Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 8 Jan 2024]
Title:Why does Prediction Accuracy Decrease over Time? Uncertain Positive Learning for Cloud Failure Prediction
View PDF HTML (experimental)Abstract:With the rapid growth of cloud computing, a variety of software services have been deployed in the cloud. To ensure the reliability of cloud services, prior studies focus on failure instance (disk, node, and switch, etc.) prediction. Once the output of prediction is positive, mitigation actions are taken to rapidly resolve the underlying failure. According to our real-world practice in Microsoft Azure, we find that the prediction accuracy may decrease by about 9% after retraining the models. Considering that the mitigation actions may result in uncertain positive instances since they cannot be verified after mitigation, which may introduce more noise while updating the prediction model. To the best of our knowledge, we are the first to identify this Uncertain Positive Learning (UPLearning) issue in the real-world cloud failure prediction scenario. To tackle this problem, we design an Uncertain Positive Learning Risk Estimator (Uptake) approach. Using two real-world datasets of disk failure prediction and conducting node prediction experiments in Microsoft Azure, which is a top-tier cloud provider that serves millions of users, we demonstrate Uptake can significantly improve the failure prediction accuracy by 5% on average.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.