
Enlightening the I/O Path:
A Holistic Approach for Application Performance

Sangwook Kim13, Hwanju Kim2, Joonwon Lee3, and Jinkyu Jeong3

Apposha1

Dell EMC2

Sungkyunkwan University3

Data-Intensive Applications

2

Relational

Key-value

SearchColumn

Document

Data-Intensive Applications

• Common structure

3

Storage Device

Operating System

T1

Client

T2

I/O

T3 T4

Request Response

I/O I/O I/O

Application

Application

performance

* Example: MongoDB

- Client (foreground)

- Checkpointer

- Log writer

- Eviction worker

- …

Data-Intensive Applications

• Common structure

4

Storage Device

Operating System

T1

Client

T2

I/O

T3 T4

Request Response

I/O I/O I/O

Application

Application

performance

* Example: MongoDB

- Server (client)

- Checkpointer

- Log writer

- Evict worker

- …

Background tasks are problematic

for application performance

Application Impact

5

• Illustrative experiment

• YCSB update-heavy workload against MongoDB

Application Impact

6

• Illustrative experiment

• YCSB update-heavy workload against MongoDB

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000 1200 1400 1600 1800

O
p
e
ra

ti
o
n
 t
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Elapsed time (sec)

CFQ

Regular
checkpoint task

30 seconds latency
at 99.99th percentile

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000 1200 1400 1600 1800

O
p
e
ra

ti
o
n
 t
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Elapsed time (sec)

CFQ CFQ-IDLE

Application Impact

7

• Illustrative experiment

• YCSB update-heavy workload against MongoDB

I/O priority does
not help

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000 1200 1400 1600 1800

O
p
e
ra

ti
o
n
 t
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Elapsed time (sec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO

Application Impact

8

• Illustrative experiment

• YCSB update-heavy workload against MongoDB

State-of-the-art
schedulers do
not help much

What’s the Problem?

• Independent policies in multiple layers

• Each layer processes I/Os w/ limited information

• I/O priority inversion

• Background I/Os can arbitrarily delay foreground tasks

9

What’s the Problem?

• Independent policies in multiple layers

• Each layer processes I/Os w/ limited information

• I/O priority inversion

• Background I/Os can arbitrarily delay foreground tasks

10

Multiple Independent Layers

• Independent I/O processing

11

Storage Device

Caching Layer

Application

File System Layer

Block LayerA
b

s
tr

a
c
ti
o

n

Multiple Independent Layers

12

Storage Device

Caching Layer

Application

File System Layer

Block Layer

Buffer Cache

read() write()
admission

control

A
b

s
tr

a
c
ti
o

n

• Independent I/O processing

Multiple Independent Layers

• Independent I/O processing

13

Storage Device

Caching Layer

Application

File System Layer

Block Layer

Buffer Cache

read() write()

Block-level Q

admission
control

A
b

s
tr

a
c
ti
o

n

Multiple Independent Layers

• Independent I/O processing

14

Storage Device

Caching Layer

Application

File System Layer

Block LayerA
b

s
tr

a
c
ti
o

n

Buffer Cache

read() write()

reorder

FG FG BGBG

Multiple Independent Layers

• Independent I/O processing

15

Storage Device

Caching Layer

Application

File System Layer

Block LayerA
b

s
tr

a
c
ti
o

n

Buffer Cache

read() write()

FG FGBG

Device-internal Q

admission
control

Multiple Independent Layers

• Independent I/O processing

16

Storage Device

Caching Layer

Application

File System Layer

Block LayerA
b

s
tr

a
c
ti
o

n

Buffer Cache

read() write()

FG FGBG

BG FG BGBG

reorder

What’s the Problem?

• Independent policies in multiple layers

• Each layer processes I/Os w/ limited information

• I/O priority inversion

• Background I/Os can arbitrarily delay foreground tasks

17

I/O Priority Inversion

• Task dependency

18

Storage Device

Caching Layer

Application

File System Layer

Block Layer

Locks

Condition variables

I/O Priority Inversion

• Task dependency

19

Storage Device

Caching Layer

Application

File System Layer

Block Layer

Condition variables

I/OFG
lock

BG
wait

I/O Priority Inversion

• Task dependency

20

Storage Device

Caching Layer

Application

File System Layer

Block Layer

I/OFG
lock

BG
wait

FG
wait

wait

BGvar
wake

I/O Priority Inversion

• Task dependency

21

Storage Device

Caching Layer

Application

File System Layer

Block Layer

I/O

FG
wait

wait

BG
user
var

wake

FG
wait

I/O Priority Inversion

• I/O dependency

22

Storage Device

Caching Layer

Application

File System Layer

Block Layer

Outstanding I/Os

I/O Priority Inversion

• I/O dependency

23

Storage Device

Caching Layer

Application

File System Layer

Block Layer

I/OFG
wait

For ensuring consistency
and/or durability

24

100 ms latency at
99.99th percentile

0

5000

10000

15000

20000

25000

30000

35000

0 200 400 600 800 1000 1200 1400 1600 1800

O
p
e
ra

ti
o
n
 t
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Elapsed time (sec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

• Request-centric I/O prioritization (RCP)

• Critical I/O: I/O in the critical path of request handling

• Policy: holistically prioritizes critical I/Os along the I/O path

Our Approach

Challenges

• How to accurately identify I/O criticality

• How to effectively enforce I/O criticality

25

Critical I/O Detection

• Enlightenment API

• Interface for tagging foreground tasks

• I/O priority inheritance

• Handling task dependency

• Handling I/O dependency

26

I/O Priority Inheritance

• Handling task dependency

• Locks

• Condition variables

27

FG
lock

BG I/OFG

inherit

BG

submit

complete

FG BG

unlock

FG
wait

BG

register

BG

inherit

FG BGI/O

submit

complete

wake

CV CV CV

I/O Priority Inheritance

• Handling I/O dependency

28

I/O Priority Inheritance

• Handling I/O dependency

29

Block Layer

I/OI/O

I/O Priority Inheritance

• Handling I/O dependency

30

Block Layer

Q admission stage

I/OI/O

Sched queueing stage

I/O Priority Inheritance

• Handling I/O dependency

31

Block Layer

PER-DEV
ROOT

NCIO NCIO

NCIO NCIO

Q admission stage

I/OI/O

Sched queueing stage

Non-critical I/O tracking

Descriptor

Location

Resolver

Sector #

I/O Priority Inheritance

• Handling I/O dependency

32

Block Layer

Descriptor
Location
Resolver
Sector #

allocate

Q admission stage

I/O

I/O

I/O

Sched queueing stage

Non-critical I/O tracking

PER-DEV
ROOT

NCIO NCIO

NCIO NCIO

I/O Priority Inheritance

• Handling I/O dependency

33

Block Layer

Q admission stage

I/O

I/O

I/O

Sched queueing stage

Non-critical I/O tracking

update

Descriptor
Location
Resolver
Sector #

PER-DEV
ROOT

NCIO NCIO

NCIO NCIO

I/O Priority Inheritance

• Handling I/O dependency

34

Block Layer

Q admission stage

I/O

I/O

Sched queueing stage

I/O

Non-critical I/O tracking

update Descriptor
Location
Resolver
Sector #

PER-DEV
ROOT

NCIO NCIO

NCIO NCIO

I/O Priority Inheritance

• Handling I/O dependency

35

Block Layer

Q admission stage

I/O

I/O

Sched queueing stage

I/O

Non-critical I/O tracking

update
Descriptor
Location
Resolver
Sector #

PER-DEV
ROOT

NCIO NCIO

NCIO NCIO

I/O Priority Inheritance

• Handling I/O dependency

36

Block Layer

Q admission stage

I/O

I/O

Sched queueing stage

I/O

Non-critical I/O tracking

update

Descriptor
Location
Resolver
Sector #

PER-DEV
ROOT

NCIO NCIO

NCIO NCIO

I/O Priority Inheritance

• Handling I/O dependency

37

Block Layer

Q admission stage

I/O

I/O

Sched queueing stage

I/O

Non-critical I/O tracking

Descriptor
Location
Resolver
Sector #

PER-DEV
ROOT

NCIO NCIO

NCIO NCIO

delete on
completion

Handling Transitive Dependency

• Possible states of dependent task

38

FG

inherit

BG BG

Blocked
on task

I/OFG

inherit

BG

wait wait

Blocked
on I/O

FG

inherit

BG

wait

Blocked at
admission stage

Handling Transitive Dependency

• Recording blocking status

39

FG

inherit

BG BG

Blocked
on task

I/OFG

inherit

BG

wait wait

Blocked
on I/O

FG

inherit

BG

wait

Blocked at
admission stage

Handling Transitive Dependency

• Recording blocking status

40

FG

inherit

BG BG

Task is
recorded

I/OFG

inherit

BG

wait

Blocked
on I/O

FG

inherit

BG

wait

Blocked at
admission stage

inherit

Handling Transitive Dependency

• Recording blocking status

41

FG

inherit

BG BG I/OFG

inherit

BG

reprio

I/O is
recorded

FG

inherit

BG

wait

Blocked at
admission stage

Task is
recorded

inherit

Handling Transitive Dependency

• Recording blocking status

42

FG

inherit

BG BG I/OFG

inherit

BG FG

inherit

BG

retryreprio

I/O is
recorded

Task is
recorded

inherit

Challenges

• How to accurately identify I/O criticality

• Enlightenment API

• I/O priority inheritance

• Recording blocking status

• How to effectively enforce I/O criticality

43

Criticality-Aware I/O Prioritization

• Caching layer

• Apply low dirty ratio for non-critical writes (1% by default)

• Block layer

• Isolate allocation of block queue slots

• Maintain 2 FIFO queues

• Schedule critical I/O first

• Limit # of outstanding non-critical I/Os (1 by default)

• Support queue promotion to resolve I/O dependency

44

Evaluation

• Implementation on Linux 3.13 w/ ext4

• Application studies

• PostgreSQL relational database

• Backend processes as foreground tasks

• I/O priority inheritance on LWLocks (semop)

• MongoDB document store

• Client threads as foreground tasks

• I/O priority inheritance on Pthread mutex and condition vars (futex)

• Redis key-value store

• Master process as foreground task

45

Evaluation

• Experimental setup

• 2 Dell PowerEdge R530 (server & client)

• 1TB Micron MX200 SSD

• I/O prioritization schemes

• CFQ (default), CFQ-IDLE

• SPLIT-A (priority), SPLIT-D (deadline) [SOSP’15]

• QASIO [FAST’15]

• RCP

46

Application Throughput

• PostgreSQL w/ TPC-C workload

47

0

1000

2000

3000

4000

5000

6000

7000

10GB dataset 60GB dataset 200GB dataset

Tr
a
n
sa

ct
io

n
 t
h
ro

u
g
h
p
u
t

(t
rx

/s
e
c)

CFQ CFQ-IDLE

Application Throughput

• PostgreSQL w/ TPC-C workload

48

0

1000

2000

3000

4000

5000

6000

7000

10GB dataset 60GB dataset 200GB dataset

Tr
a
n
sa

ct
io

n
 t
h
ro

u
g
h
p
u
t

(t
rx

/s
e
c)

CFQ CFQ-IDLE SPLIT-A

Application Throughput

• PostgreSQL w/ TPC-C workload

49

0

1000

2000

3000

4000

5000

6000

7000

10GB dataset 60GB dataset 200GB dataset

Tr
a
n
sa

ct
io

n
 t
h
ro

u
g
h
p
u
t

(t
rx

/s
e
c)

CFQ CFQ-IDLE SPLIT-A SPLIT-D

Application Throughput

• PostgreSQL w/ TPC-C workload

50

0

1000

2000

3000

4000

5000

6000

7000

10GB dataset 60GB dataset 200GB dataset

Tr
a
n
sa

ct
io

n
 t
h
ro

u
g
h
p
u
t

(t
rx

/s
e
c)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO

Application Throughput

• PostgreSQL w/ TPC-C workload

51

0

1000

2000

3000

4000

5000

6000

7000

10GB dataset 60GB dataset 200GB dataset

Tr
a
n
sa

ct
io

n
 t
h
ro

u
g
h
p
u
t

(t
rx

/s
e
c)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

37%

31%
28%

Application Throughput

• Impact on background task

52

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800

Tr
a
n
sa

ct
io

n
 l
o
g
 s

iz
e
 (
G
B
)

Elapsed time (sec)

CFQ CFQ-IDLE QASIO

Application Throughput

• Impact on background task

53

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800

Tr
a
n
sa

ct
io

n
 l
o
g
 s

iz
e
 (
G
B
)

Elapsed time (sec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO

Application Throughput

• Impact on background task

54

Our scheme improves
application throughput
w/o penalizing
background tasks

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800

Tr
a
n
sa

ct
io

n
 l
o
g
 s

iz
e
 (
G
B
)

Elapsed time (sec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

Application Latency

• PostgreSQL w/ TPC-C workload

55

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1000 2000 3000 4000 5000 6000

C
C
D

F
P
[X

>
=
x]

Transaction latency (msec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO

100

10-1

10-2

10-3

10-4

10-5

Over 2 sec
at 99.9th

0th

90th

99th

99.9th

99.99th

99.999th

Application Latency

• PostgreSQL w/ TPC-C workload

56

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1000 2000 3000 4000 5000 6000

C
C
D

F
P
[X

>
=
x]

Transaction latency (msec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

100

10-1

10-2

10-3

10-4

10-5

300 msec
at 99.999th

Our scheme is effective
for improving tail latency

Over 2 sec
at 99.9th

100

10-1

10-2

10-3

10-4

10-5

0th

90th

99th

99.9th

99.99th

99.999th

Summary of Other Results

• Performance results

• MongoDB: 12%-201% throughput, 5x-20x latency at 99.9th

• Redis: 7%-49% throughput, 2x-20x latency at 99.9th

• Analysis results

• System latency analysis using LatencyTOP

• System throughput vs. Application latency

• Need for holistic approach

57

Conclusions

• Key observation
• All the layers in the I/O path should be considered as a whole with I/O

priority inversion in mind for effective I/O prioritization

• Request-centric I/O prioritization
• Enlightens the I/O path solely for application performance

• Improves throughput and latency of real applications

• Ongoing work
• Practicalizing implementation

• Applying RCP to database cluster with multiple replicas

58

Thank You!

• Questions and comments

• Contact

• sangwook@apposha.io

59

mailto:sangwook@apposha.io

