Tese de Doutorado
DOI
https://doi.org/10.11606/T.55.2023.tde-02022024-151957
Documento
Autor
Nome completo
Gabriel Esteban Perico Monsalve
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2023
Orientador
Banca examinadora
Santos, Raimundo Nonato Araújo dos (Presidente)
Fernandes, Alexandre César Gurgel
Menegon Neto, Aurélio
Ruas, Maria Aparecida Soares
Título em inglês
Bifurcation set and index at infinity of polynomials
Palavras-chave em inglês
Bifurcation set
Index at infinity
Milnor set
Resumo em inglês
In the context of polynomial functions f : R2 → R of degree d > 0, we tackle three fundamental challenges: effective detection of atypical values, computation of the index at infinity, and estimation of the upper bound of the index in terms of the degree d. We demonstrate that the presence of specific phenomena at infinity in the fibers, such as the vanishing and splitting of fiber components, leads to the emergence of atypical values, also known as bifurcation values. To identify these phenomena, we leverage the connected components of the Milnor set of the polynomial f outside a compact set in R2, allowing us to describe the topological behavior of fibers in proximity to infinity. Furthermore, we provide a detailed characterization of atypical values and apply our approach to compute them for two polynomials exhibiting intriguing phenomena at infinity. In our study of the index at infinity ind∞f for polynomial functions f : R2 → R with isolated singularities, we define this index as the winding number of the gradient vector field grad f restricted to a circle C encompassing all singular points of f . We present a formula that unveils how the behavior of fibers at infinity influences this index. Lastly, we investigate the phenomena contributing to the gap between ind∞f and the upper bound of the index, previously established by Durfee.
Título em português
Conjunto de bifurcação e índice no infinito de polinômios
Palavras-chave em português
Conjunto de bifurcação
Conjunto de Milnor
Índice no infinito
Resumo em português
No contexto de funções polinomiais f : R2 → R de grau d > 0, enfrentamos três desafios fundamentais: a detecção eficaz de valores atípicos, o cálculo do índice no infinito e a estimativa do limite superior do índice em termos do grau d. Demonstramos que a presença de fenômenos específicos no infinito das fibras, como o desaparecimento e a divisão das componentes da fibra, leva ao surgimento de valores atípicos, também conhecidos como valores de bifurcação. Para identificar esses fenômenos, utilizamos as componentes conexas do conjunto de Milnor do polinômio f fora de um compacto em R2, permitindo-nos descrever o comportamento topológico das fibras em proximidade do infinito. Além disso, fornecemos uma caracterização detalhada de valores atípicos e aplicamos nossa abordagem para calculá-los em dois polinômios que exibem fenômenos intrigantes no infinito. Em nosso estudo do índice no infinito ind∞f para funções polinomiais f : R2 → R com singularidades isoladas, definimos este índice como o número de voltas do campo de vetores do gradiente grad f restrito a um círculo C que engloba todos os pontos singulares de f . Apresentamos uma fórmula que revela como o comportamento das fibras no infinito influencia este índice. Por fim, investigamos os fenômenos que contribuem para a diferença entre ind∞f e o limite superior do índice, previamente estabelecido por Durfee.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2024-02-02