Spotting Code Optimizations in Data-Parallel Pipelines through **PeriSCOPE**

Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang, Hucheng Zhou,
Sean McDirmid, Chang Liu, Wei Lin*, Jingren Zhou*, Lidong Zhou

Microsoft Research Asia

*Microsoft BING

Distributed Data-Parallel Pipelines

Opportunities

Opportunities

Current Practice: Separated Optimization

Holistic optimization using query optimizer

Holistic optimization using query optimizer

A New Perspective

PeriSCOPE: Pipeline-aware Holistic Code Optimization Procedural code **EXTRACT FROM** USING Compiler SQL-like REDUCE code PRODUCE USING Compiler Procedural code Query Optimizer

PeriSCOPE: Pipeline-aware Holistic Code Optimization Procedural Much code Deeper! EXTRACT FROM **USING** SQL-like REDUCE Compiler code PRODUCE USING Procedural code Query Optimizer

Step 1: Construct inter-procedural flow graph

Step 1: Construct inter-procedural flow graph

Step 1: Construct inter-procedural flow graph

Step 2: Add safety constraints for skipping shuffling code

Step 1: Construct inter-procedural flow graph

Step 2: Add safety constraints for skipping shuffling code

Step 3: Transform code for reducing shuffling I/O

Column Reduction: Reduce Number of Columns

Column Reduction: Reduce Number of Columns

Early Filtering: Reduce Number of Rows

Early Filtering: Reduce Number of Rows

Smart Cut: Reduce Size of Each Row

Smart Cut: Reduce Size of Each Row

Smart Cut: Reduce Size of Each Row

Coverage Study*

Optimization	Eligible jobs
Column Reduction	4,052 (14.05%)
Early Filtering	3,020 (10.47%)
Smart Cut	1,544 (5.35%)
Overlapped Total	6,397 (22.18%)

^{*} Study on 28,838 jobs collected from SCOPE clusters in 2010/2011.

- I/O reduction is nice
- Latency reduction is generally smaller

Column Reduction

- Case 4: 18 in 22 columns are eliminated
- Case 7: 29 in 31 columns are eliminated
- Mostly due to UDF reuse
 - 80.2% of the functions eligible for column reduction are reused more than 13 times

- Early Filtering
 - Exclude rows with invalid format
 - Case 8: ~0% reduction
 - Exclude rows with certain unwanted values
 - Case 1: 99% reduction

- Smart Cut
 - Unary operations
 - String to integer types
 - Trim, SubString
 - Binary operations
 - Case 5: DateTime.Parse(EndTs) DateTime.Parse(StartTs)

Applicability to various data-parallel computation systems

- Generally applicable
 (e.g., Scope/DryadLINQ/Hive/Pig Latin)
- Impact factors to the coverage and effectiveness
 - Data model
 - Relational
 - Object
 - API interface
 - Map(List<Row> rows, ...)
 - Map(Row row, ...)

Future Directions

- Balance how easy it is for programming and how easy it is for automatic optimization
 - Extract common computation patterns
 - Redesign programming interface to achieve better trade-off
 - Interfaces higher than MapReduce?

Future Directions

- Explore other components other than distributed data-parallel computation systems in large scale internet service systems
 - e.g., automatic caching & prefetching for userfacing web service frameworks

Conclusion

- Pipeline-aware holistic code optimization is promising
 - Project pipeline information to procedural code
 - Add safety rules to ensure correctness
 - I/O driven compiler-like optimization
- Improve performance without sacrificing programmability
- Considering more about how easy it is for optimization when designing programming frameworks

Thanks! Questions?

Spotting Code Optimizations in Data-Parallel Pipelines through **PeriSCOPE**

Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang, Hucheng Zhou,
Sean McDirmid, Chang Liu, Wei Lin, Jingren Zhou, Lidong Zhou

Microsoft Research Asia

Microsoft BING