Adaptive, Model-driven Autoscaling for Cloud Applications

Anshul Gandhi

IBM T. J. Watson Research Center Stony Brook University

Parijat Dube, Alexei Karve, Andrew Kochut, Li Zhang

IBM T. J. Watson Research Center

Motivation

- Businesses have started moving to the cloud for their IT needs
 - reduces capital cost of buying servers
 - allows for elastic resizing of applications that have dynamic workload demand
- Cloud Service Providers (CSPs) offer monitoring and rule-based triggers to enable dynamic scaling of applications

Motivation

- The values have to be determined by the user
 - requires expert knowledge of application (CPU, memory, n/w thresholds)
 - requires performance modeling expertise (when and how to scale)

Motivation

- The values have to be determined by the user
 - requires expert knowledge of application (CPU, memory, n/w thresholds)
 - requires performance modeling expertise (when and how to scale)

View from user's perspective

View from CSP's perspective

Problem statement

How to scale an <u>unobservable</u> cloud application to provide performance guarantees?

DC2: High-level idea

DC2: High-level idea

Kalman filtering

Service requirements of requests at each tier

Network delay

Background utilization (overhead)

End-to-end response time

Request rate

VM utilization

DC2: High-level idea

Kalman filtering

Service requirements of requests at each tier

Network delay

Background utilization (overhead)

End-to-end response time

Request rate

VM utilization

DC2: Modeling

DC2: Modeling

Parameters:

- λ_i Request rate for class i
- T_i Response time for class i
- S_{ii} Service requirement for class i at tier j
- d_i Network latency for class i
- U0_i Background utilization on tier j
- U_i Utilization of tier j

24 parameters

 $T_i = d_i + \sum_j \frac{S_{ij}}{1 - U_j}$

6 equations

DC2: Modeling

Parameters:

- λ_i Request rate for class i
- T_i Response time for class i
- S_{ii} Service requirement for class i at tier j
- d_i Network latency for class i
- U0_i Background utilization on tier j
- U_i Utilization of tier j

24 parameters
9 known + 15 unknown

- Underdetermined system
- Need to "infer" unknowns
- Can leverage monitored values

$$T_i = d_i + \sum_j \frac{S_{ij}}{1 - U_j}$$

$$U_j = U\theta_j + \sum_i \lambda_i S_{ij}$$

6 equations

Kalman filtering + Queueing: Evaluation

RUBIS

- RUBiS is an open source benchmark inspired by ebay.com
- Hosted on SoftLayer hypervisors via OpenStack
- We focus on scaling Tomcat app tier

DC2: All traces

Bursty trace: All policies

Bursty trace [WITS]

All traces: All policies

Limitations and future work

- Evaluation limited to dynamic web applications
 - Currently investigating Hadoop-type applications
- Only applies to stateless tiers
 - DB scaling would be challenging
- Scaling algorithm can be modified
- Kalman Filtering can be replaced by other black-box approaches
 - Machine Learning approaches?
- Non-zero convergence time

Conclusions

- Need for adaptive scaling services for (opaque) cloud applications
 - Application agnostic
 - Robust to arrival patterns
- Existing commercial offerings do not suffice: rule-based
- Existing auto-scaling research solutions do not apply due to lack of visibility and control of opaque cloud applications
- Our solution: Dependable Compute Cloud (DC2)
 - Does not require offline benchmarking or expert knowledge
 - Can adapt to dynamic changes in workload
- Well suited for cloud users who lack expertise in system modeling and application knowledge

Thank You!

Conclusions

- Need for adaptive scaling services for (opaque) cloud applications
 - Application agnostic
 - Robust to arrival patterns
- Existing commercial offerings do not suffice: rule-based
- Existing auto-scaling research solutions do not apply due to lack of visibility and control of opaque cloud applications
- Our solution: Dependable Compute Cloud (DC2)
 - Does not require offline benchmarking or expert knowledge
 - Can adapt to dynamic changes in workload
- Well suited for cloud users who lack expertise in system modeling and application knowledge

Backup

Existing CSP solutions

- Resource usage triggers
 - Amazon Auto Scaling, Microsoft Azure Watch, VMware Applnsight, CiRBA
- Request rate for specific software (ex: apache)
 - RightScale
- Latency/VM
 - Amazon Elastic Load balancing
- Web site response time

-Scalr

User has to set values

All workloads: All policies (Bursty trace)

- Rule-based policies like THRES require tuning and are not robust
- Other auto-scaling policies require control of application
- DC2 is superior to THRES and does not require application control

	Ba	ase More	DB Moi	reApp
STATIC-OPT	V=0% K=3.00	V=0% K=4.00	Web V=0% K=3.00	V=0% K=3.00
DC2	V=0% K=2.50	V=0% K=3.66	V=0% K=2.94	V=0% K=2.87
THRES(30,60)	V=0% K=2.50	V=3.06% K=3.40	V=2.04% K=2.98	V=0% K=3.00

Kalman filtering

- KF is a reactive, feedback-based estimation approach that has only recently been employed for computer systems
- KF automatically learns the (*possibly changing*) system parameters, for any system, including combination of workloads
- We extend KF to a 3-tier 3-workload-class system
- Based on KF estimation, DC2 automatically, and proactively, detects which tier is the bottleneck, and how to resolve the bottleneck (scale VMs)
 - do not require any knowledge of application, except topology

Kalman filtering + Queueing

- KF can be integrated with system models (ex, queueing models) to improve accuracy and convergence
- Model need not be accurate
 - KF leverages (true) monitored values to account for model inaccuracies
 - Well suited for approximate system models such as queueing-theoretic models
 - Can use other models as well, ex: machine-learning based models

All traces: All policies

