Computer Science > Hardware Architecture
[Submitted on 28 Jun 2022]
Title:RAPID: AppRoximAte Pipelined Soft Multipliers and Dividers for High-Throughput and Energy-Efficiency
View PDFAbstract:The rapid updates in error-resilient applications along with their quest for high throughput have motivated designing fast approximate functional units for Field-Programmable Gate Arrays (FPGAs). Studies that proposed imprecise functional techniques are posed with three shortcomings: first, most inexact multipliers and dividers are specialized for Application-Specific Integrated Circuit (ASIC) platforms. Second, state-of-the-art (SoA) approximate units are substituted, mostly in a single kernel of a multi-kernel application. Moreover, the end-to-end assessment is adopted on the Quality of Results (QoR), but not on the overall gained performance. Finally, existing imprecise components are not designed to support a pipelined approach, which could boost the operating frequency/throughput of, e.g., division-included applications. In this paper, we propose RAPID, the first pipelined approximate multiplier and divider architecture, customized for FPGAs. The proposed units efficiently utilize 6-input Look-up Tables (6-LUTs) and fast carry chains to implement Mitchell's approximate algorithms. Our novel error-refinement scheme not only has negligible overhead over the baseline Mitchell's approach but also boosts its accuracy to 99.4% for arbitrary size of multiplication and division. Experimental results demonstrate the efficiency of the proposed pipelined and non-pipelined RAPID multipliers and dividers over accurate counterparts. Moreover, the end-to-end evaluations of RAPID, deployed in three multi-kernel applications in the domains of bio-signal processing, image processing, and moving object tracking for Unmanned Air Vehicles (UAV) indicate up to 45% improvements in area, latency, and Area-Delay-Product (ADP), respectively, over accurate kernels, with negligible loss in QoR.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.