Computer Science > Machine Learning
[Submitted on 7 Feb 2023 (v1), last revised 1 Nov 2023 (this version, v2)]
Title:Eliciting User Preferences for Personalized Multi-Objective Decision Making through Comparative Feedback
View PDFAbstract:In classic reinforcement learning (RL) and decision making problems, policies are evaluated with respect to a scalar reward function, and all optimal policies are the same with regards to their expected return. However, many real-world problems involve balancing multiple, sometimes conflicting, objectives whose relative priority will vary according to the preferences of each user. Consequently, a policy that is optimal for one user might be sub-optimal for another. In this work, we propose a multi-objective decision making framework that accommodates different user preferences over objectives, where preferences are learned via policy comparisons. Our model consists of a Markov decision process with a vector-valued reward function, with each user having an unknown preference vector that expresses the relative importance of each objective. The goal is to efficiently compute a near-optimal policy for a given user. We consider two user feedback models. We first address the case where a user is provided with two policies and returns their preferred policy as feedback. We then move to a different user feedback model, where a user is instead provided with two small weighted sets of representative trajectories and selects the preferred one. In both cases, we suggest an algorithm that finds a nearly optimal policy for the user using a small number of comparison queries.
Submission history
From: Han Shao [view email][v1] Tue, 7 Feb 2023 23:58:19 UTC (73 KB)
[v2] Wed, 1 Nov 2023 03:06:11 UTC (74 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.