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12.4   USE OF ZERNIKE CIRCLE POLYNOMIALS FOR THE ANALYSIS OF 
   A HEXAGONAL WAVEFRONT

12.4.1 Zernike Circle Coefficients in Terms of Hexagonal Coefficients

Now, we consider a hexagonal aberration function W x y,( )  across a unit hexagon

shown  in Figure 7-7, and demonstrate the pitfalls of using Zernike circle polynomials for

its expansion. Estimating the aberration function with J hexagonal polynomials H x yj ,( )
given in Chapter 7, we may write

ˆ , , ,W x y a H x yj
j
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where the orthonormal hexagonal expansion coefficients are given by

a W x y H dx dyj j= ( )Ú
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The mean and the mean values of the estimated aberration function are given by Eqs. (12-

4) and (12-6).

An 11 11¥  conversion matrix M for obtaining the hexagonal polynomials in terms of

the Zernike circle polynomials is given in Table 12-6, as obtained from Table 7-1. Its

transpose and inverse matrices are given in Tables 12-7 and 12-8, respectively. If only the

first 4 polynomials are used in the expansion, then the b̂ j  coefficients according to Eq.

(12-13) are given by
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or

ˆ ,b a a1 1 45 43= + (12-59a)

ˆ ,b a2 26 5= (12-59b)

ˆ ,b a3 36 5= (12-59c)

and

ˆ .b a4 42 15 43= (12-59d)

It is evident that the piston coefficient b̂1 is not equal to a1  and, therefore, does not
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Table 12-6. Conversion matrix M for obtaining the Zernike coefficients b̂ j  from the
orthonormal hexagonal coefficients a j , as in Eq. (12-12).

1 0 0 0 0 0 0 0 0 0 0

0       6 5 0 0 0 0 0 0 0 0 0

0 0       6 5 0 0 0 0 0 0 0 0

5 43 0 0     2 15 43       0 0 0 0 0 0 0

0 0 0 0      10 7 0 0 0 0 0 0

0 0 0 0 0      10 7 0 0 0 0 0

0 0      16
14

11055
10

35
2211

      0 0 0 0

0     16
14

11055
10

35
2211

0 0 0

0 0 0 0 0 0 0 0        2
3

5 0 0

0 0 0 0 0 0 0 0 0      2
35

103
        0

     521

1072205
0 0    88

15
214441

       0 0 0 0 0 0    14
43

4987

Table 12-7. Transpose matrix MT for use in Eq. (12-13)

1 0 0      5 43 0 0 0 0 0 0    521

1072205

0       6 5 0 0 0 0 0      16
14

11055
0 0 0

0 0       6 5 0 0 0      16
14

11055
0 0 0 0

0 0     2 15 43       0 0 0      0 0 0      88
15

214441
0

0 0 0 0      10 7 0 0 0 0 0 0

0 0 0 0 0      10 7 0 0 0 0 0

10
35

2211

0 0 0 0 0 0 0 0       2
3

5 0 0

0 0 0 0 0 0 0 0 0      2
35

103
      0

    0 0 0    0 0 0 0 0 0 0    14
43

4987

0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

12.4.1 Zernike Circle Coefficients in Terms of Hexagonal Coefficients
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Table 12-8. Analytical matrix M–1 for obtaining the Zernike coefficients a j
the orthonormal hexagonal coefficients b̂ j .

1 0 0 0 0 0 0 0 0 0 0

    0       5 6 0 0 0 0 0 0 0 0 0

0 0       5 6 0 0 0 0 0 0 0 0

1 2 3 0 0     43 15 2       0 0 0 0 0 0 0

0 0 0 0      7 10 0 0 0 0 0 0

0 0 0 0 0      7 10 0 0 0 0 0

0 0    8 5 15      0 0 0      2211
35

10       0 0 0 0

0    8 5 15       0 0 0 0 0      2211
35

10 0 0 0

0 0 0 0 0 0 0 0       3 2 5 0 0

0 0 0 0 0 0 0 0 0      
103
35

2     0

      1 2 5 0 0   22 7 43     0 0 0 0 0 0    
4987

43
14

represent the mean value of the aberration function. The coefficients b̂2 , b̂3 , and b̂4

represent the tip, tilt, and defocus circle coefficients.

To see how these coefficients change with the number of polynomials used in the
expansion, we consider an expansion using 11 polynomials. The coefficients, obtained
from Eq. (12-13), are given by

ˆ ,b a a a 11411 5 43 521 1072205 (12-60a)

ˆ ,b a a822 6 5 16 14 11055 (12-60b)

ˆ ,b a a733 6 5 16 14 11055 (12-60c)

ˆ ,b a a 1144 2 15 43 88 15 214441 (12-60d)

ˆ ,b a5 510 7 (12-60e)

ˆ ,b a6 610 7 (12-60f)

from
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ˆ ,b a7 710 35 2211= (12-60g)

ˆ ,b a8 810 35 2211= (12-60h)

ˆ ,b a9 92 3 5= ( ) (12-60i)

ˆ ,b a10 102 35 103= (12-60j)

and

ˆ .b a11 1114 43 4987= (12-60k)

It is clear that all of the first four coefficients change, and b̂ M aj jj j=  for 5 11£ £j .

For astigmatism ( H5  and H6 ), coma ( H7  and H8 ), and spherical aberration ( H11), the

b̂ j  coefficient is larger than the corresponding hexagonal coefficient by a factor of

10 7 1 20ª . , 10 35 2211 1 26ª . ,  and 14 43 4987 1 30ª . , respectively. The

astigmatism coefficients b̂5  and b̂6  change if a 15-polynomial expansion is considered.

For example, b̂5  then contains contributions from a13  and a15 , as well. The tip and tilt

coefficients b̂2  and b̂3  change further if polynomials H16 and H17 are included in the

expansion. Moreover, H16 also contributes to the coma coefficient b̂8 , and H17 similarly

contributes to the coma coefficient b̂7 . The piston and defocus coefficients b̂1 and b̂4  do

not change until the secondary spherical aberration polynomial H22 is included with its

coefficient a22 . Its inclusion also affects the primary spherical aberration coefficient b̂11.

Thus, it is easy to see which, when, and by how much the b̂ j  coefficients change,

depending on the number of polynomials used in the expansion.

12.4.2 Interferometer Setting Errors

The estimated wavefront obtained by using only the first four polynomials represents

the best-fit parabolic approximation of the aberration function in a least-squares sense. In

terms of the Zernike polynomials, it can be written as

ˆ , ˆ ˆ ˆ ˆW x y b Z b Z b Z b Z( ) = + + +1 1 2 2 3 3 4 4 (12-61a)

= + + + -( )ˆ ˆ ˆ ˆ .b b x b y b1 2 3 4
22 2 3 2 1r (12-61b)

Similarly, it can be written in terms of the orthonormal hexagonal polynomials as

ˆ ,W x y a H a H a H a H( ) = + + +1 1 2 2 3 3 4 4 (12-62a)

= + + + + -( )[ ]a a x a y a1 2 3 4
22 6 5 2 6 5 5 43 6 5 43 2 1r . (12-62b)

Comparing the right-hand sides of Eqs. (12-61b) and (12-62b) and utilizing Eqs. (12-59a–

d), it is seen that the coefficients of x , y, and x y2 2+ , representing the tip, tilt, and

defocus values obtained from the Zernike coefficients, are the same as those obtained

from the hexagonal coefficients. The estimated piston from the Zernike expansion of Eq.

12.4.1 Zernike Circle Coefficients in Terms of Hexagonal Coefficients
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(12-61b) is ˆ ˆb b1 43- . Substituting for b1and b4  from Eqs. (12-59a–d), we find that it is

the same as a a1 45 5 43-  from the hexagonal expansion of Eq. (12-62b). Accordingly,

the aberration function obtained by subtracting the piston, tip, tilt, and defocus values

from the measured aberration function is independent of the nature of the polynomials

used in the expansion, regardless of the domain of the function or the shape of the pupil,

so long as the nonorthogonal expansion is in terms of only the first four circle

polynomials. The difference function is what is provided to the optician to zero out from

the surface under fabrication by polishing. In an interferometer, they represent the lateral

and longitudinal errors in the location of a point source illuminating an optical surface

under test from its center of curvature. These four terms are generally removed from the

aberration function and the remaining function is given to the optician to zero out from

the optical surface by polishing.

12.4.3 Numerical Example

As a numerical example, we consider a hexagonal aberration function defined by 15

hexagonal coefficients a j  given in Table 12-9. The mean value of the aberration function

is given by a1 0 0842= . . The first 4, the first 11, or all of the 15 coefficients represent the

coefficients of a 4-, 11-, or 15-polynomial expansion. The corresponding circle

coefficients b̂ j  obtained from Eqs. (12-59), (12-60), or in general Eq. (12-13) are also

given in Table 12-9. We note that the value of the piston coefficient b̂1 changes as the

number of polynomials increases from 4 to 11. Neither equals a1 ; and, therefore, they do

not represent the mean value. Similarly, the tip, tilt, and defocus coefficients b̂2 , b̂3 , and

b̂4  change. When the number of polynomials increases from 11 to 15, only the

astigmatism coefficients b̂5  and b̂6  change, as expected from our discussion in Section

12.4.1. The other coefficients would have changed if higher-order terms were present.

The Zernike coefficients b j  obtained from Eq. (17) are also listed in Table 12-9. Their

values do not change as the number of polynomials used in the expansion changes. They

are different from the corresponding Zernike coefficients b̂ j  obtained from Eq. (12-13).

The standard deviation of an aberration function is given by Eq. (12-6) in terms of

the hexagonal coefficients. As the number of hexagonal polynomials increases from 4 to

11 to 15, the standard deviation approaches its true value of 0.6068, as indicated in Table

12-10. If Eq. (12-6) is applied to the Zernike coefficients b̂ j  or b j , incorrect values of

sigma are obtained. They are also listed in Table 12-10. Once again, whereas a hexagonal

coefficient (other than piston) represents the standard deviation of the corresponding

polynomial term in the expansion, a Zernike coefficient  b̂ j  or b j  does not.

The contour plots of the aberration function fitted with 4, 11, and 15 hexagonal

polynomials are shown in Figure 12-9. The same plots are obtained with the

corresponding properly calculated Zernike coefficients b̂ j , illustrating an identical fit.

However, different plots are  obtained with the improperly calculated Zernike coefficients

b j , as shown in Figure 12-10. If we remove the first four a j , b̂ j , or b̂ j  coefficients of

piston, tip, tilt, and defocus representing the interferometer setting errors from the

aberration function estimated by 11 or 15 polynomials, we obtain the residual aberration
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function whose contour plots are shown in Figures 12-11, 12-12, and 12-13, respectively.

Comparing these figures, it is evident that the residual functions represented in Figures

12-12 and 12-13 are incorrect. Only Figure 12-11 represents the correct residual function.

The difference of the residual aberration functions representing the error functions in

using the Zernike polynomials and thereby removing the incorrect interferometer setting

errors are shown in Figures 12-14 and 12-15. Thus, the contours in these figures represent

the difference of the contours in Figures 12-12 and 12-13 from those in Figure 12-11,

respectively.

Figure 12-9. Contour plots of a hexagonal aberration function fit with (a) 4, (b) 11,
and (c) 15 hexagonal polynomials or circle polynomials with coefficients b̂ j .

(a)

(b)

(c)

12.4.3 Numerical Example


