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Data-Intensive Applications

• Common structure
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Application Impact
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• Illustrative experiment

• YCSB update-heavy workload against MongoDB
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• Illustrative experiment

• YCSB update-heavy workload against MongoDB

I/O priority does 
not help 
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• Illustrative experiment

• YCSB update-heavy workload against MongoDB

State-of-the-art 
schedulers do 
not help much



What’s the Problem?

• Independent policies in multiple layers

• Each layer processes I/Os w/ limited information

• I/O priority inversion

• Background I/Os can arbitrarily delay foreground tasks
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Multiple Independent Layers

• Independent I/O processing
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Multiple Independent Layers
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• Independent I/O processing
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Multiple Independent Layers

• Independent I/O processing
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Multiple Independent Layers

• Independent I/O processing

16

Storage Device

Caching Layer

Application

File System Layer

Block LayerA
b

s
tr

a
c
ti
o

n

Buffer Cache

read() write()

FG FGBG

BG FG BGBG

reorder



What’s the Problem?

• Independent policies in multiple layers
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I/O Priority Inversion

• Task dependency
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• Task dependency
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I/O Priority Inversion

• Task dependency
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I/O Priority Inversion

• I/O dependency
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I/O Priority Inversion

• I/O dependency
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100 ms latency at 
99.99th percentile

0

5000

10000

15000

20000

25000

30000

35000

0 200 400 600 800 1000 1200 1400 1600 1800

O
p
e
ra

ti
o
n
 t
h
ro

u
g
h
p
u
t 

(o
p
s/

se
c)

Elapsed time (sec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

• Request-centric I/O prioritization (RCP)

• Critical I/O: I/O in the critical path of request handling

• Policy: holistically prioritizes critical I/Os along the I/O path

Our Approach



Challenges

• How to accurately identify I/O criticality

• How to effectively enforce I/O criticality
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Critical I/O Detection

• Enlightenment API

• Interface for tagging foreground tasks

• I/O priority inheritance

• Handling task dependency

• Handling I/O dependency

26



I/O Priority Inheritance

• Handling task dependency

• Locks

• Condition variables

27

FG
lock

BG I/OFG

inherit

BG

submit

complete

FG BG

unlock

FG
wait

BG

register

BG

inherit

FG BGI/O

submit

complete

wake

CV CV CV



I/O Priority Inheritance

• Handling I/O dependency
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I/O Priority Inheritance
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I/O Priority Inheritance

• Handling I/O dependency
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I/O Priority Inheritance

• Handling I/O dependency
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I/O Priority Inheritance

• Handling I/O dependency
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I/O Priority Inheritance

• Handling I/O dependency
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I/O Priority Inheritance

• Handling I/O dependency
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I/O Priority Inheritance

• Handling I/O dependency

36

Block Layer

Q admission stage

I/O

I/O

Sched queueing stage

I/O

Non-critical I/O tracking

update

Descriptor 
Location 
Resolver 
Sector #

PER-DEV 
ROOT

NCIO NCIO

NCIO NCIO



I/O Priority Inheritance

• Handling I/O dependency
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Handling Transitive Dependency

• Possible states of dependent task
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Handling Transitive Dependency

• Recording blocking status
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Handling Transitive Dependency

• Recording blocking status
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Handling Transitive Dependency

• Recording blocking status
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Handling Transitive Dependency

• Recording blocking status
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Challenges

• How to accurately identify I/O criticality

• Enlightenment API

• I/O priority inheritance

• Recording blocking status

• How to effectively enforce I/O criticality
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Criticality-Aware I/O Prioritization

• Caching layer

• Apply low dirty ratio for non-critical writes (1% by default)

• Block layer

• Isolate allocation of block queue slots

• Maintain 2 FIFO queues

• Schedule critical I/O first

• Limit # of outstanding non-critical I/Os (1 by default)

• Support queue promotion to resolve I/O dependency
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Evaluation

• Implementation on Linux 3.13 w/ ext4

• Application studies

• PostgreSQL relational database

• Backend processes as foreground tasks

• I/O priority inheritance on LWLocks (semop)

• MongoDB document store

• Client threads as foreground tasks

• I/O priority inheritance on Pthread mutex and condition vars (futex)

• Redis key-value store

• Master process as foreground task
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Evaluation

• Experimental setup

• 2 Dell PowerEdge R530 (server & client)

• 1TB Micron MX200 SSD

• I/O prioritization schemes

• CFQ (default), CFQ-IDLE

• SPLIT-A (priority), SPLIT-D (deadline) [SOSP’15]

• QASIO [FAST’15]

• RCP
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Application Throughput

• PostgreSQL w/ TPC-C workload
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Application Throughput

• PostgreSQL w/ TPC-C workload

48

0

1000

2000

3000

4000

5000

6000

7000

10GB dataset 60GB dataset 200GB dataset

Tr
a
n
sa

ct
io

n
 t
h
ro

u
g
h
p
u
t 

(t
rx

/s
e
c)

CFQ CFQ-IDLE SPLIT-A



Application Throughput

• PostgreSQL w/ TPC-C workload
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Application Throughput

• PostgreSQL w/ TPC-C workload
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Application Throughput

• PostgreSQL w/ TPC-C workload
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Application Throughput

• Impact on background task
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Application Throughput

• Impact on background task
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Application Throughput

• Impact on background task
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Our scheme improves
application throughput 
w/o penalizing 
background tasks
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Application Latency

• PostgreSQL w/ TPC-C workload
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Application Latency

• PostgreSQL w/ TPC-C workload
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Summary of Other Results

• Performance results

• MongoDB: 12%-201% throughput, 5x-20x latency at 99.9th

• Redis: 7%-49% throughput, 2x-20x latency at 99.9th

• Analysis results

• System latency analysis using LatencyTOP

• System throughput vs. Application latency

• Need for holistic approach
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Conclusions

• Key observation
• All the layers in the I/O path should be considered as a whole with I/O 

priority inversion in mind for effective I/O prioritization

• Request-centric I/O prioritization
• Enlightens the I/O path solely for application performance

• Improves throughput and latency of real applications

• Ongoing work
• Practicalizing implementation

• Applying RCP to database cluster with multiple replicas
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Thank You!

• Questions and comments

• Contact

• sangwook@apposha.io
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