
Spotting Code Optimizations in Data-
Parallel Pipelines through PeriSCOPE

Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang, Hucheng Zhou,

Sean McDirmid, Chang Liu, Wei Lin*, Jingren Zhou*, Lidong Zhou

Microsoft Research Asia

*Microsoft BING

1

Distributed Data-Parallel Pipelines

Data Shuffling

Computation Phase #1

Computation Phase #2

IO Performance

Critical

Opportunities

Procedural

code

Procedural

code

Data Shuffling

if (row[“impr”] > MAX_IMPR) continue;

row[“domain”] = ExtractURL(row[“url”]);

bool p = row[“query”].Contains(KEYS);

Opportunities

Procedural

code

Procedural

code

Data Shuffling

if (row[“impr”] > MAX_IMPR) continue;

if (row[“impr”] > MAX_IMPR) continue;

row[“domain”] = ExtractURL(row[“url”]);

string domain = ExtractURL(row[“url”]);

IO Performance

Optimized

bool p = row[“query”].Contains(KEYS);

row[“p”] = row[“query”].Contains(KEYS);

if (row[“impr”] > MAX_IMPR) continue;

row[“domain”] = ExtractURL(row[“url”]);

bool p = row[“query”].Contains(KEYS);

Current Practice: Separated Optimization

Procedural

code

Procedural

code

USING

USING

REDUCE

FROM
EXTRACT

PRODUCE

SQL-like

code

Query
Optimizer

Compiler

Compiler

As seen in
SCOPE, DryadLINQ,
Pig Latin, and Hive

Holistic optimization using query optimizer

Procedural

code

Procedural

code

USING

USING

REDUCE

FROM
EXTRACT

PRODUCE

Query
Optimizer

USING

USING

REDUCE

FROM
EXTRACT

PRODUCE
SQL-like

code

e.g., Manimal, VLDB 11

Holistic optimization using query optimizer

Procedural

code

Procedural

code

USING

USING

REDUCE

FROM
EXTRACT

PRODUCE

Query
Optimizer

USING

USING

REDUCE

FROM
EXTRACT

PRODUCE
SQL-like

code

e.g., Manimal, VLDB 11

Very

Limited!

if (row[“impr”] > MAX_IMPR) continue;
 => WHERE !(impr > MAX_IMPR)

8
Source: http://adsoftheworld.com/media/print/alliance_francaise_quito_new_perspective?size=_original

A New Perspective

http://adsoftheworld.com/media/print/alliance_francaise_quito_new_perspective?size=_original
http://adsoftheworld.com/media/print/alliance_francaise_quito_new_perspective?size=_original
http://adsoftheworld.com/media/print/alliance_francaise_quito_new_perspective?size=_original

PeriSCOPE: Pipeline-aware Holistic Code Optimization

Procedural

code

Procedural

code

USING

USING

REDUCE

FROM
EXTRACT

PRODUCE

SQL-like

code

Compiler

Compiler

Query
Optimizer

PeriSCOPE: Pipeline-aware Holistic Code Optimization

Procedural

code

Procedural

code

USING

USING

REDUCE

FROM
EXTRACT

PRODUCE

SQL-like

code Compiler

Query
Optimizer

Much

Deeper!

Optimization Steps

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Step 1: Construct
inter-procedural flow graph

Optimization Steps

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Step 1: Construct
inter-procedural flow graph

Optimization Steps

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Step 1: Construct
inter-procedural flow graph

Step 2: Add safety constraints
for skipping shuffling code

Optimization Steps

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Step 1: Construct
inter-procedural flow graph

Step 2: Add safety constraints
for skipping shuffling code

Step 3: Transform code for
reducing shuffling I/O

Column Reduction: Reduce Number of Columns

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Procedural code

Procedural code

Column Reduction: Reduce Number of Columns

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Procedural code

Procedural code

Early Filtering: Reduce Number of Rows

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Procedural code

Procedural code

x

Count++

Y

Early Filtering: Reduce Number of Rows

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Procedural code

Procedural code

X

Count++

Y

Smart Cut: Reduce Size of Each Row

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Procedural code

Procedural code

isum
+= impr

INPUT

OUTPUT

Smart Cut: Reduce Size of Each Row

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Procedural code

Procedural code

isum
+= impr

INPUT

OUTPUT

clks:long:8

clks:long:8

impr:int:4

-:-: ∞

Smart Cut: Reduce Size of Each Row

Procedural

code

Procedural

code

Flow Graph

Flow Graph

Data Shuffling

Procedural code

Procedural code

isum
+= impr

INPUT

OUTPUT

clks:long:8

clks:long:8

impr:int:4

-:-: ∞

Coverage Study*

22

* Study on 28,838 jobs collected from SCOPE clusters in 2010/2011.

Optimization Eligible jobs

Column Reduction 4,052 (14.05%)

Early Filtering 3,020 (10.47%)

Smart Cut 1,544 (5.35%)

Overlapped Total 6,397 (22.18%)

 Effectiveness and Observations

23

• I/O reduction is nice

• Latency reduction is generally smaller

 Effectiveness and Observations

24

• Column Reduction

– Case 4: 18 in 22 columns are eliminated

– Case 7: 29 in 31 columns are eliminated

– Mostly due to UDF reuse

• 80.2% of the functions eligible for column
reduction are reused more than 13 times

 Effectiveness and Observations

25

• Early Filtering

– Exclude rows with invalid format

• Case 8: ~0% reduction

– Exclude rows with certain unwanted values

• Case 1: 99% reduction

 Effectiveness and Observations

26

• Smart Cut

– Unary operations

• String to integer types

• Trim, SubString

– Binary operations

– Case 5: DateTime.Parse(EndTs) - DateTime.Parse(StartTs)

Applicability to
various data-parallel computation systems

• Generally applicable
(e.g., Scope/DryadLINQ/Hive/Pig Latin)

• Impact factors to the coverage and effectiveness

– Data model

• Relational

• Object

– API interface

• Map(List<Row> rows, …)

• Map(Row row, …)

27

Future Directions

• Balance how easy it is for programming and
how easy it is for automatic optimization

– Extract common computation patterns

– Redesign programming interface to achieve better
trade-off

• Interfaces higher than MapReduce?

28

Future Directions

• Explore other components other than
distributed data-parallel computation systems
in large scale internet service systems

– e.g., automatic caching & prefetching for user-
facing web service frameworks

29

Conclusion

• Pipeline-aware holistic code optimization is
promising
– Project pipeline information to procedural code
– Add safety rules to ensure correctness
– I/O driven compiler-like optimization

• Improve performance without sacrificing
programmability

• Considering more about how easy it is for
optimization when designing programming
frameworks

30

Spotting Code Optimizations in Data-
Parallel Pipelines through PeriSCOPE

Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang, Hucheng Zhou,

Sean McDirmid, Chang Liu, Wei Lin, Jingren Zhou, Lidong Zhou

Microsoft Research Asia

Microsoft BING

31

Thanks!
Questions?

