Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

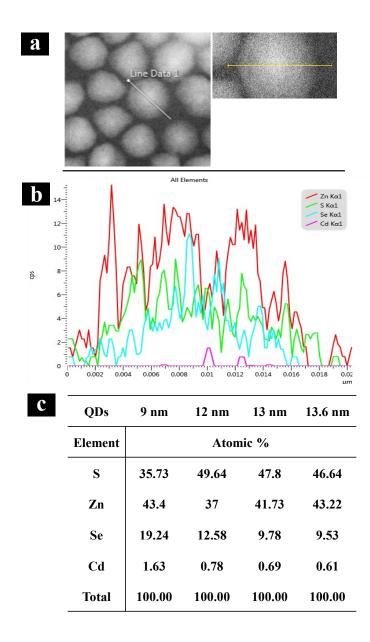
Supporting Information

Excellent Stability of Thicker Shell CdSe@ZnS/ZnS Quantum Dots

Yan Fu¹, Daekyoung Kim², Wei Jiang¹, Wenping Yin³, Tae Kyu Ahn³ and Heeyeop Chae^{1,2,*}

¹ School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea

² Sungkyunk Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419,


Republic of Korea

³ Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea

*Corresponding author

E-mail address:hchae@skku.edu (H. Chae)

^{*}Correspondence:hchae@skku.edu

Fig. S1. (a) TEM-EDS line scan along a single CdSe@ZnS A- QDs. (b) EDS mapping of CdSe@ZnS A- QDs_9 nm QDs. (c) The atomic percentage of each element of thick shell QDs is presented in table.

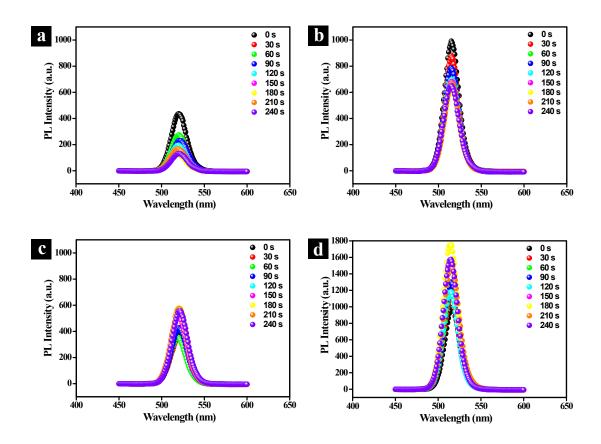


Fig. S2. Photochemical stability of the PL relative intensity of (a) A-QDs film under UV-irradiation exposure in O_2 environment; (b) AS-QDs film under UV-irradiation exposure in O_2 environment; (c) A-QDs film under UV-irradiation exposure in air environment.