Programming Experience Might Not Help in Comprehending Obfuscated Source Code Efficiently

<u>Norman Hänsch</u>¹, Andrea Schankin², Mykolai Protsenko³ Felix Freiling¹, Zinaida Benenson¹

¹Friedrich-Alexander-Universität Erlangen-Nürnberg
 ²Karlsruhe Institute of Technology
 ³Fraunhofer Institute for Applied and Integrated Security

August 14, 2018

Software obfuscation: protect programs by making them harder to understand

Software obfuscation: protect programs by making them harder to understand Who obfuscates? Why?

- Software obfuscation: protect programs by making them harder to understand Who obfuscates? Why?
 Software vendors secure their intellectual property
- Hackers make their malicious code harder to understand

- Software obfuscation: protect programs by making them harder to understand Who obfuscates? Why?
- Software vendors secure their intellectual property Hackers make their malicious code harder to understand
- Collberg et al. (Technical Report, 1997):
 - □ Potency: To what degree is a human reader confused?
 - Resilience: How well an obfuscation methods up under an attack from an automatic deobfuscator?

- Software obfuscation: protect programs by making them harder to understand Who obfuscates? Why?
- Software vendors secure their intellectual property Hackers make their malicious code harder to understand
- Collberg et al. (Technical Report, 1997):
 - □ Potency: To what degree is a human reader confused?
 - Resilience: How well an obfuscation methods up under an attack from an automatic deobfuscator?
 - Evaluation based on software metrics

- Software obfuscation: protect programs by making them harder to understand Who obfuscates? Why?
- Software vendors secure their intellectual property Hackers make their malicious code harder to understand
- Collberg et al. (Technical Report, 1997):
 - □ Potency: To what degree is a human reader confused?
 - Resilience: How well an obfuscation methods up under an attack from an automatic deobfuscator?
 - Evaluation based on software metrics
- Ceccato et al. (Empirical Software Engineering, 2014): user studies

Replication Study materials Questionnaire Code understanding (correctness, time, efficiency) Obfuscation methods: Name Overloading (NO), Opaque Predicates (OP)

- Replication Study materials Questionnaire Code understanding (correctness, time, efficiency) Obfuscation methods: Name Overloading (NO), Opaque Predicates (OP)
- Novelty Code analysis behavior (actions & time spent on them) The influence of experience Evaluation of correctness of the answers Study design

The Study - The Programs

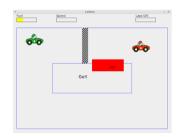


Figure: Race Program

General Messages default		Availiable Room
Welcome to default	Online Users Orson	default Room 4 Room 3 Room 2 Room 1

Figure: Chat Program

The Study - Code Examples

Listing 1: Code obfuscated with Name Overloading (NO)

```
public void __m1(int i)
 2
3
         if (___f22)
 4
              if( _{-}f19 = 0)
 5
                   _{-}f5 += i:
 6
                   if( _{-}f5 > _{-}f6 / 10)
 7
                        _{-}f5 = _{-}f6 / 10:
 8
 9
                   else
                    if( _{-}f5 < _{-}f7 / 10)
10
                        _{-}f5 = _{-}f7 / 10:
11
12
              } else [...]
     5 of 17
```


Listing 2: Clear code from Race MovingCarModel.java

```
public void changeSpeed(int i)
2
3
        if (started)
 4
            if(gas == 0)
 5
                 speed += i;
 6
 7
                 if(speed > maxSpeed / 10)
                      speed = maxSpeed / 10:
 8
 9
                 else
10
                 if (speed < minSpeed / 10)
                      speed = minSpeed / 10;
11
12
             } else [...]
     6 of 17
```


The Study - Code Examples

2 3

4

5 6

7

8

9

10

11

12

13 14

Listing 3: Code obfuscated with Opaque Predicates (OP)

```
public void changeSpeed(int i) {
  if (Node.getl() != Node.getH()) {
    lastFuel = (0L + time2) - (long) lap;
    started = lastFuel == 0L:
    Node.getF().setLeft(Node.getH().getLeft());
  } else {
    Node.getG().getLeft().swap(
        Node.getG().getRight());
    if (started)
      if (Node.getl() == Node.getH()) {
        if (gas == 0) {
          if (Node.getF() == Node.getG()) {
            Node.getF().setLeft(
                Node.getl().getRight()); [...]
 7 of 17
```


The Study - Study Design

Group	1st Program (clear code)	2nd Program (obfuscated)
1	Race: <i>Rnd</i> (Box,Laps)	NO(Chat): <i>Rnd</i> (Messages,Users)
2	Race: <i>Rnd</i> (Box,Laps)	OP(Chat): <i>Rnd</i> (Messages,Users)
3	Chat: <i>Rnd</i> (Messages,Users)	NO(Race): <i>Rnd</i> (Box,Laps)
4	Chat: <i>Rnd</i> (Messages, Users)	OP(Race): <i>Rnd</i> (Box,Laps)

The Study - Demographics of the Participants

- 66 participants
 - □ 44 bachelor students
 - 20 master students
 - 2 PhD students
- 24.2% already participated in a course related to software obfuscation

Results - Code Comprehension

	Clear vs NO
Correctness	-0.113
Efficiency	-0.312*
Total time	0.338**
Time correct	0.351*

Results - Code Comprehension

	Clear	Clear
	vs NO	vs OP
Correctness	-0.113	-0.154
Efficiency	-0.312*	-0.332**
Total time	0.338**	0.276*
Time correct	0.351*	0.193

Results - Code Comprehension

	Clear vs NO	Clear vs OP	NO vs OP
Correctness	-0.113	-0.154	-0.079
Efficiency	-0.312*	-0.332**	0.045
Total time	0.338**	0.276*	-0.156
Time correct	0.351*	0.193	-0.260

Results - Behavior

-

Results - Behavior

	Clear vs NO	Clear vs OP
Number of:		
File open commands	0.451**	0.058
Advanced commands	0.352**	0.282*
Program executions	0.243	0.356**
Debugging mode	0.420**	0.349**
Time spent on:		
Program executions	0.290*	0.278*
Debugging mode	0.433**	0.308*
Code reading	0.080	0.016

Results - Behavior

	Clear vs NO	Clear vs OP	NO vs OP
Number of:			
File open commands	0.451**	0.058	-0.373**
Advanced commands	0.352**	0.282*	-0.106
Program executions	0.243	0.356**	-0.104
Debugging mode	0.420**	0.349**	0.030
Time spent on:			
Program executions	0.290*	0.278*	-0.014
Debugging mode	0.433**	0.308*	-0.079
Code reading	0.080	0.016	-0.081

The Study - Experience

Survey questions

- Programming Experience: quality and type of code written so far
- Obfuscation Experience: experience with obfuscation and debugging
- □ Java Experience: experience with Java and using Eclipse

Experiment

□ Comprehension Skills: efficiency in working on clear code

The Study - Experience

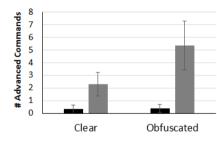
Survey questions

- Programming Experience: quality and type of code written so far
- Obfuscation Experience: experience with obfuscation and debugging
- □ Java Experience: experience with Java and using Eclipse

Experiment

- Comprehension Skills: efficiency in working on clear code
- k-means cluster analysis:
 - 21 beginners
 - 45 experienced participants

Results - Experience


Experience leads to significant differences concerning:

ω^2	р	Measurement
0.16	**	Correctness
0.10	**	Efficiency
0.13	**	Advanced commands
0.13	**	Debugging mode
0.05	*	Time spent debugging

Table: ANOVA; *p < .05, **p < .01; Effect size ω^2 (small, medium, large effect)

Results - Exp. x Obf.: Behavior

Advanced Commands

Beginner Experienced

Figure: $\omega^2 = 0.06^*$ significant difference (ANOVA; *p < .05, **p < .01.)

Results - Exp. x Obf.: Behavior

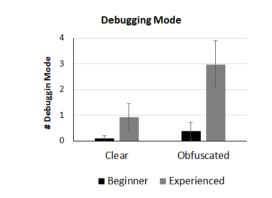


Figure: $\omega^2 = 0.09^{**}$ significant difference (ANOVA; *p < .05, **p < .01.)

15 of 17

Results - Exp. x Obf.: Code Comprehension

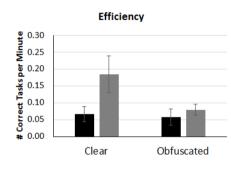


Figure: $\omega^2 = 0.01^*$ significant difference (ANOVA; *p < .05, **p < .01.)

Summary

- 1. Confirmation of all findings by Ceccato et al.
- 2. Empirical support of the taxonomy of Collberg et al.
- 3. Code comprehension behavior on obfuscated software may be different from comprehension on traditional programs.
- 4. Programming experience might not help in comprehending obfuscated source code efficiently.