SI

| Peak No.           | Identity       | AG <sub>1.3</sub><br>Relati | AG <sub>1.8</sub> | $AG_{2.2}$ |
|--------------------|----------------|-----------------------------|-------------------|------------|
| 1                  | Glycerol       | 38.8                        | 30.1              | 20.1       |
| 2                  | MonoAcrylate 2 | 1.8                         | 1.8               | 1.6        |
| 3                  | MonoAcrylate 1 | 14.6                        | 17.6              | 16.4       |
| 4                  | Hydroquinone   | 4.0                         | 4.0               | 8.6        |
| 5                  | DiAcrylate 2   | 0.4                         | 0.4               | 0.9        |
| 6                  | DiAcrylate 1   | 1.0                         | 1.3               | 2.3        |
| 7                  | Inactive       | 20.8                        | 22.3              | 21.0       |
| 8                  | Active         | 0.3                         | 0.5               | 1.2        |
| 9                  | Inactive       | 2.3                         | 2.0               | 1.8        |
| 10                 | Inactive       | 9.4                         | 10.6              | 8.9        |
| 11                 | Active         | 0.5                         | 0.7               | 0.7        |
| 12                 | Active         | 7.9                         | 10.6              | 11.6       |
| 13                 | Active         | 0.5                         | 0.6               | 0.1        |
| 14                 | Active         | 0.7                         | 1.5               | 3.3        |
| 15                 | Active         | 0.1                         | 0.1               | 0.4        |
| 16                 | Inactive       | 0.4                         | 0.4               | 0.2        |
| 17                 | Active         | 0.6                         | 0.8               | 1.7        |
| 18                 | Active         | 2.7                         | 3.4               | 3.0        |
| 19                 | Active         | 0.0                         | 0.4               | 0.6        |
| 20                 | Inactive       | 6.6                         | 6.7               | 6.9        |
| 21                 | Active         | 1.4                         | 1.3               | 1.7        |
| 22                 | Active         | 0.5                         | 0.3               | 0.3        |
| 23                 | Inactive       | 0.4                         | 0.3               | 0.4        |
| 24                 | Inactive       | 1.0                         | 0.9               | 1.2        |
| 25                 | Active         | 0.1                         | 0.2               | 0.5        |
| 26                 | Active         | 0.5                         | 0.5               | 0.6        |
| 27                 | Active         | 2.0                         | 1.3               | 2.6        |
| 28                 | Active         | 0.7                         | 0.3               | 0.9        |
| Total Monoacrylate | Active         | 16.4                        | 19.4              | 17.9       |
| Total Diacrylate   | Active         | 1.4                         | 1.7               | 3.2        |
| Total Other Active | Active         | 18.6                        | 22.6              | 22.3       |
| Total Inactive     | Inactive       | 20.8                        | 22.3              | 21.0       |

Table S1: Percentages of the various peaks and the activity of the molecule as determined by the presence of a substantial 55 mass fragment

$$CT = [M_{tot}]_0 (x-1) \frac{[C]_0}{[PC]_e}$$
(1)

Where  $[M_{tot}]_0$  is the initial concentration of monovinyl monomer plus crosslinker,  $[PC]_e$  is the concentration of effective primary chains, and CT is the crosslinking tendency.

| Sample Code            | [M <sub>tot</sub> ] <sub>o</sub> | [PC] <sub>e</sub> | [C] <sub>o</sub> |
|------------------------|----------------------------------|-------------------|------------------|
| PAG <sub>1.3</sub> -A  | 0.56                             | 0.045             | 0.044            |
| PAG <sub>1.3</sub> -B  | 0.23                             | 0.0019            | 0.018            |
| PAG <sub>1.3</sub> -C  | 0.23                             | 0.00019           | 0.018            |
| PAG <sub>1.3</sub> -CW | 0.23                             | 0.00019           | 0.018            |
| PAG <sub>1.8</sub> -A  | 0.38                             | 0.032             | 0.029            |
| PAG <sub>1.8</sub> -B  | 0.22                             | 0.0018            | 0.017            |
| PAG <sub>2.2</sub> -A  | 0.29                             | 0.023             | 0.036            |

Table S2: Values used to calculate crosslinking tendency. Note that x was assumed to be 2 as there has been no evidence of glycerol triacrylates



Fig. S1: (Left) Semilog plot of alkene conversion  $X \equiv -\ln(\frac{[=]}{[=]_0})$  for AG<sub>1.3</sub>, where [=] is the alkene molarity, versus time. Determined by integration of the acrylic acid alkenes and the acrylic ester alkenes via <sup>1</sup>H-NMR. (Right) NMR showing the result of the esterification of glycerol with acrylic acid.



Fig. S2: (Left) Overlay of time 0 hr (black) and time 36 hr (gray) NMR. Shows the difference in catalyst to alkene ratio that happens over time. (Right) Overlay of original monomer NMR  $AG_{1.3}$  (gray) and polymer NMR  $PAG_{1.3}$ -C (black). This shows the characteristic line broadening of polymer protons. This in addition to the loss of alkene double bonds is the initial indication that polymerization is occurring.



Fig. S3: GCMS overlap showing similarities between acrylation of analytical grade and crude glycerol