
Reliable Real-time Change Detection and Mapping for 3D LiDARs

Lorenz Wellhausen Renaud Dubé Abel Gawel Roland Siegwart Cesar Cadena∗

Abstract— A common scenario in Search and Rescue robotics
is to map and patrol a disaster site to assess the situation and
plan potential missions of rescue teams. Particular importance
has to be given to changes in the environment as these may
correspond to critical events like building collapses, movement
of objects, etc. This paper presents a change detection pipeline
for LiDAR-equipped robots to assist humans in detecting those
changes. The local 3D point cloud data is compared to an
octree-based occupancy map representation of the environment
by computing the Mahalanobis distance to the closest voxel in
the map. The thresholded distance is processed by a clustering
algorithm to obtain a set of change candidates. Finally, outliers
in these sets are filtered using a random forest classifier.
Changes are continuously mapped during a sortie based on
their classification score and number of occurrences. Changes
are reported in real time during robot operation.

I. INTRODUCTION

In Search and Rescue (SaR) scenarios, robots can be used
to create highly detailed metric maps of the environment
which represent potentially large and cluttered disaster ar-
eas [1, 2]. Robots can patrol disaster areas and revisit them
over several days for surveillance, where detecting changes
in the environment is of special interest. These changes can
represent moved objects, collapsed structures or environment
deformations.

An online change detection algorithm is desirable to
assist robot operators or enable autonomous inspection of
dynamic parts of the environment. As a research problem
this generalizes to detecting changes that occurred in the
environment since a reference map was built. Differentiating
between actual dynamics and apparent changes caused by
sensors noise and data misalignment is the main challenge.
Additional challenges are posed by changes in view point
and incomplete or erroneous map data. Current approaches
either require a high rate of point cloud acquisition or cannot
cope with the errors from previously mentioned sources.

The input to our algorithm is 3D point-cloud data stem-
ming from LiDAR sensor readings of a Unmanned Ground
Vehicle (UGV). In our approach, we define a measure for
change likelihood by computing the Mahalanobis distance
between points in the reading point cloud and those in a
reference map. A set of change candidates is then obtained
by clustering the points based on a distance threshold. These
candidates are classified as static or dynamic using a random
forest classifier trained on separate data. The output of the

∗Authors are with the Autonomous Systems Lab, ETH, Zurich
authors@mavt.ethz.ch.

This work was supported by the European Union’s Seventh Framework
Programme for Research and Technological Development under the TRADR
project No. FP7-ICT-609763, and the armasuisse S+T UGV research pro-
gram.

(a) Change detection results using thresholded Hausdorff distance as pro-
posed in [3].

(b) Change detection results using our approach.

(c) Door and steel cart which where moved to create dynamics highlighted
in the images above.

Fig. 1: Change detection results of different approaches for a dataset
recorded in the decommissioned Gustav-Knepper power plant. Red
points indicate points which disappeared since the last visit. Green
points are new points in the scene.

classifier is continuously mapped during a sortie. Based on
our evaluation on a real-world dataset of an abandoned power
plant, this approach shows to be reliable when applied on
distorted point clouds and imperfect map data.

To the best of our knowledge, this is the first paper
to present LiDAR-based novelty detection using a learning
approach to facilitate change detection. Specifically, this
paper presents the following contributions:

1) A probabilistic distance metric as a measure for point
change likelihood.

2) A real-time change detection system with learning-
based novelty classification reporting changes online.

3) An evaluation of the algorithm in urban and SaR

scenarios.

In the following section we present an overview of the
related work in 3D change detection. Our system is presented
in detail in Section III, and its performance is validated
in real-word scenarios in Section IV. Finally, we give our
conclusions in Section V.

II. RELATED WORK

Previous works on novelty detection in geometric data can
be separated in two general types of approaches, point or
voxel based and cluster based.

Approaches falling in the first category aim at detecting
dynamics using individual points or voxels [3–7]. These
approaches generally achieve a high level of detail for the
detected dynamics. However, outliers are required to be
handled explicitly in order to achieve robustness.

Girardeau-Montaut et al. [3] compute the distance between
every point in one point cloud to its closest equivalent in
another point cloud and extract changes by thresholding the
distance. Expressing points in spherical coordinate space
is used in [4] and [7] to facilitate quick-raycasting. The
algorithms proposed in [5] and [6] use multiple consecutive
sensor measurements to deal with outliers and refine the
detection, which requires a high rate of point cloud acquisi-
tion so that multiple measurements from a similar viewpoint
are available. This makes these techniques impractical to
deploy on systems where a high measurement rate cannot
be achieved, e.g. when assembling 3D point clouds from a
slowly rotating 2D LiDAR.

The second type of approaches are those that cluster
points and approximate the point distribution with a function.
Novelties are detected using these functions and points
are later re-associated to obtain point-accurate dynamics
estimates [8–10]. Manso et al. [8] represent both reference
and reading point cloud as a collection of Gaussian Mixture
Model (GMM)s and classify distributions that do not have
matching GMMs in both clouds as novelties. In [9] changes
are detected based on implicit volume by computing the
local density function of the point clouds. Andreasson et al.
[10] represent the prior map with a 3D normal distribution
transform and compute a probability that reading cloud
points are different from this distribution. Because these
approaches fit a function to a group of points they have a
certain level of implicit robustness to outliers. The downside
of this approximation is that information about the expected
visibility of map points is lost. As a result, none of these
approaches can detect disappearing objects.

An additional mention has to be made of the field of object
discovery and segmentation which has been studied exten-
sively [11–16]. However, many of these approaches make
assumptions about object shape [11–13] or size [14] which
are not guaranteed to hold in unstructured SaR scenarios. An
approach proposed by Herbst et al. [15, 16] uses dense RGB-
D data of tabletop scenes where the pipeline takes several
minutes per frame. This approach is not suitable for real-
time robotic applications in unstructured scenarios with no

control on the illumination and with sparser LiDAR data to
work with.

Our approach is most closely related to [3] with extensions
to make it suitable for online operation. We extract change
candidates using the distance between individual points in
the reading point cloud and reference map, which provides a
similar level of detail to approaches like [3–7]. By classifying
point clusters, we benefit from the robustness to outliers as
in approaches [8–10].

III. CHANGE DETECTION SYSTEM

In this section we present our change detection algorithm
facilitating online novelty detection for 3D LiDAR-equipped
mobile robots.

An overview of the pipeline is shown in Figure 2 and
modules are described in the same order as illustrated in the
block diagram. The inputs are the current reading point cloud
captured by the LiDAR and a reference map which is gen-
erated by our online localization and mapping system [17].
The base representation of this map is an occupancy octree,
specifically an OctoMap [18].

A. Reference Map Alignment

In order to initialize our change detection system, the
reading point cloud and the reference map need to be aligned.
With our current implementation, a general alignment trans-
formation Treloc is found between the current and reference
map using the SegMatch [19] algorithm. Every new reading
point cloud is further aligned to the reference map in an
Iterative Closest Point (ICP) step, with Treloc as an initial
guess, to obtain the current alignment transformation Talign.

B. Ground Plane Removal

In order to reduce the risk of observing false dynamics
caused by the sparse reference map ground plane, we detect
and remove every reading point which lies on the ground
plane.

As stated in the original OctoMap work [18], configura-
tions where LiDAR sensors are mounted close to the ground
level can cause voxels to be falsely marked as unoccupied.
This is a result of laser beams hitting the ground at shallow
angles, intersecting multiple voxels and marking them as
free when that might actually not be the case. Therefore,
the reference OctoMap will have many free voxels in the
ground plane and if points of the reading point cloud fall in
this free space they would appear as dynamics.

Our ground segmentation implementation uses an algo-
rithm proposed by Himmelsbach et al. [20]. Slight changes
to the ground plane condition were made for cases where
points are spaced far apart in radial direction.

C. Distance Computation

The distance computation between points in the reading
point cloud and reference map is the core module of the
change detection system. It encompasses two parts, one
for detecting disappearing objects and one for detecting
appearing objects.

Thresholding Clustering ClassificationDistance
Computation

Mapping of
Changes

Ground
Segmentation

Reference
Map

Change Map

Reading
PointCloud

Reference Map Alignment

ICPSegMatch

Fig. 2: Block diagram of the proposed change detection pipeline. Inputs to the system are the reading point cloud and a reference map.
The output is a map of changes which is reported online. Alignment components with grey background are external to the system.

We define the distance D2(p, S′) as the squared Maha-
lanobis Hausdorff distance. It is computed between a point
p from set S with covariance matrix Σ and the closest point
p′ in another point set S′ as follows:

D2(p, S′) = min
p′∈S′

{(p− p′)TΣ−1(p− p′)} (1)

The computed distance is used in Section III-E as a measure
for the likelihood that a point belongs to an object or
structure which has changed since the environment was first
mapped.

Assuming negligible robot pose uncertainty, the reading
point cloud covariance Σ mainly characterizes the uncer-
tainty in the range measurement as well as uncertainty
in beam direction and spread. Hence, when expressed in
spherical coordinates, the covariance matrix for all reading
points is constant, assuming that radial noise is additive.
For this reason and because spherical coordinates simplify
ray-casting, all points are converted to spherical coordinates,
denoted with the superscript spher.

The occupied voxels of the reference OctoMap are ex-
tracted as a point cloud and transformed to the sensor
coordinate frame as Pref .

1) Disappearing Objects: For detecting objects that dis-
appeared, the distance is computed from every occupied map
voxel which is intersected by a laser beam to the closest point
in the reading point cloud Pread. The pseudocode for the
distance point cloud computation is shown in Algorithm 1. In
this case, the inputs to the algorithm are PA := Pref , PB :=

Pread and P spher
B := P spher

read . The variable ObsSpaceB
expresses information about the observed space obtained
from ray-casting.

The output of Algorithm 1 (Pdist), in this case corresponds
to Pdisappear, which contains all observed map voxel cen-
terpoints and their distance to the closest reading point.

2) Appearing Objects: To detect appearing objects, the
distance from all reading cloud points is computed to the
closest occupied map voxel. Distances are computed anal-
ogous to disappearing points such that Algorithm 1 is also
valid for appearing points. In this case, the inputs to the

Algorithm 1 Distance computation.

Require: PA, PB , P
spher
B , ObsSpaceB

Pdist = ∅
for pi ∈ {PA ∩ PB} do

if ObsSpaceB .isObserved(pspher
i) then

neighborsi ← knn search of pspher
i in P spher

B

D2(pi, PB)← GETDIST(pspher
i , neighborsi)

else
D2(pi, PB)← 0 . Unobserved means no change.

end if
Pdist ← Pdist ∪ {pi,D2(pi, PB)}

end for

Algorithm 2 Compute Mahalanobis distance from point to
voxel boundary.

Require: resolutionoctomap,Σ
function GETDIST(pspher, neighbors)

pneigh = argmax
n∈neighbors

(n− pspher)
TΣ−1(n− pspher)

pdiff = pspher − pneigh

rp = pspher[r] . Range value of pspher

docto =resolutionoctomap /2

pcorr =

docto/rp
docto/rp
docto

pdist = pdiff (1− |pdiff |

||pdiff || ·
pcorr

||pdiff ||)

return pT
distΣ

−1pdist

end function

algorithm are PA := Pread, PB := Pref , P spher
B := P spher

ref .
ObsSpaceB , the information on space observed in the refer-
ence map can be obtained from the reference OctoMap. The
output of the algorithm Pdist, now corresponding to Pappear,
contains all reading cloud points in observed space and their
distance to the closest map voxel.

3) Voxelization Error Correction: The distance error in-
troduced by the voxelization of the reference map is cor-
rected as described in Algorithm 2. It expresses the voxel

boundary in spherical coordinates and subtracts the distance
from centerpoints to boundaries from the total distance.

D. Clustering

To remove points that have a low probability of having
changed, a threshold is applied to Pappear and Pdisappear,
generating two sets of change candidate points. They are
clustered to identify points which belong to the same object
such that we can use the information on all cluster points to
later classify them as static or dynamic.

We use the HDBSCAN algorithm [21] which uses the
distance to the k-nearest neighbor as a local density measure.
It extracts clusters of locally constant density based on the
stability of clusters and is robust to outliers.

E. Classification

Despite the excellent performance of HDBSCAN for clus-
tering change candidates, it does not perform any classifica-
tion step which requires a dedicated classification algorithm
for point clusters.

A simple way to determine whether a cluster is dynamic
or static is to make a decision based on a threshold on
the point distances. A representative distance D2

cluster is
computed from all cluster points. Now, a simple threshold
D2

classify can be applied such that all clusters for which
D2

cluster > D2
classify are considered dynamic, other clusters

are assumed to be false candidates. The following ways to
compute D2

cluster have been evaluated.

Tmin Minimum distance of any cluster point.
Tmax Maximum distance of any cluster point.
Tmed Median distance of all cluster points.

We illustrate the ROC curves of these approaches in
Figure 6 which shows that Tmed is superior to Tmin and
Tmax for all possible D2

classify. Because the threshold clas-
sification approach does not satisfy our desired error rate,
further classification algorithms were explored.

We extract 32 features from each cluster based on point
distance distribution and cluster appearance. The five most
significant features, according to a variable importance anal-
ysis are: median and maximum point distance, vertical point
variance, spherical coordinate range variance and the highest
value bin of a histogram of point distances.

We evaluated AdaBoost [22], random forest [23], support
vector machines [24] as well as linear discriminant anal-
ysis [25] classifiers of which we found the random forest
classifier to be consistently best performing and most robust
to parameter changes. The random forest algorithm classifies
samples using the set of features discussed above. During
training, this model grows a multitude of decision trees, each
one trained with boostrap samples from a training set. In
order to reduce the correlation between the trees, a different
subset of features is used to find the best split at every node
of the decision tree.

The output of the algorithm is a scored label for every
cluster of points indicating whether it is static or dynamic.

F. Mapping of Changes

Until this point in the pipeline we discussed how to detect
dynamics by comparing only the current reading point cloud
to the reference map.

Temporal filtering over the changes is performed by con-
tinuously mapping them. We require a cluster of the same
type, appearing or disappearing, to be observed noverlap

times at the same position to be considered an inlier. Since
the viewpoint changes between observations, we require a
measure that defines when clusters coincide. We use the
intersection of the aligned bounding boxes of clusters to track
clusters over multiple reading point clouds.

Let BBoxi be the aligned bounding box around cluster Ci.
The classification score of cluster Ci is 0 ≤ Scorei ≤ 1. The
volume of a bounding box and the volume of the intersection
of two bounding boxes are defined as

Vi = V olume(BBoxi) (2)
Vij = V olume(BBoxi ∩BBoxj) (3)

We label cluster Ci as a support cluster if noverlap other
clusters Cj exist for which the overlap ratio is larger than a
threshold based on the classification score.

Vij

Vi

?
> 1− Scorei (4)

All points which are part of clusters labelled as support are
considered changes. Additionally, all points of clusters that
themselves overlap a support cluster more than the threshold
of Equation (4) are considered changes. These overlapping
segments are added to capture fringe observations and obtain
a more complete point cloud of the changed object.

IV. EXPERIMENTS

We evaluate our change detection system on two real-
world datasets, gathered in different environments, i.e., an
urban scene and an industrial facility.

A. Datasets

Both datasets were recorded using a highly agile UGV
equipped with encoders, IMU and sweeping 2D LiDAR
scanner, producing full 3D scans every 3 seconds.

1) Clausiusstrasse: The first dataset was recorded in
Clausiusstrasse in Zürich, Switzerland, at different times of
the day. Dynamic objects present in the scene and recorded
in the reference map are parked cars, as well as pedestrians
standing still for the duration of multiple scan acquisitions.
A 100m long stretch of the road was mapped to create the
reference OctoMap. It results in 370 000 occupied voxels
with a resolution of 7.5cm.

2) Power Plant: The second dataset was recorded within
the “Long-Term Human-Robot Teaming for Robots Assisted
Disaster Response” (TRADR) project in the abandoned
Gustav Knepper power plant in Dortmund, Germany, which
is illustrated in Figure 3. This environment is akin to a
cluttered industrial disaster scenario. Dynamics are several
objects of different sizes that were manually moved between
sorties. A sample of different objects used as dynamics is

Fig. 3: Picture of lower floor inside Gustav-Knepper power plant
where data was collected in order to evaluate our change detection
system.

Fig. 4: Robot standing on steel grate with horizontal plane visible
below ground plane. Ground points are colored in red.

pictured in Figure 1c. The power plant has a footprint of
about 100m× 25m with two different accessible levels. The
reference map of the lower level consists of approximately
600 000 occupied voxels, the map of the upper level has
about 400 000 occupied voxels, both at a resolution of 7.5cm.

B. Evaluation

This section evaluates the performance of every compo-
nent of our pipeline on the mentioned datasets. Performance
metrics used for each one are stated in the respective sections.

The performance of ground plane removal is very robust
with minor outliers, even in difficult environments as illus-
trated in Figure 4. Outliers are caused by high point density
regions close to the ground plane or under-sampled areas
with too few points for reliable estimation.

1) Clustering: In the clustering step over-segmentation is
tolerable as long as cluster sizes remain big enough such
that they overlap during change mapping, as we aim to
distinguish dynamic from static elements and not necessarily
capture complete objects within a single cluster. Therefore,
we evaluate clustering performance based on the rate of
under-segmented points.

(a) Meaningful clusters in cluttered environment with different point den-
sities. Non-critical over-segmentation visible at the yellow crate in the left
of the image.

(b) Clustering algorithm under-segments when disappearing chair sits on
top of a false ground ray cast.

Fig. 5: Clustering results using HDBSCAN algorithm. Points with
the same color belong to the same cluster.

As can be seen in Figure 5a, points are generally meaning-
fully grouped, even in low density regions, with some over-
segmentations occurring due to non-constant density of the
occupied reference map voxels. Under-segmentations only
occur in rare edge cases where disappearing objects sit on
top of outlier change candidates caused by erroneous ray
casts as illustrated in Figure 5b.

Erroneous ray casts occur irregularly and therefore the
same under segmentation rarely occurs multiple times. This
means that false clusters generated by this error are mostly
removed during change mapping due to the temporal filter-
ing.

2) Classification: Classification training and test data was
gathered by manually labelling all change candidates after
clustering. We apply a conservative distance threshold such
that no change points are lost during thresholding and
clustering. This was done for two sorties in the power plant
dataset, one upstairs, one downstairs, and one sortie for
the Clausiusstrasse dataset. This resulted in a total number
of 5816 labelled data samples, 88% of them static, 12%
dynamic, where each sample is a cluster. Samples from
the downstairs power plant sortie were used for training,
which contains 57% of all labelled samples. The samples
from the upstairs power plant sortie and the Clausiusstrasse
sortie were used as test data. It should be noted that, while
the power plant sorties were recorded in the same general
environment, the samples are from different floors of the
power plant and do not contain any of the same objects. The
Clausiusstrasse data is from an environment that was not
used for training the classifier and is therefore an indicator
for how well the classifier generalizes.

Classification results for the random forest classifier com-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ue

Po
si

tiv
e

R
at

e

RF Average AUC: 0.915
Tmin Average AUC: 0.738
Tmed Average AUC: 0.789
Tmax Average AUC: 0.689

RF power plant AUC: 0.960
RF Clausiusstrasse AUC: 0.893

1

Operating Point [0.128, 0.872]

Fig. 6: ROC plot showing error rates for threshold based approaches
compared to random forest classifier.

pared to the threshold based approaches are shown in Fig-
ure 6. The indicated point on the curve is the operating
point, determined by the location of the maximal Youden’s
index, which lies at a classification score threshold of 0.17.
Precision and recall for the operating point are 0.872 and
0.873 respectively. The random forest classifier significantly
outperforms all threshold based approaches.

One examples of clusters that were most frequently clas-
sified as static are fine structures which are smaller in size
than the voxel resolution in at least one dimension (e.g. steel
grates, pipes). These clusters where characterized by low
point density with one dominant direction of point variance.
Another example are erroneous ray casts in the ground plane.
These clusters typically have a large median distance value
and low variance in vertical direction.

The most common error source present in the evaluated
datasets were erroneous ray casts which produce change
candidates that appear identical to true dynamics. This issue
is exacerbated by our sensor platform, which assembles a 3D
point cloud from a sweeping 2D LiDAR and should be less
prevalent on other systems. Performing ray casting based on
individual 2D laser scans instead of the 3D assembled cloud
could alleviate this issue and should be implemented when
this system is to be deployed on a robot with such a sensor
system.

3) Mapping of Changes: Change mapping performance
was evaluated manually, based on the number of correctly
mapped clusters.

Precision and recall for a power plant sortie are listed
in Table I and a map of changes for the same sortie with
observancy requirement noverlap = 3 is shown in Figure 7a.
Here, 18 objects are mapped, all of which are true dynamics.
Three actual environment changes, all of them small objects
under 0.5m in size, are not mapped with this parameter
configuration. Four environmental changes were detected by
neither parameter setting. Two of them were disappearing

noverlap Precision Recall
2 0.91 0.84
3 1.0 0.72

TABLE I: Precision and recall with different noverlap for change
mapping evaluated on a power plant sortie.

(a) Decommissioned power plant with several objects moved manually
between sorties.

(b) Urban scene in Clausiusstrasse, Zürich. Changing clusters are cars and
pedestrians.

Fig. 7: Map of changed points overlayed with the reference Oc-
toMap colored by height. Bright green clusters indicate new objects
in the environment. Red clusters indicate disappearing objects from
the scene.

objects that were observed multiple times but were under
segmented during clustering, as discussed in Section IV-B.1.
This caused the overlap of the clusters to be too small and
prevented the objects from being added to the map. Two
small appearing objects were observed only once during the
sortie and could therefore not fulfill the requirement of being
observed noverlap times.

Results for a Clausiusstrasse sortie mapped with
noverlap = 3 are pictured in Figure 7b. All mapped clusters
are true dynamics and none are missing from the map of
changes.

4) Runtime: The change detection pipeline is designed to
run online and in real-time on our target platform, which
acquires a 3D point cloud every 3 seconds.

Table II shows mean computation times for different
pipeline components running in a single thread, evaluated
on a 8-core desktop CPU @3.3GHz with 16GB RAM, with
LiDAR odometry and localization computed in parallel as
would be done on a real system. Real-time performance is
achieved on the target platform.

V. CONCLUSION

In this paper we proposed an environmental change detec-
tion pipeline that performs in real-time on distorted 3D point
clouds with slow acquisition rate in cluttered environments.

We compute the Mahalanobis distance between points
in the reading cloud and occupied voxels in the reference
map as a measure for the change likelihood of a point. By
classifying points with a learning-based algorithm we achieve

Module Time[ms]
Initialization 2.5±0.8
ICP 990.7±219.2
Disappearing Points 389.9±95.1
Appearing Points 52.1±15.0
Clustering 177.8±84.5
Classification 2.4±1.1
Change Mapping 26.4±37.2
Total 1642.2±453.3
Total - No ICP 651.4±234.1

TABLE II: Mean computation time for different pipeline parts.

robustness to noisy point clouds and under-sampled reference
maps. Changes are mapped continuously and reported online.

We evaluated the change detection system on real-world
datasets of urban and SaR environments. Overall, the change
detection system effectively detected 84% of the dynam-
ics and real-time performance on the target platform was
achieved. The output of distance computation is a mean-
ingful metric for the likelihood of a point being dynamic.
High classification performance is achieved despite the low
amount of labelled training data available and can most likely
be improved further with additional data, especially from
environments not represented in the available datasets (e.g.
unstructured outdoor environment). The change mapping
results minimize the burden of false alarms of changes for a
human operator and for higher robot autonomous tasks while
still being computational affordable on the datasets used
for evaluation. In the future, mapping performance can be
improved further by employing a mapping approach which
uses information on static points in addition to dynamic ones.

REFERENCES

[1] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schw-
ertfeger, and J. Poppinga, “Online three-dimensional slam by
registration of large planar surface segments and closed-form
pose-graph relaxation,” Journal of Field Robotics, vol. 27,
no. 1, pp. 52–84, 2010.

[2] K. Ohno, S. Tadokoro, K. Nagatani, E. Koyanagi, and
T. Yoshida, “Trials of 3-d map construction using the tele-
operated tracked vehicle kenaf at disaster city,” in IEEE Int.
Conf. on Robotics and Automation, 2010, pp. 2864–2870.

[3] D. Girardeau-Montaut, M. Roux, R. Marc, and G. Thibault,
“Change detection on points cloud data acquired with a ground
laser scanner,” International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 36,
no. part 3, p. W19, 2005.

[4] F. Ferri, M. Gianni, M. Menna, and F. Pirri, “Dynamic
obstacles detection and 3d map updating,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems. IEEE, 2015, pp.
5694–5699.

[5] A. Azim and O. Aycard, “Detection, classification and tracking
of moving objects in a 3d environment,” in Intelligent Vehicles
Symposium (IV), 2012 IEEE. IEEE, 2012, pp. 802–807.

[6] F. Pomerleau, P. Krüsi, F. Colas, P. Furgale, and R. Siegwart,
“Long-term 3d map maintenance in dynamic environments,”
in IEEE Int. Conf. on Robotics and Automation. IEEE, 2014,
pp. 3712–3719.

[7] J. P. Underwood, D. Gillsjö, T. Bailey, and V. Vlaskine,
“Explicit 3d change detection using ray-tracing in spherical
coordinates,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on. IEEE, 2013, pp. 4735–4741.

[8] L. J. Manso, P. Núñez, S. d. Silva, and P. Drews-Jr, “A
novel robust scene change detection algorithm for autonomous
robots using mixtures of gaussians,” International Journal of
Advanced Robotic Systems, vol. 11, no. 2, p. 18, 2014.

[9] A. W. Vieira, P. L. Drews, and M. F. Campos, “Efficient
change detection in 3d environment for autonomous surveil-
lance robots based on implicit volume,” in IEEE Int. Conf. on
Robotics and Automation. IEEE, 2012, pp. 2999–3004.

[10] H. Andreasson, M. Magnusson, and A. Lilienthal, “Has
something changed here? autonomous difference detection for
security patrol robots,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems. IEEE, 2007, pp. 3429–3435.

[11] R. Ambruş, N. Bore, J. Folkesson, and P. Jensfelt, “Meta-
rooms: Building and maintaining long term spatial models in
a dynamic world,” in Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on. IEEE,
2014, pp. 1854–1861.

[12] R. Ambrus, J. Ekekrantz, J. Folkesson, and P. Jensfelt, “Un-
supervised learning of spatial-temporal models of objects in
a long-term autonomy scenario,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2015.

[13] A. Collet, B. Xiong, C. Gurau, M. Hebert, and S. S. Srinivasa,
“Herbdisc: Towards lifelong robotic object discovery,” The
International Journal of Robotics Research, vol. 34, no. 1,
pp. 3–25, 2015.

[14] R. Finman, T. Whelan, M. Kaess, and J. J. Leonard, “Toward
lifelong object segmentation from change detection in dense
rgb-d maps,” in Mobile Robots (ECMR), 2013 European
Conference on. IEEE, 2013, pp. 178–185.

[15] E. Herbst, P. Henry, X. Ren, and D. Fox, “Toward object dis-
covery and modeling via 3-d scene comparison,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 2623–2629.

[16] E. Herbst, X. Ren, and D. Fox, “Rgb-d object discovery
via multi-scene analysis,” in Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on. IEEE,
2011, pp. 4850–4856.

[17] R. Dubé, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and
C. Cadena, “An online multi-robot slam system for 3d lidars,”
in IEEE International Conference on Intelligent Robots and
Systems (IROS), 2017.

[18] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “Octomap: An efficient probabilistic 3d mapping
framework based on octrees,” Autonomous Robots, vol. 34,
no. 3, pp. 189–206, 2013.

[19] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and
C. Cadena, “Segmatch: Segment based place recognition in 3d
point clouds,” in IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 5266–5272.

[20] M. Himmelsbach, F. v. Hundelshausen, and H.-J. Wuensche,
“Fast segmentation of 3d point clouds for ground vehicles,”
in Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE,
2010, pp. 560–565.

[21] R. J. Campello, D. Moulavi, and J. Sander, “Density-based
clustering based on hierarchical density estimates,” in Pacific-
Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2013, pp. 160–172.

[22] Y. Freund, R. Schapire, and N. Abe, “A short introduction
to boosting,” Journal-Japanese Society For Artificial Intelli-
gence, vol. 14, no. 771-780, p. 1612, 1999.

[23] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[24] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
learning, vol. 20, no. 3, pp. 273–297, 1995.

[25] G. McLachlan, Discriminant analysis and statistical pattern
recognition. John Wiley & Sons, 2004, vol. 544.

