Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017 ## **Supporting Information** ## Excellent Stability of Thicker Shell CdSe@ZnS/ZnS Quantum Dots Yan Fu¹, Daekyoung Kim², Wei Jiang¹, Wenping Yin³, Tae Kyu Ahn³ and Heeyeop Chae^{1,2,*} ¹ School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea ² Sungkyunk Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea ³ Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea *Corresponding author E-mail address:hchae@skku.edu (H. Chae) ^{*}Correspondence:hchae@skku.edu **Fig. S1.** (a) TEM-EDS line scan along a single CdSe@ZnS A- QDs. (b) EDS mapping of CdSe@ZnS A- QDs_9 nm QDs. (c) The atomic percentage of each element of thick shell QDs is presented in table. Fig. S2. Photochemical stability of the PL relative intensity of (a) A-QDs film under UV-irradiation exposure in O_2 environment; (b) AS-QDs film under UV-irradiation exposure in O_2 environment; (c) A-QDs film under UV-irradiation exposure in air environment.