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Statistical Practice
Markov Chain Monte Carlo in Practice:

A Roundtable Discussion
Moderator: Robert E. KAss Panelists: Bradley P. CARLIN, Andrew GELMAN, and Radford M. NEAL

Markov chain Monte Carlo (MCMC) methods make possi
ble the use of flexible Bayesian models that would other
wise be computationally infeasible. In recent years, a great
variety of such applications have been described in the lit
erature. Applied statisticians who are new to these methods
may have several questions and concerns, however: How
much effort and expertise are needed to design and use a
Markov chain sampler? How much confidence can one have
in the answers that MCMC produces? How does the use of
MCMC affect the rest of the model-building process? At
the Joint Statistical Meetings in August, 1996, a panel of
experienced MCMC users discussed these and other issues,
as well as various "tricks of the trade." This article is an
edited recreation of that discussion. Its purpose is to offer
advice and guidance to novice users of MCMC-and to not
so-novice users as well. Topics include building confidence
in simulation results, methods for speeding and assessing
convergence, estimating standard errors, identification of
models for which good MCMC algorithms exist, and the
current state of software development.

KEY WORDS: Bayesian software; Convergence assess
ment; Gibbs sampler; Metropolis-Hastings algorithm.

1. INTRODUCTION

The 1990s have witnessed a burst of activity in applying
Bayesian methods. Most of these applications have used
Markov chain Monte Carlo (MCMC) methods to simu
late posterior distributions. The simulation algorithm is, in
its basic form, quite simple and is becoming standard in
many Bayesian applications (see, e.g., Gilks, Richardson,
and Spiegelhalter 1996). Furthermore, it has been around
for a long time (dating at least to Metropolis et al. 1953),
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and the essential theory is in place (see Tierney 1994 for a
review). Nonetheless, newcomers often run into substantial
difficulties. For this reason we felt it would be worthwhile
to discuss some ofthe most pressing issues at the 1996 Joint
Statistical Meetings in Chicago. Here we offer a recreation
of that discussion.

Before launching into our discussion, a quick review of
some terminology and standard notation will be helpful.
The problem is to simulate observations from a posterior
distribution, obtained via Bayes' Rule as

p(yIO)p(O)
p(Oly) = Jp(yIO)p(O) dO '

where p(yIO) denotes the likelihood and p(0) the prior den
sity for the vector of k model parameters O. The practical
virtue of simulation methods in general, including MCMC,
is that, given a set of random draws 0(1),0(2), ... ,O(G)
from the posterior distribution, one can estimate virtually
all summaries of interest from the posterior distribution di
rectly from the simulations. For example, means, variances,
and posterior intervals for a quantity of interest h(0) can be
estimated using the sample mean, variance, and central in
tervals of the values h(O(l»),h(0(2»), ... , h(O(G»). MCMC
methods have been successful because they allow one to
draw simulations from a wide range of distributions, includ
ing many that arise in statistical work, for which simulation
methods were previously much more difficult to implement.

For statistical users, there are two basic methods of
MCMC. The Gibbs sampler sequentially samples from the
collection of full (or complete) conditional distributions
p(BiIBj#i,y), i = I, ... ,k, and it does, under fairly broad
conditions, produce a Markov chain with the joint poste
rior density p(Oly) as its stationary distribution. The algo
rithm was named by Geman and Geman (1984); Gelfand
and Smith (1990) showed how the method could be ap
plied to a wide variety of Bayesian inference problems. An
excellent recent tutorial was given by Casella and George
(1992).

The second method applies when it is difficult to sim
ulate from the full conditionals. In this case, one may in
stead simulate from a different Markov chain, having some
other stationary distribution, but then modify it in such a
way so that a new Markov chain is constructed that has
the posterior as its stationary distribution. This magic is
performed by the Metropolis-Hastings algorithm. It sam
ples from a prespecified candidate distribution for each pa
rameter (or group of parameters), and subsequently uses
an accept-reject step. A key feature is that it involves only
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the unnormalized posterior density p(ylfJ)p(fJ) in the sam
pling chain. Here the seminal references are Metropolis et
al. (1953) and Hastings (1970); Chib and Greenberg (1995)
offer a fine tutorial. The required selection of an appropriate
candidate density makes the Metropolis-Hastings algorithm
more involved than the Gibbs sampler, but it has the advan
tage of being more general, and is particularly helpful for
sampling parameters that lack closed, easily recognizable
forms for their full conditional distributions.

A properly derived and implemented MCMC method will
produce draws from the joint posterior density p(fJly) once
it has converged to stationarity. As a result, a primary con
cern in applying such a method is determining that it has
in fact essentially converged; that is, that after an initial
burn-in period (designed to remove dependence of the sim
ulated chain on its starting location), all further samples
may be safely thought of as coming from the stationary
distribution. This determination is complicated by two fac
tors. First, since what is produced at convergence is not
a single value but a random sample of values, we must
somehow distinguish between the natural variability in the
converged chain and the (typically greater) variability in the
pre-convergence samples. Second, since the sampled results
come from a Markov chain, they will typically be serially
correlated. Early MCMC attempts often retained only every
kth value from the chain, where k is an estimate of the lag
at which the sample autocorrelation function "dies out," in
an attempt to produce an approximately independent sam
ple. Very high autocorrelations will lead to little movement
in the full observed chain, perhaps making a sampler op
erating far from its stationary distribution appear as if it
has converged. Various diagnostics (the most common of
which are trace plots of the sampled MCMC values versus
iteration) are often used to estimate the degree of mixing in
a simulation, which is the extent to which a simulated chain
traverses the entire parameter space. Analogous to the use
of multiple starting points for traditional optimization algo
rithms, many MCMC convergence diagnostics involve the
use of multiple sampling chains, started at disparate points
in the parameter space.

2. PANEL DISCUSSION

2.1 Routine MCMC

Kass: This roundtable was organized largely because, on
the one hand, MCMC methods are often easy to apply
while, on the other, there remain a number of subtleties. In
many situations it's either hard to get them working well or,
worse yet, it may be hard to know how well they're work
ing. Can we begin by identifying some classes of models
where MCMC is easy to use-for example, via standard
software such as BUGS (Gilks, Thomas, and Spiegelhalter
1994)-and is very likely to give reliable answers?

Gelman: Hierarchical linear regression models and GLMs
work pretty well. Of course, nonhierarchical models are
even easier, but if the data make it possible to fit hierarchi
cal models, I'll almost always do so (see Carlin and Louis

94 Statistical Practice

1996, and Gelman, Carlin, Stern, and Rubin 1995, for much
more elaboration on this point). Mixture models (including
Student t's) are tougher because the posterior distributions
typically have multiple modes.

Carlin: Certainly the simpler the model is, the better. I like
the approach taken by the BUGS people to offer not just a
manual (Spiegelhalter, Thomas, Best, and Gilks 1995a), but
also a book of examples (Spiegelhalter, Thomas, Best, and
Gilks 1995b) that can serve as prototypes for users. This
book currently covers the usual range of GLM's, as well
as a surprising number of nonstandard models and special
cases of interest (spatial models for disease mapping, con
ditional inference in case-control studies, and so on). This
approach by the way is reminiscent of that used by most
SAS programmers I know: you don't read the manual; in
stead, you find the example that most nearly matches your
situation, copy it, and modify it.

Neal: I'd like to inject a bit of doubt into this discussion.
Even in fairly simple cases (e.g., simple random effects
models), it is possible for the posterior to be multimodal,
which could cause the unwary user to get the wrong an
swer. There may be classes of models where some MCMC
method can be shown to work reliably (either theoretically
or empirically), but I'm not aware of any good demonstra
tions of this sort. Even if a model has worked well in the
past, it is possible that it will work much less well on a new
data set.

This isn't meant to be excessively discouraging-after
all, it's also hard to guarantee that a maximum likelihood
procedure is really finding all the modes-but some caution
is almost always prudent.

Kass: It's certainly good to be reminded that problems with
maximization as well as simulation can arise whenever a
posterior is not log-concave, which is to say in nearly every
data analysis problem to which posterior sampling methods
are going to be applied. However, this isn't very satisfying
to the novice user. Let me go on to my next question and
return later to this more difficult issue.

2.2 Assessing Convergence

Kass: Together with Kate Cowles, Brad has written a
nice review of convergence diagnostics (Cowles and Car
lin 1996). But it left me thinking that knowledge about this
topic is not as great as the number of papers that have been
written about it might lead one to believe. Indeed, some
experienced users simply examine the trace plots (for some
collection of parameters) informally. So, what do each of
you do to assess convergence?

Gelman: I automatically monitor Ii (Gelman and Rubin
1992) for all parameters in the model and anything else
that might be of interest. For any given parameter, Ii is the
estimated posterior variance of the parameter, based on the
mixture of all the simulated sequences, divided by the av
erage of the variances within each sequence. Thus, Ii = 1
means that the sequences have mixed, at least according to
this criterion. I try to start the different simulations overdis
persed, with the intention that the sequences will not all be



stuck in some unrepresentative small region of parameter
space. I don't stop until R is at some low value (e.g., less
than 1.2) for all the parameters. If I get to that point in a
reasonably short time, I don't look at any simulation trails
(the trace plots with several parallel simulations overlaid)
at all.

Carlin: I like Andrew's idea of using a few (say, three
or five) initially overdispersed sampling chains, but my ex
perience with convergence diagnostics makes me wary of
relying on only one. Instead of monitoring R for every pa
rameter, I actually plot the sample traces of my chains for a
"representative subset" of the parameter space. For a stan
dard hierarchical model, this might include most of the fixed
effects, some of the variance components, and a few well
chosen random effects-say, corresponding to two individ
uals who are at opposite extremes relative to the popula
tion (and who are thus likely to have random effects distri
butions not concentrated near zero). I decorate these plots
with a few very simple convergence diagnostics-typically
R, and the lag-l sample autocorrelation in the middle chain.
A collection of pictures is slower to look at (and, of course,
impossible to automate), but much more reliable and can
even reduce run times in situations where summary diag
nostics are artificially inflated (e.g., R will always be large
for a bimodal posterior if at least one chain is visiting each
mode).

Neal: I don't use any formal convergence diagnostics other
than to compute autocorrelation estimates now and then. I
just look at trace plots of various quantities that seem to be
of central importance, such as crucial hyperparameters, and
almost always the log of the posterior probability density
of the current state. If the log posterior density is going up
and up, you haven't reached the main mode yet; if it's going
down and down, you started near a mode that was tall but
narrow, containing little probability mass, and are working
your way to a more representative part of the distribution.

Looking at a few chains is usually a good idea, as it
can certainly reveal problems that you can't see by looking
at only one chain. If convergence is very slow, however, I
sometimes run just one chain, as this can often be better
than running several chains for correspondingly less time.
I wouldn't really trust results found with a single chain,
though.

If you start your chains at points that aren't typical of
the posterior distribution, you will certainly need to discard
early states from the "burn-in" period. These atypical states
will often be obvious from the trace plots. If you are using
only one chain, the amount you discard should be at least
as large as your estimate of the maximum lag at which any
of the quantities that you are monitoring have a substantial
amount of autocorrelation. With a few chains, the same rule
should probably apply, even though with many chains you
could in theory diagnose convergence before this. If after
discarding "burn-in" states, you are left with less than half
the run, you clearly haven't run for long enough. Typically,
one would discard only a small fraction of the run.

Kass: What about the case in which marginals of some
parameters seem to converge but others don't?

Gelman: Start by setting the parameters that are not con
verging to reasonable fixed values; then do the inference
for the others conditional on them. I think it's necessary to
do serious thinking in these situations to understand why
the problem is occurring and whether it is a real statistical
problem or just slow convergence.

Carlin: Yes, the usual acceleration tricks apply, such
as reparameterizations, blocking (updating parameters in
medium-dimensional groups), collapsing (generating from
partially marginalized distributions), and using cycles or
mixtures of MCMC algorithms (Tierney 1994; Gelfand and
Carlin 1995). But careful thought is required. It's easy to
create examples where the "parameters of interest" appear
to have converged, but in fact have not due to slowly con
verging nuisance parameters. For instance, suppose Y has
a Normal distribution with mean (h + ()2 and variance 1,
and the parameter of interest is /1 = ()l + ()2. If we put
proper priors on ()l and ()2, these parameters become iden
tified, but if these priors have large variances the parameters
are "just barely" identified. (See the exercise in Carlin and
Louis 1996, p. 203.) The resulting slow convergence for ()l

and ()2 causes a correspondingly slow convergence for /1,
but the problem is apparent only from the () output; no plot
or diagnostic for /1 suggests any convergence failure. So
simply stopping the sampler when the parameters of inter
est appear to have settled down is a terrible idea.

Neal: That's a nice example. Unless you are very sure you
know what's going on (and offhand I can't see how you
could be), you should never use a chain to estimate the
expectation of one function of the parameters if another
function has clearly not converged.

2.3 How Useful Are Transformations?

Kass: Brad mentioned transformations. How important are
they and what general guidelines are there for choosing
them?

Gelman: Very important. Two kinds of transformations I
like are: (a) setting nonidentified or poorly identified pa
rameters to fixed values (a special case of introducing gen
eral constraints), and (b) rotating/scaling to get approximate
posterior independence.

Carlin: Even simple transformations, such as taking the
log of a parameter with a heavily right-skewed marginal
distribution, can be surprisingly helpful. Also, hierarchical
centering (Gelfand, Sahu, and Carlin 1995, 1996), which
involves centering random effects around their means in hi
erarchical models, can be very effective. These transforma
tions don't even involve a Jacobian, and can lead to surpris
ing reductions in parameter correlation, hence accelerating
convergence.

Neal: Transformations can be very beneficial. In high
dimensional problems, they can also be hard to find, and
possibly hard to apply even if you can find them. Doing a
general rotation in order to decorrelate parameters is out
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of the question if you have hundreds or thousands of pa
rameters. Finding problem-specific transformations such as
Brad mentioned may be more promising than trying to ap
ply some general technique.

Gelman: Once again, I think Radford is the skeptic here
because he works with more complicated models. For the
relatively simple problem of hierarchical linear regression
models, Boscardin (1996) shows rotation to be effective (re
ducing computation time by a factor of 10 to 40) even with
hundreds of parameters.

2.4 Starting Values

Kass: What general guidelines are there on finding good
starting values?

Gelman: I use estimates from simpler models (e.g., setting
hyperparameters to fixed values), estimates using less infor
mation (e.g., discarding missing data), or simpler methods
(e.g., maximum likelihood). With Gibbs sampling, you of
ten only have to specify either the main parameters or the
hyperparameters-the others automatically get updated in
the first step. I try to make sure the chain is overdispersed
(this is easiest when the prior distribution is informative).

Carlin: I typically use prior distributions that are vague
but not arbitrarily so, and centered near a value that I feel
the data could logically support. So a very simple rule for
initializing five parallel chains for ()i is to start chain j at
J.Li + (j - 3)lT i , j = 1, ... ,5, where J.Li and a; are the prior
mean and standard deviation of ()i. Note that this doesn't
really create much "overdispersion," since the five starting
values lie on a single ray in the full parameter space, rather
than being randomly distributed throughout it. But it seems
to work well in most practical settings.

Kass: When you say "work well" you mean that you are
sometimes able to detect multiple modes?

Carlin: Yes, though in the posterior surfaces I see, ridges
seem to be more common than multiple modes. Even more
commonly, this crude initialization procedure allows me to
detect convergence failure.

Gelman: Let me echo Brad here. I've encountered slow
convergence in distributions that are essentially unimodal
but are full of ridges in high dimensions. I've also found
obvious programming and modeling bugs using multiple
starting points (see, e.g., Gelman 1996, p. 134).

Neal: The problems I usually work with (e.g., neural net
work models, mixture models) may be a bit different from
those that Andrew and Brad work with. The maximum like
lihood estimates for these models are often ridiculous. For
example, maximum likelihood for a mixture of normals will
place components having zero variance right on the data
points. Accordingly, I often just start all the chains in the
same place, perhaps the prior mode. I also often use a differ
ent Markov chain for the first few iterations than I use later;
in this chain, I sometimes fix some of the hyperparameters,
in order to prevent them from taking on strange values in
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the period before the other parameters have adopted rea
sonable values.

2.5 Poor Behavior of the Chain

Kass: What do you usually do when you have difficulties
with convergence?

Gelman: Here are four problems that can lead to MCMC
convergence difficulties, listed in increasing order of diffi
culty of diagnosis and repair:

1. Problem: poor convergence (slow, too slow, or re
ally too slow). Method of checking: multiple starting
points, check R, examine sequences if R remains far
from 1. Potential solutions: (a) if slow, run longer; (b)
if too slow, tune algorithm (e.g., reparameterize Gibbs,
alter scales of Metropolis jumps, and so on); (c) if re
ally too slow, alter algorithm in a serious way; for
example, by putting in jumps between modes, using
auxiliary variables (Swendsen and Wang 1987; Be
sag and Green 1993), simulated tempering (Geyer and
Thompson 1995; Neal 1996b), and so on.

2. Problem: mistake in implementation of MCMC or
coding the model. Methods ofchecking: (a) rerun with
simulated data; (b) work up from a simpler model; (c)
try to fit a smaller, or better-behaved, data set. Poten
tial solution: debug the code!

3. Problem: nonidentified/underidentified model (in
cludes improper posterior distribution) or poorly un
derstood model (can occur when allowing parame
ters that were previously fixed to be estimated from
data). Methods of checking: (a) rerun with simulated
data (altering prior distribution to be proper, if neces
sary); (b) fitting the model with one or two parame
ters (those believed to be nonidentified) held fixed at
reasonable values. Potential solutions: (a) sensitivity
analysis (perform inference conditional on the poorly
identified/understood parameters rather than averag
ing over them, as in full Bayes); (b) more realistic joint
prior distribution on all the parameters in the model.
(Adding an informative prior distribution can make
sense statistically and also make the computation eas
ier, as Brad mentioned earlier.)

4. Problem: poor fit of model to data. Methods ofcheck
ing: posterior predictive checks, cross-validation, and
so on. Potential solution: fit a different model!

It is not always possible to distinguish among these prob
lems at first. For example, suppose you run the simulations,
and R is stuck at a high value (i.e., your Markov chain se
quences are not mixing). This could be caused by any of
the problems listed. So it is generally necessary to do all
these sorts of checks to have confidence in the model and
simulation results.

An analogous situation arises in traditional statistical
analysis via maximum likelihood. For example, in regres
sion analysis, the four problems mentioned above translate
to (1) numerical instability; (2) mistake in implementation;
(3) ill-posed problem (multicollinearity); and (4) poor fit
(perhaps because there are important nonlinear terms or in-



teractions not included in the model). Nowadays, diagnos
ing (1) and (3) are automatic with a good computer pro
gram, and regression software is standard enough that (2)
almost never occurs. Thus, the user can concentrate on (4),
for which we have standard tools, such as residual plots.
Things are more complicated with GLMs, but we're get
ting there. Problems (1) and (3) are rare (although there
are some tricky points with, e.g., identifiability in multino
mial probits); (2) is becoming much less of a problem with
software such as SAS and the modeling notation in s; and
lots of research has gone into automatic diagnostics for (4),
though of course a common approach nowadays seems to
be to examine numerous high dimensional models, with the
consequent converse problem of overfitting the data.

With MCMC for Bayes posterior distributions, I think
we're in pretty good shape on (1), and lots of work is go
ing on with (4), of course (see, e.g., Gelman, Meng, and
Stem 1996). I think that the good MCMC programs in the
future will have automatic features to increase efficiency,
fake data simulation, sensitivity analysis (fixing hard-to-fit
parameters rather than automatically averaging over every
thing), fitting simpler models or the same model with less
data, posterior predictive checks, and cross-validation.

Neal: This is a good categorization of problems, and An
drew is right that you can't assume at the start that you
know the source of a problem. The problems aren't even
exclusive: poor convergence could be due to an implemen
tation mistake that makes things slower, while still deliv
ering the correct answer if you wait long enough (e.g., us
ing a Metropolis proposal distribution that wasn't what you
meant to use, but which had the symmetry required for cor
rectness).

Andrew lists poor convergence as the easiest problem
to diagnose. This is often the case, but perhaps the most
worrying aspect of MCMC is that poor convergence can be
present without any signs of it being evident-for instance,
if a mode with substantial probability has never been visited
by any of the chains. To really check for this, you need to
run many chains with an initial state distribution that you
somehow know is adequate to find all modes. Alternatively,
you can use one of the tempering schemes that Andrew
mentioned, which are the only methods currently available
for getting the chain to move between modes when you
don't know where the modes are located.

I do a lot of work on methods for speeding up conver
gence, so I might well view poor convergence as an opportu
nity. For users more interested in getting an actual answer, a
judicious transformation could be the solution, as could use
of a different MCMC method. There are several methods
that are not well known in the statistics community that can
speed up convergence by huge factors in some problems, by
suppressing the random walk that Gibbs sampling and sim
ple forms of the Metropolis algorithm take; see my review
(Neal 1993), a recent technical report of mine (Neal 1995),
and for an example involving neural network models, my
book (Neal 1996a).

In addition to Andrew's suggestions for detecting imple
mentation mistakes, I would add another: Compare with a

completely different implementation, preferably a simpler
one. One implementation that is often easy to get right is
rejection sampling from the prior. Of course, this is hope
lessly slow for real problems, but it can be adequately fast
for a small data set, with a fairly narrow prior in the vicinity
of the true parameter values. The idea is to check that the
MCMC method gets the same answer in such an easy sit
uation. Using standard software, one would hope that such
checks are not usually necessary, though the possibility of
bugs should always be kept in mind.

Kass: It sounds like you are all in agreement on this is
sue: the more checking you do, the better. Multiple chains,
multiple models, and multiple algorithms are all valuable.
Let's return to the problem of nonidentifiability, or near
nonidentifiability, which Brad illustrated with the N ((}1 +
(}2, 1) example. Although in this simple case the problem
is obvious, it is often encountered in more subtle forms,
correct?

Gelman: Yes, there are lots of cases where you run into
nonidentifiability or near-nonidentifiability.

Neal: But provided the posterior is proper, this is not
a problem for MCMC methods-assuming you've deter
mined that the nonidentifiability isn't due to a bug. It might
be a statistical problem, but in my opinion, concern over this
is often misplaced. In mixture models, for example, there
is a natural nonidentifiability involving relabelings of the
mixture components. This is harmless, since the multiple
modes produced by different labelings all have the same
effect. You should not try to make the model identifiable
by imposing constraints on the parameters values, as this
can do serious harm to the convergence of your Markov
chain. If you want to look at parameters satisfying such
constraints, you should just reorder the components as re
quired after the simulaton is done.

Carlin: I agree that certain types of nonidentifiability
are harmless, but correctly implementing samplers under
such models is certainly more difficult, since it requires a
firm understanding of which parametric functions are well
identified, and which are not. While some types of non
identifiability will be immediately apparent, in more com
plicated settings (e.g., hierarchical random effects models),
failures in identifiability can be very subtle, muddying con
vergence diagnosis.

Gelman: In the Bayesian framework, one way to look at
identifiability is a parameter is not identified if its posterior
distribution is the same as its prior. This just puts the burden
back upon us to understand our models.

2.6 Improper or Very Diffuse Posteriors

Kass: In a couple of places already we've touched on
the possibility that the posterior is improper. Sometimes
a proper prior is used, but it is so widely dispersed that the
posterior effectively (for numerical purposes) becomes im
proper even though it is mathematically proper. What can
be done to check for or avoid these situations?
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Gelman: A basic way to check is to play around with infor
mative prior distributions. For example, in a toxicokinetic
modeling problem (Gelman, Bois, and Jiang 1996), we had
prior distributions cut off at ±3(T, where (7 was the prior
standard deviation. Then if the simulations converged to
the boundary (which could be caused by slow convergence,
programming error, model misfit, or just because the prior
bounds were not appropriate), we'd see the problem (not a
foolproof method, but it actually revealed a problem to us
in this case). Then we checked things by changing the cut
off to ±2(T and ±4(T to see if anything changed. Seems like
a lot of work but maybe much of it could be automated.

Carlin: It's important to remember that improper poste
riors are sometimes created deliberately to make the sam
pling process easier (see, e.g., Besag, Green, Higdon, and
Mengersen 1995, for several examples). The unidentified
parameters will of course never converge, but the identifi
able ones (say, contrasts in an ANOVA-type model) may be
very well behaved. Of course, it's very important that the
user understand the precise nature of the unidentifiability,
before he or she ignores the former sort of "convergence
failure" and proceeds with the analysis. (The very recent
paper by Gelfand and Sahu (1996) contains a nice discus
sion of this issue.) So the beginner may be well advised to
avoid such models, always starting with one that ought to
be well identified by the data, and using some of the reme
dies we have mentioned if the MCMC output suggests it is
not.

Neal: I like to use informative proper priors, since then
I can be sure that the posterior is proper, though I might
sometimes use an improper prior if I had a proof that the
posterior will nevertheless be proper. I can't see offhand
why one would want to live dangerously by sampling from
an improper posterior, nor would I be comfortable if I
wasn't sure whether or not the posterior was proper.

Gelman: I agree that you don't want to be simulating from
a posterior distribution when you don't know if it's proper.
But it can be okay to have an improper posterior distribution
for an auxiliary parameter that has been added solely for
computational purposes. For example, consider the mixed
effects model, y '" glm(X,B+Wa), a '" N(O, 7

21). This can
be rewritten as y '" glm(X,B+BWa), a '" N(O, q}1), where
7 = B¢. Using the new parameterization, Gibbs can go a
lot faster (see the discussions of Meng and Van Dyk 1997),
even if both Band ¢ have improper posterior distributions.

2.7 Checking Results

Kass: How can you check results? I presume you think it
wise to compare with maximum likelihood when possible,
for example.

Gelman: Yes. Compare with anything and everything. Of
course, if they disagree, you then have to decide whether
it's worth putting in the effort to understand why. Usually
it is. Different computational methods are complementary,
not competitive.

Carlin: I agree completely. Applied Bayesians love the
maximum likelihood estimate; after all, it's often nothing
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but the posterior mode under a flat prior! Also, we should
keep in mind that for low-dimensional problems, alterna
tive methods often serve as good checks and may be more
efficient. Traditional quadrature methods (even newer adap
tive ones) have been almost forgotten in the recent rush to
MCMC; Evans and Swartz (1995) provided a nice recent
summary focusing on such methods.

Kass: Along these lines let me mention my colleague
Alan Genz's collection of FORTRAN routines for numer
ical integration and importance sampling, which he calls
BAYESPACK. Based on methods described in Genz and
Kass (1997), this collection is available from the website
http://www.math.wsu.edu/math/faculty/ genz/
homepage.

2.8 Software

Kass: I want to tum to software for MCMC, but as a lead
in let me try to rephrase the question with which we began
this discussion. In standard situations, such as generalized
linear models or generalized mixed models, if all appears to
have gone well with the simulation-that is, if the Markov
chain appears to have converged satisfactorily-how much
more do you worry?

Carlin: Assuming the results appear reasonable, not much
more. Most of the MCMC convergence "horror stories"
I've seen have either been the result of authors failing to
check their answers (e.g., by running even one more sam
pling chain), or applying the technology to models certain to
cause trouble (e.g., attempting to sample from the so-called
"witch's hat" distribution, a mixture of a bivariate uniform
with an extremely highly peaked bivariate normal). Most
of the models encountered in statistical practice are far less
pathological, so if you've checked things out and they look
good, they probably are.

Gelman: I agree.

Kass: Fine. Then on software, certainly the most useful
package so far for MCMC is BUGS. What sorts of things
should a BUGS user keep in mind?

Carlin: I think I'm the only one here with much BUGS

experience, so I'll try this one. I'm a big fan of BUGS;

indeed the U.S. mirror for the program's (U.K.) web
site at the Medical Research Council Biostatistics Unit
at Cambridge University is on my machine at Minnesota
(http://www.biostat.umn.edu/mirror/methodology/bugs/).
Initially, I think some people dismissed the program as just
another piece of freeware, since early versions of the pro
gram could handle mostly just "toy" problems, and were
fairly buggy (making the program's name a double enten
dre!). However, the current release (Version 0.5) is general
and reliable enough to be used as a tool for both teaching
and research; more and more scholarly papers (including
some of my own) list BUGS as their computational engine.
Its s-like syntax is readily accessible to statisticians, and
there is certainly nothing else like it on the market, com
mercial or otherwise.

When running the program, one thing to keep in mind is
that its error messages occasionally refer to the line in the



code where it first noticed the problem, not where the error
actually occurred, so debugging BUGS code can be a chal
lenge. Parallel chains are also still a bit awkward in BUGS,

but I think the user should resist the temptation to give
up and just run a single chain. While BUGS itself contains
only crude convergence diagnosis abilities, the accompany
ing post-sampling menu-driven S-plus function for this
purpose, CODA (a musical analogy, and also an anagram
of convergence diagnosis and output analysis), provides a
wealth of diagnostic and summarization tools that are fully
equipped to handle parallel chains (Best, Cowles, and Vines
1995). BUGS Version 0.5 features no Metropolis-Hastings
updating capability, so all full conditional distributions that
are not log-concave must be discretized onto a grid and
sampled by brute force, a somewhat inelegant (though of
ten adequate) solution. However, the next release (Version
0.6) allows current-point Metropolis updating, as does the
new Windows-based version, WinBUGS.

Gelman: Although I'm also a fan of the BUGS project,
whenever my collaborators and I have tried to use it for
our applied problems, it's always turned out to be easier to
write our own programs than to get BUGS to work-s-but I
expect that'll change in a few years.

Kass: The BUGS writers emphasize directed acyclic graphs
(DAGs) in formulating models. Do you find yourself using
DAGs in your MCMC work?

Gelman: No.

Carlin: No, I still do it the old-fashioned way, using stacks
of algebraic symbols like YiIBi rv N(Bi , a 2 ) . But I can cer
tainly see why the DAG approach might be more attrac
tive to a statistician working with a subject-matter special
ist, who may have some idea about causation in the sys
tem but no stomach for algebra. (Indeed, the Windows ver
sion of BUGS allows users to specify the model implicitly
by constructing the appropriate DAG on the screen, rather
than explicitly by writing the corresponding BUGS code.)
Of course, this is all modulo the usual worries about causa
tion and correlation not being the same thing; in the specific
context of using DAGs with the BUGS language, see the last
paragraph of Fienberg (1996).

Neal: Yes, I like DAGs. What else would you scribble on
a blackboard?

Kass: How do you make sure you've gotten the formulation
set up correctly?

Gelman: By expanding from previous models that I un
derstand: starting simple (e.g., setting hyperparameters to
reasonable values), getting that to work, then making the
model more complex and realistic.

Carlin: And by checking your code carefully at every step!

2.9 Standard Errors
Kass: One nice thing about importance sampling is that the
observations are uncorrelated, so that simulation standard
errors are easy to compute. There are a variety of ways to

compute standard errors with MCMC. What method do you
use?

Gelman: For Bayesian inference, I never assess MCMC
standard errors because I am interested in inference about
parameters and predictions, not functionals. For instance,
suppose my 95% posterior inference for a parameter is
[2.4,3.9], with R = 1.05. Then if the simulation were run
forever, I would expect the interval to shrink by as much
as a factor of about 5%. There is no reason to compute
MCMC standard errors here.

Carlin: But there is still Monte Carlo error associated with
your interval endpoints-how shall we measure it, given
that the samples are correlated? I think MCMC standard
errors are relevant no matter what posterior feature you're
interested in. For example, writing the post-convergence
samples from a single sampling chain for the ith param
eter as Big), we could certainly estimate the posterior mean

as E(Bily) = Bi = -b 2:;=1 Big), the sample mean of all
our MCMC samples. But we can't simply use the sample

variance, s; = G~l 2:;=1 (Big) - Bif, divided by G as our

estimate of the MCMC standard error of Bi , since it would
very likely be an underestimate due to positive autocorrela
tion in the samples (though this problem could be amelio
rated by combining the draws from a collection of initially
overdispersed sampling chains, as discussed earlier). Relat
edly, the sample variance s; will be a slightly negatively
biased estimate of the posterior variance of Bi , though it
should be a reasonably good estimate whenever the sample
mean is a good estimate of the posterior mean.

An early remedy suggested keeping only every kth sam
ple to achieve approximate independence, but MacEach
ern and Berliner (1994) proved the intuitive result that this
wasteful approach is always suboptimal. A simple approach
that seems to produce suitably conservative (larger) stan
dard error estimates is hatching, described, for example, by
Ripley (1987, Sec. 6.2), or in a more specifically Gibbs con
text on pp. 194--195 of my book. Time series methods, as
described, for example, by Ripley (1987, Sec 6.3) or Geyer
(1992, Sec 3.1), seem a bit more complicated to implement
but may well produce superior answers given the proper
tuning.

Neal: I usually compute standard errors for an estimate of
a posterior expectation using estimates for the autocorre
lations. Partly, this is because I often want to look at the
autocorrelations anyway, just to see what's going on. The
idea (see, e.g., Ripley 1987; Neal 1993) is to base the stan
dard error on an "effective sample size," found by dividing
the number of points used from the chain (G in Brad's com
ment) by the autocorrelation time, T, which is defined to be
1 + 2 2:;:'=1 p(k), where p(k) is the autocorrelation at lag k
for the parameter of interest, Bi . The standard error for Bi is
then vis;/(G / T). Of course, we have only estimates for the
autocorrelations, and hence only an estimate for T. It is nec
essary when estimating T to cut off the sum at a value for k
where the autocorrelations seem to have fallen to near zero,
as including estimates for lots of higher lags adds too much
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noise. Choosing this cut-off may seem a bit subjective, but
batching methods have similar fudge parameters.

Gelman: There's an interesting distinction here between
researchers and users of computational methods. All four
of us are researchers in statistical computation, but then
when we work on our applied problems, we become simply
"users." As a researcher, I, like Radford, am interested in
autocorrelations and anything else that will help me under
stand the multivariate Markov chain that I'm working with.
But as a user, it's enough for me to know that the sequences
are mixed and I don't need to run any more simulations.
As a user, I'm wary of involved data-analytic methods of
estimating the autocorrelation time of simulations-if ap
proximate convergence has been reached, the properties of
the simulation process seem irrelevant.

What I'm reacting to is the all-too-common practice of an
MCMC user spending lots of time and ingenuity in studying
autocorrelations and so forth, but then spending no time
actually checking the fit of the model to the data.

Kass: So with all this technology you don't want people to
forget about doing statistics. Perhaps that's an appropriate
thought on which to end this discussion.

[Received February 1997. Revised August 1996.J
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