Treenhouse

JavaScript sandboxes to help
Web developers help themselves

Lon Ingram ™t and Michael Walfish™
“The University of Texas at Austin and T Waterfall Mobile

00 O B

<script src=a.js>

<script src=b.js>

example.com

a.js |

00 O BT

/

‘ <script src=a.js> |/

\ <script src=cdn.com/b.js>

example.com

a.Js

cdn.com

2

00 O B

/

<script src=a.js> |/

<script src=cdn.com/b.js>

example.com

a.js

cdn.com

¢|> AN | ntpseampecom I |

<script src=a.js> /

<script src=ads.com/ad.js> a

example.com

a.js
ads.com || 3-COM
T
adjs | —»| b.com
L ™ O

/s

c.com

Our goal is an immediately deployable way to
contain and control JavaScript at fine grain.

This means a method that works with existing
browsers and requires no code changes.

1. What kinds of things can go wrong?

2. How does Treehouse help in a way
that is immediately deployable?

Payment information

Credit card number 1234 5678 9012 3456
Expiration date 6/12

Security code 123

Check out

<script src="https://books.com/checkout.js">

<script src="https://cdn.com/widget.js">

| €% [l @ | https://books.com/checkouthtml |
\ e

books.com

checkout.
html

checkout.js

cdn.com

widget.js

Payment information

Credit card number 1234 5678 9012 3456
Expiration date 6/12

Security code 123

Check out

<script src="https://books.com/checkout.js">

<script src="https://cdn.com/widget.js">

| €% [l @ | https:/books.com/checkouthtml |
Nl

books.com

checkout.
html

checkout.js

cdn.com

widget.js

wi Js

—

books.com

checkout.
html

<\l https://books.com/checkout.html

checkout.js

Payment information

/

Credit card number 1234 5678 9012 3456 74 cdn.com

Expiration date 6/12
widget.js

Security code 123

Check out

<script src="https://books.com/checkout.js">

evil.com

<script src="https://cdn.com/widget.js">

 >| pwn.gif

| »

1. What kinds of things can go wrong?

2. How does Treehouse help in a way
that is immediately deployable?

Web
Application

Application
scripts

TreeHouse

Sandbox

Guest
scripts

Virtual browser
interface

TreeHouse

Browser

Sandbox

Guest
scripts

Virtual browser
interface

TreeHouse

Document Object Model (DOM): the interface
browsers expose to JavaScript to allow interaction
with the contents of the page

Access control policies tell Treehouse which
actions guest code may perform.

Treehouse includes a default policy which forbids
most privileged operations.

Authors may relax or tighten this policy as
appropriate for their application.

Web Worker: an isolated, separately scheduled
JavaScript environment

Workers communicate with their parent page using
postMessage, an asynchronous, pass-by-value
message passing channel.

Parent Page Web Worker

Application Guest scripts
scripts
TreeHouse TreeHouse
DOM Native browser Native worker interface

interface postMessage

Treehouse runs guest code in a worker.

That code cannot access its parent page, but it can
access the worker's interface.

Parent Page Web Worker

Sandbox
Application Guest
scripts scripts
Wrapped worker
interface
TreeHouse TreeHouse
DOM Native browser Native worker interface

interface postMessage

Treehouse wraps the native worker API, allowing it
to interpose and enforce the policy.

Untrusted components are shaded in gray.

Parent Page Web Worker

Sandbox
Application Guest
scripts scripts
Virtual Virtual browser
DOM interface
TreeHouse TreeHouse
DOM Native browser Native worker interface

interface postMessage

Treehouse provides to guest code a synchronous
virtual DOM.

Changes to the virtual DOM are replicated back to
the parent page asynchronously.

€% LA L] esiooks.comheckouthimt |
\ e

Payment information books.com

checkout.
html

Credit card number 1234 5678 9012 3456

checkout.js

Expiration date 6/12

Security code 123

cdn.com

Check out

widget.js
<script src="https://books.com/checkout.js">

<script src="https://cdn.com/widget.js">

Sandboxing the widget is straightforward:

Bob first replaces its script tag...
<script src="https://cdn.com/widget.js"></script>

...with a new one

<script src="https://cdn.com/widget.js"
type="text/x-treehouse-javascript"”
data-treehouse-sandbox-children="#checkout-pane form"
data-treehouse-sandbox-name="widget"
></script>

...and then adds another to customize the access
control policy.

<script src="policy.]js"
type="text/x-treehouse-javascript"”
data-treehouse-sandbox-policy
data-treehouse-sandbox-name="widget"
></script>

Finally, he customizes the sandbox's security policy
to restrict the source of images in its virtual DOM.

{

"lelements': {
'lattributes': {
P
src: function (name, newValue, prevValue) {
// true if newValue begins with 'https://books.com'
return newValue.match(/"“https:\/\/books.com/) !== null;

I I https://books.com/checkout.html

Payment information

.- __,_,S,,Y,LTTLL-|-aiix |
| I book
: Credit card number 1234 5678 9012 3456 : Sntadszli
: D 6/12 : checkout.
| Xpiration aate | html
I | .
I Security code 123 I checkout.js
| I
| I
| I
! Check out I
|
AN , , s cdn.com
\ <script src="https://books.com/checkout.js"> "~
\ pud
Y ”
b Web Worker -7 : :
> z widget.js
TreeHouse
_ ------- - 4
. I 1 Application
\gguhil ; 1 || Access Control
I — Policy
b v o - -
<script type="text/x-treehouse-javascript" v A
src="https://cdn.com/widget.js">

4|y [https://books.com/checkout.html

Payment information

i
' : book
: Credit card number 1234 5678 9012 3456 : SUKS cod
I I
checkout.
: Expiration date 6/12 : html
I ! .
[Security code 123 : checkout.js
I
I I
1 I
I Check out !
I
--="=-="=="===============-=-==== 4
’ cdn.com
\\ <script src="https://books.com/checkout.js"> "~
\ —
N = widget.js
M Web Worker .~ Do
TreeHouse
\\- _______ - 7
. I 1 Application
Virtual ; 1| Access Control
DOM 1 .
I — Policy
e o o - —— -
<script type="text/x-treehouse-javascript" /| A
src="https://cdn.com/widget.js">

Web Worker

TreeHouse : B \

| Application

Virtual Access Control

DOM '
S | | Policy

- —
|‘ \

1r

<script type="text/x-treehouse-javascript"
src="https://cdn.com/widget.js">

Treehouse has some limitations.

Treehouse has some limitations.

It cannot virtualize synchronous browser API
elements that cannot be faked in a worker.

Treehouse has some limitations.

It cannot virtualize synchronous browser API
elements that cannot be faked in a worker.

Sandboxes may not share DOM nodes.

Treehouse has some limitations.

It cannot virtualize synchronous browser AP
elements that cannot be faked in a worker.

Sandboxes may not share DOM nodes.

Treehouse assumes that the DOM is not available in
the worker.

Adapting existing code to run in Treehouse requires
moderate effort in some cases.

We ported two libraries to Treehouse:
Zepto (1002 lines of code): Added 2 lines
Prototype (4955 lines of code): Changed 18 lines

Development is complicated by a lack of tools in
some browsers; only Chrome and |E support
debugging workers.

The time it takes to first load a page in the user's
browser is a critical metric.

Treehouse's setup delays the initial page load by
132-350 ms, depending on the browser.

Populating the virtual DOM adds an additional delay
that varies with its size.

For example, loading a 120KB page in Treehouse
takes an additional 757-1218 ms.

First, the bad news...

DOM access can be up to 120,000x slower

...but there's good news too.

Guest code runs at native speed when not
interacting with the DOM.

The call that incurred a 120,000x slowdown in
Treehouse costs 26ms per call on average.

Accessing the DOM can take up to a second.

While Treehouse's DOM overhead is disastrous in
relative terms, its absolute overhead is tolerable in
most cases.

If your application must load quickly, or is
DOM-bound, Treehouse may not be for you.

However, we think Treehouse will work for many
real-world web application workloads.

DOMTRIS DOMTRIS in Treehouse

New browsers and browser modifications

Atlantis [Mickens & Dhawan SOSP11],
BEEP [Jim et al. WWWO(7],

BFlow [Yip et al. EUROSYSO09],
ConScript [Meyerovich & Livshits SP10],
Gazelle [Wang et al. SECQ09],

IBOS [Tang et al. OSDI10],

MashupQOS [Wang et al. SOSP07],
OMash [Crites et al. CCS08],

Tahoma [Cox SP06]

Frame-based isolation

AdJail [Ter Louw et al. SEC10],

OMOS [Zarandioon et al. ACSACO08],

SMash [De Keukelaere et. al WWWO08], SubSpace
[Jackson & Wang WWWO07]

Language-based approaches

ADSafe [Crockford],

Browsershield [Reis et al. OSDI06],
Caja [Miller et al.],

FBJS [Facebook],

JSReg [Heyes],

[Barth et al. SEC09],

[Maffeis et al. ESORICS09, SP10]

Related mechanisms

AdSentry [Dong et al. ACSAC11],
Bawks [Theriault],

dom.js [Gal et al.],

JSandbox [Grey],

jsdom [Insua et al.],

js.js [Terrace et al. WebAppsi2],
Mugshot [Mickens et al. NSDI10],
Native Client [Yee et al. SP09],
Xax [Douceur et al. OSDIO8]

Browsers can help with Treehouse's limitations, but
an equivalent native mechanism would be better.

Treehouse contains and controls JavaScript code at
fine grain and can be deployed now.

Its overhead is tolerable, and porting to Treehouse
requires moderate effort.

https://github.com/lawnsea/Treehouse
lawnsea@gmail.com
@lawnsea

