Computer Science > Machine Learning
[Submitted on 19 Feb 2024 (v1), last revised 24 May 2024 (this version, v3)]
Title:PARCv2: Physics-aware Recurrent Convolutional Neural Networks for Spatiotemporal Dynamics Modeling
View PDF HTML (experimental)Abstract:Modeling unsteady, fast transient, and advection-dominated physics problems is a pressing challenge for physics-aware deep learning (PADL). The physics of complex systems is governed by large systems of partial differential equations (PDEs) and ancillary constitutive models with nonlinear structures, as well as evolving state fields exhibiting sharp gradients and rapidly deforming material interfaces. Here, we investigate an inductive bias approach that is versatile and generalizable to model generic nonlinear field evolution problems. Our study focuses on the recent physics-aware recurrent convolutions (PARC), which incorporates a differentiator-integrator architecture that inductively models the spatiotemporal dynamics of generic physical systems. We extend the capabilities of PARC to simulate unsteady, transient, and advection-dominant systems. The extended model, referred to as PARCv2, is equipped with differential operators to model advection-reaction-diffusion equations, as well as a hybrid integral solver for stable, long-time predictions. PARCv2 is tested on both standard benchmark problems in fluid dynamics, namely Burgers and Navier-Stokes equations, and then applied to more complex shock-induced reaction problems in energetic materials. We evaluate the behavior of PARCv2 in comparison to other physics-informed and learning bias models and demonstrate its potential to model unsteady and advection-dominant dynamics regimes.
Submission history
From: Phong Nguyen [view email][v1] Mon, 19 Feb 2024 20:11:46 UTC (9,633 KB)
[v2] Wed, 21 Feb 2024 18:39:38 UTC (9,633 KB)
[v3] Fri, 24 May 2024 13:35:59 UTC (9,636 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.