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Abstract. The near-surface soil moisture (SM) is an important property of the soil that can be
studied from satellite remote sensing observations over a large spatial domain. This research
provides an estimate on the accuracy of SM retrieved from satellite land surface temperature
(LST) observations over the Canterbury Plains, New Zealand. The apparent thermal inertia (ATI)
method with two approaches (ATI1 and ATI2) was applied to derive the near-surface SM
from the moderate resolution imaging spectroradiometer (MODIS) LST product. The in-situ
measurements of SM and rainfall data at six sites across the study area were used as reference.
The analysis was conducted over two periods, a short period of four months and a longer period
of three years. SM simulations by the weather research and forecasting (WRF) model were
used in the analysis for the shorter period. Overall, SM based on ATI2 showed a slightly
higher correlation with the in-situ measurements (ρ̄ ¼ 0.66) than ATI1 (ρ̄ ¼ 0.63). The corre-
lation, in general, was higher for the WRF simulations (ρ̄ ¼ 0.81). Both functions performed
better during summer compared to winter, but overall, ATI2 showed lower mean errors
(ME ≈ −15m3 · m−3 volumetric SM) compared to ATI1 (ME ≈ −20m3 · m−3) at most of
the sites. Additionally, seasonal variations of SM were better detected by ATI2 than ATI1,
and the effects of precipitation were detected on more occasions by the ATI2 function. We con-
clude that ATI2 function can be used to estimate the near-surface SM over a large area from the
MODIS LST time series if a few representative reference stations are available. © The Authors.
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1 Introduction

The near-surface soil moisture (SM) affects diurnal change of surface temperature, and is a key
variable in computing several parameters of the land energy and water budget.1 Observations of
spatially distributed SM are essential for a large range of hydrological, climate, and agricultural
applications.2

Satellite observations in the visible and near-infrared (VNIR), thermal infrared (TIR), and
microwave (MW) regions of the electromagnetic radiation can be used to derive the near-surface
SM3,4 with a varying depth depending on the surface type and the energy employed by the
sensor. Land surface temperature (LST) is the parameter measured by TIR observations.
One of the algorithms based on TIR datasets is the thermal inertia (TI) method.5 The apparent
thermal inertia (ATI), a quantification of the effect of soil TI on soil surface temperature, is

*Address all correspondence to: Mammatt Sohrabinia, E-mail: sohrabinia.m@gmail.com

Journal of Applied Remote Sensing 083624-1 Vol. 8, 2014

http://dx.doi.org/10.1117/1.JRS.8.083624
http://dx.doi.org/10.1117/1.JRS.8.083624
http://dx.doi.org/10.1117/1.JRS.8.083624
http://dx.doi.org/10.1117/1.JRS.8.083624
http://dx.doi.org/10.1117/1.JRS.8.083624


solely based on remotely sensed observations.3,4,6 ATI makes use of the difference between
day and night LST as well as surface albedo information derived from VNIR observations.7

Methods for retrieving the near-surface SM using ATI mainly differ in their approach to
estimate the diurnal cycle of LST. Ref. 8 developed a model (known as XC) to derive the
real TI from the advanced very high resolution radiometer (AVHRR) day (14:37 local solar
time) and night (04:44) observations and found that TI is directly proportional to ATI. To com-
pute the real TI, the XC method required an extra parameter measured on the ground, which was
the time of the maximum temperature in daytime obtained from a meteorological station. Ref. 9
developed a method based on three AVHRR LST observations per day (02:30, 7:30, and 14:30
local solar time) to retrieve TI without the need for a ground measured parameter. The same
authors developed another model,10,11 named FTA (four temperatures algorithm), using four
AVHRR thermal observations (02:30, 7:30, 14:30, and 19:30) and compared their method
with XC. They found that FTA is better in presenting the diurnal cycle of soil surface temperature
as it uses more LSTobservations over a 24-h period. Ref. 6 also used two LSTobservations (day
and night) from Meteosat, but to estimate ATI rather than TI. They approximated the topsoil
saturation index from ATI and scaled it using the maximum and minimum long-term SM mea-
surements on the ground to obtain the near-surface SM content (we will call this ATI1 function).
Ref. 4 modified FTA to be applied on the moderate resolution imaging spectroradiometer
(MODIS) LST observations from Terra and Aqua day and night (∼1:30, 10:30, 13:30, and
22:30) overpasses (we will call it ATI2 function).

The LST product is one of many datasets derived from day and night observations of
MODIS onboard Terra and Aqua satellites for more than a decade. MODIS BRDF/Albedo
product is another dataset, which is useful as a necessary input for ATI calculations. As a prop-
erty of land surface, SM can also be estimated based on surface moisture fluxes; therefore,
coupled land atmospheric models with regional scales are also used to simulate SM across
spatial extent. The weather research and forecasting (WRF) community model is a mesoscale
regional model, which can be used to simulate SM over scales ranging from meters to thou-
sands of kilometers12 when it is coupled with one of the available land surface schemes in
the model. Using numerically modeled SM in combination with a remote sensing approach
can be helpful to fill the gaps in the latter due to cloud cover. It also provides the opportunity
for intercomparison of the two outputs over spatial domain. This is critically important on areas
where ground truth data are not available (such as rugged alpine or densely forested parts of
the South Island of New Zealand).

The objective of this research, therefore, is to assess the relationship between SM derived
from the MODIS LST using the ATI method, simulated by the WRF model and measured on the
ground, and to compare the performance of ATI1 and ATI2 functions. The study is aimed to find
out if a more detailed representation of the LST diurnal cycle in the ATI model leads to
an improvement in the near-surface SM retrievals. Based on our review of the literature,
there have been limited attempts previously to compare different ATI methods and to evaluate
their performance in relation to rainfall.

2 Study Area

The study area covers part of the Canterbury Plains in the South Island of New Zealand (Fig. 1),
approximately centered at 43° 37′ S and 172° 11′ E. Surface elevation of the study area ranges
from a few meters near the coast to about 200 m above sea level (asl) near the Southern Alps in
the West. The Canterbury Plain is the largest area of flat land in New Zealand dominated by
agricultural and farming land use. Widespread use of irrigation is an ever increasing need in the
region to sustain productivity. For the same reason, study of soil water content over a large spatial
extent is a prime concern in this region. Only satellite data and modelling approaches can provide
an adequate coverage of SM variability over this extensive spatial domain. To obtain consistent
results, however, remotely sensed data and modeled parameters need to be validated based on
ground measurements.

Measurements of SM at six sites across the study area (Fig. 1) were used as reference. The
land cover (LC) types of these sites were dominantly grass mixed with trees, irrigated crops,
urban developed areas, and barren/fallow land (Fig. 2 and Table 1).
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3 Data

Data used in this paper include the in-situ measurements of SM and rainfall, the remotely sensed
LST and albedo products, and the WRF simulations.

3.1 In-situ Measurements

The in-situmeasurements of SM (20-cm depth) over a period of three years (January 01, 2010, to
December 31, 2012) recorded at six automatic stations across the study area (Fig. 1) are used in
this research. These data were downloaded from the national climate database- Cliflo (http://
cliflo.niwa.co.nz) of New Zealand, which is maintained by the National Institute of Water

Fig. 1 Map of the study area with the in-situ soil moisture measurement points overlaid on
a false-color (bands 4,5,2) Landsat image (TM 5, captured on 28 March 2011).

Fig. 2 Land-cover types of the in-situ soil moisture measurement sites at (a) Rangiora,
(b) Methven, (c) Leeston, (d) Winchmore, (e) West Eyreton and (f) Darfield (imagery from
Google Earth).
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and Atmospheric Research (NIWA, http://www.niwa.co.nz). These data were recorded with
an hourly rate, but were downgraded to a daily rate to match the daily frequency of ATI SM
derivations. Daily rainfall data, accumulated over a period of 24 h, were also downloaded from
these stations for the same period to be used in the analysis. Additional in-situ measurements of
the near-surface SM (2 to 5 cm depth) over five LC types were also collected in the field;
however, these measurements turned out to be highly affected by solar radiation; therefore,
they were not used in the analysis.

3.2 MODIS LST Product

This product is an operational dataset derived from MODIS thermal observations onboard
Terra and Aqua satellites. These observations are collected during day and night overpasses of
Terra and Aqua (approximately at 1:30, 10:30, 13:30, and 22:30) with different viewing angles.
The LST product is derived from bands 31 and 32, which are observed at 10.78–11.28 μm and
11.77–12.27 μm spectral ranges, respectively. Theoretical background and technical details of
the algorithms and the procedure for extraction of LST from MODIS thermal bands are beyond
the scope of this paper, but can be accessed in the literature.13–15

3.3 MODIS Combined BRDF/Albedo Product

The combined albedo product (MCD43B3) is generated from a combination of MODIS-Terra
and MODIS-Aqua albedo products (MOD43B3 & MYD43B3) accumulated over a 16-day
period. MOD43B3 and MYD43B3 are Level 3 global products with 1-km resolution mapped
into a sinusoidal grid. As a result, MCD43B3 combined albedo product is an 8-daily dataset with
the same resolution and geometric specifications16,17 as the two preceding products. This dataset
contains two types of albedos: a “black-sky albedo” (BSA), which is the directional hemispheri-
cal reflectance that integrates the BRDF over the exitance hemisphere for a single irradiance
direction, and a “white-sky albedo” (WSA) which is the bi-hemispherical reflectance that inte-
grates the BRDF over all viewing and irradiance directions.18 Data for each of the BSA andWSA
categories are derived from MODIS bands 1–7. Three more integrated broadband albedos from
the visible (0.3–0.7 μm), near-infrared (0.7–3.0 μm), and shortwave (0.3–5.0 μm) regions17,19 for
each of the BSA and WSA categories are also provided in this dataset. Broadband albedo is
the ratio of radiant energy scattered upward and away from the surface in all directions to
the downwelling irradiance incident upon the surface18 from all directions.
The actual albedo on the ground, or “blue-sky albedo” can be estimated as a sum of BSA and
WSAweighted by the proportions of direct and diffuse solar radiations arriving at the ground.19

We interpolated both BSA and WSA fields in the 8-daily combined albedo products to daily
values using a linear interpolation function. In the next step, we calculated the blue-sky albedo
based on the sum of the shortwave broadband BSA andWSAweighted by 0.34 and 0.66, respec-
tively. The advantage of this approach, rather than using a constant value for albedo in ATI
calculations (which was practiced by other references8,10), is taking the seasonal variability
of the surface albedo into account.

3.4 WRF Simulations

Surface layer SM simulations from the WRF model for a period of four months (July 31 to
December 01, 2010) were used in this paper. We used the Noah land surface model (LSM)
as a land parameterization scheme.20 Noah LSM is one of the multiple land surface schemes
coupled with the WRF modeling system.21 The initial conditions for SM simulations in the
model are defined by the National Center for Environmental Prediction (NCEP) global final
analysis (FNL) data with a spatial resolution of 1 × 1 deg (∼80 × 111 km in our study area)
and 6-h frequency.12 The input variables from the NCEP FNL data include (but are not limited
to) soil moisture/water content, soil temperature, precipitation, heat flux, humidity, surface
winds, and land cover (see http://rda.ucar.edu/datasets/ds083.2). The Noah LSM only provides
surface heat and moisture fluxes as lower boundary conditions to the coupled atmospheric (i.e.,
the WRF) model.22 These fluxes are then transported throughout the boundary layer, and interact
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with other model physics involving cloud, radiation, and precipitation processes.22 In the Noah
LSM, the green vegetation fraction (Fg) parameter, which is defined as the coverage of vegeta-
tion over an area unit or a pixel,12 is used to differentiate moisture flux from vegetation.
As a result, the WRF model coupled with the Noah LSM is able to separate soil and vegetation
moisture fluxes and also accounts for precipitation effects in SM approximation. To calculate
SM, a prognostic diffusion equation for the volumetric SM content is used.23 Sensitivity of
the WRF model to different land surface parameterization schemes, such as the Noah LSM,
is discussed in the literature,12,21 which includes SM simulations. Noah LSM simulates the
near-surface SM in four predefined layers (with a top-down sequence of 0.05, 0.25, 0.70,
and 1.5 m depth). Outputs for the top most layer (5-cm depth) were used in our analysis.
The first 24 h of the simulations were discarded from the analysis as the spin-up period required
by the model to reach a balanced state with the boundary conditions. Grid spacing of the sim-
ulations was set to 5 km for the first and 1 km for the second domain of the model to match
the spatial resolution of the MODIS LST. The time interval of the model outputs was set to
a 30-min rate for all simulations.

4 Methods

4.1 Thermal Inertia Approach for Soil Moisture Estimation

TI, defined as the resistance of a material to change in temperature,24 is calculated based on the
knowledge of thermal conductivity and density of the near-surface soil layer Eq. (1)

TI ¼
ffiffiffiffiffiffiffiffiffiffi
ΛρC

p
; (1)

where TI (J · m2 · K−1 · sec−1∕2) is thermal inertia of the soil, Λ (W · m−1 · K−1) is the soil ther-
mal conductivity, ρ (kg · m−3) is the soil bulk density, and C (J · kg−1 · K−1) is the soil heat
capacity.3,25,26 Water bodies have a higher TI than dry soils and rocks, and exhibit a lower diurnal
temperature amplitude (DTA), therefore, when soil water content increases, DTA of the soil will
decrease.6 This property can be exploited to derive the amount of moisture content in the upper
soil from remotely sensed LST. It must be noted that in our investigation area, TI is also affected
by the low to medium (mainly grass) vegetation (Fig. 1). The ATI method based on two or more
daily LST observations and one daily albedo data, along with a priori knowledge about the
acquisition date and the geographic latitude, is used to derive the near-surface SM from remotely
sensed observations Eq. (2). ATI is defined as3,4,6,24

ATI ¼ S
1 − α0
DTA

; (2)

where α0 is the broadband albedo, DTA is derived from two or more daily LSTobservations, and
S is the solar correction factor defined as

S ¼ sin ϑ sin φð1 − tan2 ϑ tan2 φÞ þ cos ϑ cos φ arccosð− tan ϑ tan φÞ; (3)

where ϑ is the local latitude and φ is the solar declination, which is calculated for each day of
the year.4

If only two observations representing coolest and warmest LST values over a 24-h period are
used, the DTA will be simply the difference between the diurnal warm and cool temperatures
(ΔLST), defined as6,24

DTA1 ¼ LSTday − LSTnight; (4)

where LSTday and LSTnight are daily LSTobservations at peak warm and cool hours, respectively.
LST observations from MODIS-Aqua with approximate overpass times at 1:30 am and pm (rep-
resenting LSTnight and LSTday) have been often used in the literature to calculate DTA.

6 MODIS-
Terra observations with approximate overpass times at 10:30 am and pm (representing LSTday

and LSTnight, respectively) were also used by others.24
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A second method to calculate DTA is to apply four LST values from a combination of daily
MODIS-Terra and MODIS-Aqua observations4

DTA2 ¼ 2

(
n
P

n
i¼1 cosðωti − ψÞTi −

P
n
i¼1 cosðωti − ψÞPn

i¼1 Ti

n
P

n
i¼1 cos2ðωti − ψÞ − �P

n
i¼1 cosðωti − ψÞ�2

)

ψ ¼ arctanðξÞ þ π

ξ ¼ ðT1 − T3Þ½cosðωt2Þ − cosðωt4Þ� − ðT2 − T4Þ½cosðωt1Þ − cosðωt3Þ�
ðT2 − T4Þ½sinðωt1Þ − sinðωt3Þ� − ðT1 − T3Þ½sinðωt2Þ − sinðωt4Þ�

: (5)

In Eq. (5), n ¼ 4 for four MODIS daily observations, ω ¼ 2π∕ð24 � 60 � 60Þ rad s−1 is the
angular velocity of the Earth’s rotation, ti [i ¼ 1; : : : ; 4] is the overpass time, Ti is the surface
temperature (i.e., LST) at each overpass time, and ψ is the phase angle.

The near-surface SM can be then calculated from the ATI values for every pixel6 after check-
ing for possible outliers. After calculation of ATI, Ref. 6 used the minimum and maximum
ATI values over each pixel over time (t) to calculate the remotely sensed topsoil saturation
index (SMSIRS) using Eq. (6):

SMSIRSðtÞ ¼
ATIðtÞ − ATImin

ATImax − ATImin

; (6)

where ATI ðtÞ is the ATI value at time t,ATImin is the minimum, andATImax is the maximum ATI
values in the entire time series of the pixel under analysis.

Finally, Ref. 6 derived volumetric soil moisture content (SMC) based on the SMSIRS values

SMCðtÞ ¼ SMSIRSðtÞ · ðSMsat − SMresÞ þ SMres; (7)

where t is time, SMres is the residual volumetric SMC, and SMsat is the saturation volumetric
SMC. Since SMres and SMsat can only be determined under laboratory conditions, field mea-
surements are unlikely to be equal to extremely high or low laboratory values.6 For the same
reason, SMres and SMsat in practice are substituted by the minimum (SMmin) and maximum
(SMmax) in-situ measurements of SM over the entire period, respectively (Table 1).

In this paper, ATI as given in Eq. (2) was calculated with two different approaches: ATI1
using Eq. (4) and ATI2 using Eq. (5), each of which takes a different solution to estimate DTA.
In the next step, Eq. (6) is used to derive SMSIRS at each site. Finally, we scaled SMSIRS values
to the respective SMmin and SMmax measurements at each site using Eq. (7).

Table 1 Geographic coordinates of the in-situ soil moisture (SM) and rainfall measurement
stations alongside the minimum (SMmin) and maximum (SMmax) measured SM at each site during
the measurement period (3 years: January 2010–December 2012), and the dominant land-cover
around each site.

Station Latitude Longitude SMmin (%) SMmax (%) Land cover

Rangiora −43.329 172.611 11 53 Mixed grass and irrigated crop

Methven −43.640 171.652 4 60 Grass mixed with urban

Leeston −43.789 172.312 7 59 Grass mixed with trees

Winchmore −43.793 171.795 1 45 Grass

W.Eyreton −43.357 172.432 11 42 Irrigated grass

Darfield −43.480 172.084 6 59 Grass mixed with barren/fallow
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4.2 Multitemporal Time Series Analysis of Soil Moisture from
Apparent Thermal Inertia Method

The analysis was conducted in two temporal scales: short term (four months: August 01 to
December 01, 2010) and long term (three years: January 01, 2010, to December 31, 2012).
The first time scale was chosen to identify the effects of rainfall on ATI SM retrievals, as
well as the WRF SM simulations, and to evaluate the difference in seasonal trends in comparison
to the in-situ measurements. Also, since model simulations of SM with a 1-km spatial resolution
are time consuming and memory intensive (especially when the time period is longer than a few
months), the analysis involving the WRF model was conducted only for the short-term period.
The long-term analysis was necessary to evaluate the quality of ATI SM retrievals in different
seasons and to find out which ATI function is more able to detect seasonal variability of SM.

4.3 Statistical Methods

The Euclidean distance (dE) was applied to compare the difference between the time series of
SM from ATI functions with the in-situ measurements Eq. (8)

dEðts1; ts2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

½ts1ðiÞ − ts2ðiÞ�2
s

; (8)

where ts1 and ts2 are two time series to be compared (e.g., ATI1 and in-situ SM series), and n is
the total number of coincident time points in both series. If ts1 has fewer points than ts2, the extra
points in ts2 (which are not coincident with any point in ts1) will be excluded from the analysis.

Pearson’s correlation coefficient, ρ, is used to express the absolute relationship between any
two parameters, without an attempt to predict the future. The values of ρ and dE averaged over all
sites (ρ̄ and d̄E, respectively) are also used to express the overall results in the study area. A cross-
correlation function (CCF), expressed as Eq. (9), is used to find the approximate time lag
between the ATI derivations and the in-situ measurements.

CCF ¼ 1

n

Xn−k
t¼1

ðxt − x̄Þðytþk − ȳÞ½k ¼ 0; 1; : : : ; ðn − 1Þ�; (9)

where n is the total number of coincident observations in both series, t is time, k is lag, and x̄ and
ȳ are the mean values of the x and y input series, respectively.27

5 Results

5.1 Short-Term Series: Apparent Thermal Inertia Results Versus Simulated and
In-Situ Soil Moisture

Derived SM from the MODIS LST using the ATI method was compared with the in-situ and
modeled SM at six test sites for a period of four months (August to November 2010). The accu-
racy of the WRF simulations is analyzed to find out if these simulations can be used to com-
pensate for the gaps in ATI derivations. Comparison between the in-situ data collected from a
singular point in space with the MODIS pixels (or the model’s grid cells) was a major concern.
The issue of pixel size versus point measurements, which is already dealt with in the litera-
ture,28,29 is a well-known problem when it comes to defining the relationship between the
in-situ and remotely sensed gridded datasets. This issue can be partly resolved through a careful
selection of the measurement point closest to the pixel center over a large, flat, and homogeneous
land area. Although all of our test sites were located on flat and relatively homogeneous land-
scape, the in-situ SM measurements only represented a fraction of the overlapping pixel or grid-
cell from the other two (i.e., ATI and WRF SM) datasets. As a result, a certain level of variation
inside each pixel was inevitable. We tried to partly overcome this issue by choosing SM
measurements at a 20-cm depth, which were considerably more homogeneous (see also Ref. 6).
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As a result, a lower agreement between point measurements and gridded data is likely when a 1:1
correlation is applied. Therefore, more emphasis in the results will be given to the temporal
profiles, and the correlation coefficient (ρ) values will be given only to provide a quantitative
measure of the agreement between the two variables. ρ values were calculated between derived
SM (using both ATI1 and ATI2), the WRF simulations, and the in-situ measurements (Table 2).
For most of the sites, ρ values between the WRF and the in-situ data have been positive and
relatively higher than the ATI SM retrievals. Overall, ATI1 and ATI2 have correlated almost
similarly with the in-situ measurements.

Although these correlations showed almost similar results, temporal profiles of ATI1 and
ATI2 SM retrievals needed to be compared to find out which approach presents a closer
trend to the in-situ measurements and the WRF simulations. Therefore, temporal profiles of
SM derived from both functions, simulated by the WRF model and measured on the ground,
were overlaid on daily rainfall data (Fig. 3). The WRF simulations have shown a close match
with the in-situ measurements, and rainfall effects are detected. The declining seasonal trend in
SM amount, as observed on the in-situ profile, is also detected by the model but is less pro-
nounced. Since ATI1 uses only two MODIS LST observations, there were more points possible
to be calculated by this function. On the other hand, ATI2 needs four MODIS LST observations
per day; thus, fewer points were possible to be modeled by this function. This is the reason that at
some sites ATI2 has shown a weaker correlation (Table 2). However, it appears that the ATI2
profile is closer to the in-situmeasurements than ATI1. Additionally, the declining seasonal trend
is detected by the ATI2 function but not by ATI1.

There are more points in the later part of the analyzed period both in the ATI1 and ATI2 time
series. This is due to the higher number of cloudy days in winter than in later spring. On the other
hand, the model simulations have shown a larger offset with the in-situ measurements during
the later part of the analyzed period. These results show that the ATI method is more useful in
a less cloudy and warm season, unlike the WRF model, which performs better in a colder and
wet season of the year. However, a longer period of analysis is required to confirm this finding,
which is presented in the next section.

5.2 Long-Term Analysis: Apparent Thermal Inertia Results versus In-Situ Soil
Moisture

The two ATI calculation functions, ATI1 and ATI2, were applied to derive the near-surface SM
from the MODIS LST product for a period of three years (January 01, 2010, to December 31,
2012). Unlike the short-term analysis, this section will focus only on ATI SM derivations in
comparison with the in-situ measurements and rainfall data.

Table 2 Correlation coefficient (ρ) and Euclidean distance (dE ) values between daily soil
moisture time series derived from the MODIS LST (using ATI1 and ATI2) and simulated by
the WRF model in one hand and the in-situmeasurements on the other over the short-term period
(August to November 2010).

Station

ρ dE

ATI1 ATI2 WRF ATI1 ATI2 WRF

Rangiora 0.75 0.69 0.78 101 69 95

Methven 0.78 0.74 0.82 98 35 75

Leeston 0.39 0.50 0.81 51 45 59

Winchmore 0.67 0.68 0.87 86 35 69

West Eyreton 0.57 0.62 0.80 72 50 70

Darfield 0.58 0.54 0.77 83 26 93

Sohrabinia, Rack, and Zawar-Reza: Soil moisture derived using two apparent thermal inertia functions. . .

Journal of Applied Remote Sensing 083624-8 Vol. 8, 2014



10 August 30 August 19 September 09 October 29 October 18 November
0

5

10

15

20

25

30

35

40

45

50

Time (days)

(a)

(b)

S
M

 (
m

3  m
−3

)

In−situ SM
ATI1 SM
ATI2 SM
WRF SM
Rainfall

0

2

4

6

8

10

12

14

16

18

20

R
ai

n
fa

ll 
(m

m
)

10 August 30 August 19 September 09 October 29 October 18 November
0

5

10

15

20

25

30

35

40

Time (days)

S
M

 (
m

3  m
−3

)

In−situ SM
ATI1 SM
ATI2 SM
WRF SM
Rainfall

0

5

10

15

20

25

30

35

R
ai

n
fa

ll 
(m

m
)

Fig. 3 Time series of soil moisture (SM) derived using ATI functions (after scaling and removal of
outliers), simulated by the WRF model and recorded by the in-situ measurements at (a) Rangiora
and (b) Winchmore sites for the short-term analysis (4 months: August to November 2010).

Table 3 Correlation coefficient (ρ), Euclidean distance (dE ) and mean error (ME) values between
time-series of soil moisture derived from the MODIS LST (using ATI1 and ATI2 functions) and
measured on the ground at six sites for a period of 3 years (2010–2012).

Station

ρ dE ME (summer) ME (winter)

ATI1 ATI2 ATI1 ATI2 ATI1 ATI2 ATI1 ATI2

Rangiora 0.77 0.76 368 213 −6 −1 −29 −21

Methven 0.67 0.78 251 119 −6 4 −21 −13

Leeston 0.42 0.51 145 82 −1 8 −18 −12

Winchmore 0.69 0.76 274 140 −7 −1 −21 −15

W. Eyreton 0.63 0.66 109 55 −2 5 −15 −10

Darfield 0.57 0.52 276 145 −5 4 −21 −14
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Correlations among ATI1, ATI2, and the in-situ SM time series at six sites were calculated
(Table 3). Because the in-situmeasurements were made at a 20-cm depth below the surface, time
lags were applied on these measurements before correlating with the derived SM time series. To
discover the best time lag, the two time series (i.e, in-situ measurements versus ATI1 or ATI2
SM) were crosscorrelated with different time lags where every step in the lags was equal to one
day. The best agreement on most sites was achieved when a time lag of one day was applied on
the in-situ measurements. In other words, derived SM from the instantaneously observed LST
data agreed best with the in-situ SM measured (at a 20-cm depth) one day later. The slope of
change in correlations due to time lags, however, was very gradual with changes of less than 0.03
in ρ values. Thus, the actual time lag may have been slightly more or less than one day, which
could be identified if data with a finer temporal resolution (such as hourly data) were available.
However, retrieval of SM from the MODIS LST using the ATI method was only possible on a
daily basis. Results showed that the correlations from both functions are relatively similar; how-
ever, ATI2 provided a better agreement with the in-situ measurements at more sites (Table 3).

As discussed before, although these correlations offer a quantitative measure of how both
functions relate to the in-situ measurements, they do not provide information about temporal
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Fig. 4 Temporal profiles of ATI1 and ATI2 (after scaling and removal of outliers) compared with
the in-situ soil moisture and overlaid on daily rainfall at (a) Rangiora and (b) Winchmore sites for
a period of 3 years (2010–2012).
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trends of the derived SM with respect to the ground measurements. Therefore, temporal profiles
of the derived SM time series at all sites were compared with the in-situ measurements and
overlaid on rainfall data. The results from only two sites, Rangiora and Winchmore, are
shown (Fig. 4). The most striking difference between ATI1 and ATI2 SM retrievals, as
shown in the long-term series (Fig. 4), is that the latter has detected the annual SM trends better
than ATI1. As found in the short-term analysis, both functions have shown a better performance
in a dry season. The overall bias from the in-situ measurements was higher during winter
compared to summer. To show this quantitatively, the SM time series from both functions were
separated based on winter and summer seasons and then were subtracted by the corresponding
in-situmeasurements at each site. The mean error (ME) values at each site for both seasons were
then calculated (Table 3). These values showed that in summer, both functions have a small bias
from the in-situ measurements. The ME values from the in-situ measurements during the wet
season were considerably higher, especially in ATI1 results (Table 3). Although rainfall effects
are not clearly distinguished in this temporal scale, sudden spikes in ATI2 SM are suspected to be
due to rainfall. On the other hand, the ATI1 series showed a relatively smooth temporal trend
with only a few sudden spikes, also suspected to be due to rainfall.

Another difference between ATI1 and ATI2 SM retrievals was the long-term offset between
the two and the in-situ measurements. Although the ATI2 temporal trend overlaps the in-situ
series in summer, both functions have shown a negative offset from the in-situ measurements for
most of the three year period. To show this quantitatively, dE was applied. The time series of SM
from ATI1 showed a larger difference with the in-situ time series than ATI2 at all sites (Table 3).
It must be mentioned, however, that these dE values were calculated based on the absolute SM
amount (m3 · m−3) for the whole period; therefore, the one time series which had more points,
tends to show more difference. As mentioned before, ATI2 had less points (due to the need for
four daily LST observations) than ATI1 (which only needed two daily LST values). Therefore,
the larger difference from ATI1 was partly due to more data points it its series. Since the ATI2
function uses both MODIS-Aqua and MODIS-Terra daily LST values, the DTA employed by
this function contains more details. As a result, the temporal profile of SM derivations from this
function is able to provide more details about SM variability in the long term. On the other hand,
since four LST observations are required by ATI2, any missing LST has resulted in no SM
retrieval for that day. This effect has been less severe on ATI1 as the possibility of having
two cloudless LST per day is higher than four.

We also noticed that the prominent spikes due to rainfall events in the ATI series (especially
ATI2) have occurred with a slight lag after the rainfall events. This was also shown in the cor-
relations above (Table 3), where the best agreements were achieved when a time lag of one day
was added to the in-situ SMmeasurements. It indicates that the changes in LST due to rainfall, as
colder temperatures and smaller diurnal amplitudes, have been recorded by MODIS shortly after
rainy days. Any changes in LST during the actual rain events (as a result of higher soil water
content) are not available in the LST dataset due to cloud effects. As mentioned above, one way
to fill these gaps in the ATI SM time series is to use the model simulations.

6 Discussion

Although satellite observations of SM based on TI are expected to capture the near-surface con-
ditions, comparison with the in-situ SM measured at 2–5-cm depth turned out to be inconclusive
in our investigation area. It is likely that these ground measurements have been affected by
the local conditions and possibly direct solar radiation, hence, were highly variable within only
a few meters’ distance. This made a comparison not meaningful. Our analysis showed that
SM measurements become relatively homogeneous over similar LC types in deeper soil (10
to 20-cm depth). Hence, to avoid the anomalies in the near-surface SM measurements, the
authors used root-zone SM in the analysis after testing the time lag potentially required for
moisture to reach a 20-cm depth in the soil.

The authors interpolated the 8-daily MODIS albedo product to daily for use in the ATI model.
This approach may miss changes in surface albedo due to rainfall and cloudy conditions over the
period of 8-day intervals. These changes, however, do not have a significant effect on LST-based
SM derivations and can be cancelled out by the ATI model due to the following reasons. Rainfall
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affects the albedo of both wet and dry soil reducing the overall reflectance and surface temper-
ature. Since we know that ATI is based on the difference between the maximum and minimum
daily LSTs (Sec. 4), it can be assumed that rainfall will have a relatively similar effect on both
temperatures. LST data are also not available when there is cloud cover, hence, no SM can be
retrieved in cloudy conditions (see Fig. 3).

Our results showed that the agreement between the in-situ measurements at some sites, such
as Leeston and Darfield, and the ATI SM retrievals were relatively poor in both short-term and
long-term analyses. The Leeston site was close to Lake Ellesmere. Thus, it is suspected that the
MODIS LST data over this site have been affected by water. This can be partly due to a spatial
mismatch between the actual LST pixel overlying this site and the neighboring pixels over the
lake. However, geometric mismatching in the MODIS LST grid had been already checked by
overlaying this dataset on other spatial data from the study area (such as coastal boundaries and
rivers) in a GIS (Geographic Information Systems) environment (Fig. 5). Proximity to mountains
or local effects (such as irrigation) can be the reason for the poor correlations from the Darfield
site. Irrigation is practiced widely during the summer to keep the grass growing in the farmlands
across the study area. Irrigation effects may have caused higher SM in ATI estimations at those
sites for the summer season, which can reduce the overall agreement with the ground measure-
ments. Similarly, irrigation can cause anomalies in the in-situ data if the measurement site is not
well located. It can cause significant divergence from the normal SM trend over a localized small
area, which is not necessarily captured by the satellite observations or computed by the WRF
model. Since the in-situ measurements were acquired from an already existing online database
(Sec. 3), it was not possible for the authors to make sure that the measurements were not affected
by irrigation. However, a quality check of the SM measurements based on rainfall data dem-
onstrated that there were no external anomalies in the data except for the effects of rainfall.
This can be checked in Figs. 3 and 4, where the only reasons for changes in SM appear to
be due to rainfall and seasonal temperature variations.

The results also showed that the WRF model has agreed well with the in-situ measurements.
Although this analysis was only conducted in the short-term period, these high correlations indi-
cate that the WRF model can also be relied on for a longer period. As explained in Sec. 3.4, the
initial conditions for the WRF coupled with the Noah LSM are based on the NCEP reanalysis
data. The reanalysis data are produced operationally every 6 h by NCEP with a 40-km spatial
resolution12 based on the upper air and surface observational data collected from the measure-
ments in the local weather stations via the global telecommunications system (GTS). The model
also combines land surface parameters, such as the surface LC and vegetation fraction12 to pro-
duce simulations. As a result, the ability of the model to incorporate observational data in the
land surface parameterization schemes can be the reason for a good agreement with the ground
measurements. However, there are two main drawbacks for a modeling system as opposed to
a remotely sensed approach. First, the spatial resolution of the model is limited and the

Fig. 5 Spatial matching between the MODIS LST grid and the coastal boundaries of the study
area. Variations of LST over land and lake are also clear on this map.
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uncertainties increase when downscaling to a very fine resolution (≤1 km) is required. The sec-
ond limitation is the computational time and cost for model simulations as well as the depend-
ence of simulations on the availability of re-analysis data, which itself depends on the availability
of measurements from permanent weather stations [Sec. 3(4)]. Satellite data, on the other hand,
are available nearly real-time across the globe regardless of topography or distribution of weather
stations and are readily available with a predefined spatial resolution. The WRF model coupled
with the Noah LSM, therefore, can be a complementary solution to fill the gaps in SM retrievals
from the MODIS LST data. An intercomparison of simulated and satellite-based SM by itself
also can be useful for future research on both numerical modeling and/or remotely sensed
retrieval of SM over moderate vegetation (mainly grass as in our study area) in New Zealand.

Although a simple 1:1 correlation helped us to find out which function offers a higher agree-
ment with the in-situ SM measurements, comparison of ATI1 and ATI2 temporal profiles
enabled us to figure out which function is better able to detect seasonal trends and rainfall effects.
Temporal profiles also assisted us with the interpretation of the declining seasonal trends and
rainfall effects in the WRF simulations. Overall, the ATI2 retrievals showed a better agreement
with the in-situ measurements and rainfall events than the ATI1 outputs (Table 4). This indicates
that using four daily LSTobservations from MODIS presents a better approximation of SM than
the two (a minimum and a maximum) LST used by ATI1. This is because more often LST
observations enable mapping the TI of the surface and interpretation of the day and night temper-
ature difference.30 However, the drawback of using four daily LST observations is that more
uncertainty due to the satellite ground track variations is introduced into the ATI model.
Additionally, using four LST observations by ATI2 results in more missing SM retrievals as
opposed to ATI1, which needs only two daily LST values.

The lower correlations at some sites (Leeston and Darfield) and the missing SM values
revealed that a remotely sensed approach for SM retrieval is limited to favorable weather con-
ditions and suitable LC types. As the results showed, the accuracy of SM retrievals deteriorate
over water, dense vegetation, and rugged terrain. Sensitivity of LST to SM differs for the canopy
and the soil surface beneath the plants, and is much greater for bare soil than for canopies.31

As a result, the accuracy of the ATI algorithm diminishes over dense vegetation. The retrievals
are not possible under cloudy conditions. These limitations indicate that a remotely sensed
method for SM retrieval can work only in regions with favorable conditions. Such a method,
therefore, is not suitable for parts of New Zealand that have dense vegetation and rugged
topography. Nevertheless, an intercomparison of simulated and retrieved SM over the moder-
ately vegetated (mainly grass) LC types, as assessed in this study, can be useful for both model-
ing and satellite-based studies in the future.

7 Conclusion

Soil moisture derived from remotely sensed LST, simulated by a numerical model, and measured
on the ground, was analyzed in this paper. The objective of the analysis was to understand the
potential of the MODIS LST dataset for soil moisture retrieval using the ATI method and to

Table 4 Summary table to compare the performance of ATI1 and ATI2 functions for soil moisture
derivation from the MODIS LST observations. The mean correlation coefficient (ρ̄) and Euclidean
distance (d̄E ) values provided in this table are averages of the results from six test-sites.

Parameter

Short term Long term

ATI1 ATI2 WRF ATI1 ATI2

ρ̄ 062 063 0 81 0.63 0.63

d̄E 0 82 0 43 0 77 237 0.123

M̄E (summer) — — — −4 0.3

M̄E (winter) — — — −21 −14
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compare the accuracy of two ATI functions based on the ground measurements. A land-atmos-
pheric coupled model was also evaluated for potential gap filling of ATI soil moisture retrievals.

Both ATI functions showed almost similar results in the short-term (four months) period, but
the overall correlation between the ATI2 time series and the in-situ measurements was slightly
higher (ρ̄ ¼ 0.63) than ATI1 (ρ̄ ¼ 0.62). At some sites (such as Leeston), both functions showed
relatively poor correlations. It was discussed that the poor results at those sites were due to the
effects of the nearby water bodies or mountains. The WRF simulations, on the other hand,
showed relatively strong correlations at all sites (ρ̄ ¼ 0.81). The model simulations also agreed
well with the in-situ measurements in detection of rainfall effects and the general seasonal trend.
Over the long-term analysis (three years), ATI2 showed slightly higher correlation (ρ̄ ¼ 0.66)
than ATI1 (ρ̄ ¼ 0.63). Temporal profiles of the two functions showed a considerable offset from
the in-situ time series in the long-term analysis; however, the overall bias in ATI2 retrievals was
lower (d̄E ¼ 126) than ATI1 (d̄E ¼ 237), partly due to the fewer points in its series. To break
down this overall bias into seasons, ME values during summer and winter for all sites were
calculated. Both functions showed small biases from the in-situ measurements in summer
(∼5m3 · m−3 volumetric SM), but considerably larger biases in winter with a slightly better
result from ATI2 (M̄E ¼ −14m3 · m−3) compared to ATI1 (M̄E ¼ −14m3 · m−3). The ATI2
temporal profile was able to detect seasonal variations of SM better than ATI1. It was discussed
that this is due to the more detailed DTA employed by ATI2 compared to the simple DTA
of ATI1.

Results of this research indicate that the ATI2 function is more suitable for SM derivations in
the study area. Since the MODIS LST product is available for more than 10 years and the mission
is still being continued, long-term series of SM can be derived using the ATI2 function.
Considering the good performance of the WRF model, the gaps due to cloud cover in ATI
retrievals can be filled in by the model simulations.
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