Supporting Information

Facile synthesis of SnO₂ nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications

B. P. Vinayan, and S. Ramaprabhu*

[*] Prof. S. Ramaprabhu, Corresponding Author, Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

Phone: +91-44-22574862, Fax: +91-44-22570509/22574852

*Email: <u>ramp@iitm.ac.in</u>

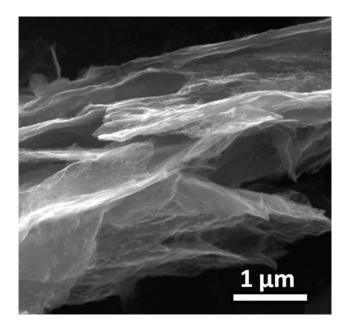
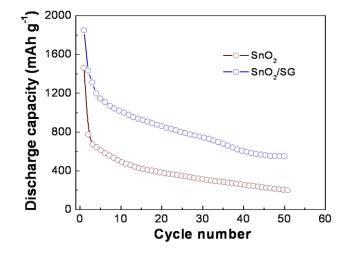



Figure S1: SEM image of SnO₂/NG anode material

Figure S2: Cyclic stability of bare SnO_2 nanoparticles and SnO_2 /solar exfoliated graphene electrode materials at a current density of 90 mA g⁻¹.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013

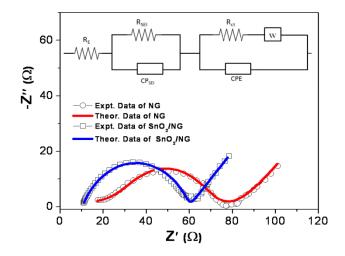


Figure S3: Nyquist plot and the equivalent circuit for a fresh cell with the electrode materials NG and SnO_2/NG .

Table S1: Impedance parameters for a fresh cell with the electrode ma	aterials NG and SnO ₂ /NG.
---	---------------------------------------

Electrode material	$f R_E$ ($m \Omega$)	$(\mathbf{R}_{\mathrm{SEI}} + \mathbf{R}_{\mathrm{ct}})$ (\Omega)	$\begin{array}{c} CP_{SEI} + CPE \\ (\mu F) \end{array}$
NG	17.3	92.5	40.5
SnO ₂ /NG	10.1	70.1	2.4