Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Feb 2024]
Title:Percept, Chat, and then Adapt: Multimodal Knowledge Transfer of Foundation Models for Open-World Video Recognition
View PDF HTML (experimental)Abstract:Open-world video recognition is challenging since traditional networks are not generalized well on complex environment variations. Alternatively, foundation models with rich knowledge have recently shown their generalization power. However, how to apply such knowledge has not been fully explored for open-world video recognition. To this end, we propose a generic knowledge transfer pipeline, which progressively exploits and integrates external multimodal knowledge from foundation models to boost open-world video recognition. We name it PCA, based on three stages of Percept, Chat, and Adapt. First, we perform Percept process to reduce the video domain gap and obtain external visual knowledge. Second, we generate rich linguistic semantics as external textual knowledge in Chat stage. Finally, we blend external multimodal knowledge in Adapt stage, by inserting multimodal knowledge adaptation modules into networks. We conduct extensive experiments on three challenging open-world video benchmarks, i.e., TinyVIRAT, ARID, and QV-Pipe. Our approach achieves state-of-the-art performance on all three datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.