Computer Science > Information Theory
[Submitted on 26 Oct 2024]
Title:Characterization of $n$-Dimensional Toric and Burst-Error-Correcting Quantum Codes from Lattice Codes
View PDF HTML (experimental)Abstract:Quantum error correction is essential for the development of any scalable quantum computer. In this work we introduce a generalization of a quantum interleaving method for combating clusters of errors in toric quantum error-correcting codes. We present new $n$-dimensional toric quantum codes, where $n\geq 5$, which are featured by lattice codes and apply the proposed quantum interleaving method to such new $n$-dimensional toric quantum codes. Through the application of this method to these novel $n$-dimensional toric quantum codes we derive new $n$-dimensional quantum burst-error-correcting codes. Consequently, $n$-dimensional toric quantum codes and burst-error-correcting quantum codes are provided offering both a good code rate and a significant coding gain when it comes to toric quantum codes. Another important consequence from the presented $n$-dimensional toric quantum codes is that if the Golomb and Welch conjecture in \cite{perfcodes} regarding the Lee sphere in $n$ dimensions for the respective close packings holds true, then it follows that these $n$-dimensional toric quantum codes are the only possible ones to be obtained from lattice codes. Moreover, such a methodology can be applied for burst error correction in cases involving localized errors, quantum data storage and quantum channels with memory.
Submission history
From: Cibele Cristina Trinca Watanabe Mrs. [view email][v1] Sat, 26 Oct 2024 17:29:20 UTC (45 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.