Tese de Doutorado
DOI
https://doi.org/10.11606/T.55.2024.tde-09082024-163642
Documento
Autor
Nome completo
Luis Alberto Rosero Rosero
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2024
Orientador
Banca examinadora
Osório, Fernando Santos (Presidente)
Angelico, Bruno Augusto
Branco, Kalinka Regina Lucas Jaquie Castelo
Pessin, Gustavo
Título em inglês
Leveraging Modular Architectures and End-to-End Learning for Autonomous Driving in Unmapped Environments
Palavras-chave em inglês
Autonomous driving
CARLA simulator
Decision-making
Disparity
End-to-end
Hybrid architecture
Intelligent and autonomous vehicles
Modular architecture
Path planning
Perception
Prediction
Resumo em inglês
Autonomous driving promises a revolution in transportation, unlocking significant social and economic benefits. Despite notable advancements in autonomous vehicle technology tailored for mapped environments, navigating in unmapped areas remains a persistent challenge. The limited utilization of developments in modular pipelines exacerbates this issue, impeding progress towards map-free navigation. This thesis delves into the development of autonomous driving architectures for real-time navigation, both with and without maps. Three approaches are proposed, implemented, compared, and evaluated to create new and robust methodologies: Modular Pipeline: A custom agent performs data collection and serves as a baseline for mapbased navigation. Traditional algorithms and new modules for perception, decision-making, and prediction are integrated to ensure safe navigation in mapped environments. This agent acts as the "teacher" for the mapless navigation agents. End-to-End Learning: Neural networks learn driving policies from data through imitation learning techniques. Simplicity is prioritized for real-time operation in map-free environments. Different sensor types and fusion methods are explored to enhance performance. Hybrid Architecture: Combining the interpretability of modular systems with the learning capabilities of end-to-end models, this approach integrates data-driven path planning with modular perception and control modules. It offers robustness, flexibility, and adaptability. Furthermore, a ROS-based framework named "CaRINA agent" is developed to implement modular pipelines and facilitate incorporating end-to-end methods and constructing hybrid architectures. To comprehensively evaluate our methodologies, we leverage the CARLA Leaderboards, achieving competitive results in both Leaderboard 1 and Leaderboard 2, specifically ranking among the top in the SENSORS and MAP categories. Moreover, our modular architecture and hybrid agent secured 1st and 2nd place in the 2023 CARLA Autonomous Driving Challenge (CADCH), underscoring the effectiveness of our proposed approaches.
Título em português
Navegando pelo desconhecido: utilizando arquiteturas modulares e aprendizado para direção autônoma em ambientes não mapeados
Palavras-chave em português
Arquitetura híbrida
Arquitetura modular
Condução autônoma
Disparidade
End-to-end
Percepção
Planejamento de trajetória
Predição
Simulador CARLA
Tomada de decisão
Veículos autônomos e inteligentes
Resumo em português
A condução autônoma promete uma revolução na área de transportes, proporcionando benefícios sociais e econômicos significativos. Apesar dos avanços notáveis na tecnologia de veículos autônomos em ambientes mapeados, a navegação em áreas não mapeadas continua a ser um desafio persistente. Esta tese investiga o desenvolvimento de arquiteturas de condução autônoma para navegação em tempo real, com e sem mapas. Três abordagens são propostas, implementadas, comparadas e avaliadas: Arquitetura modular: Um agente personalizado realiza a coleta de dados e serve como linha de base para navegação baseada em mapa. Algoritmos tradicionais e novos módulos para percepção, tomada de decisão e previsão são integrados para garantir uma navegação segura em ambientes mapeados. Este agente atua como professor para os agentes de navegação sem mapa. Aprendizagem end-to-end: As redes neurais aprendem políticas a partir de dados por meio de técnicas de aprendizagem por imitação. A simplicidade é priorizada para operação em tempo real em ambientes sem mapas. Diferentes tipos de sensores e métodos de fusão são explorados para melhorar o desempenho. Arquitetura Híbrida: Combinando a interpretabilidade de sistemas modulares com a capacidade de aprendizagem de modelos end-to-end, esta abordagem integra o planejamento de trajetória baseado em dados com módulos de percepção, localizacao, tomada de decisao e controle. Oferece robustez, flexibilidade e adaptabilidade. Além disso, um framework baseado em ROS denominada "CaRINA agent" é desenvolvido para implementar pipelines modulares e facilitar a incorporação de métodos end-to-end e a construção de arquiteturas híbridas. Para avaliar de forma abrangente nossas metodologias, aproveitamos os Leaderboards do CARLA, alcançando resultados competitivos tanto no Leaderboard 1 quanto no Leaderboard 2, classificando as nossas abordagens especificamente entre os primeiros nas categorias SENSORES e MAP. Além disso, a nossa arquitetura modular e agente híbrido garantiram o 1º e o 2º lugar no CARLA Autonomous Driving Challenge (CADCH) 2023, mostrando a eficácia das abordagens propostas.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2024-08-09