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IoT Clouds Big Data

Huge volumes of streaming data with real-time processing requirements 
Enormous pressure on the capacity and bandwidth of servers’ main memory 



Is Data Compression Useful for Streaming?
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• Intuitively, streaming with simple operators should be bandwidth-
bottlenecked: either network or memory bandwidth

• Simple single node experiment with the state-of-the-art streaming 
engine, Trill, with the Where query over large one column 8-byte field:
E.g., Where (e => e.errorCode != 0)

• Expectation: observe memory bandwidth as a major bottleneck



Compressibility ≠> Performance Gain

4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1T 4T 8T 12T 16T 20T 24T 28T 32T 36T 40T 44T 48T

Th
ro

ug
hp

ut
 (M

T/
s)

# Threads

Ideal 8X Compression vs. No Compression on Where Query with Trill
1 byte 8 byte

Only 10%-15% performance improvement with 8X compression



What Went Wrong?

Memory allocation overhead:
just-in-time copy of payloads to create a streameable event
Memory copying and reallocation:

enables flexible column-oriented data batches 
Inefficient bit-wise manipulation
Hash tables manipulations
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Compressibility => Performance Gain
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If no artificial bottlenecks: performance improvement is close to 
compression ratio (7.6X speedup with 8X compression) 
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Up to 6.1X speedup with realistic compression algorithm: 
Base-Delta Encoding



Prerequisites for Efficient Data Streaming

üFixed Memory Allocation

üEfficient HashMap Primitives

üEfficient Filtering Operations (bit-wise manipulations)
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Key Observations

• Memory bandwidth becomes the major bottleneck if 
streaming is properly optimized

• Dominant part of the data is synthetic in nature and hence has 
a lot of redundancy
– Can be exploited through efficient data compression
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TerseCades: Baseline System Overview
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Key Design Choices and Optimizations
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üLossless Compression 
üArithmetic vs. Dictionary-based Compression
üDecompression is on the critical path

üLossy Compression without Output Quality Loss
üIntegers and floating points

üReducing Compression/Decompression Cost
üHardware-based acceleration: vectorization, GPU, FPGA

üDirect Execution on Compressed Data



Lossless Compression: Base-Delta Encoding
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ü Fast Decompression: 
vector addition

ü Simple SW/HW Implementations: 
arithmetic and comparison

ü Effective: good compression ratio



Lossy Compression Without Output Quality Loss

• Base-Delta Encoding modification
– Truncate deltas when full precision not required

• ZFP floating point compression engine
– Equivalent of BD in floating point domain with controlled precision
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Reducing Compression Overhead
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SIMD/Vectorization GPU FPGA

Intel Xeon with 256-bit SIMD NVIDIA 1080Ti Altera Stratix V



Execution on Compressed Data

ProcessorMemory

Decompress

CompressCompressed

Incurs decompression and compression latency
High energy overhead

Can we leverage data being in a condensed form?



Execution on Compressed Data
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Execution on Compressed Data

16

Value 1 Value 2 Value 3 Value N

8B

Meta
data

Value 
1

8B 8B 8B

Value 
2

Value 
3

Value 
N

1B 1B 1B 1B

Value N 8-byte Comparisons

Value 1 or N/8 Comparisons

üLow Latency
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üNarrower Operations



Evaluation: Methodology

• CPU: 24-core system based on Intel Xeon CPU E5-2673, 
2.40GHz with SMT-enabled, and 128GB of memory

• GPU: NVIDIA GeForce GTX 1080 Ti with 11GB of GDDR5X 
memory

• FPGA: Altera Stratix V FPGA, 200MHz
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STREAM Benchmark Results 
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Vectorization further reduces compression/decompression 
overhead, especially for smaller number of threads



STREAM Benchmark Results (2)
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Search benchmark

When direct execution is applicable, it can significantly 
improve performance as it reduces the total computation 
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Monitoring and Troubleshooting: PingMesh
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C2cProbeCount = Stream
.HopWindow(windowSize, period)
.Where(e => e.errorCode != 0 

&& e.rtt >= 100)
.GroupApply((e.srcCluster, 

e.dstCluster))
.Aggregate(c => c.Count())

TimeStamp
(8, BD)

ErrorCode
(4, EN+BD)

SrcCluster
(4, HS+BD)

DstCluster
(4, HS+BD)

RoundTripTime
(4, BD)

BD – Base+Delta encoding
HS – String hashing
EN – Enumeration

Number in parenthesis – number of bytes 
before compression

T2tProbeCount = Stream
.HopWindow(windowSize, period)
.Where(e => e.errorCode != 0 

&& e.rtt >= 100)
.Join(m, e => e.srcIp, m => m.ipAddr,
(e,m) => {e, srcTor=m.torId})
.Join(m, e => e.dstIp, m => m.ipAddr,
(e,m)=> {e, dstTor=m.torId})
.GroupApply((srcTor, dstTor))
.Aggregate(c => c.Count())



PingMesh C2cProbeCount Results
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Performance of Individual Operators
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The highest performance benefits are for operators where 
direct execution is applicable (e.g., Where)



IaaS VM Performance Counters
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Upto 6X compression with ZFP lossy compression algorithm

TimeStamp
(8, BD)

Cluster
(11, HS)

VmID
(36, HS)

SampleCount
(4, BD)

MinValue
(8, ZFP)

MaxValue
(8, ZFP)

CounterName
(15, EN)

NodeId
(10, HS)

Datacenter
(3, HS)

AverageValue
(8, ZFP)

BD – Base+Delta encoding; HS – String hashing; EN – Enumeration;
ZFP – efficient floating point compression (lossy with controlled accuracy)

Number in parenthesis – number of bytes before compression



IoT Datasets
• Geolocation data (GPS coordinates from GeoLife project):
– 4.5X average compression ratio
– Less than 10-6  loss in accuracy

• Weather data (Hurricane Katrina in 2005)
– 3X-4X compression ratios for 18 metrics used in the data set
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TimeStamp (8, BD) Latitude (8, ZFP)
Longtitude (8, ZFP) Altitude (4, BD)



Comparison to Prior Work

• Compression in databases
– Succinct, NSDI’15: execution on compressed textual data, complete 

redesign of data storage in memory
– Abadi, SIGMOD’06: compression in column-oriented data stores; uses 

conventional compression algorithms not applicable to streaming
• Generic memory compression
– Execution on compressed data is not supported
– Lower compression ratios due to generality of algorithms chosen
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Summary

• Q: Can data compression be effective in stream processing?
• A: Yes, our TerseCades design is the proof-of-concept
– Properly optimize the baseline system
– Use light-weight data compression algorithms + HW acceleration
– Directly execute on compressed data

• Results on troubleshooting workload used in production 
allowed to replace 16 servers with just one!
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