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Motivation

* Businesses have started moving to the cloud for their IT needs

— reduces capital cost of buying servers
— allows fo

* Cloud Service Providers (CSPs) offer monitoring and rule-based
triggers to enable dynamic scaling of applications

Microsoft Azure Watch

Amazon auto scaling

ula Variable Names

Trigger Measurement C Time > 70 Average60CPUTime]]R
Tri CLAS Unresponsivelnstancj
figger Statistic © LastCommited Memo:H
Unit of Measurement: Bytes v E x LastRequestsFailed
P Readylnstances_5
Measurement Period (minutes): 5 x x x AvaAvailRam10 ¥
Breach Duration (minutes): 5 — Description

Upper Threshoeld: 6000000 Average CPU utilization is above 70% for thert 60 minutes -

Upper Breach Scalement Increment: 1 o
Take action if the rule evahI*mI@E
Lower Threshold: 2000000

Lower Breach Scalement Increment: -1 ' Change Instance Count [Scale up by '] 1 instances
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Motivation

* The values have to be determined by the user
— requires expert knowledge of application (CPU, memory, n/w thresholds)
— requires performance modeling expertise (when and how to scale)

How to set these values ??

Micros&ft Azure Watch

Amazon auto sqéling

3 Boolean Formula ~ Variable Names
Trigger Measurement: AverageB(X:PUTm@ veraeSPUime -
™ stic: nresponsivelnstanc
rigger Statistic LastCommited Memo:B
Unit of Measurement: LastRequestsFailed

Readylnstances_5
AvaAvailRam10 Y

Measurement Period (minutes):

Breach Duration (minutes):
Upper Threshold:

5 \ Description
5000000 \ Average CPU utilization is above 70% for the last 60 minutes -

Upper Breach Scalement Increment: 1

Lower Threshold: 2000000 /
1 ] Change Instance Count [Scde up by '] 1 instances

Take action if the rule evaluates to TRUE

Lower Breach Scalement Increment:
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Motivation

* The values have to be determined by the user
— requires expert knowledge of application (CPU, memory, n/w thresholds)
— requires performance modeling expertise (when and how to scale)

g 1000
— 200 » Offline benchmarking
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E 600 » Trial-and-error
400 ms |—g—4080 » Expert application knowledge
é 200
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View from user’ s perspective
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View from CSP’ s perspective
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Problem statement
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DC2: High-level idea

End-to-end response time

Request rate .
VM utilization .



DC2: High-level idea

Service requirements of requests at each tier

Kalman filtering l Network delay
Background utilization (overhead)
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DC2: High-level idea

Service requirements of requests at each tier

Kalman filtering I Network delay
Background utilization (overhead)
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DC2: Modeling

multi-tier queueing
network model
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DC2: Modeling

Parameters:

* \, — Request rate for class i

* T. — Response time for class i

* S; — Service requirement for class i at tier j

* d. — Network latency for class i
* U0, - Background utilization on tier j
‘U - Utilization of tier j

24 parameters
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DC2: Modeling

Parameters:
* \, — Request rate for class i
* T. — Response time for class i

* S; — Service requirement for class i at tier j

* d. — Network latency for class i
* UQ, — Background utilization on tier j

}) * U, — Utilization of tier |

24 parameters
9 known + 15 unknown

* Underdetermined system
* Need to “infer” unknowns

* Can leverage monitored values

S

T=di+EI—Z]j

J

U, =U0,+ Y AS,

6 equations
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Evaluate functions
using guesses
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Kalman filtering + Queueing: Evaluation

Change in workload triggered \
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~1 min (6 intervals) Time to converge

~3 min (18 intervals)
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RUBIS

* RUBIS is an open source benchmark inspired by ebay.com
* Hosted on SoftLayer hypervisors via OpenStack
* We focus on scaling Tomcat app tier

SLA: Tp owse < 40ms for every 10s 2 vCPU
monitoring

Tomcat
App Server

interval

4 vCPU

Load Apache Tomcat ‘, MySQL
Generator Frontend App Server , Database

Tomcat
App Server
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DC2: All traces
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Bursty trace: All policies
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All traces: All policies
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Limitations and future work

 Evaluation limited to dynamic web applications
— Currently investigating Hadoop-type applications

* Only applies to stateless tiers

— DB scaling would be challenging
* Scaling algorithm can be modified

e Kalman Filtering can be replaced by other black-box approaches

— Machine Learning approaches?

* Non-zero convergence time
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Conclusions

* Need for adaptive scaling services for (opaque) cloud applications
— Application agnostic
— Robust to arrival patterns

* Existing commercial offerings do not suffice: rule-based

* Existing auto-scaling research solutions do not apply due to lack
of visibility and control of opaque cloud applications

* Our solution: Dependable Compute Cloud (DC2)
— Does not require offline benchmarking or expert knowledge
— Can adapt to dynamic changes in workload

* Well suited for cloud users who lack expertise in system modeling
and application knowledge
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Existing CSP solutions

* Resource usage triggers
—Amazon Auto Scaling, Microsoft Azure Watch, VMware Applnsight, CIRBA

» Request rate for specific software (ex: apache)
— RightScale

* Latency/VM

— Amazon Elastic Load balancing

* Web site response time User has to set values

—Scalr

Boolean Formula Variable Names

Average60CPUTime > 70 Averageb0CP UTime N
Unresponsivelnstanc—

LastCommited MemorE]
LastRequestsFailed
Readylnstances_5
AvgAvailRam10 ¥

Description
Average CPU utilization is above 707% for the last 60 minutes -

Take action if the rule evaluates to TRUE

Change Instance Count [Scde up by V] 1 instances
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All workloads: All policies (Bursty trace)

* Rule-based policies like THRES require tuning and are not robust

» Other auto-scaling policies require control of application

* DC2 is superior to THRES and does not require application control

Base MoreDB MoreApp

VICTefVeD
STATIC-OPT| V=0% K=3.00 | V=0% K=4.00 | V=0% K=3.00 | V=0% K=3.00

DC2| V=0% K=2.50 | V=0% K=3.66 | V=0% K=2.94 | V=0% K=2.87

THRES(30,60) | V=0% K=2.50 JV=3.06% K=3.40]V=2.04% K=2.98] V=0% K=3.00
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Kalman filtering

* KF is a reactive, feedback-based estimation approach that has only recently

been employed for computer systems

» KF automatically learns the (possibly changing) system parameters, for any

system, including combination of workloads

* We extend KF to a 3-tier 3-workload-class system

* Based on KF estimation, DC2 automatically, and proactively, detects which tier
is the bottleneck, and how to resolve the bottleneck (scale VMs)

— do not require any knowledge of application, except topology

Improve
guess

“Guess”
/ unknowns \

Evaluate functions
using guesses

N

Compare with /

monitored values 26




Kalman filtering + Queueing

* KF can be integrated with system models (ex, queueing models) to improve

daCcuracy and convergence

* Model need not be accurate

— KF leverages (true) monitored values to account for model inaccuracies

— Well suited for approximate system models such as queueing-theoretic models

— Can use other models as well, ex: machine-learning based models

Improve
guess

“Guess”
/ unknowns \

Evaluate functions
using guesses

N

Compare with /
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All traces: All policies
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