

On Designing and Evaluating Phishing Webpage Detection Techniques for the Real World

Samuel Marchal, N. Asokan Aalto University, Finland

samuel.marchal@aalto.fi

Phishing webpage

Phishing webpage (phish)

Legitimate webpage

State of research on phishing detection

- Threat known since late 1990s
- First protection technique^[1] early 2000s
- > 4,000 articles on "phishing"
 - Half as popular as "malware"
- Many solutions report high accuracy
 - Cantina^[2] (2007): 97%
 - Whittaker et al.^[3] (2010): 99.9%
 - Off-the-Hook^[4] (2017): 99.9%

^[1] Herzberg and Gbara, "Trustbar: Protecting (even naive) web users from spoofing and phishing attacks" in Cryptology ePrint Archive, 2004.

^[2] Zhang et al., "CANTINA: A content-based approach to detecting phishing web sites" in WWW, 2007.

^[3] Whittaker et al., "Large-scale automatic classification of phishing pages" in NDSS Symposium, 2010.

^[4] Marchal et al., "Off-the-hook: An efficient and usable client-side phishing prevention application" in IEEE Transactions on Computers 66, 10, 2017.

State of phishing threat

Monetary damage:

- 2013-2016: \$1.6 billion loss for businesses (US only)
- Most expensive attack (2015): \$100 million cost (US defense department)

Phishing attacks 2012-2016

300,000 250,000 200,000 Attacks 150,000 Domains used for 100,000 Phishing Maliciously Registered 50,000 Domains 0 2013 2015 2012

Phishing websites 2017-2018

Source: Anti Phishing Worgin Group (APWG).

Detection of phishing webpages

Gap between

- High accuracy reported in literature
- Low effectiveness when applied to the real-world

What goes wrong during design & evaluation?

- Design choices only driven by high detection accuracy level
- Evaluation not representative of the real-world

Effective phishing detection

Requirements for effectiveness

- Detection performance
- Temporal resilience
- Deployability
- Usability

Recommendations

- Design of detection method
- Evaluation
 - Ground truth selection
 - Assessment methodology

ML-based phishing webpage detection

Machine learning based phishing detection

Phishing detector training

Design of detection method

System design

	Centralized	Client-side
Pros	 High computational power Easy model updates Confidentiality of detection model 	 User privacy Fast decision Website data availability
Cons	 Delay in decision Impacts user privacy (browsing history) 	 Degrades client device performance Lack of model confidentiality

Centralized solution currently favored by industry....

....but increasing privacy concerns may change the game.

Evaluation

Evaluation setup

Ground truth collection

Ground truth selection

Improve relevance of accuracy results

- Validity
- Generalizability
- Reproducibility

Ground truth

- Validity of labels
- Representativeness
- Availability

Webpage selection

Generic guidelines

- Multi-lingual + different alphabet
- Publicly available sources (≠ static dataset)

Legitimate webpage

- Diverse popularity
- Real URLs: as browsed
 - www.amazon.com ≠ https://www.amazon.com/gp/cart/view.html?ref=nav_cart

Phishing webpage

- Targeting different brands
- Fresh and up-to-date
 - PhishTank (https://www.phishtank.com/)
 - OpenPhish (https://openphish.com)

Phishing webpage validity

Analysis of 23,118 phishing pages (source Phishtank)

- 59% valid (13,646)
- 41% invalid (9,472)
 - Content unavailable
 - Domain parking
 - Legitimate webpage

Phishing data requires sanitization

- Scrape and save webpages of fresh phishes
- Sanitization
 - Screenshot analysis
 - Google search with keywords
 - Later visit of URL

Dataset usage

Follow realistic use cases

- Train model with oldest data & test with newest data
 - No cross-validation to get accuracy metrics
- Larger testing set than training set → scalability
- Use real-world distribution: 1 phish / 100 legitimate pages → relevant accuracy metrics

Accuracy metrics

Positive (P) = identified as phish	Negative (N) = identified as benign
True positive (TP) = detected phish	False positive (FP) = benign detected as phish
False negative (FN) = missed phish	True negative (TN) = benign identified benign

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$

$$Precision = \frac{TP}{TP+FP}$$

Temporal resilience

Ensure steadiness of effectiveness over time

Longitudinal study: readiness for deployment

- Data collection over extended period of time
- Recompute accuracy metrics
 - Steady accuracy without retraining → ready for deployment / low maintenance cost
 - Steady accuracy with retraining → ready for deployment / maintenance cost depends on retraining period
 - Decrease in accuracy with retraining → not ready for deployment

Resilience to adversaries

- Security assessment using adversarial machine learning attacks
- Evaluate manipulability of features

Conclusion

Recommendations

- Design of detection method
- Evaluation
 - Ground truth selection
 - Assessment methodology

Goals for research in phishing detection

- Relevant accuracy results + easy comparison
- More impactful research → technology transfer

On Designing and Evaluating Phishing Webpage Detection Techniques for the Real World

Samuel Marchal, N. Asokan Aalto University, Finland

samuel.marchal@aalto.fi