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§  NNSA’s Sequoia: 16+ petaflops, 7.9 MW 
§  Exascale target: 20 MW 
§  Power – large part of ownership cost 

§  Unable to use all compute resources at once 

§  Implications for app. and system developers 
•  Optimizing for power/energy and runtime 

§  Computing under a power bound 
•  Selectively allocating power on a fixed budget 

Future systems constrained by power 
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§  Shift power to resources on the critical path 
•  Characterize code phases/regions/physics 
•  Leverage IBM Blue Gene/Q’s memory throttling 
•  Minimize impact on time-to-solution 
 

§  Contributions 
•  Significant power shifting opportunities in explicit 

hydrodynamics 
•  First to employ real throttling on a supercomputer 
•  Linear regression model to guide throttling 
•  Apply throttling on a code region basis  

Selective throttling to maximize 
performance under a power budget 
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§  Shock-hydro mini-app 
•  Lagrange hydrodynamics 
•  Solves Sedov problem 
•  Unstructured hex mesh 
•  Single material 
•  Ideal gas EOS 

LULESH 
Livermore Unstructured Lagrange Explicit Shock Hydrodynamics 
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§  Low power architecture 
•  PowerPC A2 1.6 GHz cores 
•  DDR3 1.33 GHz memory 

IBM Blue Gene/Q (BG/Q) 
§  Memory throttling  

•  Built-in on the DDR controller 
•  Adds idle cycles between each 

read/write to DDR 
•  Idle cycles from 0 to 128 
•  Node granularity 

 

§  Power and energy 
•  EMON2 high-resolution 
•  Measure current and voltage  

up to 2KHz 
•  7 domains:  

core logic, memory, network.. 
•  Board granularity, 32 nodes 
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75% of overall power is static 
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§  Component-
specific static 
proportion 
•  73% for core 
•  53% for memory 

§  Throttling affects 
dynamic draw 
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Reduced memory bandwidth with 
increased throttling   
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Impact of throttling is region-dependent 

0%

200%

400%

600%

800%

1000%

1200%

8 16 32 64 126

N
o

rm
al

iz
e

d
 t

o
 B

as
e

lin
e

Number of DDR Idle Cycles

Region 3 Region 4

Region IPC Runtime MemBW 
R1 0.541 11.85 s 18.38 GB/s 

R2 0.554 32.02 s 15.56 GB/s 

R3 0.216 1.10 s 20.88 GB/s 

R4 0.654 13.80 s 9.12 GB/s 

R5 0.321 16.21 s 13.72 GB/s 

Effect of throttling on LULESH performance 
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Optimal memory speed is a function 
of region, size, and concurrency 
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§  Optimal: minimum 
speed with no 
effect on 
performance 

§  Increased 
concurrency, 
higher demand for 
memory BW 

§  R1-R3 more 
sensitive to 
memory BW 
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Predicting optimal memory speed 
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§  Linear regression model based on 
HW counters  
•  Num. instructions, CPU cycles,  

L1 and L2 misses, main memory loads/
stores, etc.  
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Our model predictions decrease 
performance by 3% in most cases 
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Impact of memory throttling on 
power 
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Up to 20% less dynamic power with 
a 3% performance loss 
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§  Demonstrated significant opportunities for power shifting 
in explicit hydrodynamics 
  

§  Leveraged BG/Q’s memory throttling 
•  Up to 20% dynamic power savings 

  

§  Employed a regression model to throttle memory 
•  Low performance degradation for most configurations 
•  Some inaccuracies with low concurrency 
•  Not predictive of non-linear interactions 

  

§  Future work 
•  Analyze a representative suite of HPC applications 
•  Investigate machine learning techniques such as ANNs 

Summary and conclusions 




