apps” represents
the number of applications that have page re-faults. “System”
includes system services and private applications that are in-
stalled on the mobile device at the factory. The percentages
in the Table 3 means the percentage of re-faults. The results
show that background applications still request free pages and
thus induce page re-faults. Moreover, background applica-
tions still consume free space and thus affect direct reclaim
frequency.

In summary, the reclaim scheme keeps the pages of back-
ground applications in memory and could induce a high num-
ber of page re-faults and direct reclaims. For servers, the fore-
ground and background applications usually have the same
priority. However, for mobile devices, only the foreground
application has a major impact on the user experience.

Observation 4: Large-size reclaim prolongs the latency
of the background reclaim. In the buddy system, every

memory block has an order, where the order is an integer
ranging from 0 to 11. The size of a block of order n is 2n.
The distribution of allocation order when running popular
applications is shown in Figure 7. These results are collected
from the allocation function _alloc_pages_nodemask(). The
results show that on the Android mobile device, 99% of allo-
cation orders are 0 (1 page), and more than 99.9% of orders
are smaller than 4 (16 pages). This is because the requests on
Android mobile devices are mostly in small size. One of the
main reasons is that most Android applications use SQLite
as the database. SQLite and its temporary files are mostly
accessed in 4KB (1 page) units [20, 29].

97%

98%

99%

100%

FE
Y

FE
A

FE
C

FY
A

FY
C

FM
T

FA
T

FT
C

EY
A

EY
C

EM
T

EA
T

ET
C

YM
T

YA
T

YT
C

M
A
C

A
T
C

order=11
order=10
order=9
order=8
order=7
order=6
order=5
order=4
order=3
order=2
order=1
order=0

Figure 7: The distribution of allocation orders. The corre-
sponding allocation size equals to 2order [21].

The distribution of reclaim sizes is shown in Figure 8. The
results show 80% of reclaim sizes are larger than 32 pages (or-
der=5). Android inherits much of the reclaim scheme from its
server counterpart. The latter often reclaims memory as much
as possible to fulfill large allocations and avoid expensive di-
rect reclaim or killing processes under memory pressure. As
Android applications tend to allocate multiple small blocks of
data (shown in Figure 7), the reclaim process becomes overly
aggressive and ends up reclaiming excessive pages for each
of these small allocations.

0%

20%

40%

60%

80%

100%

FE
Y

FE
A

FE
C

FY
A

FY
C

FM
T

FA
T

FT
C

EY
A

EY
C

EM
T

EA
T

ET
C

YM
T

YA
T

YT
C

M
A
C

A
T
C

order>10

order<=10

order<=9

order<=8

order<=7

order<=6

order<=5

Figure 8: The distribution of reclaim sizes. These results
show the reclaims from LRU lists, and they are collected in
the functions shrik_lruvec() [21].

Large reclaim size prolongs the latency of the background
reclaim. According to observation 2, the latency of the back-
ground reclaim will affect the frequency of the direct reclaim.
Moreover, a large-size reclaim scheme could induce more
page re-faults than necessary [21].

Based on our data in Section 3, Android does not efficiently
manage its memory. This observation is in-line with multiple
technical news: Google Pixel 3 has memory management

902 2020 USENIX Annual Technical Conference USENIX Association

issues, such as killing background applications [35] and is un-
able to shuffle between a few applications at a time [33]. More-
over, its memory management issue seemingly gets worse
when users use the camera [16]. Hardware vendors tend to
address the issue by putting a large-capacity DRAM on de-
vices, which alleviates the problem in a short term but leaves
the issue in the future. Moreover, the brute-force solution has
many problems, such as cost efficiency, power consumption,
the growing trend of application size, etc. and these problems
cannot be addressed solely by dropping in more DRAM. In-
stead, our work aims to improve the efficiency of Android’s
memory management.

5 Our Solution: Acclaim

With the understanding of the four observations leading to
a high number of page re-faults and direct reclaims, we pro-
posed Acclaim, foreground aware and size-sensitive reclaim
scheme, which includes two parts. The first part, foreground
aware eviction (FAE), is used to solve the problem that
background applications keep consuming free pages. FAE
takes space from background applications and allocates it to
the foreground application. The second part, a lightweight
prediction-based reclaim scheme (LWP), is used to reduce
the reclaim size of the background reclaim and thus minimize
its latency. LWP tunes the size and amount of the background
reclaims according to the predicted allocation workloads. In
summary, FAE decides from where to reclaim, while LWP
decides how much to reclaim.

5.1 Foreground Aware Eviction (FAE)

The memory is always not large enough to eliminate all page
re-faults and direct reclaims. Both the number and size of
applications increase with memory capacity [38]. Moreover,
when the memory capacity increases, mobile device manufac-
turers often make optimizations, such as locking commonly-
used files [3] and pre-loading predicted applications [31] in
the memory. All these optimizations consume free memory.

Since the memory size is limited, the total page re-faults
can be hardly reduced. The reduction of page re-faults of
the foreground application can have a major impact on the
user experience of mobile devices or other highly-interactive
systems. Thus, we propose to reduce the page re-faults of
foreground applications by sacrificing space from background
applications. Foreground aware eviction (FAE) is proposed to
lower the priority of background pages in LRU lists, causing
them to be evicted faster and thus freeing more memory space.

5.1.1 Framework of FAE

The framework of FAE is shown in Figure 9. FAE needs to
know whether a page belongs to background applications.
Each application has a unique ID (UID). Once an application

is installed, its UID is fixed. The UIDs of user applications
are added to Page Table Entry (PTE). PTE is only accessible
during the page walk process through the page walker. User
applications will not be able to access these UID bits as this
is handled by OS or hardware. The page’s UID is used by
FAE during the eviction procedure. Currently, only 8 unused
bits of each PTE (the 56th to the 63rd) can be used to store
UIDs. Thus, Acclaim only supports 256 unique UIDs at a
time, which is an implementation limitation.

Applications

Android Framework

Foreground
aware

eviction

① install or update apps
② update the config file
③ switch apps
④ deliver the foreground uid
⑤ kernel gets the uids of all apps
⑥ kernel gets the uid of foreground app

①

②

Config
files

Kernel

Memory
managementFore

ground

③

④

⑤

⑥

Figure 9: Framework of foreground aware evict scheme.

There is only one foreground application at a moment but
there could be several background applications. This list of
all background applications can be obtained by subtracting
the foreground application from an application list. The main
task of FAE is to create a list of background applications and
lower their priority compare to the foreground task. To do this,
FAE stores the UIDs of applications in the application list in
a configuration file. This file will be updated when installing
or deleting applications. To identify the current foreground
application. FAE notifies the UID of the foreground applica-
tion to the kernel when users switch applications. Based on
the UIDs of applications in the application list and the UID
of the foreground application, the system can then lower the
priorities of all other applications’ pages in LRU lists.

By default, Acclaim deprioritizes all background user ap-
plications by assigning them lower priorities in page eviction.
To accommodate a small number of applications that keep
serving the users in the background, e.g. music or video play-
ers, Acclaim can treat them as exceptions without degrading
their priorities by excluding them in the application list.

5.1.2 Lower Priority of Background Applications

Initially, we tried to raise the priorities of foreground applica-
tions’ pages or system’s pages. However, this method main-
tains too many useless pages of foreground applications and
the system in memory because of their higher priorities. These
useless pages may lead to OS crashes when free memory is
used up. Thus, FAE chooses to lower the priority of pages of
background applications. Under this scheme, the priority of
foreground applications’ pages and the system’s pages will
not be changed. Their useless pages will be evicted from
memory and thus free memory will not be used up to crush
OS. The details are shown in Figure 10.

USENIX Association 2020 USENIX Annual Technical Conference 903

Active ListTail Head

Inactive ListHead Tail

clean

write back

u
n

re
fe

re
n

ce
d

referenced

d
irty

If (uid==background)
Go into inactive list

If (uid==background)
stay in inactive list

Figure 10: Foreground aware evict scheme of LRU lists.
Page movement between the “active” and the “inactive”

LRU lists is driven by memory pressure. Unused pages in the
active list go to the inactive list. Pages are taken from the tail
of the inactive list to be freed. If the page has the reference bit
set, it is moved to the head of the active list and the reference
bit is cleared. If the page is dirty, writeback is commenced and
the page is moved to the head of the inactive list. FAE lowers
the priorities of background pages (See Figure 10) and moves
them out of LRU lists quickly. Thus FAE can extract space
from background applications for foreground applications and
thus to reduce the foreground page re-faults.

Sharing pages have the same priority as their creators. To
reduce dynamic-conversion overhead, a sharing page main-
tains the UID of the application that created it. Thus, the
sharing page gets the priority according to the status of its
creator. For example, let us assume page A is shared by appli-
cation D and E. D creates page A first and D is in background
while E is in foreground. If page A is not used for a long
time, it will be likely to be evicted because its owner is in the
background list and thus has low priority. However, if page
A is used frequently, A will remains in the memory. Acclaim
does not move the application’s pages when it is changed
from background to foreground and vice versa. Acclaim only
checks page’s UID and moves a page when it needs to be
moved under the default eviction scheme (See Figure 10).

With FAE, the re-launch time of background applications
can increase because their pages are out of LRU lists. How-
ever, this penalty is much smaller compared to the baseline
scenario where these background applications are killed by
the Android low memory killer (LMK) [1, 28]. Moreover,
the penalty of FAE can be minimized by combining it with
application prediction [8, 27, 31]. If the system predicts a
background application will be used soon, FAE removes these
applications from the background list, and thus does not de-
crease the priorities of its pages in the LRU lists.

Additionally, FAE is compatible with LMK. For example,
FAE can further categorize background applications. Back-
ground applications that may be used in the near future can
donate some of their memory space with Acclaim while back-
ground applications may not be used again can be killed by
LMK when memory is getting full.

We expect FAE to benefit impromptu, short interactions
(checking and replying instant messages, or switching among
applications within a short time span). FAE recognizes them

as foreground applications and optimizes them accordingly.

5.2 Lightweight Prediction-Based Reclaim
Scheme (LWP)

The original reclaim size of each background reclaim is the
maximum number of requested pages until the time of the re-
claim. From Section 4, we find that the current reclaim size is
too large for the allocation requests of mobile devices. Large-
size reclaim induces a high number of page re-faults and direct
reclaims. However, there is a trade-off between the reclaim
size and performance. If the reclaim size of the background re-
claim is too small while the application workloads are heavy,
the free pages will be consumed quickly and the heavy-weight
direct reclaim will be triggered, lowering performance. On
the other hand, if the reclaim size of the background reclaim
commands is too large, page re-faults and direct reclaim will
happen frequently and, again, degrades overall performance.
Thus, we incorporate a workload-prediction based reclaim
scheme into our design by incorporating the historical infor-
mation obtained through a lightweight predictor (See Sec-
tion 5.2.1). Based on the predicted results, the system can
tune the reclaim size of the background reclaim. Another
challenge can occur if we reduce the reclaim size according
to each workload. In this case, the number of reclaim op-
erations can increase while the amount of reclaimed pages
remain unchanged, and thus reducing reclaim size will waste
CPU time. To solve this problem, we incorporate the amount
of reclaiming pages to dynamically tune the size according to
the predicted workloads.

5.2.1 Framework of LWP

LWP consists of two parts, a lightweight predictor and a mod-
erator. Its framework is shown in Figure 11. The lightweight
predictor is run during the page allocation procedure. To re-
duce memory overhead, the sampled allocation requests as
inputs are stored in the lightweight predictor. The outputs of
the lightweight predictor are the predicted reclaim size and the
trend of reclaim amount. The moderator modifies the reclaim
size and the amount of the background reclaim according to
the predicted reclaim size and the amount trend.

Figure 11: The framework of LWP reclaim scheme.

5.2.2 Lightweight Predictors (LWP)

Using recent information processed by a sliding window to
predict the future workloads is commonly applied for pre-
diction [24] [8] [25]. The challenge is how to implement a

904 2020 USENIX Annual Technical Conference USENIX Association

lightweight predictor. Recent information-based prediction
should make sure the correctness of stored information. Page
allocation procedure supports concurrency, thus the sliding
window needs to guarantee correctness by using locks which
will greatly degrade the performance. To predict allocation
workloads including size and frequency, the system needs to
store the size and time of historical allocation requests. How-
ever, storing all historical information precisely will occupy
significant space and CPU time and thus degrade the overall
performance. To reduce the overhead, the proposed predictor
is designed as a lock-free sliding window, and it only stores
limited historical information.
Limited historical information. To reduce the stored infor-
mation, the sliding window is carefully designed in two as-
pects. First, the sliding window is designed based on time
slots to avoid storing the time information. Second, the slid-
ing window stores sampled historical information to reduce
the amount of stored information. Each element of the sliding
window is the allocation size of a sampling allocation request.
For example, when the sampling period equals 10 ms, the
predictor will pick one of allocation requests that happened in
this 10 ms and add its allocation size to the sliding window.
Lock-free sliding window. We first analyze the impact of
being lock-free on the sliding window. When the window is
lock-free, the following three things could happen. (1) Data
disorder and data missing could occur; (2) When the predictor
samples the historical information, the penalty of being lock-
free reduces as there are fewer access to locks; (3) Being
lock-free does not affect the system consistency as we only
use it to store the memory historical information. We further
evaluate the accuracy of the lock-free and sampling predictor.
Let sampling = 10 ms, sliding = 10 ms, and window = 1000 ms,
to get the sum of the reclaim sizes in a window. To compare
three cases, the log of sum value is shown in Figure 12 as
the sum in the sampling and lock-free cases are much smaller
than that in the lock-free only case and original cases. Three
usage behaviors, launching Chrome, launching YouTube, and
launching and using five applications, are evaluated. The x-
axis is the index of the sliding window. The y-axis is the log
of the sum of the reclaim sizes in a window. We use vertical
red lines to show the trend changes in the first figure. The
results show that the lock-free and sampling case captures
the same trend as the original case. (For using the ACFYT
case, too much data makes the trend of the sampling case
not obvious. It’s trend also same as the original case.) Thus,
the lightweight predictor can predict the trend of the amount
of allocation requests in the next window correctly. In this
way, prediction can be achieved with a low overhead in both
storage and latency.

5.2.3 LWP-Based Moderator

The moderator is used to tune the reclaim size and amount
of the background reclaim according to the predicted results.

Figure 12: Predicted sum trend of reclaim sizes in the lock-
free and sampling sliding window.

The reclaim amount of the background reclaim could be tuned
by modifying its stop setting (watermarkhigh). The original
background reclaim will stop when the number of free pages
is above the watermarkhigh, which is a fixed value (a pro-
portion of the total number of pages). The original reclaim
size of each background reclaim is the maximum number
of requested pages until the time of the reclaim. To exploit
the trade-off between reclaim size and performance, the LWP
base moderator tries to make the background reclaim reclaims
just enough free pages just in time. The main idea is to tune
the reclaim size of each background reclaim according to
the predicted allocation size and tune the watermarkhigh ac-
cording to the predicted sum trend. “sum trend” is defined as
sum/lastsum, where “sum” is the sum of the reclaim sizes in
the current window and “lastsum” is the sum of the reclaim
sizes in the last window. For the reclaim size, if the trend is
larger than a threshold T1, that means the amount of allocation
in the future will be much increased. Thus, the reclaim size
should be increased.

• Reclaim size = P1 ∗ predicted size when trend ≥ T1

• Reclaim size = P2 ∗ predicted size in other cases, (P2 <
P1)

For the reclaim amount, the moderator tunes the amount of
reclaim based on the default value that is set by the mobile
device manufacture.

• Reclaim amount = min(watermarkhigh ∗ (1 +
trend),watermarkhigh +T2) when trend > 1

• Reclaim amount = max(watermarkhigh ∗ (1 −
trend),watermarklow) in other cases

Reclaim amount is limited. If it is smaller than the default
watermarklow, the performance will be degraded because di-
rect reclaim will be triggered often.

USENIX Association 2020 USENIX Annual Technical Conference 905

Table 4: Summary of parameters used in LWP.

Symbols Semantics Default values

P1 Amplification factor of reclaim size when I/O is intensive. 4
P2 Amplification factor of reclaim size when I/O is sparse. 2
T1 Defines “sudden change” and thus decides the reclaim size. 2
T2 A threshold to stop background reclaim. watermarkhigh −watermarklow

6 Evaluation

To evaluate Acclaim, we set sampling duration to 10 ms, win-
dow duration to 100 ms, sliding duration to 100 ms for sliding
window of LWP. Both memory overhead and the predict ac-
curacy of LWP are sensitive to these three parameters.

Moreover, we set the parameters for LWP-based moderator
in Table 4. Reclaim size should be larger than the predicted
allocation size to avoid memory once heavy workloads are
arriving. However, according to the analysis in Section 4,
reclaim scheme should not be over aggressive on mobile de-
vices. Thus, we choose small values (4 and 2) as amplification
factors (P1 and P2) under different workloads.

Furthermore, T1 determines the sensitivity to the incre-
ment in workloads. We configure Acclaim to be sensitive to
changes in workloads and responds in time, thus we choose
a relatively small value (2). T2 is the threshold that ensures
that the reclaim amount is not too large. Like the default
watermarkhigh, it is an empirical value. We evaluate Acclaim
on three aspects: impact on foreground applications, impact
on background applications, and overhead.

6.1 Impact on Foreground Applications
Reduction in page re-fault for foreground applications
and direct reclaim of OS. Page re-fault and direct reclaim
are closely related to user behaviors. To compare the solution
and baseline, we need to choose an application with little
change in user behaviors. Thus, a single game, AngryBird,
is used as a foreground application for five minutes in this
evaluation. The page re-fault and direct reclaim results under
the kernel with the original reclaim scheme and the kernel
with our solution are shown in Figure 13.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

A 3B+A 8B+A 15B+A

Fo
re

gr
o

u
n

d
 p

ag
e

 r
e

fa
u

lt

(p
ag

e
s)

baseline

FAE+LPW

FAE

LPW

(a) Page re-fault.

0

20

40

60

80

100

120

A 3B+A 8B+A 15B+A

D
ir

e
ct

 r
e

cl
ai

m
 c

o
u

n
t

baseline

FAE+LPW

FAE

LPW

(b) Direct reclaim.

Figure 13: The page re-faults in a foreground application
(AngryBird) and direct reclaims in the whole OS, showing
the benefit of each solution is different in various scenarios.

The results demonstrate the efficacy of Acclaim. For the
benchmark (AngryBird), Acclaim reduces page re-faults by

16.3% – 60.2%; it reduces direct reclaims of the whole OS by
from 23.9% – 70%. In the experiments, the proposed two tech-
niques play vital, complementary roles. FAE shows higher
benefits as the number of background applications increases,
as it seizes free pages from background applications to relieve
memory pressure. LPW’s benefit depends on the accuracy
of its prediction, based on which it dynamically tunes the
background reclaims. Notably, in case of sudden changes in
application workloads, LPW may suffer from accuracy loss
and thus underperforms.
Benefit to read/write performance. Reduction in page re-
faults and direct reclaims could improve read and write perfor-
mance. To quantify the impact on read and write operations,
we show the read and write performance by using read and
write micro benchmarks, 4 and the results are shown in Fig-
ure 14. Since most page allocation request sizes on mobile
devices are in the size of 4KB [10], we write or read 512MB
or 1GB of data in size of 4KB.

This may not be a typical write access pattern, it could
happen in some cases. For example, when installing games
and applications, more than 1GB of an apk file could be down-
loaded and written back to flash storage. Moreover, this is
a stress test to show Acclaim’s benefit under intensive I/O
requests. Thus, these evaluation results show the performance
impact under intensive I/O requests.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

w
ri

te

B
3+

w
ri

te

B
8+

w
ri

te

B
15

+w
ri

te

re
ad

B
3+

re
ad

B
8+

re
ad

B
15

+r
e

ad

w
ri

te

B
3+

w
ri

te

B
8+

w
ri

te

B
15

+w
ri

te

re
ad

B
3+

re
ad

B
8+

re
ad

B
15

+r
e

ad

512MB write 512MB read 1GB write 1GB read

La
te

n
cy

 (m
s)

Baseline Acclaim

Figure 14: Read and write performance.
The results show that Acclaim improves write performance

by up to 49.3% (when writing 1GB of data). This is because
page allocation, which Acclaim optimizes, constitutes a signif-
icant portion of the delay in writes because of the write-back
operations of dirty pages. The read performance is only im-
proved slightly as the latency of page allocation is only a
small part of read latency in this set of test cases as no dirty
pages are generated and written back during reads.

4https://github.com/MIoTLab/Accliam

906 2020 USENIX Annual Technical Conference USENIX Association

0

500

1000

1500

2000

2500

3000

3500

4000

A
3B
+
A

8B
+
A

15
B
+A A

3B
+
A

8B
+
A

15
B
+A A

3B
+
A

8B
+
A

15
B
+A A

3B
+
A

8B
+
A

15
B
+A A

3B
+
A

8B
+
A

15
B
+A A

3B
+
A

8B
+
A

15
B
+A

CandyCrush Twitter Facebook Firefox Chrome Angrybirds

La
u

n
ch

 la
te

n
cy

 (m
s)

Baseline Acclaim

Figure 15: The launch latency of foreground applications.

Benefit to user experience in application launch. To quan-
tify the impact on user experience, the launch time of various
foreground applications are evaluated. The evaluation results
are shown in Figure 15. The results show that the launch
latency improvement varies for different applications. The
benefit of Acclaim is more pronounced when an application is
launched with multiple memory-hungry applications in back-
ground. For example, the launch latencies of CandyCrush
and Facebook are reduced by up to 58.8% and 28.8%, respec-
tively. Acclaim can have negative impact when foreground
and background applications share common files. For exam-
ple, the launch latency of Chrome could be prolonged up
to 12.3% by Acclaim when there are many background ap-
plications. This may because Acclaim evicts common files
between background applications and Chrome [3]. However,
this penalty can be eliminated by combining with mlock-
ing common files [3]. In summary, Acclaim outperforms the
baseline in most test cases. Of all the 24 test cases, it reduces
latencies in most of them (20, with median reduction of 19.1%
and max reduction of 58.8%) while incurring additional la-
tencies in 4 (with median increase of 3.1% and max increase
of 12.3%).

Figure 16: Average FPS and the standard deviation of FPS of
foreground applications.

Impact on FPS during active user interactions. Acclaim
reduces the launch latency by employing policies on how
application uses the memory to cache files. This policy might
impact user experience negatively after application launch, as
launched applications will have a different amount of data in

page cache. Thus, we measure the possible loss in user experi-
ence as FPS in KFMARK, a popular gaming benchmark. [12].
The average FPS and the standard deviation of FPS of fore-
ground applications are shown in Figure 16. For the average
FPS, the larger the value, the better. While the smaller the
value, the better for the standard deviation of FPS. The results
in Figure 16 suggest no noticeable impact: the difference
between the mean values of the baselines and Acclaim are
smaller than their standard deviations.

6.2 Impact on Background Applications

Because Acclaim evicts more pages from background appli-
cations, it can negative these applications’ re-launch time. We
evaluate the re-launch time for the first-launched background
application to show the upper bound of the penalty. In this
evaluation, we use Facebook as the first launched background
application is evaluated when it is launched for one or ten
minutes, and the results are shown in Figure 17.

Baseline Acclaim

Figure 17: Re-launch time of the first-launched background
application (Facebook).

Based on Figure 17, we observe that re-launch penalty only
occurs when there are a few background applications after ten
minutes. In most cases, the benefit is larger than the penalty.
When there are many background applications, Acclaim effec-
tively seizes free pages from background applications, which
can be used to aid background applications’ re-launch pro-
cess. Moreover, Acclaim also reduces the number of direct
reclaims, benefiting all applications. When the time during
which the application is used after it is launched is too short
(one minute), Acclaim may not have enough time to move out
of the evaluated background application’s pages. After system
starts, many applications are partially run in the background
even if the user does not use them. To this end, their pages
will be firstly evicted from LRU lists by Acclaim.

Additionally, notice that the penalty of Acclaim can be
eliminated by using it in combination with application pre-
diction [8, 27, 31]. If a background application is predicted
as the next used application, Acclaim removes it from the
background application list in FAE, and thus the priority of
its pages will not be degraded in LRU lists when it is in
background. Thus, the penalty will be eliminated.

USENIX Association 2020 USENIX Annual Technical Conference 907

6.3 Overhead Analysis

Additional memory overhead. FAE adds a uid to PTE, in-
curring a space overhead of an integer space (4 Bytes). For a
device with 3GB of memory, the maximum memory overhead
is 3MB. Moreover, FAE needs to store the uids of applications
in the application list. If a user installs 100 applications, the
total memory cost is only 0.4 KB.

LWP needs to store the sampling historical allocation size
(4 Bytes per entry). When the sampling duration is 10 ms and
the window is 100 ms, only 10 values need to be stored. Even
if there are 100 values in the window, the LWP only takes
up 400B storage overhead. In summary, the total memory
overhead is about 3MB (0.1% of memory capacity).
Performance overhead. FAE’s performance overhead can
be broken down into three parts. First, after system starts, it
needs to check the configure file to get the UIDs of the appli-
cations. It only happens when the system starts. Second, when
the user switches applications, the new foreground UID needs
to be delivered to FAE from the framework layer. Third, FAE
needs to check if the UID equals to one of the background ap-
plications during each page eviction. Only a few comparisons
are conducted, thus the performance overhead is negligible.

The performance overhead of LWP includes two parts.
First, prediction has a small cost because of the lock-free
sliding window. Second, reducing the reclaim size could pro-
long the wake up time of the background reclaim . However,
LWP dynamically tunes the amount of background reclaim
according to the allocation workloads to reduce the CPU
time consumption. In summary, the performance overhead of
Acclaim is trivial.

7 Related Work

Application launch. Existing studies on context-awareness
led to the development of application pre-loading algo-
rithms [8, 27, 31]. These algorithms greatly reduce the appli-
cation launch latency by preparing required resources before
they are requested.
Application foreground/background behaviors. Many mo-
bile applications are designed to run in background to enable
a model of always-on connectivity and to provide fast re-
sponse time. This means that once installed and initiated by
the user, applications can register themselves with the services
provided by the OS framework for background activities, re-
gardless of the user’s actual usage of the app. This is true of
both iOS and Android OS [4, 7, 26].
Memory management. Many previous works were focusing
on the design of the buddy system for managing memory.
Burton [6] proposed a generalized buddy system. By using
the Fibonacci numbers as block size, Knuth [17] proposed
the Fibonacci buddy system. Moreover, this idea was comple-
mented by Hirschberg [15], and was optimized by Hinds [14],
Cranston and Thomas [11] to locate buddies in time simi-

lar to the binary buddy system. Shen and Peterson [36] pro-
posed the weighted buddy system. Page and Hagins [30] pro-
posed the dual buddy system, an improvement to the weighted
buddy system, to reduce the amount of fragmentation to that
of the binary buddy system. A buddy system designed for
disk-file layout with high storage utilization was proposed by
Koch [18]. Brodal et al. [5] improved the memory manage-
ment for accelerating allocation and deallocation. Marotta et
al. [22] proposed a non-blocking buddy system for scalable
memory allocation on multi-core machines. Yu et al. [21]
show that the existing reclaim scheme is not working well for
Android mobile devices. Consequently, this paper proposes a
new smart reclaim scheme for Android mobile devices.
Mobile device-specific memory management. Due to mo-
bile OSes have poor insight into application memory usage,
the memory allocation may take a long latency, especially un-
der memory pressure. Marvin [28] implements most memory
managements in the language runtime, which has more insight
into an app’s memory usage. They target the same problem at
a different layer. By predicting allocation workloads and with
foreground and background information, Acclaim improves
memory management efficiency at the system level.

8 Conclusion

Existing Linux memory reclaim scheme is designed for
servers and PCs. Android inherits Linux kernel and thus the
memory reclaim scheme is transplanted to mobile devices.
The experimental results show that these algorithms become
less effective for the characteristics of applications running on
Android mobile devices due to two main reasons. First, back-
ground applications has less impact on the user experience
than foreground applications. However, they continually con-
sume free pages that increase the frequency of page re-fault
and direct reclaim. Second, the large-size reclaim aggravates
this problem on mobile devices which involve with almost
exclusively small allocation requests. In this work, we pro-
pose Acclaim. Acclaim consists of the Foreground aware
eviction (FAE), which is designed to relocate free pages from
background applications for foreground applications, and the
lightweight prediction-based reclaim scheme (LWP), which
is used to dynamically tune the size and amount of the back-
ground reclaim according to the predicted allocation work-
loads. Evaluation results show that Acclaim improves the
performance in general with a trivial overhead.

Acknowledgment

We would like to thank the anonymous reviewers and our
shepherd Prof. Felix Xiaozhu Lin for their feedbacks and
guidance. This paper was partially supported by a grant from
the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (11204718) and National Natural
Science Foundation of China under Grant No. 61772092.

908 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Android open source project. low memory killer.
https://source.android.com/devices/tech/perf/lmkd,
2017.

[2] Linux kernel code. lru scheme in the kernel.
https://www.kernel.org/, 2019.

[3] Android open source project. mlock commonly-used
files. https://source.android.com/devices/tech/debug/
jank_jitter, 2020.

[4] AMALFITANO, D., AMATUCCI, N., TRAMONTANA, P.,
FASOLINO, A., AND MEMON, A. A general framework
for comparing automatic testing techniques of android
mobile apps. Journal of Systems and Software 125 (12
2016).

[5] BRODAL, G. S., DEMAINE, E. D., AND MUNRO, J. I.
Fast allocation and deallocation with an improved buddy
system. Acta Informatica 41, 4 (Mar 2005), 273–291.

[6] BURTON, W. A buddy system variation for disk storage
allocation. Commun. ACM 19, 7 (July 1976), 416–417.

[7] CHEN, X., JINDAL, A., DING, N., HU, Y. C., GUPTA,
M., AND VANNITHAMBY, R. Smartphone background
activities in the wild: Origin, energy drain, and optimiza-
tion. In MobiCom ’15 (2015).

[8] CHU, D., KANSAL, A., AND LIU, J. Fast app launching
for mobile devices using predictive user context. In ACM
MobiSys (June 2012), ACM.

[9] CORBET, J. Proactively reclaiming idle memory.
https://lwn.net/Articles/787611/, 2019.

[10] COURVILLE, J., AND CHEN, F. Understanding storage
i/o behaviors of mobile applications. In 2016 32nd
Symposium on Mass Storage Systems and Technologies
(MSST) (May 2016), pp. 1–11.

[11] CRANSTON, B., AND THOMAS, R. A simplified re-
combination scheme for the fibonacci buddy system.
Commun. ACM 18, 6 (June 1975), 331–332.

[12] FVIEW. Fps test tool kfmark. https://kfmark.com/,
2017.

[13] GAO, C., SHI, L., XUE, C. J., JI, C., YANG, J., AND
ZHANG, Y. Parallel all the time: Plane level parallelism
exploration for high performance ssds. In 2019 35th
Symposium on Mass Storage Systems and Technologies
(MSST) (May 2019), pp. 172–184.

[14] HINDS, J. A. An algorithm for locating adjacent storage
blocks in the buddy system. Commun. ACM 18, 4 (Apr.
1975), 221–222.

[15] HIRSCHBERG, D. S. A class of dynamic memory allo-
cation algorithms. Commun. ACM 16, 10 (Oct. 1973),
615–618.

[16] JANSEN, M. Common google Pixel 3 problems, and
how to fix them. https://www.digitaltrends.com/mobile

/common-google-pixel-3-xl-problems-and-how-to-fix-
them/, 2019.

[17] KNUTH, D. Dynamic storage allocation. In: The art of
computer programming 1, 435–455.

[18] KOCH, P. D. L. Disk file allocation based on the buddy
system. ACM Trans. Comput. Syst. 5, 4 (Oct. 1987),
352–370.

[19] LEE, C., SIM, D., HWANG, J. Y., AND CHO, S. F2fs:
A new file system for flash storage. In Proceedings
of the 13th USENIX Conference on File and Storage
Technologies (FAST) (2015), pp. 273–286.

[20] LEE, K., AND WON, Y. Smart layers and dumb result:
Io characterization of an android-based smartphone. In
Proceedings of the 10th ACM International Conference
on Embedded Software (EMSOFT) (2012), ACM, pp. 23–
32.

[21] LIANG, Y., LI, Q., AND XUE, C. J. Mismatched
memory management of android smartphones. In 11th
USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 19) (2019), USENIX Association.

[22] MAROTTA, R., IANNI, M., SCARSELLI, A., PELLE-
GRINI, A., AND QUAGLIA, F. A non-blocking buddy
system for scalable memory allocation on multi-core
machines. In 2018 IEEE International Conference on
Cluster Computing (CLUSTER) (2018), pp. 164–165.

[23] MATHUR, A., CAO, M., BHATTACHARYA, S., AND
DILGER, A. The new ext4 filesystem : current status
and future plans. In In Proceedings of Linux Symposium
(2007), pp. 21–33.

[24] MEI, L., HU, R., CAO, H., LIU, Y., HAN, Z., LI, F.,
AND LI, J. Realtime mobile bandwidth prediction using
lstm neural network. In Passive and Active Measure-
ment (Cham, 2019), D. Choffnes and M. Barcellos, Eds.,
Springer International Publishing, pp. 34–47.

[25] MITTAL, G., YAGNIK, K. B., GARG, M., AND KR-
ISHNAN, N. C. Spotgarbage: smartphone app to detect
garbage using deep learning. Proceedings of the 2016
ACM International Joint Conference on Pervasive and
Ubiquitous Computing (2016).

[26] MUCCINI, H., FRANCESCO, A., AND ESPOSITO, P.
Software testing of mobile applications: Challenges and
future research directions. 2012 7th International Work-
shop on Automation of Software Test, AST 2012 - Pro-
ceedings (06 2012).

[27] NATARAJAN, N., SHIN, D., AND S. DHILLON, I.
Which app will you use next? collaborative filtering
with interactional context. pp. 201–208.

[28] NIEL LEBECK, ARVIND KRISHNAMURTHY, H. M. L.,
AND ZHANG, I. End the senseless killing: Improving
memory management for mobile operating systems. In
USENIX Annual Technical Conference (USENIX ATC
’20) (2020), USENIX Association.

USENIX Association 2020 USENIX Annual Technical Conference 909

[29] OH, G., KIM, S., LEE, S.-W., AND MOON, B. Sqlite
optimization with phase change memory for mobile ap-
plications. Proceedings of the VLDB Endowment 8, 12
(2015), 1454–1465.

[30] PAGE, AND HAGINS. Improving the performance of
buddy systems. IEEE Transactions on Computers C-35,
5 (May 1986), 441–447.

[31] PARATE, A., BÖHMER, M., CHU, D., GANESAN, D.,
AND MARLIN, B. M. Practical prediction and prefetch
for faster access to applications on mobile phones. In
Proceedings of the 2013 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing (2013),
UbiComp ’13, ACM, pp. 275–284.

[32] PARK, S.-Y., JUNG, D., KANG, J.-U., KIM, J.-S., AND
LEE, J. CFLRU: A replacement algorithm for flash
memory. In Proceedings of the 2006 International Con-
ference on Compilers, Architecture and Synthesis for
Embedded Systems (2006), CASES ’06, ACM, pp. 234–
241.

[33] PELEGRIN, W. Google Pixel 3 is unable
to shuffle between a few apps at a time.
https://www.androidauthority.com/google-pixel-3-
memory-issues-917255/, 2018.

[34] PYROPUS TECHNOLOGY. Memory test tool memtester.
http://pyropus.ca/software/memtester/, 2017.

[35] SCHOON, B. Google Pixel 3 kills background
apps. https://9to5google.com/2018/10/22/pixel-3-
memory-management-issue-background-apps/, 2018.

[36] SHEN, K. K., AND PETERSON, J. L. A weighted buddy
method for dynamic storage allocation. Commun. ACM
17, 10 (Oct. 1974), 558–562.

[37] SHIMP208. Android debug bridge (adb) tool.
https://androidmtk.com/download-minimal-adb-and-
fastboot-tool, 2019.

[38] SIMS, G. How much ram does your phone really need
in 2019? https://www.androidauthority.com/how-much-
ram-do-you-need-in-smartphone-2019-944920/, 2019.

[39] SISOFTWARE. Memory perfromance. https://www.
sisoftware.co.uk/author/cas-admin/page/5/, 2017.

[40] YOO, Y.-S., LEE, H., RYU, Y., AND BAHN, H. Page
replacement algorithms for nand flash memory storages.
In Proceedings of the 2007 International Conference on
Computational Science and Its Applications - Volume
Part I (Berlin, Heidelberg, 2007), ICCSA’07, Springer-
Verlag, pp. 201–212.

910 2020 USENIX Annual Technical Conference USENIX Association

SweynTooth: Unleashing Mayhem over Bluetooth Low Energy

Matheus E. Garbelini
SUTD

Chundong Wang∗

ShanghaiTech University
Sudipta Chattopadhyay

SUTD

Sumei Sun
Institute for Infocomm Research, A*Star

Ernest Kurniawan
Institute for Infocomm Research, A*Star

Abstract

The Bluetooth Low Energy (BLE) is a promising short-range
communication technology for Internet-of-Things (IoT) with
reduced energy consumption. Vendors implement BLE pro-
tocols in their manufactured devices compliant to Bluetooth
Core Specification. Recently, several vulnerabilities were dis-
covered in the BLE protocol implementations of a few specific
products via a manual approach. Considering the diversity and
usage of BLE devices as well as the complexity of BLE proto-
cols, we have developed a systematic and comprehensive test-
ing framework, which, as an automated and general-purpose
approach, can effectively fuzz any BLE protocol implemen-
tation. Our framework runs in a central device and tests a
BLE device when the latter gets connected to the central as
a peripheral. Our framework incorporates a state machine
model of the suite of BLE protocols and monitors the periph-
eral’s state through its responses. With the state machine and
current state of the central, our framework either sends mal-
formed packets or normal packets at a wrong time, or both, to
the peripheral and awaits an expected response. Anomalous
behaviours of the peripheral, e.g., a non-compliant response
or unresponsiveness, indicate potential vulnerabilities in its
BLE protocol implementation. To maximally expose such
anomalies for a BLE device, our framework employs an opti-
mization function to direct the fuzzing process. As of today,
we have tested 12 devices from eight vendors and four IoT
products, with a total of 11 new vulnerabilities discovered and
13 new Common Vulnerability Exposure (CVE) IDs assigned.
We call such a bunch of vulnerabilities as SWEYNTOOTH,
which highlights the efficacy of our framework.

1 Introduction

The Bluetooth Low Energy (BLE) is one of the key wireless
communication technologies behind the massive progress of
internet-of-things (IoT). Hence, vulnerabilities in the BLE

∗This work was partly done when C. Wang worked at SUTD.

protocol implementation may lead to concrete and serious af-
termath. For instance, through reverse engineering on Broad-
com’s BLE System-on-Chip (SoC) devices, Mantz et al. [24]
performed remote code execution in the device’s functions
with a malformed over-the-air packet. Similarly, Bleeding-
Bit [15], discovered in Texas Instruments BLE SoCs, allows
adversaries to install a shellcode, which thereafter permits
remote execution and authentication bypass upon receiving
specific sequences of manipulated advertisement packets.

The preceding examples indicate that faulty BLE proto-
col implementations may exist in various IoT devices and
potentially bring about chaotic consequences. In this paper,
we propose a systematic and automated fuzzing framework
that is able to discover vulnerabilities in the BLE protocol im-
plementation of any device. Our framework neither requires
access to the source code of an implementation nor changes
a single line of code in a device’s OS or firmware. In a nut-
shell, it runs in the user space of a customized BLE dongle
(i.e., central) to test a BLE device (i.e., peripheral) during the
process of establishing a connection between the two.

The essence of our framework is a fuzzer that systemati-
cally subjects the BLE implementation to adversarial con-
ditions. However, it is non-trivial to develop a fuzzer to
generate such adversarial conditions. Firstly, we construct
a BLE state machine model from the Bluetooth Core Specifi-
cation [36–38] to make valid BLE packets. This is essential,
as a randomly generated, meaningless packet is likely to be
rejected by any BLE implementation. Secondly, testing a
BLE implementation with valid BLE packets is improbable
to reveal flaws, because such compliant cases should have
been covered in manufacturing tests [22, 41] as well as in
Bluetooth stack certification [39]. Thus, our framework ei-
ther sends malformed packets based on mutation, or normal
packets at a wrong time or inappropriate state, or both, to a
BLE peripheral. Through manipulating packets, our frame-
work intends to bring on adverse corner cases. Thirdly, the
complex structure of BLE packets (cf. Figure 1) and the versa-
tile communication regulations necessitate a comprehensive
and directed strategy for generating test cases of packets and

USENIX Association 2020 USENIX Annual Technical Conference 911

their timings. This aims to drive and stress non-compliant
behaviours at the peripheral. To this end, our fuzzer mutates
fields of a layer in the BLE stack and employs a particle
swarm optimization (PSO) to heuristically refine the mutation
probability distribution at both dimensions of each protocol’s
layers and each layer’s fields. Finally, our framework validates
any response from a peripheral on-the-fly according to a set
of expected packets in each protocol state. This enables it to
detect security issues beyond crashes, e.g., security bypass.

Our framework distinguishes itself from existing works [6,
15, 24] in view of being automated and comprehensive. Exist-
ing works require manual and tedious efforts, such as reverse
engineering and attentive inspection of source code, to dis-
cover potential security flaws in the BLE implementation of
specific devices [34]. By contrast, our framework is fully au-
tomated and embraces the capability to uncover more security
issues than a manual approach. Concurrently, although a few
scattered approaches have been presented in fuzzing Blue-
tooth devices [3, 9, 11, 18], they only cover a fraction of the
Bluetooth stack. To the best of our knowledge, we compose
the first comprehensive approach for BLE fuzzing that is not
limited to one or several particular layers, e.g., L2CAP or
ATT [3, 11], but fully controls the communication at the Link
Layer (LL) as well as the interaction with the Secure Manager
Protocol (SMP) for encrypted message exchanging. This, in
turn, establishes the efficacy and viability of our framework
in fuzzing arbitrary BLE protocol implementations.

The remainder of this paper is organized as follows. In
particular, we present the following contributions.

• We present our fuzzing framework to discover implemen-
tation flaws for BLE protocols (Section 2).
• We present the optimization process embodied in our

fuzzing framework to discover critical security vulnerabil-
ities. We also discuss the systematic process of validating
responses from BLE peripheral (Section 3).
• We discuss the implementation specific challenges in our

approach and evaluate our fuzzing framework on several
commodity BLE SoCs, including SoCs from NXP, Dia-
log, Texas Instruments, Microchip, ST Microelectronics
and Cypress, among others. Our evaluation has revealed
11 unknown security vulnerabilities (nicknamed SWEYN-
TOOTH) and seven non-compliant behaviours. 13 new
common vulnerability exposure (CVE) IDs are assigned
and they potentially affect a few hundred types of IoT
products. As all the vulnerable SoCs have passed the
Bluetooth stack certification, our evaluation also clearly
highlights the incompleteness of the certification process
(Section 4).
• We evaluate the impact of new vulnerabilities, as discov-

ered by our framework, on four IoT products (Section 4).
• We compare our framework with three other fuzzers and

show that our framework is significantly more effective,
in terms of finding security vulnerabilities in BLE imple-
mentations (Section 4).

PHY
LM

RFCOMM

Application

L2CAP

User

Controller

Host
SDP

(a) Classic

PHYPHY
LL

GATT
ATTSMP

Application

L2CAP

User

Controller

Host
GAP

(b) BLE

Figure 1: The Stacks of Bluetooth Classic and BLE

After discussing related work (Section 5), we conclude the
paper and provide future directions (Section 6).

2 Overview of Our Framework

BLE is the successor of Bluetooth Classic to build a short-
range wireless network with reduced energy consumption and
improved usage capability. In this section, we first describe
the BLE model used in our fuzzing and illustrate the chal-
lenges in developing a systematic fuzzing framework for BLE
protocols with an example. Then we present an overview of
our framework with its main components and workflow.

2.1 The Model of BLE Protocols
We aim to detect implementation flaws in BLE protocols
defined in the Bluetooth Core Specification [36–38]. Particu-
larly, we study the interactions on Attribute Protocol (ATT),
Logical Link Control and Adaptation Protocol (L2CAP), Se-
cure Manager Protocol (SMP), and Link Layer (LL), as shown
in Figure 1. L2CAP and ATT are common to both Bluetooth
Classic and BLE, while LL and SMP are exclusive to BLE.

Figure 2 illustrates the process of establishing the BLE
connection between a central and a peripheral. Our fuzzer
works during this process and it is guided by a BLE proto-
col model we have developed. A simplified representation of
the model is presented in Figure 3. Initially, the peripheral
periodically broadcasts advertisements to nearby devices
and the central starts in the scanning state. The central scans
for such advertisements and gets further information from
the peripheral such as its name by sending a scan request
(1 in Figure 2). After receiving a scan response (2 in Fig-
ure 2) from the peripheral, the central can choose to start a
connection by sending a connection request (3 in Fig-
ure 2) and proceeds to the connection state. On receiving
an acknowledgment from the peripheral (4 in Figure 2),
the central proceeds to the initial_setup state (see Fig-
ure 3). As the connection request contains connection
parameters relevant to the synchronization and communi-
cation timing between central and peripheral, after transit-
ing to initial_setup state, the central requests information
from the peripheral by sending version request, feature
request, length request and MTU length request (5
to 8 in Figure 2) with the intention to know the peripheral’s

912 2020 USENIX Annual Technical Conference USENIX Association

LL Encryption procedure

version / feature / length / MTU length
(request / response)

connection request

Data channel connection

5

Peripheral/Slave Central/Master

scan response

scan request

Pairing procedure

6 7
4

3

1

pairing (request / response)

SMP Legacy pairing or Secure Connections
9

10

Link Layer encrypted
Keys distribution procedure

11

12
ATT request / response

(GATT services discovery)

2

STK

Channels
advertisement

Peripheral/Slave

8

13

Connection response (empty PDU)

Figure 2: Message exchanges during BLE connection process

supported LL features and capabilities such as the maximum
length of the packet it can send or receive. Likewise, the pe-
ripheral also gets the central’s LL information during the
same exchanges. Note that the preceding messages are not
necessarily sequentially exchanged, because vendors are free
to implement how the peripheral handles such messages. For
instance, a peripheral may reply to version before feature.
Similarly, the peripheral may choose to directly read some
ATT atributes from the central and go to the gatt_server
state or skip the state length before proceeding. To ensure
compatibility with different implementations, we employ sev-
eral transitions in the state initial_setup for the flexible
message ordering, as shown at the upper-left of Figure 3.

After the initial setup is done, the central proceeds to the
list_pri_services state. Here it scans for peripheral’s
main services via the Generic Attribute Profile (GATT) Ser-
vice Discovery procedure and stores their attributes in a local
array. The central then proceeds to the state pairing_req
and starts to establish an encrypted communication with the
peripheral. The central sends a pairing request packet
to the peripheral (9 in Figure 2), indicating the preferred
pairing mode to be used in the next state. If the peripheral
accepts the pairing mode proposed by the central, it replies
to the central and both proceed to the smp_pairing state.
As there are two pairing modes for them to choose, i.e., the
Legacy pairing or Secure Connection (SC) pairing via SMP
exchanges, they go through the pairing procedure from ei-
ther the legacy_pairing or sc_pairing state, as shown at
the middle-right of Figure 3. Once the pairing procedure is
successful, the central derives a sessionKey from a Short
Term Key (STK) received from smp_pairing, transits to the
ll_encryption state and starts the challenge with the pe-
ripheral by sending an encryption_req (10 in Figure 2).
With the peripheral’s response, the central sends an encrypted
encryption_res packet by using the obtained sessionKey.
If the peripheral is able to correctly authenticate and decrypt
the encryption_res from the central, it sends another en-
crypted encryption_res to the central, indicating that the
connection is successfully encrypted.

AES-CCM Encrypted�Payload

scanning

connection

pairing_req

smp_pairing

ll_encryption

key_distribution

legacy_pairing

sc_pairingencryption_req

encryption_res

Advertisements

list_sec_services

gatt_read/write

Peripheral Discovery

BLE Pairing procedure

Link Layer Encryption Procedure

initial_setup

or

list_pri_services

Central-Peripheral Setup

mtu_length

gatt_server

feature

length

version

LTK/STK

Figure 3: Simplified BLE Protocol Model

If legacy_pairing is used, the central and periph-
eral may optionally go through the keys distribution
procedure (12 in Figure 2) to exchange a long term key
(LTK).Otherwise, in sc_pairing, the LTK is the STK instead.
The LTK can then be used by the central to avoid repeating
the pairing process in subsequent connections and directly go
to the step 11 in Figure 2. In the following stages, the central
and peripheral exchange an LTK based on what has been ne-
gotiated in pairing_req and the central reads more services
from the peripheral at the state list_sec_services.

After LL connection and pairing, the central discovers all
the peripheral’s available attributes (i.e., information) by per-
forming the GATT Primary Service Discovery. This consists
of sending and receiving a number of ATT requests and
ATT responses (13 in Figure 2). so as to fetch predefined
ATT attributes. In the next state gatt_read/write, we cap-
ture the read and write of locally stored ATT attributes at the
list_pri_services and list_sec_services states. This
step is to emulate writing malformed ATT attributes via our
fuzzing methodology. Thus, the state gatt_read/write at
the bottom of Figure 3 is not part of the BLE protocol speci-
fication. However, it is required to check the behaviour of a
peripheral in the presence of malformed ATT attributes.

2.2 Problem Formulation with An Example

In this paper, we consider developing a systematic fuzzing
framework that is 1) comprehensive with respect to all BLE
stack layers, 2) directed as being with an optimization mech-
anism to maximally expose anomalies in BLE protocol im-
plementations, and 3) applicable to fuzzing any product em-
bracing BLE SoCs for wireless connectivity. Anomalous be-
haviours capture non-compliance against the Bluetooth Core
Specification. To guarantee the comprehensiveness of cov-

USENIX Association 2020 USENIX Annual Technical Conference 913

Peripheral/Slave Central/Master
Paring Procedure
pairing request 8

pairing response

10

LL Encryption procedure
encryption request

Central skips pairing
and starts encryption

Peripheral accepts out of order
encryption request and crashes

Peripheral accepts Key size of 253

Figure 4: Key Size Overflow in Telink SoC (CVE-2019-19196)

ering all protocol layers, we attentively study the Bluetooth
Core Specification and incorporate an all-inclusive state ma-
chine model as presented in Section 2.1 at the central side.
Thus, at the current state of the central, we monitor responses
from the peripheral to check whether they are aligned with
the Bluetooth Core Specification or not.
Technical Challenges: Section 2.1 indicates that devising a
comprehensive state machine model itself is the first chal-
lenge due to the complexity of BLE connections. As shown
in Figure 1, each of the BLE layers contains multiple fields
that might be an exploitable factor. Furthermore, compared to
Wi-Fi, BLE allows move-back and move-forward state transi-
tions if a timeout event occurs and an expected response ar-
rives, respectively. This also introduces the second challenge,
i.e., the timing-critical constraints that must be accounted for
fuzzing BLE SoCs. Thirdly, an online validation of periph-
eral responses is non-trivial at the central side. According to
the Bluetooth Core Specification, at a given state, the central
waits for two types of responses, i.e., normal responses and
failure responses. The latter is a valid response, as a well-
formed peripheral has the right-of-way to deny any illegal
or unaligned request. Such a feature, again, does not exist in
Wi-Fi protocols. Consequently, special care is demanded to
distinguish expected and anomalous packets in the context
of BLE communications. Last but not the least, uncovering
vulnerabilities in BLE implementations requires systemati-
cally directing the fuzzing framework. In the following, we
take an example vulnerability, i.e., Key Size Overflow (CVE-
2019-19196) discovered by our framework, to illustrate how
we resolve the aforementioned challenges.
Discovering Key Size Overflow Vulnerability: The Key Size
Overflow vulnerability is caused only if the three following
conditions are jointly satisfied: 1) key_size field of SMP
pairing request is fuzzed, 2) the peripheral receives a cer-
tain packet in an inappropriate state, and 3) the peripheral may
send a connection failure packet depending on the received
fuzzed packet. The vulnerability is illustrated in Figure 4.

In brief, as a fuzzer, our framework mutates protocol layers
and each layer’s fields in a packet sent from the central to the
peripheral under test. The mutation is based on probabilities
assigned at both dimensions of layers and fields. It refines such

Fuzzing
&

Optimization

Protocol Model
(State Machine)

6. Anomaly Report &
Cost Calculation (CFi)

Packet
Manipulation

2.a Normal Packet (P)

3.a Fuzzed Packet (P’)

Packet
Validation

4. Device Response Packet (Pr)

2.b Mutation Probabilities ()

5. Validation

1. Initialization MBLE

3.b Well-crafted Packet sent at wrong state (Pdup)

Packet
Redundancy

BLE
Controller

USB
Serial

TX

RX

(Smart Home,
Wearables,

Trackers, etc.)

Peripheral

(i) (ii)

(iv)

(iii)

Figure 5: An Illustration of Fuzzing Architecture.

probabilities via a cost function with a return value, say, the
count of discovered anomalies, to direct the fuzzing process.
Our framework identifies an anomaly by validating received
responses. It discovers Key Size Overflow as follows. Initially,
there is no information about the vulnerabilities. Therefore,
the mutation probabilities are randomly assigned. Eventually,
at the paring_req state, the fuzzer sends a paring_request,
yet with fields other than key_size mutated. The peripheral
sends a response SM failure, which is still deemed to be
normal by the online validation of our fuzzer. Next, the fuzzer
sends a malformed packet with mutated key_size. Caveat
Lector: the peripheral of Telink Semiconductor unexpectedly
replies with a valid paring_response for such a fuzzed, in-
valid request. Our framework legitimately catches this re-
sponse as an anomaly. As a result, the mutation probability to
fuzz the field key_size is increased. Thus, more malformed
pairing_request packets with mutated key_size are sent
to the peripheral. We note that our fuzzer also sends valid
packets, but at an inappropriate state of the client. Eventually,
the fuzzer sends an encryption_request to the peripheral
immediately after the malformed pairing_request pack-
ets with mutated key_size. This crashes the peripheral, as
detected due to the lack of any response from it.

To sum up, the Key Size Overflow presents an anomaly
and a crash for BLE SoCs manufactured by Telink. Dur-
ing the fuzzing process, the scenario to send a malformed
paring_request (with mutated key_size) followed by an
encryption_request increases. This is because the re-
sponse to these malformed packets are anomalous and such
anomalous responses increase the value of the cost function
(i.e., anomaly count). This, in turn, further increases the prob-
ability to fuzz key_size and indirectly, the likelihood of dis-
covering the scenario causing the vulnerability.

2.3 High Level Workflow

System Architecture: Figure 5 illustrates the architecture of
our fuzzer, which is composed of four main modules orga-
nized around the BLE model MBLE : (i) the module of packet
manipulation that mutates a packet, (ii) the module of packet

914 2020 USENIX Annual Technical Conference USENIX Association

Algorithm 1 Main Steps of our fuzzer
1: i← 0 . i captures fuzzing iteration
2: . generate BLE protocol model (cf. Figure 3)
3: MBLE ← Generate_Protocol_Model()
4: . wait to receive mutation probabilities from PSO
5: Xi L99 Particle_Swarm_Opt()
6: . initialize history of sent packets and redundant packets
7: Phist ← /0, P′← /0, Pdup← /0, Ph

dup← /0, S0← /0

8: repeat
9: Set central to be in scanning state

10: . assign expected layers
11: For each S ∈MBLE , assign {expected(S),rejection(S)}
12: repeat
13: Wait for peripheral’s packet
14: Let the central receives packet Pr from the peripheral
15: . monitor states and checks anomalies
16: (θanom,Pr)← Run_Validation

(
S,P′,Ph

dup,Pr

)
17: S0← S; S← Get_Current_State(MBLE , Pr)
18: . exit the iteration on anomalies and no transition
19: if θanom is false or S0 = S then
20: goto line 37
21: end if
22: . generate a valid packet from the model
23: P← Get_Packet_from_Model(MBLE , S)
24: . generate fuzzed packets from P via mutation
25: P′← Mutate_Packet(P,Xi)
26: Send fuzzed packets P′ to the peripheral
27: Ph

dup← Pdup

28: Choose a packet Pdup ∈ Phist ∪{ /0} s.t. Pdup 6= P
29: Send redundant packet Pdup to the peripheral
30: . switch expected layers after fuzzing
31: if P′ 6= P then
32: expected(S)← rejection(S)
33: end if
34: Phist ← Phist ∪{P}
35: until central does not reach the scanning state
36: . measure cost function value for Xi
37: CFi← Measure_Cost_Function(Xi)
38: . send cost function value to PSO
39: Particle_Swarm_Opt() L99 CFi
40: . wait to receive new mutation probabilities from PSO
41: Xi+1 L99 Particle_Swarm_Opt()
42: i← i+1
43: until timeout

redundancy that sends arbitrary packets of MBLE to the periph-
eral at unaligned states (i.e., out of order) with the intention
to trigger anomalies on the peripheral’s protocol state ma-
chine, (iii) the module of packet validation that is responsible
for checking the responses from the peripheral and detecting
anomalies based on the current state of MBLE , and (iv) the
module of fuzzing & optimization that can direct the mutation
of packets based on a cost function.

As shown by the arrows in Figure 5, the four modules of
our fuzzer interact and collaborate with each other to attain
the aim of discovering potential vulnerabilities in a peripheral

device. Algorithm 1 illustrates the workflow of it.
Initialization: The fuzzer relies on the protocol model MBLE
to generate valid packets and a set of mutation probabilities
Xi to probabilistically mutate such valid packets. At the ini-
tialization stage (Lines 3 to 5 in Algorithm 1), the fuzzer first
loads the model MBLE and receives initial mutation proba-
bilities Xi from the optimization module (iv in Figure 5) by
calling the Particle_Swarm_Opt function (Line 5). Next,
the central is set to the scanning state and proceeds to wait
for the peripheral’s advertisement (Lines 9, 13 to 14). Once
the central receives a packet Pr from the peripheral, the vali-
dation module (iii in Figure 5) checks whether Pr is expected
or not via the Run_Validation function (Line 16). In short,
the validation module decides the correctness of Pr based
on a set of expected layers expected(S) or rejection layers
rejection(S), which are generated for every state S∈MBLE
(Line 11) at startup. The validation is detailed in Section 3.2.
Fuzzing Iteration: If the validation does not detect any
anomaly, Pr is fed to trigger the state transition in the model
MBLE by calling the Get_Current_State function (Line 17).
Get_Current_State strictly follows the protocol model de-
scribed in Section 2.1 and returns the new state S of MBLE .
Then at the state S, our framework generates a valid packet
P (Line 23), which serves as an input to the manipulation
and redundancy modules (i and ii in Figure 5). Starting with
the packet manipulation via the Mutate_Packet function
(Line 25), the contents of P are mutated according to the mu-
tation probabilities Xi associated with the state S, resulting in
a mutated packet P′ (see Section 3 for details of mutation).
Due to the probabilistic nature of Xi, the mutation yields either
an incorrect packet such that P′ 6= P (i.e., malformed) or a
mutated packet which doesn’t differ from the original packet
(i.e., P′ = P). If a malformed packet P′ is sent to the periph-
eral, the Bluetooth Core Specification allows the peripheral
to respond with a packet that rejects P′, i.e., one with a layer
in the rejection(S). Thus, the fuzzer perceives an anomaly
if the response for a malformed P′ is other than a legitimate
packet with one of its layers in rejection(S). To this end,
the expected set of layers (expected(S)) for state S is set to
the rejection layers for state S (rejection(S)) (Line 32).

The redundancy module (iii in Figure 5) keeps a history
Phist (initialized as /0 at Line 7) of all the packets P generated
by the model MBLE (Line 34) and sends a redundant packet
Pdup ∈ Phist to the peripheral at random chance (Lines 28
to 29). The intention of this logic is to send out-of-order
packets that may cause crash or anomalous behaviour onto
the peripheral. However, using redundancy may trigger some
ambiguous behaviour which is not necessarily an anomaly.
For example, some BLE packets are not only tied to one
single state and responses to them at a different state should
not be flagged anomalous by the fuzzer. In Section 3.2, we
present how the validation module resolves such challenges
and avoids reporting false positives.

The fuzzing iteration finishes in one of three circum-

USENIX Association 2020 USENIX Annual Technical Conference 915

BLE

Layers

Data Ch. L2CAP SMP Public
Key

Layers mutation probabilities
0.2 0.7

Fields
Key_YKey_X

0.5 0.5

BLE Packet

PK Fields mutation probability

Public Key (PK) Layer

0.2

L t ti b biliti

Fields
CIDLength

0.4 0.4
L2CAP Layer

L2CAP Fields mutation probability

0.4 0.4 ...

Mutation probabilities

0.7 0.5 0.5

Fields of L2CAP Fields of PK

L2CAP Layer PK Layer

(Xi)

Figure 6: An illustration of our fuzzing. Xi shows the proba-
bility values for the packet public_key at state S.

L2CAP

mtu_length

list_pri_services

pairing_request SMP
Failure

STATES

Pair.
RSP ...

ATT
Read

ATT
Error

MTU
RSP

Length
REQ

...

Received: Pairing Response

CURRENT STATE

SMP

Expected layers

...

L2CAP
Received: ATT Response

...
Valid

Invalid
ATT ATT RSP

...

Rejection layers

L2CAP
Received: SMP Failure

SMP... SMP Failure

Pair. RSP

(A) Invalid Response

(B) Valid Response

(C) Fail Response
Valid

LL
Unknown

ATT
Error

...

...

...
SMP

Failure

Figure 7: Packet dissection and validation during fuzzing

stances: 1) when the model MBLE reaches the end state
gatt_read/write (cf. Figure 3) and goes back to scanning
state, 2) an anomaly is detected (Line 20), or 3) the fuzzer
times out due to a crash in the peripheral (Line 13).
Optimization: Once a fuzzing iteration finishes, the muta-
tion probabilities Xi are refined by the optimization module
(iv in Figure 5) via particle swarm optimization (Lines 37
to 41). The optimization uses the value of cost func-
tion CFi obtained at the end of every fuzzing iteration
(Measure_Cost_Function). The rationale of optimization
is to guide the mutation probabilities Xi in such a fashion
that the value of cost function CFi is maximized. Specifically,
the value of CFi represents a metric that can direct Xi to fuzz
packets that are more likely to optimize CFi (e.g., the number
of anomalies). Moreover, the refined mutation probabilities
Xi+1 are computed iteratively via Particle_Swarm_Opt and
carried over to the next iteration (Line 41). This approach
allows our fuzzer to be directed and facilitates the search for
anomalies in the peripheral’s protocol implementation.

3 Design of Fuzzer

3.1 Fuzzing and Optimization

The fuzzing effectiveness critically depends on the generation
of malformed packets based on mutation. In the following,
we discuss how such mutations are performed in detail.
Mutation: On receiving a generated packet from the protocol
model, the fuzzing module evaluates it according to the set
of mutation probabilities Xi. Xi represents the probabilities
to mutate a packet along two dimensions: 1) the layers,
which correspond to different protocols or packet types of a

packet, and 2) the fields, each belonging to a layer in the
packet. Figure 6 exemplifies the assignment of Xi over the
layers and fields of a BLE packet. For instance, consider the
Public Key layer to illustrate the use of Xi in generating a
packet. The fields of Key_X and Key_Y can be mutated in an
iteration only if the manipulation module randomly hits the
layer probability chance (70%). Once a hit happens, the fuzzer
needs to decide the set of fields in the layer to be mutated. To
this end, the fuzzer iterates over each field within the layer
and uses the individual mutation probability (50%) to mutate
such fields. We note that all the fields of one layer shares the
same mutation probability. This is to reduce the number of
parameters during the iterative optimization (cf. Line 39 in
Algorithm 1) without losing the efficacy significantly. When
the mutation indeed occurs onto a field, the field value is
changed via a randomly-chosen Mutation Operator.

Mutation Operators: The fuzzing module offers three
Mutation Operators: 1) Random bytes that mutates the
value of a packet’s fields with random bytes, 2) Zero filling
that clears the field value to zero, and 3) Bit setting that sets
the most significant bit of a single-byte field value. The ra-
tionale of choosing such operators is to accelerate the search
process for an anomaly. In practicality, Zero filling and
Bit setting correlate to setting lower or higher values of a
field value to manifest corner cases. These, in turn, are proba-
ble to trigger a buffer overflow or underflow in a peripheral’s
implementation that lacks comprehensive bound checks.

Optimizing Mutation Probabilities: In order to effectively
discover anomalies (e.g., crashes or non-compliant behaviours
against the Bluetooth Core Specification), our fuzzer employs
a cost function to systematically guide the optimization pro-
cess. The rationale behind such an approach is to measure a
cost function value CFi that informs how well a certain set of
mutation probabilities Xi perform with respect to finding new
anomalies. Therefore, the goal of the fuzzer is to maximize
the discovery of potential anomalies by also maximizing the
value of such a cost function. We use the number of unique
anomalies discovered throughout the fuzzing session as the
cost function. This is measured for each individual set of
mutation probabilities Xi (cf. Line 37 in Algorithm 1).

The set of mutation probabilities Xi are refined while maxi-
mizing the cost function value on each fuzzing iteration by an
optimization algorithm (cf. Line 41 in Algorithm 1). For the
optimization, we apply the particle swarm optimization (PSO)
due to its superior performance in the light of non-linear and
stochastic behaviour shown in the protocol model [32]. More-
over, PSO has been successfully applied in a state-of-the-art
software fuzzer [23]. The goal of PSO is to optimize the value
of a chosen cost function via regulating the position of the
swarm of particles (i.e., the population). In the context of
our framework, the position is a probability value and each
particle within the swarm of particles represents a different
set of mutation probabilities Xi.

916 2020 USENIX Annual Technical Conference USENIX Association

3.2 Packet Validation

The validation module detects responses that deviate from the
Bluetooth Core Specification. It emphasizes on the correct-
ness of a response in its internal packet structure, i.e., layers
of the response, and the correct reception order, i.e., the re-
sponse’s arriving state. In particular, given a response packet
received at state S, the validation module checks it among
Expected layers or Rejection layers that are dedicated
to state S in accordance with the protocol model MBLE .
Validation Exemplified: Figure 7 shows three different cases
where a packet from the peripheral arrives in response to a
packet sent to the peripheral at state S = pairing_request.
The packet sent to the peripheral can either be a valid packet
P or a mutated packet P′. In case (A), on receiving the ATT
Response due to a valid P, the validation module flags it as
anomaly as none of the layers in the response is found in
the Expected layers of state S. In case (B), the response
packet is deemed to be valid (i.e., pairing_response) since
its layer is found in the Expected layers. On the other hand,
after sending a malformed packet to the peripheral, our fuzzer
only expects Rejection layers (Line 32 in Algorithm 1).
In this sense, in case (C), our fuzzer sends a mutated packet
P′ to the peripheral, and the response with SMP Failure is
valid as a rejection of P′, as SMP Failure ∈ rejection(S).
Validation Procedure: More involved cases beyond Figure 7
exist. The validation module must correctly handle responses
received due to legitimate, mutated, and/or redundant requests
sent at both proper and improper states.

Algorithm 2 illustrates the function Run_Validation
called in Algorithm 1. It validates if a response Pr is anoma-
lous or not. The response Pr, received at state S, might be due
to possible P′ and Pdup sent in an arbitrary fuzzing iteration
(Lines 1 to 5). At start, the validation module prepares the
Expected layers in ε to be searched for Pr, as Pr might
be a response to a non-empty Pdup (Line 6 to 10). We first
compute the flag Ψ for state S. Ψ holds if the expected layers
at S overlap with the expected layers of some other state S′

in the protocol model MBLE (Line 7). The flag Ψ does not
hold for security-related states such as states involved in SMP
pairing and Link Layer encryption, e.g., smp_pairing and
ll_encryption. Specifically, these states (with Ψ false) do
not accept any response except those aligned to their respec-
tive Expected layers. We then check whether a non-empty
Pdup has been sent at any state Mp

BLE (Line 8). The set Mp
BLE

is a subset of all BLE states (MBLE). Specifically, response to
a packet sent at a state S′ ∈Mp

BLE is allowed to be received
at any state where Ψ holds (i.e., states other than security-
related ones). Thus, given a non-empty Pdup sent at a state
of Mp

BLE , the validation module needs to extend ε if Ψ holds.
This is accomplished by joining ε with Expected layers of
the state Pdup belongs to (Lines 8 to 10). With the updated ε,
the validation module sets a validity flag based on whether
the layers of Pr are expected or not (Lines 11 to 12).

Algorithm 2 Run_Validation Procedure

1: Input: Current state S of BLE protocol model (cf. Figure 3)
2: Input: Packet P′ sent from the current state S
3: Input: Packet Pdup sent at the immediately preceding state of S
4: Input: Packet Pr sent from BLE peripheral
5: Output: Absence of anomaly (true or false)
6: ε← expected(S)
7: Ψ←∃S′ ∈MBLE \{S}. (ε∩ expected(S′)) 6= /0

8: if
(
Pdup 6= /0

)
∧Ψ∧

(
state_of (Pdup) ∈Mp

BLE
)

then
9: ε← ε∪ expected(state_of (Pdup))

10: end if
11: . Check if the received packet Pr is valid
12: is_valid←∃ l ∈ layers_of (Pr) s.t. l ∈ ε

13: if
(
Pdup 6= /0

)
∧
(
state_of (Pdup) ∈Mo

BLE
)

then
14: Mp

BLE ←Mp
BLE \{state_of (Pdup)}

15: end if
16: Mp

BLE ←
(
S ∈Mo

BLE
)

?
(
Mp

BLE \{S}
)

: Mp
BLE

17: . Prevent redundant Pr from transiting the state machine
18: if

(
Pdup 6= /0

)
and (P′ and Pdup have the same response) then

19: Wait for peripheral’s response packet Pr
20: Run_Validation(S, P′, /0, Pr)
21: end if
22: return (is_valid, Pr)

The validation performs further acts before returning to
Algorithm 1. Firstly, in Mp

BLE there is a subset, i.e., Mo
BLE .

The response to the request sent at a state of Mo
BLE is al-

lowed to be received in other states, but only once. One such
state is the Version state. A normal peripheral responds to
the version request only once irrespective of how many
version requests it receives. Hence, if Pdup or P′ belongs
to some state S′ ∈Mo

BLE , then S′ is removed from Mp
BLE . This

ensures that future responses to Pdup, which belongs to state
S′, are classified as anomalies (Lines 13 to 16). Secondly, Pdup
and P′ may have the same response. In this case, we do not
trigger a state transition until a response to P′ is received (if
any before the fuzzer times out). Specifically, after handling
the response for Pdup, the validation module is recursively
called with an empty Pdup (Lines 17 to 21). In the end, the
anomaly flag and Pr are returned (Line 22).
Crash detection: There are two options to detect a crash or
unresponsiveness of the peripheral. The intrusive option is
applicable to BLE development boards that expose serial
debug ports of their respective SoCs. We can use the debug
information to detect a crash. For BLE products without such
debug ports, we use a global timer and clear it on every packet
response. If no response is received from the peripheral, the
timer eventually overflows and a crash is signalized.

3.3 Non-compliant BLE Controller
Manipulation of the Link Layer is essential for fuzzing. How-
ever, the Core Specifications [37] undermines Link Layer
(LL) manipulation from the host. Firstly, LL packets are heav-
ily timing critical due to BLE frequency-hopping. The host

USENIX Association 2020 USENIX Annual Technical Conference 917

cannot send a packet in a precise time due to the high time
variability of the OS scheduler. Secondly, the LL stack runs
on a separate and closed source Bluetooth chipset, i.e. the
controller. The chipset normally communicates with the host
via the Host Controller Interface (HCI) protocol, which does
not expose manual control over the LL stack.

To overcome the aforementioned challenges with a prac-
tical and low cost solution, we design a non-compliant BLE
controller firmware that ignores standardised conventions
such as HCI and abstracts away the timing and retransmis-
sion requirement between the central and the peripheral. This
abstraction simplifies the BLE state machine and allows the
host to manipulate all fields of the Link Layer packets.

Physical Channels (2.4 Ghz)
Advertisement: 37-39 / Data: 0-36

Sweyntooth

Receive and
Generate Packets

Transmission Path (TX)

Reception Path (RX)

Live Capture
(.pcapng)

Logs &
Reports

Packet
Buffer
Packet
Buffer

Data Packet
BufferCRCEncoding

(GFSK)
Adv. Address

Matching

Whitening

Decoding
(GFSK) CRCDe-

whitening
Packet
Filter

Data Channel PacketBLE Controller for LL Injection (nRF 52840 Dongle)

Address
Match Signal

Host (Ubuntu 18.04)

Adv. Channel Packet

Figure 8: An Illustration of the transmission and reception
path of a BLE Packet via the non-compliant BLE controller

Figure 8 details the internals of the non-compliant BLE
controller depicted in the fuzzer architecture (cf. Figure 5).
The controller reads packets from the host and transmits ac-
cording to their radio channel type, which is inferred from the
access address of the packet header. Data channel packets are
buffered in the Data Packet Buffer and released for trans-
mission after a time period defined by the connection interval.
Concurrently, an advertisement packet is only transmitted
to the peripheral after the controller receives an advertise-
ment packet from the peripheral first. Upon reception, the
Packet Filter checks the packet for the peripheral address
and upon a match, the advertisement packet stored in the Adv.
Address Matching is released and transmitted to the periph-
eral after the inter-frame spacing ∆IF = 150us. Other proce-
dures such as CRC calculation, whitening/dewhitening and
encoding/decoding are only necessary to ensure the correct
encoding of the packet during over-the-air transmission and
as such, do not expose fields for host side fuzzing.

4 Evaluation

Implementation: Our implementation efforts have been
mainly spent on two parts: 1) the fuzzer, including the mod-
ules of fuzzing, validation and optimization, and 2) the non-
compliant BLE controller that enables the over-the-air fuzzing.
The fuzzer is written in Python 2.7 and C++ with a total num-
ber of 2,836 lines of code (LOC). In brief, our fuzzer extends
the Scapy v2.4.3 [33] to recognize packet types, parse and val-
idate a response from the peripheral. It also uses the BLESuite
library [31] to handle the GATT Service Discovery. As to the

Table 1: Development Platforms used for evaluation
Silicon Vendor Development Platform BLE Ver. Sample Code Name

Cypress (PSoC 6) CY8CPROTO-63 5.0 Device_Information_Service
Cypress (PSoC 4) CY5677 4.2 Device_Information_Service
Texas Instruments LaunchXL-CC2640R2 5.0 project_zero
Texas Instruments CC2540EMK-USB 4.1 simple_peripheral
Telink TLSR8258 USB 5.0 8258_ble_sample
STMicroelectronics NUCLEO-WB55 5.0 BLE_BloodPressure
STMicroelectroncis STEVAL-IDB008V2 5.0 SlaveSec_A0
NXP USB-KW41Z 4.2 heart_heart_rate_sensor_bm
Dialog DA14681DEVKIT 4.2 ble_adv
Dialog DA14580DEVKIT 4.1 ble_app_peripheral
Microchip SAMB11 Xplained 4.1 blood_pressure_samb11
Nordic Semi. nRF51 Dongle 5.0 ble_app_hrs
Nordic Semi. nRF52840 Dongle 5.0 ble_app_gatts_c

fuzzing and optimization, our fuzzer leverages the PyGMO
library and its Generational PSO implementation [10] with
the optimizer following the common PyGMO structure and
the default pygmo.pso_gen optimization parameters.

The non-compliant BLE controller is written in C++ (1,096
LOC) within the nRF52840 dongle as the central device. It
overcomes the isolation enforced by HCI (cf. Section 3.3).
Evaluation Setup: Table 1 shows the peripheral devices that
we have tested. In each of these devices, the CPU is a micro-
controller (SoC) that runs an undisclosed BLE stack imple-
mentation. IoT products using these devices only have access
to interfaces for BLE communications provided by respective
manufacturer-provided libraries. As a result, the device’s BLE
implementation runs alongside the product’s main code, and
a BLE implementation vulnerability may lead to catastrophic
failure and insecurities into the product’s functionalities. In
other words, once BLE devices are found vulnerable, so are
the IoT products relying on them.

We need to install a firmware in each brand new device to
enable BLE connectivity. This is accomplished by compiling
and programming a sample code provided by the device’s
corresponding SDK. Once a programmed device advertises
itself as BLE peripheral, we can start our fuzzer to test it.

We answer the following research questions (RQs) through
the evaluation of our fuzzer.
RQ1: How effective is our fuzzer in terms of generating
error-prone inputs?

A summary of testing results is depicted by Table 2. The
prefix V means a vulnerability while the prefix A means some
anomalous behaviour that deviates from the legitimate be-
haviour defined by the Bluetooth Core Specification but is
not a vulnerability. Overall, our fuzzer has discovered 11 new
vulnerabilities and seven anomalous behaviours over all tested
devices. The SoCs of particular vendors, e.g., Texas Instru-
ments, NXP, Cypress and Dialog, have been used in many
IoT products for Smart Home, wearables and gadget tracking.
These vulnerabilities expose their respective SoCs to crashes,
deadlocks or even a complete or partial bypass of pairing
procedure. Hence the impact is significant. It’s important to
emphasize that all vulnerabilities have been automatically
discovered by our fuzzer during the packet exchange, except
for vulnerabilities classified as Security Bypass. After a
Security Bypass is detected and classified as an anomaly

918 2020 USENIX Annual Technical Conference USENIX Association

Table 2: Summary of new vulnerabilities and other anomalies found on the tested platforms. * indicates the case, which is not
clear by the Bluetooth Core Specification [36–38]

Vulnerabilities / Inconsistencies Platform(s) Model state(s) Impact Type Compliance Violated

V1 - Link Layer Length Overflow (CVE-2019-16336, CVE-2019-17519)
V2 - Link Layer LLID Deadlock (CVE-2019-17061, CVE-2019-17060)

CY8CPROTO-063
CY5677
USB-KW41Z

initial_setup
Crash
Crash, Deadlock [Vol 1] Part E, Section 2.7

V3 - Silent Buffer Overflow (CVE-2019-17518) DA14681 DEVKIT-B smp_pairing Crash [Vol 1] Part E, Section 2.7
V4 - Truncated L2CAP Packet (CVE-2019-17517) DA14580 DEVKIT-B list_pri_services Crash [Vol 1] Part E, Section 2.7
V5 - Unexpected Public Key (CVE-2019-17520) Crash [Vol 1] Part E, Section 2.7
V6 - DHCheck Skipping (CVE-2020-13593) LaunchXL-CC2640R2 smp_pairing Security Bypass [Vol 3] Part H, Section 2.3.5.6.5
V7 - Invalid connection request (CVE-2019-19193) CC2540EMK-USB connection Deadlock N.A

V8 - Sequential ATT message (CVE-2019-19192)
NUCLEO-WB55
STEVAL-IDB008V2 gatt_read/write Crash [Vol 1] Part E, Section 2.7

V9 - Invalid L2CAP fragment (CVE-2019-19195) SAMB11 Xplained
list_pri_services
gatt_read_write Crash [Vol 1] Part E, Section 2.7

V10 - Key size overflow (CVE-2019-19196) pairing_req Crash [Vol 3] Part H, Section 3.5.1
V11 - Zero LTK installation (CVE-2019-19194) TLSR8258 USB sc_pairing Security Bypass [Vol 3] Part H, Section 2.4.4

A1 - Unexpected encryption start response*
SAMB11 Xplained
TLSR8258 USB
USB-KW41Z

pairing_request
smp_pairing Non-specified N.A

A2 - Accept non-zero EDIV and Rand during Secure Connection pairing

LaunchXL-CC2640R2
NUCLEO-WB55
STEVAL-IDB008V2
CY5677

sc_pairing
ll_encryption Non-Compliance [Vol 3] Part H, Section 2.4.4.1

A3 - Responds to VERSION_IND more than once many Non-Compliance [Vol 6] Part B, Section 5.1.5
A4 - Responds to data channel PDUs during encryption procedure ll_encryption Non-Compliance [Vol 6] Part B, Section 5.1.3.1
A5 - Sends unknown LL control PDU opcode

TLSR8258 USB
smp_pairing Non-Compliance [Vol 6] Part B, Section 2.4.2

A6 - Accepts malformed CONNECT_IND CC2540EMK-USB connection Non-Compliance [Vol 6] Part B, Section 2.3.3.1
A7 - Accepts CONNECT_IND with hopIncrement less than 5 All tested devices connection Non-Compliance [Vol 6] Part B, Section 2.3.3.1

Table 3: Vulnerabilities and SDK versions of the affected
SoCs. * indicates vendors that reported other affected SoCs.

Silicon Vendor BLE SoC SDK Ver. Vuln. / Anomalies
BLE Version 5.0
Cypress (PSoC 6) CYBLE-416045 2.10 V1,V2 / A7
Texas Instruments CC2640R2 2.2.3 V5,V6 / A1,A7
Telink* TLSR8258 3.4.0 V10,V11 / A3-A5,A7
STMicroelectronics WB55 1.3.0 V8 / A2,A7
STMicroelectroncis BlueNRG-2 3.1.0 V8 / A2,A7
Nordic Semi. nRF51422 11.0.0 A7
Nordic Semi. nRF52840 15.3.0 A7
BLE Version 4.2
Cypress (PSoC 4) CYBL11573 3.60 V1,V2 / A7
NXP KW41Z 2.2.1 V1,V2 / A1,A7
Dialog* DA14680 1.0.14.X V3 / A7
BLE Version 4.1
Texas Instruments CC2540 1.5.0 V7 / A6,A7
Dialog* DA14580 5.0.4 V4 / A7
Microchip ATSAMB11 6.2 V8 / A2,A7

by our fuzzer, a manual check is required to classify it as
a security issue. We note that twelve CVEs have been as-
signed, but at the time of writing this paper, the details of
vulnerabilities V1-V11 were publicly undisclosed for confi-
dentiality. Moreover, we followed responsible disclosures and
notified all vendors 90 days in advance for them to provide
corresponding patches. At the time of writing, all vendors
except STMicroelectronics and Microchip have released their
patches. Table 3 highlights the SoCs and the SDK versions
where these vulnerabilities were first discovered.

For each anomaly, Table 2 also outlines the specific section
of the Bluetooth Core Specification being violated. To sum-
marize, the results signalize that the current status of BLE
security demands more attention not only onto the design of
protocols, but also onto the implementation phases. Specifi-
cally, the two critical security bypass vulnerabilities (V6 and

V11) are caused due to the lack of handling corner cases
in the Bluetooth Core Specification, causing misinterpreta-
tions and implementation flaws. A detailed description of the
vulnerabilities is shown in the supplemental material.

Table 4: A Summary of Evaluation Time for Each Device.
The connection interval is fixed to 20ms for all devices.

Platform Iterations Total Time 1st Crash 1st Anomaly Model Coverage
CY8CPROTO-63 1000 1 h. 06 min. 1 min. <1 min. 27 (50.0%)
CY5677 1000 2 h. 27 min. <1 min. 8 min. 29 (53.7%)
USB-KW41Z 1000 1 h. 30 min. <1 min. 2 min. 24 (44.4%)
DA14681DEVKIT 1000 1 h. 16 min. 10 min. 6 min. 30 (55.5%)
DA14580DEVKIT 1000 2 h. 7 min. 5 min. 1 min. 32 (59.3%)
CC2640R2 Devkit 1000 1 h. 57 min. 4 min. 1 min. 31 (57.40%)
CC2540 Devkit 1000 1 h. 37 min. 2 min. 19 min. 34 (62.96%)
Nucleo-WB55 1000 1 h. 45 min. <1 min. 2 min. 26 (48.15%)
BlueNRG-2 1000 1 h. 14 min. <1 min. 9 min. 30 (55.55%)
ATSAMB11 1000 2 h. 39 min. 2 min 10 min. 33 (61.1%)
TLSR8258 1000 1 h. 56 min. 5 min. <1 min. 36 (66.67%)

RQ2: How efficient is our fuzzer?
When our fuzzer exchanges packets with the peripheral, the

efficiency in finding anomalies mainly depends on two factors,
i.e., the connection interval and the peripheral’s capabilities.
While the first factor can be initiated by the central, the pe-
ripheral decides whether to accept the value of the connection
interval proposed by the central. The connection interval is
the time between consecutive messages and thus controls
the frequency of messages exchanged between central and
peripheral. It is negotiated at the connection state. A short
connection interval naturally leads to an efficient fuzzing pro-
cess. During the fuzzing process, the connection interval is
fixed to a value that is acceptable to all tested devices. Table 4
shows the overall time taken by our fuzzer to complete 1,000
iterations with a connection interval of 20ms. Due to the di-
verse capabilities of devices, the message-processing time
varies significantly even with the same connection interval.

USENIX Association 2020 USENIX Annual Technical Conference 919

For instance, the CY5677 device is much slower in the pairing
procedure, resulting in the longest evaluation time.

The time required to find the first vulnerability in a periph-
eral’s implementation depends on its features. As shown by
the rightmost two columns of Table 4, most of the first crash
or other anomaly have been discovered within 10 minutes.
As a result, our fuzzer is opportune to ascertain a vulnerable
implementation of BLE device.

Finally, the last column of Table 4 holds the number of dif-
ferent valid transitions traversed in our BLE state machine (cf.
Figure 3) after 1000 iterations. Specifically, the BLE model
employs a total of 54 valid transitions. Overall, each periph-
eral traverses the model differently and does not trigger all
possible valid transitions in our BLE model. This is because
states initial_setup, list_pri_services and list_sec_services al-
low multiple transitions and peripheral implementations differ
in terms of the exact packet sequence accepted in such states.
This results in peripherals missing some transitions employed
in the BLE model. As per coverage efficiency, the fuzzer takes
more time to fully explore unstable peripherals. This is the
case for peripherals impacted by vulnerabilities triggered in
states with multiple transitions (V1, V2 and V8). For exam-
ple, peripherals from Cypress, NXP and STMicroelectronics
exhibit a slightly lower coverage value for 1000 iterations.
RQ3: How do the different design choices contribute to
the effectiveness of our fuzzer?

To answer this question, we disable two components of
our fuzzer to make two variants, respectively. Firstly, we only
keep the redundancy module active without packet mutation
or optimization. This means packets are sent at a wrong state
to the peripheral. Secondly, our fuzzer solely relies on the
mutation module without optimization. In this sense, we mu-
tate valid packets from the protocol model MBLE according
to a random set of mutation probabilities Xi that is not re-
fined after each iteration. The two variants are referred to as
“Redundancy” and “Mutation”, respectively.

Figure 9 illustrates the number of anomalies with respect
to fuzzing iteration for each relevant BLE SoC. The “Evolu-
tion” represents the results achieved by our fuzzer with the
optimization, which serves as a reference to compare against
the two variants. In all cases, “Evolution” results in finding
all anomalies due to the collaborative contributions among
all fuzzing components, while the two variants miss some
anomalies (cf. Figure 9). This is expected and shows that
certain vulnerabilities can only be triggered by either redun-
dancy, mutation or a combination thereof. For example, the
vulnerability Key Size Overflow (V10, cf. Section 2) asso-
ciated with Telink TLSR8258, requires that the mutation and
redundancy complement during the fuzzing process to trig-
ger it. That explains the superior effectiveness of “Evolution”
in Figure 9(b). Also in Figure 9, “Mutation” cannot achieve
as many anomalies as “Redundancy”. This is because many
anomalies indicated for “Redundancy” are due to the fact that
A3 to A5 are triggered upon the peripheral receiving redun-

Table 5: A Comparison among Testing Tools: Handcrafted
means tests can be manually configured, whereas a Test
Database contains a corpus of tests for validation

Comparison Crashes / Anomalies
Tools Supported Layer(s) Fuzzing Strategy WB55, BlueNRG-2 Others
Stack Smasher L2CAP Random 0 / 0 0 / 0
BLEFuzz ATT Random / Handcrafted 1 / 0 0 / 0
bfuzz (IotCube) L2CAP Random / Test database 1 / 0 0 / 0
Our Fuzzer LL / L2CAP / SMP / ATT Evolutionary 1 / 2 10 / 7

dant packets in the BLE connection, but not by “Mutation”
through sending malformed packets.
RQ4: How effective is our fuzzer compared to existing
BLE fuzzing tools?

We compare the competitiveness of our fuzzer by eval-
uating it against publicly available tools, including Stack
Smasher, BLEFuzz, and bfuzz that most closely match the
objective of our fuzzer. We note that handcrafted efforts
were required to apply these tools. Firstly, bfuzz and Stack
Smasher demand modifications so that they can send mal-
formed packets through our BLE controller. Secondly, both
bfuzz and Stack Smasher were primarily developed for
Bluetooth Classic implementations supporting only a few
protocols like L2CAP and ATT. Therefore, they also require
adjustments for fuzzing L2CAP and ATT layers in BLE im-
plementations. Finally, BLEFuzz is the only tool that supports
fuzzing BLE implementations. Table 5 summarizes the com-
parison between our fuzzer and the three chosen competitors.

For a fair comparison, we run our fuzzer and all the com-
petitors for the same duration (≈ three hours). As shown
in Table 5, WB55 and BlueNRG-2 are the only two SoCs for
which the competitors discover crashes (third column in Ta-
ble 5). Specifically, BLEFuzz and bfuzz discovered only V8.
For all other SoCs (cf. the “Others" column in Table 5), none
of the competitors found either vulnerabilities or other anoma-
lies. In a nutshell, our fuzzer significantly outperforms all
competitors, as exemplified in Table 5. The reason is twofold.
Firstly, our fuzzer comprehensively models the BLE stack,
e.g., it includes modeling and fuzzing SMP and LL protocols,
which are not handled by other fuzzers. Secondly, none of the
competitors employ an optimization to refine mutation prob-
abilities or send redundant packets. As shown by Figure 9,
these features are critical for fuzzing effectiveness.

It is worthwhile to mention that a comparison with the
aforementioned tools requires the usage of our non-compliant
BLE controller (cf. Section 3.3). This approach is justifiable,
as currently there is no accessible BLE fuzzing alternative
with the same level of control and flexibility as provided by
our non-compliant BLE controller. Finally, our comparison
did not include traditional fuzzers such as AFL [44] due to
their reliance in code coverage. Such a metric is often diffi-
cult to obtain in the context of over-the-air-fuzzing, as com-
mercial BLE stacks are undisclosed. Furthermore, traditional
fuzzers (e.g. AFL) lack the capability to generate a specific
sequence of messages with strict timing constraints. To extend
traditional fuzzers with such capabilities requires significant
changes to the underlying fuzzing engine. Nevertheless, we

920 2020 USENIX Annual Technical Conference USENIX Association

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

a) Fuzzing Iterations in TI CC2640

Mutation Redundancy Evolution

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

b) Fuzzing Iterations in Telink

 0

 1

 2

 3

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

c) Fuzzing Iterations in WB55

 0

 1

 2

 3

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

f) Fuzzing Iterations in PSoC 6

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

e) Fuzzing Iterations in NXP KW41Z

 0

 1

 2

 3

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

f) Fuzzing Iterations in PSoC 6

 0

 1

 2

 3

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

g) Fuzzing Iterations in DA14680

Figure 9: Fuzzing effectiveness w.r.t. design components

Table 6: Products verified to be vulnerable
Product Category BLE SoC Vulnerability Impact

Eve Energy Smart Home
August Smart Lock Smart Home DA14680 V3 Crash

Fitbit Inspire Wearables CY8C68237 V1,V2 Crash
CubiTag Gadget Tracking CC2640R2 V5 Deadlock
eGeeTouch TSA Lock Security CC2540 V7 Deadlock

envision that even a loose adaptation of traditional fuzzers
would yield results similar to Table 5, as anomalies other than
crashes cannot be detected out of the box.
Case Studies on IoT Products: The exploitation of SWEYN-
TOOTH vulnerabilities, as summarized in Table 2, offers dan-
gerous attack vectors against many IoT products. An investi-
gation of certified products on the Bluetooth Listing site [40]
reveals that SWEYNTOOTH is likely to affect ≈480 IoT prod-
ucts using the vulnerable SoCs from Table 3. These products
are mainly applied in Smart Home, Fitness, Entertainment
and Consumer Electronics. To raise awareness of the threats
and risks of potentially vulnerable products available on the
market, we performed attacks on some representative IoT
products that use the affected SoCs and recorded our obser-
vations. Some salient features of these products are outlined
in Table 6. In Table 6, we also indicate the BLE SoC used by
each product and the vulnerabilities discovered in these SoCs
by our fuzzer. We choose these products for their prevalence
in the relevant application domains, e.g., Smart Home.

To exploit SWEYNTOOTH on an IoT product, we launch
an attack code that captures the exact sequence of packet
exchanges in the respective SWEYNTOOTH vulnerability. One
such example is an attack code for vulnerability V5 (found in
CC2640R2) on CubiTag. Next, we describe, for each chosen
IoT product, the impact of the launched attack code.

When attacking Fitbit Inspire, the smartwatch freezes
its screen and immediately restarts when the Link Layer Over-
flow (V1) is attempted. By contrast, LLID Deadlock stops Fit-
bit advertisements for several seconds before the smartwatch
abruptly restarts. Similarly, when Silent Buffer Overflow is ex-
ploited on both Eve Energy and August Smart Lock, users
can immediately experience their smart things being restarted
(e.g., via a beep sound in the smart lock and switching off
the light attached to the Eve Energy plug). This is especially
crucial for Eve System products, as the company relies almost
entirely on the vulnerable DA14680. As for CubiTag, the
attack exploiting Public Key Crash (V5) immediately stops
the tracker to advertise and puts it in deadlock. Only a man-
ual restart by opening CubiTag (e.g., via a screwdriver) and
re-attaching its battery brings CubiTag back to a working
state. Finally, when the Invalid connection request (V7) is ex-
ploited on eGeeTouch TSA Lock, it hangs and the user needs
to manually press the power on button for further interaction.

5 Related Work

Security is critical for IoT devices [7]. Existing Bluetooth
vulnerabilities, such as Blueborne [34], BleedingBit [15] and

USENIX Association 2020 USENIX Annual Technical Conference 921

KNOB [1], allow unauthorized remote access or remote code
execution. They mostly require tedious manual effort (e.g., re-
verse engineering and inspecting code) and careful inspection
of the protocol standard. By contrast, we provide a system-
atic and automated approach to discover BLE implementation
flaws in any BLE device.

Existing works based on static analysis or verification tech-
nologies [14, 25, 27, 42] either suffer from false positives or
are incapable to generate concrete packet sequences to trigger
communication in real devices. An existing test generation
approach targeting network protocol implementations [30]
require access to the implementation code. Although a re-
cent work packetdrill [5] provides a testing framework of
the entire TCP/UDP/IP network stack, it lacks support for
automated test packet generation. Similarly, Jero et al. [16]
devised a technique to search a reduced state-space for suit-
able attack injection in stateful protocol implementations, but
does not employ a comprehensive and directed approach for
fuzzing packets. Furthermore, our validation strategy, being
employed directly at the central, differs from passive wireless
validation [35] that requires a sniffer. Finally, none of the
aforementioned works set foot in Bluetooth.

Directed fuzzing is a prevalent software testing strat-
egy [4, 17, 19, 21, 29, 43], yet faces significant challenges
in the context of over-the-air fuzzing. Firstly, vulnerabilities
in wireless protocol implementation often appear with a se-
quence of packets being injected even with strict time con-
straints. Traditional stateless fuzzers such as AFL [44] are
mostly suitable for single input leading to vulnerabilities. Sec-
ondly, most of the commercial wireless protocol stacks are
undisclosed. Thus, it is often not possible to have a grey-
box (e.g. based on code coverage) or whitebox approach (e.g.
based on symbolic execution) for wireless security testing.
Thirdly, wireless protocols often exhibit stochastic behaviour,
packet drops and packet retransmissions due to the inherent
nature of the wireless medium. This introduces additional
complexity in security testing, especially in terms of distin-
guishing normal and abnormal behaviour. Fourthly, wireless
protocol stacks often impose isolation between link layer and
host layer protocols. A comprehensive security testing should
break such isolation to find zero day vulnerabilities. Finally,
detecting critical security issues in a wireless implementation,
such as security bypass, requires significant changes to the
underlying vulnerability detection logic of traditional fuzzers.

Emulation-based fuzzing [13] can obtain coverage informa-
tion directly from the firmware and is faster than over-the-air
fuzzing [26]. Nonetheless, such approaches require extensive
reverse engineering of the firmware (if accessible at all) for a
substantial number of wireless devices. For example, Franken-
stein [20] is an emulation-based fuzzing approach that works
with only specific Cypress/Broadcom firmware and demands
significant engineering effort to handle other devices.

Previous works in Bluetooth fuzzing [3, 9, 18] support only
L2CAP and ATT layers and do not employ test optimiza-

tion for fuzzing effectiveness. InternalBlue [24] investigates
the lower level of Bluetooth implementation and allows BLE
packet sniffing and injection. However, InternalBlue can work
only after the peripheral is connected and the number of acces-
sible fields in a packet is limited. Our fuzzing framework, by
contrast, allows packets injection, fuzzing and sniffing directly
from the host and during the BLE connection process.

Our work is orthogonal to several works on network proto-
col testing [2, 12, 28] that target text structured protocols e.g.
ftp and http, yet they ignore wireless protocols including
BLE. A recent work [8] targets the discovery of memory cor-
ruptions in IoT devices by fuzzing the mobile app through
which the device is accessible. Our work neither intends to
fuzz the application layer nor relies on the availability of a
mobile app. Moreover, by design of our validation compo-
nent, our fuzzer can discover security vulnerabilities beyond
memory corruptions e.g. security bypass.

In summary, our work is the first comprehensive approach
to systematically and automatically fuzz arbitrary BLE pro-
tocol implementations. Also, this is accomplished without
changing anything in the OS/firmware of tested device.

6 Conclusion

This paper presents a systematic and automated framework for
fuzzing arbitrary BLE implementations. This is engineered
with the aim to discover implementation behaviours that de-
viate from Bluetooth Core Specification. The efficacy of this
framework is exemplified via the discovery of 11 new se-
curity vulnerabilities, named SWEYNTOOTH, across seven
BLE SoCs. Moreover, we exploit several SWEYNTOOTH vul-
nerabilities on popular IoT products used as wearable, smart
home products and logistic tracking, among others. This fur-
ther shows the danger and criticality of SWEYNTOOTH vul-
nerabilities, potentially affecting a few hundred types of IoT
products. Our fuzzer shares the limitation of any framework
based on testing. This means, our fuzzer does not guarantee
the security of a BLE device even if it fails to discover any
anomalous behaviour.

SWEYNTOOTH highlights concrete flaws in the BLE stack
certification process. We hope that our work provides an op-
portunity for further research in the area and initiates tech-
nologies to harden and secure current and next-generation
wireless protocol implementations. For reproducibility and
research, the fuzzer source code is available upon request to
sweyntooth@gmail.com. All exploits are publicly available
in the following URL:

https://github.com/Matheus-Garbelini/sweyntooth_
bluetooth_low_energy_attacks

Acknowledgement: We thank the anonymous reviewers and
our shepherd Kevin Butler for their insightful comments. This
work is partially supported by Keysight Technologies grant
no. RTKS171003.

922 2020 USENIX Annual Technical Conference USENIX Association

sweyntooth@gmail.com
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks

References

[1] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B.
Rasmussen. The KNOB is broken: Exploiting low
entropy in the encryption key negotiation of Blue-
tooth BR/EDR. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1047–1061, Santa Clara,
CA, August 2019. USENIX Association.

[2] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin
Almeroth, Richard Kemmerer, and Giovanni Vigna.
SNOOZE: Toward a stateful network protocol fuzzer.
In Sokratis K. Katsikas, Javier López, Michael Backes,
Stefanos Gritzalis, and Bart Preneel, editors, Informa-
tion Security, pages 343–358, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[3] Pierre Betouin. Bluetooth stack smasher version 0.6.
http://www.secuobs.com/news/05022006-bluetooth10.
shtml, May 2006.

[4] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as Markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16,
pages 1032–1043, New York, NY, USA, 2016. ACM.

[5] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo,
Matt Mathis, Barath Raghavan, Nandita Dukkipati,
Hsiao keng Jerry Chu, Andreas Terzis, and Tom Herbert.
packetdrill: Scriptable network stack testing, from sock-
ets to packets. In Presented as part of the 2013 USENIX
Annual Technical Conference (USENIX ATC 13), pages
213–218, San Jose, CA, 2013. USENIX.

[6] Damien Cauquil. Btlejuice: The Bluetooth smart MITM
framework. DEFCON 24, 2016. https://github.com/
DigitalSecurity/btlejuice.

[7] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. Sote-
ria: Automated IoT safety and security analysis. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), pages 147–158, Boston, MA, July 2018. USENIX
Association.

[8] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun
Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau,
Menghan Sun, Ronghai Yang, and Kehuan Zhang. IoT-
Fuzzer: Discovering memory corruptions in IoT through
app-based fuzzing. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 2018.

[9] Hou-Fu Cheng and Yu-Qing Zhang. Bluetooth OBEX
vulnerability discovery technique based on fuzzing.
Computer Engineering, 34(19):151–153, 2008.

[10] Pagmo development team. Pagmo & Pygmo. https:
//esa.github.io/pagmo2/, 2019.

[11] Gianluigi Me. Exploiting buffer overflows over Blue-
tooth: the BluePass tool. In Second IFIP International
Conference on Wireless and Optical Communications
Networks, 2005. WOCN 2005., pages 66–70, March
2005.

[12] Serge Gorbunov and Arnold Rosenbloom. AutoFuzz:
Automated network protocol fuzzing framework. IJC-
SNS, 10(8):239, 2010.

[13] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye,
Koushik Sen, Michael Grace, et al. PARTEMU: En-
abling dynamic analysis of real-world trustzone soft-
ware using emulation. In 29th USENIX Security Sympo-
sium (USENIX Security 20), Boston, MA, August 2020.
USENIX Association.

[14] Endadul Hoque, Omar Chowdhury, Sze Yiu Chau,
Cristina Nita-Rotaru, and Ninghui Li. Analyzing oper-
ational behavior of stateful protocol implementations
for detecting semantic bugs. In 2017 47th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 627–638, June
2017.

[15] Armis Inc. Bleedingbit vulnerability. https://armis.com/
bleedingbit/, 2018.

[16] Samuel Jero, Hyojeong Lee, and Cristina Nita-Rotaru.
Leveraging state information for automated attack dis-
covery in transport protocol implementations. In 2015
45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 1–12, June
2015.

[17] Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain,
Omar Chowdhury, and Elisa Bertino. Opening pandora’s
box through atfuzzer: dynamic analysis of at interface
for android smartphones. In Proceedings of the 35th An-
nual Computer Security Applications Conference, pages
529–543, 2019.

[18] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo
Oh. Poster: Iotcube: an automated analysis platform for
finding security vulnerabilities. In Symposium on Poster
presented at Security and Privacy (SP). IEEE, 2017.

[19] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungy-
oung Lee, Youngtae Yun, and Taesoo Kim. CAB-Fuzz:
Practical concolic testing techniques for COTS operat-
ing systems. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 689–701, Santa Clara,
CA, July 2017. USENIX Association.

USENIX Association 2020 USENIX Annual Technical Conference 923

http://www.secuobs.com/news/05022006-bluetooth10.shtml
http://www.secuobs.com/news/05022006-bluetooth10.shtml
https://github.com/DigitalSecurity/btlejuice
https://github.com/DigitalSecurity/btlejuice
https://esa.github.io/pagmo2/
https://esa.github.io/pagmo2/
https://armis.com/bleedingbit/
https://armis.com/bleedingbit/

[20] Secure Mobile Networking Lab. Broadcom and Cypress
firmware emulation for fuzzing and further full-stack
debugging. https://github.com/seemoo-lab/frankenstein,
2020.

[21] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a
survey. Cybersecurity, 1(1):6, 2018.

[22] LitePoint. Practical manufacturing testing of
bluetooth R© wireless devices. https://mcs-testequipment.
com/resources/Datasheets_Downloads/Litepoint/
Practical-Testing-of-Bluetooth-Devices_WhitePaper.
pdf, 2012.

[23] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: Opti-
mized mutation scheduling for fuzzers. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1949–
1966, Santa Clara, CA, August 2019. USENIX Associa-
tion.

[24] Dennis Mantz, Jiska Classen, Matthias Schulz, and
Matthias Hollick. InternalBlue - Bluetooth binary patch-
ing and experimentation framework. In Proceedings
of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’19, pages
79–90, New York, NY, USA, 2019. ACM.

[25] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David Basin. The tamarin prover for the symbolic analy-
sis of security protocols. In Natasha Sharygina and Hel-
mut Veith, editors, Computer Aided Verification, pages
696–701, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

[26] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien
Francillon, and Davide Balzarotti. What you corrupt is
not what you crash: Challenges in fuzzing embedded
devices. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Society, 2018.

[27] Madanlal Musuvathi and Dawson R. Engler. Model
checking large network protocol implementations. In
Proceedings of the 1st Conference on Symposium on Net-
worked Systems Design and Implementation - Volume 1,
NSDI’04, page 12, USA, 2004. USENIX Association.

[28] Joshua Pereyda. boofuzz: Network protocol fuzzing
for humans. https://github.com/jtpereyda/boofuzz, April
2017.

[29] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoud-
hury. Model-based whitebox fuzzing for program bi-
naries. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
ASE 2016, page 543–553, New York, NY, USA, 2016.
Association for Computing Machinery.

[30] JaeSeung Song ; Cristian Cadar ; Peter Pietzuch. Sym-
bexNet: Testing network protocol implementations with
symbolic execution and rule-based specifications. IEEE
Transactions on Software Engineering, 40(7):695–709,
July 2014.

[31] NCC Group Plc. BLESuite libirary. https://github.com/
nccgroup/BLESuite, 2019.

[32] Riccardo Poli, James Kennedy, and Tim Blackwell. Par-
ticle swarm optimization. Swarm Intelligence, 1(1):33–
57, Jun 2007.

[33] Rohith Raj S, Rohith R, Minal Moharir, and Shobha G.
SCAPY- a powerful interactive packet manipulation pro-
gram. In 2018 International Conference on Networking,
Embedded and Wireless Systems (ICNEWS), pages 1–5,
Dec 2018.

[34] Ben Seri and Alon Livne. Exploiting blueborne in
Linux-based IoT devices. https://go.armis.com/hubfs/
ExploitingBlueBorneLinuxBasedIoTDevices.pdf, 2019.
Armis, Inc.

[35] Jinghao Shi, Shuvendu K Lahiri, Ranveer Chandra, and
Geoffrey Challen. Wireless protocol validation under
uncertainty. Formal methods in system design, 53(1):33–
53, 2018.

[36] Bluetooth SIG. Bluetooth Core Specification v4.0,
June 2010. https://www.bluetooth.com/specifications/
bluetooth-core-specification.

[37] Bluetooth SIG. Bluetooth Core Specification
v4.2, December 2014. https://www.bluetooth.com/
specifications/bluetooth-core-specification.

[38] Bluetooth SIG. Bluetooth Core Specification
v5.0, December 2016. https://www.bluetooth.com/
specifications/bluetooth-core-specification.

[39] Bluetooth SIG. Bluetooth certification guideline:
Qualify your product. https://www.bluetooth.com/
develop-with-bluetooth/qualification-listing/, 2019.

[40] Bluetooth SIG. View previously qualified designs and
declared products, January 2020. https://launchstudio.
bluetooth.com/Listings/Search.

[41] Agilent Technologies. Bluetooth R© manufacturing test:
A guide to getting started. https://testunlimited.com/pdf/
an/5988-5412EN.pdf, 2006. Application Note 1333-4.

[42] Octavian Udrea, Cristian Lumezanu, and Jeffrey S Fos-
ter. Rule-based static analysis of network protocol im-
plementations. Information and Computation, 206(2-
4):130–157, 2008.

924 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/seemoo-lab/frankenstein
https://mcs-testequipment.com/resources/Datasheets_Downloads/Litepoint/Practical-Testing-of-Bluetooth-Devices_WhitePaper.pdf
https://mcs-testequipment.com/resources/Datasheets_Downloads/Litepoint/Practical-Testing-of-Bluetooth-Devices_WhitePaper.pdf
https://mcs-testequipment.com/resources/Datasheets_Downloads/Litepoint/Practical-Testing-of-Bluetooth-Devices_WhitePaper.pdf
https://mcs-testequipment.com/resources/Datasheets_Downloads/Litepoint/Practical-Testing-of-Bluetooth-Devices_WhitePaper.pdf
https://github.com/jtpereyda/boofuzz
https://github.com/nccgroup/BLESuite
https://github.com/nccgroup/BLESuite
https://go.armis.com/hubfs/ExploitingBlueBorneLinuxBasedIoTDevices.pdf
https://go.armis.com/hubfs/ExploitingBlueBorneLinuxBasedIoTDevices.pdf
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/
https://launchstudio.bluetooth.com/Listings/Search
https://launchstudio.bluetooth.com/Listings/Search
https://testunlimited.com/pdf/an/5988-5412EN.pdf
https://testunlimited.com/pdf/an/5988-5412EN.pdf

[43] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Supe-
rion: Grammar-aware greybox fuzzing. In Proceedings
of the 41st International Conference on Software Engi-
neering, ICSE ’19, page 724–735. IEEE Press, 2019.

[44] Michal Zalewski. American fuzzy lop. https://github.
com/google/AFL, April 2017.

USENIX Association 2020 USENIX Annual Technical Conference 925

https://github.com/google/AFL
https://github.com/google/AFL

Fine-Grained Isolation
for Scalable, Dynamic, Multi-tenant Edge Clouds

Yuxin Ren1, Guyue Liu2, Vlad Nitu3, Wenyuan Shao1, Riley Kennedy1,
Gabriel Parmer1, Timothy Wood1, Alain Tchana4

1 The George Washington University 2 Carnegie Mellon University
3 INSA Lyon France 4 ENS Lyon France

Abstract

5G edge clouds promise a pervasive computational infras-
tructure a short network hop away, enabling a new breed
of smart devices that respond in real-time to their physical
surroundings. Unfortunately, today’s operating system de-
signs fail to meet the goals of scalable isolation, dense multi-
tenancy, and high performance needed for such applications.

In this paper we introduce EdgeOS that emphasizes system-
wide isolation as fine-grained as per-client. We propose a
novel memory movement accelerator architecture that em-
ploys data copying to enforce strong isolation without perfor-
mance penalties. To support scalable isolation, we introduce a
new protection domain implementation that offers lightweight
isolation, fast startup and low latency even under high churn.
We implement EdgeOS in a microkernel based OS and demon-
strate running high scale network middleboxes using the Click
software router and endpoint applications such as memcached,
a TLS proxy, and neural network inference. We reduce startup
latency by 170X compared to Linux processes, and improve
latency by three orders of magnitude when running 300 to
1000 edge-cloud memcached instances on one server.

1 Introduction

The Internet of Things foretells the deployment of billions
of devices requiring processing close to the data source to
avoid excess bandwidth consumption in the network core.
Similarly, latency sensitive cyber physical systems desire com-
munication and processing at millisecond scale, preventing
the use of standard cloud platforms. Use cases such as these
motivate the demand for “edge clouds”, tiny data centers
that can be deployed as close to users as possible (e.g. at
an Internet Service Provider (ISP) or a nearby telco central
office [55]).

An edge cloud site is expected to serve a large number
of clients with high performance. Many edge services such
as Network Function Virtualization (NFV) middleboxes that
must act as a “bump in the wire” are latency-sensitive and
throughput-intensive. However, given the large number of

edge cloud sites, each is expected to only have a small number
of powerful servers due to space, power, and cost constraints
(e.g. the HPE EL4000 has 64 cores and AWS Snowball Edge
has up to 52 cores). To utilize resources in an efficient, elastic
and scalable way, an edge cloud must support dense multi-
tenancy—each edge cloud will be highly resource constrained

compared to a centralized cloud, yet it may need to host many
securely isolated services for the clients connected to it, and
often these clients have a short lifespan (e.g. a mobile user),
leading to high churn.

Unfortunately, the combination of limited resources, large
number of clients, and diverse services of edge clouds pose
major challenges for traditional system software designs. To
protect clients and services, an edge system needs to provide
two types of isolation:

• Client Isolation: Multiplexing an edge service among mul-
tiple clients exposes them to malicious exploitation that
could impact every client (e.g. a compromise in the TLS
implementation as in Heartbleed). Thus ideally, untrusted
clients should not share a protection domain (e.g. a process,
a container, or a virtual machine).

• Service Isolation: An edge server needs to serve multiple
services from different tenants. Some services may be vul-
nerable and tenants may even be malicious. Thus, a service
should not share any resources, such as memory, with other
untrusted services.

Current systems fail to provide both high performance
and strong isolation–particuarly between clients. Recent Net-
work Function Virtualization platforms achieve high through-
put with the use of kernel-bypass networking and zero-
copy techniques, but they often trade isolation for perfor-
mance [23, 27, 72]. This works for a single service, but the
edge cloud needs to serve multiple services from different ten-
ants. Lightweight virtualization techniques based on uniker-
nels [32] and hypervisor optimizations [47] have been pro-
posed to reduce boot times and density, but don’t address
providing many isolated clients high throughput. Recent sup-
port for HW virtualization, such as SR-IOV capable NICs,
reduces virtualization layer costs, but comes at the expense of

USENIX Association 2020 USENIX Annual Technical Conference 927

scalability. It works for a few dozen clients, but can’t be used
for an edge server that needs to support thousands of clients.

We address these challenges by designing EdgeOS, a new
system that achieves the difficult combination of strong isola-
tion, efficient communication, and fast boot times. Our key
idea is to dynamically start a new isolated domain for each

client, and to use data-copying to move messages. This idea is
based on two intuitions. First, for a large number of short-lived
clients, starting a new protection domain can be more efficient
and secure than maintaining many long running yet infre-
quently accessed ones. Second, in contrast to long-standing
networking subsystem guidance that dictates that zero-copy
is necessary [24, 66] – often at the price of isolation, we ob-
serve memory can push data at sufficiently high rates for edge
environments such as 5G base stations that have bandwidths
in the low 10s of Gb/s [21, 39]. Thus memory copying can
provide stronger isolation, without becoming a performance
bottleneck as long as it is faster than line-rate.

Based on these insights, EdgeOS contributes:
• A carefully optimized “Memory Movement Accelerator”

(MMA) communication and buffer management architecture
that enforces isolation with data copying, while retaining
high throughput and low latency.

• A “Feather Weight Process” (FWP) that redefines the pro-
cess abstraction to a minimal memory footprint and set of
capabilities needed to support dense deployments of edge
computation, and provides strong isolation between each
client in multi-tenant environments.

• A control plane with flexible routing and FWP chain
caching to support microsecond speed initialization of com-
plex services in high churn environments.
Combined, these features produce a novel architecture that

eschews the current trend towards zero-copy I/O in order
to provide stronger per-client isolation, yet still offers better
performance scalability, reduced tail latency, and dramatically
better support for high churn edge environments than any
system we are aware of.

We extend the Composite µ-kernel [67] to implement the
EdgeOS prototype. We target two key categories of edge
applications: network functions (e.g., middleboxes from the
Click software router [28]) and latency sensitive endpoint
services (e.g., HTTPS servers, neural network inference, and
the memcached key-value store). These services can be com-
bined to build flexible service chains, while providing stronger
isolation and latency guarantees than existing approaches.

Our evaluation illustrates how our isolation and commu-
nication abstractions offer dramatically better scale, density,
and performance predictability than traditional approaches.
We execute 1000s of FWPs per host, instantiate them 170X
faster than a Linux process, maintain a memcached latency
under 1 ms even when running 600 isolated instances on a
single host, improve the throughput of HTTPS processing by
almost a factor of 2.3, and even CPU-bound neural network
inference tail latency improves by almost 50%.

2 Motivation

We first introduce our threat model and isolation properties.
Then we discuss performance challenges that edge clouds
pose to existing isolation platforms, motivating the need for a
redesign of the underlying communication mechanisms and
OS primitives.

2.1 Threat Model

There are three types of parties in our model: (1) A system
run by the trusted edge cloud operator that provides isolation
mechanism and hosts edge services. (2) Edge services de-
ployed by different cloud tenants who supply untrusted code
or binaries. (3) Untrusted clients who send requests to the
edge services of one or more tenants. The goal of attackers is
to compromise security systems, exfiltrate user data, or dis-
rupt edge services. We assume an attacker has capabilities to
evade system security mechanisms by exploiting vulnerabil-
ities in the edge service binaries. We consider two general
attacker cases: malicious tenants and malicious clients.
Malicious tenant. A tenant could provide malicious or vul-
nerable services in order to affect the operation of services
run by other tenants. After initialization, a tenant’s services
are trusted only with the permissions given to them by the
system for specific resources, such as memory, communica-
tion endpoints or system calls. However, a service can make
arbitrary use of the permitted resources regardless of whether
they are shared by other services.
Malicious client. A client could try to tamper with other
clients’ traffic by exploiting a vulnerable service. Clients can
request any service or send arbitrary packets. After a client
successfully attacks a service, we assume it can access any
data or resources that are permitted to the controlled service.

EdgeOS seeks to grant resource access permissions to ser-
vices and enforce isolation among them in order to limit
the effects of malicious tenants and clients. In particular, the
system wants to maintain tenant-isolation (i.e., a malicious
service should not be able to disrupt services from other ten-
ants) and client-isolation (i.e., a malicious client that exploits
an instance of a service should not be able to affect other
clients). We do not attempt to prevent a malicious tenant’s
services from affecting its own clients, just as a normal cloud
provider does not try to validate client services.
Isolation model. EdgeOS provides a strong form of isola-
tion based on constraining both inter-tenant and inter-client
(running code for a specific tenant) interference. Tenants pro-
vide chains of FWPs, each of which executes as a separate,
preemptive thread, and protection domain (including page-
table-constrained memory). As such, FWPs access disjoint
sets of read/write memory, interact only with adjacent FWPs
in their chain using message passing, and receive propor-
tional execution time. The lack of shared resources (e.g., no
shared memory) and ambient authority (e.g., no shared filesys-
tem namespace) provide strong logical isolation. Preemptive

928 2020 USENIX Annual Technical Conference USENIX Association

scheduling policies prevent CPU-based resource consump-
tion attacks. EdgeOS ensures that FWPs in a chain cannot
be bypassed, and that the output packets cannot be modified
by upstream FWPs. As such, FWP chains constitute a high-
performance implementation of assured pipelines [7].

We enable a chain of FWPs to processes client requests
– as opposed to requiring a tenant to provide a single FWP–
for multiple reasons: (1) FWPs at the start and end of the
chain can be required by the system and provide the likes of
firewalls and rate-limiting, (2) some applications are naturally
implemented in a separate address space, thus using multiple
FWPs to provide legacy support, and (3) it allows tenants to
more strongly isolate at-risk computations from those that are
more important (e.g. TLS termination).

EdgeOS’s strong isolation between FWPs ensures isolation
between tenants. When paired with fast FWP instantiation,
it provides per-client isolation. New connections addressed
to a tenant’s service can (optionally) be served by a separate

FWP chain, thus lifting the inter-FWP isolation to provide
both inter-tenant, and inter-client isolation.

2.2 Existing Isolation Options

In order to support extreme dense per-client isolation, we
propose that a protection domain should have the following
properties. 1) it is sealed [26] so both the binary and con-
figuration cannot be modified after initialization; 2) it has
minimal access to system APIs and resources; 3) it cannot
share any resource, such as memory, with other untrusted pro-
tection domains; 4) once a client’s computation is finished,
instead of reusing its protection domain – which would allow
compromises to impact future executions – it is re-initialized
to a safe state.

In contrast, current systems that use process pools or vir-
tualization do not provide this inter-instantiation isolation.
Existing solutions provide weaker isolation:

• UNIX processes are exposed to large system call interface
and TCB in the kernel. Even containers using more security
features, such as cgroups, namespaces, seccomp-bpf
and chroot, still maintain significant state (including sig-
nals, file descriptors, memory mappings) that increases at-
tack surfaces.

• Virtualization encapsulates a hardware abstraction along
with multiple enclosed processes and system state. Thus it
introduces an extra hardware-enforced isolation boundary.
Though research has optimized implementations [2,32], the
memory overhead, and startup latencies are not sufficient
for per-client isolation.

• Language techniques use software-based isolation, but ei-
ther don’t provide temporal isolation, instead executing
tenant computation non-preemptively [52] or using heavy-
weight language runtimes [22].

 0

 2000

 4000

 6000

 8000

 0 200 400 600 800 1000

100

101

102

103

104

105

106

107

N
e
tp

e
rf

 L
a
te

n
c
y
 (

u
s
)

M
e
m

c
a
c
h
e
d
 L

a
te

n
c
y
 (

u
s
)

#Processes

memcached
netperf-SC
netperf-MC

Figure 1: Round-trip latency of N netperf or memcached in-
stances. Compared with the 1ms round-trip of 5G networks,
netperf latencies represent a 2x/8x latency increase using one/six-
teen cores, while memcached exhibits a 1000x latency increase.

2.3 Multi-tenancy and Churn

Given the increasing number of stakeholders that can ben-
efit from edge cloud execution, supporting multi-tenant ex-
ecution is critical. Network slicing [1, 45, 49] is essential
to best utilize edge resources for 5G networking. The chal-
lenge [58] is to efficiently share the relatively constrained
resources at the edge (often between less than one and low
tens of racks [13,14]), while efficiently isolating tenants. Com-
plicating this is the dynamic behavior [43, 44] of these sys-
tems which requires adaptation to the environment’s inherent
churn.
Churn and isolation overheads. Unfortunately, even rela-
tively efficient mechanisms such as containers impose signifi-
cant overhead when new clients require isolated computation.
This is because those mechanisms rely on layers of abstraction
and management of a large number of namespaces.

Percentile Docker Firecracker fork() EdgeOS

50th 521 126 0.26 0.048
90th 574 129 5.8 0.054

The table above depicts the cost in milliseconds of leverag-
ing various isolation facilities; we measure the time to start a
minimal service and then fault in 8 pages of memory to show
the unpredictability of Linux’s Copy on Write (full details in
Section 5.2). Using docker start can take hundreds of mil-
liseconds due to the cost of initializing namespaces and setting
up Docker [10] metadata. Amazon’s Firecracker [2, 19] still
takes over one hundred milliseconds. Even Linux fork(),
which has a much lower cost than Docker, exhibits high vari-
ance, with the 90th percentile being over 20 times slower
than the median. In contrast, our EdgeOS platform improves
median start time by 5X compared to Linux, and has mini-
mal variability. Later we show we can improve EdgeOS by
another order of magnitude by maintaining a cache of fresh
services that can be started near instantaneously.

2.4 Latency and Throughput at Scale

Lightweight isolation mechanisms such as containers fa-
cilitate running large numbers of applications (e.g., hundreds
of Docker containers per server), but they cannot provide

USENIX Association 2020 USENIX Annual Technical Conference 929

Message Pools

EOS
Controller
Flow mapping

FWP Manager
Chain orchestration and cache

MMA

FWPFWPFWP
FWPFWPFWP

FWPFWPFWP

FWPFWPFWP
FWPFWP FWPFWPFWPFWP

Net
In

DPDK

based IO

Net
Out

DPDK

based IO

Composite uKernel

Scheduler
FWP activation

C
o

n
tr

o
l
P

la
n

e
D

a
ta

 P
la

n
e

Figure 2: EdgeOS Control and Data Plane Architecture

performance predictability as the scale rises. This leads to
the second key challenge in edge infrastructures: predictable
performance, particularly latency, at large scale.
Scaling isolation facilities. Unfortunately, current infrastruc-
tures suffer poor performance not only under churn, but also
at high scale. Both VMs and containers see overheads due
to the expense of traversing the host’s software switch to
determine the appropriate destination to deliver incoming
data. Even prevalent and widespread OSes such as Linux
suffer from this issue. To evaluate the latency behavior of
Linux, we adjust the number of netperf servers sharing a
single core (netperf-SC) or spread across multiple cores
(netperf-MC), and the number of memcached instances
spread across multiple cores. A second, well provisioned
host transmits traffic to the test server over a 10 Gbps link.
Using multiple cores still cannot achieve ideal latency due to
poor scalability as shown in Figure 1. Real applications such
as memcached are quickly overwhelmed and can only sup-
port a hundred or fewer instances (full details in Section 5.6).
This illustrates the inability of existing OS isolation mecha-
nisms to provide fine grained performance isolation at high
scale. EdgeOS is designed to support isolation with both high
scalability and predictability.

3 Design

Figure 2 shows the overall EdgeOS architecture, with
trusted components having white lettering. The EdgeOS data
plane is composed of Memory Movement Accelerators (MMA)
that efficiently and securely copy data between services de-
ployed by tenants as Feather-Weight Processes (FWP), which
can be composed into chains to build complex services. The
EdgeOS control plane instantiates and schedules these com-
ponents and routes messages to them.

3.1 Design Principles

Our EdgeOS is designed under the guidance of widely
accepted secure system design principles [8, 35, 64].
Avoid shared resources (P1). Every shared resource may
open an attack channel [35]. EdgeOS avoids sharing of all
types of resources, such as memory, communication end-
points and system services to prevent malicious activities.
Mediated communication (P2). This principle states that
communication should be passed via a trusted component,

and rules out shared memory based communication. Within
EdgeOS, the kernel and MMA mediate all communication
initiated from untrusted services.
Least privilege (P3). This well-known principle requires ev-
ery component to have minimal privileges to limit damage
from a system compromise. However, current isolation mech-
anisms, such as containers or VMs, are usually running on top
of monolithic systems, whose kernel or hypervisor has full
privilege. EdgeOS applies this principle not only to untrusted
components, but also low-level system services, such as MMA

and scheduler.

3.2 Memory Movement Accelerators (MMA)

Copy-based communication. Existing high throughput sys-
tems [51, 52, 72] often eschew isolation and use shared mem-
ory to pass data among isolated services. In contrast, EdgeOS

eliminates shared memory between services (P1). A key Ed-

geOS design is that all communication between untrusted
services use data copying and are mediated by MMA (P2).

As long as memory copying is higher bandwidth than the
network line-rate, it is a viable form of data movement that
provides strong isolation. On our processor, memory through-
put is 472 Gb/s, and though networking throughput is ever-
increasing in the data-center, it is more limited on the edge.
Practically, in §5.1 (Figure 5(c)) we show that the MMA can
sustain throughput competitive with a middlebox framework
– that avoids copying by sharing packet memory – up to 54
Gb/s. For perspective, 5G cells provide on the order of be-
tween 2Gb/s [21] and 20Gb/s [39]. This design is counter to
long-standing networking subsystem guidance that dictates
that zero-copy is necessary [24, 66] – often at the price of
isolation, EdgeOS optimizes the MMA implementation and
treats it as a specialized processor (§4.2) to achieve the line-
rate. As a result, EdgeOS maintains strong isolation without
practically sacrificing performance.
Efficient data copying with the MMA. The MMA acts as a
software DMA engine to move message data between ser-
vices, and runs on one or more dedicated cores in order to
perform out-of-band data movement. The MMA retrieves mes-
sages from an upstream service’s message rings, copies them
and adds them into a downstream service’s message rings,
and alerts the scheduler that the destination service needs to
be activated to receive it. EdgeOS further separates memory
into a message pool that is used for communication, and local

memory for each service’s local state. This separation enables
memory allocations to be optimized for the purpose and use
of the memory (§4.1). MMA only has the access rights to copy
into, or from message pools (P3).
Network Gateways. In and Out gateways leverage
DPDK [11], run on dedicated cores1 and pull packets into
message pools with no kernel interactions. MMA then copies

1Note that current edge offerings include between 20-64 cores, and we
show (§5) that, in aggregate, EdgeOS is efficient despite specializing cores.

930 2020 USENIX Annual Technical Conference USENIX Association

packets into the destination service, thus enabling strong pro-
tection among both (untrusted) edge services and (trusted)
system services.

3.3 Feather-Weight Processes (FWP)

A Feather-Weight Process (FWP) is a minimal abstrac-
tion wrapping only memory and a small set of simple kernel
resources. FWP achieves strong isolation by (1) capability-
based access control which minimizes access to the rest of the
system; (2) library-based services to avoid sharing of sensi-
tive information; (3) FWP caching that re-initializes a FWP’s
context before serving a new client.
Capability-based resource isolation. In EdgeOS design, ac-
cess to all resources relies on capability-based access con-
trol [9] using kernel-mediated references, removing any am-
bient authority [37] (P2, P3). These resources include local
memory, the message pool that is used to receive and send
data, and synchronous communication end-points to request
operations from system-level services. Capabilities to mem-
ory are enforced by hardware page-tables, while other capa-
bilities are protected by the kernel. Each FWP is encapsulated
within its own capability space, which restricts the granted
resource to only the allowed tenant. No memory is shared
between FWPs, instead MMA copies data between FWPs.
Library-based services. Notably absent in EdgeOS are de-
fault access to conventional shared OS services. Similar to
Unikernels [30, 31, 69], FWPs make use of library-based
implementations [18], thus enabling the inclusion of only
the application-required services without sharing with other
FWPs (P1). We have ported a TCP/IP networking stack and a
simple in-memory file-system to FWPs. The memory-based
file system is used to store transient and configuration data.
If global persistent state is required, then network-accessible
storage services can be used (similar to a serverless comput-
ing model). This decoupling enables a simplified and efficient
FWP execution environment to enable high density and line-
rate computation.
FWP Caching. A new client should not be allowed to see
old context accumulated from previous clients. Current prac-
tices either ignore this, such as process pools, or manually
terminate and restart the service [3, 5], which repeatedly in-
curs unnecessary initialization overhead. EdgeOS employs an
FWP checkpoint cache, that both avoids reusing possibly com-
promised state of previous executions and avoids redundant
initialization computations. In doing so, EdgeOS guarantee
that (1) an FWP is sealed so it cannot be modified after
checkpointing; (2) an FWP is restored to the cached post-
initialization state. Thus its memory is placed into a known
and safe state, ensuring the integrity of future FWP instances.
Checkpointing details are described in §4.3.
FWP Chains. To provide more complex functionality, FWPs
can be arranged into chains, thus the entire chain can be effi-
ciently managed as a whole. A FWP chain composes multiple
checkpointed FWPs and are maintained in a FWP-chain cache

Object File

Initializing Template

Cached Active eos_recv/

Blocked

Terminated

Loader

Checkpoint

Restore

checkpoint

Add to

FWP-chain cache

New Flow

arrives

messages

processed

Message

arrives

Inactivity

exit()

Resource Pressure

Reclaimed

Figure 3: Lifecycle of a FWP-chain: Dotted lines indicate FWP
manager operations conducted once to load and then checkpoint a
FWP-chain, or to reclaim the FWP’s resources when memory pres-
sure exists. Dashed lines indicate operations to re-initialize termi-
nated FWP-chains for future use. Solid lines are data-path operations
performed by on the critical path.

that caches entire chains of FWPs, their interconnections, and
their message pool. MMA copies data between adjacent FWPs
within the same chain, avoiding shared memory.

3.4 EdgeOS Control Plane

The EdgeOS Control Plane is composed of: (1) the Ed-

geOS Controller that maps incoming flows to FWP chains,
(2) the FWP Manager that controls the lifecycle of FWPs and
optimizes their startup, and (3) the Scheduler that determines
which FWP to run on each core and activates them in response
to incoming messages.
Flow matching with the EdgeOS Controller. When new
requests arrive from connected client devices, they need to be
routed to the appropriate FWP chain. The EdgeOS Controller
allows tenants to define FWP chains and the packet filtering
rules that specify what traffic should be routed to them. These
rules are pushed to the Net-In data plane component. Net-In
applies rules similar to SDN match-action rules: packets are
split into flows based on the header n-tuple (e.g. src/dest IP
and port) and a rule is found that matches the flow. The rules
indicate the FWP chain that will process that flow.2 Since
our focus is on fine-grained isolation and high scale, a rule
can indicate whether all flows that match the rule should be
handled by a single chain, or if each client flow should be
given a dynamically started instance of the chain.
FWP Manager. Figure 3 illustrates the lifecycle controlled
by the FWP Manager. Similar to a Linux process, an FWP

starts as an object file, which must be loaded into memory.
Once execution begins, FWPs perform some initialization
routines, and are checkpointed to a Template. Then multiple
identical copies are forked off the Template and put into FWP

cache. As new clients arrive, they are paired with correspond-
ing FWP-chains from the cache. The selected FWPs will be
Activated, allowing them to process messages or transition
to the Blocked state, before eventually Terminating when no
longer needed. When a FWP chain terminates, the Manager
reuses the chain by Restoring it to the post-initialization state
and puts it back into the FWP-chain cache. If there is memory
pressure, cached FWP templates and chains are Reclaimed.

2Our implementation currently assumes flow rules are statically preconfig-
ured, but this could be extended to support on-demand flow lookups similar
to SDN controllers, with a northbound interface to application logic that
would assign a rule dynamically to each flow.

USENIX Association 2020 USENIX Annual Technical Conference 931

FWP

FWP
Manager

MMA

FWP

FWPFWP

Net
In

Sched
Core 1

1

3 4

5

Net
Out

6

FWP

2

FWPFWP

Sched
Core n

FWPFWP

Sched
Core 2

…

7

8

Figure 4: EdgeOS Timeline

Scheduling and inter-FWP coordination. Once a set of
FWPs are activated, they are distributed across cores, and
partitioned scheduling (i.e. without task migrations) multi-
plexes the core’s processing time.

Traditional systems often use shared data-structures and
Inter-Processor Interrupts (IPIs) for scheduling notification.
For example, Linux activates threads by accessing that
thread’s data-structure directly to see if it is already awake,
and if not, an IPI is sent. The resulting cache-coherency traffic
and IPI overheads, can be significant, especially if used for
message notifications arriving over a network at line rate. Mo-
tivated by these overheads, NFV platforms based on DPDK
such as OpenNetVM [72] use active polling for communica-
tion between threads on different cores, thus avoiding block-
ing. However, as the number of processes (“network func-
tions” in OpenNetVM) grows beyond the number of cores,
spin-based event notification is inefficient.

All inter-scheduler coordination in EdgeOS is via message
passing, avoiding shared memory synchronization. When a
FWP-chain is activated, or when a message is sent to an FWP,
the MMA notifies the scheduler of the activation. On the other
hand, a FWP will be blocked after processing all of its mes-
sages. FWPs avoid spinning to ensure efficient multi-tenant
computation. We currently use a simple and efficient preemp-
tive, fixed-priority, round-robin scheduling policy. This aims
to provide temporal isolation between untrusting FWP chains
which prevents them from monopolizing the CPU, and from
interfering with the progress of other tenants’ FWPs.
Timeline Summary. Figure 4 shows the complete timeline
for processing a packet. (1) A packet reception at the Net-In
gateway causes a flow lookup to decide which FWP chain
should process the packet. (2) If there is a miss, the FWP

Manager spawns a FWP chain from its cache. (3) MMA copies
the packet and (4) adds it to the first FWP’s ring of the desti-
nation FWP chain. (5) MMA messages the scheduler on the
FWP chain’s core to activate it. (6) The FWP chain processes
the packet and (7) the last FWP in the chain asks the output
gateway to DMA the packet out the NIC.

3.5 Isolation Analysis

We summarize how EdgeOS achieves the isolation re-
quirements listed in §1 based on our design principles. Ed-

geOS executes on top of a micro-kernel, with a smaller TCB
than monolithic systems (on the order of 10K lines of code).
FWPs access system resources through a capability-based
access-control system provided by the kernel [67]. Capabil-

ities protect and control access to kernel resources includ-
ing synchronous and asynchronous IPC end-points, threads,
time [20], and memory. The capability model is similar to
that in seL4 [17], and relies on user-level retyping of un-
typed memory into both kernel resources and virtual memory.
The most notable difference between EdgeOS’s capability
model and seL4’s is that EdgeOS doesn’t allow IPC-based
delegation, instead relying on a user-level component with
capability-based access to a FWP’s capability-table to copy
capabilities (thus access to kernel resources) into that FWP.
EdgeOS leverages the kernel’s capability system to tightly
constrain FWP’s access to system resources. Each FWP has
access to only its own memory and to IPC endpoints to the
scheduler, and to the FWP manager to block awaiting further
execution, and expand their heap, respectively.

Trust model: §2.1 discusses the threats from untrusted tenant
code, and from clients that can compromise that tenant code.
As such, we assume that any resources available to an FWP

will be used, where possible, to escalate privilege, and that all
FWP system interfaces will be comparably stressed.

EdgeOS is implemented as a set of trusted, user-level com-
ponents that have access to various FWP resources. The MMA

has shared memory access to each FWP’s message pool, and
is trusted to properly move messages between adjacent FWPs,
to and from the network gateways, and to notify schedulers
of FWP activation. Similarly, the network gateways (using
DPDK) are trusted to properly interface with the NIC and
the MMA and to properly implement a tenant’s flow matching
rules. Per-core schedulers [54] have the ability to dispatch
FWP threads, and are trusted to properly preemptively sched-
ule FWPs and coordinate with the MMA to properly activate
them. The FWP manager is relied on to quickly and correctly
create new FWP instances, perform capability delegations
into the FWP, maintain the FWP cache, and dynamically ex-
pand FWP heaps. The FWP manager delegates resources
to FWP chains such that all readable/writable resources are
partitioned per-FWP. Thus, each chain is mutually isolated,
and when a chain is assigned to a client, clients are mutu-
ally isolated. Finally, the kernel is depended on to maintain
the capability-based access model that constrains the set of
resources available to each FWP.

FWP isolation: FWP memory is initially allocated by the
FWP manager, and is of three types: (1) shared executable
and read-only data derived from a tenant’s FWP’s image,
(2) read-write memory in the global data segment and heap
that is not shared among FWPs, and (3) message pools that
are shared only with the MMA. Finally, each FWP has access
to IPC end-points to request heap expansion, and to await the
next message’s arrival. Messages are sent downstream, and
received from upstream FWPs using message pool, thus inter-
facing with the MMA using only simple wait-free ring buffers.
The MMA maintains associations between an upstream FWP’s
message pool and the downstream FWP, thus only allowing
data-flow within a chain. EdgeOS’s design ensures that a

932 2020 USENIX Annual Technical Conference USENIX Association

malicious FWP – or a compromised FWP – will not be able
to intercept data outside of the FWP’s chain, nor impact the
integrity of correct services.

Inter-FWP temporal isolation is enforced by preemptive
scheduling. Each FWP executes in a separate thread con-
trolled by per-core, round-robin scheduling logic. In contrast,
many of the most efficient language-based techniques (e.g.,
NetBricks [52]) cannot prevent a buggy or malicious tenant’s
infinite loop from preventing progress for all tenants.
Inter-client isolation: Each client is served by a separate
FWP (chain), the FWP (chain) is re-initialized before serv-
ing each new client, and when created, each FWP (chain) is
delegated disjoint read/write resources by the FWP manager.
Thus, a malicious client cannot impact the execution of future
clients. In contrast, VM techniques often create a VM per-
tenant [2], which executes multiple clients, thus potentially
exposing clients to past compromises. Even webservers are
typically architected to service multiple clients within a single
protection domain.

When inter-client sharing is required by a tenant (e.g., to
implement a shared cache), FWP chains can either access
network-accessible storage, or use Net-In gateway rules that
send new clients to an existing FWP chain storing common
state (§3.4). The former is similar to the stateless design
of many serverless and microservice applications; in fact,
FWPs provide more flexibility since per-user state can be
maintained across multiple requests if desired. In the latter
case, isolation is traded for sharing, which is evaluated in §5.6.
More complex routing rules that cluster specific sets of clients
into different, potentially existing, FWP chains are beyond
the scope of this paper.

Per-client isolation in EdgeOS is, in many ways, most sim-
ilar to systems to provide Distributed Information Flow Con-
trol (DIFC) [40]. Such systems track information as it flows
(via IPC and other interactions) between processes, and de-
fine policies to determine when that flow is allowed. When
a single process is needed in two conflicting information
flows, a common strategy [15, 41, 62, 71] is to create a new

instance per flow. This is similar in mechanism and moti-
vation to the per-client FWP chain instantiation in EdgeOS.
Importantly, EdgeOS focuses on providing instantiation of
full FWP chains, low overhead (an order of magnitude less
than Linux fork), and line-rate performance. Despite strong
FWP isolation, EdgeOS achieves per-packet overheads on
the order of dedicated middlebox infrastructures that do not
provide comparable isolation.

4 Implementation

We implemented EdgeOS in Composite (composite.
seas.gwu.edu), an open source µ-kernel that externalizes
traditionally core kernel features into user-level compo-

nents that define the resource management and isolation
policies [67]. In Composite, components interact through
highly-optimized Inter-Process Communication (IPC) to

leverage system logic and resources. Composite is based on
a capability-based protection model [17, 61] that controls
component access to kernel resources. The kernel includes
no scheduling policies, instead implementing schedulers at
user-level [54]. The Composite kernel scales well to multi-
ple cores as it has no locks and is designed entirely around
store-free common-paths, wait-free data-structures, and qui-
escence [67]. MMA can be implemented in other OSes such
as Linux. In EdgeOS we pair it with the FWP abstraction to
provide fine-grained isolation and adaptability to churn.

EdgeOS prototype consists of the MMA, FWP management,
DPDK-based network access and schedulers. In total, Ed-

geOS adds fewer than 6000 lines of code. We plan to release
our code and experiment templates for repeatable research.

4.1 Message Pool Management

Memory management integration into ring-buffers.

Each FWP’s message pool is associated with two ring buffers
that track both how to transmit and receive messages, and

the allocation and deallocation of messages. EdgeOS ob-
serves that general purpose memory allocation facilities
(malloc/free) can have significant overhead. Thus, we in-
tegrate memory with message management by tracking free
memory in rings.

A reception ring buffer contains a set of references to mes-
sage slots into which incoming data can be copied, and the
transmission ring buffer contains references to messages to
move downstream in the FWP chain. The MMA orchestrates
data movement between different FWP’s packet memory re-
gions, thus acting as a software DMA accelerator.

Message pools are managed by FWPs as a span of MTU-
sized message slots, and unlike traditional NIC DMA ring
buffers, the ring buffers include an entry for each message
slot. Ring entries that have been transmitted by an FWP, and
have been copied by the MMA are marked as free, and are
used for packet allocations. FWPs must maintain a sufficient
number of messages in reception rings to buffer messages that
queue up due to the system’s scheduling latencies. Thus, after
FWPs finish processing pending messages, they move batches
of freed messages from the transmit ring into the reception
ring. This avoids malloc on the fast path, as message liveness

is managed indirectly through the ring buffers.
Message pools and isolation. The ring buffer design decou-
ples the message pool from the meta-data to coordinate the
data movement and liveness between FWPs and the MMA.
This avoids lock-based protection of the rings, instead relying
on wait-free mechanisms. This is necessary to avoid the high
costs of synchronization, and ensure progress of the MMA in
spite of possibly malicious FWPs.

4.2 Memory Movement Accelerator

Our initial experiments showed that naively copying pack-
ets in a DPDK-based NFV pipeline decreased throughput

USENIX Association 2020 USENIX Annual Technical Conference 933

by more than 50%. However, a MMA core has a through-
put of around 54 Gb/s on our hardware, which is sufficient
for line-rate. For networks that require a higher throughput,
more cores can be specialized as MMAs. In the limit, MMA’s
throughput is bounded by the chip’s memory bandwidth,
which for our processor is 472 Gb/s. By using the parallelism
of the underlying processor and specializing cores to run the
MMA, we achieve both isolation and high throughput by taking
message movement out of the critical path.

The MMA has read-write access to all message pools. It
maintains a mapping between both pairs of transmit and re-
ceive ring buffers for subsequent FWPs in a chain, and contin-
uously iterates through all such pairs, transferring messages
when it finds a transmitted message. The MMA provides two
essential services: data-movement by copying transmitted

messages, and event notification of the receiving FWPs. The
MMA’s FWP event notification is efficient as it simply sends
a message to the scheduler controlling the target FWP’s, and
relies on the scheduler to asynchronously process events.
MMA optimizations. As the MMA is on the data-path of all
FWP interactions, including message reception, it must be
able to move messages at faster than line rate. The data-
structures linking transmit and reception rings are laid out in
an array to leverage the processor’s prefetcher as the MMA it-
erates over them. The initial implementation of the operations
on the ring buffers were straight-forward, but cache-coherency
traffic, possibly a cache-line transferred for each ring entry,
hurt throughput. To address this, we optimize the MMA:
• Double-cache-line (128B) caches are added to both the

enqueue and dequeue operations. These caches are in local
memory outside of the ring, thus their modifications avoid
coherency traffic. When retrieving to the ring, a batch is
copied into the cache, and when transmitting messages are
queued in the cache, and batch copied into the ring. To
ensure message delivery, the cache is flushed by an FWP

before it blocks.
• These caches enable messages to be transferred in batches.

We use explicit software prefetch instructions to load all ref-
erenced messages in the cache to avoid CPU cache misses
on message processing.

• Messages are efficiently addressed and copied as the MMA

has shared memory access to all message pools. To main-
tain protection, the MMA validates that FWP messages are
within a valid message pool.

4.3 Optimized FWP checkpointing

EdgeOS caches the images of chains of FWP binaries so
they are ready for prompt activation. These ready-to-execute
images are asynchronously prepared, thus moving the over-
head for FWP preparation off the fast-path. The cached FWP’s
state is identical to the initialized state of a ready-to-execute
FWP.

We utilize a few optimizations to efficiently generate post-
initialization FWP snapshots: (1) the post-initialization check-

point of the FWP-chain is laid out contiguously in memory
so that chain re-initialization is as close to memcpy / memset
overheads (for which we use the musl libc, unoptimized ver-
sions), (2) we do not eagerly reclaim – and thus later re-
allocate – heap memory from terminated FWPs, instead only
zeroing it out to maintain confidentiality, and using it to sat-
isfy future heap allocations, (3) we reuse the threads active in
each FWP by only resetting their registers to the appropriate
post-initialization state, which avoids the overhead of thread
destruction and allocation, and (4) only if there is memory
pressure do we reclaim first spare FWP heap memory, then
cached FWPs. Re-initialized FWPs maintain zero state from
their previous execution: the stack, heap, and writable data
sections are reset to the initial state. These optimizations cul-
minate in a system that can handle exceedingly high churn
and scalability: FWP chain initialization is dominated by
memcpy/memset overheads, and new client chain activation
takes in the low 10s of µ-seconds.

5 Evaluation

All experiments are run on CloudLab Wisconsin c220g1
series nodes [57]. These are 2 socket, 8 core, Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz processors with 128GB ECC
Memory. Note that these systems have fewer cores than cur-
rent edge offerings, thus pressuring EdgeOS’s design that
dedicates cores to different functions. Systems are connected
via Dual-port Intel X520-DA2 10Gb NIC (PCIe v3.0, 8 lanes).

5.1 Latency and Throughput

We first evaluate the latency and performance predictability
of EdgeOS compared to other high performance networking
platforms. Figure 5(a) shows the response time distribution (in
microseconds) for an ICMP ping response Click [28] element
implemented as either: a DPDK process, an OpenNetVM
NF (ONVM), a standard linux process with kernel-based IO,
a ClickOS NF in a Xen VM, or an FWP in EdgeOS. The
results show that EdgeOS significantly outperforms all of
these techniques (by up to 3.8X in average latency), except
for DPDK. DPDK is slightly better because it can run only
a single service at a time and thus does not need to copy
packets from the initial receive DMA ring to a separate pool.
In contrast, EdgeOS provides a platform to potentially run
thousands of distinct services, and thus needs to offer stronger
isolation via copying.

Figure 5(b) shows the maximum throughput of different ap-
proaches when forwarding traffic from pktgen, a high speed
packet generator. EdgeOS again provides better performance
than ClickOS, while offering stronger isolation than DPDK
and ONVM, which rely on globally shared memory pools for
zero-copy IO.

Next we compare the performance of EdgeOS communica-
tion with ONVM. We run a chain of NFs on the same core that
each forward small (64B) or big (1024B) packets, thus both

934 2020 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 80 120 160 200

C
u
m

u
la

ti
v
e
 P

ro
b

(a) Response Time (us)

DPDK
EOS

ONVM
Linux

ClickOS

 0

 2

 4

 6

 8

 10

64 128 256 512 1024

T
h
ro

u
g
h
p
u
t(

G
b
p
s
)

(b) Packet Size (Bytes)

DPDK ClickOS ONVM EOS

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6

T
h
ro

u
g
h
p
u
t(

G
b
p
s
)

(c) Chain Length

ONVM-64 EOS-64 ONVM-1024 EOS-1024

Figure 5: (a) EdgeOS provides substantially better latency, and reduced jitter compared to Linux processes and NFV platforms like OpenNetVM
and ClickOS. (b) Throughput of each system with different packets sizes. (c) EdgeOS provides isolation and adds negligible overheads
compared to OpenNetVM (no isolation) for different chain length for messages of size 64 and 1024 bytes.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

Docker
start

Fire
cracker

fork
+exec

fork
+faults

EOS
create

EOS
activate

S
ta

rt
 T

im
e
 (

m
s
)

(a)

521
126

1.058
0.26

0.048
0.0062

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000 10000

C
u
m

u
la

ti
v
e
 P

ro
b

(b) Activation Time (ms)

EOS
EOS-Chain

fork
fork+exec
Firecracker

Docker

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000

Docker (green)
Firecracker (orange)

fork+exec (blue)
EOS (red)

A
c
ti

v
a
ti

o
n
 T

im
e
 (

m
s
)

(c) #Iteration

Figure 6: EdgeOS provides orders of magnitude better startup time than other approaches and does not suffer from scalability problems when
starting larger numbers of FWPs.

systems have context switch overhead by passing a packet
to the next NF. In addition, EdgeOS has copying overhead
from the MMA to enforce isolation. The results in Figure 5(c),
show that as the chain length increases, the throughput of 64B
packet drops for both EdgeOS and ONVM. The main over-
head of EdgeOS is data copying, while the overhead of Linux
context switches and scheduling dominates ONVM. When
the chain length is smaller than 3, the overhead of copying
is less than 8%, and EdgeOS outperforms ONVM when the
chain is longer as the Linux system overheads increase. The
throughput with 1024B packets maintains line rate for both
systems when the chain length is smaller than 6, at which
point EdgeOS sees a throughput decrease. Even at length 6,
the MMA is able to maintain an aggregate of 54 Gb/s.

5.2 Startup Time

FWP Initialization and Activation. In Linux, initializing a
process involves calling fork (and possibly execve). For
Docker containers, a docker run command is similar, but
includes additional system calls to configure namespaces and
maintain container metadata. For Firecracker, we use the rec-
ommended “hello” image and use 1 vCPU and 128 MiB
RAM. In order to optimize the fast path of readying a cached
FWP, EdgeOS separates out creation from activation. For
EdgeOS, creation involves transitioning from the Object File
to Cached state in Figure 3, including setting up page tables,
capability tables, and thread creation. We record the start time
for 10,000 iterations of starting a container, VM, process, or
FWP and report the median in Figure 6 (a). Note the log
scale. We use median time values as Container creation cost
increases slowly over time so the mean is skewed by these
outliers. We compare against two variants of Linux processes:

"fork + exec" loads a different binary whereas "fork + faults"
mimics loading the service’s working set by issuing writes
to eight different pages to trigger page faults (the size of the
minimal FWP). These approaches are 5-20X slower than the
comparable "EOS create" approach (dashed lines in Figure 3).

Once an FWP has been created, EdgeOS keeps copies
of it in a cache which can be quickly activated on demand
(solid lines in Figure 3). Cached activation improves EdgeOS

performance by another order of magnitude, allowing new
processing entities to be instantiated in 6.2 microseconds.
Figure 6(b) presents a CDF of these approaches, including
the activation cost for a full chain of 10 isolated FWPs, which
remains an order of magnitude faster than fork+exec.
FWP Scalability and Middlebox Computation. Contain-
ers and VMs suffer from poor scalability: as the number of
instances rise, the start time increases [32]. In Figure 6(c) we
show the time to start a new container, create a Firecracker
VM, exec a process, and activate an FWP, when up to 2200
are started incrementally. The Container case gradually drifts
upward before hitting a step after 2000 containers (note log-
scale) – the last container takes 1.368 seconds versus 0.467
seconds for the first. FWPs provides nearly constant start time
regardless of scale. EdgeOS has a few outlier points (11 out
of 15K measurements are at 2ms), which we believe to be
Non-Maskable Interrupts, or a bug in our scheduling logic.

5.3 Isolation

Just in Time Service Instantiation. To evaluate the impact
of client churn in edge environments, we measure client re-
sponse time for a ping that creates a new FWP. Clients send
requests at a configurable interval, and we assume that each
new client requires a new, isolated FWP. The new FWP re-

USENIX Association 2020 USENIX Annual Technical Conference 935

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
li
ty

(a) Response Time (us)

1ms
10ms
25ms
50ms

100ms

 0

 5

 10

 15

 20

 25

 30

 0 400 800 1200 1600 2000

L
a
te

n
c
y
 (

1
0

0
u
s
)

(b) #Customers

ONVM-chain
ONVM-single

EOS-chain
EOS-single

 0

 20

 40

 60

 80

 0 200 400 600 800 1000
 0

 16

 32

 48

 64

T
h
ro

u
g
h
p
u

t
(1

0
K

 r
e
q
s
/s

e
c
)

9
9

th
 P

e
rc

e
n
ti

le

 L
a
te

n
c
y
 (

1
0

0
u
s
)

(c) #Instances

EOS throughput
Linux throughput

EOS latency
Linux latency

Figure 7: (a) EdgeOS just in time service instantiation for each for mobile client connection with varying client inter-arrival rates; (b) Routing
and processing latency for middlebox routing netperf traffic for an increasing number of clients; (c) TLS termination performance for up to
1000 end points (solid lines: throughput, dashed lines: tail latency).

ceives the incoming packet, produces a reply, and then termi-
nates, representing a worst case churn scenario. Figure 7(a)
shows a response time CDF for EdgeOS under different
client arrival patterns. The results show that even when a
new client arrives every millisecond, 90% of requests are ser-
viced within 50 microseconds This experiment mimics that
in LightVM [32], and although we have not been able to suc-
cessfully run the LightVM software on our testbed, we note
that their paper produced a 90th percentile response time of
20 milliseconds (more than 400X worse) with 10ms client
arrivals. The EdgeOS performance advantage comes from
our extremely lightweight FWP abstraction and our template
cache that allows nearly instant instantiation.

Multi-Tenancy and Customer Isolation. An important job
of edge-cloud systems is to act as a middlebox to monitor
traffic close to the source. Figure 7(b) depicts the processing
latency of a middlebox deployed between netperf client
and server machines for an increasing number of concurrent
clients. We use three nodes, two running netperf clients
and servers, and the third running EdgeOS or ONVM in the
middle. The systems run either a single firewall to filter flows
or a 2 FWP chain of firewall plus monitor, all implemented
in Click, to further maintain statistics about flows. Each cus-
tomer is serviced by its own “personal firewall” or chain,
thus preventing malicious clients interfering with others. We
measure the middlebox latency overhead (i.e., the added cost
versus direct client/server connections from Figure 1) as we
increase the number of clients, and thus number of FWPs
(EdgeOS) and Network Functions (NFs in ONVM).

Though ONVM is a highly optimized middlebox infras-
tructure, it relies on containers and expensive coordination
mechanisms between NFs and the management layer. Be-
cause of this, ONVM cannot scale past around 820 containers
or 410 chains, and the added latency rises quickly with each
new client. FWPs enable the system to scale past 2000 clients
with an average increase in the latency of only around 0.3µs

per additional client. Chaining in EdgeOS adds negligible
latency overhead thanks to efficient FWP scheduling and acti-
vations, while ONVM sees an increasing gap since it relies
on Linux’s more heavyweight futexes.

5.4 TLS Termination

For our first edge cloud use case, we consider the deploy-
ment of edge-based TLS termination proxies, such as for a
CDN serving https traffic or for IoT devices sending en-
crypted data streams. This requires an edge end-point for
TCP connections, a TLS handshake to share public keys, and
continued encryption/decryption of transferred contents. As
the majority of web traffic is over https [59], TLS implemen-
tations are a high-priority target for compromises, and have a
history of high-impact vulnerabilities, e.g., Heartbleed [12].
Therefore, instead of sharing one https end-point among
many clients, we instantiate an isolated TLS FWP for each
client. Toward this, we ported axtls (axtls.sourceforge.
net/) (version 2.1.4), which includes a lightweight https-
based web proxy optimized for embedded systems, and the
lwip (savannah.nongnu.org/projects/lwip/) TCP/IP
networking stack (version 2.1.2) to EdgeOS.

In our experiment we use a single cloudlab node as the
edge server, and use five additional nodes to drive the client
workload. We style this experiment after the setup in [32],
and request zero-length files hosted at the proxy (headers
are still encrypted). Each client uses ab (version 2.4.39) and
keep-alive sessions to make a series of requests over a TLS-
encrypted session. We modified ab by adding a nanosleep
to rate limit each client to 1000 requests per second. We
disable Nagle’s Algorithm for these experiments since it leads
to very low throughput and low network utilization due to
an adversarial interaction with delayed ACK support. For
fairness, axtls on Linux stores files in a ramdisk.

Figure 7(c) depicts the results of running an increasing
number of clients making https requests. Both Linux and
EdgeOS saturate the CPU at around 350 and 700 clients
and reach 297K and 668K requests per second, respectively.
Similarly, EdgeOS achieves around three times lower 99th
percentile latency than axtls, and has lower variability across
clients compared to Linux as shown by the error bars.

In addition to fast FWP instantiation, and efficient com-
munication, the following FWP optimizations are significant:
(1) the FWP abstraction focuses on communication with a sin-

gle client, it avoids event multiplexing through select and
the associated overhead, and (2) similarly, the share-nothing
nature of the FWP abstraction enables synchronization-free

936 2020 USENIX Annual Technical Conference USENIX Association

 8

 16

 32

 64

 128

 256

 8 16 32 64 128 256 512T
h

ro
u

g
h

p
u

t
(1

0
K

 r
e

q
s
/s

e
c
)

Client Send Rate (10K reqs/s)

(a) Throughput

EOS
Linux

 8

 32

 128

 512

 2048

 8192

 8 16 32 64 128 256 512

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

u
s
)

Client Send Rate (10K reqs/s)

(b) Average Latency

Linux
EOS

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
u

m
u

la
ti

v
e

 P
ro

b
a

b
li
ty

Latency

(c) Latency CDF

EOS-16
Linux-16
EOS-128

Linux-128

Figure 8: Single memcached instance on one core.

 0

 1

 2

 3

 4

 5

 0 200 400 600 800 1000T
h

ro
u

g
h

p
u

t
(M

re
q

s
/s

e
c
)

#Instances

(a) Throughput

EOS
Linux

102

103

104

105

106

 0 200 400 600 800 1000

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

u
s
)

#Instances

(b) Average Latency

Linux
EOS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000 10000

C
u

m
u

la
ti

v
e

 P
ro

b
a

b
li
ty

Latency (ms)

(c) Latency CDF

EOS-100
Linux-100

EOS-800
Linux-800

Figure 9: Multiple memcached instances (one per tenant) on 16 cores.

networking using the simple lwip stack (in contrast to some
unikernels that cannot push lwip to Linux-level through-
put [32]). Though EdgeOS provides significantly stronger
isolation (a TLS instance per client), the FWP model still
enables efficient, predictable scalability.

5.5 Edge Inference

Edge based neural network inference enables resource con-
strained embedded systems to offload computationally-heavy
work such as live image recognition. For our second use case
we port the CMSIS NN Library (version 1.0.0) neural network
inference library to EdgeOS. We use the example CIFAR-10
configuration which takes as input a 32x32 pixel color image
which classifies to number 0-9. We focus on providing each
tenant with isolated inference services. Thus, we compare an
EdgeOS CMSIS NN FWP-per-client against a simple Linux
server that forks a process for each client.

Linux Clients EdgeOS Clients
100 500 100 500

Mean latency (ms) 13.8 69.2 14.6 70.1
99th percentile (ms) 25.4 135 14.8 71.3

We utilize a PowerEdge R740 server with two 24-core Intel
Xeon 8160 sockets that represents the Amazon and HPE edge
offerings. We use either 100 or 500 clients (separate columns),
each requesting 500 inferences. This application is particu-
larly CPU-heavy (each inference taking around 6ms), thus
penalizing EdgeOS’ design that specializes cores, i.e., Linux
can use all cores on the system for inference, whereas Ed-

geOS sets aside 4 cores for MMA and control services.Despite
this, EdgeOS has only slightly lower throughput than Linux,
losing 2.5% to 4.6%. However, the simpler FWP runtime in
EdgeOS minimizes scheduling interference, reducing latency
jitter. Together with EdgeOS’s more efficient activation, this
yields significant decreases in tail latency – 42% and 47% at
100 and 500 clients, respectively.

5.6 Memcached

Finally, we evaluate how EdgeOS can provide a platform
for low latency endpoint applications that don’t require rapid
instantiation. We implement memcached as an FWP that uses
UDP for requests. We mimic a scenario where one or more
edge tenants store data, each with many clients making re-
quests. Isolating these tenants from each other is necessary as
they should not be able to access (maliciously or not), other
tenant’s cached data. The EdgeOS controller is used to map
incoming requests either to a single memcached FWP (e.g.,
representing a typical edge cloud data cache) or one FWP

per tenant (e.g., representing data stores for different sets of
edge-connected IoT devices). We compare EdgeOS against
Linux, with a single, or multiple memcached instances. Our
workload uses 135 byte value sizes and a 95% get, 5% set
request mix generated by the mcblaster client as in [46]. We
use multiple 16-core client machines, each running mcblaster
processes to ensure the client will not be a bottleneck.

Figure 8 shows a single memcached instance while Figure 9
shows a variant number of instances, representing different
edge-cloud tenants. We report the aggregate throughput across
all requests, the average latency, and a CDF of the latency
(with 16K or 128K clients) to understand the tail. The single
instance focuses on the data-path efficiency of the system,
while the multi-instance evaluates each system’s scalability to
an increasing number of tenants on the limited edge hardware.

The efficiency of both systems is seen in their aggregate
throughput. EdgeOS processes over 5x the throughput for a
single instance, and can scale more gracefully up to 800 in-
stances whereas Linux handles up to 400. EdgeOS’ response
time for a single memcached instance is substantially lower
than Linux: it handles 8X the client request rate before seeing
an increase in latency. Since Linux is not able to keep up, it
drops a large number of requests, e.g., 5.2% at a 320K req/sec
client rate. In contrast, EdgeOS does not see any requests
drops at a 1.2M req/sec client rate. For multiple instances,

USENIX Association 2020 USENIX Annual Technical Conference 937

Linux has a response time of nearly 1 second, whereas Ed-

geOS has an average latency below 1 millisecond for up to
600 memcached instances. From the latency CDF, we ob-
serve that even with only 100 memcached instances, Linux
has much higher tail latency than EdgeOS, and that with 800
instances Linux has more than three orders of magnitude
worse tail latency. These latency metrics ignore dropped re-
quests – with 800 instances, EdgeOS drops 13% of requests,
whereas Linux drops 66%.

6 Related Work

Multi-tenant isolation. Significant research addresses isola-
tion in a multi-tenancy environment. Bolted [38] presented an
architecture for a bare metal cloud supporting security sensi-
tive tenants. PSI [70] enables fine-grained and dynamic secu-
rity postures for different network devices by assigning each
device an NF. Denali [68] separates the protection provided
by a Virtual Machine Manager (VMM) from the abstractions
within a VM, and enables lightweight VM contexts. Multi-
tenancy virtual switch designs are proposed in [60, 64]. In
contrast, EdgeOS is motivated by the potentially enormous
churn and large-scale isolation requirements of the edge cloud,
providing service to transient mobile and IoT devices. For
isolated edge computation instantiation, FWP compares fa-
vorably to forking of minimal Linux processes (two orders
of magnitude faster start-time) which is the lower-bound for
many such techniques. Re-initializing FWPs to safe states is
partially motivated by ChaosMonkey [3, 5].
Lightweight isolation. Wedges [6], LWC [29], and Space-
JMP [16] expand the UNIX interface to include lightweight fa-
cilities for controlling and changing protection domains. Simi-
larly, Dune [4] uses hardware virtualization support to provide
user-level control over page-tables, and both dIPC [65] and
Skybridge [36] use hardware support to bypass the kernel dur-
ing inter-protection domain communication. Several projects
have increased the efficiency of containers. Cntr [63] includes
only the application-specific context in a container, while
SOCK [48] specializes the container to use efficient kernel
operations, and uses a Zygote mechanism paired with a cache
to accelerate container creation for stateless computations. Ed-

geOS targets at abstractions to support immense churn rates,
efficient communication with strong isolation via the MMA

and a narrow system attack surface. To efficiently use the
limited resources in the edge cloud, EdgeOS leverages this
support to scale to more than two thousand FWPs in less than
1GB of RAM while maintaining line-rate communication.
Other isolation mechanisms. DMA shadowing [33] utilizes
extra memory copies for DMA buffer to provide full IOMMU
protection. DAMN [34] introduces DMA-aware packet mem-
ory allocator to achieve efficient IOMMU protection. MMA

also uses data-copying to avoid shared memory communica-
tion between untrusted FWPs. LXDs [42] runs isolated kernel
subsystems on dedicated cores. EdgeOS achieves similar iso-
lation with the micro-kernel approach. EdgeOS implements

its system-level services in user-level, and further spreads
them to different cores.

New hardware features are used to enhance memory iso-
lation, such as Intel MPK [25, 53] and SGX [50, 56]. They
are complementary to EdgeOS. Language techniques such as
NetBricks [52] implement network processing functions in
a memory-safe language. These techniques rely on software
isolation within a single thread. Without multiplexing the
CPU among untrusted FWP chains via preemptive schedul-
ing, temporal isolation is challenging. EdgeOS effectively
uses the MMA to maintain memory safety, but also provides
temporal isolation by executing all FWPs in separate threads
that are preemptively scheduled. We also support the direct
execution of legacy code modulo the confines of FWP APIs.

7 Conclusions

The increasing prevalence of mobile computations and the
Internet of Things requires both scalable isolation facilities for
multi-tenancy in the edge, and the agility to handle high churn.
This paper has described an optimized copy-based MMA ar-
chitecture that provides strong mutual isolation without per-
formance penalties. We introduced FWP for scalable isolation
that is paired with a cache of post-initialization checkpointed
FWP-chains to provide microsecond scale activation times
for high churn.

Our evaluation shows EdgeOS substantially improves per-
formance for a wide range of applications from network mid-
dleboxes to endpoint services. We show that EdgeOS provides
more than a 3.8X reduction in ping latency and more than 2X
throughput increase compared to ClickOS – a system that also
provides isolated computation – for middlebox computations.
More importantly, EdgeOS can create FWPs for client com-
putation in 25-50 microseconds, even when they are created
every millisecond, and can scale to over 2000 FWPs while
maintaining low latency, even with a very limited amount
of memory. For edge applications like memcached, EdgeOS

has more than three orders of magnitude decreases in latency
when running over 300 server instances simultaneously, and
even CPU-intensive TLS termination shows a factor of three
tail latency decrease, all while maintaining strong isolation.
We believe that EdgeOS paves the way for closely integrating
the edge cloud into – and augmenting the capabilities of – the
increasing prevalence of mobile and embedded devices.

Acknowledgments. We would like to thank the anonymous
reviewers, especially our shepherd Trent Jaeger, for their
tremendous feedback that has significantly improved the qual-
ity of this paper. We are also thankful to Phani Kishore Gade-
palli, Zheng Yang and Runyu Pan for their help on the Com-

posite system. This work was supported by the National Sci-
ence Foundation under Grants CNS 1815690, CNS 1814234,
and CPS 1837382.

938 2020 USENIX Annual Technical Conference USENIX Association

References

[1] 5g network slicing in 5gtango,
https://www.5gtango.eu/blog/

36-5g-network-slicing-in-5gtango.html,
2019.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI 20), Santa Clara, CA, 2020.

[3] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein,
L. Kosewski, J. Reynolds, and C. Rosenthal. Chaos
engineering. IEEE Software, 33(3):35–41, 2016.

[4] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David
Terei, David Mazières, and Christos Kozyrakis. Dune:
Safe user-level access to privileged cpu features. In
Proceedings of the 10th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI’12),

Hollywood, CA, USA, October 8-10, 2012.

[5] Cory Bennett and Ariel Tseitlin. Chaos monkey released
into the wild. Netflix Tech Blog, 30, 2012.

[6] Andrea Bittau, Petr Marchenko, Mark Handley, and
Brad Karp. Wedge: Splitting applications into reduced-
privilege compartments. In Proceedings of the 5th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2008.

[7] William Earl Boebert and Richard Y. Kain. A practical
alternative to hierarchical integrity policies. In Proceed-

ings of the 8th National Computer Security Conference,
1985.

[8] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello,
George Coker, Tim Deegan, Peter Loscocco, and An-
drew Warfield. Breaking up is hard to do: Security and
functionality in a commodity hypervisor. In Proceed-

ings of the Twenty-Third ACM Symposium on Operating

Systems Principles (SOSP’11), 2011.

[9] Jack B. Dennis and Earl C. Van Horn. Programming se-
mantics for multiprogrammed computations. Commun.

ACM, 26(1):29–35, 1983.

[10] Docker: https://www.docker.com/, 2018.

[11] Intel Data Plane Development Kit (DPDK). http://
dpdk.org/.

[12] Zakir Durumeric, Frank Li, James Kasten, Johanna
Amann, Jethro Beekman, Mathias Payer, Nicolas
Weaver, David Adrian, Vern Paxson, Michael Bailey,

and J. Alex Halderman. The Matter of Heartbleed. In
Proceedings of the 2014 Conference on Internet Mea-

surement Conference, IMC ’14, pages 475–488, New
York, NY, USA, 2014. ACM. event-place: Vancouver,
BC, Canada.

[13] Telecommunications industry association. edge
data centers. https://www.tiaonline.org/

wp-content/uploads/2018/10/TIA_Position_

Paper_Edge_Data_Centers-18Oct18.pdf, 2018.

[14] Micro-data centers out in the wild: How dense is the
edge?, https://www.datacenterknowledge.com/
archives/2017/05/02/edge-densities, 2017.

[15] Petros Efstathopoulos, Maxwell Krohn, Steve VanDe-
Bogart, Cliff Frey, David Ziegler, Eddie Kohler, David
Mazieres, Frans Kaashoek, and Robert Morris. Labels
and event processes in the asbestos operating system.
In SOSP ’05: Proceedings of the twentieth ACM sym-

posium on Operating systems principles, pages 17–30,
New York, NY, USA, 2005. ACM Press.

[16] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan
Milojicic, Reto Achermann, Paolo Faraboschi, Wen-mei
Hwu, Timothy Roscoe, and Karsten Schwan. Spacejmp:
Programming with multiple virtual address spaces. In
Proceedings of the Twenty-First International Confer-

ence on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), 2016.

[17] Kevin Elphinstone and Gernot Heiser. From L3 to seL4
what have we learnt in 20 years of L4 microkernels? In
Proceedings of the 24th ACM Symposium on Operating

Systems Principles (SOSP), 2013.

[18] Dawson R. Engler, Frans Kaashoek, and James O’Toole.
Exokernel: An operating system architecture for
application-level resource management. In Proceed-

ings of the 15th ACM Symposium on Operating System

Principles, pages 251–266, Copper Mountain Resort,
Colorado, USA, December 1995. ACM.

[19] Firecracker: https://firecracker-microvm.github.io/,
2019.

[20] Phani Kishore Gadepalli, Robert Gifford, Lucas Baier,
Michael Kelly, and Gabriel Parmer. Temporal capabili-
ties: Access control for time. In Proceedings of the 38th

IEEE Real-Time Systems Symposium, 2017.

[21] The 5g guidea reference for operators the 5g guide:
A reference for operators, https://www.gsma.com/
wp-content/uploads/2019/04/The-5G-Guide_

GSMA_2019_04_29_compressed.pdf, 2019.

USENIX Association 2020 USENIX Annual Technical Conference 939

[22] Adam Hall and Umakishore Ramachandran. An exe-
cution model for serverless functions at the edge. In
Proceedings of the International Conference on Internet

of Things Design and Implementation, IoTDI ’19, 2019.

[23] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. SoftNIC: A Soft-
ware NIC to Augment Hardware. Technical Report
UCB/EECS-2015-155, EECS Department, University
of California, Berkeley, May 2015.

[24] Sangjin Han, Scott Marshall, Byung-Gon Chun, and
Sylvia Ratnasamy. Megapipe: A new programming
interface for scalable network i/o. In Proceedings of the

10th USENIX Conference on Operating Systems Design

and Implementation, 2012.

[25] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-process isolation for high-
throughput data plane libraries. In 2019 USENIX Annual

Technical Conference (USENIX ATC 19), Renton, WA,
2019.

[26] Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Haw-
blitzel, Orion Hodson, James Larus, Steven Levi, Bjarne
Steensgaard, David Tarditi, and Ted Wobber. Sealing
OS processes to improve dependability and safety. In
EuroSys ’07: Proceedings of the 2nd ACM SIGOPS/Eu-

roSys European Conference on Computer Systems 2007,
pages 341–354, New York, NY, USA, 2007. ACM.

[27] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Re-
becca Steinert, and Gerald Q. Maguire Jr. Metron: NFV
service chains at the true speed of the underlying hard-
ware. In 15th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 18), pages 171–
186, Renton, WA, April 2018. USENIX Association.

[28] Eddie Kohler, Robert Morris, Benjie Chen, John Jan-
notti, and M. Frans Kaashoek. The click modular router.
ACM Transactions on Computer Systems, 18(3):263–
297, August 2000.

[29] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-weight contexts: An os abstraction for
safety and performance. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and

Implementation (OSDI), 2016.

[30] Anil Madhavapeddy, Richard Mortier, Charalampos Rot-
sos, David Scott, Balraj Singh, Thomas Gazagnaire,
Steven Smith, Steven Hand, and Jon Crowcroft. Uniker-
nels: Library operating systems for the cloud. In Pro-

ceedings of the Eighteenth International Conference on

Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’13, 2013.

[31] Anil Madhavapeddy and David J. Scott. Unikernels:
Rise of the virtual library operating system. Queue,
11(11), December 2013.

[32] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My vm is lighter (and
safer) than your container. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP),
2017.

[33] Alex Markuze, Adam Morrison, and Dan Tsafrir. True
iommu protection from dma attacks: When copy is faster
than zero copy. In Proceedings of the Twenty-First Inter-

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS
’16, pages 249–262, New York, NY, USA, 2016. ACM.

[34] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan
Tsafrir. Damn: Overhead-free iommu protection for
networking. In Proceedings of the Twenty-Third Inter-

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS
’18, pages 301–315, New York, NY, USA, 2018. ACM.

[35] Bishop Matt et al. Introduction to computer security,
volume 50. Pearson Education India, 2006.

[36] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. Skybridge: Fast and secure inter-process
communication for microkernels. In Proceedings of the

Fourteenth EuroSys Conference 2019, 2019.

[37] Mark S. Miller, Ka-Ping Yee, and Jonathan Shapiro. Ca-
pability myths demolished. Technical Report SRL2003-
02, Johns Hopkins University Systems Research Labo-
ratory, Mountain View CA (USA), 2003.

[38] Amin Mosayyebzadeh, Apoorve Mohan, Sahil Tikale,
Mania Abdi, Nabil Schear, Trammell Hudson, Charles
Munson, Larry Rudolph, Gene Cooperman, Peter
Desnoyers, and Orran Krieger. Supporting security sen-
sitive tenants in a bare-metal cloud. In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), 2019.

[39] Shahid Mumtaz, António Morgado, Kazi Huq, and
Jonathan Rodriguez. A survey of 5g technologies: Reg-
ulatory, standardization and industrial perspectives. Dig-

ital Communications and Networks, 2017.

[40] Andrew C. Myers and Barbara Liskov. A decentral-
ized model for information flow control. In SOSP ’97:

Proceedings of the sixteenth ACM symposium on Op-

erating systems principles, pages 129–142, New York,
NY, USA, 1997. ACM Press.

940 2020 USENIX Annual Technical Conference USENIX Association

[41] Adwait Nadkarni, Benjamin Andow, William Enck, and
Somesh Jha. Practical difc enforcement on android. In
Proceedings of the 25th USENIX Conference on Security

Symposium, 2016.

[42] Vikram Narayanan, Abhiram Balasubramanian, Charlie
Jacobsen, Sarah Spall, Scott Bauer, Michael Quigley,
Aftab Hussain, Abdullah Younis, Junjie Shen, Moinak
Bhattacharyya, and Anton Burtsev. Lxds: Towards iso-
lation of kernel subsystems. In 2019 USENIX Annual

Technical Conference (USENIX ATC 19), Renton, WA,
2019.

[43] NGMN Alliance, 5G End-to-End Architecture Frame-
work, 2017.

[44] NGMN Alliance, 5G White Paper, 2017.

[45] NGMN Alliance, Description of Network Slicing Con-
cept, 2017.

[46] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Presented as part of

the 10th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 13), pages 385–398,
Lombard, IL, 2013. USENIX.

[47] Vlad Nitu, Pierre Olivier, Alain Tchana, Daniel Chiba,
Antonio Barbalace, Daniel Hagimont, and Binoy Ravin-
dran. Swift Birth and Quick Death: Enabling Fast Paral-
lel Guest Boot and Destruction in the Xen Hypervisor.
In Proceedings of the 13th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environ-

ments, VEE ’17, pages 1–14, New York, NY, USA, 2017.
ACM.

[48] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. SOCK: Rapid task provisioning with
serverless-optimized containers. In 2018 USENIX An-

nual Technical Conference (USENIX ATC 18), 2018.

[49] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J.
Ramos-Munoz, J. Lorca, and J. Folgueira. Network
slicing for 5g with sdn/nfv: Concepts, architectures, and
challenges. IEEE Communications Magazine, 55(5):80–
87, 2017.

[50] Meni Orenbach, Yan Michalevsky, Christof Fetzer, and
Mark Silberstein. Cosmix: A compiler-based system
for secure memory instrumentation and execution in en-
claves. In 2019 USENIX Annual Technical Conference

(USENIX ATC 19), 2019.

[51] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,
Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott
Shenker. E2: A framework for nfv applications. In Pro-

ceedings of the 25th Symposium on Operating Systems

Principles (SOSP), 2015.

[52] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. Netbricks: Taking
the v out of nfv. In Proceedings of the 12th USENIX

Conference on Operating Systems Design and Imple-

mentation (OSDI), 2016.

[53] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon,
and Taesoo Kim. libmpk: Software abstraction for intel
memory protection keys (intel MPK). In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), Ren-
ton, WA, 2019.

[54] Gabriel Parmer and Richard West. Predictable in-
terrupt management and scheduling in the Compos-
ite component-based system. In Proceedings of the

29th IEEE Real-Time Systems Symposium (RTSS’08),

Barcelona, Spain, November 30 - December 3, 2008.

[55] Larry Peterson. Cord: Central office re-architected as a
datacenter. Open Networking Lab white paper, 2015.

[56] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. Safebricks: Shielding network func-
tions in the cloud. In 15th USENIX Symposium on

Networked Systems Design and Implementation (NSDI

18), 2018.

[57] Robert Ricci, Eric Eide, and CloudLab Team. Intro-
ducing cloudlab: Scientific infrastructure for advancing
cloud architectures and applications. ; login:: the maga-

zine of USENIX & SAGE, 39(6):36–38, 2014.

[58] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sar-
tori, V. Sciancalepore, N. Sastry, O. Holland, S. Tayade,
B. Han, D. Bega, D. Aziz, and H. Bakker. Network
slicing to enable scalability and flexibility in 5g mobile
networks. IEEE Communications Magazine, 2017.

[59] Sandvine. The Global Internet Phenomena Report, Oc-
tober 2018.

[60] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon
Kim, Nick Feamster, Nick McKeown, and Jennifer Rex-
ford. Pisces: A programmable, protocol-independent
software switch. In Proceedings of the 2016 ACM SIG-

COMM Conference, SIGCOMM ’16, 2016.

[61] Jonathan S. Shapiro, Jonathan M. Smith, and David J.
Farber. EROS: a fast capability system. In Proceed-

ings of the 17th ACM Symposium on Operating System

Principles (SOSP’99), Kiawah Island Resort, South Car-

olina, USA, December 12-15, 1999.

USENIX Association 2020 USENIX Annual Technical Conference 941

[62] Yuqiong Sun, Giuseppe Petracca, Xinyang Ge, and Trent
Jaeger. Pileus: Protecting user resources from vulnera-
ble cloud services. In Proceedings of the 32nd Annual

Conference on Computer Security Applications (CCS),
2016.

[63] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and
Baris Kasikci. Cntr: Lightweight OS containers. In
2018 USENIX Annual Technical Conference (USENIX

ATC 18), 2018.

[64] Kashyap Thimmaraju, Saad Hermak, Gabor Retvari, and
Stefan Schmid. MTS: Bringing multi-tenancy to virtual
networking. 2019.

[65] Lluís Vilanova, Marc Jordà, Nacho Navarro, Yoav Et-
sion, and Mateo Valero. Direct inter-process communi-
cation (dipc): Repurposing the codoms architecture to
accelerate ipc. In Proceedings of the Twelfth European

Conference on Computer Systems (Eurosys), 2017.

[66] Thorsten von Eicken, Anindya Basu, Vineet Buch, and
Werner Vogels. U-Net: A user-level network interface
for parallel and distributed computing. In Proceedings

of the 14th ACM Symposium on Operating Systems Prin-

ciples, pages 40–53. ACM, December 1995.

[67] Qi Wang, Yuxin Ren, Matt Scaperoth, and Gabriel
Parmer. Speck: A kernel for scalable predictability.
In Proceedings of the 21st IEEE Real-Time and Embed-

ded Technology and Applications Symposium (RTAS’15),

Seattle, WA, USA, April 13-16, 2015.

[68] A. Whitaker, M. Shaw, and S. Gribble. Denali:
Lightweight virtual machines for distributed and net-
worked applications, 2002.

[69] Dan Williams, Ricardo Koller, Martin Lucina, and
Nikhil Prakash. Unikernels as processes. In Proceedings

of the ACM Symposium on Cloud Computing, SoCC ’18,
2018.

[70] Tianlong Yu, Seyed Kaveh Fayaz, Michael P Collins,
Vyas Sekar, and Srinivasan Seshan. PSI: precise security
instrumentation for enterprise networks. In 24th Annual

Network and Distributed System Security Symposium,

NDSS 2017, San Diego, California, USA, February 26 -

March 1, 2017, 2017.

[71] Nickolai Zeldovich, Silas Boyd-Wickizer, and David
Mazières. Securing distributed systems with informa-
tion flow control. In Proceedings of the 5th USENIX

Symposium on Networked Systems Design and Imple-

mentation, pages 293–308, Berkeley, CA, USA, 2008.

[72] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah,
Phillip Lopreiato, Gregoire Todeschi, K.K. Ramakrish-
nan, and Timothy Wood. OpenNetVM: A Platform for
High Performance Network Service Chains. In Proceed-

ings of the 2016 ACM SIGCOMM Workshop on Hot

Topics in Middleboxes and Network Function Virtual-

ization. ACM, August 2016.

942 2020 USENIX Annual Technical Conference USENIX Association

Firefly: Untethered Multi-user VR for Commodity Mobile Devices

Xing Liu Christina Vlachou∗ Feng Qian Chendong Wang Kyu-Han Kim∗
University of Minnesota, Twin Cities ∗Hewlett Packard Labs

Abstract
Firefly is an untethered multi-user virtual reality (VR) sys-

tem for commodity mobile devices. It supports more than 10

users to simultaneously enjoy high-quality VR content using a

single commodity server, a single WiFi access point, and com-

mercial off-the-shelf (COTS) mobile devices. Firefly employs

a series of techniques including offline content preparation,

viewport-adaptive streaming with motion prediction, adaptive

content quality control among users, to name a few, to ensure

good image quality, low motion-to-photon delay, a high frame

rate at 60 FPS, scalability with respect to the number of users,

and fairness among users. We have implemented Firefly in

17,400 lines of code. We use our prototype to demonstrate, for

the first time, the feasibility of supporting 15 mobile VR users

at 60 FPS using COTS smartphones and a single AP/server.

1 Introduction

Virtual Reality (VR) has registered numerous applications. In

this paper, we focus on multi-user VR where multiple users

jointly participate in exploring a VR scene. This enables

many applications that single-user VR cannot support such as

team training, social VR, group therapy, collaborative product

design, and multi-user gaming.

We envision the following use case with more than 10

collocated users in a VR room. To start multi-user VR, each

user simply launches the app on her smartphone and plugs the

phone into a VR headset (e.g., a $50 Samsung Gear VR [18] or

even a $10 Google Cardboard [9] with a $6 VR controller [5]).

These mobile devices fetch the VR content from an off-the-

shelf server based on the users’ real-time motion. The devices

and the server communicate wirelessly over a single WiFi

access point (AP). The users can enjoy the high-quality VR

content as if it is rendered by a desktop PC with a powerful

GPU. Meanwhile, each user can see and possibly interact with

other users in the virtual world.

This paper aims at realizing the above ambitious use case.

We design and implement Firefly, a novel multi-user VR sys-

tem for mobile devices. The goals of Firefly are the following.

First, Firefly works with affordable, commercial off-the-shelf

(COTS) mobile devices, server, and AP. This helps reduce the

deployment cost and facilitate the “bring-your-own-device”

(BYOD) policies that many enterprises adopt today [6]. Sec-

ond, Firefly employs untethered, wireless VR to overcome the

inconvenience and trip hazards incurred by wired cables [19].

This is important for multi-user VR where multiple users’

cables may easily get intertwined. Third, Firefly offers high

content quality, low “motion-to-photon” (M2P) latency, and a

high frame rate. An M2P higher than 16ms can cause nausea

to VR users [11]. We target Quad HD (1440p) resolution, 60

frames per second (FPS) that can provide a good experience

even for fast-paced VR gaming – the most demanding VR

task [10]. Fourth, Firefly aims at supporting ∼15 users who

can form a sizeable group of, for example, co-workers, stu-

dents, or patients. To our knowledge, no existing system can

achieve this using a single commodity server and WiFi AP.

Recent work on multi-user VR only demonstrated 4 concur-

rent emulated users [47]. Fifth, Firefly allows complex VR

scenes with both background and dynamic foreground objects,

such as other users’ avatars that users can interact with.

The above goals pose multiple challenges. The CPU/GPU

power of a smartphone is at least one order of magnitude

lower than its desktop counterpart [57], not to mention the en-

ergy/heat constraints; the heterogeneity of their computational

capabilities should also to be taken into consideration; the

bandwidth offered by a single AP is limited for multiple users;

another key challenge is multi-user scalability, which calls

for strategic decisions of splitting the client-server workload,

as well as scalable approaches for rendering and distributing

the content. To address the above challenges, Firefly makes a

series of judicious design decisions as follows.

• Firefly performs one-time, offline content preparation by

enumerating, pre-rendering, encoding, and storing the views

at all positions reachable in a virtual scene [27]. At runtime,

given a user’s position and viewing direction, the server di-

rectly retrieves the stored high-quality content and delivers

it to the user. This completely eliminates the online render-

ing overhead. Prior work [27] applies offline rendering to a

single mobile device for local VR scenes, while Firefly fur-

ther extends this concept to networked multi-user VR where

offline rendering is found to be an indispensable mechanism

ensuring scalability (§3.1).

• To reduce the network bandwidth consumption,Firefly takes

a viewport-adaptive approach: each user only requests for the

content that the user is about to perceive based on motion pre-

diction. We conduct a thorough analysis of 25 human users’

motion traces collected from an IRB-approved user trial. The

results shed light on developing a lightweight yet effective

motion prediction approach for Firefly. In the literature, sev-

eral studies [24, 33, 39] have examined 360° video viewers’

USENIX Association 2020 USENIX Annual Technical Conference 943

viewing patterns that only involve rotational movement (yaw

and pitch). Our study instead investigates generic VR users’

motion that consists of both the rotational and translational

viewport movement as well as their interplay (§3.2).

• Firefly supports Adaptive Quality Control (AQC), which

determines the content quality of each user based on the total

network bandwidth, the bandwidth available to each user,

and the amount of to-be-delivered content. AQC essentially

extends traditional video bitrate adaptation [40, 41, 51, 66]:

from handling a single client to multiple clients, from dealing

with regular videos to immersive VR content, and from being

invoked at the second level to the millisecond level to adapt to

users’ motion. These differences require AQC to be effective,

lightweight, fair, and scalable as reflected in our design (§3.4).

• Firefly handles dynamic foreground objects in a scalable

and adaptive manner. Specifically, objects’ 3D models are dis-

tributed to the clients offline. They are then rendered locally

by the client. This eliminates the uncertainty caused by the

network as well as the potential resource competition from

other users compared to a server-side approach. To prevent too

many objects appearing in the viewport from slowing down

client-side rendering, Firefly supports adaptively reducing the

objects’ fidelity to maintain a high FPS (§3.6).

Additionally, Firefly has integrated several system-level op-

timizations, such as motion prediction error toleration (§3.3),

client-side hierarchical cache (§3.5), and AP-assisted band-

width estimation (§4). Our implementation on commodity An-

droid/Linux platforms involves 17,400 lines of code. We con-

duct extensive evaluations using commercial VR scenes, real

users’ motion traces, and off-the-shelf smartphones/AP/server.

We highlight the evaluation results as follows (§5).

• Firefly achieves very low motion-to-photon delay (≤15ms

for 99% of the frames), low stall duration (around 1 second per

minute), a frame rate at 60 FPS, and fairness among the users

when supporting 15 concurrent users with a single server and

a single 802.11ac AP (§5.2).

• Firefly is adaptive to users dynamically joining and leaving

the system as well as network bandwidth changes (§5.4,§5.5).

• Firefly significantly outperforms existing systems. We ex-

tend Furion [44], a state-of-the-art single-user VR system

over WiFi, to support multi-user VR. Due to its more efficient

content fetching strategy, Firefly exhibits 18% higher median

FPS, 6.9× lower stall duration, and much higher content qual-

ity, compared to multi-user Furion (§5.2). We also use our

15-user dataset to evaluate MUVR [47], a very recently pro-

posed multi-user mobile VR framework. Through simulation,

we find that for 27% of the time, the MUVR server still needs

to perform online rendering for more than 5 devices. This

makes MUVR not scalable to many users (§5.6).

• Firefly incurs acceptable CPU, GPU, and memory usage.

When tested on 5 modern smartphones, after 25-minute VR

sessions, the battery life percentage drops by 4% to 8%, and

the devices’ temperature reaches no higher than 50°C (§5.7).

Firefly is to our knowledge the first system that can scale

untethered multi-user mobile VR. We make multi-fold contri-

butions in this work: (1) the design of Firefly, (2) the study of

real VR users’ motion, and (3) our prototype implementation

that demonstrates the support of 15 VR users at 60 FPS using

COTS smartphones and a single AP/server. With emerging

wireless technologies (e.g., 802.11ax and 5G), we believe that

Firefly has the potential to scale up to even more users.

2 Motivation and Overview

Firefly enables multiple users (10+) to simultaneously enjoy

high-quality VR at 60 FPS using commodity smartphones, a

single off-the-shelf server, and a single WiFi access point. We

consider three high-level architectural design options.

A Serverless Design does not involve a server, so all the VR

content is stored on users’ mobile devices, which also per-

form full-fledged rendering. Most of today’s commercial 3D

games and VR mobile apps use this approach. However, pre-

vious studies [27,44] indicate that today’s commodity mobile

devices are far from being powerful enough to perform heavy-

duty real-time rendering for high-quality VR. Other concerns

include excessive energy consumption and heat dissipation.

Server Performing Online Rendering. This design option

offloads the rendering task to an (edge) server, which per-

forms real-time rendering of the VR scene for all users based

on their positions and viewports. The rendered scenes are then

distributed to the users wirelessly as encoded video frames.

This approach has been adopted by a prior single-user, cloud-

assisted VR system [44]. It drastically reduces the client-side

overhead, but in the multi-user scenario, the rendering and

video encoding workload becomes too high for a single server

to handle. To illustrate this, we perform an H.264 encoding ex-

periment on a high-end workstation equipped with an Nvidia

GTX 1080 GPU. The achievable encoding performance is

92 FPS, 199 FPS, and 342 FPS for 4K, 2K, and 1080p reso-

lutions, respectively. This clearly cannot support 10+ users,

each requiring a frame rate of higher than 60 FPS.

Server Performing One-time, Exhaustive Offline Render-
ing. The server exhaustively enumerates all possible views

at all positions, renders them at a high quality, encodes them

into video frames, and saves the frames in the storage [27].

At runtime, the server simply retrieves and transmits the pre-

encoded frames based on each user’s position and viewport.

In this way, the rendering/encoding overhead at runtime is

completely eliminated, so the server can easily scale to tens

or even hundreds of simultaneous users. These benefits come

at the cost of high storage usage, which is largely not an issue

given the cheap storage today.

System Architecture. Firefly employs the third approach

given its good runtime performance and superior scalabil-

ity. Figure 1 plots the overall architecture. As shown, Firefly
consists of a content server and multiple commodity mobile

944 2020 USENIX Annual Technical Conference USENIX Association

Offline Rendering Engine (§3.1)

AQC (§3.4) Content DB

L1 Cache

L2 Cache

L3 Cache

Tile Fetching
Scheduler

(§3.3)
Motion

Prediction (§3.2)

Renderer

Decoding
Scheduler (§3.5)

Rendering
Profiles

Object
Store

Offline Foreground
Object Profiling (§3.6)

Tile Decoder

Tile Req. Queue

Tile Xmit Queue

User
Motion

Network BW from AP

Firefly Server

Fi
re

fly
Cl

ie
nt

 1

Client 2 Client 3 Client 4 …

AQC (§3.4) Content DB

Tile Req. Queue

Tile Xmit Queue

Firefly Server

L1 Cache

L2 Cache

L3 Cache

Tile Fetching
Scheduler

(§3.3)
Motion

Prediction (§3.2)

Renderer

Decoding
Scheduler (§3.5)

g

RenderingR d i
Profiles

Object
Store

Tile Decoder

User
Motion

Fi
re

fly
Cl

ie
nt

 1

Figure 1: The Firefly system architecture.

devices. They are wirelessly connected through a WiFi access

point (AP). This setup can be easily realized in enterprise

or home environments at a very low cost. Note that prior

work [27] applies offline rendering to a single mobile device

for local VR scenes, while Firefly further extends this concept

to networked multi-user VR where offline rendering is found

to be an indispensable mechanism ensuring the scalability.

The server consists of a content database that stores ren-

dered/encoded content indexed by a user’s position and view-

ing direction. The database is built by the Offline Rendering

Engine that performs the aforementioned exhaustive content

generation (§3.1). Another critical component is the AQC

module that is introduced to scale the system and to handle

the wireless bandwidth fluctuation. It determines in real-time

the content quality for each user. Designing AQC is challeng-

ing due to multiple requirements including boosting users’

QoE, maintaining good performance, ensuring scalability, and

achieving fairness. We detail its design in §3.4.

On the client side, there are two high-level design choices

on the content fetching strategy for background frames. First,

the client can prefetch all surrounding frames at every new vir-

tual position [44]. However, this technique may consume high

bandwidth with a considerable amount of wasted traffic (i.e.,
the fetched content is not viewed by the user, see our evalua-

tion in §5.2), making it infeasible for multi-user VR. Second,

to reduce the bandwidth footprint, the client can use its his-

torical motion trajectory to predict the future viewport and

to prefetch only the portions that will likely be consumed in

the near future. Firefly is the first to incorporate this viewport-

adaptative approach into generic VR using robust motion

prediction (§3.2,§3.3). The client also efficiently manages its

local cache (§3.5) and handles foreground dynamic objects in

an adaptive and scalable manner (§3.6).

3 System Design
3.1 Offline Rendering Engine
The offline rendering engine produces the content database.

The whole VR world is discretized into grids. At each grid

position that the user can reach, the rendering engine renders

a mega frame that captures the 360° panoramic view [28]

that the user can possibly perceive at a high quality. Firefly
uses Equirectangular projection [7] to generate the panoramic

representation, but other projection algorithms [8, 14, 67] can

also be applied. As shown in Figure 2, besides the color

frame (top), a mega frame also includes a panoramic depth

map (bottom) where the brightness of each pixel indicates its

distance from the user. The depth map will be used to ensure

the correct occlusion when overlaying foreground objects

such as avatars of other users onto the scene (§3.6).

We next apply the tiling technique [38, 53] by dividing

each mega frame into mega tiles. Each tile is independently

encoded and can be separately transmitted and decoded. The

rationale is that, since the user only sees a portion of the

whole panoramic scene at a given time, there is oftentimes

no need to fetch the entire mega frame. The mega tiles thus

allow users to (pre)fetch the content more adaptively at a finer

granularity, to reduce the network bandwidth consumption.

Note that although viewport-adaptive tiling has been used in

360° video streaming, applying this concept to generic VR

(in particular, multi-user VR) is new. Tiling requires the user

to predict its viewport, i.e., to determine which tiles to fetch

based on the observed viewport trajectory (both translational

and rotational), as to be detailed in §3.2 and §3.3.

A decision we need to make is to determine the number

of tiles and their layout. While having more tiles provides

more bandwidth saving opportunities, in the meantime it in-

creases the decoding overhead and makes compression less

efficient. After carefully studying the above tradeoffs using

real users’ viewport trajectory data (§3.2), we decide to verti-

cally segment each mega frame into four mega tiles as shown

in Figure 2. We choose vertical segmentation because accord-

ing to our data collected from 25 users, users tend to keep their

sight vertically centered (i.e., looking at the equator) while

moving the viewport horizontally. This makes horizontal seg-

mentation at the equator (0° latitude) inefficient because the

vertically centered viewport will always overlap with at least

two tiles, i.e., one above and the other below the equator.

As described above, at each position, the offline rendering

engine generates four tiles capturing the panoramic view and

depth. Each tile is then independently encoded into video

frames with multiple quality levels. The rendered and encoded

tiles are stored in the content database, indexed by the user’s

grid (translational) position, the tile ID (rotational position, 1

to 4), and the quality level.

3.2 VR Viewport Movement:
Characterization and Prediction

Users’ motion makes VR immersive and interactive. In the lit-

erature, many studies have investigated users’ head rotational
movement when watching 360° videos [24, 33, 39]. Generic

VR differs from 360° videos in that it further involves trans-
lational movement. To our knowledge, no prior study has

comprehensively investigated VR users’ motion patterns and

their predictability, which are our focus here.

Collecting Viewport Movement Data from Real Users.

USENIX Association 2020 USENIX Annual Technical Conference 945

M
ega Tile 1

Color
Depth

M
ega Tile 2

M
ega Tile 3

M
ega Tile 4

Figure 2: Mega frame.

Figure 3: Users’ translational

trajectories (the Office scene).

Figure 4: Users’ translational

trajectories (the Museum scene).

0 20 40 60 80 100 120 140
Rotational Speed (degree/s)

0

0.2

0.4

0.6

0.8

1

C
D

F

user1 P
user1 Y
user4 P
user4 Y
user6 P
user6 Y
user16 P
user16 Y
user20 P
user20 Y

Figure 5: Five users’ rotational

speed (P=Pitch, Y=Yaw).

0 2 4 6 8 10 12
Duration (sec)

0

0.2

0.4

0.6

0.8

1

C
D

F

Translation
Rotation

Figure 6: SP duration per pause.

0 20 40 60 80 100
Duration (sec)

0

0.2

0.4

0.6

0.8

1
C

D
F

Translation
Rotation

Figure 7: Total SP per user.

0.8 1.2 1.6 2 2.4
Prediction MAE (cm)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 8: Trans. prediction MAE.

0 2 4 6 8 10 12 14
Prediction MAE (degree)

0

0.2

0.4

0.6

0.8

1

C
D

F

Pitch
Yaw

Figure 9: Rot. prediction MAE.

We conduct an IRB-approved user study involving 25 vol-

untary participants recruited from a large university. Among

the 25 users, 9 are female. The users are from 8 departments

as undergraduate (16), master (4), and Ph.D. students (5). Dur-

ing the study, each subject wears an Oculus Rift headset [15]

connected to a high-end PC. The subject can freely make

rotational movement by moving her head as well as perform

translational movement using the handheld controller.

We obtain two large VR scenes from the Unity store:

Office [16] (30m×26m) and Museum [13] (35m×30m, L-

shape). We then develop a custom VR system that loads each

scene for the users to explore. Our system logs from each user

the precise viewport trajectory. We let each subject explore

each scene in a random order for 5 minutes, with an arbitrarily

long break allowed between the two sessions.

Motion Trace Characterization. We now characterize the

unique dataset above to reveal VR users’ motion dynamics

and to provide insights for Firefly’s design. To begin with,

Figures 3 and 4 plot the translational movement trajectories

of all users, represented by different colors, for the two VR

scenes. As shown, in most locations, the users’ trajectories are

highly heterogeneous. This finding suggests that the server

should not use broadcast or multicast, simply because users

typically see different content at a given time.

Fast motion may cause difficulties for viewport prediction.

We thus quantify the users’ motion speed. The translational

movement speed is fixed at 1m/s (set based on reported ex-

periences from another user study) when the user presses the

controller button. Figure 5 plots the distributions of rotational

movement speed, calculated by sliding a 500ms window over

the trajectory, across all window positions for five randomly

selected users. As shown, the users exhibit different speeds,

whose medians range from 1.3°/s to 18.6°/s for yaw and from

0.5°/s to 7.0°/s for pitch. The median speed across all 25 users

is 10.2°/s and 2.4°/s for yaw and pitch, respectively. Interest-

ingly, such speeds match those for typical 360° users [53],

implying that translational movement does not necessarily

slow down the rotational movement.

Another challenging scenario is users’ sudden movement

after a stationary period. How often do stationary periods

(SPs) occur? Figure 6 plots the distributions of SP duration

per pause, which by our definition has to last at least 500ms.

Figure 7 plots the total SP duration per user. As shown, an SP

is typically short: 69% of translational SPs and 89% of rota-

tional SPs are shorter than 2 seconds. However, Figure 7 indi-

cates that they occur frequently: within a 5-min VR session,

a typical user spends 43 seconds (median) being stationary.

Such frequent SPs lead to bursty, non-continuous movement

patterns that pose difficulties for viewport prediction. To deal

with SPs, we design mechanisms such as conservative tile

scheduling (§3.3) and bandwidth reservation (§3.4). We also

find that translational and rotational SPs are not correlated,

i.e., a user is typically looking at a fixed direction while mov-

ing, or looking around while standing still. This motivates us

to separate the translational and rotational dimensions when

performing viewport prediction (see below).

Viewport (Motion) Prediction is required by the tiling

scheme (§3.1). We make two decisions regarding Firefly’s

viewport prediction scheme. First, we decide to run it distribu-

tively on client devices to make the server scalable. Second,

given the above measurement results, we predict each dimen-

sion separately (yaw/pitch for rotational movement and X/Y/Z

for translational movement), and then combine them into the

final predicted view. We find that this strategy greatly reduces

the computational complexity while achieving a decent accu-

racy – a desirable tradeoff we want to strike. Regarding the

actual algorithm, we continuously train a linear regression

(LR) model using the motion trajectory observed within a

history window of H milliseconds; we then use this model

to predict the future trajectory within a prediction window

946 2020 USENIX Annual Technical Conference USENIX Association

of P milliseconds before discarding the model. The simple

LR model is found to be very lightweight yet effective for

360° videos [53]; here we investigate its effectiveness for

generic VR motion prediction. Further improvement using

more powerful machine learning tools is our on-going work.

Ideally, P should be set to the duration of the entire tile pro-

cessing pipeline (form request being sent to tiles being de-

coded) plus some safety margin. Guided by this, we set P to

150ms based on empirical profiling. We set H to 50ms based

on cross-validating different values of H, which is found to

not qualitatively impact the prediction accuracy. Note that

when integrated with Firefly, the prediction is performed in

an online manner: at runtime, Firefly continuously (1) trains

a linear regression model based on the motion trajectory ob-

served within a window (H), (2) uses this model to predict

the viewport, and (3) discards this model immediately.

Figure 8 and 9 plot the prediction results for transla-

tional and rotational movement, respectively, across all users

(H=50ms, P=150ms, the Office scene), with the SPs excluded.

The accuracy metric is the mean absolute error (MAE, in

distance or degree). The overall accuracy is high: the me-

dian MAE is around 1.4 cm for translational movement,

and 1.6°/7.4° for vertical (pitch) / horizontal (yaw) rotational

movement. The results for the Museum scene are similar. We

discuss how Firefly further tolerates prediction errors in §3.3.

3.3 Client-side Tile Fetching Scheduling
The client needs to judiciously decide which (mega) tiles

to fetch and in which order. Recall that the client contin-

uously predicts the viewport trajectory within a prediction

window (§3.2). The trajectory is a time series of 6-tuples

{t,x,y,z, pitch,yaw} where t is the (future) timestamp; x, y,

and z are the grid position (translational movement); pitch,

and yaw are the viewing direction (rotational movement). The

timestamp difference between two consecutive tuples is 1/F ,

where F is the frame rate. In other words, each tuple corre-

sponds to the predicted viewport of a future frame. The client

then translates yaw and pitch of each tuple into a list of tiles

according to the projection algorithm (e.g., Equirectangular).

The client now has a preliminary list of tiles to be fetched.

It next prunes the list using two rules. First, if a tile is already

in a client-side cache (§3.5), it will be removed from the list.

Second, if a tile appears multiple times in the list, only the

earliest appearance (with the smallest t) will be kept. This

pruned list where the tiles are ordered by their t values will

then be sent to the server. To adapt to users’ motion, the above

scheduling process is performed continuously on a per-frame

basis. The server therefore sees a stream of mega tile lists for

each user. We describe how the server processes it in §3.4.

Tolerating Viewport Prediction Errors. Due to users’ ran-

domness, viewport prediction errors are inevitable. Firefly
employs three mechanisms to tolerate them. First, it uses large

tiles (90°×180°) that can absorb rotational prediction errors,

as a tile needs to be fetched as long as the predicted viewport

has any overlap with it. Second, to further tolerate rotational

prediction errors, we virtually enlarge the field-of-view by

p% in each direction when calculating the to-be-fetched tiles.

p is configured to 10% given the rotational prediction MAE

shown in Figure 9. Third, recall from §3.2 that sudden trans-

lational movement after a stationary period (SP) is difficult to

predict. To address this issue, when the user is stationary, we

add the tiles (corresponding to the current viewing direction)

of all four neighboring grids to the predicted tile list. In this

way, no matter which direction the user moves towards, the

corresponding tiles are always in the to-be-fetched list.

3.4 Adaptive Quality Control (AQC)
AQC takes as input the lists of tiles requested by the users,

and outputs each user’s appropriate quality level. It runs on

the server that has the global knowledge of all users. An ideal

AQC algorithm has the following features. (1) For each user,

AQC will maximize the quality level while minimizing the

stall (rebuffering); meanwhile, the number of quality switches

should be minimized to provide a smooth user experience.

(2) The selected quality levels should be fair across all the

users; in other words, the quality levels should be largely

proportional to the users’ wireless channel capacities. (3)

AQC needs to execute in a fast-paced manner (ideally at the

per-frame granularity for each user) to adapt to users’ motion.

(4) AQC should scale well for multiple users.

At a first glance, AQC is similar to a video bitrate adap-

tation algorithm where a plethora of studies have been con-

ducted [40,41,51,66]. However, AQC in Firefly is much more

challenging. In particular, requirements (2), (3), and (4) do

not appear in typical bitrate adaptation algorithms running on

a single client for regular video-on-demand services.

In our initial design, we attempt to establish a principled

optimization framework that maximizes a QoE (Quality of

Experience) utility function. However, we find that this ap-

proach is computationally infeasible on a per-tile basis, as the

solution space expands exponentially as the number of users

increases. To this end, we develop a lightweight, heuristic-

based algorithm that produces empirically good quality se-

lection decisions. Our design considers all four requirements

mentioned above. It runs efficiently on commodity servers,

achieving frame-level scheduling for 10+ users.

AQC Algorithm. We now walk through the detailed logic

of the algorithm listed in Figure 10. It uses the available

bandwidth obtained from the wireless AP and the recently

received to-be-fetched tiles (§3.3) to adjust the quality level

(Q[i]) for each user i. In each invocation, AQC gets the total

available downlink bandwidth across all users (Line 01), as

well as each individual user’s available downlink bandwidth

from the AP (Line 03). They represent the global and local

network bandwidth constraints respectively (see §4 for their

details). λ (empirically set to 90%) adds a safety margin for

USENIX Association 2020 USENIX Annual Technical Conference 947

T = get_total_bw_from_AP() * λ
Q’[1..n] = Q[1..n]
B[1..n] = get_individual_bw_from_AP([1..n]) * λ
foreach user i:

while (bw_util(Tiles[i],Q’[i])≥B[i] and Q’[i] is not lowest):
Q’[i] = Q’[i] - 1

T = T – min(B[i], max(RESERVE, bw_util(Tiles[i], Q’[i])))
if (T < 0):

lru_decrease(Q’[1..n]) until (T≥0 or Q’[1..n] are lowest)
else:

lru_increase(Q’[1..n]) until (T≈0 or Q’[1..n] are highest)
Q[1..n] = Q’[1..n]

01
02
03
04
05
06
07
08
09
10
11
12

n: total number of users
T: total available bandwidth across all users
Q: users’ current quality levels (input & output)
Tiles: users’ to-be-fetched tile lists (input)
Q’: local copy of Q
B: individual user’s available bandwidth
λ: bandwidth usage safety margin
RESERVE: reserved bandwidth for each user

Figure 10: The multi-user AQC algorithm.

tolerating the bandwidth fluctuation. Lines 05–06 deal with

the local bandwidth constraint. For a given user i’s tiles to be

fetched (Tiles[i]), as long as their bandwidth utilization

(calculated by bw_util()) exceeds the available bandwidth

B[i], the quality is lowered to avoid stalls. Line 07 then

subtracts the user’s used/reserved bandwidth from the global

bandwidth budget T. An important design decision we make

is to reserve a certain amount of bandwidth (RESERVE) for

each user to handle the user’s sudden movement (§3.2) that

may incur unexpected bandwidth utilization. The reserved

bandwidth for each user is set to ηT/n where T is the AP’s

total bandwidth, n is the number of users, and η is a tunable

parameter. A large η reserves more bandwidth, which can

help increase the resilience to users’ bursty movement at the

cost of a lower flexible (i.e., non-reserved) bandwidth of other

users. We empirically choose η=0.75 that yields a satisfactory

tradeoff between the two above factors.

We next consider how to estimate the tiles’ bandwidth

requirement, i.e., realizing bw_util() in Line 05. Recall

from §3.3 that each tile has its display deadline. Let the total

size (in bytes) of the tiles at quality level q with a deadline at or

before ti be Si,q. Let t0 be the current time, tc be the estimated

decoding time, and ts be the server-side queuing delay. t0 and

tc are reported by the user and ts is estimated by the server.

In order to not miss the deadline ti, the required bandwidth

should be at least b(ti) = Si,q/max{0,(ti − t0 − tc − ts)} (it

can be ∞ when a stall occurs). Then the overall required

bandwidth is conservatively estimated as maxti{b(ti)}.

Lines 08 to 11 deal with the global bandwidth constraint. If

the global bandwidth budget T is depleted (Line 08), then we

reduce the users’ quality levels (Line 09); otherwise we try to

increase them (Line 11). To facilitate fairness and make the

quality switch smooth, the decrease/increase of the quality

levels is performed in a “least recently used (LRU)” manner,

one user at a time, i.e., the user whose quality level was least

recently changed is selected. The quality level increase is

subject to the local bandwidth constraint.

Since users’ requests arrive asynchronously, AQC needs

to be invoked to update Q[1..n] whenever a new request

arrives. Then the tile transmission thread will retrieve the tiles

from the content database and put them into the tile trans-

mission queues. If the requested tiles for a user change, or if

AQC produces a different schedule in a future invocation for

this user, the not-yet-transmitted tiles in the user’s queue will

be updated. Thanks to AQC’s lightweight nature, users’ mo-

tion and network bandwidth fluctuation will be immediately

reflected in the tiles’ quality levels, making Firefly robust.

3.5 Client-Side Hierarchical Cache
When a user receives mega tiles from the server, the tiles

will be cached, decoded, and rendered. Since tile decoding

takes non-negligible time, it needs to be performed in advance.

Firefly, a decoding scheduler determines which tiles to de-

code. Its logic is similar to the tile fetching scheduler (§3.3),

by using the viewport prediction results. Predicted tiles with

a closer display deadline take a higher decoding priority.

To handle large VR scenes, Firefly needs to fetch and de-

code a large number of tiles. Firefly thus employs a 3-layer

hierarchical tile cache. Borrowing the CPU cache terminolo-

gies, we name the three layers L1, L2, and L3. Residing in

the GPU memory, The L1 cache stores decoded mega tiles

that can be immediately rendered by the GPU. It is the fastest

cache, but its capacity is the smallest (hundreds of tiles) due

to the large size of decoded tiles and limited GPU memory.

The L2 cache stores encoded tiles in the main memory with a

capacity of thousands of tiles. The L3 cache dumps encoded

tiles in the persistent storage; it has the largest size but is the

slowest. When a tile arrives, it is first stored in L2 cache; if

L2 is full, some old tiles in L2 may be swapped to L3 in an

LRU manner. The L2-to-L3 swap involving writing to flash

drive, and is thus performed in a batched manner for good

write performance. Swapping back from L3 to L2 is triggered

by the decoding schedulers’ decisions. This typically occurs

when a user visits a previously explored grid position.

3.6 Handling Dynamic Foreground Objects
A VR scene may consist of a background view as well as

one or more foreground objects. The background view at

a specific virtual location is static. Due to its large area and

complexity, its rendering typically dominates the workload for

preparing the scene. In contrast, foreground objects are more

dynamic and less complex than a background scene. Their

examples include moving objects (e.g., other users’ avatars)

and interactive objects (e.g., a virtual control panel). Despite

being less complex than the background view, due to their

dynamic and interactive nature, failure to render foreground

objects in time may also cause considerable QoE degradation.

Firefly employs two mechanisms to handle foreground ob-

jects. First, objects’ 3D models (polygons, textures, etc.) are

distributed to the clients offline. This reduces the network

bandwidth consumption and eliminates the server’s rendering

workload at runtime. In a typical VR scene, the objects’ 3D

948 2020 USENIX Annual Technical Conference USENIX Association

Quality High Medium Low

Polygons, Size (MB) 30016, 3.30 14566, 1.30 7283, 0.68

Table 1: Three quality levels of the avatar object.

Client Device High Medium Low

Samsung Galaxy S8 (SGS8) �,�,� �,�,� �,�,�

Samsung Galaxy S10 (SGS10) �,�,� �,�,� �,�,�

Samsung Galaxy Note 8 (SGN8) �,�,� �,�,� �,�,�

Motorola Moto Z3 (Z3) �,�,� �,�,� �,�,�

Table 2: Rendering profiles for different phones: whether 60+ FPS

can be achieved with 3,6,9 concurrent objects in different qualities.

models are not large (e.g., tens of MBs in total) so they can

be bundled with the app installation package or be fetched

when the app launches for the first time.

Second, foreground objects are rendered locally by the

client. This eliminates the uncertainty caused by the network

as well as the potential resource competition from other users

compared to a server-side approach. A challenge here is that

the number of objects appearing in the viewport may change

dynamically. If there are too many objects, the local rendering

may still become the bottleneck. For example, in multi-user

social VR, a user “sees” other users as 3D avatars; depend-

ing on the users’ position, more than 10 avatars may appear

in the viewport, incurring high rendering overhead. To ad-

dress this challenge, Firefly supports trading off the rendering

quality for a high frame rate. Specifically, the client creates

low-quality versions for each object type by downsampling

its polygon meshes. Table 1 shows an example of an avatar

object originally with 30K polygons. Firefly downsamples

them (using Blender [4]) to the medium and low quality with

14.6K and 7.3K polygons respectively. This downsampling

process is an offline, one-time effort. Then at runtime, depend-

ing on the number of objects to be rendered, their qualities

are dynamically determined to facilitate 60 FPS. Downsam-

pling may also use more sophisticated polygon simplification

techniques such as bounded-error polygon simplification [42],

progressive encoding [45], or adaptive display elision based

on the size of the object and its position in the scene [34].

To properly determine the objects’ qualities, each client

creates a rendering profile offline. Let us first assume that

there is only one object type (e.g., the avatar). As exemplified

in Table 2, for each quality level, the profile maps the number

of concurrent objects (3, 6, 9 are shown) to whether 60+ FPS

can be achieved. Note that we assign the same quality to all

objects to simplify the quality selection. The profile is created

by the client through automated tests. During a test, the client

is also performing tile decoding/rendering to mimic the work-

load of generating the background view. Then at runtime, the

client can directly consult its profile to determine the objects’

quality level. For example, when there are 6 objects, SGS8

should use the medium quality (Table 1) to achieve 60 FPS.

When there are multiple types of objects, it may be infeasible

to exhaustively enumerate their combinations. In this case, we

can apply simple machine learning to predict the rendering

performance, using features such as the number of objects, the

total number of polygons, etc. We leave this as future work.

4 System Implementation

Client and Server. We have integrated the components in §3

into the holistic Firefly system that works on commodity An-

droid/Linux OSes. The client is implemented using Android

SDK with a total line of code (LoC) of 14,900. Tile decoding

is realized using the low-level Android MediaCodec API [3].

We leverage multiple concurrent hardware decoders, whose

optimal number depends on the device, to boost the decod-

ing performance. We use OpenGL ES to perform tile pro-

jection/rendering, and use the OpenGL FBO (Framebuffer

Object) to realize the L1 decoded cache (§3.5). We have suc-

cessfully tested Firefly on four mobile devices: SGS8, SGS10,

Moto Z3, and SGN 8 (full names in Table 2). These devices

can be readily plugged into affordable VR headsets. The rota-

tional and translational motion is provided by the on-device

motion sensors and the VR headset controller, respectively.

The server is implemented on Ubuntu 16.04 with about 1,000

LoC. The clients and the server communicate over TCP.

WiFi AP. The clients and server are wirelessly connected by

a commodity WiFi AP. Since the server is only one wireless

hop away from the users, AQC can directly obtain accurate

global and per-user available bandwidth from the AP (Line 01

and 03 in Figure 10). This avoids the error-prone bandwidth

estimation process widely used in Internet video streaming.

To obtain the AP-wide overall bandwidth, we modify the

AP’s firmware to collect statistics on the maximum PHY rates

of the clients, the wireless bandwidth used (20–160MHz in

5GHz Wi-Fi bands), and the busy channel time from hardware

registers. To estimate each user’s available bandwidth, we

also collect statistics on the PHY rate and the frame error

rate. The available bandwidth for a client i is estimated as

Φi(1−εi)(1−U)OTCP/N, where Φi is its PHY rate, εi is the

error rate, U is the channel busy airtime, N is the number of

clients taking into account that the airtime will be shared fairly

among clients, OTCP is the TCP overhead estimated offline

through bandwidth saturation experiments. Similar statistics

are available on other APs via interfaces such as WebUI.

The Offline Rendering Engine (§3.1) consists of a rendering

engine (developed in C# using Unity) and a mega tile encoder

(developed in Python) with a total LoC of 1,500. We use

H.264 encoding supported by all mainstream mobile devices.

5 Evaluation
5.1 Evaluation Setup

Content Preparation. We use two commercial VR scenes

purchased from the Unity store: Office [16] (30m×26m) and

Museum [13] (35m×30m, L-shape). The offline rendering

engine (§3.1) discretizes both scenes into 5cm×5cm grids,

which are fine-grained enough to provide a smooth transla-

tional movement experience. The offline engine renders each

panoramic frame in 1440p (Quad HD, 2560×1440) resolu-

USENIX Association 2020 USENIX Annual Technical Conference 949

Figure 11: Our equipment: phones, Raspberry Pis, and WiFi AP.

tion, and encodes each mega tile into four quality levels, using

the following CRF (Constant Rate Factor) values: 19, 23, 27,

31. A higher CRF corresponds to a lower quality and a lower

encoded bitrate. The CRF values are selected by following

prior recommendations [17, 20] where the encoded bitrate

ratio between two neighboring quality levels is approximately

1:1.5. The content database size is 137 GB and 99 GB for

Office and Museum, respectively. When exploring each scene,

a user can see other users as avatars, which are rendered by

the client as foreground objects. The statistics of the avatar’s

three quality levels are listed in Table 1.

Hardware and Software. As shown in Figure 11, we use 15

client devices. 5 of them are COTS smartphones with differ-

ent computational capabilities: SGS8×2 (released in 2017),

SGN8 (2017), Z3 (2018), and SGS10 (2019). They all run

unmodified Android 9.0. For the remaining clients, we use

10 Raspberry Pi 4 (model B) to emulate them, each having a

quad-core ARM Cortex-A72 CPU @ 1.5GHz and 2GB mem-

ory. The Pis run Raspbian OS (Debian v10 with Linux kernel

4.19). We run full-fledged Firefly on the 5 smartphones. For

the Pis, we create an emulated version of Firefly by replacing

the decoding and rendering components with their emulated

counterparts. The decoding/rendering latency is properly em-

ulated using the numbers profiled from the 5 smartphones.

All other components such as AQC, viewport prediction, tile

fetching scheduler, decoding scheduler, L2/L3 caching are

identical to those running on a real Firefly client. The server

is a desktop PC with an octa-core CPU @ 3.6GHz, 16 GB

memory, 1TB disk, and Ubuntu 16.04. The server does not

have a dedicated GPU. Clients and server are connected by

an Aruba AP running 802.11ac on 80MHz bandwidth.

Physical Environment. The experiments are conducted in a

typical office room (7.9m×7.3m) where all the devices, the

server, and the AP are located. We distribute the devices at

random locations. We find that their locations have a small

impact on network performance. For a single device, placing

it at the spot nearest to the AP and the spot furthest from the

AP yields a throughput difference no more than 11%.

Experimental Approach. To ensure reproducibility, our

high-level experimental approach is to replay real users’ mo-

tion traces collected in §3.2. Recall that we have 25 user traces

and 15 devices. In each run, we randomly pick 15 users and

assign them in a random order to the devices. Each device

then replays the corresponding user’s motion trace by feeding

the sensor stream to Firefly with precise timing. By default,

each experiment consists of 5 back-to-back runs with different

user-to-device assignments. We set the users’ field-of-view

(FoV) to a typical value of 100°×90° [53]. Unless otherwise

mentioned, the presented results are based on the Office scene

as the results for the Museum scene are qualitatively similar.

5.2 Overall Performance Comparison
We first evaluate the overall performance of Firefly, with the

following metrics. (1) Missed Frame Count (MFC). In our

client implementation, a high-precision rendering timer is trig-

gered every 15ms (or 66.67 Hz). If a frame is not ready at the

current timer event, it needs to wait for the next timer event,

i.e., after 15ms. In this case the client reports one MFC. MFC

is highly correlated with the motion-to-photon delay [69], the

time needed for a user’s motion to be reflected on the display.

When MFC=0 (the ideal case), the motion-to-photon delay is

minimized to no longer than 15ms, i.e., the motion is reflected

in the immediate next frame. When MFC>0, a stall occurs.

(2) Average frame rate is measured by sliding a 1-second

window over a VR session and calculating the average FPS

within each window. Our target FPS is 60. (3) Stall duration
is the rebuffering time experienced by a user. We normalize it

to seconds per minute for a VR session. This metric is corre-

lated with the MFC. (4) Content Quality. Recall that a tile’s

quality is defined by the CRF value ∈{19,23,27,31} (§5.1).

We then define the quality of a frame as the average quality

of all tiles visible in the viewport. (5) Inter-frame Quality
Variation is measured by sliding a 1-second window over

a VR session and calculating the standard deviation of all

frames’ quality values (defined above) within each window.

Since frequent quality switches degrade the QoE [66], a lower

value of this metric is preferred. (6) Intra-frame Quality
Variation of a frame is defined as the standard deviation of

the quality values of all tiles appearing in a frame’s view-

port. Similar to the inter-frame quality variation, we prefer a

lower intra-frame quality variation. Metrics (4), (5), and (6)

are defined for the background view only. We evaluate the

adaptation mechanism for foreground objects in §5.3.

Approaches to Compare. We compare three approaches: (1)

full-fledged Firefly, (2) full Firefly with perfect prediction,

and (3) the multi-user version of Furion [44]. Approach (2)

represents an ideal scenario where users’ viewport trajectories

are known a priori. It helps us understand how much perfor-

mance improvement we can further gain by having the perfect

knowledge of users’ motion. Regarding Approach (3), Furion

is the state-of-the-art solution for single-user untethered VR.

We create a multi-user version of Furion as follows. We use

the full Firefly as the base (to handle multi-user), and then

make (and only make) the following modifications accord-

ing to Furion’s design. First, we remove viewport prediction

that Furion does not perform. Second, Furion does not use

viewport-adaptation; the client instead always requests for all

tiles belonging to all four neighboring grids; we thus modify

950 2020 USENIX Annual Technical Conference USENIX Association

0.9

0.92

0.94

0.96

0.98

1

C
D

F

Firefly
Furion
Perfect

Figure 12: Missed frame count.

30 40 50 60 70
FPS

0

0.2

0.4

0.6

0.8

1

C
D

F

Furion

Figure 13: Average FPS.

0 3 9 12
0

0.2

0.4

0.6

0.8

1

C
D

F

Furion

Figure 14: Stall duration.

19 23 27 31
CRF

0

0.2

0.4

0.6

0.8

1

C
D

F

Furion
Perfect

Figure 15: Content quality.

0.9

0.92

0.94

0.96

0.98

1

C
D

F

Firefly
Furion
Perfect

Figure 16: MFC (Museum).

19 23 27 31
CRF

0

0.2

0.4

0.6

0.8

1
C

D
F

Furion
Perfect

Figure 17: Quality (Museum).

40 45 50 55 60 65 70
FPS

0

0.2

0.4

0.6

0.8

1

C
D

F

s8-0
s8-1
z3
n8
s10

Figure 18: FPS fairness.

19 23 27 31
CRF

0

0.2

0.4

0.6

0.8

1

C
D

F

s8-0
s8-1
z3
n8
s10

Figure 19: Quality fairness.

the tile scheduling module (§3.3) accordingly.

We next present the results for the Office scene. Fig-

ures 12, 13, 14, and 15 plot the distributions of the aforemen-

tioned four metrics: MFC (across all timer events), average

FPS (across all 1-sec windows’ measurements), stall (across

all users’ sessions), and average content quality (across all

users’ sessions). Thanks to its adaptiveness to available net-

work/computation resources and its resilience to motion pre-

diction inaccuracy, Firefly achieves overall good performance

across all these metrics, which are the same or only slightly

worse compared to Firefly with perfect prediction. Specifi-

cally, (1) 99% of the timer events (99% for perfect prediction)

have MFC=0, i.e., a motion-to-photon delay ≤15ms; (2) for

90%/99% of the 1-sec windows (95%/99% for perfect predic-

tion), the average FPS is at least 60/50 FPS; (3) the median

stall duration is only 1.2 sec/min (1.0 sec/min for perfect pre-

diction); (4) the median content quality is around CRF 24.2

(CRF 22.2 for perfect prediction). In Figure 15, the slightly

lower quality compared to that of perfect prediction is due to

the additionally fetched tiles. The bandwidth consumed by

these tiles is wasted because they are not viewed by the users

due to viewport prediction errors.

The multi-user Furion exhibits much worse performance.

This is because without prediction, it can only blindly fetch

an excessive number of tiles without any prioritization. As a

result, the bandwidth consumed of many tiles is wasted, lead-

ing to a much lower content quality; wasted tiles may also

cause head-of-line blocking for useful tiles, causing stalls and

a lower FPS. The results for the Museum scene are qualita-

tively similar, as exemplified in Figures 16 and 17, which plot

the MFC and content quality results, respectively.

We also measure the inter/intra-frame quality variations,

and find them to be low. For Firefly, the 25th, 50th, and 75th

percentiles of the inter-frame quality variation (across all 1-

sec windows’ measurements) are 0, 0.2, and 0.3, respectively;

the 90th percentile of the intra-frame quality variation is 0.

Both metrics are very close to Firefly with perfect prediction.

The low quality variations are attributed to AQC’s quality

selection mechanism. It (1) assigns the same quality to all the

tiles in a viewport and (2) performs LRU-style quality changes

that not only ensure fairness (to be shown next) across users

but also facilitate smooth quality switches for a given user.

Fairness. Figures 18 and 19 plot the distributions of FPS and

content quality respectively, for five smartphones. Note that

although the instantaneous available bandwidth may differ

across the devices, in the long run, each device largely gets an

equal share of the bandwidth (as verified by us). Also, since

each device replays multiple human users’ motion traces,

this should largely smooth out the impact of motion diversity

among the human users. In addition, the devices’ compu-

tational power heterogeneity is considered by the adaptive

object quality selection mechanism (§3.6). Therefore, we ex-

pect the distributions to be similar among the devices. This is

indeed shown in Figures 18 and 19, confirming that AQC can

achieve a decent level of fairness among the devices.

Real Phones vs. Emulated Devices. We observe small per-

formance differences between the two device groups: the 5

real smartphones and the 10 Raspberry Pis. Their average stall

duration (across all users’ sessions belonging to each group)

differs by less than 2%; for both groups, 99% of the timer

events have MFC=0; both groups also exhibit very similar

FPS distributions; the median content quality is CRF 24.2

and 26.1 for the phone and the Pi group, respectively. This

difference is likely attributed to the conservative emulation

settings (e.g., decoding latency) used in emulation. Overall,

We believe that Firefly is accurately emulated on the Pis.

5.3 Micro Benchmarks
We now present several micro benchmarks to showcase the

impact of key design decisions of Firefly.

Impact of AQC. Figure 20 plots the stall duration across all

VR sessions with AQC enabled vs. disabled. When AQC is

disabled, we consider two extreme cases: always fetching

USENIX Association 2020 USENIX Annual Technical Conference 951

0 155 10
Stall (sec min

0

0.2

0.4

0.6

0.8

1

C
D

F

AQC(avg crf23.8)
w/o AQC crf19
w/o AQC crf31

Figure 20: Impact of adaptive

quality control (AQC).

0 105
Stall

0

0.2

0.4

0.6

0.8

1

C
D

F

w/ BWR
w/o BWR

Figure 21: Impact of BW

reservation in AQC.

30 40 50 60 70
FPS

0

0.2

0.4

0.6

0.8

1

C
D

F

LT+LR
LT+SR
ST+LR
ST+SR

Figure 22: Impact of viewport

prediction method.

30 40 50 60 70
FPS

0

0.2

0.4

0.6

0.8

1

C
D

F

Static
Adaptive

Figure 23: Impact of adaptive fore-

ground object quality selection.

0 60 120 180 240 300
Time (sec)

50

55

60

65

70

Av
 F

PS

Figure 24: Impact of user

dynamics on frame rate.

0 60 120 180 240 300
Time (sec)

19

23

27

31
Av

 C
R

F

Figure 25: Impact of user

dynamics on content quality.

0 60 120 180 240 300
Time (sec)

50

55

60

65

70

Av
 F

PS

100 Mbps
140 Mbps

Figure 26: Impact of BW

changes on frame rate.

0 60 120 180 240 300
Time (sec)

19

23

27

31

Av
 C

R
F

100 Mbps
140 Mbps

Figure 27: Impact of BW

changes on content quality.

the highest quality (CRF=19) and always fetching the lowest

quality (CRF=31). As shown, the former suffers from very

long stalls (median: 9.6 sec/min); the issue with the latter is

the low content quality (CRF 31). AQC instead strikes a much

better tradeoff: the achieved average quality is CRF 23.8,

while the stall duration is only slightly increased compared to

statically using CRF=31 without AQC.

Impact of Bandwidth Reservation in AQC. Recall

from §3.4 that we make an important design decision in AQC

by reserving for each user a fixed amount of bandwidth to

handle the user’s sudden motion that may incur unexpected

bandwidth utilization. Figure 21 indicates that this mecha-

nism is highly beneficial. If bandwidth reservation (BWR) is

disabled, the median stall duration increases drastically from

1.2 sec/min to 8.8 sec/min.

Impact of Viewport Prediction. To justify our viewport pre-

diction design, we consider four variations shown in Fig-

ure 22. “LT+LR” is Firefly’s approach where we use Linear

regression (LR) for both the Translational movement and

Rotational movement prediction; “ST+SR” represents a naïve

Static strategy: directly using the current viewport as the pre-

dicted viewport by assuming the user is stationary in both the

translational and the rotational dimensions; “LT+SR” corre-

sponds to using LR for translational prediction and Static for

rotational prediction; “ST+LR” represents using Static and

LR for translational and rotational prediction, respectively.

Here, we consider all 25 users’ motion traces by replaying

them sequentially using one Samsung Galaxy Note 8 phone.

Figure 22 shows that Firefly’s approach, LT+LR, achieves

the overall highest FPS. Also, LT+SR significantly outper-

forms ST+LR and ST+SR. This suggests that translational

prediction accuracy plays a more important role in determin-

ing the system performance compared to rotational prediction

accuracy. The reason is that large tiles (90°×180°) can shield

many rotational prediction errors (§3.3) but not any transla-

tional prediction error.

Impact of Adaptive Object Quality Selection. By analyz-

ing the logs produced by the experiments in §5.2, we find that

oftentimes many avatars indeed appear in the viewport: in

more than 40% (10%) of the viewports, 4 (8) or more avatars

need to be rendered, and this number can reach 10. Too many

foreground objects incur high local rendering workload in par-

ticular for computationally weak devices. This overhead can

be effectively mitigated by the object quality selection scheme

(§3.6), which adaptively reduces the fidelity of foreground

objects (in our experiments, the users’ avatars) to maintain

a high FPS. Figure 23 suggests that by disabling this feature

(the “Static” curve, which always renders the objects at the

highest quality), the FPS drops significantly: the fraction of

1-sec windows with <60 FPS increases from 8% to 37%.

5.4 Adaptiveness to Number of Users
We conduct an experiment to demonstrate that Firefly can

properly handle users dynamically joining and leaving the

system. We begin with 5 randomly chosen devices at t=0; at

t=60s, 5 randomly chosen devices join the system; at t=120s,

5 more devices start their VR sessions; at t=180s, 5 devices

leave the system; finally at t=240s, 5 more devices leave.

Figures 24 and 25 plot the average FPS and average CRF

across all users, respectively, over time. As shown, regardless

of the user dynamics, the frame rate almost always stays above

60 FPS. Meanwhile, the content quality well adapts to the

bandwidth available to each individual device. When there are

no more than 10 devices, each device can enjoy the highest

content quality at CRF 19. With 15 devices, AQC reduces the

average quality level to ∼24 due to bandwidth scarcity while

maintaining fairness across users (Figures 18 and 19). The

fluctuations in Figures 24 and 25 (also in Figures 26 and 27 to

be described in §5.5) are attributed to our averaging method

(first over a 1-second window and then over all users) for

952 2020 USENIX Annual Technical Conference USENIX Association

calculating each FPS and content quality sample.

5.5 Adaptiveness to Available Bandwidth
We conduct two experiments to investigate how Firefly adapts

to changing network bandwidth. In the first one, we begin

with unthrottled bandwidth (around 200 Mbps as reported by

the AP) at t=0; we then use the Linux tc tool [12] to throttle

the AP-wide bandwidth to 140 Mbps at t=60s; the bandwidth

throttling is removed at t=180s. The second experiment is the

same except that the bandwidth throttling is set to 100 Mbps.

For both experiments, we fix the number of devices to 15.

Figures 26 and 27 plot the average FPS and average content

quality across all users, respectively, over time. When the total

bandwidth reduces, the content quality immediately drops to

the lowest in order to maintain a high frame rate. For 140Mbps

bandwidth throttling, AQC manages to stabilize the frame rate

at 60+ FPS. For 100Mbps throttling, each device gets only

∼6.7Mbps bandwidth on average that can barely support even

the lowest quality level at CRF=31. As a result, the frame rate

occasionally drops below 60 FPS.

5.6 Comparison with MUVR
MUVR [47] is a recently proposed, state-of-the-art multi-

user mobile VR framework. It is also (to our knowledge) the

most relevant work to Firefly. In MUVR, a server maintains

a centralized cache that stores the rendered and encoded VR

content. Given a user’s translational position, the server can

directly transmit the view if it is cached; otherwise the server

needs to render the view and properly cache it. In their evalu-

ation, the authors emulated 4 concurrent users of MUVR.

We quantify the effectiveness of MUVR on our Office

dataset using simulation. The setup is similar to §5.2 where

we replay 15 randomly selected users’ motion traces 5 times.

Meanwhile, we simulate the centralized cache: for every

frame, all devices simultaneously “send” their translational

positions to the server; upon cache misses, the server will “ren-

der” the corresponding positions and add them to the cache.

We assume the cache is initially empty and has unlimited ca-

pacity. We find that for 27% of the time, there are more than

5 concurrent cache misses, i.e., the server needs to render for

more than 5 devices. According to our pilot experiment in §2,

this cannot be supported by even a high-end GPU, leading to

poor scalability. Firefly eliminates this issue by performing

exhaustive offline rendering (§3.1). It also introduces other

important components that MUVR does not have such as

AQC, viewport adaptation, and handling foreground objects.

5.7 Resource Usage and Thermal Overhead

CPU, GPU, and Memory. Firefly incurs acceptable runtime

overhead and resource footprint on mobile devices. During a

VR session, the CPU usage (reported by the Android Studio

Profiler) is no higher than 30% across the five smartphones.1

The overall memory usage (CPU+GPU) is no higher than 1.6

GB, which is mostly spent on L1 and L2 cache. Note that the

cache capacities (L1, L2, and L3) are adjustable in Firefly.

Energy Usage and Thermal Characteristics. To profile the

energy usage, we fully charge the five phones, and then repeat

the experiment in §5.2 by running on each phone five back-

to-back VR sessions. After that (25 minutes later), we record

the remaining battery percentage, which ranges from 92% to

96% (average 93.8%) depending on the device’s power con-

sumption and battery capacity. We also monitor the CPU/GPU

temperature. After continuously playing the VR content for 25

minutes, the highest temperature (either GPU or CPU) among

the devices is 50°C, which only feels moderately warm. Over-

all we think the above energy and thermal characteristics are

completely acceptable for mobile VR.

6 Related Work

360° Video Streaming. There exist a plethora of work on

streaming 360° videos. Prior systems such as Flare [53], Ru-

biks [38], Freedom [60], and POI360 [62] also take a viewport-

adaptive streaming approach. Some other studies focus on

viewport prediction for 360° videos [24,33,39]. Compared to

the work above, Firefly extends the viewport-adaptation idea

to generic VR that involves both the rotational and transla-

tional viewport movement. In particular, we demonstrate how

viewport adaptation can benefit multi-user VR systems.

Single-user Mobile VR has also been well investigated.

Flashback [27] and Furion [44] demonstrate high-quality

single-user VR on COTS smartphones. Flashback is a com-

pletely local system (on a single device, content stored in

SD card). We leverage its core concept of offline rendering to

support high-quality, networked multi-user VR. We extend Fu-

rion to a multi-user version and quantitatively compare it with

Firefly in §5.2. MoVR [22, 23] employs 60 GHz mmWave

wireless for mobile VR. Liu et al. [48] proposed system-level

optimizations for the mobile VR rendering pipeline. Tan et al.
explored supporting mobile VR over LTE [61]. None of the

above work explicitly focuses on the multi-user scenario.

Multi-user VR/AR. Despite a plethora of work on single-

user VR, much fewer studies have been conducted on its

multi-user counterpart. The most relevant work to Firefly is

MUVR [47] that is described in detail in §5.6. Bo et al. devel-

oped a multi-user 360° video streaming system based on mul-

ticast [25]. A recent positioning paper [49] discusses several

practical issues of designing a multi-user VR system (with-

out implementation). Some studies investigated multi-user or

collaborative augmented reality (AR) [54, 55, 68]. Compared

to the above work, Firefly is a generic multi-user VR system.

It achieves much better scalability compared to MUVR.

1Android Studio Profiler does not report the GPU utilization.

USENIX Association 2020 USENIX Annual Technical Conference 953

7 Discussion

Efficient Offline Rendering. Future VR applications can

involve large and complex scenes, drastically increasing the

overheads of offline rendering. Firefly plans to explore well-

known rendering optimization techniques [29, 50] which use

different hierarchical structures for adapting to the surface

tessellation and level of detail.

Handling Dynamic Background. While significantly boost-

ing scalability, Firefly’s offline rendering assumes the back-

ground content is static (but can be arbitrarily complex). Sim-

ple dynamic content involving short animation sequences can

still be rendered offline. Complex dynamic content (involving

lighting, reflection, etc.) has to be rendered at runtime.

Enhancing Firefly using Computer Graphics and Multi-
media Techniques. While the contributions of Firefly are

mostly on the system side, we are aware that Firefly can be

enhanced by various techniques developed from the com-

puter graphics and multimedia community. For example, the

3D models of foreground objects can be simplified using

techniques proposed by [31, 32, 35, 56]; visibility or distance

culling [34, 36, 52] can be applied to reduce the runtime ren-

dering overhead while maintaining objects’ visual qualities;

more sophisticated partitioning [58, 59] can be employed

to make caching more efficient for both static background

and dynamic foreground; more efficient video codec such as

H.265 [37] and the next-generation H.266 standard [1] can

be leveraged to further reduce the bandwidth footprint for

background content delivery; powered by recent advances in

deep learning, deep neural networks (super-resolution) can

be applied to enhance the image quality [30, 65]. The above

approaches are orthogonal to Firefly’s exhaustive rendering

paradigm and are compatible with the AQC scheme.

Improving Motion Prediction. Firefly employs online lin-

ear regression for motion prediction. Despite being simple,

it is experimentally demonstrated to be efficient and effec-

tive. The prediction accuracy could be further improved using

more sophisticated prediction methods. For instance, over 3-

DoF (degree-of-freedom) head movement data, deep learning

approaches such as LSTM (Long Short-Term Memory) was

found to outperform classic machine learning in particular

when the prediction window is long [64]. Another promis-

ing direction is to enrich the feature set using, for example,

velocity, acceleration, and even VR content features such as

saliency [33]. We plan to explore the above directions in our

future work.

7.1 Lessons Learned
We learned several important lessons from Firefly, which may

guide the design of future multimedia systems.

First, Wirth’s law [21] also applies to multimedia: the con-

tent resolution/quality increase may outpace the graphics

technology evolution. While 3D computer games already

use some pre-computation techniques such as projecting pre-

rendered 2D panoramic background [2] and rendering faraway

3D objects as 2D sprites, we believe that more extensive of-

fline computation and caching will remain a core technique

that can scale up high-quality content rendering on commod-

ity hardware, in particular in emerging multimedia services

such as mixed reality and cloud gaming.

Second, scheduling content delivery in a multi-user system

requires considering a wide range of factors: network band-

width, device rendering capability, users’ QoE, users’ inter-

action, and cross-user fairness. Our experience of developing

AQC indicates that while establishing a full-fledged optimiza-

tion framework may be difficult, a robust heuristic-driven

algorithm can work well in practice. In addition, to adapt

to users’ fast-paced, bursty interactions, the scheduling algo-

rithm needs to run at a frequency that is much higher than tra-

ditional videos’ bitrate adaptation algorithms [40, 41, 51, 66].

Third, from traditional videos (0 DoF) to 360° videos (3-

DoF) and then to VR/volumetric (6-DoF), multimedia content

tend to become more immersive and interactive. To embrace

such trends, future multimedia systems need more intelli-

gence, which is not limited to motion prediction as showcased

in Firefly. Elements such as users’ eye movement [43, 46],

users’ voice, salient visual content [33], and sound source,

to name a few, can all be leveraged to infer viewers’ inten-

tion and henceforth to facilitate system-level decision making

such as content prefetching and scheduling.

Fourth, in addition to content, client devices, and server,

the network (in particular, the wireless one) is also a key

component whose interplay with the multimedia system needs

to be carefully optimized. The lower-layer wireless channel

information could be leveraged to guide network resource

allocation. In Firefly, we demonstrate this over 802.11ac WiFi

(§4). Similar cross-layer design could be conducted for other

WiFi standards (802.11ax [26]) and cellular networks [62,63].

8 Concluding Remarks

We have demonstrated with Firefly that it is feasible to sup-

port 15 VR users at 60 FPS using COTS smartphones and a

single AP/server. Our design makes judicious decisions on

(1) partitioning the workload (offline vs. runtime, client vs.

server), (2) making the system adaptive to the available net-

work/computation resources, both collectively and locally to

each user, and (3) handling users’ fast-paced, bursty motion.

We believe that the core concepts of Firefly are applicable to

other multi-user scenarios such as those of augmented reality

and mixed reality.

ACKNOWLEDGEMENTS
We thank the voluntary users who participated in our study, the

anonymous reviewers for their valuable comments, and Philip

Levis for shepherding the paper. This work was supported in

part by NSF Award #1903880 and #1915122.

954 2020 USENIX Annual Technical Conference USENIX Association

References

[1] 3 New Codecs Coming in 2020. . https://nofilmsc
hool.com/three-new-codecs-are-coming.

[2] An Adventure in Pre-Rendered Backgrounds.

https://justinmeiners.github.io/pre-rende
red-backgrounds/.

[3] Android MediaCodec API. https://developer.an
droid.com/reference/android/media/MediaCod
ec.html.

[4] Blender. https://www.blender.org/.

[5] Bluetooth VR controller. https://www.amazon.com
/VR-Bluetooth-Controller-Kasonic-Smartphon
es/dp/B01E7Z72NQ/.

[6] BYOD Popularity. https://www.forbes.com/sites
/larryalton/2017/03/27/how-important-is-a
-byod-policy-5-strategies-for-millennials/.

[7] Equirectangular Projection. http://mathworld.wolf
ram.com/EquirectangularProjection.html.

[8] Google AR and VR: Bringing pixels front and center in

VR video. https://blog.google/products/googl
e-ar-vr/bringing-pixels-front-and-center-v
r-video/.

[9] Google Cardboard. https://vr.google.com/card
board/.

[10] How to Build a PC for Virtual Reality. https://www.
logicalincrements.com/articles/vrguide.

[11] Keeping the virtual world stable in VR.

https://www.qualcomm.com/news/onq/2016/0
6/29/keeping-virtual-world-stable-vr.

[12] Linux TC. http://man7.org/linux/man-pages/m
an8/tc.8.html.

[13] Museum Unity Asset. https://assetstore.unity
.com/packages/3d/environments/museum-vr-c
omplete-edition-89652.

[14] Next-generation video encoding techniques for 360

video and VR. https://code.fb.com/virtual-rea
lity/next-generation-video-encoding-techn
iques-for-360-video-and-vr/.

[15] Oculus Rift. https://www.oculus.com/rift-s/.

[16] Office Unity Asset. https://assetstore.unity.c
om/packages/3d/environments/urban/qa-offic
e-and-security-room-114109.

[17] Per-Title Encode Optimization. https:
//medium.com/netflix-techblog/per-title
-encode-optimization-7e99442b62a2.

[18] Samsung Gear VR. https://www.samsung.com/gl
obal/galaxy/gear-vr/.

[19] The very real health dangers of virtual reality.

https://www.cnn.com/2017/12/13/health/virt
ual-reality-vr-dangers-safety/index.html.

[20] What Is Per-Title Encoding? https://bitmovin.com
/per-title-encoding/.

[21] Wirth’s Law. https://www.techopedia.com/defin
ition/24381/wirths-law.

[22] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina

Katabi. Cutting the cord in virtual reality. In Proceed-
ings of the 15th ACM Workshop on Hot Topics in Net-
works, pages 162–168. ACM, 2016.

[23] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina

Katabi. Enabling high-quality untethered virtual reality.

In 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 2017), pages 531–544,

2017.

[24] Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah

Ramli, and Xin Liu. Shooting a moving target: Motion-

prediction-based transmission for 360-degree videos. In

2016 IEEE International Conference on Big Data (Big
Data), pages 1161–1170. IEEE, 2016.

[25] Yanan Bao, Tianxiao Zhang, Amit Pande, Huasen Wu,

and Xin Liu. Motion-prediction-based multicast for 360-

degree video transmissions. In 2017 14th Annual IEEE
International Conference on Sensing, Communication,
and Networking (SECON), pages 1–9. IEEE, 2017.

[26] Boris Bellalta. Ieee 802.11 ax: High-efficiency wlans.

IEEE Wireless Communications, 23(1):38–46, 2016.

[27] Kevin Boos, David Chu, and Eduardo Cuervo. Flash-

back: Immersive virtual reality on mobile devices via

rendering memoization. In Proceedings of the 14th
Annual International Conference on Mobile Systems,
Applications, and Services, pages 291–304. ACM, 2016.

[28] Shenchang Eric Chen. Quicktime vr: An image-based

approach to virtual environment navigation. In Pro-
ceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 29–38, 1995.

[29] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio

Marton, Federico Ponchio, and Roberto Scopigno.

Bdam – batched dynamic adaptive meshes for high per-

formance terrain visualization. In Computer Graphics

USENIX Association 2020 USENIX Annual Technical Conference 955

Forum, volume 22, pages 505–514. Wiley Online Li-

brary, 2003.

[30] Mallesham Dasari, Arani Bhattacharya, Santiago Vargas,

Pranjal Sahu, Aruna Balasubramanian, and Samir R Das.

Streaming 360-degree videos using super-resolution. In

IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE, 2020.

[31] Xavier Décoret, Frédo Durand, François X Sillion, and

Julie Dorsey. Billboard clouds for extreme model sim-

plification. In ACM SIGGRAPH 2003 Papers, pages

689–696. 2003.

[32] Carl Erikson and Dinesh Manocha. Gaps: General and

automatic polygonal simplification. In Proceedings of
the 1999 symposium on Interactive 3D graphics, pages

79–88, 1999.

[33] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying

Huang, Kuan-Ta Chen, and Cheng-Hsin Hsu. Fixation

Prediction for 360 Video Streaming in Head-Mounted

Virtual Reality. In Proceedings of the Workshop on
Network and Operating Systems Support for Digital
Audio and Video, pages 67–72. ACM, 2017.

[34] Thomas A Funkhouser and Carlo H Séquin. Adap-

tive display algorithm for interactive frame rates during

visualization of complex virtual environments. In Pro-
ceedings of the 20th annual conference on Computer
graphics and interactive techniques, pages 247–254,

1993.

[35] Michael Garland and Paul S Heckbert. Surface simpli-

fication using quadric error metrics. In Proceedings of
the 24th annual conference on Computer graphics and
interactive techniques, pages 209–216, 1997.

[36] Enrico Gobbetti and Fabio Marton. Far voxels: a mul-

tiresolution framework for interactive rendering of huge

complex 3d models on commodity graphics platforms.

In ACM SIGGRAPH 2005 Papers, pages 878–885. 2005.

[37] Dan Grois, Detlev Marpe, Amit Mulayoff, Benaya

Itzhaky, and Ofer Hadar. Performance comparison of h.

265/mpeg-hevc, vp9, and h. 264/mpeg-avc encoders. In

2013 Picture Coding Symposium (PCS), pages 394–397.

IEEE, 2013.

[38] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng

Li, and Lei Han. Rubiks: Practical 360-degree streaming

for smartphones. In Proceedings of the 16th Annual In-
ternational Conference on Mobile Systems, Applications,
and Services, pages 482–494. ACM, 2018.

[39] Xueshi Hou, Sujit Dey, Jianzhong Zhang, and Madhukar

Budagavi. Predictive View Generation to Enable Mobile

360-degree and VR Experiences. In Proceedings of the

Workshop on Virtual Reality and Augmented Reality
Network, pages 20–26. ACM, 2018.

[40] Te-Yuan Huang, Ramesh Johari, Nick McKeown,

Matthew Trunnell, and Mark Watson. A Buffer-Based

Approach to Rate Adaptation: Evidence from a Large

Video Streaming Service. In Proceedings of SIGCOMM
2014, pages 187–198. ACM, 2014.

[41] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving

Fairness, Efficiency, and Stability in HTTP-Based Adap-

tive Video Streaming With Festive. In Proceedings of
CoNEXT 2012, pages 97–108. ACM, 2012.

[42] Alan D Kalvin and Russell H Taylor. Superfaces: Polyg-

onal mesh simplification with bounded error. IEEE Com-
puter Graphics and Applications, 16(3):64–77, 1996.

[43] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian,

and Samir R Das. Improving user perceived page load

times using gaze. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
2017), pages 545–559, 2017.

[44] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, Ning-

wei Dai, and Hung-Sheng Lee. Furion: Engineering

high-quality immersive virtual reality on today’s mo-

bile devices. IEEE Transactions on Mobile Computing,

2019.

[45] Jiankun Li and C-CJ Kuo. Progressive coding of 3-d

graphic models. Proceedings of the IEEE, 86(6):1052–

1063, 1998.

[46] Tianxing Li and Xia Zhou. Battery-free eye tracker

on glasses. In Proceedings of the 24th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 67–82, 2018.

[47] Yong Li and Wei Gao. Muvr: Supporting multi-user mo-

bile virtual reality with resource constrained edge cloud.

In 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pages 1–16. IEEE, 2018.

[48] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin

Liu, Jiansong Zhang, Lintao Zhang, and Marco Gruteser.

Cutting the cord: Designing a high-quality untethered

vr system with low latency remote rendering. In Pro-
ceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services, pages

68–80. ACM, 2018.

[49] Xing Liu, Christina Vlachou, Feng Qian, and Kyu-Han

Kim. Supporting untethered multi-user vr over enter-

prise wi-fi. In Proceedings of the 29th ACM Workshop
on Network and Operating Systems Support for Digital
Audio and Video, pages 25–30, 2019.

956 2020 USENIX Annual Technical Conference USENIX Association

[50] Frank Losasso and Hugues Hoppe. Geometry clipmaps:

terrain rendering using nested regular grids. In ACM
Siggraph 2004 Papers, pages 769–776. 2004.

[51] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.

Neural Adaptive Video Streaming with Pensieve. In

Proceedings of SIGCOMM 2017, pages 197–210. ACM,

2017.

[52] Soraia R. Musse, Christian Babski, Tolga Capin, and

Daniel Thalmann. Crowd modelling in collaborative

virtual environments. In Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Technology, pages

115–123, 1998.

[53] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakr-

ishnan. Flare: Practical viewport-adaptive 360-degree

video streaming for mobile devices. In Proceedings
of the 24th Annual International Conference on Mobile
Computing and Networking, pages 99–114. ACM, 2018.

[54] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and

Ramesh Govindan. Avr: Augmented vehicular reality.

In Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services,

pages 81–95. ACM, 2018.

[55] Xukan Ran, Carter Slocum, Maria Gorlatova, and Jiasi

Chen. Sharear: Communication-efficient multi-user mo-

bile augmented reality. In Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, pages 109–116,

2019.

[56] Rémi Ronfard and Jarek Rossignac. Full-range approxi-

mation of triangulated polyhedra. In Computer Graphics
Forum, volume 15, pages 67–76. Wiley Online Library,

1996.

[57] Mahadev Satyanarayanan, Wei Gao, and Brandon Lu-

cia. The computing landscape of the 21st century. In

Proceedings of the 20th International Workshop on Mo-
bile Computing Systems and Applications, pages 45–50.

ACM, 2019.

[58] Gernot Schaufler and Wolfgang Stürzlinger. A three di-

mensional image cache for virtual reality. In Computer
Graphics Forum, volume 15, pages 227–235. Wiley On-

line Library, 1996.

[59] Jonathan Shade, Dani Lischinski, David H Salesin, Tony

DeRose, and John Snyder. Hierarchical image caching

for accelerated walkthroughs of complex environments.

In Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 75–82,

1996.
[60] Shu Shi, Varun Gupta, and Rittwik Jana. Freedom: Fast

recovery enhanced vr delivery over mobile networks.

In Proceedings of the 17th Annual International Con-
ference on Mobile Systems, Applications, and Services,

pages 130–141. ACM, 2019.

[61] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhe-

han Li, and Songwu Lu. Enabling Mobile VR in LTE

Networks: How Close Are We? In Proceedings of SIG-
METRICS 2018. ACM, 2018.

[62] Xiufeng Xie and Xinyu Zhang. Poi360: Panoramic

mobile video telephony over lte cellular networks. In

Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies,

pages 336–349. ACM, 2017.

[63] Xiufeng Xie, Xinyu Zhang, Swarun Kumar, and Li Erran

Li. pistream: Physical layer informed adaptive video

streaming over lte. In Proceedings of the 21st Annual
International Conference on Mobile Computing and
Networking, pages 413–425, 2015.

[64] Tan Xu, Bo Han, and Feng Qian. Analyzing viewport

prediction under different vr interactions. In Proceed-
ings of the 15th International Conference on Emerging
Networking Experiments And Technologies, pages 165–

171, 2019.

[65] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo

Shin, and Dongsu Han. Neural adaptive content-aware

internet video delivery. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
2018), pages 645–661, 2018.

[66] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno

Sinopoli. A Control-Theoretic Approach for Dynamic

Adaptive Video Streaming over HTTP. In Proceedings
of SIGCOMM 2015, pages 325–338. ACM, 2015.

[67] Matt Yu, Haricharan Lakshman, and Bernd Girod. A

framework to evaluate omnidirectional video coding

schemes. In Proceedings of the Symposium on Mixed
and Augmented Reality (ISMAR) 2015, pages 31–36.

IEEE, 2015.

[68] Wenxiao Zhang, Bo Han, Pan Hui, Vijay Gopalakrish-

nan, Eric Zavesky, and Feng Qian. Cars: collaborative

augmented reality for socialization. In Proceedings of
the 19th International Workshop on Mobile computing
Systems & Applications, pages 25–30. ACM, 2018.

[69] Jingbo Zhao, Robert S Allison, Margarita Vinnikov, and

Sion Jennings. Estimating the motion-to-photon latency

in head mounted displays. In 2017 IEEE Virtual Reality
(VR), pages 313–314. IEEE, 2017.

USENIX Association 2020 USENIX Annual Technical Conference 957

	atc20_full_proceedings_interior_wednesday
	atc20-choi
	Introduction
	Background
	Need for Memory-Mapped IO
	Need for Atomic Updates
	Copy-on-Write
	Journaling

	Atomic Update for Memory-Mapped IO

	Libnvmmio
	Overall Architecture
	Scalable Logging
	Scalable per-block logging
	Scalable log indexing

	Epoch-based Background Checkpointing
	Hybrid Logging
	Per-File Metadata
	Putting all together: write and SYNC
	Crash Consistency and Recovery

	Evaluation
	Experimental setup
	Microbenchmark
	Hybrid logging
	Throughput
	Scalability
	Latency

	Real applications
	SQLite
	MongoDB MMAPv1

	Related Work
	Conclusion

	atc20-yao
	Introduction
	Background and Motivation
	Non-volatile Memory
	Log-structured Merge Trees
	LSM-tree based KV stores
	Challenges and Motivations
	Write Stalls
	Write Amplification
	NoveLSM

	MatrixKV Design
	Matrix Container
	Column Compaction
	Reducing LSM-tree Depth
	Cross-row Hint Search

	Implementation
	Evaluation
	Experiment Setup
	Overall performance evaluation
	Performance Gain Analysis
	Main Challenges
	MatrixKV Enabling Techniques

	Extended Comparisons on NVMs

	Conclusion
	Acknowledgement

	atc20-tsai
	Introduction
	Background and Related Work
	PM and Distributed PM Storage
	RDMA and RDMA-Based Data Stores
	Resource Disaggregation

	pDPM Overview
	Passive Disaggregated Persistent Memory
	pDPM Challenges
	System Interface and Guarantees
	Network Layer

	Alternative pDPM Systems
	Direct Connection
	Connecting Through Coordinator
	pDPM-Direct/-Central Drawbacks

	Clover
	Data Plane
	Control Plane
	Discussion
	Failure Handling
	Load Balancing

	Evaluation Results
	Micro-benchmark Performance
	YCSB Performance and Scalability
	CPU Utilization and Cost
	Metadata Caching
	Load Balancing

	Conclusion and Discussion

	atc20-conway
	Introduction
	High-Level Design of STB^e-trees
	Overall Structure
	Queries
	Insertions
	Flushing and Compaction
	Splitting
	Iterators and Scans
	Deletions and Updates

	Flush-then-Compact
	Preemptive Splitting for STB^e-trees
	From STB^e-trees to SplinterDB
	Branch Trees and Memtables
	User-level Cache and Distributed Locks
	Quotient filters
	Logging and Recovery

	Evaluation
	Setup and Workloads
	YCSB
	Sequential Insertion Performance
	Concurrency Scaling
	Scan Performance

	Related Work
	Analysis
	Conclusion
	Acknowledgements

	atc20-bittman
	Introduction
	The Data-Centric OS
	Existing Interfaces
	A Data-Centric Approach

	The Design of Twizzler
	Object Management
	Address Space Management
	Persistent Pointers
	Security and Access Control
	Crash Consistency
	Implementation

	Evaluation
	Case Study: Key-Value Store
	Case Study: Red-Black Tree
	Porting SQLite
	Discussion

	Performance
	Microbenchmarks
	SQLite
	Key Value Store
	Red-Black Tree

	Related Work
	Future Work
	Conclusion

	atc20-nam
	Introduction
	Background and Motivation
	Current Container Networks
	Challenges in Container Networks
	Assumptions and Threat Model
	Limitations of Container Network Interface Plugins

	BASTION Design
	Architectural Overview
	BASTION Manager
	Network Visibility Service
	Direct ARP Handler
	Inter-container Communications Handler
	Gateway and Service-IP Handler

	Traffic Visibility Service
	Source Verification
	End-to-end Direct Forwarding

	Implementation
	Security Evaluation
	Scenario Validation
	Effectiveness of Security Functions

	Performance Evaluation
	Network Stack Deployment Overhead
	Security Policy Inspection Overhead
	Performance: Single-Host Deployment
	Performance: Cross-Host Deployment
	Performance: Networking Plugins

	Related Work
	Conclusion

	atc20-xue
	atc20-zhang-ji
	Introduction
	Related Work
	Preliminary Study and Motivation
	Preliminary Study
	Applicability and Adaptability
	Minority Disk Failure Detection

	Motivation

	Proposed System HDDse
	System Overview
	LSTM-based Siamese Network
	Sample Pool for Imbalanced Datasets
	Decision Maker in HDDse

	Experimental Evaluation
	Methodology
	Datasets and Attribute Selections.
	Experiment Setup.
	Evaluation Metrics.

	Effectiveness Comparison
	Analysis of Disk State Embeddings
	HHDse only Trained on Minority Disk Datasets.
	The Applicability of HHDse
	The Adaptability of HHDse
	Improvement of Storage System Reliability

	Efficiency Comparison
	Training and Detecting Time
	Evaluating Practical Long-Term Availability

	Conclusion

	atc20-bhardwaj
	Introduction
	Background and Motivation
	Understanding the Impact of Placement
	Challenges in Execution Placement

	ASFP Design
	ASFP Mechanisms
	Server-side Storage Functions
	Pushing invoke()s Back to Clients
	Consistency and Concurrency Control
	Client Runtime for invoke()s

	ASFP Policies
	invoke()s Profiling and Classification
	Server Overload

	Evaluation
	Experimental Setup
	ASFP Throughput Benefits & Costs
	Invocation Heterogeneity
	ASFP Impact on Latency
	Realistic Applications
	Machine Learning
	Authentication
	Application Mix

	Concurrency Control and ASFP
	ASFP Impact on Abort Rate

	Discussion
	Related Work
	Conclusion

	atc20-niu
	Introduction
	Motivation
	Benefits and Tradeoffs
	Alternative Solutions

	Design Philosophy
	Design
	Transparent Socket API Redirection
	A Lightweight Semantics Channel
	NQE Switching across Lockless Queues
	Management with CoreEngine
	Processing Application Data
	Optimization

	Implementation
	Evaluation: New Use Cases
	Multiplexing
	Deploying mTCP without API Change
	Shared Memory Networking

	Evaluation: Microbenchmarks
	Setup
	Performance and Scalability
	Isolation
	Overhead

	Discussion
	Related Work
	Conclusion

	atc20-wu-mingyu
	Introduction
	Analysis: when interactive services meet GC
	A page is multiple services
	STW pauses: the culprit for tail latency
	Is concurrent GC helpful?

	Implications for a new GC design
	Problems in concurrent garbage collectors
	The skewed memory write behavior
	MPK and Garbage Collectors

	Design
	Overview
	Platinum in steps
	Idle core collection
	Isolated execution with heap partition
	Hardware-assisted barrier elimination
	Handling violated writes

	Evaluation
	SpecJBB2015
	Cassandra
	Coupon
	Breakdown analysis

	Related Work
	Conclusion
	Acknowledgement

	atc20-im
	Introduction
	Background
	NAND Flash-based SSD
	KV-SSD
	Hash-based KV-SSD
	blackLSM-Tree-based KV-SSD
	blackHash vs LSM-Tree

	Challenges in implementing LSM-tree in a KV-SSD
	blackLSM-Tree Structure
	Performance Analysis

	Design of PinK
	Overall Architecture
	Improving I/O Speed with Level Pinning
	Optimizing Search Path
	Speeding up Compaction
	Optimizing Garbage Collection
	blackDurability and Scalability Issues

	Experiments
	Experimental Setup
	Performance Analysis

	Conclusion

	atc20-mahgoub
	Introduction
	Background and Rationale
	Cassandra
	Redis
	Example Rationale for Heterogeneous Configurations

	Design
	Workload Representation and Prediction
	Performance Prediction
	Selection of Servers to Reconfigure
	Selecting the Reconfiguration Plan
	Objective Function Optimization
	Cost-Benefit Analysis

	Distinctions from Closest Prior Work

	Experimental Setup and Results
	Applications
	Baselines
	End-to-end System Evaluation
	Sensitive Parameter Identification
	Single Server Performance Prediction
	Cluster Performance Prediction
	Evaluation with Diverse Workloads
	Evaluation with Redis
	Tolerance to Prediction Errors

	Related Work
	Discussion
	Conclusion

	atc20-shahrad
	Introduction
	Background
	FaaS Workloads
	Data Collection
	Functions, Applications, and Triggers
	Invocation Patterns
	Function Execution Times
	Memory Usage
	Main Takeaways

	Managing Cold Starts in FaaS
	Design Challenges
	Hybrid Histogram Policy
	Implementation in Apache OpenWhisk

	Evaluation
	Methodology
	Simulation Results
	Experimental results

	Production Implementation
	Related Work
	Conclusion

	atc20-keahey
	Introduction
	Chameleon in a Nutshell
	Most Experiments for Most Experimenters
	Experiments
	Hardware
	Capabilities

	Experimenters

	Building a Testbed on Top of Mainstream Cloud Implementation
	Fostering Replicability and Sharing
	Related work
	Conclusions

	atc20-serrano
	Introduction
	Background and Motivation
	Motivating example
	Taxonomy
	Existing tools

	Approach and Tool Design
	Overview
	Identification of abstract fragments
	Assembling the semantic patch rule-graph
	Splitting the semantic patch rule-graph
	Rule ordering

	Evaluation
	Methodology
	Experiments on the challenging dataset
	Experiments on the 2018 dataset
	Analysis of a failure case

	Related Work
	Conclusion

	atc20-jeon
	Introduction
	Background and Analysis
	Fuzzing overhead
	Address Sanitizer
	Overhead Analysis of Fuzzing with ASan

	FuZZan design
	FuZZan Metadata Structures
	Customized RB-Tree
	Min-shadow memory

	Dynamic metadata structure switching
	Sampling mode
	Metadata structure switching policies

	Implementation
	Evaluation
	Detection capability
	Efficiency of new metadata structures
	Efficiency of dynamic metadata structure
	Real-world fuzz testing
	Bug finding effectiveness
	FuZZan Flexibility

	Discussion
	Related Work
	Reducing Fuzzing Overhead
	Optimizing Sanitizers

	Conclusion

	atc20-xiang
	Introduction
	Motivation
	Our Contributions

	Characteristic Study
	Design and Implementation
	Preprocessing and Parsing
	Recommendation Sentences Extraction
	Specification Generation
	Violation Detection from Configurations

	Experimental Evaluation
	Discussion
	Related Work
	Conclusions and Future Work

	atc20-ge
	Introduction
	Overview
	REPT
	Challenges

	Kernel REPT
	Per-Core Tracing
	Handling Hardware Events

	Automatic Analyses
	Root-Cause Analysis
	Proactive Bug Detection

	Implementation
	Kernel Tracing
	Trace Parsing
	Binary Analysis
	Deployment

	Evaluation
	Performance
	UnixBench
	Nginx
	Chrome

	Effectiveness
	Data Recovery
	Interactive Reverse Debugging
	Root-Cause Analysis
	Proactive Bug Detection

	Discussion
	Related Work
	Record and Replay
	Failure Analysis
	Failure Reproduction

	Conclusion

	atc20-yuan
	Introduction
	Motivating Example
	Design Overview
	Offload Annotation Interface
	Primer: Split Types
	Offload Split Types
	Using Offload Split Types in Annotations
	Allocation Function Annotations

	Bach Runtime
	Design Discussion
	Library Integrations
	Integration Experience
	Straightforward Drop-In Replacements
	Different Function Specifications
	Missing Functions
	Multi-Library Integration

	Evaluation
	Workloads
	Results
	Results Summary
	Runtime Distributions
	Scheduling
	Discussion

	Limitations
	Related Work
	Conclusion
	Acknowledgments

	atc20_full_proceedings_interior_thursday
	atc20-park
	Introduction
	Background
	Data Parallelism
	Model Parallelism and Pipeline Execution

	System Overview
	Pipelined Model Parallelism Within a VW
	Data Parallelism with Multiple VWs
	Convergence Analysis
	Partitioning Algorithm
	Experimental Results
	Methodology
	Performance of a single virtual worker
	Performance of multiple virtual workers
	Convergence

	Discussion
	Related Work
	Conclusion

	atc20-liang-chieh-jan
	Introduction
	Background and Motivations
	Overview of Web-Scale Search
	Sources of System Complexity
	Sources of Operation Complexity

	AutoSys
	Design Principles
	Framework Overview
	Ad-hoc and Nondeterministic Jobs
	Learning-Induced System Failures
	Extensibility
	Implementation

	Production Deployment Measurements
	Tuning Application Logic
	Tuning ML Algorithms
	Tuning Data Store

	Long-Term Lessons Learned
	Higher-Than-Expected Learning Costs
	Pitfalls of Human-in-the-Loop
	Closed-Loop System Control Interfaces
	Applicability to Other Systems

	Related Work
	Conclusion

	atc20-zhu-hongyu
	Introduction
	DNN Training Optimizations and Tools
	DNN Training Optimizations
	Profiling Tools for DNNs

	Key Ideas
	Design
	Overview of Daydream
	Dependency Graph Construction
	Task
	Dependency

	Mapping Tasks to Layers
	Graph Transformation

	Modeling Optimizations
	Optimizations for Evaluation
	Modeling Additional Optimizations

	Evaluation
	Methodology
	Automatic Mixed Precision (AMP)
	FusedAdam Optimizer
	Reconstructing Batchnorm
	Distributed Training
	Priority-Based Parameter Propagation

	Discussion
	Related Work
	Conclusion

	atc20-wan
	Introduction
	Motivation
	Contributions

	Understanding Deployment Challenges
	Understanding the Tradeoffs
	Understanding Variability
	Understanding Potential Solutions

	ALERT Run-time Inference Management
	Inputs & Outputs of ALERT
	ALERT Workflow
	Key Ideas of ALERT Estimation
	ALERT Estimation Algorithm
	Integrating ALERT with Anytime DNNs
	Limitations and Discussions

	Implementation
	Experimental Evaluation
	Methodology
	Overall Results
	Detailed Results and Sensitivity

	Related work
	Conclusion

	atc20-bateni
	Introduction
	Background
	Motivation
	Balancing in two-dimensional Space
	Balancing in three-dimensional Space
	Balancing for Multi-DNN Scenarios

	System Design
	NeuOS Overview
	Coordinated System- and Application-level Adjustments
	Constraints and Coordination

	Evaluation
	Experimental Setup
	Overall Effectiveness
	Small Cohort
	Medium and Large Cohorts

	Detailed Examination on Tradeoff
	Energy and Latency.
	Energy-Accuracy Tradeoff.

	Overhead

	Related Work
	Acknowledgment
	Conclusion

	atc20-din
	Introduction
	Contributions

	Motivation
	Percival Overview
	Percival's Architecture Overview
	Alternative Possible Implementations and Advantages of Percival
	Detection Model

	Design and Implementation of Percival
	Design Goals
	Rendering and Percival: Overview
	End-to-End Implementation in Blink

	Deep Learning Pipeline
	Percival's CNN Architecture
	Data Acquisition
	Crawling with EasyList
	Crawling with Percival

	Evaluation
	Accuracy Against EasyList
	Blocking Facebook Ads
	Blocking Google Image Search Results
	Language-Agnostic Detection
	Salience Map of the CNN
	Runtime Performance Evaluation
	Comparison With Other Deep Learning Based Ad Blockers
	Adversarial Attacks against Percival

	Limitations
	Related Work
	Conclusion

	atc20-gu
	Introduction
	Motivation
	Invoking Servers with IPCs is Costly
	IPC Overhead Analysis
	Using Intel MPK in Kernel
	Building Isolated Domains

	UnderBridge
	Execution Domains
	IPC Gates
	Server Migration

	Enforcing Isolation in UnderBridge
	Unauthorized IPCs Prevention
	Privilege Deprivation
	Security Analysis

	Implementation
	Performance Evaluation
	IPC Performance Analysis
	Application Benchmarks

	Related Work
	Conclusion
	Acknowledgement

	atc20-shillaker
	Introduction
	Isolation vs. Sharing in Serverless
	Improving on Containers
	Potential of Software-based Isolation

	Faaslets
	Overview
	Host Interface
	Shared Memory Regions
	Building Functions for Faaslets

	Local and Global State
	State Programming Model
	Two-Tier State Architecture

	FAASM Runtime
	Distributed Scheduling
	Reducing Cold Start Latency

	Evaluation
	Experimental Set-up
	Machine Learning Training
	Machine Learning Inference
	Language Runtime Performance with Python
	Efficiency of Faaslets vs. Containers

	Related Work
	Conclusions

	atc20-gouicem
	Introduction
	A Case Study: Building the Linux Kernel
	Strategies to Prevent Frequency Inversion
	Placing Threads Locally
	Deferring Thread Migrations

	Evaluation
	Execution Using powersave
	Execution Using schedutil
	Evaluation on the Desktop Machine
	In-Depth Analysis
	Scheduling Overhead of Smove

	Discussion
	Related Work
	Conclusion

	atc20-jia
	atc20-boucher
	Introduction
	Related work
	Timed functions: libinger
	Automatic handling of shared state
	Safe concurrency
	Execution stacks
	Timer interrupts
	Cancellation

	Thread library: libturquoise
	Futures and asynchronous I/O
	Preemptible futures
	Preemptive userland threading

	Shared state: libgotcha
	Library copying: namespaces
	Library copying: libsets
	Managing libsets
	Selective relinking
	Uninterruptible code: uncopyable
	Limitations
	Case study: auto async-signal safety

	Evaluation
	Microbenchmarks
	Web server
	Image decompression

	Future work
	Conclusion

	atc20-tian
	atc20-zhang-hengliang
	Introduction
	Background and Related Work
	Cross-Silo Federated Learning
	Privacy Solutions in Federated Learning
	Cross-Silo FL Platform with HE

	Characterizing Performance Bottlenecks
	Characterization Results
	Potential Solutions and Their Inefficiency

	BatchCrypt
	Why is HE Batching for FL a Problem?
	HE Batching for Gradients
	dACIQ: Analytical Clipping for FL
	BatchCrypt: Putting It All Together

	Implementation
	Evaluation
	Methodology
	Impact of BatchCrypt's Quantization
	Effectiveness of BatchCrypt
	Batching Efficiency
	Cost Benefits

	Discussion
	Concluding Remark

	atc20-yang
	Introduction
	Dataset
	Exploring DNS Query Failures
	A Primer on DNS Failures
	Failures Across Domains
	Failures Across Resolvers
	Failures Across TLDs

	Implications on Systems Design
	Conclusion

	atc20-li-chenxing
	Introduction
	Related Work
	Overview
	Consensus on Tree-Graph
	Pivot Chain and Adaptive Weight
	Block Validation and Total Order
	Correctness

	Implementation and Optimizations
	Deferred Execution
	Link-cut Tree Optimizations

	Experimental Results
	Protocol Parameter Calibration
	Performance Results
	Liveness Attack and Link-cut Tree

	Conclusion

	atc20-gruner
	INTRODUCTION
	RELATED WORK
	DATA PREPARATION
	RULE-SET BASED INFERENCE
	Motivating example
	Decision trees and rules
	Feature engineering

	IMPLEMENTATION
	EVALUATION
	Experimental methodology
	Results

	THE UTILITY OF INTERPRETABILITY
	Examining two reconstructions

	LIMITATIONS & FUTURE WORK
	CONCLUSION

	atc20-sundarrajan
	Introduction
	Contributions
	Roadmap

	Optimization model for traffic provisioning
	Modeling cache eviction and midgress
	Formulation of our optimization model
	Solving the optimization model OPT

	Traffic provisioning heuristics
	Midgress-unaware baseline
	Midgress-aware local search

	Experimental evaluation
	Metro-level traffic provisioning
	How traffic provisioning impacts midgress

	Cluster-level traffic provisioning
	Robustness to cache management policies

	Extending midgress-aware provisioning
	Minimum redundancy guarantee
	Maximum cache miss rate guarantee
	Traffic provisioning in partitioned caches
	Implementing cache partitioning for traffic provisioning in production settings

	Related work
	Conclusion
	Acknowledgments

	atc20-wang-rui
	atc20-zheng
	Introduction
	Background and Motivation
	Host-GPU Heterogeneous Architectures
	A Motivating Study
	Value-Driven Subgraph Scheduling

	Scaph Overview
	Value-Driven Subgraph Dispatching
	Quantifying the Value of a Subgraph
	Value-Driven Differential Scheduling

	Value-Driven Subgraph Processing
	High-Value Subgraph Processing
	Low-Value Subgraph Processing

	Evaluation
	Experimental Setup
	RQ1: Efficiency
	RQ2: Effectiveness
	RQ3: Sensitivity Study
	RQ4: Runtime Overhead
	Limitations

	Related Work
	Conclusion

	atc20-visheratin
	Introduction
	Proposed approach
	Three-tier data indexing
	Read-optimized series encoding
	Discussion

	Peregreen overview
	Peregreen core
	Peregreen modules
	Peregreen cluster
	Peregreen limitations

	Experimental evaluation
	On-premise experiment
	EC2 experiment

	 Alternatives comparison
	Conclusion
	Acknowledgements

	atc20-wu-fenggang
	Introduction
	Background and Related Work
	LSM-Tree-Based Key-Value Store
	Related Work
	Caching Schemes in LSM-KVS
	General Caching Algorithms

	Motivation
	Unique Challenges in Caching for LSM
	What to Cache in LSM-KVS
	How to Perform Replacement

	AC-Key Design
	AC-Key Caching Components
	Get Handling
	Flush Handling
	Compaction Handling

	Caching Efficiency Factor
	HAC: Hierarchical Adaptive Caching
	Lower-Level HAC
	Upper-Level HAC
	Reduce Ghost Cache Size

	Evaluation
	Implementation and Setup
	Micro-benchmark
	Adaptive Adjustment in AC-Key
	Macro-benchmark YCSB Evaluation
	Sensitivity on Parameters

	Conclusion

	atc20-raghavan
	Introduction
	Related Work
	System Overview
	Shell Annotations
	Motivation for Shell Annotations
	Annotation Interface
	Argument-Specific Information
	Command-Specific Information
	Annotation Conflicts

	Correctness and Coverage

	Posh's Parser and Scheduler
	Posh's Program Representation
	Scheduling
	Parallelization

	Posh Configuration and Execution
	Posh Configuration
	Execution Engine
	Implementation

	Methodology
	Applications
	Setup and Baselines

	Evaluation
	End-to-End Application Performance
	Posh Configuration
	Proxy Placement
	Parallelization on a Single Machine

	Performance Improvements Analysis

	Limitations and Future Work
	Conclusion

	atc20_full_proceedings_interior_friday
	atc20-zhang-feng
	Introduction
	Background
	Integrated Architecture
	Stream Processing with SQL

	Revisiting Stream Processing
	Varying Operator-Device Preference
	Fine-Grained Stream Processing

	FineStream Overview
	Model for Parallelism Utilization
	 Branch Co-Running
	 Batch Pipeline
	Handling Dynamic Workload

	Implementation Details
	How FineStream Works
	Dispatcher
	Online Profiling

	Evaluation
	Methodology
	Performance Comparison
	Comparison with Discrete Architectures
	Handling Dynamic Workload
	Detailed Analysis

	Related Work
	Conclusion

	atc20-jung
	atc20-zhou
	Introduction
	Flow Caching in Open vSwitch
	Background and Related Work
	Network Packet and Flow Caching
	Hash Table Options For Caching
	Hardware Cache Designs
	Cache Design and Eviction Policy

	Design and Analysis
	Analytical Framework for Hit Rate
	Set-associative Cache
	Cuckoo-lite
	Bounded Linear Probing (BLP)
	Why BLP might be better?

	Better Cache Replacement with Probabilistic Bubble LRU
	Traditional LRU approximations are too expensive
	Probabilistic Bubble LRU (PBLRU)
	PBLRU and DC-Bubble

	Implementation
	Evaluation
	Experiment Setup
	End-to-end Benchmarks
	Microbenchmarks
	When should we use PBLRU?

	Conclusion
	Expected Cache Hit Rate of Set-associative Caches
	Expected Cache Hit Rate of 2-4 BLP
	Expected Hit Rate of BLP under Non-Uniform Distributions
	Analysis on Warm-up Time

	atc20-farshin
	Introduction
	Direct Cache Access (DCA)
	Data Direct I/O Technology (DDIO)
	How can DDIO become a Bottleneck?

	Understanding Details of DDIO
	Occupancy
	I/O Contention
	DMA via Remote Socket
	Tuning Occupancy and Disabling DDIO

	Characterization of DDIO
	Packet Size and RX Descriptors
	Packet Rate and Processing Time
	Numbers of Cores and DDIO Capacity

	Application-level Performance Metrics
	Is DDIO Always Beneficial?
	Future Directions for DCA
	Bypassing Cache

	Lessons Learned: Optimization Guidelines
	Related Work
	Conclusion

	atc20-taranov
	Introduction
	Remote Direct Memory Access
	InfiniBand Transport
	IBA Memory Protection

	Problem Definition
	Desired Security Properties
	Adversary Model

	Secure RDMA System Design
	Assumptions
	Secure Reliable Connection Queue Pair
	Header Authentication
	Packet Authentication and Encryption
	PD-level Protection
	Extended Memory Protection
	Sub-Delegation of Access to Memory

	Implementation
	Notation and Experimental Setup
	Implementation of the Secure QP
	sRDMA requests

	Evaluation
	Authentication performance
	Evaluation modes
	Latency
	Bandwidth
	Mixed write/read workload
	Key-value store workload

	Related Work on Securing IBA
	Conclusion

	atc20-patel
	atc20-wang-qiuping
	Introduction
	Background
	Deduplication and Compression
	Flash Caching
	Memory Amplification
	State-of-the-Art Flash Caches

	AustereCache Design
	Bucketization
	Fixed-Size Compressed Data Management
	Bucket-Based Cache Replacement

	Implementation
	Evaluation
	Traces
	Setup
	Comparative Analysis
	Sensitivity to Parameters
	Throughput and CPU Overhead

	Discussion
	Related Work
	Conclusion

	atc20-li-huiba
	Introduction
	Background and Related Work
	Container Image
	Remote Image
	File-System-Based Remote Image
	Block-Snapshot-Based Remote Image
	Others

	DADI Image Service
	DADI Image
	Merged View of Layers
	Compression and Online Decompression
	DADI Container Layer
	P2P Data Transfer

	Implementation and Deployment
	Data Path
	Container Engine Integration
	Image Building
	Deployment Options

	Evaluation
	Methodology
	Startup Latency
	Scalability
	I/O Performance
	Image Building Speed

	Discussion and Future Work
	Conclusions

	atc20-carra
	Introduction
	Background and Related Work
	Evaluation of Spatial Sampling Approaches
	Evaluation Methodology and Settings
	Results with the IRM Traces
	Understanding the role of popular items

	Proposed solution
	Evaluation
	Experimental Methodology
	IRM traces
	Real-world traces

	Discussion
	Conclusions

	atc20-rebello
	Introduction
	Motivation
	File System Study
	Background
	Methodology
	Workloads
	Experiment Overview
	Behavior Inference

	Findings
	Ext4
	XFS
	Btrfs
	File System Summary

	Application Study
	CuttleFS
	Workloads and Execution Environment
	Findings

	Discussion
	Related Work
	Conclusions
	Acknowledgements

	atc20-zhao
	Introduction
	Background and Related Work
	Docker Registry
	Deduplication

	Motivating Observations
	Redundancy in Container Images
	Drawbacks of Existing Technologies
	Predictable User Access Patterns

	DupHunter Design
	Overview
	Deduplicating Layers
	Restoring Layers
	Caching and Preconstructing Layers
	Discussion

	Implementation
	Evaluation
	Evaluation Setup
	Deduplication Ratio vs. Performance
	Cache Effectiveness
	Prefetch cache
	Preconstruct cache

	Conclusion

	atc20-zhang-yu
	Introduction
	Background and Motivation
	Cloud Block Storage
	Cache Allocation Scheme
	Existing Cache Modeling Methods

	Design and Implementation
	Design Overview
	Re-access Ratio Based Cache Model
	Optimization Target
	Searching for Optimal Configuration
	Implementation Details

	Evaluation
	Experimental Setup
	Basic Comparisons
	Miss Ratio Curves
	Overall Efficacy of OSCA
	Discussion

	Related Work
	Conclusion

	atc20-chen
	Introduction
	Background
	Crash Consistency in Persistent Memory
	Lock-free Concurrency Control
	Basic Hash Tables
	Hashing-based Index Structures for PM
	The Level Hashing Scheme
	Concurrent Hashing Indexes for PM

	The Clevel Hashing Design
	The Clevel Hashing Index Structure
	Dynamic Multi-level Structure
	The Support for Concurrent Resizing

	Lock-free Concurrency Control
	Search
	Insertion
	Update
	Deletion

	Recovery

	Performance Evaluation
	Experimental Setup
	Different Slot Numbers and Load Factor
	Micro-benchmarks
	Macro-benchmarks
	Discussion

	Related Work
	Hashing-based Index Structures for PM
	Lock-free Concurrent Hashing Indexes

	Conclusion

	atc20-papagiannis
	Introduction
	Motivation
	Design of FastMap
	Separate Clean and Dirty Trees in PFD
	Full Reverse Mappings in PVE
	Dedicated DRAM Cache
	Implementation

	Experimental Methodology
	Experimental Results
	How does FastMap perform compared to Linux mmap?
	How much does FastMap improve storage I/O?
	How sensitive is FastMap to (a) file system choice and (b) false TLB invalidations?

	Related Work
	Conclusions

	atc20-zhu-weixi
	atc20-maruf
	Introduction
	Background and Motivation
	Remote Memory
	Remote Memory Data Path
	Prefetching in Linux

	Remote Memory Prefetching
	Properties of an Ideal Prefetcher
	Majority Trend-Based Prefetching
	Trend Detection
	Prefetch Candidate Generation

	Analysis

	System Design
	Page Access Tracker
	The Prefetcher
	Eager Cache Eviction
	Remote I/O Interface

	Evaluation
	Microbenchmark
	Performance Benefit of the Prefetcher
	Prefetch Utilization
	Performance Benefit Breakdown
	Performance Benefit for HDD and SSD

	Leap's Overall Impact on Applications

	Discussion and Future Work
	Related Work
	Conclusion

	atc20-george
	Introduction
	Background
	Experiments with Redis
	Why Change a Programming Language?
	Why Go?

	Related Work
	Design
	Programming Model
	Language Constructs
	Runtime Design
	Growable Heap Design
	Pointer Swizzling

	Restarting After a Crash/Exit
	Roots/Named Objects: pmem Package

	Transactions as a Part of Go: txn Block
	No Persistent Data Types

	Implementation
	Runtime Details
	Data Structure Support
	Memory Allocation
	Metadata Logging
	Reconstruction
	Using Go's Typesystem to Optimize Pmem Allocations
	Undo Log Implementation
	Working Around Go's GC to Optimize Undo Logging
	Cache Flushing

	LogStore SSA Pass
	Handling Volatile Memory Access Inside Transactions
	Handling Function Calls Inside Transactions

	Implementing Go-redis-pmem
	Limitations

	Evaluation
	Experimental Setup
	Change in Compile Time
	Memory Allocator Performance
	Performance of Transactions
	Long Running Transactions
	How Much Data do Applications Store to pmem?
	Several Short Transactions

	Multicore Scalability
	Restart Time Comparison
	Undo Transaction Recovery Time After a Crash
	Restart Time of Persistent Heaps
	Restart Time of Redis Variations

	Go Benchmarks
	Go-redis-pmem

	Conclusion

	atc20-lebeck
	Introduction
	Limitations of Modern MobileOS Memory Resource Management
	Fixed Memory Allocation
	No Memory Overcommit

	Our Approach
	Object-Level Working Set Estimation
	Ahead-of-time Swap
	Bookmarking Garbage Collector

	Marvin Overview
	Design Goals
	Marvin System Model
	Marvin Architecture
	Marvin Memory Management Timeline

	Marvin Core Mechanisms
	Stubs for Object Reference Indirection
	Reclamation Table for OS-Runtime Coordination
	Object Access Interposition

	Marvin Memory Management
	Working Set Estimation
	Ahead-of-Time Swapping
	Bookmarking Garbage Collector
	Design Tradeoffs and Alternatives

	Marvin Prototype
	Object Access Interposition
	Limitations and Potential Optimizations

	Evaluation
	Evaluation Setup
	Memory Reclamation
	Memory Utilization
	Runtime Overhead

	Related Work
	Conclusion

	atc20-liu-jia
	atc20-liang-yu
	Introduction
	Background
	Android I/O Latency
	Key Factors that Affect Performance

	Analysis of Android Memory Reclaim
	Survey of Application Usage Patterns
	Page Re-fault on Mobile Devices
	Direct Reclaim on Mobile Devices

	The Cause of Page Re-fault and Direct Reclaim on Mobile Devices
	Our Solution: Acclaim
	Foreground Aware Eviction (FAE)
	Framework of FAE
	Lower Priority of Background Applications

	Lightweight Prediction-Based Reclaim Scheme (LWP)
	Framework of LWP
	Lightweight Predictors (LWP)
	LWP-Based Moderator

	blackEvaluation
	Impact on Foreground Applications
	Impact on Background Applications
	Overhead Analysis

	Related Work
	Conclusion

	atc20-garbelini
	Introduction
	Overview of Our Framework
	The Model of BLE Protocols
	Problem Formulation with An Example
	High Level Workflow

	Design of Fuzzer
	Fuzzing and Optimization
	Packet Validation
	Non-compliant BLE Controller

	Evaluation
	Related Work
	Conclusion

	atc20-ren
	Introduction
	Motivation
	Threat Model
	Existing Isolation Options
	Multi-tenancy and Churn
	Latency and Throughput at Scale

	Design
	Design Principles
	Memory Movement Accelerators (MMA)
	Feather-Weight Processes (FWP)
	EdgeOS Control Plane
	Isolation Analysis

	Implementation
	Message Pool Management
	Memory Movement Accelerator
	Optimized FWP checkpointing

	Evaluation
	Latency and Throughput
	Startup Time
	Isolation
	TLS Termination
	Edge Inference
	Memcached

	Related Work
	Conclusions

	atc20-liu-xing

