Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

for

Concentration dynamics of coarse and fine particulate matter at and around the signalised traffic intersections

Prashant Kumar^{a, b, *}, Anju Goel^a

^aDepartment of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences (FEPS), University of Surrey, Guildford GU2 7XH, United Kingdom

^bEnvironmental Flow (EnFlo) Research Centre, FEPS, University of Surrey, Guildford GU2 7XH, United Kingdom

*Corresponding author: Corresponding author. Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Tel.: +44 1483 682762; Fax: +44 1483 682135. E-mail addresses: P.Kumar@surrey.ac.uk, <u>Prashant.Kumar@cantab.net</u>

The SI Materials include:

Figures S1 to S7

Tables S1 to S12

Figure S1. (a) Distance versus time, and (b) velocity versus time, plots of an experimental car during a delay event at a TI.

Figure S2. An example showing the estimation of ZoI at TI_2 during a Run 3.

Figure S3. An example of Set₂ showing a method to estimate the MMD of (a) PM_{10} , (b) $PM_{2.5}$ and (c) PM_1 .

In order to assess the in-cabin and on-road dynamics of particle mass concentrations (PMCs), mobile monitoring was carried out on a 6 km round route passing through the 10 different TIs. In order to assess the PMC dynamics at pedestrian pathways, fixed-site monitoring was carried out at two different types of TIs.

Based on the results of mobile monitoring, effect of five different ventilation settings was assessed on in-cabin exposure to PMCs. Out of the five studied ventilation settings, Set_1 was considered to represent on-road PMCs. The results of this setting were then used to estimate the on-road PMCs during delay and free-flow periods at the TIs. Also, based on the results of Set_1 , ZoI was estimated by using the methodology explained in Section 2.5.

Based on the results of fixed-site monitoring, pedestrian exposure to PMCs during delay conditions is estimated. This data were also used to plot the frequency distributions of PMCs. mobile monitoring, effect of five different ventilation settings was assessed on in-cabin exposure to PMCs.

Figure S4. Overall framework for study design.

Figure S5. Correlation between AER and percentage contribution of the coarse (PM_{2.5-10}) and fine (PM_{2.5}) particles to total PMCs during different ventilation settings.

Figure S6. Frequency histogram for PM₁₀, PM_{2.5} and PM₁ at 3- and 4-way TIs, respectively.

Figure S7. Correlation between AER of different ventilation settings and RDD rate of (a) PM_{10} (b) $PM_{2.5}$ and (c) PM_1 during delays at TIs.

Hour	4–wa	y TI	3-wa	y TI
Hour	Total traffic	HDV	Total traffic	HDV
8–9	6672	192	5316	324
9–10	5652	312	5160	432
10–11	3828	156	4464	372
11–12	4656	264	6096	312
12–13	3996	192	5400	432
13–14	5439	266	6252	216
14–15	4584	144	5616	336
15–16	5436	228	6060	312
16–17	6576	192	5496	396
17–18	5844	240	5124	348
18–19	4860	144	4764	96
19–20	2628	72	4652	56
Total (%)	60171	2402 (4%)	64400	3632 (6%)

Table S1. Summary of traffic volume (veh h^{-1}) and heavy duty diesel vehicles (HDVs) at two different types of TIs.¹²

Table S2. Average local background PMCs (μ g m⁻³) of PM₁₀, PM_{2.5} and PM₁ along with standard deviation (σ) during the different ventilation settings. These are estimated based on 5th percentile value of 30 s rolling average of the 6s PM concentration time series.

Monitoring	Ventilation		PM _{2 5}	PM ₁
type	settings /	PM_{10}	2.5	1
	Types of TI	(Average $\pm \sigma$)	(Average $\pm \sigma$)	(Average $\pm \sigma$)
Mobile	Set ₁	28±6	16±2	11±2
monitoring	Set ₂	16±3	9±3	7±2
	Set ₃	10±5	8±4	7±4
	Set ₄	21±10	7±3	5±2
	Set ₅	25±10	11±7	8±5
Fixed-site	3-way	22±21	16±15	13±15
monitoring	4–way	16±10	11±6	8±6

Table S3. Average deposition fraction (DF) of PM_{10} , $PM_{2.5}$ and PM_1 during mobile and fixed–site measurements. " σ " refers to standard deviation and MMD means mass median diameter that have been estimated using method explained in Section 2.5 (SI Figure S2).

Monitoring type	Ventilation	DF for PM _{10,}	DF for PM _{2.5} ,	DF for PM_{1} ,
	setting/	average $\pm \sigma$	average $\pm \sigma$	average $\pm \sigma$
	type of TI	(MMD, μ m)	(MMD, μ m)	(MMD, μ m)
Mobile	Set ₁	0.92±0.04 (4.0)	0.24±0.11 (0.7)	0.13±0.003 (0.3)
	Set ₂	0.88±0.06(3.2)	0.23±0.01 (0.7)	0.15±0.02 (0.4)
	Set ₃	0.80±0.09 (2.2)	0.15±0.02 (0.4)	0.13±0.002 (0.3)
	Set ₄	0.95±0.001(4.6)	0.32±0.03 (0.8)	0.13±0.001 (0.3)
	Set ₅	0.94±0.004(4.1)	0.32±0.115 (0.8)	0.13±0.003 (0.3)
Fixed-site	3-way	0.84±0.01(2.3)	0.14±0.02 (0.4)	0.13±0.002 (0.3)
	4–way	0.88±0.01(2.5)	0.14±0.02 (0.4)	0.13±0.002 (0.3)

Table S4. Average concentrations with and without background corrections of PM_{10} , $PM_{2.5}$ and PM_1 under five different ventilation settings along with mass median diameter (MMD) and air exchange rate (AER) inside the car cabin.

Ventilation	PM_{10} (Av	erage $\pm \sigma$)	PM _{2.5} (Av	erage $\pm \sigma$)	PM ₁ (Ave	$rage \pm \sigma)$	AER
settings							$(m^3 h^{-1})$
C	(µg n	$n^{-3})$	$(\mu g m^{-3})$		(µg r	$n^{-3})$	
-	Without	With	Without	With	Without	With	
	background	background	background	background	background	background	
	correction	correction	correction	correction	correction	correction	
Set ₁	44±13	16±7	21±4	5±2	14±3	3±1	_
Set ₂	31±8	15±5	13±5	4±2	9±4	2±2	125
Set ₃	23±7	13±2	12±4	4±1	11±4	4±0	257
Set ₄	38±12	17±2	9±3	2±1	5±2	0	16
Set ₅	45±14	20±4	14±7	3±0	9±5	1±0	17

Run No	,	TI ₁		TI ₂	Г	TI ₃		TI ₄		TI ₅		TI ₆	Т	Ί ₇		TI ₈	,	ГI ₉]	ГI ₁₀
Kull NO	X_{I}	X_2	X_{I}	X_2	X_I	X_2	X_{I}	X_2	X_{l}	X_2										
R1	109	-23	23	-56	-	_	-	-	-	-	-	-	107	52	_	-	-	-	68	54
R2	13	-96	-	-	-	_	153	99	83	-167	87	49	-	-	54	15	-	-	79	31
R3	102	-68	-	-	45	-38	59	-17	34	-115	-	-	129	17	42	-11	-	_	_	-
R4	_	-	108	-121	15	-71	58	32	110	-160	-	-			39	6	134	-27	_	-
R5	_	-	90	31	143	-55	-	-	-	-	-	-	-	-	-	-	-	-	97	-5
R6	-	-	-	-	-		116	-33	-	-	-	-	-	-	53	-100	154	-7	-	-
R7	144	59	-	-	-	-	-	-	-	-	-	-	-	-	-	-	131	26	-	-
R8	81	29	-	-	-	_	34	-78	-	-	-	-	164	49	114	-77	-	_	-	_
R9	_	-	-	-	-		0	-190	-	_	-	-	16	-82	_	-	109	-7	61	27
R10	-	_	84	-18	-	_	141	-73	-	-	-	-	-	-	_	-	-	_	68	31
R11	50	-19	126	7	-	-	65	37	156	137	-	-	-	-	_	-	25	-21		
R12	19	50	-	-	-	_	83	-18	-	_	-	-	200	23	_	-	-	_	70	-16
R13	_	-	-	-	-	_			117	-81	-	-	-	_	22.3	9.2	-	_	_	-
R14	-	_	137	97	-	_	46	-15	-	-	-	-	-	-	110	48	11	-5	-	_
R15	_	-	84	-120	-	_	75	27	-	_	50	-134	151	-33	70	-31	68	-47	_	-
R16	-	_	-	_	-	_	19	-120	117	-81	-	-	133	66	_	-	153	-47	-	_
R17	_	-	150	-28	-	_	189	-104	85	52	91	-137	181	-22	_	-	-	_	_	-
R18	137	44	-	_	92	14	-	-	-	_	137	-94	-	-	89	49	-	_	-	_
R19	-	-	58	-43	74	-22	109	14	-	-	123	21	-	-	-	-	-	_	55	-20
R20	51	-72	72	0	-	-	142	-6	73	-67	-	-	116	23	97	68			100	58
R21	94	-46	58	-35	-	_	140	70			-	-	73	-73	_	-	-	_	_	-
R22	-	-	84	-68	-	-	74	-91	146	-77	-	-			_	-	-	_	-	_
Max	144	59	150	97	143	14	189	99	156	137	137	49	200	66	114	68	154	26	100	58
Min	13	-96	23	-121	15	-71	0	-190	34	-167	50	-137	16	-82	22	-100	11	-47	55	-20
Average	80	-14	90	-30	74	-34	88	-27	102	-62	98	-59	127	2	69	-2	98	-17	75	20
Stdev	46	57	36	61	48	33	52	74	38	98	34	88	54	52	32	54	57	24	16	30
Median	88	-21	84	-32	74	-38	75	-17	110	-81	91	-94	131	20	62	8	120	-14	69	29

Table S5. Starting point (X_1) and end point (X_2) of the zone of influence for PM₁₀ at ten TIs during each of the 22 runs of Set₁ in stop– and go– driving conditions.

Dun No	TI	1	TI ₂		TI	3	TL	ļ	Т	Ί ₅]	ГI ₆	Т	I ₇	T	[₈	T	[9	Т	I ₁₀
Kull NO	X_{l}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{l}	X_2	X_I	X_2	X_{I}	X_2	X_{l}	X_2	X_{I}	X_2	X_I	X_2
R1	110	75	112	0	_	_	_	_	-	-	_	-	115	40	-	-	-	-	95	22
R2	46	-165	_	-	-	-	169	67	92	 157	115	20	-	-	-	-	-	_	79	31
R3	115	-14	-	-	93	10	_	_	0	94	_	_	119	-43	60	-30	_	_	_	-
R4		-	97	-62	51	-61	_	_	74	-25	_	_	_	-	47	0	56	0	_	-
R5		-	95	54	143	43	—	_	-	-	_	_	-	—	-	-	—	-	46	0
R6		_	_	_	_	_	112	-16	-	-	-	_	-	_	76	-88	65	-7	-	_
R7	178	27	_	_	_	_	_	_	-	_	_	_	_	-	-	-	126	94	-	-
R8	122	22	_	_	_	_	162	82	-	_	_	_	107	49	125	-77	_	-	_	_
R9		-	_	_	_	_	155	22	-	_	_	_	32	-43	-	-	37	0	49	34
R10		-	91	17	_	-	125	57	-	-	-	_	-	_	-	-	_	_	78	-12
R11	50	-14	126	44	_	_	183	48	21	-39	_	_	-	-	-	-	25	13	_	_
R12	101	-112	-	_	-	_	82	46	-	_	-	_	171	160	_	-	_	_	70	-23
R13	-	—	-	_	_	_	_	_	161	-81	-	_	_	_	70	-44	-	_	-	-
R14	_	_	137	97	_	_	54	17	_	_	_	_	_	_	91	52	119	25	_	_
R15	_	_	40	-57	_	_	154	69	_	_	50	-194	164	-71	138	-46	68		_	_
R16	_	_	_	_	_	_	164	79	161	-81	_	_	150	54	-	-	44	_ 47	_	_
R17	-	-	65	-38	-	_	194	74	74	0	-	_	109	-49	_	-	_	_	_	-
R18	137	32	_	-	79	19	-	_	-	_	_	_	_	-	121	0	_	-	_	_
R19	_	-	38	-13	62	-33	88	56	-	-	133	-10	-	-	-	-	_	_	94	-11
R20	74	-72	96	-22	-	_	142	0	83	-46	-	_	138	27	196	35	-	-	96	44
R21	62	0	59	0	-	_	160	70	-	-	-	_	-	_	_	-	_	_	_	-
R22	-	-	61	-7	_	_	-	-	-	-	-	_	-	_	-	_	_	_	-	-
Max	178	75	137	97	143	43	194	82	161	94	133	20	171	160	196	52	126	94	96	44
Min	46	-165	38	-62	51	-61	54	-16	0	- 157	50	-194	32	-71	47	-88	25	_ 47	46	-23
Average	100	-22	85	1	86	-4	139	48	83	-42	99	-61	123	14	103	-22	68	-4	76	11
Stdev	42	73	32	46	36	42	41	31	57	73	44	116	41	73	47	48	37	43	20	25
Median	106	-7	93	-4	79	10	155	57	79	-43	115	-10	119	27	91	-30	61	- 10	79	11

Table S6. Starting point (X_1) and end point (X_2) of the zone of influence for PM_{2.5} at ten TIs during each of the 22 runs of Set₁ in stop– and godriving conditions.

Dun No		TI ₁	T	I ₂	Т	I ₃	TI	4	Т	Ί ₅	Т	TI ₆	Т	Ί ₇	Т	I ₈	Т	Ί ₉	T	l ₁₀
Kull NO	X_I	X_2	X_{I}	X_2	X_I	X_2	X_{I}	X_2	X_I	X_2	X_I	X_2	X_{I}	X_2	X_{I}	X_2	X_I	X_2	X_{I}	X_2
R1	115	79	103	0	_	-	_	-	_	-	-	_	107	40	-	-	-	-	113	10
R2	46	-135	-	-	-	-	190	0	145	_ 157	156	44	-	-	-	-	_	_	87	27
R3	69	22	_	_	24	16	_	_	34	-88	-	_	119	-43	50	-17	_	-	_	_
R4	_	_	87	-40	51	-92	_	_	49	-4	-	_	_	_	42	0	50	0	_	_
R5	_	_	83	-15	158	-36	-	-	_	_	_	_	-	-	_	_	_	_	97	-23
R6	_	_	-	-	_	-	194	-16	_	_	-	_	-	-	53	-60	117	19	_	_
R7	153	70	-	-	_	-	-	-	_	_	-	_	-	-	_	_	126	115	-	_
R8	110	29	-	-	_	-	186	72	_	_	-	_	164	18	104	-77	_	_	_	_
R9	_	_	-	-	-	-	155	40	_	_	_	_	125		-	-	22	8	54	27
R10	_	_	99	-51	_	-	146	69	_	_	_	_	_	_	-	-	_	_	68	-12
R11	31	40	126	54	_	-	183	48	0	74	_	_	_	_	-	-	20	-7	_	_
R12	127	-112	-	-	_	-	90	17	_	_	_	_	134	15	-	-	_	_	62	-16
R13	-	-	-	-	_	-	_	_	40	-60	_	_	_	_	70	-30	_	_	-	_
R14	-	_	112	100	_	-	54	16	_	-	_	_	_	_	81	52	22	-64	-	-
R15	_	_	35	-32	_	-	59	27	_	-	50	-194	164	-93	_	_	60	-47	-	-
R16	-	_	-	_	_	-	158	83	40	-60	_	_	149	48	-	-	32	-47	-	-
R17	_	_	106	36	_	-	183	38	63	0	-	_	-	-	-	_	-	_	-	-
R18	81	18	-	-	79	19	_	-	_	-	-	_	-	-	129	0	-	-	-	-
R19	_	_	34	0	86	-12	86	57	_	-	133	-43	-	-	-	_	-	-	84	0
R20	127	-72	96	-22	_	-	_	-	100	14	-	_	157	33	190	18	-	-	96	30
R21	62	28	59	14	_	-	139	70	_	-	-	_	-	-	-	_	-	-	-	-
R22	_	_	38	5	_	-	_	-	_	-	-	_	-	-	-	_	-	-	-	-
Max	153	79	126	100	158	19	194	83	145	74	156	44	164	48	190	52	126	115	113	30
Min										-				_						
	31	-135	34	-51	24	-92	54	-16	0	157	50	-194	107	137	42	_77	20	-64	54	-23
Average	92	-3	82	4	80	-21	140	40	59	-35	113	-64	140	-15	<u>90</u>	-14	56	-3	83	5
Stdev	40	75	32	43	50	46	51	30	45	71	56	120	22	69	50	42	43	56	20	21
Median	96	25	92	0	79	-12	155	40	45	-32	133	-43	142	17	76	-9	41	-4	86	5

Table S7. Starting point (X_1) and end point (X_2) of the zone of influence for PM₁ at ten TIs during each of the 22 runs of Set₁ in stop– and godriving conditions.

Pup No -	T	[₁	TI ₂		Т	Ί ₃	TI_4		Т	I ₅]	ГI ₆	Т	I ₇		TI ₈	Т	I9	TI	[₁₀
Kuli No	X_{l}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_I	X_2	X_{I}	X_2
R1	-	_	-	-	-	-	103	28	-	_	_	_	_	_	-	-	177	133	_	_
R2	-	-	-	-	-	-	-	_	-	-	_	_	124	-17	-	-	158	-37	-	_
R3	_	-	-	_	_	-	_	-	-	-	_	_	-	_	-	-	_	_	_	_
R4	_	-	—	_	—	—	-	-	-	-	_	_	185	-11	—	-	-	—	-	_
R5	-	-	-	-	-	_	70	-50	_	_	-	_	150	55	-	-	148	13	-	-
R6	_	-	98	-34	—	—	-	-	-	-	_	_	_	_	—	-	-	—	-	_
R7	_	-	140	10	—	—	138	-35	-	-	_	_	200	77	-	-	-	—	_	_
R8	-	-	204	0	-	_	-	-	_	_	-	_	-	-	-	-	_	-	-	_
R9	-	-	102	-80	-	_	-	-	_	_	-	_	-	-	-	-	-	_	-	-
R10	-	-	-	-	-	_	-	-	_	_	-	_	-	_	-	-	_	-	-	-
R11	-	-	-	-	-	_	-	-	-	-	-	_	143	-41	-	-	-	_	-	_
R12	-	-	-	-	-	_	-	-	_	_	-	_	-	-	-	-	_	-	-	-
R13	-	-	132	11	-	_	-	_	-	-	-	_	_	_	-	-	_	-	_	_
R14	-	-	-	-	-	_	-	-	_	_	-	_	-	_	-	-	-	_	-	_
R15	-	-	-	-	-	_	-	-	_	_	-	_	-	-	-	-	-	_	-	_
R16	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	_	-	_
R17	-	-	_	_	_	_	-	_	-	-	-	_	-	-	-	-	_	-	_	-
R18	_	-	-	_	-	_	_	-	184	-70	_	_	139	27	-	_	_	_	-	-
R19	190	-26	-	-	-	_	-	-	_	_	-	_	138	18	-	-	_	-	-	-
R20	-	-	-	-	-	_	-	-	-	-	102	0	-	-	-	-	86	15	-	-
R21	-	-	-	-	-	_	-	-	111	-79	-	_	-	-	-	-	_	-	-	_
R22	-	-	_	_	_	_	-	_	-	-	_	_	_	_	-	-	_	-	-	-
Max	190	-26	204	11	_	_	138	28	184	-70	102	0	200	77	(0 0	177	15	0	0
Min	190	-26	98	-80	-	-	70	-50	111	-79	102	0	124	-41	(0 0	86	- 133	0	0
Average	190	-26	135	-19	_	_	104	-19	148	-75	102	0	154	15	-	_	142	-36	_	_
Stdev	-	_	43	39	_	_	34	41	52	6	_	_	28	42	-	_	39	69	_	_
Median	190	-26	132	0	_	-	103	-35	148	-75	102	0	143	18	_	_	153	-12	_	_

Table S8. Starting point (X_1) and end point (X_2) of the zone of influence for PM₁₀ at ten TIs during each of the 22 runs of Set₁ in multiple stopping driving conditions.

Run No		ΓI ₁		TI	2		ГI ₃	TI	4	Т	Ί ₅		TI ₆	Т	I ₇		TI ₈	Т	I9	T	I ₁₀
Kull NO	X_{I}	Χ	2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2
R1	_		_	-	_	_	_	76	0	-	-	_	-	-	-	-	-	168	-8	_	-
R2	-		-	-	-	_	-	-	-	-	_	_	-	105	-10	-	-	143	0	-	-
R3	_		-	_	-	_	-	_	_	-	-	_	_	-	-	_	_	_	_	-	_
R4	_	_		-	_	_	-	174	44	-	_	_	_	97	-11	_	-	-	-	_	-
R5	-	_		-	_	_	-	49	26	-	-	_	-	176	34	-	-	169	39	-	_
R6	_	_		77	13	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_
R7	_		_	126	20	_	_	197	-35	_	_	_	_	196	44	-	-	_	_	_	_
R8	_		_	182	-13	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
R9	_	_		96	14	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_
R10	_	_		_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_
R11	-		-	-	-	_	-	-	-	-	_	_	_	54	-52	-	-	_	_	-	_
R12	_		_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_
R13	_	_	_	55	-9	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_
R14	-	-	-	-	-	_	-	-	-	-	-	_	_	-	_	-	-	-	_	-	-
R15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
R16	-	-	-	-	-	_	-	-	-	-	-	_	_	-	_	-	-	-	_	-	_
R17	-	-	-	-	-	_	-	-	-	-	-	_	_	-	_	-	-	-	_	-	-
R18	_		_	_	_	_	_	_	_	148	-21	_	_	180	0	-	_	_	_	_	_
R19	133		-23	-	-	_	-	-	-	-	-	-	_	175	55	-	-	-	_	_	-
R20	_		-	-	-	_	-	-	-	-	-	_	_	-	_	-	-	66	28	_	-
R21	_		-	-	-	_	-	-	-	32	-80	_	_	-	_	-	-	-	_	-	-
R22	-	-	-	-	-	_	-	187	34	_	-	_	-	-	_	-	_	-	_	-	-
Max	133		-23	182	20	_	-	197	44	148	-21	_	_	196	55	() 0	169	39	0	0
Min	133		-23	55	-13	_	-	49	-35	32	-80	-	_	54	-52	() 0	66	-8	0	0
Average	133		-23	107	5	_	-	137	14	90	-51	-	_	140	9	_	_	137	15	-	_
Stdev	_	_		49	15	-	_	69	32	82	42	_	_	54	38	_	_	49	22	_	_
Median	133		-23	96	13	_	_	174	26	90	-51	_	_	175	0	_	_	156	14	_	_

Table S9. Starting point (X_1) and end point (X_2) of the zone of influence for PM_{2.5} at ten TIs during each of the 22 runs of Set₁ in multiple stopping driving conditions.

Run No		TI ₁	Т	I ₂	T	I ₃	TI	4	Т	I_5	-	ГI ₆	Т	I ₇	Т	[₈	T	[9	T	[₁₀
Kull NO	X_I	X_2	X_{I}	X_2	X_{l}	X_2	X_I	X_2	X_{l}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2	X_{I}	X_2
R1	_	_	_	_	_	_	76	-40	_	_	_	_	-	_	_	-	168	0	_	_
R2	_	_	_	_	_	_	_	_	_	_	_	_	150	-5	_	_	137	0	_	_
R3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R4	_	_	_	_	_	_	174	36	_	_	_	_	113	0	_	_	_	_	_	_
R5	_	_	_	_	_	_	83	11	_	_	_	_	155	21	_	_	161	23	_	_
R6	_	_	98	-17	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R7	_	_	162	-12	_	_	197	-35	_	_	_	_	_	_	_	_	_	_	_	_
R8	_	_	100	22	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R9	_	_	89	17	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R10	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R11	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R12	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R13	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R14	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R17	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R18	_	_	_	_	_	_	_	_	136	61	_	_	186	0	_	_	_	_	_	_
R19	127	-54	_	_	_	_	_	_	_	_	_	_	175	60	_	_	_	_	_	_
R20	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	76	24	_	_
R21	_	_	_	_	_	_	_	_	26	-21	_	_	_	_	_	_	_	_	_	_
R22	_	_	_	_	_	_	74	0	_	_	_	_	_	_	_	_	_	_	_	_
Max	127	-54	162	22	_	_	197	36	136	61	0	0	186	60	0	0	168	24	0	0
Min	127	-54	89	-17	_	_	74	-40	26	-21	0	0	113	-5	0	0	76	0	0	0
Average	127	-54	112	3	_	_	121	-6	81	20	-	_	156	15	_	_	136	12	_	_
Stdev	_	-	34	20	_	_	60	32	78	58	-	_	28	27	_	_	42	14	_	_
Median	127	-54	99	3	_	_	83	0	81	20	_	_	155	0	_	_	149	12	_	_

Table S10. Starting point (X_1) and end point (X_2) of the zone of influence for PM₁ at ten TIs during each of the 22 runs of Set₁ in multiple stopping driving conditions.

		Max			Mi	n		Medi	an		Avera	ige
Types of TIs	<i>X</i> ₁ (m)	X2 (m)	Length (m)	X ₁ (m)	X2 (m)	Length (m)	X ₁ (m)	X2 (m)	Length (m)	<i>X</i> ₁ (m)	X2 (m)	Length (m)
						PM ₁₀						
TI _{4w-nt}	, 204	-26	230	70	0	70	118	-13	131	133	-16	149
TI _{3w-nt}	200	77	123	86	-41	127	148	14	134	148	-10	158
TI _{4w-wt}	o —	_	_	_	_	_	_	_	_	_	_	_
TI _{3w-wt}	, 184	-70	254	111	-79	190	148	-75	222	148	-75	222
						PM _{2.5}						
TI _{4w-nt}	» 197	-23	220	49	0	49	133	13	120	126	-1	127
TI _{3w-nt}	9 196	39	157	86	-8	94	165	7	158	138	12	127
TI _{4w-wt}	. –	_	_	_	_	_	_	_	—	_	_	_
TI _{3w-wt}	» 148	-21	169	32	-80	112	90	-51	141	90	-51	141
						PM ₁						
TI _{4w-nt}	, 197	-54	251	74	-17	91	99	0	99	120	-19	139
TI _{3w-nt}	, 186	24	162	86	0	86	152	6	146	146	13	132
TI _{4w-wt}	, –	_	_	_	_		_	_	_	_	-	_
TI _{3w-wt}	, 136	61	75	26	-21	47	81	20	61	81	20	61

Table S11. Maximum, minimum, median and the average length of ZoI for PM_{10} , $PM_{2.5}$ and PM_1 at four different categories of TIs during multiple stopping driving conditions.

Table S12. Run-wise total RDD during Set_1 along with percentage contribution of RDD during delays at TIs to total RDD and percentage commuting time spent by the experimental car during delay conditions in Set_1 .

	Total the w	RDD du hole run	uring (µg)	% fra RDD	ction of during o	total delay	Commuting time spent
Run No	PM_{10}	PM _{2.5}	PM_1	PM_{10}	PM _{2.5}	PM_1	delay (%)
R1	16	2	1	15%	13%	13%	12%
R2	11	1	1	2%	2%	2%	1%
R3	13	1	1	8%	7%	6%	5%
R4	18	2	1	12%	10%	11%	9%
R5	17	2	1	26%	20%	19%	19%
R6	19	2	1	4%	2%	2%	2%
R7	15	2	1	4%	2%	3%	2%
R8	9	1	1	6%	5%	6%	4%
R9	11	2	1	11%	4%	4%	4%
R10	9	1	1	10%	7%	9%	6%
R11	8	1	1	1%	1%	1%	1%
R12	9	1	1	7%	4%	5%	5%
R13	39	3	1	4%	4%	5%	4%
R14	19	2	1	28%	16%	23%	15%
R15	15	2	1	10%	7%	10%	8%
R16	20	2	1	21%	13%	17%	16%
R17	16	2	1	16%	9%	11%	11%
R18	30	5	1	7%	7%	6%	6%
R19	26	4	1	15%	11%	10%	9%
R20	25	5	1	10%	7%	6%	6%
R21	16	3	1	9%	6%	6%	6%
R22	14	3	1	3%	3%	2%	3%
Average	17	2	1	10%	7%	8%	7%