In the pharmaceutical industry, micro-CT images of Dutch-Belted rabbit fetuses have been used for the assessment of compound-induced skeletal abnormalities in developmental and reproductive toxicology (DART) studies. In the automated approach proposed to assess the morphology of each bone, localization and segmentation of each vertebral bone is a critical task. In this work, we are extending our previous work for the localization of cervical vertebrae to the entire spine following a multivariate regression framework based on a 3D convolutional neural network (CNN). We also introduce a multitasking 3D CNN for the segmentation of each vertebral bone, in which features at the most compact level are processed with two additional convolution layers with max pooling to generate features leading to a classification of whether the patch contains a complete vertebra or not. This multi-tasking mechanism allows us to ensure only complete pieces of vertebrae are segmented. Experimenting on 345 rabbit fetuses with 80/10/10 ratio for training/validation/testing, we were able to achieve successful localization on 94.3% of the cases (i.e. median bone-by-bone localization error under 5 voxels over the entire spine) and an average Dice similarity coefficient (DSC) of 0.80 between automated and ground truth segmentations on the testing set.
In developmental and reproductive toxicology (DART) studies, high-throughput micro-CT imaging of Dutch-Belted rabbit fetuses has been used as a method for the assessment of compound-induced skeletal abnormalities. Since performing visual inspection of the micro-CT images by the DART scientists is a time- and resource-intensive task, an automatic strategy was proposed to localize, segment out, label, and evaluate each bone on the skeleton in a testing environment. However, due to the lack of robustness in this bone localization approach, failures on localizing certain bones on the critical path while traversing the skeleton, e.g., the cervical vertebral bones, could lead to localization errors for other bones downstream. Herein an approach based on deep convolutional neural networks (CNN) is proposed to automatically localize each cervical vertebral bone represented by its center. For each center, a 3D probability map with Gaussian decay is computed with the center itself being the maximum. From cervical vertebrae C1 to C7, the 7 volumes of distance transforms are stacked in order to form a 4-dimensional array. The deep CNN with a 3D U-Net architecture is used to estimate the probability maps for vertebral bone centers from the CT images as the input. A post-processing scheme is then applied to find all the regions with positive response, eliminate the false ones using a point-based registration method, and provide the locations and labels for the 7 cervical vertebral bones. Experiments were carried out on a dataset of 345 rabbit fetus micro-CT volumes. The images were randomly divided into training/validation/testing sets at an 80/10/10 ratio. Results demonstrated a 94.3% success rate for localization and labeling on the testing dataset of 35 images, and for all the successful cases the average bone-by-bone localization error was at 0.84 voxel.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.