
An Indexable Time Series Dimensionality Reduction Method
for Maximum Deviation Reduction and Similarity Search

Ruidong Xue

Aston University

Birmingham, United Kingdom

xuer@aston.ac.uk

Weiren Yu
∗

University of Warwick

Coventry, United Kingdom

weiren.yu@warwick.ac.uk

Hongxia Wang

Aston University

Birmingham, United Kingdom

wangh25@aston.ac.uk

ABSTRACT
Similarity search over time series is essential in many applica-

tions. However, it may cause “the curse of dimensionality” due

to the high dimensionality of time series. Various dimensionality

reduction methods have been developed. Some of them sacrifice

maximum deviation to get faster dimensionality reduction. The

Adaptive Piecewise Linear Approximation (𝐴𝑃𝐿𝐴) method uses

guaranteed error bounds for the best maximum deviation, but

it takes a long time for dimensionality reduction. We propose

an adaptive-length dimensionality reduction method, called Self

Adaptive Piecewise Linear Approximation (𝑆𝐴𝑃𝐿𝐴). It consists

of 1) initialization; 2) split & merge iteration; and 3) segment end-

point movement iteration. Increment Area, Reconstruction Area,

and several equations are applied to prune redundant computa-

tions. Experiments show that our method outperforms 𝐴𝑃𝐿𝐴 by

𝑛 times with a minor maximum deviation loss, where 𝑛 is the

length of the time series. We also propose a lower bound dis-

tance measure between time series to guarantee lower bounding

lemma and tightness for adaptive-length dimensionality reduc-

tion methods. Moreover, we propose a Distance-Based Covering

with Convex Hull (DBCH) structure to improve 𝐴𝑃𝐶𝐴 𝑀𝐵𝑅

for adaptive-length dimensionality reduction methods. When

mapping time series into a DBCH-tree, we split nodes and pick

branches using the lower bounding distance. Our experimental

evaluations on 117 datasets from the UCR2018 Archive demon-

strate the efficiency and effectiveness of the proposed approaches.

1 INTRODUCTION
With the development of data collection and storage techniques,

large volumes of time series in scientific domains and business

processes require data mining methods to find meaningful infor-

mation. Similarity search over time series is a widely studied and

essential task for high-level data mining tasks such as classifica-

tion, prediction, clustering, anomaly detection, motif discovery,

and semantic segmentation. Time series can be regarded as a

high-dimensional data type. For example, 𝑘-Nearest Neighbor

(𝑘-NN) is popularly used for classification. However, similarity

search is often expensive in terms of time and space. Thus, di-

mensionality reduction methods and pruning methods have been

proposed to reduce the computation cost. Due to the ubiquitous

nature of time series data, reducing dimensionality while main-

taining important characteristics is a big challenge. A Euclidean

distance [10] is often used for measuring similarity between time

series. Due to high dimensionality, similarity queries over the

original time series may cause a "dimensionality curse" [3] with

increasing time series length. Representation coefficients from

∗
The corresponding author is Weiren Yu.

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

dimensionality reduction methods will degrade the distance com-

putation as some information is lost after dimensionality reduc-

tion. We need to reduce the maximum deviation for the tighter

distances between the original and reconstructed time series by

representation coefficients. Max deviation is used to measure

the reduction performance of dimensionality reduction methods

(e.g., [2, 5, 9, 17, 19]). The lower the maximum deviation, the

more pruning opportunities there are in 𝑘-NN. With memory

becoming cheaper, it is affordable to configure a computer with

a large main memory. An efficient main memory index should

minimise the distance computation. A general framework called

the Generic Multimedia Indexing Method (𝐺𝐸𝑀𝐼𝑁𝐼) [10] con-

verts time series into a lower dimensional representation, and

it uses a lower bound of the Euclidean distance to guarantee

no-false-dismissals while filtering through the index. In a branch-

and-bound [6] search (e.g. 𝑘-NN), the R-tree [11] is commonly

used in multi-dimensional indexing.

Many dimensionality reduction techniques have been pro-

posed. The equal-length segmentation methods include Piece-

wise Linear Approximation (𝑃𝐿𝐴) [5], Piecewise Aggregate Ap-

proximation (𝑃𝐴𝐴) [12, 23], Chebyshev Polynomials (𝐶𝐻𝐸𝐵𝑌)

[2], and Piecewise Aggregate Approximation Lagrangian Mul-

tipliers (𝑃𝐴𝐴𝐿𝑀) [21]. The adaptive-length segmentation meth-

ods include Adaptive Piecewise Linear Approximation (𝐴𝑃𝐿𝐴)

[17], and Adaptive Piecewise Constant Approximation (𝐴𝑃𝐶𝐴)

[4, 13] etc. The Symbolic Aggregate Approximation (𝑆𝐴𝑋) [15]

is the symbolic representation for time series that allows for di-

mensionality reduction and distance measures that lower-bound

Euclidean distance measures on the original time series.

1.1 Motivation
Adaptive-length dimensionality reduction aims at finding the

approximate segments of the original time series but is rather

time-consuming, especially for regularly changed time series,

such as 𝐸𝑂𝐺 datasets. Among them, 𝐴𝑃𝐿𝐴 [17] combines the

virtues of 𝐴𝑃𝐶𝐴 [13] and 𝑃𝐿𝐴 [5] to reduce maximum deviation.

Because 𝐴𝑃𝐿𝐴 has guaranteed error bounds in the reduction

process (by scanning each point to get maximum deviation),

𝐴𝑃𝐿𝐴 has 𝑂 (𝑁𝑛2) time complexity, where 𝑛 is the original time

series length, and𝑁 is the number of segments after the reduction

process. Our experiments show that the 𝐴𝑃𝐿𝐴 is much slower

than other dimensionality reduction methods. 𝐴𝑃𝐿𝐴 minimises

only one segment’s maximum deviation, rather than the sum of

all maximum deviations. For example, two adjacent segments

are denoted as 𝑐𝑖 and 𝑐𝑖+1. The left segment 𝑐𝑖 already has the

minimum max deviation. The sum of the maximum deviations

would be reduced if the right endpoint of 𝑐𝑖 was moved.

We propose an adaptive-length dimensionality reductionmethod

called Self Adaptive Piecewise-Linear Approximation (𝑆𝐴𝑃𝐿𝐴).

Fig. 1 pictorially compares the sum of the maximum deviations

of 𝑆𝐴𝑃𝐿𝐴, 𝐴𝑃𝐿𝐴, 𝐴𝑃𝐶𝐴, and 𝑃𝐿𝐴. The length of the original

time series is 20. For a fair comparison, these methods have the

Series ISSN: 2367-2005 183 10.48786/edbt.2022.08

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.08

0 5 10 150
5

10
15
20

(a) Reconstruction of 𝑆𝐴𝑃𝐿𝐴.
Max Deviation = 9.27273. 𝑁 = 4

0 5 10 150
5

10
15
20

(b) Reconstruction of 𝐴𝑃𝐿𝐴.
Max Deviation = 17.4667. 𝑁 = 4

0 5 10 150
5

10
15
20

(c) Reconstruction of 𝐴𝑃𝐶𝐴.
Max Deviation = 18.4167. 𝑁 = 6

0 5 10 150
5

10
15
20

(d) Reconstruction of 𝑃𝐿𝐴. Max
Deviation = 19.3999. 𝑁 = 6

Figure 1: A visual comparison of time series dimensionality
reduction methods. ⃝ is original time series. × is recon-
structed time series from representation coefficients. For a
fair comparison, they have the same representation coef-
ficients number (denoted as𝑀) but not the same segment
number (denoted as 𝑁).

same number of representation coefficients𝑀 = 12 but not the

same number of segments (denoted as 𝑁). 𝑆𝐴𝑃𝐿𝐴 and 𝐴𝑃𝐿𝐴 use

fewer segments (𝑁 = 4) to get better the sum of the maximum

deviations than 𝐴𝑃𝐶𝐴 and 𝑃𝐿𝐴.

𝐴𝑃𝐶𝐴 proposes two lower bounding distance measures that

make adaptive-length dimensionality reduction methods index-

able. One keeps a lower bounding lemma, called 𝐷𝑖𝑠𝑡𝐿𝐵 , and

another has a tight Euclidean distance approximation but no

lower bound, called 𝐷𝑖𝑠𝑡𝐴𝐸 . We propose 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 , which has a

guaranteed lower bounding lemma and tightness. 𝐴𝑃𝐶𝐴 also

proposes a𝑀𝐵𝑅 for adaptive-length representation coefficients.

R-tree [11] splits node by finding a minimum area waste and

picks a branch with a minimum area increase. However, homoge-

neous time series datasets are usually from the same data sources

and we find that 𝐴𝑃𝐶𝐴 𝑀𝐵𝑅 [13] of homogeneous time series

could cause overlap problems. We used the proposed 𝐷𝑖𝑠𝑡𝑃𝐴𝑅
in node splitting and branch picking algorithms and create an

updated R-tree for efficient queries of time series data.

1.2 Contributions
Our contributions in this paper are summiarised below:

• We propose an adaptive-length dimensionality reduction

method (𝑆𝐴𝑃𝐿𝐴) in Section 4. 𝑆𝐴𝑃𝐿𝐴 prunes redundant

computation for dimensionality reduction time reduction

(𝑂 (𝑛(𝑁 + log𝑛))), which is much faster than 𝐴𝑃𝐿𝐴 [17]

(𝑂 (𝑁𝑛2)) about 𝑛 times. Furthermore, our experiment

shows that 𝑆𝐴𝑃𝐿𝐴 sacrifices little max deviation.

• We propose an adaptive-length lower bounding distance

measure 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 in Section 5.1. It has a guaranteed lower

bounding lemma for tightness.

• We implement the distance based node-splitting and branch

picking algorithms in DBCH structure. This improvement

solves the overlap problem in time series 𝐴𝑃𝐶𝐴 𝑀𝐵𝑅 for

adaptive-length representation coefficients.

• We evaluate the max deviation, pruning power, accuracy,

dimensionality reduction time and 𝑘-NN time of 𝑆𝐴𝑃𝐿𝐴

together with 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 and the DBCH-tree , as compared

to other classic dimensionality reduction methods, lower

bonding distance measures and R-tree. We evaluate all

time series datasets (117) in [8] (128) with equal-length

time series.

2 RELATEDWORK
This section provides a quick review of seven related dimen-

sionality reduction methods, 𝑃𝐿𝐴, 𝐴𝑃𝐿𝐴, 𝐴𝑃𝐶𝐴, 𝑃𝐴𝐴, 𝐶𝐻𝐸𝐵𝑌 ,

𝑃𝐴𝐴𝐿𝑀 , and 𝑆𝐴𝑋 . Let 𝑀 denote the representation coefficient

number. Table 1 shows the summaries of the seven dimensional-

ity reduction methods and our proposed 𝑆𝐴𝑃𝐿𝐴. 𝑆𝐴𝑃𝐿𝐴 uses the

same representation coefficients as 𝐴𝑃𝐿𝐴, but the time complex-

ity is almost 1/𝑛 of 𝐴𝑃𝐿𝐴. 𝑆𝐴𝑃𝐿𝐴 only needs the𝑀/3 segment

number of 𝑃𝐴𝐴, 𝑃𝐴𝐴𝐿𝑀 , 𝐶𝐻𝐸𝐵𝑌 , 𝑆𝐴𝑋 , and𝑀/2 segment num-

ber of 𝐴𝑃𝐶𝐴 and 𝑃𝐿𝐴.

𝑃𝐿𝐴 [5] uses 𝑐𝑡 = 𝑎 × 𝑡 + 𝑏, 𝑡 ∈ [0, 𝑙) of the equal-length

segment to reconstruct time series 𝐶 = 𝑐0, . . . , 𝑐𝑛−1. Let 𝑙 denote

the segment length. Let 𝑐𝑡 denote the point value of position 𝑡

in time series 𝐶 . 𝑎 is a slope, and 𝑏 is a y-intercept in a linear

function [14, 18]. Their computation is shown in Eq. (1). 𝑃𝐿𝐴 has

𝑂 (𝑛) time complexity. However, an equal-length segment could

not help improve the tightness of an individual segment.

𝑎 =
12

∑𝑙−1

𝑡=0
(𝑡 − (𝑛 − 1)/2)𝑐𝑡

𝑙 (𝑙 − 1) (𝑙 + 1) 𝑏 =
2

∑𝑙−1

𝑡=0
(2𝑙 − 1 − 3𝑡)𝑐𝑡
𝑙 (𝑙 + 1)

(1)

𝐴𝑃𝐿𝐴 [17] has time complexity 𝑂 (𝑁𝑛2). It builds a max devi-

ation matrix 𝜛 [𝑛, 𝑁], and 𝜛 [𝑚, 𝑡] is a max deviation of the best

𝑡-segment representation to points 0, ...,𝑚. Once the best (𝑡-1)-

segment representation is known for each prefix of the points,

the best 𝑡-segment representation for points 0, ...,𝑚 can be com-

puted through 𝜛 [𝑚, 𝑡] = min
𝑚−1

𝛼=𝑡 (𝜛 [𝛼, 𝑡 − 1] + 𝜀𝑡). 𝐴𝑃𝐿𝐴 has

guaranteed error bounds in the dimensionality reduction process.

However, 𝐴𝑃𝐿𝐴 has 𝑂 (𝑁𝑛2) time complexity.

𝐴𝑃𝐶𝐴 [13] uses the average value of the adaptive-length to

approximate the Haar wavelet transformation. 𝐴𝑃𝐶𝐴 has a time

complexity of 𝑂 (𝑛 log𝑛), whereas 𝐴𝑃𝐶𝐴 focuses on improving

the tightness of individual segments with adaptive length and

constant value.

𝑃𝐴𝐴 [12] uses the average value of equal-length segment to

approximate 𝐶 . 𝑃𝐴𝐴 has 𝑂 (𝑛) time complexity, and 𝑃𝐴𝐴 is a

simple technique. However, its segment number is three times

that of 𝑆𝐴𝑃𝐿𝐴, as Table 1 shows.

𝑃𝐴𝐴𝐿𝑀 [21] applies 𝑃𝐴𝐴 and Lagrangian Multipliers on 𝐶 .

𝑃𝐴𝐴𝐿𝑀 has 𝑂 (𝑛) time complexity. 𝑃𝐴𝐴𝐿𝑀 represents continu-

ous data as a series of patterns, not focusing on max deviation

reduction. Thus we will evaluate it in 𝑘-NN search for showing

the importance of max deviation.

𝐶𝐻𝐸𝐵𝑌 [2] uses the Chebyshev polynomial coefficient 𝑐ℎ𝑒𝑖 to

approximate𝐶 . The authors declared that Chebyshev coefficients

should be smaller than 25. Our evaluation in Section 6 shows

that 𝐶𝐻𝐸𝐵𝑌 falls into the "dimensionality curse" when 𝑁 > 25.

𝐶𝐻𝐸𝐵𝑌 has 𝑂 (𝑁𝑛) time complexity.

𝑆𝐴𝑋 [20] first transforms 𝐶 into 𝑃𝐴𝐴 and then symbolizes

𝑃𝐴𝐴 into a discrete string. 𝑆𝐴𝑋 has 𝑂 (𝑛) time complexity. 𝑆𝐴𝑋

is a symbolic version of 𝑃𝐴𝐴. Thus, the reconstruction of 𝑆𝐴𝑋

has lower reconstruction accuracy than 𝑃𝐴𝐴 (symbol→ number).

We do not compare 𝑆𝐴𝑋 ’s max deviation in this paper.

One high compression ratio method [9] does not consider final

dimensionality reduction with user-defined segment numbers

𝑁 . It needs a user-defined max deviation and a maximum poly-

nomial degree. We do not compare this approach because it has

an undetermined segment number after reduction and our paper

does not include a user-defined max deviation.

184

Table 1: Dimensionality Reduction Methods Comparison

Name Time Coeffici. Seg. Num Seg. Size Dim.

∗𝑆𝐴𝑃𝐿𝐴 𝑂 (𝑛 (𝑁+
log𝑛)) 𝑎𝑖 , 𝑏𝑖 , 𝑟𝑖 𝑁 = 𝑀/3 Adaptive x-axis

𝐴𝑃𝐿𝐴 𝑂 (𝑁𝑛2) 𝑎𝑖 , 𝑏𝑖 , 𝑟𝑖 𝑁 = 𝑀/3 Adaptive x-axis

𝐴𝑃𝐶𝐴 𝑂 (𝑛 log𝑛) 𝑣𝑖 , 𝑟𝑖 𝑁 = 𝑀/2 Adaptive x-axis

𝑃𝐿𝐴 𝑂 (𝑛) 𝑎𝑖 , 𝑏𝑖 𝑁 = 𝑀/2 Equal x-axis

𝑃𝐴𝐴 𝑂 (𝑛) 𝑣𝑖 𝑁 = 𝑀 Equal x-axis

𝑃𝐴𝐴𝐿𝑀 𝑂 (𝑛) 𝑣𝑖 𝑁 = 𝑀 Equal x-axis

𝐶𝐻𝐸𝐵𝑌 𝑂 (𝑁𝑛) 𝑐ℎ𝑒𝑖 𝑁 = 𝑀 Equal x-axis

𝑆𝐴𝑋 𝑂 (𝑛) alphabet 𝑁 = 𝑀 Equal y-axis

Table 2: Summary of Notations

No. Meanings No. Meanings
𝑛 Time series length 𝑁 Number of Segments

𝐶 Original time series 𝐶 Representation of 𝐶

𝑎𝑖 , 𝑏𝑖 Slope, Y-intercept 𝑟𝑖 Right endpoint of 𝑐𝑖

𝜀 (𝐶,𝐶) ∑𝑛−1

𝑡=0
|𝑐𝑡 − 𝑐𝑡 | 𝜖𝑖 Max deviation of 𝑐𝑖

𝛽𝑖 Segment upper bound 𝑀
Baseline coefficient

number

𝛽 Sum upper bound 𝐶
Reconstructed time

series from 𝐶

𝑙𝑖 Segment length 𝜔 Map ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩

There are many lower bounding measures for equal-length

methods, such as 𝐷𝑖𝑠𝑡𝑃𝐿𝐴 [5], 𝐷𝑖𝑠𝑡𝑆𝐴𝑋 [16] and 𝐷𝑖𝑠𝑡𝐶𝐻𝐸𝐵𝑌 [2].

However, lower bounding measure for adaptive-length methods

is difficult. 𝐴𝑃𝐶𝐴 [4] proposes 𝐷𝑖𝑠𝑡𝐴𝐸 for a tight approximation

but not always lower bound the Euclidean distance. 𝐴𝑃𝐶𝐴 also

proposes 𝐷𝑖𝑠𝑡𝐿𝐵 for a less tight approximation but can guarantee

lower bound the Euclidean distance.

When original time series are mapped into a multidimensional

index structure, the efficiency of indexing depends on the preci-

sion of the representation in the reduced dimensionality space.

DCRC-tree [22] provides a structure to replace𝑀𝐵𝑅 for covering

the original time series with no dimensionality reduction.

3 PRELIMINARIES
We introduce the definitions of representation (𝐶), reconstructed

time series (𝐶), max deviation (𝜖) and segment upper bound (𝛽).

Table 2 lists notations used throughout this paper.

Definition 3.1. Time Series (𝐶). Time series is a sequence of
values 𝑐𝑖 , defined as 𝐶 = {𝑐0, 𝑐1, . . . , 𝑐𝑛−1}, where 𝑛 is time series
length. Like grey circles ⃝ in Fig. 1.

Definition 3.2. Representation (𝐶). 𝐶 is a 𝑁 -segment se-
quence as a representation of 𝐶 . 𝐶 = {𝑐0, 𝑐1, . . . , 𝑐𝑁−1}(𝑁 ≤ 𝑛).
For an adaptive-length linear curve, 𝑐𝑖 := ⟨𝑎𝑖 , 𝑏𝑖 , 𝑟𝑖 ⟩ represents the
𝑖𝑡ℎ segment.

Definition 3.3. Reconstructed Time Series (𝐶). 𝐶 is recon-
structed from representation coefficients, defined as 𝐶 = {𝑐0, 𝑐1,
. . . , 𝑐𝑛−1} = {𝐶0, 𝐶1, . . . ,𝐶𝑁−1}. One reconstructed segment 𝐶𝑖 =
{𝑐𝑟𝑖−1+1, . . . , 𝑐𝑟𝑖 }. Like blue crosses × in Fig. 1.

Definition 3.4. Max Deviation (𝜖). Max deviation [2] is the
maximum absolute difference between original time series𝐶 and re-
constructed time series𝐶 from representation𝐶 . For the segment rep-
resentation 𝑐𝑖 , its segment max deviation is 𝜖𝑖 := max

𝑟𝑖
𝑡=𝑟𝑖−1+1 |𝑐𝑡 −

𝑐𝑡 |.

Figure 2: Framework of 𝑆𝐴𝑃𝐿𝐴: 1) Initializing 𝐶 into 𝐶. 2)
Split & merge iteration reduces 𝛽 of𝐶. 3) Segment endpoint
movement iteration reduces 𝛽 of 𝐶.

Definition 3.5. Segment Upper Bound (𝛽𝑖). 𝛽𝑖 is proposed
to bound segment max deviation at different stages. 𝛽 is the sum
upper bound that 𝛽 =

∑𝑁−1

𝑖=0
𝛽𝑖 . There are four stages to compute 𝛽𝑖

in this paper. 1) Computing 𝛽𝑖 when 𝑆𝐴𝑃𝐿𝐴 initializes𝐶 into𝐶 . 2)
Computing 𝛽𝑖 from amerge operation. 3) Computing 𝛽𝑖 from a split
operation. 4) Computing 𝛽𝑖 from segment endpoints movements.

4 SELF ADAPTIVE PIECEWISE LINEAR
APPROXIMATION (𝑆𝐴𝑃𝐿𝐴)

𝑆𝐴𝑃𝐿𝐴 focuses on finding segment endpoints to reduce the sum

upper bound of segment max deviation. 𝑆𝐴𝑃𝐿𝐴 consists of initial-

ization, split & merge iteration, and segment endpoint movement

iteration.

Fig. 2 shows the framework of 𝑆𝐴𝑃𝐿𝐴. Users specify a seg-

ment number of 𝑁 during the initialization stage, and 𝑆𝐴𝑃𝐿𝐴

converts time series 𝐶 to 𝐶 . In the second stage, split & merge

iteration reduces the sum upper bound by splitting a segment

with the maximum upper bound into two segments and merging

two adjacent segments with the minimum reconstruction area.

Finally, the segment endpoint movement iteration reduces the

sum upper bound. As a result, we will get 𝑆𝐴𝑃𝐿𝐴 representation

𝐶 = {⟨𝑎0, 𝑏0, 𝑟0⟩, . . . , ⟨𝑎𝑁−1, 𝑏𝑁−1, 𝑟𝑁−1⟩}.

4.1 Proposed Equations and Area
Computation

4.1.1 Increment Area. 𝑆𝐴𝑃𝐿𝐴 represents the 𝑖𝑡ℎ segment by

𝑐𝑖 = ⟨𝑎𝑖 , 𝑏𝑖 , 𝑟𝑖 ⟩. Let 𝑟 ′𝑖 denote the next position of the right end-

point of 𝑐𝑖 thus, 𝑟
′
𝑖
= 𝑟𝑖 +1. The original point value is 𝑐𝑟 ′

𝑖
. Suppose

a new segment is formed from the original time series as 𝐶 ′
𝑖
=

{𝐶𝑖 , 𝑐𝑟 ′
𝑖
}. We called its 𝑆𝐴𝑃𝐿𝐴 representation as Increment Seg-

ment representing as 𝑐 ′
𝑖
= ⟨𝑎′

𝑖
, 𝑏 ′

𝑖
, 𝑟 ′
𝑖
⟩. The increment segment

length is 𝑙 ′
𝑖
= 𝑙𝑖 + 1. The computation of 𝑎′

𝑖
, 𝑏 ′

𝑖
by Eq. (1) is 𝑂 (𝑙 ′

𝑖
)

time complexity. We extend Eq. (1) to Eq. (2), whose time com-

plexity is 𝑂 (1).

𝑎′𝑖 =
(𝑙𝑖 − 2) (𝑙𝑖 − 1)𝑎𝑖 + 6(𝑐𝑟 ′

𝑖
− 𝑏𝑖)

(𝑙𝑖 + 1) (𝑙𝑖 + 2)

𝑏 ′𝑖 =
2(𝑙𝑖 − 1) (𝑎𝑖𝑙𝑖 − 𝑐𝑟 ′

𝑖
) + (𝑙𝑖 + 5)𝑙𝑖𝑏𝑖

(𝑙𝑖 + 1) (𝑙𝑖 + 2)

(2)

185

Figure 3: An example of Increment Area 𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
) is sim-

plified as two green triangles △ . The black circle is a
point 𝑐𝑡 in the original time series 𝐶. The grey dashed dot

is the reconstructed point 𝑐𝑡 in𝐶𝑒𝑖 . The black dot is the
reconstructed point 𝑐 ′𝑡 in 𝐶

′
𝑖
. 𝑡 ∈ [0, 𝑛 − 1].

Let Increment Segment 𝐶 ′
𝑖
denote the reconstructed segment

time series from 𝑐 ′
𝑖
. 𝑐 ′

𝑟 ′
𝑖

= 𝑎′
𝑖
∗ 𝑙𝑖 + 𝑏 ′𝑖 is the last point in 𝐶 ′

𝑖
,

and 𝑐𝑟 ′
𝑖
= 𝑎𝑖 ∗ 𝑙𝑖 + 𝑏𝑖 is the extended point from 𝐶𝑖 . We could

get 𝐶𝑒
𝑖
= {𝐶𝑖 , 𝑐𝑟 ′

𝑖
}, the extended segment of 𝐶𝑖 , called Extended

Segment. Fig. 3 presents an example of Extended Segment𝐶𝑒
𝑖
and

Increment Segment 𝐶 ′
𝑖
. We find that 𝐶𝑒

𝑖
and 𝐶 ′

𝑖
always intersect.

Thus, we can get Lemma 4.1.

Lemma 4.1. Increment segment 𝐶 ′
𝑖
and Extended segment 𝐶𝑒

𝑖
have one intersection point. The proof is shown Section A.1.

Because of Lemma 4.1, we can define the area between Incre-

ment Segment 𝐶 ′
𝑖
and Extended Segment 𝐶𝑒

𝑖
in Definition 4.1,

called Increment Area. Let 𝜀 denote the summation of the absolute

difference between two time series 𝜀 (𝐶,𝐶) :=
∑𝑛−1

𝑡=0
|𝑐𝑡 − 𝑐𝑡 |.

Definition 4.1. Increment Area (𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
)). 𝜀 (𝐶 ′

𝑖
,𝐶𝑒

𝑖
) is an

area between the Increment segment 𝐶 ′
𝑖
and Extended segment 𝐶𝑒

𝑖
.

𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
) can be simplified as an area of 2 triangles. Fig. 3 presents

an example of 𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
), shown as the two green triangles.

4.1.2 (𝛽𝑖) Segment Upper Bound in Initialization. Algorithm
4.1 introduces get_max() function for upper bound computation.

Let [] denote the order of points in one segment, such as 𝑐𝑟𝑖−1+1 =

𝐶𝑖 [1], 𝑐𝑟𝑖 = 𝐶𝑖 [𝑙𝑖]. Let𝑚𝑎𝑥_𝑑 denote the temp max value during

the increment process. We will get upper bound like 𝛽𝑖 = max(
get_max([1,𝑙𝑖 , 𝑙

′
𝑖
],𝐶 ′

𝑖
,𝐶 ′

𝑖
,𝐶𝑒

𝑖
),𝑚𝑎𝑥_𝑑) ∗𝑙𝑖 . Theorem 4.1 proves we

do not need to consider four point differences because they are

always smaller than |𝐶 ′
𝑖
[𝑙 ′
𝑖
] −𝐶𝑒

𝑖
[𝑙 ′
𝑖
] |. Theorem 4.2 provides the

conditions that make 𝛽𝑖 ≥ 𝜖𝑖 .

Algorithm 4.1: get_max() denoted as𝑚𝑎𝑥_𝑑𝑖

input :𝑣 := vector of id to compute;

𝐶𝑖 , 𝑄𝑖 , 𝑇𝑖 := segment time series;

output :Maximum absolute difference;

1 Function get_max(𝑣 , 𝐶𝑖 , 𝑄𝑖 , 𝑇𝑖):
2 𝑚 ← 0

3 foreach 𝑘 in 𝑣 do
4 𝑚 ← max(𝑚, |𝐶𝑖 [𝑘] −𝑄𝑖 [𝑘] |, |𝐶𝑖 [𝑘] −𝑇𝑖 [𝑘] |,

|𝑄𝑖 [𝑘] −𝑇𝑖 [𝑘] |)
5 return𝑚

Theorem 4.1. Because Increment Segment 𝐶 ′
𝑖
and Extended

Segment 𝐶𝑒
𝑖
have one intersection point (Lemma 4.1). Let 𝑑1 =

|𝐶 ′
𝑖
[1] − 𝐶𝑒

𝑖
[1] | = |𝑏 ′

𝑖
− 𝑏𝑖 |, 𝑑2 = |𝐶 ′

𝑖
[𝑙𝑖] − 𝐶𝑒𝑖 [𝑙𝑖] | = |𝑐

′
𝑟𝑖
− 𝑐𝑟𝑖 |,

𝑑3 = |𝐶 ′
𝑖
[𝑙 ′
𝑖
]−𝐶 ′

𝑖
[𝑙 ′
𝑖
] | = |𝑐𝑟 ′

𝑖
−𝑐 ′

𝑟 ′
𝑖

|,𝑑4 = |𝐶 ′
𝑖
[𝑙 ′
𝑖
]−𝐶𝑒

𝑖
[𝑙 ′
𝑖
] | = |𝑐 ′

𝑟 ′
𝑖

−𝑐𝑟 ′
𝑖
|.

Figure 4: An example of Reconstruction Area
𝜀 (𝐶 ′

𝑖+1,𝐶𝑖 +𝐶𝑖+1) is simplified as four green triangles
△. The black circle is a point 𝑐𝑡 in𝐶. The grey dashed dot

is the reconstructed point 𝑐𝑡 in 𝐶𝑖 +𝐶𝑖+1. The black dot
is the reconstructed point 𝑐 ′𝑡 in 𝐶

′
𝑖+1.

𝑑5 = |𝐶𝑒
𝑖
[𝑙 ′
𝑖
] − 𝐶 ′

𝑖
[𝑙 ′
𝑖
] | So, we could get 𝑑4 ≥ 𝑑1, 𝑑4 ≥ 𝑑2 and

𝑑5 = 𝑑3 + 𝑑4. Proof is shown in Section A.2.

Theorem 4.2 (𝛽𝑖 ≥ 𝜖𝑖). As Figure 17 shows when 𝑑5 = 𝑐𝑟 ′
𝑖
−

𝑐𝑟 ′
𝑖
≥ 0, three factors support 𝛽𝑖 ≥ 𝜖𝑖 : 1)𝑑𝑚 = 𝑐 ′

𝑟 ′
𝑖

−𝑐𝑚 = 𝑐 ′
𝑟 ′
𝑖

−(𝑐𝑟 ′
𝑖
+

𝑐 ′′
𝑟 ′
𝑖

)/2 ≤ 0; 2) Section 4.1.2 proves 𝑙 ′′
𝑖
= 3⇒ 𝑔𝑒𝑡_𝑚𝑎𝑥 ([1, 2, 3], 𝐶 ′

𝑖
,

𝐶 ′
𝑖
,𝐶𝑒

𝑖
) = 𝜖𝑖 ; 3) In Eq. (21),𝑚𝑎𝑥_𝑑 ′′

𝑖
≥ 𝑑5, 𝑙 ′′𝑖 ∈ [3, 𝑛]. Detail proof

is shown in Section A.3. When 𝑑5 < 0, the situation is similar.

4.1.3 Reconstruction Area (𝜀 (𝐶 ′
𝑖+1,𝐶𝑖 +𝐶𝑖+1)). There are two

adjacent segment representations, 𝑐𝑖 and 𝑐𝑖+1. Let 𝐶 ′𝑖+1 denote

the part of original time series covering 𝐶𝑖 and 𝐶𝑖+1 represented

as 𝐶 ′
𝑖+1 = {𝐶𝑖 , 𝐶𝑖+1}. We could get 𝑟 ′

𝑖+1 = 𝑟𝑖+1, 𝑙 ′𝑖+1 = 𝑙𝑖 + 𝑙𝑖+1 =

𝑟 ′
𝑖+1−𝑟𝑖−1. We propose Eqs.(3) and (4) that make the computation

of 𝑎′
𝑖+1 and 𝑏 ′

𝑖+1 with 𝑂 (1) time complexity. We use 𝐶 ′
𝑖+1 instead

of𝐶𝑖 ,𝐶𝑖+1 in𝐶 , called a merge operation.𝐶 ′
𝑖+1 and𝐶𝑖 +𝐶𝑖+1 will

form a reconstruction area (𝜀 (𝐶 ′
𝑖+1,𝐶𝑖 +𝐶𝑖+1) in Definition 4.2).

Definition 4.2. Reconstruction Area (𝜀 (𝐶 ′
𝑖+1,𝐶𝑖 + 𝐶𝑖+1)).

𝜀 (𝐶 ′
𝑖+1,𝐶𝑖+𝐶𝑖+1) is an area between𝐶𝑖+𝐶𝑖+1 and𝐶

′
𝑖+1. 𝜀 (𝐶

′
𝑖+1,𝐶𝑖+

𝐶𝑖+1) can be simplified as an area of several triangles or parallelo-
grams. Fig. 4 provides an example of 𝜀 (𝐶 ′

𝑖+1,𝐶𝑖 +𝐶𝑖+1) as the four
green triangles in Fig. 4.

𝑎′𝑖+1 =
𝑎𝑖𝑙𝑖 (𝑙𝑖 − 1) (𝑙𝑖 + 1 − 3𝑙𝑖+1) − 6𝑙𝑖𝑙𝑖+1𝑏𝑖

𝑙 ′
𝑖+1 (𝑙

′
𝑖+1 − 1) (𝑙 ′

𝑖+1 + 1)

+𝑎𝑖+1𝑙𝑖+1 (𝑙𝑖+1 − 1) (𝑙𝑖+1 + 1 + 3𝑙𝑖) + 6𝑙𝑖𝑙𝑖+1𝑏𝑖+1
𝑙 ′
𝑖+1 (𝑙

′
𝑖+1 − 1) (𝑙 ′

𝑖+1 + 1)

(3)

𝑏 ′𝑖+1 =
𝑏𝑖𝑙𝑖 (𝑙𝑖 + 1) + 2𝑎𝑖𝑙𝑖+1𝑙𝑖 (𝑙𝑖 − 1) + 4𝑙𝑖𝑙𝑖+1𝑏𝑖

𝑙 ′
𝑖+1 (𝑙

′
𝑖+1 + 1)

+𝑏𝑖+1𝑙𝑖+1 (𝑙𝑖+1 + 1) − 𝑎𝑖+1𝑙𝑖𝑙𝑖+1 (𝑙𝑖+1 − 1) − 2𝑙𝑖𝑙𝑖+1𝑏𝑖+1
𝑙 ′
𝑖+1 (𝑙

′
𝑖+1 + 1)

(4)

4.1.4 (𝛽𝑖) Segment Upper Bound in Merge Operation. A long

segment 𝐶 ′
𝑖+1 that is merged from 𝐶𝑖 , 𝐶𝑖+1 by Eq. (3), (4). Let

us denote 𝐶𝑖 + 𝐶𝑖+1 as one reconstructed time series. 𝐶 ′
𝑖+1 and

𝐶𝑖+𝐶𝑖+1 have the same segment length. The upper bound in

merging operations is defined as 𝛽 ′
𝑖+1 = get_max([1,𝑙𝑖 , 𝑙𝑖 + 1, 𝑙 ′

𝑖+1],
𝐶 ′
𝑖+1, 𝐶

′
𝑖+1, 𝐶𝑖 +𝐶𝑖+1) * (𝑙

′
𝑖+1 − 1). In other words, we choose the

max absolute point differences from endpoints in {𝐶𝑖 , 𝐶𝑖+1, 𝐶𝑖 ,
𝐶𝑖+1,𝐶 ′𝑖+1}. There is a visual illustration of𝐶𝑖 ,𝐶𝑖+1,𝐶 ′𝑖+1 in Fig. 4.

186

0 5 10 150
5

10
15
20

(a)

0 5 10 150
5

10
15
20

(b)

Figure 5: An example of the initialization result. Figure 5a
is an original time series {7, 8, 20, 15, 18, 8, 8, 15, 10, 1, 4, 3, 3, 5,
4, 9, 2, 9, 10, 10} in Fig. 1a. Fig. 5b is the reconstructed time
series from 𝑆𝐴𝑃𝐿𝐴 representation coefficients after initial-
ization.

0 5 10 150
5

10
15
20

(a)

0 5 10 150
5

10
15
20

(b)

Figure 6: An example of the Split & Merge Iteration. Fig. 6a
is the reconstructed time series after initialization. Fig. 6b is
the reconstructed time series after Split & Merge Iteration
on Fig. 6a. We can get user defined segment number 𝑁 = 4

by Split & Merge Iteration. The max deviation is 10.6061.

4.2 Initialization
Fig. 5 shows an example of Initialization. The user defined rep-

resentation coefficients number is𝑀 = 12. So the final segment

number of 𝑆𝐴𝑃𝐿𝐴 is 𝑁 = 𝑀/3 = 4. The initialized 𝑆𝐴𝑃𝐿𝐴

representation has 6 segments, {⟨1, 7, 1⟩, ⟨−5, 20, 3⟩, ⟨−10, 18, 5⟩,
⟨7, 8, 7⟩, ⟨−9, 10, 9⟩, ⟨0.781818, 2.38182, 19⟩}. Split & Merge Itera-

tion in Section 4.3 will help get user defined four segment number.

Initialization algorithm transfers original time series 𝐶 into ini-

tialized representation 𝐶 . 𝑆𝐴𝑃𝐿𝐴 scans original time series once

to find the top 𝑁 largest Increment Areas (refer to Definition

4.1) as 𝐶 segment endpoints. Let 𝜀 (𝐶 ′
𝑗
,𝐶𝑒

𝑗
) denote an increment

threshold. Let max(𝜀 (𝐶 ′
𝑗
,𝐶𝑒

𝑗
))𝑁−1 denote the (𝑁 − 1)𝑡ℎ largest

Increment Area. In general cases, we could get at least 𝑁 seg-

ments after initialization. When scanning a new point 𝑐𝑟 ′
𝑖
, we

will get increment area by Definition 4.1. We compare this incre-

ment area with the increment threshold. If the current increment

area is bigger than the increment threshold, we will get a new

threshold and a new segment. After initialization, 𝑆𝐴𝑃𝐿𝐴 uses

split & merge iteration in Section 4.3 to get exact 𝑁 segments

representation.

Algorithm 4.2 shows the process of initialization aiming to find

segment endpoints by increment area 𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
). Computation

of 𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
) needs 𝑎′

𝑖
and 𝑏 ′

𝑖
. Because of Eq. (2), Algorithm 4.2

scans original time series 𝐶 once to get 𝑎′
𝑖
, 𝑏 ′

𝑖
(𝑖 ∈ [0, 𝑛)). If

𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
) > max(𝜀 (𝐶 ′

𝑗
,𝐶𝑒

𝑗
))𝑁−1 (𝑖 > 𝑗), the Increment Segment

representation 𝑐 ′
𝑖
will be added to 𝐶 . ⟨(𝐶 ′

𝑖+1,𝐶𝑖 + 𝐶𝑖+1), 𝑐𝑖+1⟩ is
stored in map 𝜔𝑚 from min to max. ⟨𝛽𝑖 , 𝑐𝑖 ⟩ is stored in map 𝜔𝑠

from max to min.

4.3 Split & Merge Iteration
Fig. 6 shows an example of Split & Merge Iteration. 𝑐𝑖 and 𝑐𝑖+1
with min

𝐶.𝑠𝑖𝑧𝑒−2

𝑖=0
𝜀 (𝐶 ′

𝑖+1,𝐶𝑖 + 𝐶𝑖+1) are regarded as candidate

merge segments. After initialization, original time series 𝐶 is

Algorithm 4.2: Initialization

input :𝐶 : {𝑐0, 𝑐1, . . . , 𝑐𝑛−1};
𝑁 ; // User defined segment number.

output : Initialized 𝐶 , 𝐶.𝑠𝑖𝑧𝑒 ∈ [1, 𝑛
2
];

𝜔𝑚 : Map storing 𝑐𝑖+1 by 𝜀 (𝐶 ′
𝑖+1,𝐶𝑖 +𝐶𝑖+1) from min to

max;

𝜔𝑚 .𝑡𝑜𝑝 := ⟨min
𝐶.𝑠𝑖𝑧𝑒−2

𝑖=0
𝜀 (𝐶 ′

𝑖+1,𝐶𝑖 +𝐶𝑖+1), 𝑐𝑖+1⟩;
𝜔𝑠

: Map storing 𝑐𝑖 by 𝛽𝑖 from max to min;

𝜔𝑠 .𝑡𝑜𝑝 := ⟨max
𝐶.𝑠𝑖𝑧𝑒−1

𝑗=0
𝛽 𝑗 , 𝑐 𝑗 ⟩;

𝜂: priority_queue. store 𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
);// 𝜂.𝑠𝑖𝑧𝑒 ∈ [0, 𝑁);

𝜂.𝑡𝑜𝑝 := min 𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
) in 𝜂;

1 𝑐𝑖 := ⟨𝑎𝑖 , 𝑏𝑖 , 𝑟𝑖 ⟩ ← ⟨𝑐1 − 𝑐0, 𝑐0, 1⟩;
2 𝑙𝑖 ← 2;

3 𝑖 ← 0;

4 while 𝑟𝑖 < 𝑛 do
5 Compute 𝑐 ′

𝑖
and 𝜀 (𝐶 ′

𝑖
,𝐶𝑒

𝑖
) from 𝑐𝑖 by Eq. (2) and

Definition 4.1;

6 Compute 𝛽𝑖 by Section 4.1.2;

7 if 𝜂.𝑠𝑖𝑧𝑒 < 𝑁 − 1 then
8 𝜂.𝑝𝑢𝑠ℎ(𝜀 (𝐶 ′

𝑖
,𝐶𝑒

𝑖
));

9 𝐶 .insert(𝑐𝑖);

10 𝜔𝑠
.add⟨𝛽𝑖 , 𝑐𝑖 ⟩;

11 if 𝑖 > 0 then
12 Compute 𝜀 (𝐶 ′

𝑖
,𝐶𝑖−1 +𝐶𝑖) by Eq. (3) (4) and

Definition 4.2;

13 Compute 𝛽 ′
𝑖
by Section 4.1.4;

14 𝜔𝑚 .add⟨𝜀 (𝐶 ′
𝑖
,𝐶𝑖−1 +𝐶𝑖), 𝑐𝑖 ⟩;

15 𝑖++, 𝑟𝑖+ = 2, 𝑙𝑖 ← 2;

16 else if 𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
) > 𝜂.𝑡𝑜𝑝 then

17 Update 𝜂 by 𝜀 (𝐶 ′
𝑖
,𝐶𝑒

𝑖
);

18 𝐶 .insert(𝑐𝑖);

19 𝜔𝑠
.add⟨𝛽𝑖 , 𝑐𝑖 ⟩;

20 𝜔𝑚 .add⟨𝜀 (𝐶 ′
𝑖
,𝐶𝑖−1 +𝐶𝑖), 𝑐𝑖 ⟩;

21 𝑖++, 𝑟𝑖+ = 2, 𝑙𝑖 ← 2;

22 else 𝑐𝑖 ← 𝑐 ′
𝑖
;

23 𝑟 ′
𝑖
= 𝑟𝑖 + 1;

24 𝑙 ′
𝑖
= 𝑙𝑖 + 1;

represented by initialized representation 𝐶 . Merge and split op-

erations are applied to initialized representation𝐶 for sum upper

bound 𝛽 reduction. Segment upper bound 𝛽𝑖 is proposed to bound

segment maximum deviation (𝜖𝑖 in Definition 3.4) with𝑂 (1) time

complexity. The maximum segment upper bound max
𝐶.𝑠𝑖𝑧𝑒−1

𝑖=0
𝛽𝑖

is regarded as a split threshold, and sum upper bound 𝛽 is re-

garded as an iteration threshold. Because a merge operation

involves adjacent segments 𝑐𝑖 and 𝑐𝑖+1, the minimum reconstruc-

tion area min
𝐶.𝑠𝑖𝑧𝑒−2

𝑖=0
𝜀 (𝐶 ′

𝑖+1,𝐶𝑖 + 𝐶𝑖+1) is proposed as a merge

threshold.

Several merge operations cannot guarantee a small max de-

viation 𝜖 . Therefore, we further apply split operations. Splitting

could be regarded as a reverse operation of the merging opera-

tion in Section 4.1.3. In other words, we use two short segments

𝐶𝑖 +𝐶𝑖+1 to replace one long segment denoted as𝐶 ′
𝑖+1. We could

get 𝑙 ′
𝑖+1 = 𝑙𝑖 + 𝑙𝑖+1 and 𝑟 ′

𝑖+1 = 𝑟𝑖+1. 𝑆𝐴𝑃𝐿𝐴 proposes the maxi-

mum segment upper bound max
𝐶.𝑠𝑖𝑧𝑒−1

𝑖=0
𝛽𝑖 as the segment split

187

Figure 7: An example of finding a split point in 𝐶 ′
𝑖+1. The

blue dot is the middle point of 𝐶𝑖 . The grey dot is the
candidate split point in step 1), it is the middle point be-
tween endpoint and . 1) 𝑆𝐴𝑃𝐿𝐴 gets split point with
local max 𝜀 (𝐶 ′

𝑖+1,𝐶𝑖 +𝐶𝑖+1) and maximummagnitude (1). 2)
𝑆𝐴𝑃𝐿𝐴 will check other candidate points until has bigger
𝜀 (𝐶 ′

𝑖+1,𝐶𝑖 +𝐶𝑖+1) or all magnitudes of candidate split points
are equal to magnitude.

threshold. 𝑆𝐴𝑃𝐿𝐴 applies the peak finding technique [7] to find

the split point in segment 𝑐𝑖 with max
𝐶.𝑠𝑖𝑧𝑒−1

𝑖=0
𝛽𝑖 .

In this split&merge iteration, we update segment upper bound

𝛽𝑖 in merge operations presented in Section 4.1.4 and in split

operations presented in Section 4.3.1.

4.3.1 (𝛽𝑖) Segment Upper Bound in Split Operation. The upper
bound in the split operation could be regarded as the reverse

operation of upper bound computation in merging operation

(Section 4.1.4). We could get the left segment upper bound 𝛽𝑖
= get_max([1,𝑙𝑖], 𝐶𝑖 , 𝐶

′
𝑖+1, 𝐶𝑖) * (𝑙𝑖 − 1) and the right segment

upper bound 𝛽𝑖+1 = get_max([1,𝑙𝑖+1],𝐶𝑖+1,𝐶 ′𝑖+1,𝐶𝑖+1) * (𝑙𝑖+1−1).
Note that the order in segment for 𝐶 ′

𝑖+1 should be transformed

as [1 − 𝑙𝑖 , . . . , 𝑙 ′𝑖+1 − 𝑙𝑖]. Thus, 𝐶𝑖+1, 𝐶𝑖+1 and 𝐶 ′
𝑖+1 will have the

same order value.

In merging operation, upper bound 𝛽 ′
𝑖+1 is defined in Section

4.1.4, and Fig. 4 shows an example of merging operation when

left segment 𝐶𝑖 and right segment 𝐶𝑖+1 are merged into a long

segment𝐶 ′
𝑖+1. In split operation, the upper bound 𝛽𝑖 is defined in

Section 4.3.1, and Fig. 4 also could be an example of a split opera-

tion where 𝐶 ′
𝑖+1 is split into 𝐶𝑖 and 𝐶𝑖+1. Theorem 4.3 provides

the conditions that make 𝛽𝑖 ≥ 𝜖𝑖 .

Theorem 4.3. In merging operation, suppose 𝜖 ′
𝑖+1 = |𝑐𝑡 − 𝑐𝑡 |.

We compute the sum absolute point difference except max deviation,

denoted as 𝑠 =
∑𝑟 ′𝑖+1

𝑗=𝑟𝑖−1+1 |𝑐 𝑗 − 𝑐 𝑗 |, 𝑗 ≠ 𝑡 . We could get 𝜖 ′
𝑖+1 ≤ 𝑠

because
∑𝑟 ′𝑖+1

𝑗=𝑟𝑖−1+1 (𝑐 𝑗 − 𝑐 𝑗) = 0. The average point difference is
𝑠

𝑙 ′
𝑖+1−1

. So, if 𝑚𝑎𝑥_𝑑 ′
𝑖+1 ≥

𝑠
𝑙 ′
𝑖+1−1

, we will get 𝛽𝑖+1 ≥ 𝜖 ′𝑖+1. Detail
proof is shown in Section A.4. In spitting operation, 𝛽𝑖 ≥ 𝜖𝑖 has
same situation.

4.3.2 Finding Split Point in segment 𝐶 ′
𝑖+1 . Fig. 7 provides an

example of finding a split point in long segment 𝐶 ′
𝑖+1. 𝑆𝐴𝑃𝐿𝐴

regards the segment 𝐶 ′
𝑖+1 with maximum segment upper bound

max
𝐶.𝑠𝑖𝑧𝑒−2

𝑖=−1
𝛽 ′
𝑖+1 as candidate split segment. Split point is re-

garded as right endpoint 𝑟𝑖 in left segment representation 𝑐𝑖
after splitting long segment 𝐶 ′

𝑖+1. 𝑆𝐴𝑃𝐿𝐴 finds 𝑟𝑖 with nearly

maximum reconstruction area 𝜀 (𝐶 ′
𝑖+1,𝐶𝑖 +𝐶𝑖+1) by peak finding

technique [7]. We use Eq. (5) and (6) to compute representation

coefficients 𝑎𝑖 and 𝑏𝑖 in 𝑐𝑖 by 𝑎
′
𝑖+1, 𝑏

′
𝑖+1, 𝑎𝑖+1, and 𝑏𝑖+1. Eq. (7) and

(8) help the computation of 𝑎𝑖+1 and 𝑏𝑖+1 in 𝑐𝑖+1 in the same way.

𝑎𝑖 = 𝑎
′
𝑖+1

𝑙 ′
𝑖+1 (𝑙

′
𝑖+1 − 1) (𝑙 ′

𝑖+1 + 1 + 3𝑙𝑖+1)
𝑙𝑖 (𝑙𝑖2 − 1)

−

𝑎𝑖+1
𝑙𝑖+1 (𝑙𝑖+1 − 1) (3𝑙𝑖 + 4𝑙𝑖+1 + 1)

𝑙𝑖 (𝑙𝑖2 − 1)
+

6𝑙𝑖+1𝑙 ′𝑖+1 (𝑏
′
𝑖+1 − 𝑏𝑖+1)

𝑙𝑖 (𝑙𝑖2 − 1)

(5)

𝑏𝑖 = 𝑏
′
𝑖+1

𝑙 ′
𝑖+1 (𝑙

′
𝑖+1 + 1 − 4𝑙𝑖+1)
𝑙𝑖 (𝑙𝑖 + 1) + 𝑏𝑖+1𝑙𝑖+1

2𝑙 ′
𝑖+1 + 𝑙𝑖+1 − 1

𝑙𝑖 (𝑙𝑖 + 1)

+𝑎𝑖+1 ∗
(𝑙 ′
𝑖+1 + 𝑙𝑖+1)𝑙𝑖+1 (𝑙𝑖+1 − 1)

𝑙𝑖 (𝑙𝑖 + 1) − 𝑎′𝑖+1
2𝑙𝑖+1𝑙 ′𝑖+1 (𝑙

′
𝑖+1 − 1)

𝑙𝑖 (𝑙𝑖 + 1)

(6)

𝑎𝑖+1 = 𝑎′𝑖+1
𝑙 ′
𝑖+1 (𝑙

′
𝑖+1 − 1) (𝑙 ′

𝑖+1 + 1 − 3𝑙𝑖)
𝑙𝑖+1 (𝑙𝑖+12 − 1)

+

𝑎𝑖
𝑙𝑖 (𝑙𝑖 − 1) (2𝑙 ′

𝑖+1 + 𝑙𝑖+1 − 1)
𝑙𝑖+1 (𝑙𝑖+12 − 1)

+
6𝑙𝑖𝑙
′
𝑖+1 (𝑏𝑖 − 𝑏

′
𝑖+1)

𝑙𝑖+1 (𝑙𝑖+12 − 1)

(7)

𝑏𝑖+1 = 𝑎′𝑖+1
𝑙𝑖𝑙
′
𝑖+1 (𝑙

′
𝑖+1 − 1)

𝑙𝑖+1 (𝑙𝑖+1 + 1) + 𝑏
′
𝑖+1

𝑙 ′
𝑖+1 (𝑙

′
𝑖+1 + 1 + 2𝑙𝑖)

𝑙𝑖+1 (𝑙𝑖+1 + 1)

−
𝑎𝑖𝑙𝑖 (𝑙𝑖 − 1) (𝑙 ′

𝑖+1 + 𝑙𝑖+1)
𝑙𝑖+1 (𝑙𝑖+1 + 1) −

𝑏𝑖𝑙𝑖 (3𝑙 ′𝑖+1 + 𝑙𝑖+1 + 1)
𝑙𝑖+1 (𝑙𝑖+1 + 1)

(8)

Algorithm 4.3 presents the split & merge iteration process.

We have got the minimum reconstruction area 𝜔𝑚 .𝑡𝑜𝑝 and the

maximum reconstruction area𝜔𝑠 .𝑡𝑜𝑝 in Algorithm 4.2. When the

segment number of𝐶 is more than user defined segment number

𝑁 , 𝑆𝐴𝑃𝐿𝐴 applies a merge iteration for 𝜔𝑚 .𝑡𝑜𝑝 to reduce the

segment number. Eq. (3), (4) help to reduce the computation time

of representation coefficients. When the segment number of 𝐶 is

fewer than user defined segment number 𝑁 , 𝑆𝐴𝑃𝐿𝐴 applies split

iteration for 𝜔𝑠 .𝑡𝑜𝑝 to increase the segment number of𝐶 . Eq. (5),

(6), (7), (8) help reduce the computation time of representation

coefficients.

When them segment number of 𝐶 is equal to user defined

number 𝑁 , 𝑆𝐴𝑃𝐿𝐴 computes the segment upper bound 𝛽 𝑗 , 𝛽 𝑗+1
from 𝜔𝑠 .𝑡𝑜𝑝 after split operation and 𝛽𝑖+1 from min{𝜔𝑚 .𝑡𝑜𝑝 ,
𝜀 (𝐶 ′

𝑗
,𝐶 𝑗−1 + 𝐶 𝑗), 𝜀 (𝐶 ′𝑗+2,𝐶 𝑗+1 + 𝐶 𝑗+2)} after merge operation.

Thus, we will get a temp sum upper bound 𝛽𝑠𝑚 from the above

split-merge computation. And 𝑆𝐴𝑃𝐿𝐴 computes segment upper

bound 𝛽𝑦+1 from𝜔𝑚 .𝑡𝑜𝑝 after merge operation and 𝛽𝑡 , 𝛽𝑡+1 from
𝜔𝑠 .𝑡𝑜𝑝 after split operation. Thus, we will get a temp sum upper

bound 𝛽𝑚𝑠
from the abovemerge-split computation. Finally, if the

current sum upper bound 𝛽 ≤ min{𝛽𝑚𝑠
, 𝛽𝑠𝑚}, iteration will be

transferred to the segment endpoint movement iteration (Section

4.3). If the current sum upper bound 𝛽 > min{𝛽𝑚𝑠
, 𝛽𝑠𝑚}, {𝛽 , 𝐶 ,

𝜔𝑠
, 𝜔𝑚} will be updated by the above computation results and

Algorithm 4.3 will continue the iteration.

4.4 Segment Endpoint Movement Iteration
Fig. 8 shows an example of Segment Endpoint Movement Itera-

tion. In the segment endpoint movement iteration, 𝑆𝐴𝑃𝐿𝐴moves

left and right endpoints of the segment 𝐶𝑖 with maximum seg-

ment upper bound max
𝑁−1

𝑖=0
𝛽𝑖 for sum upper bound 𝛽 reduction.

Fig. 9 provides an example of one segment 𝐶𝑖 endpoints move-

ment. There are four cases: 1) 𝐶𝑖 increases the right endpoint. 2)
𝐶𝑖 decreases the right endpoint. 3) 𝐶𝑖 increases the left endpoint.
4) 𝐶𝑖 decreases the left endpoint. 𝑆𝐴𝑃𝐿𝐴 computes each move-

ment’s updated sum upper bound 𝛽 of and finds the movement

has the minimal sum upper bound 𝛽 .

188

Algorithm 4.3: Split & Merge Iteration

input :𝐶 : {𝑐0, 𝑐1, . . . , 𝑐𝑛−1};
𝐶 , 𝜔𝑚 , and 𝜔𝑠

are from Algorithm 4.2;

output :𝐶 = {𝑐0, 𝑐1, . . . , 𝑐𝑁−1} with reduced 𝛽 ;

1 while 𝐶 .size > 𝑁 do
2 𝑐 ′

𝑖+1 := 𝜔𝑚 .𝑡𝑜𝑝;

3 Update 𝐶 by 𝑐 ′
𝑖+1;

4 Update 𝜔𝑠
by 𝛽𝑖+1;

5 Update 𝜔𝑚 by 𝜀 (𝐶 ′
𝑖+1,𝐶𝑖 +𝐶𝑖+1); //Eq. (3) (4), Section

4.1.4; Definition 4.2.

6 while 𝐶 .size < 𝑁 do
7 𝑐 ′

𝑗+1 := 𝜔𝑠 .𝑡𝑜𝑝;

8 Update 𝐶 by 𝑐 𝑗 , 𝑐 𝑗+1 ;

9 Update 𝜔𝑠
by 𝛽 𝑗 , 𝛽 𝑗+1 ;

10 Update 𝜔𝑚 by 𝜀 (𝐶 ′
𝑗+1,𝐶 𝑗 +𝐶 𝑗+1);//Section 4.3.2;

Section 4.3.1.

11 𝛽𝑠𝑚 ← 𝛽𝑚𝑠 ← 0;// all segments are labeled as unsplitted

and unmerged

12 while 𝛽 ≥ min{𝛽𝑠𝑚, 𝛽𝑚𝑠 } do
13 if 𝜔𝑠 .𝑡𝑜𝑝 has been split then get next segment.

14 if 𝜔𝑚 .𝑡𝑜𝑝 has been merged then get next segment.

15 Compute 𝛽 𝑗 , 𝛽 𝑗+1, 𝑐 𝑗 , 𝑐 𝑗+1 from 𝜔𝑠 .𝑡𝑜𝑝;

16 Compute 𝛽𝑖+1, 𝑐 ′𝑖+1 from min{𝜔𝑚 .𝑡𝑜𝑝 ,
𝜀 (𝐶 ′

𝑗
,𝐶 𝑗−1 +𝐶 𝑗), 𝜀 (𝐶 ′𝑗+2,𝐶 𝑗+1 +𝐶 𝑗+2)}; // 𝑂 (1).

17 Compute 𝛽𝑦+1, 𝑐 ′𝑦+1 from 𝜔𝑚 .𝑡𝑜𝑝;//𝑂 (1)
18 Compute 𝛽𝑡 , 𝛽𝑡+1, 𝑐𝑡 , 𝑐𝑡+1 from 𝜔𝑠 .𝑡𝑜𝑝;

19 Compute 𝛽𝑠𝑚 by {𝛽 , 𝛽 𝑗 , 𝛽 𝑗+1, 𝛽𝑖+1};
20 Compute 𝛽𝑚𝑠

by {𝛽 , 𝛽𝑡 , 𝛽𝑡+1, 𝛽𝑦+1};
21 if 𝛽𝑠𝑚 < 𝛽 or 𝛽𝑚𝑠 < 𝛽 then
22 if 𝛽𝑠𝑚 < 𝛽𝑚𝑠 then
23 Update 𝐶 by 𝑐 𝑗 , 𝑐 𝑗+1, 𝑐 ′𝑖+1;

24 else Update 𝐶 by 𝑐𝑡 , 𝑐𝑡+1, 𝑐 ′𝑦+1;

25 //label split or merged

26 Update 𝜔𝑠
, 𝜔𝑚 ;

27 𝛽 ← min{𝛽𝑠𝑚, 𝛽𝑚𝑠 };

0 5 10 150
5

10
15
20

(a)

0 5 10 150
5

10
15
20

(b)

Figure 8: An example of the Segment Endpoint Movement
Iteration. Fig. 8a is the reconstructed time series after Split
& Merge Iteration. Fig. 8b is the reconstructed time series
after Segment Endpoint Movement Iteration on Fig. 8a.
The max deviation is 9.27273.

4.4.1 𝛽𝑖 Segment Upper Bound in Endpoint Movement. One
case is that segment𝐶𝑖 increases the right endpoint, we could get

segment upper bound 𝛽𝑖 as presented in Section 4.1.2. Because

segment upper bound 𝛽𝑖 computation for the other 3 cases are

similar, we will not discuss them here. Eq. (2), (9), (10), (11) help

to reduce the computation time of representation coefficients.

Figure 9: Example of segment endpoint movement for 𝐶𝑖 .
𝐶𝑖 tries to move endpoints for 𝛽 reduction. There are four
cases. The grey dot is the endpoint in𝐶𝑖−1,𝐶𝑖+1. The black
dot is the endpoint in 𝐶𝑖 .

Segment 𝐶𝑖 with maximum segment upper bound max
𝑁−1

𝑖=0
𝛽𝑖

increases and decreases its left and right endpoints during iter-

ation. We could get four updated sum upper bound values (𝛽),

called 𝛽𝑎 , 𝛽𝑏 , 𝛽𝑐 , 𝛽𝑑 . Algorithm 4.5 shows how to compute two

updated segment representations (𝑐 ′
𝑖
,𝑐 ′
𝑖+1), two updated segment

upper bounds (𝛽𝑖 , 𝛽𝑖+1), and an updated sum upper bound 𝛽 .

1) 𝛽𝑎 is from two segment upper bounds {𝛽𝑖 , 𝛽𝑖+1} when
one segment 𝐶𝑖 increases right endpoints and its right segment

𝐶𝑖+1 decreases left endpoints. 2) 𝛽𝑏 is from {𝛽𝑖 , 𝛽𝑖+1} when 𝐶𝑖
decreases right endpoints and 𝐶𝑖+1 increases left endpoints. 3)
𝛽𝑐 is from {𝛽𝑖−1, 𝛽𝑖 } when 𝐶𝑖 increases left endpoints and 𝐶𝑖−1

decreases right endpoints. 4) 𝛽𝑑 is from {𝛽𝑖−1, 𝛽𝑖 } when 𝐶𝑖 de-
creases left endpoints and 𝐶𝑖−1 increases right endpoints. Each

endpoint increase or decrease movement will continue until the

sum upper bound 𝛽 cannot be reduced. 𝑆𝐴𝑃𝐿𝐴 pops out the com-

puted segment 𝑐𝑖 and repeats the above process for sum upper

bound 𝛽 reduction.

Algorithm 4.4: Segment Endpoint Movement Iteration

input :𝐶 : {𝑐0, 𝑐1, . . . , 𝑐𝑛−1};
𝐶 and 𝛽 are from Algorithm 4.3;

output :𝐶 = {𝑐0, 𝑐1, . . . , 𝑐𝑁−1} with reduced 𝛽 ;

1 𝜂 := priority_queue;

2 𝜂.𝑡𝑜𝑝 := 𝑐𝑖 with max
𝑁−1

𝑖=0
𝛽𝑖 ;

3 𝛽𝑎 ← 𝛽𝑏 ← 𝛽𝑐 ← 𝛽𝑑 ← 𝛽 ;

4 while 𝛽 ≥ min{𝛽𝑎, 𝛽𝑏 , 𝛽𝑐 , 𝛽𝑑 } and 𝜂! = ∅ do
5 𝛽𝑎 ← increase_right(𝛽 , 𝑐𝑖 ,𝑐𝑖+1); //Algorithm 4.5

6 𝛽𝑏 ← decrease_right(𝛽 , 𝑐𝑖 ,𝑐𝑖+1); //Algorithm 4.5

7 𝛽𝑐 ← decrease_right(𝛽 , 𝑐𝑖−1,𝑐𝑖);

8 𝛽𝑑 ← increase_right(𝛽 , 𝑐𝑖−1,𝑐𝑖);

9 if 𝛽 > min{𝛽𝑎, 𝛽𝑏 , 𝛽𝑐 , 𝛽𝑑 } then
10 if min(𝛽𝑎 ,𝛽𝑏) < min(𝛽𝑐 ,𝛽𝑑) then
11 𝑐𝑖 ← 𝑐 ′

𝑖
;

12 𝑐𝑖+1 ← 𝑐 ′
𝑖+1;

13 else
14 𝑐𝑖−1 ← 𝑐 ′

𝑖−1
;

15 𝑐𝑖 ← 𝑐 ′
𝑖
;

16 𝛽 ← min{𝛽𝑎, 𝛽𝑏 , 𝛽𝑐 , 𝛽𝑑 };
17 𝜂.pop;

189

Algorithm 4.5: Coefficients for Endpoint Movement

1 𝛽 ′ ← 𝛽 ;

2 Function increase_right(𝛽 , 𝑐𝑖 , 𝑐𝑖+1):
3 while 𝛽 ′ ≤ 𝛽 and 𝑙 ′

𝑖+1 ≥ 2 do
4 𝛽 ← 𝛽 ′; 𝑟 ′

𝑖
← 𝑟𝑖 + 1;

5 Computes 𝑐 ′
𝑖
by Eq. (2); //𝑂 (1)

6 Computes 𝑐 ′
𝑖+1 by Eq. (11); //𝑂 (1)

7 Computes 𝛽𝑖 , 𝛽𝑖+1 by Section 4.4.1;//𝑂 (1) ;
8 Updates 𝛽 ′ by 𝛽𝑖 , 𝛽𝑖+1 ;

9 return 𝛽 ;

10 decrease_right() is similar, it uses Eq. (9) (10)

𝑎′𝑖 =
(𝑙𝑖 + 4)𝑎𝑖
𝑙𝑖 − 2

+
6(𝑏𝑖 − 𝑐𝑟𝑖)
(𝑙𝑖 − 1) (𝑙𝑖 − 2)

𝑏 ′𝑖 =
(𝑙𝑖 − 3)𝑏𝑖
𝑙𝑖 − 1

− 2𝑎𝑖 +
2𝑐𝑟𝑖

𝑙𝑖 − 1

(9)

𝑎′𝑖 =
𝑎𝑖 (𝑙𝑖 − 1) (𝑙𝑖 + 4) + 6(𝑏𝑖 − 𝑐𝑟𝑖−1

)
(𝑙𝑖 + 1) (𝑙𝑖 + 2)

𝑏 ′𝑖 =
2(2𝑙𝑖 + 1)𝑐𝑟𝑖−1

+ 𝑙𝑖 (𝑙𝑖 − 1) (𝑏𝑖 − 𝑎𝑖)
(𝑙𝑖 + 1) (𝑙𝑖 + 2)

(10)

𝑎′𝑖 = 𝑎𝑖 +
6(𝑐𝑟𝑖−1+1 − 𝑏𝑖)
(𝑙𝑖 − 1) (𝑙𝑖 − 2) 𝑏 ′𝑖 = 𝑎𝑖 +

(𝑙𝑖 + 3)𝑏𝑖 − 4𝑐𝑟𝑖−1+1
𝑙𝑖 − 1

(11)

4.5 Time Complexity Analysis
The worst time complexity of 𝑆𝐴𝑃𝐿𝐴 is 𝑂 (𝑛(𝑁 + log𝑛)). The
iteration threshold 𝛽 decides iteration time in 𝑆𝐴𝑃𝐿𝐴. For the

initialization, the worst time complexity is 𝑂 (𝑛 log𝑁). When

the first segment 𝑐 = ⟨𝑐0, 𝑐1 − 𝑐0, 1⟩ is constructed (𝑙 = 2),

𝑆𝐴𝑃𝐿𝐴 will apply𝐶 .insert(𝑐) and update the increment threshold

max(𝜀 (𝐶 ′,𝐶𝑒))𝑁−1. The increment thresholdmax(𝜀 (𝐶 ′,𝐶𝑒))𝑁−1

will be updated
𝑛
2
times and cost𝑂 (log𝑁) during each updating.

For the split & merge iteration, when 𝐶.𝑠𝑖𝑧𝑒 > 𝑁 , the worst

case is𝐶.𝑠𝑖𝑧𝑒 = 𝑛
2
with

𝑛
2
−𝑁 merge operation times. So the worst

time complexity is 𝑂 (∑𝑛
2
−𝑁

𝑖=0
2 log(𝑛

2
− 𝑖)) = 𝑂 (∑𝑛

2

𝑖=𝑁
log 𝑖) →

𝑂 (𝑛 log𝑛). When 𝐶.𝑠𝑖𝑧𝑒 < 𝑁 , the worst time complexity is

𝑂 (𝑁𝑛). In split iteration, the worst time complexity of find-

ing split points is 𝑂 (𝑛 − 2𝐶.𝑠𝑖𝑧𝑒). After one split operation, we
need to sort segment upper bound 𝛽𝑖 from big to small and re-

construction area (Definition 4.2) from small to big. Thus, the

time complexity for sorting operation is 𝑂 (2 log𝐶.𝑠𝑖𝑧𝑒). The
worst case in split operations is when 𝐶.𝑠𝑖𝑧𝑒 = 1, we need

𝑁 − 1 loop times to get 𝑁 segments. So, the time complexity

is 𝑂 (𝑛(𝑁 − 1) − 𝑁 (𝑁 + 1) + 2

∑𝑁
𝑖=1

log 𝑖) = 𝑂 (𝑁𝑛).
When 𝐶.𝑠𝑖𝑧𝑒 = 𝑁 , we need to sort max

𝑁−1

𝑗=−1
𝛽 ′
𝑗+1 for split

operation and min
𝑁−1

𝑖=0
(𝜀 (𝐶 ′

𝑖+1, 𝐶𝑖 +𝐶𝑖+1)) for merge operation,

the time complexity is 𝑂 (2 log𝑁). So, the time complexity in

each while loop is 𝑂 (𝑛 − 2𝑁 + 2 log𝑁). We do not apply both

split operation and merge operation on the same segment in each

while loop. A segment is only split one time in this iteration.

We follow the same strategy for merge operations. Thus, the

while loop times are ∈ [1, 𝑁], and the worst time complexity is

𝑂 (𝑁 (𝑛−2𝑁)+2𝑁 log(𝑁)) = 𝑂 (𝑁𝑛). The whole time complexity

is 𝑂 (𝑛(𝑁 + log𝑛)).

0 50

10

20

(a) Eu-
clidean
distance =

17

0 50

10

20

(b) Reduce
to 2 dimen-
sions.

0 5
0

10

20

(c) 𝐷𝑖𝑠𝑡𝑃𝐴𝑅

= 14.

0 50

10

20

(d) 𝐷𝑖𝑠𝑡𝐿𝐵 =

11.

0 50

10

20

(e) 𝐷𝑖𝑠𝑡𝐴𝐸 =

20.

Figure 10: A visual comparison of lower bounding distance
measures for adaptive-length representations.⃝ and □ are
original time series points. × and + are reconstructed time
series points from representation coefficients. Fig.10a is
the Euclidean distance between two original time series.
Fig.10b is two reconstructed time series from the 𝑆𝐴𝑃𝐿𝐴
dimensionality reduction method (𝑁 = 2). The red line is
the position to partition for Fig.10c.

For segment endpoint movements, the worst case is that each

𝐶𝑖 has the longest 𝑙𝑖 = 𝑛 − 2𝑁 movements. Thus time complexity

is 𝑂 (𝑁 (𝑛 − 2𝑁)) = 𝑂 (𝑁𝑛).

5 INDEXING USING A LOWER BOUNDING
DISTANCE MEASURE

We propose a lower bounding measure for adaptive-length seg-

ment dimensionality reduction methods (𝑆𝐴𝑃𝐿𝐴, 𝐴𝑃𝐿𝐴 [17],

𝐴𝑃𝐶𝐴 [13]), denoted as 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 . When we reduce two original

time series into the lower dimensional 𝑆𝐴𝑃𝐿𝐴 spaces, 𝐷𝑖𝑠𝑡𝑃𝐴𝑅
between them is a lower bound of the Euclidean distance between

these two original time series. Lower bound lemma can guarantee

no-false-dismissals in 𝑘-NN search. Tightness of lower bound dis-

tance measure could help to improve 𝑘-NN performance. We will

prove the lower bounding lemma and the tightness of 𝐷𝑖𝑠𝑡𝑃𝐴𝑅
for adaptive-length methods. Because of the tightness of𝐷𝑖𝑠𝑡𝑃𝐴𝑅 ,

we propose an indexing structure, Distance Based Covering with

Convex Hull (DBCH), that uses two representations with themax-

imum 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 as the convex hull. In Section 5.3, we could use

distance based node splitting and branching picking algorithms

to build a DBCH-tree.

5.1 Lower Bound Distance Measure for
Adaptive-Length Segment Dimensionality
Reduction Method

𝐷𝑖𝑠𝑡𝑃𝐴𝑅 can guarantee to be the lower bound and a tight ap-

proximation of the Euclidean distance. For two 𝑆𝐴𝑃𝐿𝐴 segment

representations 𝑞𝑖 and 𝑐𝑖 , suppose they have the same right end-

point, and segment length denoted as 𝑙𝑖 . Let 𝑞 𝑗 , 𝑐 𝑗 denote the

reconstructed point in 𝑞𝑖 , 𝑐𝑖 by a linear function 𝑎 ∗ 𝑗 + 𝑏. Their
Euclidean distance square is shown in Eq. (12).

Fig. 11 shows an example of 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 . The Euclidean distance

of two original time series is 17. Two original time series of

length 10 are reduced to 2 dimensions by 𝑆𝐴𝑃𝐿𝐴. Fig. 10b are

two reconstructed time series from 𝑆𝐴𝑃𝐿𝐴 representation coeffi-

cients. 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 partitioned these representations by Definition

5.1. 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 = 14 is a very tight approximation of the Euclidean

distance. 𝐷𝑖𝑠𝑡𝐴𝐸 = 20 does not lower bound the Euclidean dis-

tance. 𝐷𝑖𝑠𝑡𝐿𝐵 = 11 is a less tight approximation of the Euclidean

distance. We could find that 𝐷𝑖𝑠𝑡𝐿𝐵 < 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 < 𝐷𝑖𝑠𝑡 , which

190

means 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 is lower bound Euclidean distance and tighter

than 𝐷𝑖𝑠𝑡𝐿𝐵 . 𝐷𝑖𝑠𝑡𝐴𝐸 is bigger than Euclidean distance, which

breaks the lower bounding lemma.

𝐷𝑖𝑠𝑡𝑆 (𝑞𝑖 , 𝑐𝑖) =
𝑙𝑖−1∑︁
𝑗=0

(𝑞 𝑗 − 𝑐 𝑗)2 =
𝑙𝑖 (𝑙𝑖 − 1) (2𝑙𝑖 − 1)

6

(𝑞𝑎𝑖 − 𝑐𝑎𝑖)2+

𝑙𝑖 (𝑙𝑖 − 1) (𝑞𝑎𝑖 − 𝑐𝑎𝑖) (𝑞𝑏𝑖 − 𝑐𝑏𝑖) + 𝑙𝑖 (𝑞𝑏𝑖 − 𝑐𝑏𝑖)
2

(12)

Definition 5.1. (𝐷𝑖𝑠𝑡𝑃𝐴𝑅) There are two 𝑆𝐴𝑃𝐿𝐴 representa-
tions �̂� and 𝐶 . Let �̂�𝑅 denote all 𝑟𝑖 in �̂� . Let 𝐶𝑅 denote all 𝑟𝑖 in
𝐶 . We define 𝑅 = �̂�𝑅 ∪𝐶𝑅 . We will get �̂�𝑅 ⊆ 𝑅 and 𝐶𝑅 ⊆ 𝑅. The
partition process is applied to these two represents so that they have
the same segment endpoints. This is similar to the split operations
in Section 4.3. We get the new shorter segments whose 𝑎, 𝑏 can be
computed by Eq. (5) (6) (7) (8). After the partition, the new repre-
sentations �̂�𝑃 and 𝐶𝑃 have the same segment endpoints �̂�𝑃

𝑅
= 𝐶𝑃

𝑅
.

Thus, 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (�̂�𝑃 ,𝐶𝑃) is defined in Eq. (13).

𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (�̂�𝑃 ,𝐶𝑃) =

√√√
𝑅.𝑠𝑖𝑧𝑒−1∑︁

𝑖=0

𝐷𝑖𝑠𝑡𝑆 (𝑞
𝑝

𝑖
, 𝑐
𝑝

𝑖
) (13)

The proof of 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 being a lower bound on Euclidean dis-

tance is shown in A.5. The proof of 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 is a tight approxima-

tion of the Euclidean distance is shown in A.6. We already know

𝐷𝑖𝑠𝑡𝐴𝐸 has 𝑂 (𝑛) time complexity, and 𝐷𝑖𝑠𝑡𝐿𝐵 also needs 𝑂 (𝑛)
time complexity for "projecting" new endpoints [4]. Because of

Eq. (5) (6) (7) (8), the worst time complexity of 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 is smaller

than 𝑂 (𝑛).

5.2 Distance Based Covering with Convex
Hull (DBCH structure)

𝐴𝑃𝐶𝐴 [13] proposes a𝑀𝐵𝑅 for adaptive-length representation

coefficients that the distance between query time series 𝑄 and

𝑀𝐵𝑅 is lower bounds the 𝐷𝑖𝑠𝑡𝑒𝑢𝑐 (𝑄,𝐶) for any 𝐶 in𝑀𝐵𝑅. How-

ever, we find that 𝑀𝐵𝑅 would cause serious overlap problems

as Fig. 11a shows how homogeneous time series overlap each

other. The𝑀𝐵𝑅 based on homogeneous time series also overlaps

each other. Our experiments in Section 6 show that building R-

tree based on 𝑀𝐵𝑅 will degrade the space efficiency of R-tree

and 𝑘-NN pruning power. We have proved the proposed lower

bounding measure for adaptive-length segment dimensionality

reduction method 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 is tighter than 𝐷𝑖𝑠𝑡𝐿𝐵 and satisfies

the lower bound lemma. Therefore, we propose a convex hull

structure instead of 𝐴𝑃𝐶𝐴 𝑀𝐵𝑅. We use two representation co-

efficients that have the maximum 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 in one node as the

bound of the node. Figures 11b-11d show an example of con-

struction of DBCH structure. Fig. 11b shows three reconstructed

time series from three 𝑆𝐴𝑃𝐿𝐴 representations which have differ-

ent segment endpoints. The partition process is applied so that

they have the same segment endpoints. We compute the 𝐷𝑖𝑠𝑡𝑃𝐴𝑅
between them as shown in Fig. 11c. We choose two 𝑆𝐴𝑃𝐿𝐴 rep-

resentations with maximum 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 as the convex hull in Fig.

11d. We regard these two representations as the lower and upper

bound of DBCH structure.

(a) Overlap (b) 3 𝑆𝐴𝑃𝐿𝐴s

(c) 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (d) DBCH

Figure 11: (a) shows how homogeneous time series𝑀𝐵𝑅s
overlap each other. (b) shows three 𝑆𝐴𝑃𝐿𝐴s. (c) computes
𝐷𝑖𝑠𝑡𝑃𝐴𝑅 between them. (d) DBCH structure chooses the two
𝑆𝐴𝑃𝐿𝐴s with maximum 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 as the convex hull.

5.3 Distance Based Node Splitting and Branch
Picking.

Node splitting in R-tree attempts to find a small-area split. The

branch picking algorithm also picks a branch with a minimum

area increase. We propose improved node splitting and branch

picking algorithms for time series. We split node and pick branch

using lower bounding distance instead of𝑀𝐵𝑅 area.We can avoid

serious overlap problems in node splitting and branch picking

process.

The lower bounding distance measure has been applied to

improve the node splitting in the R-tree, not the waste area.

We will not show the detailed algorithms here because they are

similar to the algorithms in R-tree [11]. When one node needs to

split, we first choose the pair with the maximum lower bounding

distance and denote them as the seed. 𝑠𝑒𝑒𝑑1 and 𝑠𝑒𝑒𝑑2. Then, we

compute the lower bounding distance between the rest of the

entries and these two seeds. If they are close to 𝑠𝑒𝑒𝑑1, we put

them in 𝑛𝑜𝑑𝑒1. Otherwise, we put them in 𝑛𝑜𝑑𝑒2 (). The branch
picking algorithm does similar work by choosing the branch

with the minimum distance increase. We compute the distance

between all entries in the leaf node. We only compute the pair’s

distance that constructs the convex hull in each subnode for the

internal node.

Let 𝑢 and 𝑙 denote the upper and lower bound of the DBCH

structure in 𝑘-NN search. We call the 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (𝑢, 𝑙) as volume.

Let 𝑞 denote the query representation. If the distances from 𝑞 to𝑢

and 𝑙 are smaller than volume, we set the 𝐷𝑖𝑠𝑡 (𝑞, 𝐷𝐵𝐶𝐻) = 0. If

the distances from 𝑞 to 𝑢 or 𝑙 are bigger than volume, we choose

the smaller distance as 𝐷𝑖𝑠𝑡 (𝑞, 𝐷𝐵𝐶𝐻).

6 EXPERIMENTAL EVALUATION
Implementation: We have implemented 𝑆𝐴𝑃𝐿𝐴, 𝐴𝑃𝐿𝐴, 𝐴𝑃𝐶𝐴,

𝑃𝐿𝐴, 𝑃𝐴𝐴, 𝐶𝐻𝐸𝐵𝑌 , 𝑃𝐴𝐴𝐿𝑀 , 𝑆𝐴𝑋 , R-tree, and DBCH-tree by

C++ [1]. The summary of dimensionality reduction methods is

shown in Table 1. Note that we focus on adaptive-length segment

dimensionality reduction methods. Our proposed DBCH-tree

is proposed to solve the overlap problem of 𝐴𝑃𝐶𝐴 𝑀𝐵𝑅. 𝑃𝐴𝐴,

𝑃𝐴𝐴𝐿𝑀 , 𝑆𝐴𝑋 , 𝑆𝐴𝑃𝐿𝐴, and 𝐴𝑃𝐿𝐴 use 𝑀𝐵𝑅 in R-tree because

they are special transformation of 𝐴𝑃𝐶𝐴. 𝑃𝐿𝐴 use its own𝑀𝐵𝑅

computation method because 𝑃𝐿𝐴 proposes a robust distance

191

measure between query time series and 𝑃𝐿𝐴 𝑀𝐵𝑅. 𝐶𝐻𝐸𝐵𝑌 coef-

ficient computation is different from 𝐴𝑃𝐶𝐴. We could find that

𝑃𝐿𝐴 and𝐶𝐻𝐸𝐵𝑌 have similar performance in R-tree and DBCH-

tree. However, DBCH-tree shows a big improvement than R-tree

with 𝐴𝑃𝐶𝐴 𝑀𝐵𝑅. It is important for index building of adaptive-

length segment dimensionality reduction methods.

Hardware: The processor is Intel(R) Core(TM) i5-7600 CPU

@ 3.50 GHz. RAM is 8 GB. We use VS2019 in Windows 10 system.

Datasets: There are 128 different datasets in UCR2018 [8]. We

have evaluated all the datasets with equal length time series (117

datasets). We set the time series length as 1024, and the time

series number is 100. We randomly test five query time series on

each dataset and summarise the experiment results. Due to the

space limitation, the detailed comparisons of each parameter in

each dataset are shown in our technical report [1].

Parameters:We evaluate max deviation (𝜖), pruning power

(𝜌), accuracy, dimensionality reduction time and 𝑘-NN (CPU)

time. We do not measure wall clock time because our index

structure ismemory based. The databasemay bememory based in

the future. Thus, wemeasure the performance ofmethods by CPU

time in addition to the number of disk access (pruning power).

We also evaluate ingest data time, space efficiency of R-tree and

our proposed DBCH-tree. The parameter is 𝑀 = {12, 18, 24},
𝐾 = {4, 8, 16, 32, 64}. The maximum number of entries in one

node is 5, and the minimum number of entries are 2.

We evaluate the indexing performance by testing pruning

power (𝜌) and accuracy. 𝜌 could be got by Eq.(14), which can

avoid implementation bias. Accuracy is given by Eq.(15), which

can evaluate false positive 𝑘-NN results.

𝜌 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑣𝑒 𝑡𝑜 𝑏𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟
(14)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑠𝑖𝑧𝑒 𝑜 𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ÷ 𝐾 (15)

Max Deviation (𝜖) and Dimensionality Reduction Time.
Max deviation in Fig. 12a is used to evaluate the tightness between

the original time series and representation coefficients. 𝑆𝐴𝑋 is

not compared here because 𝑆𝐴𝑋 is a symbolic version of 𝑃𝐴𝐴.

The reconstructed time series of 𝑆𝐴𝑋 has lower reconstruction

accuracy than the 𝑃𝐴𝐴 (symbol→ number). We directly compare

𝑃𝐴𝐴 instead of 𝑆𝐴𝑋 . Dimensionality reduction time in Fig. 12a is

consistent with the time complexity in Table 1. Adaptive-length

methods 𝑆𝐴𝑃𝐿𝐴, 𝐴𝑃𝐿𝐴 and 𝐴𝑃𝐶𝐴, have better max deviation

than equal-length methods with fewer segment numbers 𝑁 when

their representation coefficients number 𝑀 is same. Adaptive-

length methods need more dimensionality reduction time but

help to improve pruning power and accuracy. 𝐴𝑃𝐿𝐴 has the best

max deviation but the worst dimensionality reduction time. This

is because 𝐴𝑃𝐿𝐴 has the best pruning power and accuracy in Fig.

13. Our proposed 𝑆𝐴𝑃𝐿𝐴 uses 1/𝑛 dimensionality reduction time

of 𝐴𝑃𝐿𝐴 to get similar pruning power in Fig. 13a, accuracy in

Fig. 13b.

PruningPower (𝜌) andAccuracy. Fig. 13a shows the adaptive-
length methods 𝑆𝐴𝑃𝐿𝐴, 𝐴𝑃𝐿𝐴 and 𝐴𝑃𝐶𝐴 get a huge improve-

ment in pruning power and accuracy. This proves that our pro-

posed DBCH-tree overcomes the overlap problem in𝐴𝑃𝐶𝐴 𝑀𝐵𝑅.

𝑃𝐿𝐴 and 𝐶𝐻𝐸𝐵𝑌 use their own 𝑀𝐵𝑅 that their pruning power

and accuracy are similar in R-tree and DBCH-tree. 𝑃𝐴𝐴 and

𝑆𝐴𝑋 are equal-length segment methods that their pruning power

and accuracy are similar in different index structures. Because

𝑃𝐴𝐴𝐿𝑀 has the worst max deviation, its accuracy becomes worse

0.0

0.2

0.4

0.6

0.8

1.0
1e6

(a) Max Deviation

10−1

100

101

102

103

104

(b) Dimensionality Reduction
Time (s)

Figure 12: Summary comparison on 117 datasets.

6 × 103

7 × 103

8 × 103

9 × 103

(a) Pruning power

0

1000

2000

3000

4000

5000

6000

7000

(b) Accuracy

Figure 13: Summary comparison on 117 datasets. The is
original R-tree. The is DBCH-tree.

in DBCH-tree. This shows DBCH-tree depends on accurate dis-

tance measures.

Data Ingest Time and 𝑘-NN CPU Time. Fig. 14a shows

that𝐴𝑃𝐿𝐴 needs more data ingest time than other methods. This

shows the importance of the 𝑆𝐴𝑃𝐿𝐴, which is much faster than

𝐴𝑃𝐿𝐴. Adaptive-length methods could use fewer segments to get

better pruning power and accuracy in Fig. 13. Fig. 14b shows the

𝑘-NN CPU time. The last bar is the linear scan method. We record

the Euclidean distance computation time of the linear scan. We

could find 𝑆𝐴𝑃𝐿𝐴 and 𝐴𝑃𝐿𝐴 need a little more 𝑘-NN time in

DBCH-tree. Because 𝑆𝐴𝑃𝐿𝐴 and 𝐴𝑃𝐿𝐴 have the best pruning

power and accuracy by our proposed𝐷𝑖𝑠𝑡𝑃𝐴𝑅 .𝐷𝑖𝑠𝑡𝑃𝐴𝑅 in 𝑆𝐴𝑃𝐿𝐴

and 𝐴𝑃𝐿𝐴 shows tightness. Equal-length methods have similar

pruning power and accuracy, but Fig. 14b shows they use less

𝑘-NN in DBCH-tree.

Comparison on Index Size and Space Efficiency Analysis
The number of time series in each tree is 100. We set theminimum

fill as 2, and the maximum fill is 5. The height of the tree could

be between 3 and 7. Fig. 16b shows the average tree height of one

R-tree is 5, and one DBCH-tree is 4. The maximum of the total

node number is 102. Fig. 15a shows the average internal node

number in one tree, and Fig. 15b shows the leaf node number. We

could find that the leaf node in DBCH-tree contains 4 entries on

average, and the R-tree is 2. The number of internal nodes in the

R-tree is about four times that of DBCH-tree. Our experiment

in Fig. 15, 16 show the superiority of the DBCH-tree. Because

𝑃𝐿𝐴 and 𝐶𝐻𝐸𝐵𝑌 do not apply 𝐴𝑃𝐶𝐴 𝑀𝐵𝑅, 𝑃𝐿𝐴 and 𝐶𝐻𝐸𝐵𝑌

have a minor difference between R-tree and DBCH-tree. We can

conclude that DBCH-tree makes adaptive-length representations

have similar space efficiency with equal-length representations.

192

103

104

(a) Ingest Data Time (s)

0

5

10

15

20

25

30

(b) 𝑘-NN CPU Time (s)

Figure 14: The is original R-tree. The is DBCH-tree.
The last bar in Fig. 14b is Linear Scan.

0

5

10

15

20

25

30

35

(a) Average Internal Node Num-
ber

0

10

20

30

40

50

(b) Average Leaf Node Number

Figure 15: The is original R-tree. The is DBCH-tree.
The average number of internal node and leaf node in one
tree.

0

20

40

60

80

(a) Average Total Node Number

0

1

2

3

4

5

(b) Average Tree Height

Figure 16: The is original R-tree. The is DBCH-tree.
The average total node number and height in one tree.

7 CONCLUSION
Similarity search over the original time series may fall into the

"dimensionality curse". We propose an adaptive-length segment

dimensionality reduction method, 𝑆𝐴𝑃𝐿𝐴, to improve 𝐴𝑃𝐿𝐴.

𝑆𝐴𝑃𝐿𝐴 uses linear adaptive-length segments to represent orig-

inal time series for small max deviation with fewer segments.

As our experiments show, 𝑆𝐴𝑃𝐿𝐴 is faster than 𝐴𝑃𝐿𝐴 about 𝑛

times with minor max deviation loss. The limitation of 𝑆𝐴𝑃𝐿𝐴

is that it applies conditional upper bounds, not unconditional

upper bounds for max deviation reduction.

𝐴𝑃𝐶𝐴 proposes two lower bounding distance measures on

adaptive-length dimensionality reduction methods. 𝐷𝑖𝑠𝑡𝐿𝐵 keeps

lower bounding lemma, 𝐷𝑖𝑠𝑡𝐴𝐸 has tight Euclidean distance ap-

proximation but non-lower bounding. Thus, we propose 𝐷𝑖𝑠𝑡𝑃𝐴𝑅
with guaranteed lower bounding lemma and tightness.

𝐴𝑃𝐶𝐴 𝑀𝐵𝑅 of homogeneous time series could cause overlap

problems in R-tree. We split the node and pick branch by the

proposed lower bounding distance instead of waste area to im-

plement a DBCH-tree. DBCH-tree helps to improve the space

efficiency and pruning power of adaptive-length segment repre-

sentation coefficients. DBCH-tree depends on the tightness of

distance measurements. DBCH-tree needs more time to build

an index than R-tree for adaptive-length segment dimensional-

ity reduction methods. DBCH-tree could guarantee the lower

bounding lemma between the query time series and the leaf node.

However, the distance between query time series and an internal

node cannot guarantee the lower bounding lemma.

A PROOFS OF THEOREMS & LEMMAS
A.1 Proof of Lemma 4.1

Proof. We could get the difference value between the last

reconstructed point in Increment Segment, and the last extended

point in Extended Segment is shown in Eq.16.

𝑑4 = 𝑐 ′
𝑟 ′
𝑖
− 𝑐𝑟 ′

𝑖
= 𝑎′𝑖 𝑙𝑖 + 𝑏

′
𝑖 − (𝑎𝑖𝑙𝑖 + 𝑏𝑖) ⇒

2(2𝑙𝑖 + 1) (𝑐𝑟 ′
𝑖
− 𝑐𝑟 ′

𝑖
)

(𝑙𝑖 + 1) (𝑙𝑖 + 2)
(16)

We also get the difference value between the first reconstructed

point in Increment Segment, and the first extended point in Ex-

tended Segment is shown in Eq.17.

𝑑1 = 𝑏 ′𝑖 − 𝑏𝑖 ⇒
(𝑙𝑖 − 1) (𝑐𝑟 ′

𝑖
− 𝑐𝑟 ′

𝑖
)

(𝑙𝑖 + 1) (𝑙𝑖 + 2)
(17)

We could get 𝑑4 ∗ 𝑑1 ≤ 0. Thus, the Increment Segment 𝐶 ′
𝑖

and the Extended Segment𝐶𝑒
𝑖
have one intersection point unless

they are same. □

A.2 Proof of Theorem 4.1
Proof. We define the segment length is longer than one in

this paper (𝑙𝑖 > 1). As Fig. 3 shows, Eq. (18) shows 𝑑4 ≥ 𝑑1.

Eq. (19) shows 𝑑4 ≥ 𝑑2. Eq. (20) shows 𝑑5 = 𝑑3 + 𝑑4.

𝑑4 ≥ 𝑑1 ⇒ |𝑎′𝑖 𝑙𝑖 + 𝑏
′
𝑖 − (𝑎𝑖𝑙𝑖 + 𝑏𝑖) | ≥ |𝑏

′
𝑖 − 𝑏𝑖 | ⇒

2(2𝑙𝑖 + 1) |𝑐𝑟 ′
𝑖
− 𝑐𝑟 ′

𝑖
|

(𝑙𝑖 + 1) (𝑙𝑖 + 2) ≥
(𝑙𝑖 − 1) |𝑐𝑟 ′

𝑖
− 𝑐𝑟 ′

𝑖
|

(𝑙𝑖 + 1) (𝑙𝑖 + 2)
(18)

𝑑4 ≥ 𝑑2 ⇒ 2(2𝑙𝑖 + 1) > 4(𝑙𝑖 − 1) (19)

𝑑3 + 𝑑4 ⇒
𝑙𝑖 (𝑙𝑖 − 1) + 2(2𝑙𝑖 + 1)
(𝑙𝑖 + 1) (𝑙𝑖 + 2) |𝑐𝑟 ′

𝑖
− 𝑐𝑟 ′

𝑖
| = 𝑑5 (20)

□

A.3 Proof of Theorem 4.2: In general case,
𝛽𝑖 ≥ 𝜖𝑖 in initialization operation

Proof. As Fig. 17 shows, 𝐶 ′′
𝑖
is an initialized segment. When

𝜖𝑖 = 𝑐𝑟 ′
𝑖
− 𝑐 ′′

𝑟 ′
𝑖

, we will prove 𝛽𝑖 = 𝑚𝑎𝑥_𝑑 ′′
𝑖
∗ (𝑙 ′′

𝑖
− 1) ≥ 𝜖𝑖 in

193

Figure 17: Example of proof 𝛽𝑖 ≥ 𝜖𝑖 in general cases, sup-
pose 𝜖𝑖 = 𝑐𝑟 ′

𝑖
− 𝑐 ′′

𝑟 ′
𝑖

. The black circle is original point 𝑐𝑡 in

𝐶,𝑡 ∈ [0, 𝑛−1]. The grey dashed dot is reconstructed point
𝑐𝑡 in𝐶𝑒𝑖 . The green dot is reconstructed point 𝑐 ′𝑡 in𝐶

′
𝑖
. The

black dot is reconstructed point 𝑐 ′′𝑡 in 𝐶 ′′
𝑖
. 𝑐𝑚=

𝑐𝑟 ′
𝑖
+𝑐′′

𝑟 ′
𝑖

2
is

middle point between original point 𝑐𝑟 ′
𝑖
and reconstructed

point 𝑐 ′′
𝑟 ′
𝑖

.

general cases. Since 𝑙𝑖 ≥ 2, 𝑙 ′′
𝑖
− 3 ≥ 0. When 𝑑5 = 𝑐𝑟 ′

𝑖
− 𝑐𝑟 ′

𝑖
≥ 0,

𝑑3 = 𝑐𝑟 ′
𝑖
− 𝑐 ′

𝑟 ′
𝑖

≥ 0 in Theorem 4.1, we can prove

𝛽𝑖 ≥ (𝑙 ′′𝑖 − 1)𝑑3 ≥ 𝜖𝑖 ⇒ (𝑙 ′′𝑖 − 2)𝑑3 + 𝑐 ′′𝑟 ′
𝑖
− 𝑐 ′

𝑟 ′
𝑖
≥ 0

⇒
(𝑙 ′′
𝑖
− 3)𝑑3

2

≥ 𝑐 ′
𝑟 ′
𝑖
−
𝑐𝑟 ′

𝑖
+ 𝑐 ′′

𝑟 ′
𝑖

2

⇒
(𝑙 ′′
𝑖
− 3)𝑑5

2

≥ 𝑑𝑚
(21)

One special case 𝑙 ′′
𝑖
= 4,

(𝑙 ′′𝑖 −3)𝑑5

2
≥ 𝑑𝑚 ⇒ 𝑑5 ≥ 𝜖𝑖

2
. If𝑚𝑎𝑥_𝑑 ′′

𝑖
=

𝑑5 and 𝑑5 <
𝜖𝑖
2
, we will get 𝛽𝑖 < 𝜖𝑖 . Another special case is

𝑑𝑚 > 0, so

(𝑙 ′′𝑖 −3)𝑑5

2
may be smaller than 𝑑𝑚 , especially when

𝑚𝑎𝑥_𝑑 ′′
𝑖
= 𝑑5. During our experiment, we have not found these

two special cases that cause 𝛽𝑖 < 𝜖𝑖 . For 𝑑5 < 0, the proof is

similar to Eq. (21). We will not discuss this in details. □

A.4 Proof of Theorem 4.3: In general case,
𝛽𝑖 ≥ 𝜖𝑖 in merge operation

Lemma A.1. Let𝐶𝑖 denote the 𝑖𝑡ℎ segment of original time series
𝐶 . Let𝐶𝑖 denote the 𝑖𝑡ℎ segment of reconstructed time series𝐶 from
𝑆𝐴𝑃𝐿𝐴 representation𝐶 . Let 𝑠𝑝 = {∑𝑟𝑖

𝑗=𝑟𝑖−1+1 (𝑐 𝑗 −𝑐 𝑗), 𝑖 𝑓 𝑐 𝑗 −𝑐 𝑗 >
0} and 𝑠𝑛 = {∑𝑟𝑖

𝑗=𝑟𝑖−1+1 (𝑐 𝑗 − 𝑐 𝑗), 𝑖 𝑓 𝑐 𝑗 − 𝑐 𝑗 < 0}. 𝑠𝑝 + 𝑠𝑛 = 0, as
Eq.(22) shows.

𝑟𝑖∑︁
𝑗=𝑟𝑖−1+1

(𝑐 𝑗 − 𝑐 𝑗) =
𝑙𝑖 (𝑙𝑖 − 1)

2

𝑎𝑖 + 𝑙𝑖𝑏𝑖 −
𝑟𝑖∑︁

𝑗=𝑟𝑖−1+1
𝑐 𝑗 = 0 (22)

Proof. 𝛽𝑖+1 =𝑚𝑎𝑥_𝑑 ′
𝑖+1 ∗ (𝑙

′
𝑖+1 − 1). We suppose 𝜖 ′

𝑖+1 = 𝑐𝑟𝑖 −
𝑐 ′𝑟𝑖 in Fig. 4. According to Lemma A.1, 𝜖 ′

𝑖+1 also has maximum

value. That is when only 𝑐𝑟𝑖 is located above 𝐶𝑖 , other points are

all below 𝐶𝑖 and average value is

𝑐𝑟𝑖 −𝑐
′
𝑟𝑖

𝑙 ′
𝑖+1−1

. So, the worst case is

𝑚𝑎𝑥_𝑑 ′
𝑖+1 <

𝑐𝑟𝑖 −𝑐
′
𝑟𝑖

𝑙 ′
𝑖+1−1

. During our experiment, we have not found

this extreme case. For proof 𝛽𝑖 in split operation is similar with

𝛽𝑖+1. We will not discuss in detail. □

A.5 Lower Bounding Lemma for 𝐷𝑖𝑠𝑡𝑃𝐴𝑅
Let 𝑄 and 𝐶 denote two original time series. Let �̂� and 𝐶 denote

the 𝑆𝐴𝑃𝐿𝐴. Let �̂�𝑝
and 𝐶𝑝

denote the partitioned 𝑆𝐴𝑃𝐿𝐴 of �̂�

and 𝐶 . In order to guarantee no false dismissal, 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (�̂�,𝐶)

between two partitioned 𝑆𝐴𝑃𝐿𝐴 representations, �̂�𝑝
and 𝐶𝑝

,

should be smaller than the Euclidean distance𝐷𝑖𝑠𝑡 (𝑄,𝐶) between
two time series𝑄 and𝐶 . Let 𝑁 ′ denote the partitioned dimension.

𝐷𝑖𝑠𝑡 (𝑄,𝐶) and 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (�̂�,𝐶) are the summations of the dis-

tance of all segments. �̂�𝑝
and 𝐶𝑝

have the same right endpoints.

Thus, it is sufficient to prove one segment that the lower bound

distance from the partitioned 𝑆𝐴𝑃𝐿𝐴 is smaller than or equal to

the Euclidean distance of the same segments. For the first seg-

ment 𝑞0 = ⟨𝑞𝑎, 𝑞𝑏 , 𝑞𝑟 ⟩,𝑐0 = ⟨𝑐𝑎, 𝑐𝑏 , 𝑐𝑟 ⟩, their right endpoints are
equal (𝑞𝑟 = 𝑐𝑟). So, the proof of 𝐷𝑖𝑠𝑡 (𝑄0,𝐶0) ≥ 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (�̂�0,𝐶0)
is the same as 𝐷𝑖𝑠𝑡 (𝑄0,𝐶0) ≥ 𝐷𝑖𝑠𝑡𝑃𝐿𝐴 (�̂�0,𝐶0) (proved in [5]).

Because the entire distance is the summation of all segments, we

can guarantee that our proposed lower bound distance measure

is smaller than Euclidean distance 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (�̂�,𝐶) ≤ 𝐷𝑖𝑠𝑡 (𝑄,𝐶).

A.6 Proof of 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 Tightness
Let �̂�𝑝

and𝐶𝑝
denote the partitioned 𝑆𝐴𝑃𝐿𝐴 representations of �̂�

and𝐶 . In order to prove the tightness of𝐷𝑖𝑠𝑡𝑃𝐴𝑅 , we need to guar-

antee 𝐷𝑖𝑠𝑡𝐿𝐵 ≤ 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 . We have proved the 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (�̂�,𝐶) ≤
𝐷𝑖𝑠𝑡 (𝑄,𝐶) in Section A.5.

�̂�𝑝
and 𝐶𝑝

have the same right endpoints 𝑟𝑖 . Let 𝐶
𝑝

𝑅
denote

all the partitioned right endpoints in 𝐶𝑝
. Let �̂�𝑅 denote all 𝑟𝑖

in �̂� . Let 𝐶𝑅 denote all 𝑟𝑖 in 𝐶 . 𝐷𝑖𝑠𝑡𝐿𝐵 [13] converts 𝑄 into a

𝑆𝐴𝑃𝐿𝐴 representation �̂�𝐿𝐵
with the exact 𝑟𝑖 as 𝐶 . It is obvious

that �̂�𝐿𝐵
𝑅

= 𝐶𝑅 ⊆ 𝐶
𝑝

𝑅
. Thus, we can conclude that any segment

𝑐𝑖 in 𝐶 could be computed by one segment or merged (Eq. (3)

(4)) from several segments in 𝐶𝑝
. Meanwhile, let 𝑙𝑖 = 𝑟𝑖 − 𝑟𝑖−1

denote the segment length. ∃𝑚 ∈ [0, 𝑘] satisfies ∑𝑘
𝑗=𝑚 𝐶

𝑝

𝑙 𝑗
= 𝐶𝑙𝑖 .

It is sufficient to prove one segment that 𝐷𝑖𝑠𝑡𝐿𝐵 (𝑞𝑖 , 𝑐𝑖) is smaller

than or equal to the 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 of one segment or several segments.

If the segment 𝑐𝑖 has the same right endpoint with 𝑐
𝑝

𝑘
and their

segment length are equal, their distance will be equal. If more

than 2 segments in 𝐶𝑝
that their summation of segments length

are equal to segment length in 𝑐𝑖 , they can be merged into 2

segments 𝑐
𝑝

𝑘−1
and 𝑐

𝑝

𝑘
. The above conclusions can also work on

�̂�𝑝
and �̂�𝐿𝐵

.

We will prove the tightness of 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 on one segment. Let

𝑞 and 𝑐 denote the first segment in 𝐷𝑖𝑠𝑡𝐿𝐵 distance approxima-

tion. Suppose there are two segments 𝑐0, 𝑐1 in 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 distance

approximation that their summation of segment length is equal

to the length of 𝑐 , denoted as 𝑙 = 𝑙0 + 𝑙1. 𝑟 = 𝑟1. We could regard

the 𝑐 as the 𝑆𝐴𝑃𝐿𝐴 representation of reconstructed time series

from 𝑐0 plus 𝑐1. Their reconstructed time series are denoted as

𝐶0+𝐶1. If𝐶0+𝐶1 and �̌�0+�̌�1 are regarded as original time series,

𝑞 and 𝑐 are regarded as their 𝑆𝐴𝑃𝐿𝐴 representation, we will get

𝐷𝑖𝑠𝑡 (𝐶0 +𝐶1, �̌�0 + �̌�1) ≥ 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (𝑞, 𝑐) (proved in Section A.5).

According to Section A.5, 𝐷𝑖𝑠𝑡 (𝐶0, �̌�0) ≥ 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (𝑞0, 𝑐0) and
𝐷𝑖𝑠𝑡 (𝐶1, �̌�1) ≥ 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (𝑞1, 𝑐1). Let 𝑄 and 𝐶 denote the original

time series in first segment of𝐷𝑖𝑠𝑡𝐿𝐵 distance approximation. We

will have (𝐷𝑖𝑠𝑡 (𝐶,𝑄))2 = (𝐷𝑖𝑠𝑡 (𝐶0, 𝑄0))2 + (𝐷𝑖𝑠𝑡 (𝐶1, 𝑄1))2 ≥
(𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (𝑞0, 𝑐0))2+ (𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (𝑞1, 𝑐1))2 ≥ (𝐷𝑖𝑠𝑡𝐿𝐵 (𝑞, 𝑐))2. We

complete the proof of tightness on the first segment. Because

the entire distance is the summation of those segments, we can

conclude 𝐷𝑖𝑠𝑡𝐿𝐵 (�̂� , 𝐶) ≤ 𝐷𝑖𝑠𝑡𝑃𝐴𝑅 (�̂� , 𝐶) ≤ 𝐷𝑖𝑠𝑡 (𝑄,𝐶).

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-

dation of China (NSFC61972203), and the Natural Science Foun-

dation of Jiangsu Province (BK20190442).

194

REFERENCES
[1] 2021. Appendix, Source Code, Full Report, Datasets. Retrieved May 26, 2021

from https://sites.google.com/view/edbt2022/home

[2] Yuhan Cai and Raymond Ng. 2004. Indexing spatio-temporal trajectories with

Chebyshev polynomials. In Proceedings of the 2004 ACM SIGMOD international
conference on Management of data. ACM, 599–610.

[3] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon,

and Eamonn Keogh. 2014. Beyond one billion time series: indexing and mining

very large time series collections with iSAX2+. Knowledge and information
systems 39, 1 (2014), 123–151.

[4] Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra, and Michael Pazzani.

2002. Locally adaptive dimensionality reduction for indexing large time series

databases. ACM Transactions on Database Systems (TODS) 27, 2 (2002), 188–
228.

[5] Qiuxia Chen, Lei Chen, Xiang Lian, Yunhao Liu, and Jeffrey Xu Yu. 2007. Index-

able PLA for efficient similarity search. In Proceedings of the 33rd international
conference on Very large data bases. VLDB Endowment, 435–446.

[6] Jens Clausen. 1999. Branch and bound algorithms-principles and examples.

Department of Computer Science, University of Copenhagen (1999), 1–30.

[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

2009. Introduction to algorithms. MIT press.

[8] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan

Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing

Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista,

and Hexagon-ML. 2018. The UCR Time Series Classification Archive. https:

//www.cs.ucr.edu/~eamonn/time_series_data_2018/.

[9] Frank Eichinger, Pavel Efros, Stamatis Karnouskos, and Klemens Böhm. 2015.

A time-series compression technique and its application to the smart grid. The
VLDB Journal 24, 2 (2015), 193–218.

[10] Christos Faloutsos, Mudumbai Ranganathan, and Yannis Manolopoulos. 1994.

Fast subsequence matching in time-series databases. ACM Sigmod Record 23,

2 (1994), 419–429.

[11] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial search-

ing. In Proceedings of the 1984 ACM SIGMOD international conference on Man-
agement of data. 47–57.

[12] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.

2001. Dimensionality reduction for fast similarity search in large time series

databases. Knowledge and information Systems 3, 3 (2001), 263–286.
[13] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.

2001. Locally adaptive dimensionality reduction for indexing large time series

databases. In ACM Sigmod Record, Vol. 30. ACM, 151–162.

[14] Eamonn J Keogh and Michael J Pazzani. 1998. An Enhanced Representation

of Time Series Which Allows Fast and Accurate Classification, Clustering and

Relevance Feedback.. In Kdd, Vol. 98. 239–243.
[15] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. 2003. A symbolic

representation of time series, with implications for streaming algorithms. In

Proceedings of the 8th ACM SIGMODworkshop on Research issues in data mining
and knowledge discovery. 2–11.

[16] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. 2007. Experienc-

ing SAX: a novel symbolic representation of time series. Data Mining and
knowledge discovery 15, 2 (2007), 107–144.

[17] Vebjorn Ljosa and Ambuj K Singh. 2007. APLA: Indexing arbitrary probability

distributions. In 2007 IEEE 23rd International Conference on Data Engineering.
IEEE, 946–955.

[18] Yuu Morinaka, Masatoshi Yoshikawa, Toshiyuki Amagasa, and Shunsuke Ue-

mura. 2001. The L-index: An indexing structure for efficient subsequence

matching in time sequence databases. In Proc. 5th PacificAisa Conf. on Knowl-
edge Discovery and Data Mining. 51–60.

[19] Rakesh Agrawal Giuseppe Psaila and Edward L Wimmers Mohamed &It. 1995.

Querying shapes of histories. Very Large Data Bases. Zurich, Switzerland: IEEE
(1995).

[20] Thanawin Rakthanmanon, Bilson Campana, AbdullahMueen, Gustavo Batista,

BrandonWestover, Qiang Zhu, Jesin Zakaria, and EamonnKeogh. 2012. Search-

ing and mining trillions of time series subsequences under dynamic time

warping. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 262–270.

[21] Roonak Rezvani, Payam Barnaghi, and Shirin Enshaeifar. 2019. A New Pattern

Representation Method for Time-series Data. IEEE Transactions on Knowledge
and Data Engineering (2019).

[22] Tao Sun, Hongbo Liu, Seán McLoone, Shaoxiong Ji, and Xindong Wu. 2020.

Time series indexing by dynamic covering with cross-range constraints. The
VLDB Journal 29 (2020), 1365–1384.

[23] Byoung-Kee Yi and Christos Faloutsos. 2000. Fast time sequence indexing for

arbitrary Lp norms. (2000).

195

