Mathematics > Optimization and Control
[Submitted on 23 Jan 2024]
Title:Approximate solution of stochastic infinite horizon optimal control problems for constrained linear uncertain systems
View PDF HTML (experimental)Abstract:We propose a Model Predictive Control (MPC) with a single-step prediction horizon to solve infinite horizon optimal control problems with the expected sum of convex stage costs for constrained linear uncertain systems. The proposed method relies on two techniques. First, we estimate the expected values of the convex costs using a computationally tractable approximation, achieved by sampling across the space of disturbances. Second, we implement a data-driven approach to approximate the optimal value function and its corresponding domain, through systematic exploration of the system's state space. These estimates are subsequently used as the terminal cost and terminal set within the proposed MPC. We prove recursive feasibility, robust constraint satisfaction, and convergence in probability to the target set. Furthermore, we prove that the estimated value function converges to the optimal value function in a local region. The effectiveness of the proposed MPC is illustrated with detailed numerical simulations and comparisons with a value iteration method and a Learning MPC that minimizes a certainty equivalent cost.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.