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1 LIST OF FIGURES 
 

Figure 1​ Example of sensor input used in ECM.  Images show from left to right, data 
location, 11 micron brightness temperature, a true color RGB and a false color RGB. 
 
Figure 2​   Main Output of the ECM.  Images show posterior cloud probability, 4-level 
cloud mask, binary cloud mask, TUT mask and the binary cloud mask from a single 
classifier. 
 
Figure 3​ High Level Flowchart of the ECM illustrating the main processing sections. 
 
Figure 4 Global total water, ice and water cloud amount for January and July derived              
from 9 years of monthly CALIPSO L3 data. Data in polar regions are missing in the                
CALIPSO data, and are derived by spatially interpolation from nearby regions. 
 
Figure 5​ Global total cloud amount for January and July derived from MODIS data. 
 
Figure 6​ The ECM surface types for January (Top) and July(bottom). Taken Heidinger et. 
al (2012). 
 
Figure 7​ Posterior Probabilities of a single one dimensional classifier (refrat138065) for 
the deep ocean surface type (SFC01).  The posterior cloud probability would be 1 - 
posterior clear probability (black). 
 
Figure 8​ Example of a two dimensional classifier (logzopa_btd1112).  The posterior 
cloud probability is 1 - posterior clear probability (upper right). 
 
Figure 9​  Frequency of Occurrence of Posterior Cloud Probability for each individual 
classifier (orange) and the final result (black). 
 
Figure 10​ Optimization example 
 
Figure 11​ ​Aggregated images of 8 SNPP VIIRS granules of Hurricane Andres on 
06/01/2015 from 2030UTC to 2040UTC (left - True Color RGB, right - NOAA 
Enterprise Cloud Mask). 
 
Figure 12​ Full Disk GOES-16 ABI RGB and Binary ECM. 2020-09-20 19:00 UTC.  
 
Figure 13​ Hit Rate of the ECM as a function of CALIOP Optical Depth.  ECM Lut is for 
VIIRS. 
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Figure 14​ Hit Rate of the ECM as a function of CALIOP Optical Depth.  ECM Lut is for 
ABI/AHI. 
 
Figure 15​ Hit Rate of the ECM as a function of CALIOP Optical Depth.  ECM Lut is for 
MODIS. 
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CALIOP.  Performance Metric (PM) is ACC and clouds with optical depths less than 0.4 
are ignored. TF is the truth cloud fraction from CALIOP and EF is the cloud fraction 
from ECM.  All refers to all times of day.  Day refers to daytime conditions and night 
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3 ABSTRACT 
 
The cloud detection scheme presented here is part of the suite of algorithms contained 
with the  NOAA NESDIS Enterprise Project.  It will be referred to as the NOAA 
Enterprise Cloud Mask (ECM).  It is an evolution of the naive Bayesian cloud mask 
developed for the Pathfinder Atmospheres Extended (PATMOS-x) Data generated from 
the Advanced Very High Resolution Radiometer (AVHRR) (Heidinger et al, 2012).  The 
ECM has evolved to support the many sensors required by the NOAA Enterprise Project. 
These sensors include most current and past polar orbiting and geostationary imagers.  
 
The ECM retains many similarities to the algorithm described in Heidinger et al. (2012) 
including being a naive bayesian approach trained on NASA CALIPSO Data.   The ECM 
described here  has evolved to use more data from CALIPSO, support more than 
single-dimension classifiers and uses optimization to choose classifiers.   The ECM 
continues to make a cloud probability and a 4-level cloud mask.  The ECM also makes an 
ice and water cloud probability and cloud phase product.  In the NOAA Enterprise 
System, the ECM only provides the cloud detection information.  In the PATMOS-x and 
MODIS/VIIRS Continuity Project, the ECM also provides information on cloud phase. 
 
This document will describe these changes and demonstrate them using the ECM applied 
to the data from the Advanced Baseline Image (ABI) on the GOES-16 and GOES-17 
imagers. the Visible and Infrared Imaging Radiometer Suite(VIIRS), the Moderate 
Resolution Imaging Spectroradiometer (MODIS).  
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4 INTRODUCTION 

4.1 Purpose of this Document 
The primary purpose of this ATBD is to establish guidelines for producing the 4-level              
cloud mask and cloud probability from sensors flown on geostationary and polar            
meteorological satellites. This document will describe the required inputs, the theoretical           
foundation of the algorithms, the sources and magnitudes of the errors involved, practical             
considerations for implementation, and the assumptions and limitations associated with          
the product, as well as provide a high level description of the physical basis for the initial                 
estimate of the presence or absence of cloud within each pixel. The cloud mask is made                
available to all subsequent algorithms that require knowledge of the presence of cloud.  
 

4.2 Who Should Use this Document 
The intended users of this document are those interested in understanding the physical             
basis of the algorithms and how to use the output of this algorithm to optimize the cloud                 
detection for their particular application. This document also provides information useful           
to anyone maintaining or modifying the original algorithm.  

4.3 Inside Each Section 
This document is broken down into the following main sections. 
 

● System Overview​: provides a brief description of the products generated by the            
algorithm. 
 

● Algorithm Description​: provides a detailed description of the algorithm         
including its physical basis, its input and its output. 

 
● Assumptions and Limitations​: provides an overview of the current limitations of           

the approach and notes plans for overcoming these limitations with further           
algorithm development. 

 

4.4 Related Documents 
This document currently does not relate to any other document and to the references              
given throughout. 

4.5 Revision History 
Version 1.0 of this document was created by Dr. Andrew Heidinger of NOAA/NESDIS             
and Denis Botambekov of CIMSS/SSEC/UW-Madison. Its intent was to accompany the           
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delivery of the version 1.0 algorithm to the AIT NOAA Enterprise Team. In Version 1.1               
several minor changes made to reflect spring 2016 ECM code delivery to AIT. In              
Version 1.2 a fix for Surface Type in Cloud Mask bits applied and the new               
BTD4_11_Day and Thin Cirrus tests were added. We also added a description of extra              
masks.   
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5 OBSERVING SYSTEM OVERVIEW 
 
The cloud detection scheme presented here is part of the suite of algorithms contained 
with the  NOAA NESDIS Enterprise Project.  It will be referred to as the NOAA 
Enterprise Cloud Mask (ECM).  It is an evolution of the naive Bayesian cloud mask 
developed for the Pathfinder Atmospheres Extended (PATMOS-x) Data generated from 
the Advanced Very High Resolution Radiometer (AVHRR) (Heidinger et al, 2012).  The 
ECM has evolved to support the many sensors required by the NOAA Enterprise Project. 
These sensors include most current and past polar orbiting and geostationary imagers. 
An example of type of information used by ECM is shown in i​Figure 1​ which shows data 
from SNPP VIIRS taken on ​June 1, 2015 at 20:30 to 20:40 UTC​. ​Figure 1​shows (from left 
to right) the location of the data, an 11 micron brightness image (200-320K), a true color 
image and the daytime cloud type RGB constructed from the 1.38 micron (red), 0.65 
micron (green) and 1.60 micron (blue) reflectances.  In this RGB, cirrus are red, low 
water clouds are cyan, thick ice clouds are yellow and lofted water or mixed clouds are 
pink. 
 
 

 
 
Figure 1​ Example of sensor input used in ECM.  Images show from left to right, data 
location, 11 micron brightness temperature, a true color RGB and a false color RGB. 
 
The ECM retains many similarities to the algorithm described in Heidinger et al. (2012) 
including being a naive bayesian approach trained on NASA CALIPSO Data.   The ECM 
described here  has evolved to use more data from CALIPSO, support more than 
single-dimension classifiers and uses optimization to choose classifiers.   The ECM 
continues to make a cloud probability and a 4-level cloud mask.  The ECM also makes an 
ice and water cloud probability and cloud phase product.  In the NOAA Enterprise 
System, the ECM only provides the cloud detection information.  In the PATMOS-x and 
MODIS/VIIRS Continuity Project, the ECM does provide information on cloud phase. 
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The specifications for the ECM are on its probability of correct typing for the binary               
cloud mask. The probability of correct typing will be defined later as the accuracy (ACC)               
metric. The overall global ACC requirement for the ECM is 87% for clouds with an               
optical depth (COD) greater than 0.4. The specification also varies by surface type and              
illumination condition. The definition of the surface types are given later. ​Table 1​shows            
the complete ECM specifications. The section on performance measures the ECM           
against these specifications applied to multiple sensors and for COD > 0.4 and for no               
COD restrictions. 
 
 
Table 1​ Table of ECM specifications from L1RD 

Cloud Mask Probability of Correct Typing (ACC) Threshold Requirement 
   1. Global 87% 
   2. Ocean, Day 92% 
   3. Ocean, Night 90% 
   4. Snow-free Land, Day  90% 
   5. Snow-free Land, Night 88% 
  6. Desert, Day 85% 
  7. Desert, Night 85% 
  8. Snow-Covered Land, Day 88% 
  9. Snow-Covered Land, Night 85% 
  10. Sea-Ice, Day 82% 
  11. Sea-Ice, Night 72% 
  12. Antarctica and Greenland, Day 80% 
  13 Antarctica and Greenland, Night 70% 

 

5.1 Products Generated 
The cloud mask algorithm is responsible for the initial cloud detection field for all imager               
pixels. In terms of the JPSS Program Level 1 Requirements Document (L1RD) and             
L1RD SUPPLEMENT (L1RDS), it is responsible directly for the Clear Sky Mask            
product within the Radiance Product Category. However, the cloud mask will be used by              
most of the algorithms that require knowledge of the presence or absence of clouds              
within a given pixel. The current cloud mask requirement calls for a four-level             
(Confidently/Probably Clear, Confidently/Probably Cloudy) cloud mask. The ECM also         
generates a cloud probability from 0 to 1. The latter is considered the primary output of                
the ECM. In addition, the cloud mask output will include all test results that were used to                 
determine the final four-level mask to allow for modification by downstream users.            
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Figure 2 presents the ECM cloud detection output for the data shown in ​Figure 1​. From              
left to right, output shows the cloud probability, the 4-level mask, the binary cloud mask,               
the thermal uniformity test (TUT) and a binary mask from a single classifier. The single               
classifier, in this case, was the refrat086065 (explained later). The ECM makes a binary              
mask for all the classifiers used and packs into bytes for output. The TUT and the                
reflectance uniformity test (RUT) are not currently used in the other ECM products but              
they are there for users of the ECM that want to impose uniformity filters on clear pixels                 
for their applications. 
 
 

 
Figure 2 Main Output of the ECM. Images show posterior cloud probability, 4-level            
cloud mask, binary cloud mask, TUT mask and the binary cloud mask from a single               
classifier. 
 
 
 

5.2 Instrument Characteristics  
The cloud mask will be produced for each pixel observed by the imager sensor. The final                
channel set depends on sensor characteristics (band availability). The ECM is designed            
to work even when only a subset of the expected channels is provided. For example,               
when used with VIIRS data, the ECM is able to account for the lack of water vapor                 
channels. Because the ECM also works with data from the GOES, SEVIRI, ABI, AHI,              
AVHRR, MODIS, etc., the exact channel combination is determined by the sensor being             
run and how the lookup table is generated. The only common channels among sensors are               
the channels associated with 0.64, 3.75, 11.0 and 12.0μm. Some other common            
wavelengths that are used across more recent sensors (ex. ABI, AHI, VIIRS) include the              
1.6 and 8.5μm channels. 
 
The algorithm relies on spectral and spatial tests, with the list of tests being provided as                
an attribute within the output file. The performance of the cloud mask is therefore              
sensitive to any imagery artifacts or instrument noise. Calibrated observations are also            
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critical because the cloud mask compares the observed values to those from a forward              
radiative transfer model. We are assuming the performance outlined in this section            
during our development efforts. 

 

6 Algorithm Description 
 
This section provides a complete description of the algorithm at the current level of              
maturity.  

 

6.1 Algorithm Overview 
The cloud mask serves a critical role in the Enterprise processing system. It is a               
fundamental cloud property in itself but also serves to determine which pixels can be              
used for clear-sky applications (SST, NDVI, etc.). The following heritage cloud mask            
algorithms have influenced the ECM: 

● The MOD/MYD35 MODIS cloud mask from UW CIMSS 
● The Clouds and the Earth’s Radiant Energy System (CERES) MODIS cloud mask            

from NASA Langley Research Center 
● CASPR cloud mask used in the AVHRR Polar Pathfinder Extended (APP-x) 
● GOES-R Baseline Cloud Mask 
 

As with the above masks, the ECM combines spectral and spatial tests to produce a               
4-level classification of cloudiness. The 4-levels of the ECM cloud mask are: 

● Clear, 
● Probably Clear, 
● Probably Cloudy, and 
● Cloudy. 

 
These categories are the same as those employed in the CLAVR-x and MYD35 masks.              
In general, the cloud mask is designed so that the clear and cloudy pixels are suitable for                 
clear and cloudy product generation.  
 
In addition to the 4-levels of cloudiness, the ECM also provides the results of every test                
used to compute the 4-level mask, and cloud probability (0.0 – 1.0). This information is               
provided to allow other applications to modify the cloud mask to suit their specific needs.               
The ordering and meaning of these bits will vary depending on the lut used. Attributes in                
the output files allow users to determine this information. 
 
 
 

17 
 



 
 
 
 
 
 
 
 

6.2 Processing Outline 
The processing outline of the ECM is summarized in ​Figure 3 below. The current ECM              
is implemented within the Enterprise system. The Enterprise provides all of the            
observations and ancillary data, such as the data from NWP and RTM models. The ECM               
is designed to run on segments of data where a segment consists of multiple scan lines.  
  

18 
 



 

Figure 3​ High Level Flowchart of the ECM illustrating the main processing sections. 
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6.3 Algorithm Input 
 
This section describes the input needed to process the ECM. While the ECM is derived               
for each pixel, it does require knowledge of the surrounding pixels. Currently, the ECM              
is run on segments that contain 200 scan-lines. While the final size of the segments is to                 
be determined, the ECM should not be run with information from only one pixel. 

6.3.1 Primary Sensor Data 
The list below contains the primary sensor data used by the ECM. By primary sensor               
data, we mean information that is derived solely from the imager sensor observations and              
geolocation information. The ECM uses the following available channels based on the            
particular sensor. 
 

● Calibrated solar reflectance percent (0-100%) for 0.65μm (or equivalent) channel          
and other visible channels as needed by the LUT. 

● Calibrated radiances for 3.75, 10.3 and 11.0 μm channels. 
● Calibrated brightness temperatures for all IR channels. 

● Note - for VIIRS, the M12 band is used for the 3.75μm channel 
● Note - for ABI,AHI  the Ch7 band is used for the 3.75μm channel 

● Calibrated lunar reflectance percent (0-100%) VIIRS Day-Night Band (DNB). 
● Bad pixel mask for each individual channel. 

● Note -The algorithm invalid mask, described in a couple sections is           
derived based on the channel specific quality mask 

● Space mask. 
● Derived 3.75 μm channel emissivity, which is described Section 3.3.3. 
● 3.75 μm channel solar energy (mW/m​2​/cm​-1​). 
● Sensor viewing zenith angle. 

NOTE: For geostationary satellites the requirement is to produce the clear sky            
mask out to a sensor zenith angle of 70​o​. 

● Solar zenith angle. 
● Relative azimuth angle. 
● Glint zenith angle. 
● Scattering angle. 
● Cosine of sensor, scattering and solar zenith angles. 
● Number of lines and elements for the given segment. 
● Focal Plane Temperatures for IR and WV channels (GOES-R only) 

Mitigation for the loop heat pipe issue on GOES-17 is taken care of before the               
algorithm is run by checking the focal plane temperature. If either the focal plane              
temperature (FPT) is above the prescribed threshold, the tests for that particular            
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channel will not be performed and the scene will be marked as degraded via a               
global attribute in the GOES-R L2 file. The current temperatures allow for the             
ECM to be produced through the entire day, with warm events being marked as              
degraded. ​Table 2​ shows the FPT thresholds utilized for each ABI channel. 

 
 

Table 2​ ECM focal plane temperature thresholds for GOES-17 LHP events. 

ABI channel # Central Wavelength 
(um) 

Warming Side (K) 
Threshold 

Cooling Side (K) 
Threshold 

7 3.89 150.0 150.0 

9 6.93 93.0 94.0 

11 8.44 97.0 98.0 

13 10.33 150.0 150.0 

14 11.19 150.0 150.0 

15 12.27 92.0 93.0 

 

6.4 Ancillary Data 

The following data lists the ancillary data required to run the ECM. By ancillary              
data, we mean data that requires information not included in the sensor            
observations or geolocation data. The NWP and RTM data, which are at NWP             
resolution, are interpolated to pixel level. 

 

6.4.1 Static Ancillary Data 

Data Description (if necessary) 

Numbers of elements, lines, maximum 
lines, and segments to process 

 

Geolocation (latitude, longitude)  

Sun earth distance  

21 
 



Surface type VIIRS Surface type or the UMD surface 
type as interpolated to the pixel level. 

Described in AIADD. 

Surface Elevation Described in AIADD. Both the surface      
height and standard deviation surface     
elevation in a 3x3 box are used in the         
ECM 

Land Mask MODIS Land Mask, described in AIADD 

Coast Mask Derived static coast mask, described in 
AIADD 

 

6.4.2 Dynamic Ancillary  

Data Description (if necessary) 

Snow Mask Using the snow mask, each pixel is       
flagged internally as snow or clear. There       
are restoral tests for bright warm snow       
pixels on land. By default the ECM uses        
the IMS/SSMI snow mask and NWP snow       
mask as a backup. 

Surface Emissivity 
3.9, 10.3, 11μm 

Operationally, the SEEBOR emissivity is     
used. However, in the future, the CAMEL       
emissivity database will be used 

Ocean Glint Mask A glint mask is initially defined based       
upon the glint zenith angle. Any non-land       
and snow-free pixels that have a glint       
zenith of less than 40o are classified as        
“glint.” However, those pixels that have      
been marked as glint and have an 11μm        
brightness temperature of less than     
freezing (273.15K), or the 11μm     
brightness temperature is less than the      
clear sky 11μm brightness temperature     
minus 5.0, have the glint flag turned off.        
Turning the glint mask off is an attempt to         

22 
 



restore cold pixels in the glint zone.       
Further checks are to look at pixels that        
have a uniform performance. A check is       
done by checking to see if a glint pixel has          
a standard deviation of 0.64μm reflectance      
over a 3x3 pixel array greater than 1.0. If         
it does, the pixel is restored to non-glint.  
 
At the request of the Aerosol team, after        
the algorithms are processed, the glint flag       
is set for land pixels with the glint angle         
less than 40 degrees 

Sea Surface Temperature Uniformity Daily SST uniformity (from previous     
day). Operationally, the ECM uses the      
CMC SST output as described in the       
AIADD 

Surface temperature from NWP Surface temperature taken operationally    
from the 3,6,9 hour GFS forecasts as       
described in the AIADD 

Surface temperature uniformity from 
NWP 

Surface temperature taken operationally    
from the 3,6,9 hour GFS forecasts as       
described in the AIADD 

Clear-sky Infrared RTM Calculations Clear-sky top-of-atmosphere (TOA) BTs    
for 3.75, 6.7, 10.3 11.0 and 12.0 μm        
channels. Can be used in some classifiers       
(ex. FMFT) if needed. 

Clear-sky Reflectance Currently the MODIS White Sky albedo is       
used and available for the 0.64, 1.60 and        
3.9 μm channel. These are corrected for       
atmospheric scattering by adding in the      
Rayleigh single scattering reflectance and     
transmission. In the terminator region, the      
clear sky reflectance is renormalized. 

 

6.4.3 Derived Data used in ECM 
  

23 
 



Table 3​ lists and briefly describes the data that are required by the ECM that are provided 
by other algorithms or within the ECM bridge 
 
Table 3​ Derived Data used in the ECM. 
 

Data Description (if necessary) 

Internal Valid pixel mask A pixel is determined to be valid if it is          
not a space pixel, has a sensor zenith        
angle of less than 70​o ​(geostationary only),       
and has a valid measured and clear sky        
11μm brightness temperature. 

Correlation of channel 6.9 μm brightness 
temperature to channel 11.0 μm brightness 

temperature 

The ECM computes the Pearson     
Correlation Coefficient between the 6.9     
and 11.0 μm channel brightness     
temperatures for each pixel. For GOES-R,      
if the focal plane temperature is above       
93.0K, this value will not be computed. 

Derived top of the tropopause emissivity 
(ETROP) 

The ECM derives the 11.0μm channel top       
of troposphere emissivity using the     
measured radiance, clear sky radiance,     
space mask, latitude/longitude cell index     
from the NWP, tropopause index from the       
NWP, viewing zenith angle bin index, and       
11.0μm channel blackbody radiance.    
Currently for GOES-R, in the event that       
the 11μm focal plain temperature reaches      
150K, the tropopause emissivity will be      
calculated using the 10.3μm channel. 

Max/min/Standard deviation of IR 
resolution  0.65 μm channel reflectance 

Done over a 3x3 pixel array 

Maximum 10.3 and 11.0 μm brightness 
temperature 

Done over a 3x3 pixel array 
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6.4.4 Lookup Table Description 

The ECM Lookup tables (LUT) are netCDF4 files and contain the following global 
attributes 
 

● sensor - the sensor that the lookup table is built for 
● timestamp - the time the LUT was created 
● version - the version of the lookup table 
● nclassifiers - the number of classifiers 
● max_length_classifier_names - the maximum number of characters for each classifier name 

  
There are 5 variables 
 

● classifier_names - the names of each of the classifiers. These are stored in the output 
(intermediate, in the case of GOES-R) file 

● conf_clear_prob_clear_thresh - the cloud probability threshold between confidently clear and 
probably clear 

● prob_clear_prob_cloud_thresh - the cloud probability threshold between probably clear and 
probably cloudy 

● prob_cloud_conf_cloud_thresh - the cloud probability threshold between probably cloudy and 
confidently cloudy 

●  rut_clear_prob_clear_thresh - This is the thresholds for each surface that the RUT would consider 
a pixel probability clear 

● tut_clear_prob_clear_thresh - This is the thresholds for each surface that the RUT would consider 
a pixel probability clear 

 
Finally, HDF5 and NetCDF4 can organize data within the file like a file system. These               
are called groups. In this case, each group can store data and thresholds (variables and               
attributes within a given group) for a given classifier. The information for a given group               
within the ECM groups. There are 52 group attributes for each classifier, which consist of               
the name, description, information on how the classifier was made, and the thresholds for              
the application of the classifier (ex. angle, elevation, etc.). There are a total of 10               
variables, which consist of the probability tables for each cloud type, a mask for which               
surfaces the classifier is applied and for which channel wavelengths the classifier is             
applied. 

6.4.5 Other Derived inputs 
The opaque cloud top properties and Sub-pixel max/min/standard deviation of reflective           
channels are derived within the processing system outside of the ECM and are described              
later. 

7 Theoretical Description  
Cloud detection is the process of separating cloudy from clear pixels. It always involves              
assumptions of the radiometric characteristics of the clear and/or cloudy state and looking             
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for departures from them. In the ECM, spectral, and spatial tests are used to look for                
clouds by identifying pixels that do not exhibit the expected behavior of the clear-sky              
state. Each test described is applied to each pixel, resulting in a cloud/no cloud score,               
which is then used to decide whether a pixel is cloudy or clear.  

7.1 Physics of the Problem 
The challenge for any cloud mask is to exploit spectral, spatial and temporal signatures              
that maximize the sensitivity to the presence of cloud while simultaneously minimizing            
the false detection of clouds. The ECM algorithm makes extensive use of information             
from NWP fields, coupled with a Radiative Transfer Model (RTM), to generate the             
expected clear-sky state for the spectral tests. This approach has also been adopted by              
EUMETSAT (Dybrroe et al., 2005). While the current NWP fields often have errors in              
some critical fields, such as the surface temperature over land, they provide needed and              
useful information. Over the coming years, especially after GOES-R, NWP fields are            
expected to improve in both accuracy and special resolution. Over the coming years             
before the launch of GOES-R, the NWP fields are expected to improve in both accuracy               
and spatial resolution. For the spatial thresholds, we have no reliable information from             
the NWP fields and must rely on other sources. For example, the thresholds for the               
spatial uniformity tests rely on information from pre-computed high resolution maps of            
surface elevation and surface reflectance (see Section 3.3.2).  
 
In addition, the spectral tests are broken into those that use infrared channels, shortwave              
infrared, and solar-reflectance channels. All applicable tests are used to construct the            
ECM using the Naïve Bayesian approach.  
 
The other major type of test in the ECM is the restoral test. The restoral tests are                 
separated into tests that “restore” probably cloudy pixels to clear pixels and tests that              
“restore” cloudy pixels to probably cloudy pixels. As defined, the effect of these restoral              
corrections is to provide a conservative estimate on cloudiness (i.e., minimize false            
alarms in the ECM). Note many of the cloud detection names arise from the Clouds from                
AVHRR (CLAVR) cloud mask developed by Stowe et al. (1999). 
 

7.2 Use of CALIPSO Data in Determining Cloud Mask Classifiers 
An important part in the development of ECM is the use of CALIPSO observations to               
help define the classifiers. Because CALIPSO provides one of the most unambiguous            
and direct measures of the presence of the highest cloud layers (i.e., those also observed               
by the passive sensors), it has been used to help understand the behavior of each cloud                
mask test for clear and cloudy pixels. While many cloud masks have used RTM              
simulations to set cloud detection thresholds (i.e., CASPR), the goal of the ECM is to use                
the availability of pixel-level clear-sky information to derive new cloud mask metrics that             
maximize the separation of cloudy and clear pixels. The main advantage of using an              
observationally based approach (collocation of CALIPSO and passive sensor test data) to            
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threshold definition is that simulations may not capture the true variability present in real              
scenes.  The ECM allows for threshold modification when warranted.  
 
In this analysis, the 1 km cloud layer product from the standard CALIPSO processing              
(​Vaughan et al., 2005) was used together with data from the MODIS Aqua and VIIRS               
SNPP instruments. A key component of this analysis is the ability to co-locate the              
passive sensor with CALIPSO. To accomplish this, a routine was developed to find the              
passive sensor pixel that was closest in distance to each 1km CALIPSO cloud-layer pixel.              
This routine employed a nearest neighbor approach coupled with a polynomial fit to             
provide initial estimates of collocated pixels. The CALIPSO product, developed by           
NASA Langley, provides top, base and number of cloud layers for up to 10 layers in a 1                  
km footprint, and attempts to distinguish cloud from aerosol, smoke and dust. For the              
purposes of this study, a cloud mask from CALIPSO was determined noting the number              
of cloud layers in each 1 km pixel (column). Any CALIPSO column with more than zero                
cloud layers was assigned to the cloudy category. In addition, a cloud fraction from              
CALIPSO was computed using results from all lidar fields of view that fell within each               
MODIS/VIIRS pixel. Using the method described in Heidinger and Pavolonis (2009), the            
temperature of the highest cloud layer is used in conjunction with the 11 ​µ​m clear               
radiance calculation and 11 ​µ​m MODIS/VIIRS observations to compute an 11 ​µ​m cloud             
emissivity. This value represents the emissivity that a cloud must have if it existed at the                
level measured by CALIPSO with the observations measured by the passive sensor (i.e.,             
SEVIRI, VIIRS, MODIS, etc.). This is hereafter referred to as the CALIPSO emissivity. 
 
As a lidar with an inherent vertical resolution of 30 m, CALIPSO can detect clouds with                
opacities and spatial scales far exceeding the capabilities of passive visible/infrared           
sensors such as MODIS or the VIIRS. In order to use CALIPSO to determine              
meaningful thresholds for passive detection of clear and cloudy conditions, filtering is            
required to attempt to make the CALIPSO detection comparable to the performance            
expected from the passive observing system. In this analysis, we ignored all CALIPSO             
results which had cloud fractions not equal to 0.1 or 1.0. The purpose of this filter is to                  
restrict the analysis to CALIPSO data that is uniform over the spatial scales of the coarser                
MODIS or VIIRS pixels. In addition, a threshold of 0.1 was applied to the CALIPSO               
emissivity in an attempt to remove from consideration any pixels with very low optical              
depths that would fall below the detection capabilities of the channels on the passive              
sensors.  
 
In the remaining part of this section, CALIPSO data matched in space and time with               
MODIS or VIIRS observations are used to demonstrate the skill of the cloud mask tests               
in the ECM.  
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7.3 Naïve Bayesian Formulation 
The naive Bayesian formulation used here is the same as described in Heidinger et al.               
(2012). One simplification is employed. The formulation requires the calculation of           
class conditional no and yes values. These represent the fraction of all yes (or no) within                
a bin compared to the total number of yes (or no) in all bins. The class conditional no                  
and yes values are ratioed and multiplied together to form the variable R as shown below,  

R = ∏
n

i
 

Cno,i

Cyes,i
 

 
he calculation of the posterior probability Pp simplifies to the following 

 P p =  1
1 + − RR

P r  
 
Where P​r ​is the prior probability. In addition to the algebraic simplicity, this change              
allows the lookup tables to store only the ratio of the yes and no class conditional                
values, not both of them. 
 
Previous versions of the ECM used the CALIOP Cloud Phase values to generate a binary               
cloud mask and the ECM only generated the probability of cloud. This version of ECM               
now uses ice and water information in the CALIOP cloud phase to estimate a pixel’s               
probability of being clear (cloud-free), ice-cloud or water-cloud. These three          
probabilities are accomplished in the same way. 
 
Because the prior values used in the ECM may differ from the prior values of the training                 
data, the 3 probabilities may not sum to 1.0. Therefore, the first step is to sum the clear,                  
water and ice probabilities and divide each by that sum. 
 
P​sum​ = P​clear​ + P​water​ + P​ice  
P​clear​ = P​clear​ / P​sum 
P​water​ = P​water​ / P​sum 
P​ice​ = P​ice​ / P​sum 
 
P​cloud ​= 1 - P​clear 
 
 

7.4 Computation of Binary Cloud Mask and Cloud Phase 
 
This section describes how the posterior probabilities from the ECM are converted into             
the binary cloud mask and the cloud phase. As stated above, the cloud phase is meant                
only to diagnose the cloud mask and is not a replacement for the Enterprise Cloud Phase                
product.  These quantities are computed as shown in the following pseudo-code: 
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If P​cloud​ <0.50 
Binary Cloud Mask = Clear 
Cloud Phase = Clear 
 
If P​cloud​ > 0.50 
Binary Cloud Mask = Cloudy 
Cloud Phase is water if P​water​ > P​ice 
Cloud Phase is ice if P​ice​ >= P​water 

 

7.5 Estimation of Uncertainty 
In addition to the masks, the posterior probabilities are also used to generate uncertainties 
in the cloud detection and cloud phase as follows. 
 
Cloud phase uncertainty = 1.0 -P​ice​ or 1 - P​water  

 
Cloud Mask uncertainty  = P​cloud​ if binary cloud mask is clear 
Cloud mask uncertainty = 1 - P​cloud​ if binary cloud mask is cloud  
 

7.5.1 Computation of 4-Level Cloud Mask 

The ECM also makes a 4-level cloud mask.  The 4-Level Cloud Mask  is initialized from 
the binary mask.   Thresholds on P​cloud​ are used to determine as shown below. 
 
Table 4​ Description of logic for computing 4-level Mask for ECM. 

 Binary Mask Pcloud  RUT (opt) TUT (opt) 

Conf Clear Clear 0 - PCC uni uni 

Prob Clear Clear PCC - 0.5 non-uni non-uni 

Prob Cloudy Cloudy 0.5 - PCD N/A N/A 

Conf Cloudy Cloudy PCD-1.0 N/A N/A 

 
PCC is the cloud probability threshold between the confidently and probably clear mask             
values and PCD is the cloud probability threshold between the probably cloudy and             
confidently cloudy mask values. In past versions of the ECM, PCC was set to 0.1 and                
Pcd was set to 0.9. These fixed thresholds resulted in a lack of confidently clear pixels.                
These fixed thresholds resulted in varying amounts of confidently-clear for each surface            
type. From a probabilistic point of view, this makes sense since the confidence in cloud               
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detection does vary greatly with surface and viewing conditions. However, some           
algorithms rely on the ECM to provide confidently clear pixels. Therefore, the ECM             
applies an approach that sets the PCC values to ensure that each surface type on average                
yields 25% of the binary-clear pixels as confidently clear. For the PCD values, the              
previous value of 0.9 was kept because a fixed value did not seem to cause issues to the                  
downstream algorithms. Applying this approach to the VIIRS data gives different values            
for PCC for each surface. 
 

7.6 Enterprise Cloud Mask Prior information 
  
The posterior prior probability is derived using the CALIPSO Version 1.00 Lidar Level 3              
GEWEX cloud monthly product, which is available on the Detailed Quality Summary            
website, 
https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/qs/cal_lid_l3_gewex_cl
oud_v1-00.php (accessed September 2020). Monthly data from 2007 to 2015 were used            
to compute mean and standard deviation cloud fractions for each month at 1​o​x1​o box over               
the entire globe. These calculations are done for the total cloud amount as well as               
separating ice and water clouds, which are treated separately. In addition, averages for             
daytime, nighttime and day-night are provided in the CALIPSO L3 files. This allows for              
the mean and standard deviation for total, ice and water clouds can be computed for               
different solar illumination conditions. Due to how CALIPSO orbits, not every grid cell             
has a valid value every month, especially when separating day/night scenes and ice/water             
clouds. Under conditions when a grid cell doesn’t have a valid value, a spatial averaging               
with a box size of 9​o​x9​o is applied in order to fill those regions. Many iterations are                 
conducted to fill all cells and are applied to grid cells that show a mean cloud amount of                  
1.00. This allows the posterior prior probability to look more realistic. Finally, spatial             
smoothing is applied to the data after all grid cells are filled. Both datasets, with and                
without the spatial smoothing, are within the prior cloud amount lookup table and             
available for use. The figure below shows the global total, ice and water cloud amount for                
January and July, respectively. The data plotted are not spatially smoothed. Artifacts are             
observed in polar regions which are due to missing values from the CALIPSO products              
so spatial averaging is applied as described previously.  
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Figure 4 Global total water, ice and water cloud amount for January and July derived              
from 9 years of monthly CALIPSO L3 data. Data in polar regions are missing in the                
CALIPSO data, and are derived by spatially interpolation from nearby regions. 
 
Previously, the ECM only used just the total cloud fraction from MODIS, derived from              
the MOD35 product. While the monthly data was used to compute mean and standard              
deviation cloud fractions for each month at 1​o​x1​o box over the entire globe, there was no                
need to fill in any gaps in the polar regions, since the grid cells all had valid values.                  
However, there were differences in the performance of the MODIS cloud mask owing to              
the usage of the visible channels during the day and the limitations of IR cloud masking                
over the polar regions during the nighttime region. In addition, unlike the latest CALIOP              
prior mask, the MODIS prior was not separated by cloud type (water/ice). Thus only the               
total cloud fraction was available. Similar to the image above, the figure below shows the               
total cloud fraction from January and July.  
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Figure 5​ Global total cloud amount for January and July derived from MODIS data. 
 
The most noticeable differences are in the polar regions, especially in the hemispheres’             
winter. This is mostly due to the fact that, as mentioned above, MODIS, which is an                
optical sensor, reverts to an IR only algorithm at night. The other difference is that               
MODIS is more smooth, owing to the larger footprint of the sensor. 
 
 

7.7 Selection of ECM Surface Types 
As stated above, the selection of different surface types to generate the classifiers is              
critical. We have chosen to classify the globe into seven surface types. The goal of               
classifying different surface types is to capture the systematic biases in our knowledge of              
the clear-sky conditions that vary greatly from one surface type to another. In the current               
algorithm, we classify the globe into the following surface types: 1-DEEP OCEAN,            
2-SHALLOW WATER, 3-LAND, 4-SNOW, 5-ARCTIC, 6-ANTARCTIC, and       
7-DESERT. These surface types were chosen after a series of trial and error             
experiments. Each surface type represents a region where the distribution in the contrast             
between clear and cloudy skies and the accuracy of the performance of the clear-sky              
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model is similar. The inputs to the surface type are the land cover data from the land                 
cover database used in the MODIS geolocation file (MOD/MYD03), the snow field            
within the NCEP reanalysis (Kalnay et al, 1996), the NOAA Optimum Interpolation Sea             
Surface Temperature Version 2 (OISST) daily 25 km SST analysis (Reynolds et al.,             
2002) and 3.75 µm surface emissivity from the SEEBOR surface emissivity data base             
(Seeman et al, 2008). Figure 3 shows the global distribution of these surface types for               
January 1 and July 1, 2009. A brief description of these types follows. The surface types                
will vary with the frequency of the ancillary data. While the land cover data is               
temporally invariant, the surface emissivity values vary every 16 days. The largest driver             
of the surface type variation is the snow and ice cover information. The sea-ice              
information is taken from the OISST data and varies daily. The snow information is taken               
from the NCEP Reanalysis, which is updated every 6 hours.  
 

7.7.1 DEEP OCEAN 
The DEEP OCEAN surface type consists of pixels where the MOD03 land mask was set               
to “Deep Ocean” and the sea-ice information from the OISST data indicated ice-free             
conditions. Highly accurate clear-sky radiative transfer modeling and spatially uniform          
surfaces characterize the DEEP OCEAN surface type. 

7.7.2 SHALLOW WATER 
The SHALLOW WATER surface type is defined by ice-free pixels that the MOD03 land              
mask classified as Moderate Ocean, Deep-Inland-Water and Shallow-Inland Water. In          
addition, any pixels where the 3x3 standard deviation of the background SST from the              
OISST exceeds 1.0 K were also included in the SHALLOW WATER surface type. In              
general, this surface type includes water bodies where our knowledge of the surface             
temperature is much less accurate than that of the DEEP OCEAN surface type.  
 

7.7.3 LAND 
The LAND surface type includes all land surfaces that are not covered by snow and not                
classified as desert. 
 

7.7.4 SNOW 
The SNOW surface type includes all land surfaces covered by snow excluding Antarctica             
and Greenland. 
 

7.7.5 ARCTIC 
The ARCTIC surface type includes all pixels labeled as sea-ice in the Northern             
Hemisphere. 
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7.7.6 ANTARCTICA 
The ANTARCTICA surface type includes all sea-ice in the Southern Hemisphere and all             
snow covered surfaces south of 60S. Based on guidance from the MODIS cloud mask              
team located at the University of Wisconsin, snow covered Greenland was also included             
in the ANTARCTICA surface type. 
 

7.7.7 DESERT 
The DESERT surface type includes all pixels with a 3.75 µm surface emissivity less than               
0.90 that occurred within 60 latitudinal degrees of the equator. The use of the 3.75 µm                
emissivity was used to ensure optimal performance for the 3.75 µm classifiers. 
 
Figure 6 shows the global distribution of the surface types for February 1, 2009 (top) and               
July 1, 2009 (bottom). As Figure 3 shows, the spatial coverage of these surface types               
varies with season with snow-covered land showing the most dramatic variation. The            
appearance of SHALLOW OCEAN away from the coasts is due to the inclusion of              
heterogeneous SST regions (i.e. oceanic fronts) into this surface type. 
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Figure 6​ The ECM surface types for January (Top) and July(bottom). Taken Heidinger et. 
al (2012). 
 

7.8 Classifier Metrics 
Given the range of sensors supported by the ECM, the number of metrics used in               
constructing the classifiers used in the ECM LUTs is large. The metrics can include              
observations, algebraic relationships of observations, clear-sky values and newly derived          
variables specifically made for cloud detection. The table below gives some examples of             
how the metrics are defined and the naming convention used. Note, this table is not               
meant to be complete. For example, all brightness temperatures and all standard            
brightness temperature values are available. 
 
 
Table 5​ Definition of terms used in defining metrics for ECM classifiers. 

Metric Name Definition 

bt brightness temperature  (bt11 = 11 micron brightness temperature) 

btd Brightness temperature difference (btd1112 = bt11 - bt12) 
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std Standard deviation of on a 3x3 array centered on the pixel 

zopa Opaque cloud height  

topa Opaque cloud temperature 

dtsfcopa Difference in surface and opaque cloud temperature 

etropo emissivity referenced to tropopause (ie etropo11 = 11 micron etropo) 

ref Reflectance ( ref065 = 0.65 micron reflectance) 

clr Clear sky (ref065clr = clear sky 0.65 micron reflectance) 

drefl065clr Difference in the 0.65 reflectance with the clear-sky value 

refratxy Reflectance ratio of x /y (refrat086065 = ref086 / ref065) 

xstd Standard deviation of x over 3x3 array 

logx Log10 of x 

day Metric computed only for day defined solar zenith angle 

night Metric computed only for night defined solar zenith angle 

 
 
Once the metrics for the classifiers are defined, they are used by themselves in 1d               
classifiers or combined with others to make 2d and 3d classifiers. As described above,              
each classifier can be used with the prior probabilities to make a posterior probability by               
itself. Examples of single classifier posterior probabilities are shown below. ​Figure 7           
shows a single 1d refrat138065 classifier for the deep ocean surface type. This classifier              
is very sensitive to high clouds and can not discriminate between obscured low clouds              
and clear sky. ​Figure 7 shows the variation of the posterior probabilities for clear, ice and               
water clouds and also shows the frequency of the observations for each value of the               
classifier metric. 
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Figure 7​ Posterior Probabilities of a single one dimensional classifier (refrat138065) for 
the deep ocean surface type (SFC01).  The posterior cloud probability would be 1 - 
posterior clear probability (black). 
 
Figure 8 shows the posterior probabilities for a single 2d logzopa_btd1112 classifier for            
the deep ocean surface type. The OBS_PROB field shows the relative location of the              
training data in 2d space. Red values are high probability and blue values are low               
probability. An ideal classifier has red regions in each field (clear, ice, and water) that do                
not overlap each other. 
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Figure 8​ Example of a two dimensional classifier (logzopa_btd1112).  The posterior 
cloud probability is 1 - posterior clear probability (upper right). 
 
Due to the difficulty in visualization, a 3d classifier is not shown, Once all of the                
classifiers are made, they are combined manually or through the optimization process to             
make an ECM Look-up Table (LUT). The goal of combining classifiers is to get better               
results than from any one classifier. For the VIIRS ECM LUT described here, Figure X               
shows the frequency distribution of the posterior cloud probabilities from each classifier            
alone (orange) and from the final values from all classifiers (black). Ideal behavior             
would be the final frequencies to be clustered near 0 and 1. This appears to be the                 
behavior for this LUT even none of the individual classifiers shows this behavior. 
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Figure 9​  Frequency of Occurrence of Posterior Cloud Probability for each individual 
classifier (orange) and the final result (black). 
 

7.9 Optimization 
If classifiers are combined, there is a risk that correlations between the classifiers will              
result in a reduction in performance. To remedy this, an optimization procedure was             
developed. The process used is sequential optimization. The optimization is applied for            
each surface type or globally. The process starts by picking one of the metrics described               
above. The classifiers are ranked by their individual performance. The winner is saved             
and becomes the baseline. The process is repeated by selecting which remaining            
classifier improves upon the baseline the most. The best classifier is then added to the               
baseline and the process is repeated until the improvements to performance become            
negligible.  This process is assumed to reduce the impact of classifier correlation. 
 
The optimization for a set of classifiers for the snow surface is shown below. For this                
example, the zopa_btd1112_logbt11std classifier is the most powerful single classifier. 
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Figure 10​ Optimization example 
 
 
 
Table 6​ List of classifiers for the VIIRS ECM LUT and their relative importance 
(0=largest) for each surface type.  If the cell is blank, that classifier is not on for that 
surface type. 
 
 

 Surface Type Index 

Class 
Index 

Test Name 0 1 2 3 4 5 6 7 

0 bt11_btd1112 2   0 2 6 5 0 

1 bt11_btd3811_day  1 3  2 1 4 3  

2 bt11_btd3811_night     5 2   

3 dbt11max3x3 5 1 1 8  11   
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4 drefl065min3x3 6 6 5  7 10 6 4 

5 etropo11_btd1112_logbt11std 8   6  3  1 

6 etropo11_dtsfcopa_logbt11std      7   

7 etropo11_logbt11std  4 0      

8 etropo11_topa_logbt11std    1  0   

9 logbt11std_logrefl065std       5  2 

10 logzopa_btd1112  5 4    2  

11 logzopa_btd1112_logbt11std 4   4 0 9 0  

12 logzopa_dtsfcopa 7     12 4  

13 logzopa_dtsfcopa_logbt11std 0    4    

14 logzopa_topa_logbt11std  0       

15 ndsi 3    3 3 1 1 

16 refrat086065  2 2 7     

17 refrat138065  7 3 5 6 8  3 

 
 

7.10 Cloud top properties for an opaque cloud 

The opaque cloud properties provide an estimate of the cloud top height, temperature and              
pressure based on the IR measured temperature and the RTM. It provides a basic idea of                
the properties of an opaque (dark) for a given pixel. The objective is to get information                
(height, temperature and pressure) of an opaque cloud for a given pixel and to use this                
information to determine the likelihood of a pixel being the cloud. To determine the level               
of an opaque cloud, one takes the measured 11μm (or 10.3μm) radiance and then looks               
through the radiance profile from the RTM to determine the cloud properties. The             
uncertainties associated with clear-sky radiative transfer for opaque clouds are assumed           
to be negligible.  
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7.11 Sub-pixel information for the channel 

The subpixel information is available for sensors with higher resolution visible           
channels in conjunction with lower resolution thermal channels (ABI, AHI, MTG,           
VIIRS, etc.). ​For the corresponding IR pixel, the maximum, minimum and standard            
deviation high resolution pixels are calculated. For the ​0.64​µm channel, which has a             
native resolution of 0.5km for ABI, there are sixteen corresponding pixels that are             
contained within a single 2km IR pixel. 
 

7.12 Uniformity Tests 

7.12.1 Reflectance Uniformity Test (RUT)  
The RUT is a daytime test based on the local standard deviation of the observed               

0.65 µm reflectance computed for a 3x3 box surrounding each pixel, as calculated by the               
spatial uniformity algorithm described in the AIADD. If the standard deviation is greater             
than a threshold, a non-clear result is obtained. The physical basis is the assumption that               
clear regions should exhibit relatively spatially uniform reflectivity over land and ocean.            
In an attempt to make the RUT independent of the surface reflectance, the RUT metric is                
the 0.65 µm reflectance standard deviation over a 3x3 box centered on the current pixel,               
as computed by the spatial uniformity framework routine described in the AIADD.            
Because of the non-uniformity of coasts and snow, this test is not applied on those pixels.                
In the case of RUT and TUT (described below), the standard deviations are always              
computed using 3x3 pixel arrays. No attempt is made to adjust the resolutions to account               
for the actual pixel resolution, which is a function of zenith angle. In the ECM, the RUT                 
is applied to the 0.65 µm reflectance standard deviation computed over a 3x3 pixel array               
for daytime pixels with solar zenith angles out to 80.0 degrees, but can vary depending on                
the sensor utilized.  

As stated above, the goal of the RUT is to separate truly clear pixels from those                
that are cloud contaminated. An appropriate threshold for the RUT is given by the value               
for CALIPSO cloud fractions of zero (the most clear of pixels). The initial threshold used               
is done for each surface type and stored within a given sensor lookup table. In the case of                  
land pixels, however, the threshold is the greater of either 0.5 or the surface index               
threshold times the clear sky reflectance, as described previously. For water pixels, the             
RUT has a threshold of that which is stored in the sensor specific lookup table If the test                  
metric, the standard deviation of the 0.65 µm reflectance standard deviation computed            
over a 3x3 pixel array for the current pixel is greater than the threshold (the surrounding                
pixels are non-uniform), then a “true” result is given for the RUT. It is important to note                 
that given the variation along the coast, the RUT is not performed over coastal pixels. 

7.12.2 Thermal Uniformity Test (TUT) 
The thermal analog to the RUT is the TUT (Thermal Uniformity Test) and is              

based on the standard deviation of the observed 11 µm brightness temperature computed             
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on a 3x3 box surrounding each pixel. If the standard deviation is greater than a threshold                
(the surrounding pixels are non-uniform), a non-clear result is obtained (i.e. test is set to               
“yes”). Again, because of the fact that coasts are inherently non-uniform, no coast pixels              
are used in this test. The thresholds used are increased by the value of 3.0*Γ*Z_std where                
Γ is the lapse rate (7.0 K/km) and Z_std (km) is the 3x3 standard deviation of the surface                  
elevation. The factor 3 accounts for the fact we are assuming a 3-σ departure from the                
mean elevation. As with the thresholds for the RUT, the TUT thresholds are derived for               
each sensor and stored with the ECM lookup table.  
 

7.13 Additional Mask Algorithms 
The ECM also processes several extra algorithms: Fire, Smoke, Dust, and Thin Cirrus.             
The results of these products are saved at the compressed bits (Table 5). These additional               
masks do not affect Cloud Mask and Cloud Probability results and are not validated. The               
only relevant test is the Thin Cirrus test which is described below. 

7.13.1 Thin Cirrus Mask 

The Thin Cirrus bit was requested by ECM users (aerosol, land teams, etc.). It works               
only during the day time, and follows the VCM logic. If 1.38 ​µ​m reflectance is within                
minimum and maximum thresholds the Thin Cirrus flag is set to 1. For desert and               
snow/ice covered pixels the thresholds are different than for the other surfaces. 
 

8 Algorithm Output 
The following section describes the four sets of output from the ECM algorithm. The              
table below shows how the output compares to the Baseline Cloud Mask, and older              
versions of the ECM, which are both stored in CLASS. For those ATBDs, please refer to                
the appropriate version of the baseline or enterprise ATBDs. 
 
 

 Baseline ECM 
JPSS v1r0 - v2r4 

ECM  
(JPSS post v2r4, ABI 

post enterprise update) 

Cloud Probability  ✔ ✔ 

Binary Mask ✔ ✔ ✔ 

4-Level Mask ✔ ✔ ✔ 

Packed Test Output ✔ ✔ ✔ 
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RUT ✔  ✔ 

TUT ✔  ✔ 

VCM Thin Cirrus  ✔ ✔ 

Glint ✔ ✔ ✔ 

 

8.1 Cloud Probability Output 
The main output of ECM is the Cloud Probability, which is ranging from 0.0 for clear to                 
1.0 for cloudy. The users are encouraged to use this output for their applications by               
choosing appropriate thresholds. 

 

8.2 Cloud Mask Output 
The ECM consists of a 4-level cloud mask. The cloud mask values and a description of                
their meaning are given below in Table 4a. Table 4b provides the probabilities for each               
surface type. The initial value for the ECM is -128.  
 

Table 7​ Cloud mask values and their descriptions 
 

Cloud Mask Value Numerical 
Value 

  

Clear 0 

Probably Clear 1 

Probably Cloudy 2 

Cloudy 3 

 

8.3 Single Classifier Binary Cloud Mask Bits 
The algorithm also produces 7 bytes (Table 5) of output which are comprised of bits               
holding the test results for each of the various tests and flags that are used to compute the                  
cloud probability (0.0 – 1.0) and final 4-level cloud mask product (Table 4), and are               
required inputs for other algorithms. The first 21 bits, which describe parameters such as              
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surface type and tests such as the thin cirrus, fire and smoke tests remain static no matter                 
the sensor. The remaining bits are ordered as described in order listed the global attribute               
for each file.  
 
Table 8​ Cloud mask tests and flags and their descriptions. 
 

Flag number Number of bits Bits Byte value Name 

1 1 1 1 Cloud Mask Attempted 

2 1 2 1 day flag for 0.63 um refl gross 
test 

3 1 3 1 day flag for 0.63 um spatial 
gross test 

4 1 4 1 3.7 Day Pixel 

5 1 5 1 3.7 Night pixel 

6 1 6 1 Solar Contamination 

7 1 7 1 Coastal Pixel 

8 1 8 1 Mountain Pixel 

9 1 9 2 Forward Scattering 

10 1 10 2 Snow pixel 

11 1 11 2 Cold Scene 

12 1 12 2 Glint Pixel 

13 1 13 2 NB Smoke Flag 

14 1 14 2 NB Dust Flag 

15 1 15 2 Shadow (not filled) 

16 1 16 2 NB Fire Pixel 

17 3 17-19 3 ECM Surface Type 

18 1 20 3 Thin Cirrus Flag 

19 1 21 3 ABI Use of 10.4 
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All of the 1-bit variables are either 0 = no or 1= yes. The surface type is the surface type                    
used by the naive bayesian mask and is described in section 3.1.4.3. One can pull the                
surface type using the following bit pattern 
 
001 = Deep Ocean 
010 = Shallow Water 
011 = Land 
100 = Snow  
101 = Arctic 
110 = Antarctic  + Greenland 
111 = Desert 
 
The smoke, dust, shadow, fire and thin cirrus bits are added as an extra to the ECM and                  
are not validated. Within the GOES-R Ground System and VIIRS operational processing            
system, the shadow mask is calculated and stored in the Cloud Height algorithm output              
files, meaning the bit assigned to the shadow mask is not filled in the packed bits                
variable. 
 
Because the actual tests used by the ECM are dynamic with each sensor, one must first                
pull the classifier name attribute from the packed bit variable in order to access the               
results. Below is a logic to how to access the list of packed bits and extract them, with                  
example code shown in Appendix B. Note that the exact name of the variable from the                
NDE processing system (SAPF) is ​not the same as what will be contained in the               
GOES-R Ground System Output or any other processing system the ECM will have             
different variable and attribute names. 
 

● Read in the packed bits variable (CloudMaskPacked) 
 

● Read in the test names, which are an attribute of the (ECM_test_bit_order) 
○ An example of this is shown in Appendix B 

 
● Extract bits based on the position of the classifier (test) in the list of names. 

○ The first 21 bits (static_bits) are static (look at the table above). 
 

○ Each test is 1 bit. It is important to remember that IDL is ​0 based​. This                
means the first test would be n=0, the second would be n=1, etc. 
 

○ In the case of output from NDE and CLAVR-x, the packed bits are stored              
as (byte, x, y).  

■ And example from IDL of how to read ​a test​, once you know             
which test (0,..n-1) you want to read in, from NDE/CLAVR-x 
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 byte_num = fix((static_bits + i) / 8) 
 test_bit = fix((static_bits + i) - (byte_num* 8)) 
 bit_test = 1 
 
test_output = reform(bit_2_int(fix(packed_tests[byte_num,*,*]),   
test_bit, bit_test), nelements, nlines, /overwrite) 
 
Where packed_tests is the array of packed tests, n is the number            
which test is, nelements is the number of elements of the array and             
nlines is the number of lines of the array. 
 

○ The packed bits within the GOES-R Ground System are stored within a            
single (x,y) array, but are only available within the ECM Intermediate           
product and are not available publicly at this time. 

 

8.4 RUT and TUT 
The enterprise cloud mask, like the ABI Baseline Cloud Mask, has two clear-sky             
uniformity tests which act as filters of the clear pixels to identify clear pixels that reside                
in regions of high spatial heterogeneity and reclassify them as probably clear. These two              
tests, which are not part of the actual derivation of the 4-level cloud mask, are available                
as separate variables for users to utilize if they wish to have an additional reclassification.               
This reclassification would occur after the pixel is determined to be clear. The typical              
manner of usage is if the pixel is clear and either of the uniformity tests has a positive                  
result, then the 4-level cloud mask for that pixel is set to “probably clear.” Otherwise, the                
pixel remains “clear”. The assumption is that the presence of cloud will increase the local               
spatial heterogeneity beyond the values expected for clear sky.  
 

8.5 Metadata 
In addition to the algorithm output and quality flags, the following will be output to the                
file as metadata for each file for the GOES-R and NDE operational systems: 

● Percent of pixels that are clear, probably clear, probably cloudy, and cloudy 
● Number of cloud mask categories (4 cloud mask categories: Clear, Probably           

Clear, Probably Cloudy and Cloudy) 
● For each cloud mask category, the following information is required: 

o Count of pixels for the cloud mask category 
o Definition of cloud mask category 

● Total number of cloud mask points. 
● Terminator mark or determination. 
● Minimum, Maximum and Mean observation-calculation for all-sky (IR        

Channels). 
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● Minimum, Maximum and Mean observation-calculation for clear-sky (IR        
Channels). 

● Standard deviation between observation and calculation for all-sky (IR         
Channels). 

● Standard deviation between observation and calculation for clear-sky (IR         
Channels). 

● Degraded Scene for FPT event (GOES-R only) 

9 Data Sets and Validation Tools 

9.1 Input Datasets 
This section will describe the datasets used to validate the ECM. The Enterprise Cloud              
mask currently runs on the VIIRS, ABI, AHI, MODIS and SEVIRI sensors. Future             
sensors, such as MetImage on EPS-SG, as well as those on Meteosat Third Generation.              
An example from the ECM as applied to VIIRS and ABI, which are the sensors on the                 
current set of operational United States low-earth orbiting and geostationary satellites. 
 
Figure 11 shows ECM as applied to VIIRS as shown in the figure below, which is an                
aggregated image from 2030 UTC to 2040 UTC on June 01, 2015. On the left it is a true                   
color image of Hurricane Andres, and on the right – the corresponding 4-level ECM              
result. 
 

 
Figure 11​ ​Aggregated images of 8 SNPP VIIRS granules of Hurricane Andres on 
06/01/2015 from 2030UTC to 2040UTC (left - True Color RGB, right - NOAA 
Enterprise Cloud Mask). 
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VIIRS provides 16 M-Band spectral channels with a nadir spatial resolution of 750 m. It               
also provides 5 high resolution (375m) bands, with the 0.65µm channel being used by the               
ECM to provide sub-pixel information used as one of the classifiers.  
 
Both the Advanced Himawari Imager (AHI), on JMA’s Himawari-8/9 satellites and the            
Advanced Baseline Imager (ABI), on the GOES-R series of satellites, have 16 bands with              
the spatial resolution from 0.5 to 2 km. Like VIIRS, this means that the ECM can utilize                 
the sub-pixel information of the high resolution 0.65µm channel as one of the classifiers              
to determine cloud probability. ​Figure 12 shows an example of GOES-16 ABI Full Disk             
RGB and ECM from 20 September 2020. 
 

 
 

Figure 12​ Full Disk GOES-16 ABI RGB and Binary ECM. 2020-09-20 19:00 UTC.  
 
The ECM observations are collocated with CALIPSO data to assess the quality of the              
ECM performance. These validation data sets are used in assessing the performance of             
the ECM. In addition, the ECM from VIIRS and ABI can be “warped” to perform               
inter-sensor consistency.  
 
 

10 Performance Estimates 
 
This section will provide the performance estimates of the ECM for several of the 
sensors it is applied to.  The estimates will come from application of the CALIOP data 
designated for testing, which is separated from the data used for training.  The 
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requirements are shown in ​Table 1​.  The specifications also say that clouds with optical 
depths less than 0.4 can be ignored.  In showing the performance we do show the ACC 
metric with COD limitation but we also show the performance without the optical 
specification.  In general, the ECM meets these specifications with any COD limitation. 
 
 

10.1 ECM Training and Testing Data from Matchups with CALIPSO/CALIOP 

 
With the launch of CALIPSO and CloudSat into the Earth Observing System (EOS) 
A-Train in April 2006, the ability to conduct global satellite cloud product validation 
increased significantly.  Currently, CALIPSO cloud detection results are used to train and 
validate the cloud detection of the ECM.  The CALIPSO data used here are the 1 km 
cloud layer results (Vaughan et al., 2005​)​.  ​As with the PATMOS-x cloud mask (Heidinger, et 
al. 2012), the NASA CALIPSO/CALIOP Cloud Layer Products (CLAY) are used to train the 
cloud mask.  The primary data used are the 5km and 1km CLAY.  Both of these are matched in 
space and time to the satellite pixels.  The primary data is the 5km CLAY.  For satellite pixels 
where the 5km CLAY shows no cloud but the 1km CLAY shows cloud, the 1km CLAY values 
are used.  The CLAY products used here are the cloud phase at the top of the highest cloud layer 
and the integrated cloud optical depth.  The 1km CLAY product does not provide cloud optical 
depth so it is assumed that the cloud detected in the 1km products are optically thick and the 
cloud optical depth is set to 3.  The CLAY cloud phase has 4 values including clear, ice, water 
and horizontally-oriented ice.  The two ice phase categories are counted as a single ice phase. 
  
As discussed in Heidinger et al. (2016), the CALIOP CLAY data has an across-track resolution of 
0.333 km and a along-track resolution of 1 and 5km (as used here).  The maximum 
time-difference for sensor collocation was set to +/- 5 minutes.  Being a micro-pulsed lidar 
(MPL), CALIOP is very sensitive to the presence of clouds.  To avoid the labelling of pixels as 
cloudy which have amounts of cloud that are likely invisible to the satellite imagers, CALIOP 
cloud phases were reclassified as clear if the CALIOP column optical depth was below a 
threshold.  Currently, this threshold is set to 0.1.  The ECM training data is generated by using the 
colocation process and  extracting all of the ECM input data along the CALIPSO track and store a 
file with all of the CALIPSO/CALIOP information.  For each sensor, at least one year of data is 
sampled to generate millions of colocation data.  The data is separated into training and testing 
data by sampling complete days.  Typically, the training data is 3 times larger than the testing 
data.  
 
CALIPSO/CALIOP offers a uniquely high spatial resolution and sensitive data set for training 
and validating the ECM.  However, there are limitations.   First, the spatial and temporal 
differences limit the ability to accurately characterize small scale clouds and cloud edges.  Also, 
CALIPSO is in a sun-synchronous orbit and therefore  does not sample all viewing conditions 
seen by the sensors used in the ECM. 
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10.2 Performance Metrics 

The ECM has always been measured by the Proportional Correct (PC) metric which is              
also commonly called the accuracy metric (ACC). The number of clouds in the truth data               
is referred to as P (for positive or yes) and the number of true clear pixels is referred as N                    
(for negative or no). The true positive number (TP) is the number clouds detected              
correctly and the true negative number (TN) is the number of clear pixels detected              
correctly. The true positive rate (TPR) is the TP divided by P and the true negative rate                 
(TNR) is the TN divided by N.  With these definitions, the ACC metric is computed as 
 

ACC = (TP + TN) / (P + N).  
 

The cloud fraction of the earth is significantly above 50% and the ACC metric will be                
driven more by the cloud performance relative to the clear performance. To improve on              
this, one can derive a balanced accuracy (BACC)  metric  as 
 

BACC = (TP + TN) / 2 
 
which balances the clear and cloudy performance. 
 
In addition, these metrics treat the mask as a binary entity. One could bring in the cloud                 
probability values and measure the deviations of the probabilities from 0.0 for clear             
pixels and 1.0 for cloudy pixels. These metrics would be weighted by these deviations              
and would penalize the occurrence of “probably” clear and cloudy results and reward             
confident clear and cloudy results. In these computations, p is the cloud probability             
which is a floating point number ranging from 0 to 1 and t is the truth probability which                  
only has values of 0 or 1.  
 
With this , the weight ACC metric (WACC) is computed as 
 

WACC = 1.0 - mean((1-t)*p + t*(1-p)) 
 
and the balanced weighted accuracy metric (BWACC) is computed as 
  

BWACC = 1.0 - mean( (1-t)*p*N + t*(1-p)*P) / (N + P) 
 

Note, BACC is similar to binary cross entropy (BCE) which is often used in optimizing               
machine learning approaches. 
 

BCE = mean(-t*alog(p) - (1-t)*alog(1-p)) 
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In summary, the ECM will report the ACC metric for its validation and use the BWACC                
metric for its optimization.  These other metrics are computed and will also be monitored. 
 
This section will provide the performance estimates of the ECM for several of the sensors               
it is applied to. The estimates will come from application of the CALIOP data designated               
for testing, which is separated from the data used for training. The requirements are              
shown in Table X. The specifications also say that clouds with optical depths less than               
0.4 can be ignored. In showing the performance we do show the ACC metric with COD                
limitation but we also show the performance without the optical specification. In general,             
the ECM meets these specifications with any COD limitation. 
 
 

10.3 Estimation of ECM Performance with CALIPSO/CALIOP 
As stated above, the ECM performance is based on the ACC metric where clouds with               
optical depths less than 0.4 are ignored. The performance degrades when the cloud             
optical depth filter is lessened. In addition, the BACC metric tends to be lower than the                
ACC metric for a given optical depth filter due to the unbalanced distribution of clouds.               
Therefore, in addition to the ACC with COD > 0.4 tables, this section will show the                
BACC tables with no cloud optical depth restriction. 

10.3.1 VIIRS Performance Tables 
The current VIIRS ECM LUT consists of 18 Classifiers optimized for each surface type.              
These are listed in Table X used to explain the optimization. Table X provides the               
breakdown of the VIIRS ECM LUT for each surface type. The table shows the              
performance in terms of the Performance Metric (PM) and the comparison of cloud             
fractions between the ECM EF and the truth (TF) which comes from CALIOP. In Table               
X, the PM is the ACC metric. Table X shows that all surface types exceed the required                 
specification except for the Arctic and Antarctic at night. In general, the EF values are               
slightly lower than the TF values which indicates the ECM would miss more cloud than it                
falsely detects. There are exceptions to this as seen in the nighttime results for Antarctica               
where the EF cloud fraction is 7% higher than the TF value. 
 
 
Table 9​  Performance Metric and Cloud Fraction Comparison for the ECM compared to CALIOP. 
Performance Metric (PM) is ACC and clouds with optical depths less than 0.4 are ignored. TF is 
the truth cloud fraction from CALIOP and EF is the cloud fraction from ECM.  All refers to all 
times of day.  Day refers to daytime conditions and night refers to nighttime conditions. 

 All  Day Night 

surface    PM    TF    EF    PM    TF    EF    PM    TF    EF 

all  0.93  0.70  0.69  0.94  0.70  0.70  0.92  0.71  0.70 
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deep ocean  0.95  0.78  0.75  0.96  0.74  0.74  0.95  0.83  0.80 

other water  0.96  0.79  0.77  0.95  0.78  0.78  0.96  0.81  0.78 

land  0.91  0.65  0.61  0.92  0.71  0.71  0.91  0.58  0.54 

snow  0.89  0.69  0.67  0.89  0.72  0.72  0.88  0.67  0.66 

arctic  0.88  0.75  0.74  0.91  0.76  0.76  0.83  0.73  0.69 

antarctic  0.87  0.58  0.62  0.92  0.58  0.58  0.82  0.58  0.65 

desert  0.94  0.27  0.28  0.94  0.33  0.33  0.95  0.22  0.24 

 
 
Table 10​ Performance Metric and Cloud Fraction Comparison for the ECM compared to 
CALIOP.  Performance Metric (PM) is BACC and clouds with no optical depths filter TF is the 
truth cloud fraction from CALIOP and EF is the cloud fraction from ECM.  All refers to all times 
of day.  Day refers to daytime conditions and night refers to nighttime conditions. 

  All  Day Night 

surface    PM    TF    EF    PM    TF    EF    PM    TF    EF 

all  0.90  0.69  0.67  0.92  0.69  0.69  0.88  0.69  0.68 

deep ocean  0.93  0.77  0.74  0.94  0.73  0.73  0.92  0.81  0.79 

other water  0.93  0.79  0.76  0.93  0.78  0.78  0.93  0.80  0.77 

land  0.89  0.64  0.60  0.89  0.70  0.70  0.88  0.57  0.53 

snow  0.85  0.67  0.65  0.86  0.70  0.70  0.84  0.65  0.64 

arctic  0.81  0.73  0.71  0.84  0.75  0.75  0.78  0.70  0.66 

antarctic  0.82  0.56  0.58  0.89  0.57  0.57  0.77  0.55  0.58 

desert  0.90  0.29  0.29  0.89  0.34  0.34  0.91  0.24  0.26 

 

10.3.2 ABI+AHI ECM Performance Tables 
Following the same optimization procedure, an ECM LUT was constructed from training            
data from CALIOP matchups with the GOES-16/ABI, GOES-17/ABI and HIM8/AHI.          
To avoid the loop heat pipe issues, only daytime GOES-17 ABI data were used. The               
same procedure was run as described for VIIRS. This section follows the format of the               
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above section. Table X shows the performance tables with ACC as the performance             
metric and a COD > 0.4 
 
Table 11​ Performance Metric and Cloud Fraction Comparison for the ECM compared to 
CALIOP.  Performance Metric (PM) is ACC and clouds with optical depths less than 0.4 are 
ignored. TF is the truth cloud fraction from CALIOP and EF is the cloud fraction from ECM.  All 
refers to all times of day.  Day refers to daytime conditions and night refers to nighttime 
conditions. 

  All  Day Night 

surface    PM    TF    EF    PM    TF    EF    PM    TF    EF 

all  0.94  0.72  0.70  0.94  0.71  0.71  0.93  0.74  0.73 

deep ocean  0.94  0.74  0.73  0.95  0.73  0.73  0.93  0.78  0.77 

other water  0.95  0.72  0.71  0.95  0.71  0.71  0.94  0.77  0.77 

land  0.93  0.69  0.66  0.93  0.71  0.71  0.92  0.65  0.62 

snow  0.92  0.69  0.67  0.92  0.67  0.67  0.92  0.78  0.76 

arctic  0.92  0.72  0.71  0.93  0.71  0.71  0.89  0.73  0.70 

antarctic  0.93  0.81  0.81  0.94  0.82  0.82  0.91  0.80  0.79 

desert  0.93  0.41  0.38  0.93  0.42  0.42  0.93  0.35  0.35 

 
 
 
Table 12​ Performance Metric and Cloud Fraction Comparison for the ECM compared to 
CALIOP.  Performance Metric (PM) is BACC and clouds with no optical depths filter TF is the 
truth cloud fraction from CALIOP and EF is the cloud fraction from ECM.  All refers to all times 
of day.  Day refers to daytime conditions and night refers to nighttime conditions. 

  All  Day Night 

surface    PM    TF    EF    PM    TF    EF    PM    TF    EF 

all  0.90  0.71  0.70  0.91  0.71  0.71  0.88  0.73  0.74 

deep ocean  0.91  0.74  0.73  0.92  0.73  0.73  0.88  0.77  0.78 

other water  0.92  0.72  0.71  0.92  0.71  0.71  0.90  0.76  0.77 

land  0.88  0.67  0.64  0.88  0.68  0.68  0.89  0.63  0.60 
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snow  0.87  0.67  0.65  0.87  0.65  0.65  0.85  0.76  0.76 

arctic  0.86  0.70  0.70  0.86  0.69  0.69  0.85  0.71  0.69 

antarctic  0.84  0.79  0.80  0.85  0.80  0.80  0.83  0.77  0.78 

desert  0.87  0.41  0.38  0.87  0.43  0.43  0.89  0.35  0.37 

 
 

10.3.3 MODIS Performance Tables 
The ECM is also trained on CALIPSO matchus with the AQUA/MODIS sensor. The             
same process is applied as described above. Tables X and Y show the resulting              
performance compared to CALIOP for the ACC metric with COD > 0.4 (Table X) and               
the BACC metric for COD > 0.01. The MODIS performance shows some similar             
behavior with VIIRS. The cloud fractions are larger than the nighttime values in the              
Arctic and Antarctic.  All specs are met. 
 
 
Table 13​ Performance Metric and Cloud Fraction Comparison for the ECM compared to 
CALIOP.  Performance Metric (PM) is ACC and clouds with optical depths less than 0.4 are 
ignored. TF is the truth cloud fraction from CALIOP and EF is the cloud fraction from ECM.  All 
refers to all times of day.  Day refers to daytime conditions and night refers to nighttime 
conditions. 

  All  Day Night 

surface    PM    TF    EF    PM    TF    EF    PM    TF    EF 

all  0.93  0.71  0.72  0.93  0.70  0.70  0.93  0.73  0.75 

deep ocean  0.95  0.79  0.78  0.96  0.76  0.76  0.95  0.82  0.83 

other water  0.93  0.83  0.84  0.92  0.83  0.83  0.94  0.84  0.85 

land  0.93  0.68  0.64  0.91  0.72  0.72  0.95  0.63  0.62 

snow  0.88  0.60  0.64  0.89  0.60  0.60  0.88  0.61  0.66 

arctic  0.87  0.63  0.67  0.88  0.62  0.62  0.85  0.64  0.68 

antarctic  0.88  0.63  0.70  0.89  0.56  0.56  0.88  0.68  0.78 

desert  0.95  0.35  0.34  0.94  0.34  0.34  0.96  0.37  0.37 
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Table 14​ Performance Metric and Cloud Fraction Comparison for the ECM compared to 
CALIOP.  Performance Metric (PM) is BACC and clouds with no optical depths filter TF is the 
truth cloud fraction from CALIOP and EF is the cloud fraction from ECM.  All refers to all times 
of day.  Day refers to daytime conditions and night refers to nighttime conditions. 

  All  Day Night 

surface    PM    TF    EF    PM    TF    EF    PM    TF    EF 

all  0.89  0.71  0.71  0.90  0.70  0.70  0.87  0.72  0.73 

deep ocean  0.92  0.79  0.78  0.95  0.77  0.77  0.89  0.81  0.82 

other water  0.85  0.83  0.84  0.84  0.83  0.83  0.86  0.83  0.84 

land  0.90  0.67  0.62  0.89  0.71  0.71  0.92  0.62  0.59 

snow  0.84  0.60  0.62  0.85  0.59  0.59  0.83  0.61  0.65 

arctic  0.82  0.62  0.64  0.84  0.61  0.61  0.80  0.63  0.65 

antarctic  0.81  0.61  0.67  0.85  0.56  0.56  0.77  0.65  0.71 

desert  0.90  0.36  0.33  0.87  0.35  0.35  0.92  0.37  0.36 

 
 
The NASA MODIS MYD35 Cloud Mask was also included in the CALIPSO training             
data. This allows for a comparison of the MYD35 mask in the same way that the ECM                 
was analyzed. Table X shows the performance of the MYD35 using the BACC metric              
with COD > 0.01. This table can be compared with Table X for the ECM applied to                 
AQUA/MODIS. The results show general similar performance with the ECM slightly           
better for the globe as a whole. The MYD35 BACC metric is higher than the ECM’s for                 
the nighttime ocean. For the other water surface type, MYD35 also beats the ECM. As               
shown in the prior discussion, MYD35 cloud fractions tend to be lower than CALIPSO              
and the ECM. 
 
Table 15​  Performance Metric and Cloud Fraction Comparison for the NASA MYD35 compared 
to CALIOP.  Performance Metric (PM) is BACC and clouds with no optical depths filter TF is 
the truth cloud fraction from CALIOP and EF is the cloud fraction from ECM.  All refers to all 
times of day.  Day refers to daytime conditions and night refers to nighttime conditions. 
 

 Al  Day Night 

surface    PM    TF    EF    PM    TF    EF    PM    TF    EF 
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all  0.88  0.71  0.64  0.89  0.70  0.70  0.87  0.72  0.65 

deep ocean  0.94  0.79  0.75  0.94  0.77  0.77  0.94  0.81  0.77 

other water  0.89  0.83  0.77  0.90  0.83  0.83  0.87  0.83  0.80 

land  0.86  0.67  0.63  0.86  0.71  0.71  0.87  0.62  0.64 

snow  0.80  0.60  0.59  0.81  0.59  0.59  0.80  0.61  0.56 

arctic  0.76  0.62  0.45  0.80  0.61  0.61  0.70  0.63  0.40 

antarctic  0.78  0.61  0.47  0.84  0.56  0.56  0.75  0.65  0.46 

desert  0.86  0.36  0.32  0.85  0.35  0.35  0.88  0.37  0.36 

 
 
 
 

10.4 ECM Sensitivity to Optical Depth 
Hit rate is defined as the fraction of clouds relative to the true number of clouds detected                 
by the ECM. Figures X-Y show the hit rate as a function of cloud optical depth                
measured by CALIOP for each surface type including all surfaces combined for the             
VIIRS, ABI-AHI and MODIS ECM results. These figures all show that for any optical              
depth value, the hit rate for the ocean surfaces is highest. In general, the hit rate is above                  
90% for clouds with optical depths larger than one however the desert surface shows              
some hit rates < 90% for the ABI-AHI ECM and this needs to be investigated. For the                 
smallest optical depths analyzed (0.01), the hit rates fall to 30%, 45% and 35% for               
VIIRS, ABI-AHI and MODIS respectively. 
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Figure 13​ Hit Rate of the ECM as a function of CALIOP Optical Depth.  ECM Lut is for VIIRS. 

 
Figure 14​ Hit Rate of the ECM as a function of CALIOP Optical Depth.  ECM Lut is for 
ABI/AHI. 
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Figure 15​ Hit Rate of the ECM as a function of CALIOP Optical Depth.  ECM Lut is for MODIS. 
 
 
One can estimate the optical sensitivity of a cloud detection algorithm by noting the              
optical depth value where the Hit Rate drops to 50% which means only half of the clouds                 
were detected. If one looks at Figures X-Y, one can estimate the optical depth sensitivity               
of the ECM to be 0.1, 0.06 and 0.03 for VIIRS, ABI-AHI and MODIS respectively. This                
pattern of optical depth sensitivity is likely driven by the absence of IR absorption              
channels on VIIRS. The difference between ABI-AHI and MODIS may be due to             
difference in spatial coverage and the cloud regimes encountered by these sensors.            
While not part of the ECM specification, Hit Rates provide a useful to gauge the               
improvement of the ECM as new classifiers, channels and sensors are  

10.5 Intersensor Comparisons 
The idea of an enterprise algorithm is that the performance will be similar between              
satellites. As previously mentioned, the tests that are used are not necessarily the same              
between satellites, as the lookup tables are optimized for a given sensor. In order to gauge                
the consistency among sensors, a tool was developed to compare the cloud mask between              
the ABI/AHI sensors and LEO sensors, such as VIIRS. In order to do this, one needs to                 
first warp the ABI data into the VIIRS granule. This is done by utilizing the reverse                
geolocation algorithms for a given sensor. In the case of GOES-R, this is described in the                
GOES-R Product Users guide, while for Himawari they are described in the CGMS             
LRIT/HRIT Global Specification (2013). This converts the latitude/longitude for the          
VIIRS granules into the line and elements on the ABI/AHI full disk. In addition, data               
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taken with as small of a latency between the VIIRS granule and the ABI/AHI scan time.                
Figure XX shows an example of a NOAA-20 VIIRS ECM granule that is warped into the                
GOES-16 ABI full disk domain from 2020-09-20 19:00 UTC. As can be seen in the               
images below, the two cloud masks correspond very closely to each other. There are              
differences between the two masks, which is to be expected given the resolution             
differences and some sensor to sensor differences in the classifiers and tests used. Most              
of the differences occur along the cloud edges and popcorn looking cumulus over the              
ocean (cyan, red color), which is to be expected due to the spatial resolution difference               
between the two satellites.. 
 

 
Figure 16​NOAA-20 VIIRS ECM, GOES-16 ABI ECM warped to the Leo projection, 

ECM difference, RGB. 2020-09-20 19:00 UTC 
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Another way to assess the performance of ECM is to calculate a confusion matrix. The               
following matrix (Table XX) is calculated for SNPP VIIRS and GOES-16 ABI warped             
datafor 2020-09-20. Both ECM masks are treated as binary (clear for           
confidently/probably clear, and cloudy if pixels are confidently/probably cloudy). Data is           
global for any surface and time of day. Overall ECM for both satellites correctly detects               
clear and cloudy pixels in 87.85% of cases. Situations when ECM VIIRS says clear, and               
ECM ABI - cloudy is 7.37% of cases, and ECM VIIRS - cloudy, CALIOP - clear is                 
4.77% cases. 

 

Table 16​ Confusion matrix for SNPP VIIRS and GOES-16 ABI  global colocation data 
for 2020-09-20 all surfaces day and night. 

 ECM ABI 

Clear Cloudy 

ECM 
VIIRS 

Clear 182 106 488 (21.57%) 62 285 311 (7.37%) 

Cloudy 40 325 099 (4.77%) 559 550 070 (66.28%) 

  

11 Practical Considerations 

11.1 Numerical Computation Considerations 
The ECM is implemented sequentially. Because some cloud detection tests rely on the             
values of the ancillary data flags, the ancillary data flags need to be computed first. All                
tests are applied before the final cloud mask is determined. The ECM is currently              
implemented into the Enterprise system and uses its numerical routines for processing. 

11.2 Programming and Procedural Considerations 
The ECM requires knowledge of spatial uniformity metrics that are computed for each             
pixel using pixels that surround it. Beyond this reliance, the ECM is purely a pixel by                
pixel algorithm. 

11.3 Quality Assessment and Diagnostics 
The following procedures are recommended for diagnosing the performance of the ECM. 

● Monitor the percentage of pixels falling into each ECM cloud mask value. These             
values should be quasi-constant over a large area. 

● Periodically image the individual test results to look for artifacts or non-physical            
behaviors. 
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● Maintain a close collaboration with the other teams using the ECM in their             
product generation. 

 
There is some routine monitoring done by the NOAA Cloud team via a website, however               
operationally monitoring of the ECM is performed by OSPO and focuses on the             
monitoring of percentage of pixels falling into each ECM cloud mask value (clear, prob.              
clear, prob. cloudy, cloudy). The Cloud team website, which is not an operational             
monitoring system, has multiple aspects to it. This includes imaging of all the cloud              
products as well as RGBs as well as trend analysis of the various products. The routine                
imaging helps in verifying that the products are being produced in a correct manner (i.e.               
there are no angle issues in the processing system). The trend analysis serves multiple              
purposes. The first is to ensure that the products are producing data within the expected               
range and identification of issues. Any deviation outside the expected norm can be used              
by the Cloud team to identify any potential ground system issues. It is important to note,                
again, that the ground systems have their own operational tools which should alert them              
to such issues, but this can serve as a method for the team to identify subtle issues and                  
impacts (ex. calibration issues on VIIRS). The second is that the monthly composites and              
comparisons can show if the sensors, particularly VIIRS, are performing in a similar             
manner (i.e. do SNPP and NOAA20 have the same cloud distribution). Finally, the trends              
can serve as a method of identifying if new LUTs are implemented correctly within the               
ground system and are performing as expected (ex. verifying the change between JPSS             
v2r2 and v2r3 had a correction to reduce overclouding over snow). 
 

11.4 Exception Handling 
The ECM includes checking the validity of each channel before applying the appropriate             
test. The ECM also expects the main processing system (i.e., the Enterprise) to flag any               
pixels with missing geolocation or viewing geometry information. 
 
The ECM does check for conditions where the ECM cannot be performed. If the 11 ​µ​m                
channel measured or clear sky BT is saturated or missing, there is no attempt at               
processing the cloud mask, as it is a key channel in numerous tests for the ECM. If other                  
channels are saturated or missing, the corresponding tests are not performed. A quality             
flag is set, which indicates the quality of the cloud mask for that particular pixel. The                
conditions for the quality flags are described in Section 3.4.2.2.  
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12 ASSUMPTIONS AND LIMITATIONS 
The following sections describe the current limitations and assumptions in the current            
version of the ECM. 
 

12.1 Performance 
The following assumptions have been made in developing and estimating the           
performance of the ECM. The following list contains the current assumptions and            
proposed mitigation strategies. 
 

1. NWP data of comparable or superior quality to the current 6 hourly GFS             
forecasts are available. (Use longer range GFS forecasts or switch to another            
NWP source – ECMWF). 

 
2. RTM calculations are available for each pixel. (Use reduced vertical or spatial            

resolution in driving the RTM). 
 

3. High quality snow maps are available. (Use snow information from NWP). 
 
4. Background snow-free surface reflectances will be available. (Use        

precomputed reflectances stored as function of surface type). 
 

5. All of the static ancillary data is available at the pixel level. (Reduce the              
spatial resolution of the surface type, land mask and or coast mask). 

 

12.2 Assumed Sensor Performance 
The ECM is dependent on the following instrumental characteristics: 

● The spatial uniformity tests in ECM will be critically dependent on the amount of              
striping in the data.  

● Unknown spectral shifts in some channels will cause biases in the clear-sky RTM             
calculations that may impact the performance of the ECM. 

 

12.2.1 Planned Product Improvements 

 
The Naive Bayesian (NB) method employed here is part of a library of machine learning               
(ML) methods. Experience has shown that there are superior ML methods for this             
application. Our plans are to switch out the NB method in favor of other methods               
including Neural Network (NN) and other Artificial Intelligence (AI) approaches. 
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In addition, the ECM also provides cloud phase information used in support of other              
ECM applications. We are studying if this information is helpful to users in diagnosing              
cloud detection issues and if successful, this information may make its way in the official               
ECM output. 
 
The ECM is very much tied to its downstream applications and future improvements will              
be driven by their needs. 

12.2.2 Optimization for Applications 
The ECM performance over land also needs to be optimized for the other Enterprise              
Algorithms which rely on clear-sky detection. For example, coordination with the Land            
and Cryosphere Application Teams regarding the ECM algorithm and output is being            
done to allow for their feedback and to ensure the ECM is adequate for their needs. 
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14 Appendix A   Calculation of Solar Scattering Terms  

14.1 Rayleigh Scattering 
The Rayleigh or molecular optical scattering is taken from the cloud mask threshold             
include file and is not computed during execution. We have estimated that the total              
in-band to 0.63 µm channel Rayleigh optical depth is approximately 0.05. The Rayleigh             
phase function is used to account for the angular distribution of the Rayleigh scattering. 

(1) 
 
where ​µ is the cosine of the scattering angle where scattering angle is defined by the solar                 
and viewing geometries. 
 

14.2 Aerosol Scattering 
To model the aerosol scattering, a Henyey-Greenstein phase function was assumed as            
illustrated below. 

(2) 
 
In the above equation, ​g​aer is the asymmetry parameter. The single scatter albedo (​ω​o,aer​),              
g​aer ​and total column aerosol optical depth, ​τ​aer​, are provided in the cloud mask threshold               
include files. 
 

14.3 Gaseous Absorption 
The main absorbing gases in the 0.63 µm channel are water vapor and ozone. The total                
column optical depths (​t​) are computed using polynomial regressions based on the total             
precipitable water (​TPW​) and total column ozone (​TOZONE​).  
 

(3) 
 

(4) 
 

The coefficients (​a, b, c​) for the water vapor and ozone optical depth regressions were               
computed using MODTRAN4 and the assumed 0.63 µm channel spectral response           
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functions. For use in this routine, the ozone and water vapor optical depths are combined               
in one gaseous optical depth, ​τ​gas​. 
 

(5) 
 

14.4 Computation of Clear-sky Reflectance 
The computation of the clear-sky 0.63 µm channel reflectance is done by combining a              
single scattering approximation coupled with an isotropic two-stream approximation.         
This formulation is a modified version of that used by the MODIS Atmospheres Science              
Team and described by Wang and King (1997). 
 
To compute the clear-sky reflectance, several intermediate terms are needed.  First, a total 
optical depth, ​τ​total​, is computed from the Rayleigh, aerosol and gas optical depths. 
 

(6) 
 
In addition, a total optical depth for isotropic scattering computed as follows 
 

(7) 
 

where the aerosol optical depth is scaled by ​1 – g​aer​. The effective single scatter albedo,                
ϖ​o​, of the entire column is computed as 
 

(8) 
 

and the effective phase function, ​P​, of the entire column is computed as 
 

(9) 
 

where ​τ​scat,total​ is the total scattering optical depth. 
 

(10) 
 
The 0.63 µm channel clear-sky reflectance, ​R​2,clear is computed from three terms. The             
first term, ​R​a​, accounts for the single scattering contribution of the atmosphere. ​R​a is              
computed using the following relation 
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(11) 
 

where ​m is the airmass factor ​( ss​) is the single-scattering transmission term            
computed as 
 

(12) 
 
The second term, ​R​b​, accounts for the contribution of reflectance scattered in the             
atmosphere and then scattered off the surface and is computed as follows 
 

(13) 
 

where ​α​sfc is the surface albedo, and ​T​iso,total,view is the transmission term computed along              
the viewing direction assuming isotropic scattering. 
 

(14) 
 

The third term, ​R​c​, is the contribution of reflectance scattered off the surface from the               
direct solar beam and then scattered in the atmosphere.  This term is given by  
 

(15) 
 

where 

(16) 
 
The final clear-sky 0.63 µm channel reflectance is computed simply as  
 

(17) 
 

where the factor converts the reflectance to a percentage. 
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15 Appendix B.  IDL Code to Read Individual Classifier Masks 
 
Below is sample IDL code to access the binary cloud mask from a single classifier from a                 
netcdf file from CLAVR-x. Other processing systems, like SAPF, will be accessed via             
different variables, but the methodology is similar for each output file. 
 
;----------------------------------------------------------------- 

; example IDL code to extract the binary cloud mask predicted 

; by each classifier 

; 

; input:  

;   file_name = name of netcdf ecm product file 

;   class_name = name of an ecm classifier 

; output: 

;   classifier_result = the binary cloud mask of the classifier 

;----------------------------------------------------------------- 

pro extract_class_mask, file_name, class_name, classifier_result 

 

;--- the number of non-cloud bits at the beginning of the packed bits 

class_idx_offset = 21 

 

;---- names of the classifier data and classifier names attribute 

sds_name = 'cloud_mask_test_packed_results' 

sds_attr_name = 'classifier_names' 

 

;--- open read and close file 

sd_id = ncdf_open(file_name) 

sds_id = ncdf_varid(sd_id, sds_name) 

ncdf_attget,sd_id,sds_id,sds_attr_name,classifier_names_temp 

ncdf_varget,sd_id,sds_name, packed_results 

ncdf_close, sd_id 

 

;--- convert classifier names to a string array 

dummy = strarr(classifier_names_temp.length) 

for i = 0, dummy.length - 1 do dummy[i] = string(classifier_names_temp[i]) 

classifier_names = strsplit(strjoin(dummy), ',', /extract) 

 

;--- find where class_name sits in the classifier_names array 

idx = where(class_name eq classifier_names,cc) 

if (idx eq -1) then begin 

   print, 'classifier name not valid' 

   classifier_result = -1 

endif else begin 

 

;--- determine on which byte and bit, this result can be found 

idx_class = class_idx_offset + idx[0] 

class_byte = (idx_class) / 8 
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class_bit = idx_class - 8*class_byte 

 

;-- extract binary mask for this classifier 

temp = packed_results[class_byte,*,*] 

classifier_result = reform(ishft(ishft(temp,7-class_bit),-7)) 

 

endelse 

 

end 
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