
NiaPy: Python microframework for building
nature-inspired algorithms
Grega Vrbančič1, Lucija Brezočnik1, Uroš Mlakar1, Dušan Fister2, and
Iztok Fister Jr.1

1 University of Maribor, Faculty of Electrical Engineering and Computer Science 2 University of
Maribor, Faculty of Economics and BusinessDOI: 10.21105/joss.00613

Software
• Review
• Repository
• Archive

Submitted: 28 February 2018
Published: 22 March 2018

Licence
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

Nature-inspired algorithms are a very popular tool for solving optimization problems
(Yang 2014), (Hassanien and Emary 2016). Numerous variants of nature-inspired algo-
rithms have been developed (Iztok Fister Jr. and Fister 2013) since the beginning of
their era. To prove their versatility, those were tested in various domains on various
applications, especially when they are hybridized, modified or adapted. However, im-
plementation of nature-inspired algorithms is sometimes a difficult, complex and tedious
task. In order to break this wall, NiaPy is intended for simple and quick use, without
spending time for implementing algorithms from scratch.
Currently, the framework consists of algorithms, benchmark functions and supporting
features. There are 8 basic implemented algorithms: Artificial Bee Colony algorithm,
Bat algorithm, Differential Evolution algorithm, Firefly algorithm, Flower Pollination
algorithm, Genetic algorithm, Grey Wolf Optimizer, Particle Swarm Optimization and
2 hybrid variants: Hybrid Bat algorithm, self-adaptive Differential Evolution algorithm.
The following benchmark functions (Jamil and Yang 2013) are also included in framework:
Ackley, Alpine, Alpine1, Alpine2, Chung Reynolds, Csendes, Griewank, Happy cat, Pin-
tér, Qing, Quintic, Rastrigin, Ridge, Rosenbrock, Salomon, Schumer Steiglitz, Schwefel,
Schwefel 2.21, Schwefel 2.22, Sphere, Step, Step2, Step3, Stepint, Styblinski-Tang, Sum
Squares, Whitley. A supporting feature consists of a runner utility that allows users to
run selected algorithms easily, along with predefined or customized benchmark functions.
By the same token, it also allows export to various formats, such as, for example, LaTeX,
JSON, and Excel.
There are also some existing similar Python implementations/frameworks of nature-
inspired algorithms, as for example DEAP (Félix-Antoine Fortin and Gagné 2012),
EvoloPy (Hossam Faris and Merelo 2016), PySwarms (Miranda 2018), inspyred (Garrett
2014), and Pygmo (Izzo 2012). However, NiaPy tends to be very minimalistic and easy
for use, especially for practitioners and students.
Key features of NiaPy:

• Since it is a very extensible framework, new algorithms can be integrated into it
easily.

• Good documentation.
• Practitioner friendly. Users do not need to implement algorithms from scratch.
• Due to the many implemented algorithms, researchers can study how similar algo-

rithms are (the problem of metaphor-based algorithms (Sörensen 2015)).
• The framework allows a fair comparison. Only a number of function evaluations are

taken as the stopping criterion.
• Reviewers can check for referential results quickly.

Vrbančič et al., (2018). NiaPy: Python microframework for building nature-inspired algorithms. Journal of Open Source Software, 3(23), 613.
https://doi.org/10.21105/joss.00613

1

https://doi.org/10.21105/joss.00613
https://github.com/openjournals/joss-reviews/issues/613
https://github.com/NiaOrg/NiaPy
http://dx.doi.org/10.5281/zenodo.1205048
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00613


Figure 1: NiaPy architecture

• Rapid prototyping of new approaches, especially modified algorithms.
• Supportive community.

In conclusion, NiaPy is a new microframework for building and using nature-inspired
algorithms in Python. Stepping stones for the design and implementation of NiaPy were
the limitations of existing software, that were mostly limited in documentation, number
of algorithms, inconsistent stopping criteria, non-modular software architecture. In the
future, more algorithms will be added to the current collection, while support will also be
developed for constraint optimization problems.

Acknowledgement

The authors acknowledge the financial support from the Slovenian Research Agency (re-
search core funding No. P2-0057).

References

Félix-Antoine Fortin, Marc-André Gardner, François-Michel De Rainville, and Christian
Gagné. 2012. “DEAP: Evolutionary algorithms made easy.” Journal of Machine Learning
Research 13 (Jul):2171–5.
Garrett, Aaron. 2014. “inspyred: Bio-inspired Algorithms in Python.” 2014. https:
//pypi.python.org/pypi/inspyred.
Hassanien, Aboul Ella, and Eid Emary. 2016. Swarm intelligence: principles, advances,
and applications. CRC Press.
Hossam Faris, Seyedali Mirjalili, Ibrahim Aljarah, and Juan J Merelo. 2016. “EvoloPy:
An Open-source Nature-inspired Optimization Framework in Python.” In Proceedings of
the 8th International Joint Conference on Computational Intelligence, 171–77.

Vrbančič et al., (2018). NiaPy: Python microframework for building nature-inspired algorithms. Journal of Open Source Software, 3(23), 613.
https://doi.org/10.21105/joss.00613

2

https://pypi.python.org/pypi/inspyred
https://pypi.python.org/pypi/inspyred
https://doi.org/10.21105/joss.00613


Iztok Fister Jr., Iztok Fister, Xin-She Yang, and Dušan Fister. 2013. “A Brief Review of
Nature-Inspired Algorithms for Optimization.” Elektrotehniški Vestnik 80 (3):116–22.
Izzo, Dario. 2012. “Pygmo and pykep: Open source tools for massively parallel optimiza-
tion in astrodynamics (the case of interplanetary trajectory optimization).” In Proceedings
of the Fifth International Conference on Astrodynamics Tools and Techniques, ICATT.
Jamil, Momin, and Xin-She Yang. 2013. “A Literature Survey of Benchmark Functions
For Global Optimization Problems.” International Journal of Mathematical Modelling and
Numerical Optimisation 4 (2):150–94. https://doi.org/10.1504/IJMMNO.2013.055204.
Miranda, Lester James V. 2018. “PySwarms: a research toolkit for Particle Swarm Opti-
mization in Python.” Journal of Open Source Software 3 (21). https://doi.org/10.21105/
joss.00433.
Sörensen, Kenneth. 2015. “Metaheuristics—the metaphor exposed.” International Trans-
actions in Operational Research 22 (1). Wiley Online Library:3–18. https://doi.org/10.
1111/itor.12001.
Yang, Xin-She. 2014. Nature-inspired optimization algorithms. Elsevier.

Vrbančič et al., (2018). NiaPy: Python microframework for building nature-inspired algorithms. Journal of Open Source Software, 3(23), 613.
https://doi.org/10.21105/joss.00613

3

https://doi.org/10.1504/IJMMNO.2013.055204
https://doi.org/10.21105/joss.00433
https://doi.org/10.21105/joss.00433
https://doi.org/10.1111/itor.12001
https://doi.org/10.1111/itor.12001
https://doi.org/10.21105/joss.00613

	Summary
	Acknowledgement
	References

