
SUPPORTING KNOWLEDGE REUSE DURING THE
SOFTWARE MAINTENANCE PROCESS THROUGH AGENTS

Aurora Vizcaino, Juan Pablo Soto, Mario Piattini
Alarcos Research Group,Computer Science Department, Universidad de Castilla-La Mancha, Ciudad Real, Spain

Keywords: Knowledge management, agents, software maintenance, software engineering

Abstract: Knowledge management has become an important topic as organisations wish to take advantage of the
information that they produce and that can be brought to bear on important decisions. This work describes a
system to manage and reuse the information (and knowledge) generated during the software maintenance
process, which consumes a large part of the software lifecycle costs. The architecture of the system is
formed of a set of agent communities. Each community manages different types of knowledge. The
communities’ agents have the goal of encouraging the reuse of good solutions and taking advantage of
information obtained from previous experience. In consequence, the software maintenance is made easier
and there are less costs and effort. To achieve this goal, agents use several reasoning techniques such as case
based reasoning or decision tree based algorithms which allow them to generate new knowledge from the
information that they manage.

1 INTRODUCTION

Software engineering in general, and software
maintenance in particular, are activities that generate
important amounts of knowledge. This knowledge
comes not only from the expertise of the
professionals involved in the processes, but is also
intrinsic to the product being maintained and in the
case of software maintenance, to the reasons that
motivate maintenance (new requirements, user
complaints, etc.), processes, methodologies and tools
used in the organization. Moreover, software
maintenance is a constantly changing process since
maintenance results from the necessity of adapting
software systems to an ever changing environment
(Oliveira et al, 2003).

On the other hand, many people are involved in
software development and maintenance. These
people often work in different phases, activities and
projects and nowadays it is common that they act
from geographically distributed sub-units. For all
these reasons, maintenance organizations frequently
have problems identifying their resources,
localizations and use of knowledge. As a
consequence, companies recurrently spend time,
effort and money searching for solutions to problems

that have already been solved in their own
organization.

On many occasions, organizations had
documents or people with the information or
knowledge necessary to support or help other
colleagues in their activities but either the former did
not know what the latter was working on or the latter
did not know that other documents or people could
have helped them.

Techniques and tools are needed to help software
practitioners apply past knowledge to current
projects (Henninger, 2003).

A plausible technique is to store good solutions
to problems or lessons learned thus avoiding
repeating mistakes and increasing productivity and
the likelihood of further success (Rus and Lindvall,
2002).

To implement this technique, we used the
experience-based approach, which proposes that
software maintenance draws on past experiences as a
resource for planning and executing software
development and maintenance efforts (Basili and
Rombach, 1988; Henninger et al. 1995).

An experience-based approach to software
maintenance involves using an organization’s
accumulated knowledge of the development and
maintenance processes and application domains as
the basis for planning and performing the different

397
Vizcaino A., Pablo Soto J. and Piattini M. (2004).
SUPPORTING KNOWLEDGE REUSE DURING THE SOFTWARE MAINTENANCE PROCESS THROUGH AGENTS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 397-402
DOI: 10.5220/0002596303970402
Copyright c© SciTePress

types of maintenance. Analysing and structuring the
necessary knowledge to achieve this goal is a
difficult process that can only be accomplished in
well-understood domains (Fischer and Lemke,
1988).

First of all, the experience-based knowledge
lifecycle should be considered: Knowledge creation
is a spiral where new ideas are built on existing
knowledge, made explicit so it can be communicated
to others (these are the lessons learned or experience
packages), then routinized to become part of
everyday practices that serve as the basis for future
knowledge creation (Nonaka and Takeychi, 1995).
According to this definition, a new problem arises:
how to communicate or share knowledge and to
foster its reuse and decide who should be in charge
of it.

Basili et al. (1994) propose a solution to this
problem «the Experience Factory approach». This
approach separates the responsibilities of developing
projects or maintaining them, (in the case of
software maintenance), from capturing experience.
The Experience Factory unit is in charge of
developing, updating and providing reusable
experience that can be utilized by product
development teams (Henninger, 2003).

This approach is currently starting to be used in
experience management tools (see Seaman et al.,
2003) and it is that which is used in our work since it
makes knowledge management possible without
overloading maintainers with new tasks or
responsibilities. Therefore, it is supposed that
organizations have an experience factory to carry out
all activities necessary to store, manage and share
previous experience.

Besides using a software experience based tool
we consider how to deal with the different types of
knowledge generated during the software
maintenance process. Agents were the solution
chosen because they can specialize in monitoring
specific knowledge. Another advantage of using
agents is that they can take advantage of other
agents’ knowledge by consulting or asking for help
from others. Therefore, they reuse and share their
own knowledge.

The rest of the paper is structured as follows:
Section two describes what type of knowledge
should be taken into account to develop an
experience-based knowledge management tool for
the software maintenance process. Section three is
focused on describing the multi-agent architecture,
designed to foster knowledge reuse in software
maintenance companies. Finally, conclusions are
outlined.

2 SOFTWARE MAINTENANCE
KNOWLEDGE

There are several proposals of mental models to
describe how software engineers go about carrying
out maintenance (Rugaber and Tisdale, 2000; Briand
et al, 1994). However, these works focus on the
process of doing maintenance rather than on the
knowledge generated or used during this process.

Kitchenham et al (1999) designed an ontology of
software maintenance. In this ontology all the
concepts relevant to the classification of empirical
studies in software maintenance were identified.

Kitchenham’s ontology is structured in several
partial subontonlogies:

Products ontology: This represents how the
software product is maintained and how it evolves
over time.

Activities ontology: This describes how to
organise activities for maintaining software and
what kinds of activities they may be.

Processes ontology: This is divided into two
different focuses, defining a sub-ontology for each
one:

• Procedures sub-ontology: This defines how
the methods, techniques and tools can be applied to
the activities and how the resources are used in order
to carry out these activities.

• Process Organization sub-ontology: This
focuses on how the support and organizational
processes are related to the software maintenance
activities, how the maintainer is organized, and what
his/her contractual obligations are.

Peopleware ontology: This describes what skills
and roles are necessary in order to carry out the
activities, what the responsibilities of each person
are, and how the organizations that intervene in the
process (maintainer, customer and user) relate to
each other.

Oliveira et al. (2003) present an ontology where
the knowledge useful to software maintenance is
determined. Their ontology is inspired by
Kitchenham’s ontology. They propose five aspects
instead of the four described above, although four of
them are similar to the sub-ontologies previously
cited. The aspects considered by Oliveira et al
(2003) are: Knowledge about the software system
itsef which corresponds to the product ontology.
Knowledge about the maintainer’s skills, which
corresponds to the peopleware ontology. Knowledge
about the maintenance activity which corresponds to
the activities ontology. Knowledge about the
organization structure which corresponds to the
Process Organization sub-ontology. And knowledge
about the application domain which is not
considered in Kitchenham’s ontology.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

398

Ruíz et al. (2003) propose a semi-formalised
ontology where Kitchenham’s ontology has been
extended and focused on the management of
Software Maintenance Projects. This is the ontology
that has been used in the design of our experience
based tool since it is that which is best adapted to
our necessities in exactly defining the software
maintainance projects domain.

Our experience-based tool is currently focused
on knowledge directly related to the maintenance
problems. Therefore, storing the application domain
was not considered convenient, at least in the first
step. Moreover, it is more likely that organizations
obtain experience about what activities are most
performed, or about the processes that should be
followed to carry them out than about the
application domain itself.

Therefore, the tool manages information related
to the products to be maintained, the activities that
are performed during the software maintenance
process, and of course, the methods, techniques and
tools used to carry out the different activities.
Moreover, the tool monitors the work that each
person has done and in which project and activity
s/he is working at this moment. Thus, different kinds
of knowledge should be taken into account and it is
for this reason that we have designed a multiagent
architecture.

3 THE MULTI-AGENT
ARCHITECTURE

There are several reasons why agents are
recommendable for managing knowledge (see Tacla
and Barthès, 2002). First of all, agents are proactive.
This means they act automatically when it is
necessary. Moreover, agents can manage both
distribute and local information. This is an important
feature since the software maintenance information
is generated by different sources and often from
different places.

Another important issue is that agents can learn
from their own experience. Consequently, the
system is expected to become more efficient with
time since the agents have learnt from their previous
mistakes and successes.

On the other hand, each agent may utilize
different reasoning techniques depending on the
situation. For instance, they can use ID3 algorithms
to learn from previous experiences and use case-
based reasoning to advise a client how to solve a
problem.

Having explained the convenience of using
agents let us describe the multi-agent architecture.
We followed MESSAGE, a Methodology for

Engineering Systems of Software Agents (Evan et
al., 2001) to design the architecture.

MESSAGE proposes different levels of analysis.
At level 0 the system to be developed is considered
as a black box focusing on its relationships with the
entities in its environment (eg. users, stakeholders,
and resources).

Figure 1 shows the level 0 of our design, where
there are three entities: the experience based tool, the
maintainers’ team and the experience factory
organization. As Figure 1 indicates the experience
based tool is updated by the members of the
experience factory. However, they need to obtain
experience from the maintainers’ teams. This means
that the activities of the experience factory and those
of the maintainers’ team should be perfectly
integrated (Rus and Lindvall, 2002). A feedback
between them is indispensable to assure the success
of the experience factory approach.

Figure 1: Organisation Diagram

Moving from level 0 to level 1, analysis focuses

on the system itself, identifying the types of agents
and roles. The tool has different types of agents.
They are groups in three communities. The product
community is formed of product agents in charge of
monitoring information related to the products to be
maintained. The activity community has activity
agents, which control all information, related to a
specific activity such as the process where it is used,
the tool/s necessary to perform the activity and the
best methods to carry it out.

The third community is called the peopleware
community. This community has three different
agents, one per type of profile involved in the
software maintenance process (Polo et al., 1999).
One is the “staff agent” in charge of managing
information related to the members of the staff.
Another type of agent, called client agent, is in
charge of the information received from the clients
and of their data. And the last agent, the user agent,
manages users’ information. Following the
MESSAGE methodology we have developed an
Agent/Role schema for each agent, which as its

SUPPORTING KNOWLEDGE REUSE DURING THE SOFTWARE MAINTENANCE PROCESS THROUGH AGENTS

399

name suggests, describes the features and roles of
each agent. Following the product agent/role schema
is presented:

Table 1: Product agent/role schema

Role Schema Product Agent
Goals Predicting future changes. Looking

for similar features in other products.
Capability Case-Based reasoning
Knowledge Initial requirements of the product.

Product’s features. Changes
performed in the product.

Agent
requirements

This role is played by the agent that
each product has.

Table 1 summarizes the fact that by using case-

based reasoning the product agents try to predict
future changes, since similar software projects often
require similar maintenance demands. This role is
very relevant as studies show that the incorporation
of new requirements is the core problem for
software evolution and maintenance and supposes,
along with the adaptive maintenance, around 75% of
the maintenance effort. As Bennet and Rajlich
(2000) claim, if changes can be anticipated they can
be built in by some form of parameterisation. In this
way costs and efforts are decreased.

The activity agent/role schema is now shown and
commented on.

Table 2: Activity agent/role schema

Role Schema Activity Agent
Goals To advise the best way to perform an

activity.
Capability Induction and decision trees based

algorithms to learn from previous
experience.

Knowledge Methods, techniques and resources to
use for performing an activity.
Lessons learned.

Agent
requirements

This role is played by the agent that
represents each activity.

In order to carry out suitable maintenance it is

advisable to follow a specific methodology. In our
case MANTEMA (Polo et al., 1999), a complete
methodology designed for software maintenance, is
used.

When an organization uses our tool for the first
time, the activity agents contain MANTEMA’s
indications about when to use an activity, or what
methods and resources to use. However, while the
tool is used agents are learning what techniques are
the most appropriate for each activity and also
learning which mistakes are often made in each
activity. Thus, the more the tool is used the better it

will work. With this role the aim is to reuse lessons
learned and avoid the repetition of mistakes.

The following paragraphs describe the
agent/role schema for the agents belonging to the
peopleware community. They are the staff agent, the
client agent and the user agent.

The staff agent is in charge of monitoring the
employees’ work in order to determine in which task
each person has more experience or where a person
obtained better performance. Therefore, the staff
agent has enough information to be able to
recommend the most suitable person to perform a
task attempting to decrease time, cost or effort or to
obtain the best performance.

Table 3: Staff agent/role schema

Role Schema Staff Agent
Goals To follow the performance of

each employee in order to
recommend the most suitable
person to carry out a task.

Capability Statistics techniques that indicate
the time that an employee took to
perform a task or calculate the
performance graph of each
member.

Knowledge Personal data of the employees,
in which activities they have
worked, and which product they
have maintained.

Agent
requirements

This role is played by one agent
in charge of all the members of
the staff.

On the other hand, as was mentioned before,

similar products often demand similar changes. The
same often happens with the clients. Clients with
frequent analogous features have similar needs.
Thus, the client agent searches for analogies among
clients in order to predict future demands or to use
the knowledge obtained from previous experience to
help clients to make a decision.

When more knowledge and experience is
managed it is easier to identify problems, to develop
different alternative solutions and to select the best
option (Gnyawali et al., 1997).

For example, let us consider that a client wants
to change two modules of the same product.
However, he wonders whether it is more suitable to
carry out the two changes at the same time or order
one change first, and after a time request the second
change. The client agent can check whether similar
changes were demanded previously and calculate
statistics in order to advise him/her which method is
most suitable to follow in order to obtain the best
performance and price.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

400

Table 4: Client agent/role schema
Role Schema Client Agent
Goals To help to make decisions.
Capability Analogy reasoning techniques.
Knowledge Profile of each client and their

requirements (including the
initial requirements if they are
available).

Agent
requirements

This role is played by one agent
in charge of monitoring clients’
demands.

Finally, the user agent schema shows that the

user agent plays a role similar to that of the client
agent. The reason for having two different agents is
that the clients are frequently not the users of the
software to be maintained. For this reason it is
necessary to monitor the information of both parts.
For a software maintenance organization it is very
useful to know the users’ opinion of the software
and of the changes that have been performed.
Organizations can use this information to evaluate
their work and to study how the users’
characteristics influence the maintenance of the
product. In order to illustrate how the user agent
works let us imagine that an accounting department
requests a change in its software because a new tax
has appeared.

Table 5: User agent/role schema
Role Schema User Agent
Goals To predict new requirements
Capability Analogy reasoning techniques
Knowledge Necessities of the users of each product,

their background and also their
complaints and comments about the
products.

Agent
requirements

This role is played by one agent in
charge of monitoring users’ features.

The user agent sends an email to other users,

whose jobs are related to accounting, warning them
of the possibility that their software should be
modified and updated because of the new tax. A
budget of the cost of the change could even be
attached to the email. Thus, users can plan the
changes in advance.

To conclude this section some considerations
related to the implementation of the system are
explained. The platform chosen to implement the
multiagent system is JADE which is an FIPA
compliant agent platform (Bellifemine et al., 2001),
implemented in Java and developed as an open
source project.

This platform provides a Java API which
simplifies the development of agents that run in the

environment of the platform. The language used for
the agents’ communication is ACL.

Moreover, the experience and information
managed by the system are represented in the
experience repository as XML documents which are
managed by TAMINO, a database created especially
for XML documents.

4 CONCLUSIONS

Software maintenance is one of the most important
stages of the software life cycle. This process
involves a lot of time, effort, and costs. It also
generates a huge amount of different kinds of
knowledge that must be suitably managed. This fact
is more visible in big companies since the larger the
product the more likely it is that product knowledge
will be spread among the maintenance staff, making
it more difficult to find the cause of problems.
Furthermore, the more people working together the
more opportunities there are for misunderstandings
that may lead to quality problems.

This paper presents a multiagent system, based
on the experience-based approach, which stores
information and generates knowledge with the
finality of encouraging the reuse of previous
information and knowledge in software maintenance
organizations. Thus costs and effort are decreased.

ACKNOWLEDGEMENTS

This work is partially supported by the TAMANSI
project (grant number PBC-02-001) financed by the
Consejería de Ciencia y Tecnología of the Junta de
Comunidades de Castilla-La Mancha and the MAS
project (grant number TIC2003-02737-C02-02,
Ministerio de Ciencia y Tecnología, SPAIN).

REFERENCES

Basili, V. R. , Caldiera, G., and Rombach, H. D. (1994).
The Experience Factory. Encyclopedia of Software
Engineering (pp. 469-476). Marciniak, J.J.; Wiley, J.
(Eds.).

Basili, V. R., and Rombach, H.D. (1988) The TAME
Project: Towards Improvement-Oriented Software
Environments. IEEE Transactions on Software
Engineering, 14 (6), pp 758-773.

Bellifemine, A., Poggi, G., and Rimassa, G. (2001).
Developing multi agent systems with a FIPA-

SUPPORTING KNOWLEDGE REUSE DURING THE SOFTWARE MAINTENANCE PROCESS THROUGH AGENTS

401

compliant agent framework. Software Practise &
Experience, 31: 103-128.

Bennet K.H., and Rajlich V.T.(2000). Software
Maintenance and Evolution: a Roadmap, in
Finkelstein, A. (Ed.), The Future of Software
Engineering, ICSE 2000, June 4-11, Limerick, Ireland,
pp 75-87.

Briand, L. C., Basili, V., Kim, Y., Squier, D. R. (1994). A
Change Analysis Process to Characterize Software
Maintenance Projects. In Proc. of The International
Conference on Software Maintenance. ICSM'94, pp.
38-49, September 1994, Victoria, British Colombia,
Canada.

Evans, R., Kearney, P., Stara, J., Caire, G., Garijo, F.J.,
Gomez Sanz, J.J., Pavon, J., Leal, F., Chainho, P.,
Massonet, P. (2001). MESSAGE: Methodology for
Engineering Systems of Software Agents.
http://www.eurescom.de/~pub-deliverables/P900-
series/P907/TI2/p907ti2.pdf. Consulted on 6th August
2003.

Fischer, G., Lemke, A.C., (1988). Construction Kits and
Design Environments: Steps Toward Human Problem-
Domain Communications. Human Computer
Interaction, 3 (3), pp 179-222.

Gnyawali, D.R., Stewart, A.C., and Grant J.H. (1997).
Creating and Utilization of Organizational
Knowledge: An Empirical Study of the Roles of
Organizational Learning on Strategic Decision
Making. Academy of Management Best Paper
Proceedings, pp. 16-20.

Henninger, S. (2003). Tool Support for Experience-Based
Software Development Methodologies. To Appear in
Advances in Computer, 59, 29-82.

Henninger, S. (1995) Supporting the Domain Lifecycle.
IEE Seventh International Workshop on Computer-
Aided Software Engineering-CASE’95, Toronto,
Canada. IEEE Computer Society Press, pp 10-19.

Kitchenham, B.A., Travassos, G.H., Mayrhauser, A.,
Niessink, F., Schneidewind, N.F., Singer, J., Takada,
S., Vehvilainen, R. and Yang, H. (1999). Towards an
Ontology of Software Maintenance. Journal of
Software Maintenance: Research and Practice. 11, pp.
365-389.

Nonaka, I., and Takeychi, H. (1995). The Knowledge-
Creation Company: How Hapanese Companies Create
the Dynamics of Innovation. Oxford Univ. Press,
New York

Oliveira, K. M., Anquetil, N., Dias M.G, Ramal, M., &
Meneses, R. (2003). Knowledge for Software
Maintenance. Fifteenth International Conf. on
Software Engineering and Knowledge Engineering
(SEKE'03) 61-68

Polo, M., Piattini, M., Ruiz, F., and Calero, C. (1999):
MANTEMA: A complete rigorous methodology for
supporting maintenance based on the ISO/IEC 12207

Standard. Euromicro Conf. on Software Maintenance
and Reengineering (CSMR’99). Amsterdam
(Netherland). IEEE Computer Society, , pp. 178-181.

Rugaber, S., and Tisdale, V.G. (1992). Software
Psychology Requirements for Software Maintenance
Activities. Software Engineering Research Center,
Georgia Institute of Technology.

Ruiz, F., Vizcaíno, A., Piattini, M. y García, F. (2003). An
Ontology for the Management of Software
Maintenance Projects. Sent to the International Journal
of Software Engineering and Knowledge Engineering.

Rus, I., and Lindvall, M. (2002). Knowledge Management
in Software Engineering. IEEE Software, May/June,
26-38.

Seaman, C., Mendonca, M. G., Basili, V. R., and Kim, Y-
M. (2003). User Interface Evaluation and Empirically-
Based Evolution of a Prototype Experience
Management Tool. IEEE Transactions on Software
Engineering, Vol. 29, No. 9.

Tacla, C., and Barthès, J-P. (2002). A Multi-Agent
Architecture for Knowledge Management System.
Second IEEE International Symposium on Advanced
Distributed Computing Systems. ISADS.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

402

