
pyneqsys: Solve symbolically defined systems of
non-linear equations numerically
Björn Dahlgren1

1 KTH Royal Institute of TechnologyDOI: 10.21105/joss.00531

Software
• Review
• Repository
• Archive

Submitted: 08 January 2018
Published: 22 January 2018

Licence
Authors of JOSS papers retain
copyright and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

Solving systems of non-linear equations numerically is a common task in scientific mod-
eling work. Many software libraries have the capability to solve these kinds of systems,
however, each require slightly different forms of input. In addition, it is often important
that the user formulates the system in a manner which is suitable for the numerical algo-
rithm. Finding an effective formulation is often an iterative process, which is facilitated
if the system can be transformed symbolically.
pyneqsys offers a common interface to a handful of solvers. It furthermore provides tools to
input and work with such systems symbolically. Having a symbolic representation allows
pyneqsys to automatically derive the Jacobian matrix, which is a task which is laborious
and a source of error when performed by hand. By relying on a computer algebra system,
pyneqsys allows the user to apply e.g. variable transformations or generate representations
in LaTeX, MathML etc. By default SymPy (Meurer et al. 2017) is used as the symbolic
back-end, but other libraries are also supported.
Adapting pyneqsys to use new third party solvers is straightforward and some example
solvers are provided with the library. Together with its ability to perform variable trans-
formations symbolically pyneqsys allows the users to write code for their problem once
and then easily test different formulations and solvers. This greatly lowers the burden of
validation and speeds-up the iterative finding of the best method for solving the problem.

Features

• Unified interface to the KINSOL solver from SUNDIALS (Hindmarsh et al. 2005),
SciPy’s solvers (Jones et al. 2001–2001--), levmar (Lourakis 2004), NLEQ2
(Weimann 1991) and mpmath (Johansson and others 2013).

• Convenience methods for solving and plotting solutions as parameters of the system
are varied.

• Automatic derivation of the Jacobian matrix.
• Symbolic variable transformations.
• Symbolic removal of linearly dependent equations by rewriting (linear parts) in

reduced row echelon form.
• Carrying over the solution as initial guess in parameter variations.
• Facility for defining meta-algorithms (e.g. solve the system for one formulation first,

and refine the solution by solving it as another formulation).
• Solve non-linear systems containing conditional equations (different equations gov-

erning different domains).

Dahlgren, (2018). pyneqsys: Solve symbolically defined systems of non-linear equations numerically. Journal of Open Source Software, 3(21),
531. https://doi.org/10.21105/joss.00531

1

https://doi.org/10.21105/joss.00531
https://github.com/openjournals/joss-reviews/issues/531
https://github.com/bjodah/pyneqsys
http://dx.doi.org/10.5281/zenodo.1156898
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00531


References

Hindmarsh, Alan C, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban, Dan E
Shumaker, and Carol S Woodward. 2005. “SUNDIALS: Suite of Nonlinear and Differen-
tial/Algebraic Equation Solvers.” ACM Transactions on Mathematical Software (TOMS)
31 (3). ACM:363–96. https://doi.org/10.1145/1089014.1089020.
Johansson, Fredrik, and others. 2013. Mpmath: A Python Library for Arbitrary-Precision
Floating-Point Arithmetic (Version 0.18).
Jones, Eric, Travis Oliphant, Pearu Peterson, and others. 2001–2001--. “SciPy: Open
Source Scientific Tools for Python.” http://www.scipy.org/.
Lourakis, M.I.A. 2004. “Levmar: Levenberg-Marquardt Nonlinear Least Squares Algo-
rithms in C/C++.” http://www.ics.forth.gr/~lourakis/levmar/.
Meurer, Aaron, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kir-
pichev, Matthew Rocklin, AMiT Kumar, et al. 2017. “SymPy: Symbolic Computing
in Python.” PeerJ Computer Science 3 (January). PeerJ:e103. https://doi.org/10.7717/
peerj-cs.103.
Weimann, UN. 1991. “A Family of Newton Codes for Systems of Highly Nonlinear Equa-
tions.” ZIB Technical Report TR-91-10, ZIB, Berlin, Germany.

Dahlgren, (2018). pyneqsys: Solve symbolically defined systems of non-linear equations numerically. Journal of Open Source Software, 3(21),
531. https://doi.org/10.21105/joss.00531

2

https://doi.org/10.1145/1089014.1089020
http://www.scipy.org/
http://www.ics.forth.gr/~lourakis/levmar/
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.21105/joss.00531

	Summary
	Features
	References

