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ABSTRACT

A generalized height-diameter model was developed for Eucalyptus globulus Labill. stands in Galicia
(northwestern Spain). The study involved a variety of pure stands ranging from even-aged to uneven-
aged. Data were obtained from permanent circular sample plots in which trees were sampled within
different radii according to their diameter at breast height. A combination of weighted regression, to take
into account the unequal selection probabilities of such an inventory design, and mixed model
techniques, to accommodate local random fluctuations in the height-diameter relationship, were
applied to estimate fixed and random parameters for several models reported in the relevant literature.
The models that provided the best results included dominant height and dominant diameter as fixed
effects. These models explained more than 83% of the observed variability, with mean errors of less than
2.5 m. Random parameters for particular plots were estimated with different tree selection options.
Height-diameter relationships tailored to individual plots can be obtained by calibration of the height
measurements of the three smallest trees in a plot. An independent dataset was used to test the
performance of the model with data not used in the fitting process, and to demonstrate the advantages of

calibrating the mixed-effects model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Tasmanian blue gum (Eucalyptus globulus Labill.) is one of the
most important tree species in Galicia (northwestern Spain). More
than 3.5 million cubic meters of this eucalypt were harvested in the
region in 2008 (FEARMAGA, 2009), making it the major species in
terms of volume harvested. However, stands of Tasmanian blue
gum lack proper management, mainly due to the lack of
management tools for the species.

Measuring total height (h) is not as easy as measuring
diameter at breast height (d). Total height is usually measured
indirectly with height measuring instruments based on angle
and distance measures. As a result of the difficulty in measuring
tree height and the cost associated with field inventories, and as
h and d are correlated, it is common practice to fit height-
diameter (h-d) models to predict h from measured d. Such
models are thus essential for estimating individual tree volume
and sometimes site index, and for describing stand growth
dynamics and succession over time (Curtis, 1967) when height is
not measured. Parresol (1992) described h-d models as
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important components in yield estimation, stand description
and damage appraisal. Moreover, they are also important in
characterizing canopy height diversity and wildlife habitat
relationships (Spies and Cohen, 1992; Morrison et al., 1992).
Dominant height, competition indices and height/diameter
ratios can also be easily calculated by use of this relation,
without investing large amounts of money in height measure-
ment (Calama and Montero, 2004), at least if these variables are
not included in the model formulation. Finally, Newton and
Amponsah (2007) described these models as important in
product recovery, value estimation, stand structural analyses,
growth and yield projection systems, and carbon budgeting
models.

The h-d relationship varies from stand to stand, and even
within the same stand the relationship is not constant over time
(Curtis, 1967). Therefore a single curve cannot be used to estimate
all the possible h-d relationships that can be found within a forest
(Castedo Dorado et al., 2006). The most widely used method, which
minimises this level of variance, is to estimate h—d regressions for
each plot and measurement occasion. If sufficient data are not
available for these regressions, an h-d model that includes stand
variables that account for the special characteristics of each stand
is often used (Curtis, 1967; Larsen and Hann, 1987; Temesgen and
Gadow, 2004).
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It is frequently argued that the scatter plot of h against d reveals
a sigmoid curve over the full range of diameters. In accordance
with this, Niklas (1995) generalized (from his study on Robinia
pseudoacacia) that growth in tree height is asymptotic and
essentially definite. Researchers have since tested numerous
nonlinear functions to model the h-d relationship on the basis
of this biological phenomenon. Fang and Bailey (1998) investigated
the performance of 33 functions to develop h-d models for diverse
tree species of tropical forest on Hainan Island and selected a
modified form of the exponential model (Meyer, 1940). In a cross-
validation study of six nonlinear growth functions for modelling h—
d relationship for ten conifer tree species, Zhang (1997) concluded
that Bertalanffy-Richards (Bertalanffy, 1949, 1957; Richards,
1959), Weibull-type (Yang et al., 1978), and Schnute (Schnute,
1981) functions provided more accurate results than other models.
Peng (1999) also fitted 25 nonlinear h-d model forms for nine tree
species and reached a similar conclusion to Zhang (1997). Huang
et al. (2000) evaluated 27 functions for modelling the h-d
relationship of white spruce grown in Alberta’s boreal forests
and concluded that the logistic-type function produced the most
satisfactory fit. According to Yuancai and Parresol (2001), the
Schnute function and the Bertalanffy-Richards function are
probably the most flexible and versatile functions available for
modelling h-d relationships. Peng et al. (2001) also found the
Bertalanffy—Richards, Weibull and Schnute functions to be super-
ior to other models as regards prediction performance.

The hierarchical structure in the h-d data (i.e., trees within plots
within stands), usually results in a lack of independence among
measurements, since observations from the same sampling unit
may be highly correlated (West et al., 1984; Gregoire, 1987). Mixed
model techniques have been used successfully (e.g., Lappi, 1997;
Calama and Montero, 2004; Castedo Dorado et al., 2006) to deal
with this problem. These models estimate both fixed and random
parameters simultaneously for the same model, and allow the
variability detected for given phenomena among different loca-
tions to be modelled after defining a common fixed functional
structure (Lindstrom and Bates, 1990). This characteristic makes
mixed-effects models more efficient when a prediction for a new
individual is required and prior information is available (Trincado
et al., 2007).

The main objective of the present study was to develop a model
relating diameter at breast height and total height for Tasmanian
blue gum growing in Galicia, on the basis of data from the Spanish
National Forest Inventory. The particular nature of the circular
plots used in this inventory, in which trees were sampled within
different radii according to their diameter at breast height, obliged
us to use a special technique to account for the unequal selection
probability of each tree. Use of an h-d relationship, a disaggre-
gation system and a taper function enabled volume classification
by merchantable sizes, and this will become important tools for the
sustainable management of the species in the study area.

Table 2
Summary statistics of the fitting and the validation datasets.

Table 1

Characteristics of the Spanish National Forest Inventory (SNFI) plots.
Plot radius (m) Minimum d Dij 1/p; Fexp; RFexp;

threshold (cm)
5 7.5 0.04 25 127.3 3.092

10 125 0.16 6.25 31.83 0.7731
15 22.5 0.36 2.778 14.15 0.3436
25 425 1 1 5.093 0.1237

pij: selection probability of the ith tree in the jth plot, depending on its diameter,
relative to that of the largest radius plot; Fexp;;: hectare expansion factor (inverse of
the selection probability on a per hectare basis); and RFexp;;: rescaled expansion
factor.

2. Methodology
2.1. Data

Data from the Second (ICONA, 1993) and Third (DGCONA, 2001,
2002a, 2002b) Spanish National Forest Inventory (SNFI) in Galicia
(northwest Spain) were used to develop the h-d model (Table 1).
The SNFI is a systematic sample of circular combined sample plots
(Loetsch et al., 1973), distributed on a square grid of 1 km, with a
remeasurement interval of 10 years. In each plot and for each
measurement occasion, species, d and h are recorded for each
sample tree over 7.5 cm, along with tree quality and shape, and
other variables. All plots with more than 90% Tasmanian blue gum
stems were selected for the present study (1518 plots). The
number of stems per hectare (N;) and stand basal area (G;) were
calculated with all trees in the jth plot. However, the mean height
(Hj) was only calculated for Tasmanian blue gum trees, and
dominant diameter (ddom;) and dominant height (hdom;) were
calculated with the proportion of the 100 thickest healthy
Tasmanian blue gum trees (unforked and with no apparent
damage) per hectare. Some outliers were observed in the dataset,
but as they represented only a minor percentage (less than 0.2%),
they were omitted from the analysis. Some plots (15) showed an
illogical h—-d tendency (larger h for smaller d), and so were not used.
Excessively open plots were not used in this study either. The Hart
index (i.e, 100/(hdoij}/2)) was used as a criterion for
distinguishing the competition level within each plot. A Hart
index value of 50 was subjectively selected as the limit for
considering that trees start to grow in competition-free conditions.
This resulted in the elimination of 278 plots and 656 trees. It should
be mentioned that the SNFI is a systematic sample, in which open
plots, or plots with outliers, usually correspond to trees planted in
lines at the edge of agricultural land. Despite the reduction in data,
some quite open stands were still included (Table 2), so that the
developed model would be useful for a wide variety of stand
conditions. A total of 26117 pairs of h-d measurements, taken from
417 plots from the second SNFI and from 808 plots from the third
SNFI were finally used to fit the models. Summary statistics of the

Fitting dataset (26117 trees in 1225 plots)

Validation dataset (475 trees in 88 plots)

Variable Mean Min. Max. Std. dev. Mean Min. Max. Std. dev.
dj (cm) 144 7.5 85.9 6.8 19.6 5.0 80.5 124

hij (m) 16.7 3.0 51.0 5.9 19.8 5.0 46.6 8.3

N; (stemsha™") 895 41 2744 504

G; (m*ha™") 17.8 1.8 85.7 11.5

dg; (cm) 16.5 8.3 51.6 5.6

ddom; (cm) 24.6 8.7 58.3 8.5 24.8 6.6 62.6 99

hj (m) 17.0 5.9 43.2 4.6

hdom; (m) 219 8.0 43.2 6.8 224 6.4 38.8 8.0

dyi: diameter at breast height (1.3 m above ground level); hy;: total tree height; N;: number of trees per hectare; G;: stand basal area; dg;: quadratic mean diameter; ddom;:

dominant diameter; h;: mean height; and hdom;: dominant height.



F. Crecente-Campo et al./Forest Ecology and Management 259 (2010) 943-952 945

selected plots are shown in Table 2. From these plots, 21% were
visually classified by the SNFI field staff as even-aged, 73% as
uneven-aged, and the remaining plots were not classified. In
addition, 27% of the plots were classified as seeded or planted, 8%
as coppice, 59% as a composed coppice, and the remaining plots
were not classified.

An independent dataset was used for validation purposes. This
consisted of data from an inventory carried out in Galicia in 2008
by CELPA (Portuguese Pulp and Paper Industry Association). Plots
ranged in size from 253 to 500 m2. Diameter at breast height was
measured in all trees larger than 5 cm and total tree height was
measured in dominant trees as well as in one representative tree
per diameter class of 5 cm in each plot. The h—d pairs plus the area
of the plots comprised the input data. The data used for validation
corresponded to representative trees in each diameter class (475
trees in 88 plots; 41% installed in uneven-aged and 59% in even-
aged pure Tasmanian blue gum stands). Summary statistics of this
dataset are shown in Table 2.

2.2. Methods

2.2.1. Expansion factors and stand variables

The special inventory design of the SNFI, in which each plot is
composed of four circular sub-plots with the same centre and
different radii and minimum diameter threshold, determines that
each tree i in each plot j has an unequal selection probability (p;)
(Table 1). Although this unequal selection probability scheme was
mainly chosen for cost and administrative reasons, the hierarchical
population structure underlying such schemes is of interest from a
modelling point of view. It is usually argued that when the sample
selection probabilities are related to the response variable even
after conditioning on covariates of interests, the conventional
estimators of the model parameters may be (asymptotically)
biased (Kish, 1992; Pfeffermann et al., 1998). In such cases,
weighted regression analysis with the weighting factor equal to
the inverse of the selection probability (w;; =1/p;;) leads to
unbiased estimations (Kish, 1992; Pfeffermann et al., 1998). In this
study, if the selection probability is not taken into account during
the fitting process, a biased estimation of the real population h-d
relationship towards larger diameter trees is obtained.

The basic idea of weighting for unequal selection probabilities is
that if each observation is weighted with the inverse of the
selection probability, we obtain the same results as if we have
measured all the trees in a specific area. This can be easily seen by
assuming that our “population” consists of all the trees in a hectare
(calculated by replicating each single tree as many times as
indicated by its expansion factor Fexpy;, i.e., the quotient between a
hectare and the area of the sub-plot in which a tree is included;
Table 1). Linear or nonlinear regression can then be applied to this
expanded data. By applying the same regression model to the SNFI
data-type, and using weighted regression, with Fexp; as the
weighting factor, the same parameter estimates are obtained. The
same results are obtained when all the weighting factors are
multiplied by a constant, so that they can be calculated on the basis
of any per unit area, all providing unbiased estimates of the real
population h-d relationship parameters. The problem here is to
choose the correct weighting factor, because the “real” population
is unknown and comparison with the “real” value cannot be done.

It should be noted that when the data used to fit the models is
“artificially” modified (by weighing), the approximate standard
errors of the coefficients will also be affected. The general
expression for correct calculation for the standard errors is:

Nweight - D (1 )

Approx Std Errorue = Approx Std Erroryeighe x
Ntrue - p

where Nwwght is the number of observations used to fit the models,
Nirge = 317" wy;, and p is the number of model parameters.

With the available information, the most logical methodology
appears to be to rescale the weighting factors (RFexp;;) so that the
sum of the weights is equal to the number of observations used to
fit the N models (i.e.,  RFexpjj=Fexpj x Nweight/Ntrue;  here
Nirue = Zizvf‘g‘“ Fexp;;), which means that the same number of
observations are used to calculate the approximate standard errors
as in model fitting. The RFexp; weighting factors were used in this
study, thus directly providing the approximate standard errors for
the coefficients in the model fitting. However, the per hectare Fexp;;
is also necessary, because it is used to calculate other variables that
are usually expressed on a per hectare basis:

z:nj-

N;= ZFepr (2)
i1
=
G; :ZZd?erxp,-j (3)
P
4G,
dg; =100, /75 (4)

) . Fexp;;
ddom, — Z=1_S0exXPy; (5)
i=n; h
h= Zi:} ierXpij
! Z:-jj Fexp;;

ZZT;DJ h,-erx Dij 7

100 ™
where n; is the number of trees in the jth plot, d; is the diameter at
breast height (cm, 1.3 m above ground level) of the ith tree in the
jth plot, dg; is the quadratic mean diameter of the jth plot (cm), ng;
is the necessary number of trees in the jth plot (selected in d;
descending order) for which the sum of their Fexp;; is 100, h;; is the
height (m) of the ith tree in the jth plot, and the other variables are
as previously defined.

hdom; =

2.2.2. Modelling fixed effects response

In a first step, 25 generalized h—d models selected from previous
studies (Krumland and Wensel, 1988; Tomé, 1989; Lopez Sanchez
et al., 2003; Sharma and Zhang, 2004; Castedo Dorado et al., 2006;
Sharma and Parton, 2007) were fitted to the dataset. Some
modifications of the models were also tested (i.e., changing dg; and
Ej to ddom; and hdom;, respectively). These models included the
most flexible equations for h—d relationships (i.e., the Bertalanffy-
Richards, Weibull and Schnute models). Models that require age or
site index were not used, or were modified to exclude these
variables, as the age of most plots was unknown, and thus the site
index model developed for Tasmanian blue gum in Galicia (Garcia
and Ruiz, 2003) could not be used.

For initial selection the above-mentioned models were fitted by
weighted nonlinear least squares, without considering random
parameters, with RFexp;; as the weighting factor. Different initial
values for the parameters were used to ensure that a global
minimum was achieved.

Weighting factors can be used to balance error variance, to
account for non-normality and to take into account unequal
selection probabilities. However, the residuals did not show any
pattern of non-constant variance and, therefore weighting was
only carried out to account for unequal selection probabilities and
for non-normality. Calculation of the weighting factors to account
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for non-normality involves a two-stage fitting procedure. In the
first stage the model is fitted with RFexp;; as the weighting factor.
The next step is to “weight down” the influence of data points that
produce large residuals (Myers, 1990, p. 348). This was done by
using Huber’s (1973) influence function (Myers, 1990, pp. 349-
350), and testing different values for the bounds of the function in
order to obtain a normal probability plot of the residuals with a
distribution as a straight line following the normal density
function (e.g., Soares and Tomé, 2002). Large residuals were
weighted by the bound value divided by the absolute value of the
residual (Hy).

Statistical and graphical analyses were used to compare the
performance of the models. Four statistical criteria obtained from
the residuals were examined: the root mean square error (RMSE);
the coefficient of determination (R?); the mean bias (E); and
Schwarz’s Bayesian Information Criteria (BIC; Schwarz, 1978)
under squared error loss. In order to calculate the real value of
these statistics (i.e., the value which would be obtained if all the
trees in the 25 m radius plot were measured), the weighting factor
must be included in the formulation, resulting in:

A 2

NWE[
RMSE—\FI ™" RFexpyj x (¥ — Yij)

8
Ntrge — P (8)

z:i:Nweight RFeXp,»j ( . A”)Z

RP=1- (9)
S REex py; x (Yij — Y)°

E_ S RFexpy; x (Yi; — Vi) (10)
Ntrue
BIC=N 1 Z e RFexp,] (Yij — ?ij)z
{E )
+ pIn Nere (11)

where Yy, V;; and Y = ZZT‘”E*“ RFexp;j x Yij/Nie are the mea-
sured, estimated and average values of the dependent variable,
respectively, and p is the number of model parameters.

Using these statistical criteria, and visual analysis of plots of
residuals against predicted values as helpful tools to identify lack
of fit, the best models were selected for further analysis.

2.2.3. Modelling mixed effects

Detailed information on nonlinear mixed-effects modelling for
h-d relationships are provided by Calama and Montero (2004) and
Castedo Dorado et al. (2006). General information and discussion
on nonlinear mixed models in the forestry context can be found in
Hall and Bailey (2001). Finally, the multilevel case of mixed models
has been discussed by several authors in a general context (e.g.,
Lindstrom and Bates, 1990; Longford, 1993; Goldstein, 1995).
Basically the parameter vector of the nonlinear model can be
defined as (Pinheiro and Bates, 1998):

¢j:AjA-+ijj (12)

where \ is the p x 1 vector of fixed population parameters (where
p is the number of fixed parameters in the model), b; is the g x 1
vector of random effects associated with the jth plot (where q is the
number of random parameters in the model), and A; and B; are
design matrices of size r x p and r x g (where r is the total number
of parameters in the model) for the fixed and random effects
specific to each plot, respectively. Basic assumptions for the
nonlinear mixed-model theory include the asymptotic multivari-
ate normal distribution for the random effects vector, the residual
terms vector and the observations of the response variable vector.

A special structure for the within-plot variance-covariance
matrix Ri(A, bj, p) (which is allowed to depend on both random and
fixed effects, as well as on a set of common but unknown
parameters p) can be proposed to include both correlation effects
and weighting factors (Calama and Montero, 2004). As explained
before, only weighting factors accounting for non-normality and
unequal selection probabilities were used. In this case a general
expression for the matrix is given by (Calama and Montero, 2004):

R;(A.bj, p) = 0°G)°I;G)° (13)

where (in this case) for a plot j, with nj h—-d measurements, G?’S isa
n; x n; diagonal matrix including the root square of the inverse of
the weights ([1/(RFexp; x H;)]%>) as elements, I;is a n; x n; identity
matrix, and o2 is a scaling factor for the error dispersion (Gregoire
et al., 1995).

The SAS macro NLINMIX (Litell et al., 2006) was used to fit the
models, and maximization of the marginal likelihood function was
achieved using the best linear unbiased predictor (BLUP)
approximation (Beal and Sheiner, 1982). The two-stage approach,
for selecting weights to account for non-normality, was used.

Different combinations of parameters were assumed to be
mixed (composed of a fix part, common to every plot, and a
random part, specific to each plot). The models in which
convergence was met were compared in terms of the previously
mentioned statistics and residual plots.

2.2.4. Calibrated response

An advantage of mixed-effects models is that if a subsample of k
tree heights is available, such data can be used to predict the
random effects vector b;, with the following expression (Vonesh
and Chinchilli, 1997):

b; ~ BZ;(R; + 2,0Z]) ¢ (14)

where D is a g x ¢ unstructured (in this case) variance-covariance
matrix for the among-plot variability, common to all plots and
estimated in the general fitting of the model; Rj is the k x k
variance-covariance matrix for within-plot variability; &; is the
residual vector k x 1, the components of which are given by the
difference between the observed height value for each tree
included in the subsample, and the value predicted by the model
including only fixed effects; and Z is the k x g matrix of partial
derivatives evaluated at b Once b is predicted, the value of the
vector of heights, i.e., the callbrated response vector, can be
calculated with the general expression of the parameter vector of
the nonlinear model (Eq. (12)).

If we wish to predict heights of a particular stand with no prior
h-d observations, the fixed effects typical response should be used,
considering that the best linear unbiased predictor of b; is the null
q x 1 vector, i.e., diij)\

For the best model, the calibrated response was evaluated for
different height sampling designs and sampling sizes within each
plot, by randomly selecting 123 plots (10% of the total number of
plots used to fit the models) and using the remaining plots for
estimating A and D. The alternatives selected were:

(i) Total height of 1-10 randomly selected trees per plot.

(ii) Total height of 1-10 largest trees per the plot.
(iii) Total height of 1-10 smallest trees per the plot.
(iv) Total height of 1-10 medium-size trees per plot.

(v) Total height of 3, 6 and 9 trees per plot, in the largest, smallest
_ and medium-size categories.
b; was then calculated for each of the 123 plots. The calibrated h-d
model was then applied to all the trees in each of these plots. The five
alternatives were evaluated in terms of the previously defined

statistics (RMSE, R? and), and compared with the E estimations
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obtained with ordinary nonlinear least squares (ONLS) in the individual
fit of the selected model to each of the calibration plots. For the
randomly selected trees, mean values of the statistics after 100
simulations were obtained.

2.2.5. Validation

Ordinary residuals are measures of quality of fit and do not
assess the quality of estimates for other data (Myers, 1990, p. 168).
Only validation using newly collected data will give some
indication of the precision of the model (Kozak and Kozak,
2003; Huang et al., 2003). Thus validation was carried out with the
above-mentioned independent dataset. For this purpose, the
previously estimated model was applied to the independent
dataset, and the RMSE, R? and E statistics, plus plots of residuals
and observed values versus predicted values, were calculated. As
the validation dataset consisted of fixed-area plots, the weighting
factor was the same for all trees, i.e., 1.

3. Results

The best results from the initial fitting were obtained with the
following six models:

ﬁij —13+ aohdomz-l(l —exp — (azddOTn‘;}dij))a4 (15)
X 7(12(1,‘]‘
hij = hdom;(1 + agexp(arddom;))( 1 — exp ddom; (e
< ay+ay(hdom;—1.3)
) exp(aod; a3 +ax( j )
hij = 1.3 + (hdom; — 1.3) 5 a;+a a7)
(hdom;—1.3)
exp(apddom|;' T
hij = 1.3 + (hdom;
1 —ddom; 1 1
_1,3)exp<ao< di; ) t (ddomj_TU>> (e
. _ ap + athdom;j + a;N; 1 1
fij = ddom, eXD(( 1000 ) (T]*Wm}» )
N — ij “
hi; = aghdom; (1 ~ €Xp (d;(;gllJ)) >
]

where ﬁ,-j is the predicted height (m) of the ith tree in the jth plot, ag
to a4 are the parameters to be estimated, and the other variables
are as previously defined.

Eq. (15) is a modified version of the Bertalanffy-Richards
model, which includes dominant height (hdom;) and dominant
diameter (ddom;) in the formulation. A preliminary analysis
showed that this model was superior to other proposed
modifications of the original model (e.g., Sharma and Zhang,
2004; Sharma and Parton, 2007). Eq. (16) is a modified version of
the model used by Harrison et al. (1986) in which hdom; is
replaced by ddom; in two terms. Eq. (17) is a modification of the
model used by Krumland and Wensel (1988), in which the
constants and the variables have been transformed to SI units.
Eq. (18) is a modification of the model used by Gaffrey (1988), in
which the quadratic mean diameter (dg;) was changed to ddom;.
Eq. (19) is a modification of the model used by Tomé (1989), in
which the age term was omitted. Eq. (20) is a modification of the
original model by Pienaar et al. (1990), in which the parameter
associated with the number “e” was omitted, the dg; was changed
toddom;and a new parameter was added as an exponent. All these
models showed a good fit to the dataset, and explained more than
83% of the observed variability (R?), with RMSEs less than 2.5 m, £
values below 0.1 m, and low BIC values. Residual plots indicated

Table 3
Goodness of fit statistics for the mixed effects generalized h-d models. The values in
brackets were calculated with the fixed part of the parameter estimates only.

Equation Random R? RMSE E BIC

(15) ay, a4 0.8950 1.911 —0.1009 33892
(0.8380) (2.375) (0.0890)

(16) a, 0.8847 2.003 0.0010 36326
(0.8343) (2.402) (—0.0247)

(17) ai, ay 0.8902 1.954 —0.0396 35083
(0.8418) (2.346) (0.0830)

(18) a; 0.8867 1.986 —~0.1259 35859
(0.8332) (2.409) (0.0656)

(19) ao, ay 0.8874 1.980 —0.0578 35724
(0.8386) (2.370) (—0.0289)

(20) ao, a5 0.8944 1.917 —0.1299 34047
(0.8366) (2.385) (0.0186)

no lack of fit, and the QQ plots, after correction for non-normality,
showed a linear tendency for the residuals.

The addition of random parameters that vary for each plot
clearly improved the model fits (Table 3). The explained variability
increased by 6.4%, the RMSE decreased by 18%, and the BIC
decreased by, on average, 23%. However, the E values only
decreased for Eq. (16) and increased slightly for the rest of the
equations.

Taking into account other characteristics not included in the
goodness of fit statistics and residual plots, Eq. (15) was not
selected, because although it showed the best values for the
fitting statistics R> and RMSE, the values were only slightly
better than for other models, and the model had the disadvan-
tage of including more parameters; it can be seen that it is
similar to Eq. (20), but with two more parameters. The bias was
also slightly greater than in the other models. Another slight
disadvantage of Eqs. (15), (16) and (20) is that they are not
restricted to passing through the point (ddom;, hdom;). This is
not very important from a modelling point of view, but is
important in order to make the model compatible with other
models in a simulation system (e.g., with a site index system).
With two models of similar accuracy, the model including the
latter variables is preferable, although this is not an exclusionary
condition. Finally, the disadvantage of Eq. (19) was that it
included the number of stems in the formulation, which is a
problem from a practical point of view, as it predicts an
instantaneous change in predicted height following thinning.
Also, the lower limit of the diameter measurement (i.e., 7.5 cm
in this study) has an important effect on the computed number
of stems per hectare; this limit is quite variable for the species in
the study area (usually between 5 and 10 cm) and thus it is
better to avoid this variable if possible (i.e., if there are other
optional models with similar accuracy). As regards Eqs. (17) and
(18), the former showed slightly better fitting statistic values.
Thus, Eq. (17) was selected as the generalized h-d relationship
for Tasmanian blue gum in the study area, as it showed a good
compromise between precision and accuracy for both the fixed
effects and the mixed-effects model (Table 3). The mixed-effects
model form of this equation is:

h,‘j =13 —+ (hdomj
(a1+u;j)+(az+vj)(hdom;—1.3)
exp(aod;;' "’ g /
~1.3) P(ody; ) +ey (21)

exp(aoddom;a‘ +uj)+(az+v;j)(hdom;—1 .3))

where u; and v; are random parameters, specific for plot j, e;
represents the estimation error for the ith observation in the jth
plot, and the other variables are as previously defined. Parameter
estimates for Eq. (21) are shown in Table 4.
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Table 4
Parameter estimates and approximated standard errors for the mixed effects
generalized h-d model selected for Tasmanian blue gum in Galicia (Eq. (21)).

Parameter Estimate Standard error
[« —-7.914 0.148

a, —1.444 0.022

a; 0.02259 0.00075

Jﬁ 0.1512 0.0184

03 0.0001244 0.0000261

Ouy —0.004188 0.000698

o? 2.561 0.230

The Huber’s (1973) influence function finally used was:

2/abs(residual) if residual< —2
Hjj =141 if —2 <residual <3 (22)
3/abs(residual) if residual>3

Using this function the residuals followed a normal distribution
as shown in the QQ plots before and after correction for non-
normality (Fig. 1).

The parameter estimates and goodness of fit statistics for
Eq. (21), fitted without weighting factors to account for unequal

15

10 §

-10

Unweigted residuals

-15

=201, . - : ‘ :

Normal quantiles

7.5

5.0

25

0.0

Weighted residuals

Normal quantiles

Fig. 1. QQ plots before and after correction for non-normality for Eq. (21).

Table 5

Parameter estimates, approximate standard errors and goodness of fit statistics for
the mixed effects generalized h-d model selected for Tasmanian blue gum in Galicia
(Eq. (21)), without including weights to account for unequal selection probabilities.
The values in brackets were calculated with the fixed part of the parameter
estimates only.

Parameter Estimate Standard error R? RMSE E BIC

ag —8.967 0.225 0.8875 2.398 0.1760 45731
a; —1.453 0.025 (0.8568) (2.705) (0.2517)

a, 0.02091 0.00080

o? 0.1253 0.0216

o? 0.00008950 0.00003041

Ouy —0.003182  0.0008134

o? 4.051 0.036

selection probabilities, are shown in Table 5. As can be seen, the
impact of the weighting procedure is minimal, and the parameter
estimates and approximate standard errors are of the same
magnitude. The goodness of fit statistics are also similar, with
slightly better values for the model fitted taking into account the
unequal selection probabilities.

The results of the calibrated response pattern (Fig. 2) showed
that the largest values of RMSE were obtained when applying the
fixed effects response model, without predicting random para-
meters. In contrast, individual fitting with weighted nonlinear
least squares produced the smallest value, because it is the best
possible fit of the function for each plot. The greatest reduction in
RMSE in the calibration response was obtained with data from the
smallest trees in the plot. Use of the three smallest trees in the plot
led to reduction of the RMSE by 26%, and reduction of the bias by
45% relative to the fixed effects response. When the largest trees in
the plot are used, the sample must be large (more than five trees) to
reduce the RMSE values relative to the fixed effects response.
Finally, with randomly selected trees, medium-size trees, or a
mixture of trees selected from the smallest, medium and largest
size classes, the reduction in RMSE was smaller than in the case of
selection of the smallest trees.

As regards validation, the statistics for the fixed effects response
showed good results, with a R? = 0.8835, a RMSE = 2.839 m, and a
E = 0.3462 m. For the mixed effects calibrated response in which
the tree sampled in the smallest diameter class in each plot was
used to calculate the random effects vector, the bias was greatly
reduced (—0.02896 m), with a small increase in R? (0.8911) and a
small decrease in RMSE (2.751 m). The curves also provided better
predictions when the calibrated response was used (Fig. 3),
particularly for the smallest trees.

4. Discussion

From a total of 25 h-d models tested in this study, the equations
that showed the best fit to the dataset included dominant diameter
and dominant height in their formulation. In general, the inclusion
of stand variables in a local h—-d model reduces bias and increases
precision (e.g., Soares and Tomé, 2002; Calama and Montero, 2004;
Newton and Amponsah, 2007). Stand density is the most obvious
factor affecting the h-d relationship in a stand (Zhang et al., 1997;
Zeide and Vanderschaaf, 2002): in dense stands, trees of the same
diameter are usually taller than those in less dense stands. The
inclusion of dominant diameter appeared to take into account the
level of competition within the stand (Castedo Dorado et al., 2006).
As already mentioned, Eq. (19) includes the number of stems per
hectare in its formulation, resulting in prediction of instant
changes in estimated height following thinning. Although the
remainder of the equations also suffer variation in the estimates if
hdom; or ddom; change, these variables usually remain constant
after thinning (except for thinning from above), and are thus more
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Fig. 2. Root Mean Squared Error (RMSE, left side) and bias (E, right side) for the fixed effects model (fixed), the individual fit for each plot with ONLS (ONLS), and the calibrated
model with different height sampling designs and sampling sizes within each plot, for calculating the random parameters (large: largest trees; medium: medium-size trees,
small: smallest trees; all: a mixture of large, medium and small trees; random: randomly selected trees).
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Fig. 3. Appearance of the h-d curves superimposed on the validation dataset for the fixed effects response (continuous line) and the calibrated response (dashed line) by use of
the tree sampled in the smallest diameter class in each plot to calculate the random effects vector, for three particular plots.

realistic. Tasmanian blue gum stands suffer from a lack of
management in the study area, and thinning is not usually carried
out. However, the recent increase in the area forested with this
species, and the stabilization of timber demand for purposes such
as pulp and fibre boards, make it necessary to search for new
silvicultural schemes with high quality wood production in mind.
In such schemes, thinning is one of the most important treatments
to be applied. The possibilities of such production are realistic in
the most productive sites in the study area (Nutto and Touza
Vazquez, 2004).

Dominant height has also previously been included in similar
models by many authors (e.g., Eerikdinen, 2003; Castedo Dorado
et al., 2005; Adame et al., 2008). In the present study, models that
included dominant height provided more accurate results than
those including mean height. This may be advantageous, since
fewer trees need to be measured to estimate dominant height than
to estimate mean height (unless the mean height is obtained as the
height of the average diameter tree, which is, on the other hand, a
less accurate way of obtaining the mean height), and this great
sampling effort may limit future use of the model (Lopez Sanchez
et al., 2003).

Eq. (21) is based on the model proposed by Krumland and
Wensel (1988), which has been used successfully in other studies
(e.g., Hanus et al., 1999), although for even-aged stands. As the age
of most of the stands was unknown in the present study, and the
intention was to develop a model applicable to a wide variety of
situations, dominant diameter and dominant height were calcu-
lated in the same way in all stands (the average diameter and
height of the largest diameter Tasmanian blue gum trees,
respectively). As can be seen from the results and goodness of
fit statistics, this makes sense for the dataset used, and makes the
range of applicability of the model wide enough for the Galician

Tasmanian blue gum population. An attempt was made to expand
model parameters, with dummy variables, to account for
differences between even- and uneven-aged stands, and also
between different stand origins (i.e., seeded or planted, coppice or
composed coppice). No differences were found, perhaps due to
the high variability in the stand conditions used in the study,
or to errors in the visual classification of the plots by the SNFI field
staff.

The best results for the calibration were obtained by selecting
the smallest trees in the plot. As noted by Castedo Dorado et al.
(2006), who obtained similar results, this may be attributed to the
fact that the dominant height of the plot was already considered as
a fixed effect in the basic h-d model and, therefore, heights
corresponding to the largest trees did not provide much additional
information for calibrations. In addition, the fact that the model is
restricted to pass through the point (ddom;, hdom;) implies that it
cannot change much in this part of the h-d relationship. In
contrast, although measurement of the smallest trees per plot
provides a biased sample, the accuracy was greater than that of the
fixed effects model, and even in comparison with the calibrated
model with the randomly selected trees. The greater the number of
measurements included in the subsample, the greater the decrease
in RMSE (Fig. 2) and increase in R%. However, a large sample is not
often justifiable because of the increased cost of sampling (Castedo
Dorado et al.,, 2006). The model bias did not follow the same
pattern. As the tested samples are biased, they tend to increase bias
in some way. The only method that maintains bias at a low level is
the random selection (Fig. 2). However, this procedure makes it
necessary to repeat the selections, in order to avoid large errors if
an inadequate tree is selected, and at least eight trees should be
randomly selected for the same level of accuracy as achieved by
selection of the two smallest trees in the plot. It should also be
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mentioned that as the results obtained for the random selection
are the average of 100 simulations, they give a “better than real”
evaluation, and the probabilities of having a result worse than this
are high if only one repetition is carried out. Selection of the two or
three smallest trees in the plot kept bias at a low level, and as
already mentioned, produced the greatest reduction in RMSE
relative to other selection methods.

Yuancai and Parresol (2001) stated that the three properties
that should be considered for h-d relationships were: (1)
monotonic increment, (2) functional inflection point, and (3)
asymptotic value. However, a sigmoid or S-shaped tendency
(which included these three properties) was not detected in this
study. In our opinion, a S-shaped tendency, as observed for
example in a dominant height growth model, is not necessary in a
h-d relationship, as it only expresses the relationship between
two variables at a given point in time, and not any trends in
growth.

Comparison of the fitting statistics for weighted regression
and ordinary regression would be interesting but was not
possible in this study, because the “real” population was not
available for comparisons. Parameter estimates, approximate
standard errors and goodness of fit statistics do not differ very
much for the given dataset (note that this is not the “real”
population) using the weighting procedure to account for
unequal selection probabilities and ordinary regression. Howev-
er, as explained in the Section 2.2, the purpose of the weighting
procedure is to obtain unbiased parameter estimates, and to
develop a model that accurately reflects the true h-d relationship
of the population, and therefore it is necessary to use weighting
regression and to include the weighting factors in the fitting
statistics.

When the developed model is used, the weighting factors
should only be taken into account when calculating random
parameters (in the calibration) in inventory designs with unequal
selection probabilities, because otherwise all the weighting
factors are equal to 1 (i.e., all the trees have a selection probability
of 1). In the case of using a unequal selection probability
inventory design, the weighting factors that should be included
in the calibration process are those rescaled to the same “area”
used in the model fitting, which in this study was 242.87 m?
((10000%  Nirue/Nueighe = 10000 x 26117)/ 322%" Fexp;;).  An
example of use of the calibrated model is shown in Appendix A.
Use of large weighting factors in the trees selected for
calibration results in better calibrated height prediction for these
particular trees, because the large weighting factor means that
these trees are “more important” than others in the ‘“real”
population.

5. Conclusions

Several generalized h-d models were considered in this study
for developing a h-d model for E. globulus in Galicia (NW Spain).
Those equations that included dominant height and dominant
diameter in their formulation provided the best results. Models
that include dominant height imply a low sampling effort, because
they only require measurement of diameters and a small sample of
heights (the dominant trees) for their practical application.

A mixed-model approach and weighting regression were used
to estimate both fixed and random effect parameters for the h-d
functions. Weighted regression enabled estimation of unbiased
parameters for the h-d relationship. The inclusion of random
effects specific to each plot allowed dealing with the lack of
independence among observations derived from the special
hierarchical structure of the data (trees within plots). The results
showed that the mixed-effects model provided better model fitting
and more precise estimations than the corresponding basic
generalized model. Different alternative height sampling designs
and sampling sizes for calibrating the generalized h-d model for a
particular plot of interest were also applied. For the experimental
data analyzed, calibration can be used to obtain h-d relationships
tailored to individual plots by measuring only the height of the
three smallest trees per plot, although the model also requires
dominant height for implementation. The calibrated h-d model
allows accurate results to be obtained with a very small sampling
effort, making this approach highly effective and useful.

Validation showed that the model can be applied with good
results to other data, and also that the calibration procedure can be
applied, even with the selection of one tree per plot, thus
improving the predictions obtained with the h-d model.

Eq. (21), with the parameter estimates shown in Table 4, is
proposed as the generalized h-d relationship for E. globulus in
Galicia.
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Appendix A

$LET n=2; /*n=number of trees used for calibration*/

DATA Example ;

INPUT d h ddom hdom weight;

/*weight = 242.87/ (area of the subplot), in the case of unequal
selection probabilities; weight=1, in other case*/

hhat=1.3+ (hdom-1.3) * (exp (-=7.914*d** (-1.444+0.02259* (hdom-1.3))) /exp (-
7.914*ddom** (-1.444+0.02259* (hdom-1.3)))) ;

CARDS ;

z b Al Ly 8, 0202
.l Akl Ll gL 002
o RS E 0192
18 4 188 18R 0: 73
s dbEl Al (o), 7Sl
(0 T

e 18 18

r

RUN ;

DATA Calibration ;
SET Example ;
RES = h - hhat ;
b0 = -7.914*d**(-1.444+0.02259* (hdom-1.3)) ;/*auxiliary variable*/
bl = -7.914*ddom** (-1.444+0.02259* (hdom-1.3)) ;/*auxiliary variable*/
Zal= (hdom-1.3)*exp (b0)* (b0*log(d)-bl*log(ddom)) /exp(bl) ;
Za2= (hdom-1.3)**2*%exp (b0)* (b0*log(d)-bl*log(ddom) ) /exp(bl) ;
w=(1l/weight)**0.5;
WHERE h IS NOT NULL ;

RUN ;
PROC IML ;
USE Calibration ;
READ ALL VAR {Zal Za2} INTO Z ;
READ ALL VAR {RES} INTO RES ;
D= { 0.1512 -0.004188, -0.004188 0.0001244 } ;
READ ALL VAR {w} into W;
G=W#I (&n) ;
R = 2.561*G*I (&n)*G ;
b = D*Z *INV(Z*D*Z +R) *RES ;
PRINT b ;
variable = {u v} ;
create Random parameters var{variable b} ;
append var{variable b} ;
QUIT ;

PROC TRANSPOSE DATA=Random parameters OUT=u v ;
ID variable ; N n
VAR b ;

RUN ;

PROC SQL ;
CREATE TABLE Final AS SELECT d, h, ddom, hdom, hhat,
1.3+ (hdom-1.3) * (exp(-7.914*d** ((-1.444+u)+(0.02259+v) * (hdom-

1.3))) /exp(-7.914*ddom** ( (-1.444+u)+(0.02259+v) * (hdom-1.3)))) as

hhat calibrated
FROM Example, u v ;
QUIT ;
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