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Current Practice: Separated Optimization 
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Holistic optimization using query optimizer 
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if (row[“impr”] > MAX_IMPR) continue;   
                                                                            =>        WHERE !(impr > MAX_IMPR)  
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Source: http://adsoftheworld.com/media/print/alliance_francaise_quito_new_perspective?size=_original  

A New Perspective 

http://adsoftheworld.com/media/print/alliance_francaise_quito_new_perspective?size=_original
http://adsoftheworld.com/media/print/alliance_francaise_quito_new_perspective?size=_original
http://adsoftheworld.com/media/print/alliance_francaise_quito_new_perspective?size=_original


PeriSCOPE: Pipeline-aware Holistic Code Optimization 
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PeriSCOPE: Pipeline-aware Holistic Code Optimization 
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Step 3: Transform code for  
reducing shuffling I/O 



Column Reduction: Reduce Number of Columns 
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Early Filtering: Reduce Number of Rows 
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Smart Cut: Reduce Size of Each Row 
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Coverage Study* 
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* Study on 28,838 jobs collected from SCOPE clusters in 2010/2011. 

Optimization Eligible jobs 

Column Reduction 4,052 (14.05%) 

Early Filtering 3,020 (10.47%) 

Smart Cut 1,544 (  5.35%) 

Overlapped Total 6,397 (22.18%) 



       Effectiveness and Observations 
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• I/O reduction is nice 

• Latency reduction is generally smaller 



       Effectiveness and Observations 
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• Column Reduction 

– Case 4: 18 in 22 columns are eliminated 

– Case 7: 29 in 31 columns are eliminated 

– Mostly due to UDF reuse 

• 80.2% of the functions eligible for column 
reduction are reused more than 13 times 



       Effectiveness and Observations 
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• Early Filtering 

– Exclude rows with invalid format 

• Case 8: ~0% reduction 

– Exclude rows with certain unwanted values 

• Case 1: 99% reduction 



       Effectiveness and Observations 
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• Smart Cut 

– Unary operations 

• String to integer types 

• Trim, SubString 

– Binary operations 

– Case 5: DateTime.Parse(EndTs) - DateTime.Parse(StartTs) 



Applicability to  
various data-parallel computation systems 

• Generally applicable  
(e.g., Scope/DryadLINQ/Hive/Pig Latin) 

• Impact factors to the coverage and effectiveness 

– Data model 

• Relational 

• Object 

– API interface 

• Map(List<Row> rows, …) 

• Map(Row row, …) 
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Future Directions 

• Balance how easy it is for programming and 
how easy it is for automatic optimization 

– Extract common computation patterns 

– Redesign programming interface to achieve better 
trade-off 

• Interfaces higher than MapReduce? 
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Future Directions 

• Explore other components other than 
distributed data-parallel computation systems 
in large scale internet service systems 

– e.g., automatic caching & prefetching for user-
facing web service frameworks 
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Conclusion 

• Pipeline-aware holistic code optimization is 
promising 
– Project pipeline information to procedural code 
– Add safety rules to ensure correctness 
– I/O driven compiler-like optimization 

• Improve performance without sacrificing 
programmability 
 

• Considering more about how easy it is for 
optimization when designing programming 
frameworks 
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Thanks! 
Questions? 
 


