Computer Science > Artificial Intelligence
[Submitted on 26 May 2024]
Title:An Evolutionary Framework for Connect-4 as Test-Bed for Comparison of Advanced Minimax, Q-Learning and MCTS
View PDF HTML (experimental)Abstract:A major challenge in decision making domains with large state spaces is to effectively select actions which maximize utility. In recent years, approaches such as reinforcement learning (RL) and search algorithms have been successful to tackle this issue, despite their differences. RL defines a learning framework that an agent explores and interacts with. Search algorithms provide a formalism to search for a solution. However, it is often difficult to evaluate the performances of such approaches in a practical way. Motivated by this problem, we focus on one game domain, i.e., Connect-4, and develop a novel evolutionary framework to evaluate three classes of algorithms: RL, Minimax and Monte Carlo tree search (MCTS). The contribution of this paper is threefold: i) we implement advanced versions of these algorithms and provide a systematic comparison with their standard counterpart, ii) we develop a novel evaluation framework, which we call the Evolutionary Tournament, and iii) we conduct an extensive evaluation of the relative performance of each algorithm to compare our findings. We evaluate different metrics and show that MCTS achieves the best results in terms of win percentage, whereas Minimax and Q-Learning are ranked in second and third place, respectively, although the latter is shown to be the fastest to make a decision.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.