Computer Science > Robotics
[Submitted on 8 Jun 2023]
Title:Robot Task Planning Based on Large Language Model Representing Knowledge with Directed Graph Structures
View PDFAbstract:Traditional robot task planning methods face challenges when dealing with highly unstructured environments and complex tasks. We propose a task planning method that combines human expertise with an LLM and have designed an LLM prompt template, Think_Net_Prompt, with stronger expressive power to represent structured professional knowledge. We further propose a method to progressively decompose tasks and generate a task tree to reduce the planning volume for each task, and we have designed a strategy to decouple robot task planning. By dividing different planning entities and separating the task from the actual machine binding process, the task planning process becomes more flexible. Research results show that our method performs well in handling specified code formats, understanding the relationship between tasks and subtasks, and extracting parameters from text descriptions. However, there are also problems such as limited complexity of task logic handling, ambiguity in the quantity of parts and the precise location of assembly. Improving the precision of task description and cognitive structure can bring certain improvements. this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.